WO2019144476A1 - 一种直下式反射片结构及背光模组 - Google Patents

一种直下式反射片结构及背光模组 Download PDF

Info

Publication number
WO2019144476A1
WO2019144476A1 PCT/CN2018/078801 CN2018078801W WO2019144476A1 WO 2019144476 A1 WO2019144476 A1 WO 2019144476A1 CN 2018078801 W CN2018078801 W CN 2018078801W WO 2019144476 A1 WO2019144476 A1 WO 2019144476A1
Authority
WO
WIPO (PCT)
Prior art keywords
led light
angle
light source
microstructures
reflective sheet
Prior art date
Application number
PCT/CN2018/078801
Other languages
English (en)
French (fr)
Inventor
丘永元
Original Assignee
惠州市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市华星光电技术有限公司 filed Critical 惠州市华星光电技术有限公司
Priority to US16/023,593 priority Critical patent/US10802194B2/en
Publication of WO2019144476A1 publication Critical patent/WO2019144476A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to the field of display, and in particular to a direct-type reflective sheet structure and a backlight module.
  • FIG. 1 the structure of a conventional direct type backlight module is shown. It can be seen that the LED light source 1 ′ disposed on the back plate 2 ′ is emitted to the optical module 3 ′, which is a liquid crystal display.
  • the panel 4' provides backlighting.
  • the existing structure after adding the phosphor film to the optical module 3', it is often found that the backlight optical taste is deteriorated, and the most obvious is that the area directly above the LED light source 1' is often bluish. phenomenon.
  • the color difference problem caused by the use of a phosphor film in such a direct type backlight structure may occur in all direct type phosphor films.
  • the diaphragm structure is an orthogonal prism + a phosphor film + an orthogonal prism + a reflective polarizer (DBEF)
  • DBEF orthogonal prism + a phosphor film + a reflective polarizer
  • the technical problem to be solved by the present invention is to provide a direct-type reflective sheet structure and a backlight module, which can avoid the chromatic aberration of the display panel and reduce the loss of light.
  • an aspect of an embodiment of the present invention provides a direct-type reflective sheet structure including a reflective sheet, and a plurality of LED light sources are disposed on the reflective sheet, and the reflective sheet is located outside each LED light source.
  • a plurality of triangular-shaped microstructures are disposed at intervals, each of the microstructures having a reflective surface facing the LED light source for reflecting light emitted by the LED light source.
  • the plurality of microstructures located outside each LED light source have the same height, and the reflective surface facing the LED light source in each microstructure is at an angle to the horizontal plane, and the included angle is an acute angle.
  • the plurality of microstructures located outside each LED light source are further away from the position of the LED light source, and the height thereof is higher, and the microstructure between the adjacent two LED light sources has the highest height.
  • the angle between the reflecting surface of the LED light source and the horizontal plane is farther from the position of the LED light source, and the angle is larger, adjacent to the two
  • the angle between the microstructures in the middle of the LED light source is the largest.
  • the microstructure is formed by thermal blistering.
  • a direct type backlight module further includes a reflective sheet, a back plate matched with the reflective sheet, an LED light source, and an optical module, wherein:
  • the backing plate is disposed on one side of the reflective sheet and is fixed to the reflective sheet;
  • the optical module is disposed on the other side of the reflective sheet for uniformly emitting light reflected by the reflective sheet ;
  • a plurality of LED light sources are arranged on the reflective sheet, and a secondary lens is disposed on a light emitting surface of each of the LED light sources; and a plurality of triangular prisms are disposed on the outer side of each of the LED light sources on the reflective sheet.
  • a microstructure each microstructure having a reflective surface facing the LED source for receiving light from the secondary lens and reflecting.
  • the plurality of microstructures located outside each LED light source have the same height, and the reflective surface facing the LED light source in each microstructure is at an angle to the horizontal plane, and the included angle is an acute angle.
  • the plurality of microstructures located outside each LED light source are further away from the position of the LED light source, and the height thereof is higher, and the microstructure between the adjacent two LED light sources has the highest height.
  • the angle between the reflecting surface of the LED light source and the horizontal plane is farther from the position of the LED light source, and the angle is larger, adjacent to the two
  • the angle between the microstructures in the middle of the LED light source is the largest.
  • each of the microstructures has a height greater than or equal to a height of the secondary lens.
  • a plurality of triangular prism-shaped microstructures are disposed adjacent to the LED light source on the direct-type reflective sheet, each of the microstructures having a reflective surface facing the LED light source, through the reflective surface
  • the light emitted by the LED light source through the secondary lens can be reflected.
