WO2019144576A1 - 一种生物质基调和燃料的互溶性测试系统及其测试方法 - Google Patents

一种生物质基调和燃料的互溶性测试系统及其测试方法 Download PDF

Info

Publication number
WO2019144576A1
WO2019144576A1 PCT/CN2018/095087 CN2018095087W WO2019144576A1 WO 2019144576 A1 WO2019144576 A1 WO 2019144576A1 CN 2018095087 W CN2018095087 W CN 2018095087W WO 2019144576 A1 WO2019144576 A1 WO 2019144576A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing tank
laser
control device
fuel
spot
Prior art date
Application number
PCT/CN2018/095087
Other languages
English (en)
French (fr)
Inventor
雷廷宙
杨淼
王志伟
辛晓菲
徐海燕
陈高峰
关倩
李学琴
杨延涛
梁德义
贾云颢
金阳
Original Assignee
河南省科学院能源研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南省科学院能源研究所有限公司 filed Critical 河南省科学院能源研究所有限公司
Priority to US16/971,510 priority Critical patent/US11828706B2/en
Publication of WO2019144576A1 publication Critical patent/WO2019144576A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/20Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials
    • G01N1/2035Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/20Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials
    • G01N1/2035Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping
    • G01N2001/205Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping using a valve
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • G01N2001/386Other diluting or mixing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0638Refractive parts