  • the angle between the reflecting surface and the horizontal plane the light reflected by the reflecting sheet can be concentrated and uniformly reflected to the optical module, thereby avoiding the problem of color difference in the prior art.
  • the embodiment employed in the present invention can avoid loss of light.
  • FIG. 1 is a schematic structural view of a direct type backlight module in the prior art
  • FIG. 2 is a schematic structural view of an embodiment of a direct type reflective sheet structure provided by the present invention.
  • FIG. 3 is a schematic structural view of an embodiment of the microstructure of FIG. 2;
  • Figure 4 is a schematic diagram of the optical path transmission principle of Figure 3;
  • Figure 5 is a schematic structural view of another embodiment of the microstructure of Figure 2;
  • FIG. 6 is a schematic structural view of a direct type backlight module provided by the present invention.
  • the direct-type reflective sheet structure includes a reflective sheet 1 on which a plurality of LED patch regions 10 are arranged, and an LED light source 2 is disposed on each of the LED patch regions 10.
  • a secondary lens 3 is disposed on the LED light source 2.
  • the reflective sheet 1 is located outside each LED light source 2, and is provided with a plurality of triangular prism-shaped microstructures 11 each having a reflective surface 110 facing the LED light source 2 for reflecting The light emitted by the LED light source 2 is described.
  • the microstructures 11 can be formed by thermal blistering.
  • the plurality of microstructures 11 located outside each LED light source 2 have the same height, and the reflection surface 110 of each microstructure 11 facing the LED light source 2 is at an angle ⁇ with the horizontal plane.
  • the angle ⁇ is an acute angle. More specifically, in the plurality of microstructures 11 located outside each LED light source 2, the angle between the reflection surface 111 of the LED light source 2 and the horizontal plane is farther from the position of the LED light source 2, and the angle thereof is more Large, the angle between the microstructures in the middle of the adjacent two LED light sources is the largest. In FIG. 3, ⁇ 1 ⁇ ⁇ 2 ⁇ ⁇ 3 ⁇ ⁇ 4.
  • the secondary lens 3 is a catadioptric lens, and most of the light emitted by the LED light source 2 is deflected once in the secondary lens 3, and then emitted to the periphery. The light from the secondary lens 3 is reflected by the reflection sheet 1 to the optical module 5.
  • the secondary modulation of the microstructure 11 it is possible to achieve a longer transmission distance when the same optical distance (OD) is achieved, that is, a larger LED pitch (LED Pitch) can be realized.
  • the outgoing light of the secondary lens 3 is mostly emitted at a near horizontal level (0°), that is, in FIG. 4, the incident angle ⁇ is relatively close to 0 degrees, so in some examples, the microstructure
  • the angle ⁇ between the reflecting surface 110 of the 11 and the horizontal plane may generally be in the range of 25° ⁇ ⁇ ⁇ 75°.
  • FIG. 5 a schematic structural view of another embodiment of the microstructure of FIG. 2 is shown; in the second embodiment, it differs from the first embodiment shown in FIG. 3 in that the The plurality of microstructures 11 on the outer side of the LED light source 2 are not of the same height, but the further the distance from the LED light source 2 is, the higher the height is, and the microstructure in the middle of the adjacent two LED light sources 2 has the highest the height of.
  • the angle between the reflection surface 111 of the LED light source 2 and the horizontal plane is farther from the position of the LED light source 2, and the angle is larger.
  • the angle between the microstructures in the middle of the adjacent two LED light sources is the largest.
  • a direct type backlight module which comprises a reflective sheet 1 , a back sheet 4 matched with the reflective sheet 1 , an LED light source 2 , and an optical module 5 . ,among them:
  • the backing plate 4 is disposed on one side of the reflective sheet 1 and is fixed to the reflective sheet 1.
  • the two can be fixed by means of an adhesive;
  • the optical module 5 is disposed on the reflective sheet 1
  • the other side of the optical module 5 is provided with a liquid crystal display template 6 on the other side of the optical module 5;
  • a plurality of LED light sources 2 are disposed on the reflective sheet 1 , and a secondary lens 3 is disposed on a light emitting surface of each of the LED light sources 2; and the reflective sheet 1 is disposed outside each of the LED light sources 2 at intervals There are a plurality of triangular structures 11 having a triangular prism shape, each of the microstructures 11 having a reflecting surface 111 facing the LED light source 2 for receiving light from the secondary lens 3 and reflecting it to the optical module 5 .