Definitions

  • the invention belongs to the technical field of blending fuel testing, and in particular relates to a mutual solubility testing system for biomass based fuel and fuel and a testing method thereof.
  • biomass-based liquid fuels are widely used because of their wide range of sources, their ability to be regenerated, their ease of storage, and their similar properties to fossil fuels.
  • biomass-based fuels such as biodiesel, bioethanol, biobutanol, methyl levulinate, ethyl levulinate, propyl levulinate and ⁇ -valerolactone as examples, in the study of the process of replacing fossil fuels, First, the compatibility test with fossil fuels is carried out.
  • the compatibility of biomass and fuel is the premise of the application of biomass-based liquid fuels to vehicle internal combustion engines.
  • Bio-based fuels have a wide variety of components and complex composition. It is of great significance to accelerate the research process of biomass-based alternative fuels by using fast and accurate means to test the range of mutual solubility ratio of biomass-based fuels and fossil fuels.
  • the traditional mutual solubility test has the defects of time-consuming and laborious, so the development of a mutual solubility test device is a feasible method for realizing the rapid test of the mutual solubility of the blended fuel.
  • the object of the present invention is to provide a biomass-based blending fuel mutual solubility test system and a test method thereof, which are simple in structure and convenient in operation, and utilize the blended fuel in a mutually soluble state and a layered state (ie, an immiscible state).
  • Different refractive index principles can be used to quickly determine the miscibility of blended fuels.
  • a biomass-based fuel miscibility testing system comprising a feeding device, a mixing tank, a light sensing device and a control device, the feeding device comprising at least two fuel bottles, the fuel bottle passing through the oil pipe and the mixing tank Connecting, each fuel bottle is provided with a flow valve corresponding to the connected oil pipe;
  • the light sensing device comprises a laser disposed above the mixing tank, a reflective mechanism disposed on the bottom surface of the mixing tank, and a photosensitive device disposed on one side of the reflective mechanism The mechanism, the output end of the photosensitive mechanism is connected to the input end of the control device, and the input end of the laser and the input end of the flow valve are respectively connected with the output end of the control device.
  • the reflective mechanism is a horizontally placed mirror
  • the photosensitive mechanism is a plate body on which a photosensitive sensor is disposed on the surface of the plate, and the plate surface of the plate body is provided with a photosensitive sensor facing the laser; the laser has a certain angle with the vertical line.
  • the laser head of the laser is set and tilted toward the board.
  • one end of the oil pipe is connected to the corresponding fuel bottle, the other end is connected to the end of the three-way pipe, and the three-way pipe is in communication with the mixing tank.
  • the system further comprises a water bathtub, the mixing tank is located in the water bathtub, the temperature control mechanism and the first temperature detector are arranged in the water bathtub, and the output end of the first temperature detector is connected to the input end of the control device.
  • the input of the temperature control mechanism is connected to the output of the control unit.
  • the mixing tank is provided with an agitator and a second temperature detector, the output end of the second temperature detector is connected to the input end of the control device, and the input end of the agitator is connected to the output end of the control device.
  • the system further comprises an LED display, the input of the LED display being connected to the output of the control device.
  • control device is an ECU control system.
  • control test system is under constant temperature conditions, and the base liquid and the additive solution are separately introduced into different fuel bottles, and the laser is turned on.
  • the photosensitive mechanism senses the spot reflected by the reflection mechanism through the photosensitive sensor, and marks the position signal as a base point by the control device. And then turn off the laser;
  • the laser is turned on, and the photosensitive mechanism senses the spot reflected by the reflection mechanism through the photosensitive sensor, and marks the position signal as A 0 by the control device, and then turns off the laser;
  • step 3) to inject the same volume unit of additive solution into the mixing tank, and record the position signals of the corresponding spots as A 2 , A 3 , A 4 arranged A n , A 0 to A n
  • the position relationship of the corresponding spot position relative to the position of the spot corresponding to the base point changes regularly.
  • the position of the spot corresponding to the position of A n+1 is irregularly changed with respect to the position of the spot corresponding to the base point, it represents the inside of the mixing tank.
  • the stratification of the liquid leads to a sudden change in refractive index, which means that the base liquid and the additive solution are no longer mutually soluble at the current temperature state, and the control device calculates the cumulative injection amount of the additive solution before the stratification phenomenon in the mixing tank to obtain the mutual solubility ratio of the blended fuel. .
  • the corresponding data can be displayed by the LED display, that is, the temperature in the current mixing tank, the amount of the base liquid added, and the total addition amount of the additive solution, and the mutual solubility of the base liquid and the additive liquid solution at the current temperature is calculated.
  • test system of the present invention can also determine the relationship between the mutual solubility of the blended fuel and the ambient temperature, as follows:
  • the base liquid and the additive solution are quantitatively injected into the mixing tank through the flow valve, and the liquid in the mixing tank is buried in the reflective mechanism.
  • the laser is turned on.
  • the photosensitive mechanism senses the spot reflected by the reflecting mechanism through the photosensitive sensor, and marks the position signal thereof by A 0 by the control device, and then turns off the laser;
  • the temperature rise or temperature drop of the mixing tank can be carried out by the temperature control mechanism of the water bathtub.
  • the laser is turned on, and the photosensitive mechanism senses the reflection mechanism through the photosensitive sensor.
  • the reflected spot is marked by the control device and its position signal is A 1 , and then the laser is turned off;
  • step 3) to carry out the gradient heating or cooling of the mixing tank for the same temperature unit, and record the position signals of the corresponding spot after the temperature adjustment as A 2 , A 3 , A 4 arranged A n , A
  • the position relationship of the spot position corresponding to 0 to A n is regularly changed with respect to the position of the spot corresponding to the base point.
  • the position of the spot corresponding to A n+1 is irregularly changed with respect to the position of the spot corresponding to the base point, it represents a mixture.
  • the stratification of the liquid in the tank leads to a sudden change in refractive index, which means that the base liquid and the additive solution are no longer mutually soluble at the current temperature state.
  • Recording the temperature information at this time is to adjust the relationship between the mutual solubility of the fuel and the temperature, specifically
  • the temperature information in the current mixing tank is detected by a second temperature detector in the mixing tank and the corresponding data is displayed through the LED display.
  • the invention has a simple structure, uses the ECU control device to perform numerical control on each electrical mechanism, and is convenient to operate, and utilizes the blended fuel in a mutually soluble state and a layered state (ie, an immiscible state).
  • the principle of different refractive index can quickly determine the mutual solubility of the blended fuel, and the relationship between the mutual solubility of the blended fuel and the ambient temperature.
  • FIG. 1 is a schematic structural view of a mutual solubility test system for biomass-based blending fuel in a specific embodiment
  • FIG. 2 is a spot displacement diagram of the mutual solubility ratio of ⁇ -lactone and gasoline using a mutual solubility test system of a biomass-based fuel and a fuel in a specific embodiment
  • FIG. 3 is a schematic diagram of spot displacement measured by the relationship between the mutual solubility of ⁇ -valerolactone and gasoline and the ambient temperature using a mutual solubility test system of biomass-based fuel and fuel in a specific embodiment.
  • a biomass-based fuel blending test system includes a feeding device, a mixing tank, a light sensing device, a water bath, an LED display 5, and a control device:
  • the feeding device comprises two fuel bottles 41, and a fuel pipe is connected to the bottom of each fuel bottle 41.
  • the oil pipe is connected to the mixing tank 2 through the three-way pipe 43.
  • Each fuel bottle 41 is connected with a volume flow valve. 42;
  • the light sensing device includes a laser 31, a light reflecting mechanism 32, and a photosensitive mechanism 33.
  • the laser 31 is disposed above the mixing tank 2 and disposed at an angle with a vertical line;
  • the reflective mechanism 32 is horizontally disposed in the mixing tank 2
  • the photosensitive mechanism 33 is a plate body on which the photosensitive sensor is disposed on the surface of the plate, the plate body is disposed on the side of the light reflecting mechanism 32 and the plate surface on which the photosensitive sensor is disposed is disposed toward the laser 31, and the laser head of the laser 31 is oriented
  • the board is tilted.
  • the mixing tank 2 is located in the water tub 1, and the water bath 1 is provided with a temperature control mechanism 12 and a first temperature detector 11, and the mixing tank 2 is provided with an agitator 21 and a second temperature detector 22.
  • the control device is an ECU control device 6, and the photosensitive sensor output end of the photosensitive mechanism 33 is connected to an input terminal of the ECU control device 6, and the input end of the laser 31 and the input end of the volume flow valve 42 are respectively outputted from the ECU control device 6.
  • the terminal is connected; the input of the LED display 5 is connected to the output of the ECU control unit 6.
  • the mutual solubility test system of the above-mentioned biomass-based blending fuel is used to measure the mutual solubility ratio of ⁇ -lactone and gasoline, and the steps are as follows:
  • the ECU control device controls the flow valve to open and injects 100 volumes of base liquid into the mixing tank and causes the base liquid in the mixing tank to bury the reflective mechanism, and the second temperature detector detects that the temperature of the base liquid in the mixing tank reaches 20 ° C and In the calm and bubble-free state, the ECU control device controls the laser to be turned on, and the beam emitted by the laser is refracted by the base liquid and reflected by the reflective mechanism to the plate body of the photosensitive mechanism, and the photosensitive sensor senses the spot reflected by the reflecting mechanism and passes through the control device. Marking its position signal as A 0 , and then the ECU control device controls the laser to turn off;
  • the ECU control device controls the flow valve to open and injects 1 volume of additive solution into the mixing tank.
  • the ECU control device controls the agitator to stir the liquid in the mixing tank for a certain period of time, and the second temperature detector detects the liquid in the mixing tank.
  • the ECU control device controls the laser to turn on.
  • the beam emitted by the laser is refracted by the liquid and reflected by the reflective mechanism to the plate of the photosensitive mechanism.
  • the photosensitive sensor senses the spot reflected by the reflecting mechanism. And the position signal is marked as A 1 by the control device, and then the ECU control device controls the laser to be turned off;
  • step 3) to inject 1 volume unit of additive solution into the mixing tank, and record the position signals of the corresponding spots as A 2 , A 3 , A 4 arranged A n , A 0 to A n
  • the displacement relationship of the corresponding spot position relative to the position of the spot corresponding to the base point changes regularly, and the displacement position of the spot position corresponding to A n+1 is irregularly changed with respect to the position of the spot corresponding to the base point (as shown in FIG. 2 ).
  • the control device calculates the additive solution before the delamination phenomenon occurs in the mixing tank.
  • the cumulative injection amount and the corresponding data are displayed by LED display: ambient temperature 20 ° C, gasoline 100 volume units and ⁇ valerolactone 35 volume units.
  • test system of the present invention can also be used to determine the relationship between the mutual solubility of the blended fuel and the ambient temperature, as follows:
  • the ECU control device controls the temperature control mechanism. After working and making the temperature of the coolant reach 0 °C, the ECU control device controls the laser to be turned on, and the light beam emitted by the laser is reflected by the reflecting mechanism to the plate body of the photosensitive mechanism, and the photosensitive sensor senses the spot and marks the position signal as a base point by the control device. The ECU control device then controls the laser to turn off;
  • the ECU control device controls the flow valve to open and injects the base liquid and the additive solution into the mixing tank at a volume ratio of 100:35, and causes the liquid in the mixing tank to bury the reflective mechanism, and the second temperature detector detects the mixing tank.
  • the ECU control device controls the laser to turn on, and the beam emitted by the laser is refracted by the mixed liquid and reflected by the reflective mechanism to the plate body of the photosensitive mechanism, and the photosensitive sensor senses the reflection mechanism after reflection. Spot, and mark its position signal as A 0 by the control device, and then the ECU control device controls the laser to turn off;
  • the ECU control device controls the temperature control mechanism to work and raises the temperature of the coolant by 1 ° C.
  • the ECU control device controls the laser to turn on.
  • the beam emitted by the laser is refracted by the liquid and reflected by the reflective mechanism to the plate of the photosensitive mechanism.
  • the photosensitive sensor senses the spot reflected by the reflecting mechanism, and marks the position signal as A 1 by the control device, and then the ECU controls the laser. shut down;
  • step 3) to carry out gradient heating of the mixing tank (if the base point is set at high temperature, gradient cooling can also be used), and record the position signals of the corresponding spots after heating as A 2 , A 3 , A 4 respectively . .... a n, a 0 to a n corresponding to the spot position relative displacement relationship a 0 corresponding to the spot position in the copolyesters to be a n + 1 corresponding to the spot position relative to a 0 corresponding to the spot position When the displacement relationship changes irregularly (as shown in Fig.
  • the stratification of the liquid in the mixing tank leads to a sudden change in refractive index, which means that the base liquid and the additive solution are no longer mutually soluble at the current temperature state, and the mixing tank
  • the second temperature detector within the current temperature sensor detects the temperature information in the current mixing tank and displays the corresponding data through the LED display: temperature 20 °C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种生物质基调和燃料测试系统及其测试方法。所述系统包括投料装置、混料罐、光感装置和控制装置,投料装置包括至少两个燃料瓶,燃料瓶通过油管与混料罐连接,每个燃料瓶对应连接的油管上设有流量阀;光感装置包括设置于混料罐上方的激光器、设置于混料罐内底面的反光机构以及设置于反光机构一侧的感光机构,感光机构的输出端与控制装置的输入端信号连接,激光器的输入端和流量阀的输入端分别与控制装置的输出端信号连接。本发明结构简单,利用ECU控制装置对各个机构进行数控,利用调和燃料于互溶状态和分层状态(即不互溶状态)下的折射率不同原理,可以快速测定调和燃料的互溶性、以及调和燃料的互溶性与环境温度之间的变化关系。