  • the plurality of microstructures 11 located outside each of the LED light sources 2 have the same height, and the reflective surface 111 of each of the microstructures 11 facing the LED light source 2 is at an angle to the horizontal plane, and the angle is Sharp angle.
  • the angle between the reflection surface 111 of the LED light source 2 and the horizontal plane is farther from the position of the LED light source 2, and the angle is larger.
  • the angle of the microstructure 11 between the two adjacent LED light sources 2 is the largest, and the angle ranges from 25° ⁇ ⁇ ⁇ 75°.
  • the plurality of microstructures 11 located outside each LED light source 2 are located farther from the LED light source 2, and the higher the height, the microstructure between the adjacent two LED light sources 2 Has the highest height.
  • the angle between the reflection surface 111 of the LED light source 2 and the horizontal plane is farther from the position of the LED light source 2, and the angle is larger.
  • the angle of the microstructure 11 between the two adjacent LED light sources 2 is the largest, and the angle ranges from 25° ⁇ ⁇ ⁇ 75°.
  • each of the microstructures 11 is greater than or equal to the height of the secondary lens 3. Thereby, it is ensured that most of the light from the LED light source 2 can be reflected into the optical module 5 through the microstructure 11 of the reflective sheet 1.
  • the optical module 5 can adopt the structure of an orthogonal prism + a phosphor film + a reflective polarizer.
  • a plurality of triangular prism-shaped microstructures are disposed adjacent to the LED light source on the direct-type reflective sheet, each of the microstructures having a reflective surface facing the LED light source, through the reflective surface
  • the light emitted by the LED light source through the secondary lens can be reflected.
  • the angle between the reflecting surface and the horizontal plane the light reflected by the reflecting sheet can be concentrated and uniformly reflected to the optical module, thereby avoiding the problem of color difference in the prior art.
  • the embodiment employed in the present invention can avoid loss of light.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种直下式反射片(1),反射片(1)上阵列设置多个LED光源(2),反射片(1)上位于每一LED光源(2)外侧间隔设置有多个呈三角棱型的微结构(11),每一微结构(11)均具有朝向LED光源(2)的反射面(110),用于反射LED光源(2)发出的光线。另有一种包括反射片(1)的直下式背光模组。该反射片(1)可以避免显示面板出现色差的情形,同时能够减少光线的损耗。