Description

一种生物质基调和燃料的互溶性测试系统及其测试方法 技术领域
本发明属于调和燃料测试技术领域,尤其涉及一种生物质基调和燃料的互溶性测试系统及其测试方法。
背景技术
发展汽车清洁代用燃料可缓解环境污染和减少化石能源依赖得到众多国内外学者的认可。生物质基液体燃料具有来源广泛、可再生、易储存和与化石能源具有相似的性质而得到广泛应用。以生物柴油、生物乙醇、生物丁醇、乙酰丙酸甲酯、乙酰丙酸乙酯、乙酰丙酸丙酯和γ戊内酯等生物质基燃料为例,在研究替代化石燃料的进程中,首先要进行与化石燃料的互溶性试验,生物质基调和燃料的互溶性是生物质基液体燃料应用于车用内燃机的前提。生物质基燃料的种类繁多,成分复杂,采用快速准确的手段测试生物质基燃料和化石能源的互溶比例范围,对加快生物质基代用燃料的研究进程具有较大意义。传统互溶性试验具有费时费力等缺陷,因此开发一种互溶性测试装置是实现调和燃料互溶度快速测试的可行性方法。
发明内容
本发明的目的是提供一种生物质基调和燃料的互溶性测试系统及其测试方法,所述系统结构简单,操作方便,利用调和燃料于互溶状态和分层状态(即不互溶状态)下的折射率不同原理,可用于快速测定调和燃料的互溶性。
为解决上述技术问题,本发明采用的技术方案如下:
一种生物质基调和燃料的互溶性测试系统,所述系统包括投料装置、混料罐、光感装置和控制装置,所述投料装置包括至少两个燃料瓶,燃料瓶通过油管与混料罐连接,每个燃料瓶对应连接的油管上设有流量阀;所述光感装置包括设置于混料罐上方的激光器、设置于混料罐内底面的反光机构以及设置于反光机构一侧的感光机构,感光机构的输出端与控制装置的输入端信号连接,激光器的输入端和流量阀的输入端分别与控制装置的输出端信号连接。
优选的,所述反光机构为水平放置的反光镜,感光机构为板面上布设有光敏传感器的板体,板体设有光敏传感器的板面朝向激光器设置;激光器呈与竖直直线一定夹角设置且激光器的激光头朝向板体倾斜。
优选的,所述油管一端与相应燃料瓶连接,另一端与三通管的端部连接,三通管与混料罐连通。
优选的,所述系统还包括水浴缸,混料罐位于水浴缸内,水浴缸内设有温控机构和第一温度检测器,第一温度检测器的输出端与控制装置的输入端连接,温控机构的输入端与控制装置的输出端连接。
优选的,所述混料罐内设有搅拌器和第二温度检测器,第二温度检测器的输出端与控制装置的输入端连接,搅拌器的输入端与控制装置的输出端连接。
优选的,所述系统还包括LED显示器,LED显示器的输入端与控制装置的输出端连接。
优选的,所述控制装置为ECU控制系统。
使用上述生物质基调和燃料的互溶性测试系统进行测试的方法,步骤如下:
1)控制测试系统处于恒温条件下,向不同的燃料瓶内分别导入基液和添 加剂溶液,开启激光器,感光机构通过光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为基点,然后关闭激光器;
2)通过流量阀向混料罐内定量注入基液并使得混料罐内基液埋没反光机构,搅拌器搅拌混料罐内的液体一定时长,待混料罐内液面平静且无气泡状态下,开启激光器,感光机构通过光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为A 0,然后关闭激光器;
3)通过流量阀向混料罐内按体积单位注入添加剂溶液,待混料罐内液面平静且无气泡状态下,开启激光器,感光机构通过光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为A 1,然后关闭激光器;
4)重复步骤3)操作向混料罐中注入相同体积单位的添加剂溶液,并分别记录相应光斑的位置信号为A 2、A 3、A 4.....A n,A 0至A n对应的光斑位置相对于基点对应的光斑位置的位移关系呈规律性变化,待A n+1对应的光斑位置相对于基点对应的光斑位置的位移关系呈不规律性变化时代表混料罐内的液体出现分层现象导致折射率突变,即表明当前温度状态下基液和添加液溶液不再互溶,控制装置计算混料罐内分层现象发生前添加剂溶液的累积注入量获得调和燃料的互溶比例。
进一步,可通过LED显示器显示相应的数据,即当前混料罐内的温度、基液的添加量和添加剂溶液的总添加量,计算出当前温度下,基液和添加液溶液的互溶程度。
同时,本发明所述测试系统也可以测定调和燃料的互溶性与环境温度之间的变化关系,方法如下:
1)向不同的燃料瓶内分别导入基液和添加剂溶液,开启激光器,感光机构通 过光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为基点,然后关闭激光器;
2)通过流量阀向混料罐内按比例定量注入基液和添加剂溶液,并使得混料罐内液体埋没反光机构,待混料罐内液面平静且无气泡、分层状态下,开启激光器,感光机构通过光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为A 0,然后关闭激光器;
3)对混料罐进行温度单位的升温或降温,具体可通过水浴缸的温控机构进行,待混料罐内液面平静且无气泡状态下,开启激光器,感光机构通过光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为A 1,然后关闭激光器;
4)重复步骤3)操作对混料罐进行相同温度单位的梯度升温或降温,并分别记录调温后相应光斑的位置信号为A 2、A 3、A 4.....A n,A 0至A n对应的光斑位置相对于基点对应的光斑位置的位移关系呈规律性变化,待A n+1对应的光斑位置相对于基点对应的光斑位置的位移关系呈不规律性变化时代表混料罐内的液体出现分层现象导致折射率突变,即表明当前温度状态下基液和添加液溶液不再互溶,记录此时的温度信息即得调和燃料的互溶性与温度的关系,具体可通过混料罐内的第二温度检测器将当前混料罐内的温度信息进行检测并通过LED显示器显示相应数据。
本发明与现有技术相比,具有如下优点:本发明结构简单,利用ECU控制装置对各个电气机构进行数控,操作方便,利用调和燃料于互溶状态和分层状态(即不互溶状态)下的折射率不同原理,可以快速测定调和燃料的互溶性、以及调和燃料的互溶性与环境温度之间的变化关系。