Description

一种直下式反射片结构及背光模组
本申请要求于2018年1月24日提交中国专利局、申请号为201810066613.3、发明名称为“一种直下式反射片结构及背光模组”的中国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示领域,特别涉及一种直下式反射片结构及背光模组。
背景技术
在现有技术中,常常采用在液晶显示背光模组中添加荧光粉膜片来实现高色饱显示,已是市场上常见的技术。
如图1所示,示出了现有的一种直下式背光模组的结构,从中可以看出,设置于背板2’上的LED光源1’发射至光学模组3’,为液晶显示面板4’提供背光。但是现有的这种结构中,在光学模组3’中添加荧光粉膜片后往往发现背光光学品味变差,最明显示的是处于LED光源1’正上方的区域常常会出现偏蓝的现象。这种直下式背光结构中由于采用荧光粉膜片而导致的颜色差问题,在所有直下式荧光粉膜中都可能出现。
为解决该问题,业界设计者通常在LED下方PCB上以及侧边反射片上采用黄色油墨或者黄色荧光粉涂布的形式来补足该区域的颜色差异问题。然而这种方式对油墨型号或者荧光粉的配比选用有着严格的要求,轻微差异都可能导致颜色差为题仍然存在。
另外一些业界设计者,都过光路分析以及实验测试发现导致直下式荧光粉膜方案颜色差的主要原因来自于光的准直性对荧光粉膜片的激发程度不同。同时确认在荧光粉膜片下方添加正交棱镜(Cross Prism)架构,使得光激发荧光粉膜时,光线角度已经校正到小角度方向,此时发现颜色差问题可以被有效的解决。然而这种方法也存在着严重的弊端,当荧光粉膜片下方添加两张棱镜片后,即膜片架构为正交棱镜+荧光粉膜片+正交棱镜+反射偏光 片(DBEF)时,对比未添加时光亮度下降40%。而若采用膜片架构为正交棱镜+荧光粉膜片+反射偏光片时,由于荧光粉膜片放置位置光路往返次数不足,难以实现模组目标色度。
发明内容
本发明所要解决的技术问题在于,提供一种直下式反射片结构及背光模组,可以避免显示面板出现色差的情形,同时能够减少光线的损耗。
为了解决上述技术问题,本发明的实施例的一方面提供一种直下式反射片结构,其包括反射片,所述反射片上阵列设置多个LED光源,所述反射片上位于每一LED光源外侧,间隔设置有多个呈三角棱型的微结构,每一微结构均具有朝向所述LED光源的反射面,用于反射所述LED光源发出的光线。
其中,所述位于每一LED光源外侧的多个微结构具有相同的高度,每一微结构中朝向所述LED光源的反射面与水平面呈夹角,所述夹角为锐角。
其中,所述位于每一LED光源外侧的多个微结构随着距离所述LED光源位置越远,其高度越高,在相邻两个LED光源中间的微结构具有最高的高度。
其中,所述位于每一LED光源外侧的多个微结构中,其朝向所述LED光源的反射面与水平面的夹角距离所述LED光源位置越远,其角度越大,在相邻两个LED光源中间的微结构的夹角最大。
其中,所述微结构采用热吸塑方式形成。
相应地,本发明实施例的另一方面,还提供一种直下式背光模组,其特包括反射片、与所述反射片配合的背板、LED光源,以及光学模组,其中:
所述背板设置在所述反射片的一侧并与所述反射片相固定;所述光学模组设置于所述反射片的另一侧,用于将所述反射片反射的光线均匀射出;
在所述反射片上阵列设置有多个LED光源,在每一个LED光源的出光面设置有一个二次透镜;在所述反射片上位于每一LED光源外侧,间隔设置有多个呈三角棱型的微结构,每一微结构均具有朝向所述LED光源的反射面,用于接收来自所述二次透镜的光线并进行反射。
其中,所述位于每一LED光源外侧的多个微结构具有相同的高度,每一微结构中朝向所述LED光源的反射面与水平面呈夹角,所述夹角为锐角。
其中,所述位于每一LED光源外侧的多个微结构随着距离所述LED光源位置越远,其高度越高,在相邻两个LED光源中间的微结构具有最高的高度。
其中,所述位于每一LED光源外侧的多个微结构中,其朝向所述LED光源的反射面与水平面的夹角距离所述LED光源位置越远,其角度越大,在相邻两个LED光源中间的微结构的夹角最大。
其中,每一所述微结构的高度均大于或等于所述二次透镜的高度。
实施本发明实施例,具有如下有益效果:
本发明的实施例中,通过在直下式反射片上的LED光源旁边间隔设置有多个呈三角棱型的微结构,每一微结构均具有朝向所述LED光源的反射面,通过所述反射面可以反射所述LED光源经过二次透镜发出的光线。通过控制反射面与水平面的夹角,可以使经反射片反射的光线集中且均匀地反射至光学模组,从而可以避免现有技术中存在颜色差的问题。
而且,本发明所采用的实施例,可以避免光线的损耗。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是现有技术中一种直下式背光模组的结构示意图;
图2是本发明提供的一种直下式反射片结构的一个实施例的结构示意图;
图3是图2的微结构的一个实施例的结构示意图;
图4是图3中的光路传输原理示意图;
图5是图2的微结构的另一个实施例的结构示意图;