附图说明
图1为具体实施方式中生物质基调和燃料的互溶性测试系统的结构示意图;
图2为具体实施方式中使用生物质基调和燃料的互溶性测试系统对γ戊内酯和汽油的互溶比例进行测定的光斑位移图;
图3为具体实施方式中使用生物质基调和燃料的互溶性测试系统对γ戊内酯和汽油的互溶性与环境温度之间的变化关系测定的光斑位移示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,一种生物质基调和燃料的互溶性测试系统,所述系统包括投料装置、混料罐、光感装置、水浴缸、LED显示器5和控制装置:
所述投料装置包括两个燃料瓶41,每个燃料瓶41底部对应连接有油管,油管通过三通管43与混料罐2连通,每个燃料瓶41对应连接的油管上设有体积流量阀42;
所述光感装置包括激光器31、反光机构32和感光机构33,所述激光器31设置于混料罐2上方且呈与竖直直线一定夹角设置;反光机构32为水平设置于混料罐2内底面的反光镜;感光机构33为板面上布设有光敏传感器的板体,板体设置于反光机构32一侧且其设有光敏传感器的板面朝向激光器31设置,激光器31的激光头朝向板体倾斜。
混料罐2位于水浴缸1内,水浴缸1内设有温控机构12和第一温度检测 器11,混料罐2内设有搅拌器21和第二温度检测器22。
所述控制装置为ECU控制装置6,感光机构33的光敏传感器输出端与ECU控制装置6的输入端信号连接,激光器31的输入端和体积流量阀42的输入端分别与ECU控制装置6的输出端信号连接;第一温度检测器11和第二温度检测器22的输出端分别与ECU控制装置6的输入端连接,温控机构12和搅拌器21的输入端分别与ECU控制装置6的输出端连接;LED显示器5的输入端与ECU控制装置6的输出端连接。
以γ戊内酯为例,使用上述生物质基调和燃料的互溶性测试系统对γ戊内酯和汽油的互溶比例进行测定,步骤如下:
1)向两燃料瓶41内分别导入200体积汽油和200体积γ戊内酯,汽油为基液,γ戊内酯为添加剂溶液,向水浴缸1中注入冷却液,ECU控制装置6控制温控机构12工作并使得冷却液温度达到20℃后,ECU控制装置6控制激光器31开启,激光器31发射的光束经过反光机构32反射至感光机构33的板体上,光敏传感器感应光斑,并通过控制装置标记其位置信号为基点,然后ECU控制装置控制激光器关闭;
2)ECU控制装置控制流量阀开启并向混料罐内注入100体积基液并使得混料罐内基液埋没反光机构,待第二温度检测器检测混料罐内基液温度达到20℃且其平静无气泡状态下,ECU控制装置控制激光器开启,激光器发射的光束经过基液折射后并通过反光机构反射至感光机构的板体上,光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为A 0,然后ECU控制装置控制激光器关闭;
3)ECU控制装置控制流量阀开启并向混料罐内注入1体积的添加剂溶液, ECU控制装置控制搅拌器搅拌混料罐内的液体一定时长,待第二温度检测器检测混料罐内液体温度达到20℃且其平静无气泡状态下,ECU控制装置控制激光器开启,激光器发射的光束经过液体折射后并通过反光机构反射至感光机构的板体上,光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为A 1,然后ECU控制装置控制激光器关闭;
4)重复步骤3)操作向混料罐中注入1体积单位的添加剂溶液,并分别记录相应光斑的位置信号为A 2、A 3、A 4.....A n,A 0至A n对应的光斑位置相对于基点对应的光斑位置的位移关系呈规律性变化,待A n+1对应的光斑位置相对于基点对应的光斑位置的位移关系呈不规律性变化(如图2所示)时则代表混料罐内的液体已出现分层,导致折射率突变,即表明当前温度状态下基液和添加液溶液不再互溶,控制装置计算混料罐内分层现象出现前的添加剂溶液的累积注入量,并通过LED显示器显示相应数据:环境温度20℃,汽油100体积单位和γ戊内酯35体积单位。
还可利用本发明所述测试系统测定调和燃料的互溶性与环境温度之间的变化关系,方法如下:
1)向两燃料瓶内分别导入200体积汽油和200体积γ戊内酯,汽油设置为基液,γ戊内酯设置为添加剂溶液,向水浴缸中注入冷却液,ECU控制装置控制温控机构工作并使得冷却液温度达到0℃后,ECU控制装置控制激光器开启,激光器发射的光束经过反光机构反射至感光机构的板体上,光敏传感器感应光斑,并通过控制装置标记其位置信号为基点,然后ECU控制装置控制激光器关闭;
2)ECU控制装置控制流量阀开启并向混料罐内按体积比例100:35注入基 液和添加剂溶液,并使得混料罐内液体埋没反光机构,待第二温度检测器检测混料罐内液体温度达到0℃且其平静无气泡状态下,ECU控制装置控制激光器开启,激光器发射的光束经过混合液折射后并通过反光机构反射至感光机构的板体上,光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为A 0,然后ECU控制装置控制激光器关闭;
3)ECU控制装置控制温控机构工作并使得冷却液温度升高1℃,待第二温度检测器检测混料罐内液体温度达到相应温度后且平静无气泡状态下,ECU控制装置控制激光器开启,激光器发射的光束经过液体折射后并通过反光机构反射至感光机构的板体上,光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为A 1,然后ECU控制装置控制激光器关闭;
4)重复步骤3)操作对混料罐进行梯度升温(如果基点设置在高温,也可以采用梯度降温的方式),并分别记录加热后相应光斑的位置信号为A 2、A 3、A 4.....A n,A 0至A n对应的光斑位置相对于A 0对应的光斑位置的位移关系呈规律性变化,待A n+1对应的光斑位置相对于A 0对应的光斑位置的位移关系呈不规律性变化时(如图3所示)代表混料罐内的液体出现分层现象导致折射率突变,即表明当前温度状态下基液和添加液溶液不再互溶,混料罐内的第二温度检测器将当前混料罐内的温度信息进行检测并通过LED显示器显示相应数据:温度20℃。

Claims (9)

  1. 一种生物质基调和燃料的互溶性测试系统,其特征在于,所述系统包括投料装置、混料罐、光感装置和控制装置,所述投料装置包括至少两个燃料瓶,燃料瓶通过油管与混料罐连接,每个燃料瓶对应连接的油管上设有流量阀;所述光感装置包括设置于混料罐上方的激光器、设置于混料罐内底面的反光机构以及设置于反光机构一侧的感光机构,感光机构的输出端与控制装置的输入端信号连接,激光器的输入端和流量阀的输入端分别与控制装置的输出端信号连接。
  2. 如权利要求1所述的生物质基调和燃料的互溶性测试系统,其特征在于,所述反光机构为水平放置的反光镜,感光机构为板面上布设有光敏传感器的板体,板体设有光敏传感器的板面朝向激光器设置;激光器呈与竖直直线一定夹角设置且激光器的激光头朝向板体倾斜。
  3. 如权利要求1所述的生物质基调和燃料的互溶性测试系统,其特征在于,所述油管一端与相应燃料瓶连接,另一端与三通管的端部连接,三通管与混料罐连通。
  4. 如权利要求1所述的生物质基调和燃料的互溶性测试系统,其特征在于,所述系统还包括水浴缸,混料罐位于水浴缸内,水浴缸内设有温控机构和第一温度检测器,第一温度检测器的输出端与控制装置的输入端连接,温控机构的输入端与控制装置的输出端连接。
  5. 如权利要求1所述的生物质基调和燃料的互溶性测试系统,其特征在于,所述混料罐内设有搅拌器和第二温度检测器,第二温度检测器的输出端与控制装置的输入端连接,搅拌器的输入端与控制装置的输出端连接。
  6. 如权利要求1所述的生物质基调和燃料的互溶性测试系统,其特征在于,所述系统还包括LED显示器,LED显示器的输入端与控制装置的输出端连接。
  7. 如权利要求1-6任一所述的生物质基调和燃料的互溶性测试系统,其特征在于,所述控制装置为ECU控制系统。
  8. 使用权利要求1-7任一所述生物质基调和燃料的互溶性测试系统进行测试的方法,其特征在于,步骤如下:
    1)控制测试系统处于恒温条件下,向不同的燃料瓶内分别导入基液和添加剂溶液,开启激光器,感光机构通过光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为基点,然后关闭激光器;
    2)通过流量阀向混料罐内定量注入基液并使得混料罐内基液埋没反光机构,待混料罐内液面平静且无气泡状态下,开启激光器,感光机构通过光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为A 0,然后关闭激光器;
    3)通过流量阀向混料罐内按体积单位注入添加剂溶液,待混料罐内液面平静且无气泡状态下,开启激光器,感光机构通过光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为A 1,然后关闭激光器;
    4)重复步骤3)操作向混料罐中注入相同体积单位的添加剂溶液,并分别记录相应光斑的位置信号为A 2、A 3、A 4.....A n,A 0至A n对应的光斑位置相对于基点对应的光斑位置的位移关系呈规律性变化,待A n+1对应的光斑位置相对于基点对应的光斑位置的位移关系呈不规律性变化时代表混料罐内的液体出现分层现象导致折射率突变,控制装置计算混料罐内分层现象发生前添加剂溶液的累积注入量获得调和燃料的互溶比例。
  9. 使用权利要求1-7任一所述生物质基调和燃料的互溶性测试系统进行测试的方法,其特征在于,步骤如下:
    1)向不同的燃料瓶内分别导入基液和添加剂溶液,开启激光器,感光机构通过光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为基点,然后关闭激光器;
    2)通过流量阀向混料罐内按比例定量注入基液和添加剂溶液,并使得混料罐内液体埋没反光机构,待混料罐内液面平静且无气泡、分层状态下,开启激光器,感光机构通过光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为A 0,然后关闭激光器;
    3)对混料罐进行温度单位的升温或降温,待混料罐内液面平静且无气泡状态下,开启激光器,感光机构通过光敏传感器感应反射机构反射后的光斑,并通过控制装置标记其位置信号为A 1,然后关闭激光器;
    4)重复步骤3)操作对混料罐进行相同温度单位的梯度升温或降温,并分别记录调温后相应光斑的位置信号为A 2、A 3、A 4.....A n,A 0至A n对应的光斑位置相对于基点对应的光斑位置的位移关系呈规律性变化,待A n+1对应的光斑位置相对于基点对应的光斑位置的位移关系呈不规律性变化时代表混料罐内的液体出现分层现象导致折射率突变,记录此时的温度信息即得调和燃料的互溶性与温度的关系。
PCT/CN2018/095087 2018-01-29 2018-07-10 一种生物质基调和燃料的互溶性测试系统及其测试方法 WO2019144576A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/971,510 US11828706B2 (en) 2018-01-29 2018-07-10 Test system and method for the mutual solubility of biomass-based blended fuel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810081717.1 2018-01-29
CN201810081717.1A CN108037098B (zh) 2018-01-29 2018-01-29 一种生物质基调和燃料的互溶性测试系统及其测试方法

Publications (1)

Publication Number Publication Date
WO2019144576A1 true WO2019144576A1 (zh) 2019-08-01

Family

ID=62096854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095087 WO2019144576A1 (zh) 2018-01-29 2018-07-10 一种生物质基调和燃料的互溶性测试系统及其测试方法

Country Status (3)

Country Link
US (1) US11828706B2 (zh)
CN (1) CN108037098B (zh)
WO (1) WO2019144576A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037098B (zh) * 2018-01-29 2024-03-29 河南省科学院能源研究所有限公司 一种生物质基调和燃料的互溶性测试系统及其测试方法
US11492969B2 (en) * 2019-12-09 2022-11-08 Meggitt Aerospace Limited Engine thermal management methods and control systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203882A1 (de) * 1982-02-05 1983-08-18 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zur messung der mischbarkeit von mineraloelfraktionen
US7408632B2 (en) * 2004-02-20 2008-08-05 Transform Pharmaceuticals, Inc. Miscibility determination of a combination of liquids
CN201152850Y (zh) * 2008-01-16 2008-11-19 中国科学技术大学 液体浓度检测装置
CN108037098A (zh) * 2018-01-29 2018-05-15 河南省科学院能源研究所有限公司 一种生物质基调和燃料的互溶性测试系统及其测试方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904951B1 (fr) * 2006-08-21 2009-03-06 Sp3H Soc Par Actions Simplifie Procede de mise en securite des organes du groupe motropropulseur d'un vehicule a la suite d'une degradation du carburant.
US7595497B2 (en) * 2007-03-26 2009-09-29 Gm Global Technology Operations, Inc. Fuel contaminant light sensor
US7605361B2 (en) * 2007-07-09 2009-10-20 Denso Corporation Fuel property detection device
CN104614344B (zh) * 2015-02-04 2017-03-08 南昌航空大学 牛顿及非牛顿流体间临界状态下布里渊散射的研究方法
US9816892B2 (en) * 2016-01-14 2017-11-14 The Boeing Company Systems and methods for fuel leak detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203882A1 (de) * 1982-02-05 1983-08-18 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zur messung der mischbarkeit von mineraloelfraktionen
US7408632B2 (en) * 2004-02-20 2008-08-05 Transform Pharmaceuticals, Inc. Miscibility determination of a combination of liquids
CN201152850Y (zh) * 2008-01-16 2008-11-19 中国科学技术大学 液体浓度检测装置
CN108037098A (zh) * 2018-01-29 2018-05-15 河南省科学院能源研究所有限公司 一种生物质基调和燃料的互溶性测试系统及其测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, GENBAO ET AL.: "Experimental Study on Intersolubility of Dimethyl Ether and Diesel Fuel", TRANSACTIONS OF CSICE, vol. 24, no. 2, 25 March 2006 (2006-03-25), ISSN: 1000-0909 *

Also Published As

Publication number Publication date
CN108037098A (zh) 2018-05-15
US20210325300A1 (en) 2021-10-21
US11828706B2 (en) 2023-11-28
CN108037098B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
Rajak et al. Effect of spirulina microalgae biodiesel enriched with diesel fuel on performance and emission characteristics of CI engine
Geng et al. Experimental study on spray characteristics, combustion stability, and emission performance of a CRDI diesel engine operated with biodiesel–ethanol blends
Rakopoulos et al. Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blends
Liu et al. Fuel spray and combustion characteristics of butanol blends in a constant volume combustion chamber
Rakopoulos et al. Investigation of the combustion of neat cottonseed oil or its neat bio-diesel in a HSDI diesel engine by experimental heat release and statistical analyses
Desantes et al. Experimental study of biodiesel blends’ effects on diesel injection processes
WO2019144576A1 (zh) 一种生物质基调和燃料的互溶性测试系统及其测试方法
Nilaphai et al. Spray and combustion characterizations of ABE/Dodecane blend in comparison to alcohol/Dodecane blends at high-pressure and high-temperature conditions
Liu et al. Influence of fuel and operating conditions on combustion characteristics of a homogeneous charge compression ignition engine
Huang et al. Performance and emissions of a compression ignition engine fueled with diesel/oxygenate blends for various fuel delivery advance angles
Lee et al. Effects of soybean and canola oil–based biodiesel blends on spray, combustion, and emission characteristics in a diesel engine
Pipitone et al. Experimental Determination of Liquefied Petroleum Gas–Gasoline Mixtures Knock Resistance
Chen et al. Experimental and numerical study of methanol/dimethyl ether dual-fuel compound combustion
Adi et al. Soy-Biodiesel Impact on NO x Emissions and Fuel Economy for Diffusion-Dominated Combustion in a Turbo− Diesel Engine Incorporating Exhaust Gas Recirculation and Common Rail Fuel Injection
Krishnamoorthi et al. The influence of charge air temperature and exhaust gas recirculation on the availability analysis, performance and emission behavior of diesel-bael oil-diethyl ether blend operated diesel engine
Nguyen et al. Butanol and gasoline-like blend combustion characteristics for injection conditions of gasoline compression ignition combustion mode
Seraç et al. Comprehensive evaluation of performance, combustion, and emissions of soybean biodiesel blends and diesel fuel in a power generator diesel engine
Duraisamy et al. Effect of amyl alcohol addition in a CI engine with Prosopis juliflora oil–an experimental study
CN207703716U (zh) 一种生物质基调和燃料的互溶性测试系统
Aburudyna et al. Impact of biodiesel addition on distillation characteristics and cetane index of diesel fuels
Zhang et al. Ignition-characteristic research of the diesel fuel in combustion vessel simulated diesel engine cold start condition
Han et al. Influence of coupling action of oxygenated fuel and gas circuit oxygen on soot generation in a diesel engine
CN201181232Y (zh) 一种新型金属量器
Sudarmanta et al. Effect of pilot injection timing using crude palm oil biodiesel on combustion process on dual fuel engines with compressed natural gas as the main fuel
CN101900590B (zh) 容积式台架电喷油耗仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902772

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18902772

Country of ref document: EP

Kind code of ref document: A1