图6是本发明提供的一种直下式背光模组的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图2所示,示出了本发明提供的一种直下式反射片结构的一个实施例的结构示意图,一并结合图3和图4所示。在本实施例中,该直下式反射片结构包括反射片1,在所述反射片1上阵列设置多个LED贴张区10,在每一LED贴张区10上均设置有一个LED光源2,在所述LED光源2上设置有一个二次透镜3。
所述反射片1上位于每一LED光源2外侧,间隔设置有多个呈三角棱型的微结构11,每一微结构11均具有朝向所述LED光源2的反射面110,用于反射所述LED光源2发出的光线。具体地,所述微结构11可以采用热吸塑方式形成。
在本实施例中,所述位于每一LED光源2外侧的多个微结构11具有相同的高度,每一微结构11中朝向所述LED光源2的反射面110与水平面呈夹角θ,具体地,所述夹角θ为锐角。更具体地,所述位于每一LED光源2外侧的多个微结构11中,其朝向所述LED光源2的反射面111与水平面的夹角距离所述LED光源2位置越远,其角度越大,在相邻两个LED光源中间的微结构的夹角最大。在图3中,所述θ1<θ2<θ3<θ4。
如可以理解的是,在本发明实施例中,所述二次透镜3为折反射式透镜,LED光源2所发出的大部分光线会在二次透镜3中进行一次折反后,向周边射出;来自二次透镜3的光线经反射片1的反射至光学模组5。经过微结构11的二次调作用,可以实现相同混光高度(optical distance,OD)时,具有更远的传输距离,即可以实现实现更大的LED间距(LED Pitch)。
图4所示,示出了其中的光路示意图。从中可以看出,入射光线与水平 线的夹角为α,出射光线与水平线的夹角为β,微结构11的反射面110与水平线的夹角为θ。那么可以得到:β=2*θ+α。在实际应用中,为实现出射光线最终以中心较小角度出射,需要根据入射光线角度α,调整微结构11上的倾角θ,以获得符合要求的β角度,而在一些实施例中,当β的角度范围为:50°<β<130°时,能够很好地解决颜色差问题。
由于在实际应用中,二次透镜3的出射光线大部分会以接近水平(0°)出射,即在图4中,其入射角α比较接近0度,故在一些例子中,所述微结构11的反射面110与水平面的夹角θ取值范围一般可以为:25°<θ<75°。
如图5所示,示出了图2的微结构的另一个实施例的结构示意图;在该第二实施例中,其与图3示出的第一实施例的区别在于,所述位于每一LED光源2外侧的多个微结构11并不是等高的,而是随着距离所述LED光源2位置越远,其高度越高,在相邻两个LED光源2中间的微结构具有最高的高度。同时,所述位于每一LED光源2外侧的多个微结构11中,其朝向所述LED光源2的反射面111与水平面的夹角距离所述LED光源2位置越远,其角度越大,在相邻两个LED光源中间的微结构的夹角最大。在图5中,所述θ1<θ2<θ3<θ4。
相应地,本发明实施例的另一方面,还提供一种直下式背光模组,其特包括反射片1、与所述反射片1配合的背板4、LED光源2,以及光学模组5,其中:
所述背板4设置在所述反射片1的一侧并与所述反射片1相固定,例如两者可以通过粘胶的方式进行固定;所述光学模组5设置于所述反射片1的另一侧,用于将所述反射片1反射的光线均匀射出,在所述光学模组5的另一侧设置有液晶显示模板6;
在所述反射片1上阵列设置有多个LED光源2,在每一个LED光源2的出光面设置有一个二次透镜3;在所述反射片1上位于每一LED光源2外侧,间隔设置有多个呈三角棱型的微结构11,每一微结构11均具有朝向所述LED光源2的反射面111,用于接收来自所述二次透镜3的光线并进行反射至光学模组5。
其中,所述位于每一LED光源2外侧的多个微结构11具有相同的高度, 每一微结构11中朝向所述LED光源2的反射面111与水平面呈一夹角,所述夹角为锐角。同时,所述位于每一LED光源2外侧的多个微结构11中,其朝向所述LED光源2的反射面111与水平面的夹角距离所述LED光源2位置越远,其角度越大,在相邻两个LED光源2中间的微结构11的夹角最大,所述夹角的取值范围为:25°<θ<75°。
在另一例子中,所述位于每一LED光源2外侧的多个微结构11随着距离所述LED光源2位置越远,其高度越高,在相邻两个LED光源2中间的微结构具有最高的高度。同时,所述位于每一LED光源2外侧的多个微结构11中,其朝向所述LED光源2的反射面111与水平面的夹角距离所述LED光源2位置越远,其角度越大,在相邻两个LED光源2中间的微结构11的夹角最大,所述夹角的取值范围为:25°<θ<75°。
在这两种情下,每一所述微结构11的高度均大于或等于所述二次透镜3的高度。从而保证来自LED光源2的大部分光线均能通过反射片1的微结构11反射至光学模组5中。
其中,在一个例子中,所述光学模组5可以采用正交棱镜+荧光粉膜片+反射偏光片的结构。
实施本发明实施例,具有如下有益效果:
本发明的实施例中,通过在直下式反射片上的LED光源旁边间隔设置有多个呈三角棱型的微结构,每一微结构均具有朝向所述LED光源的反射面,通过所述反射面可以反射所述LED光源经过二次透镜发出的光线。通过控制反射面与水平面的夹角,可以使经反射片反射的光线集中且均匀地反射至光学模组,从而可以避免现有技术中存在颜色差的问题。
而且,本发明所采用的实施例,可以避免光线的损耗。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所 固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (13)

  1. 一种直下式反射片结构,其包括反射片,所述反射片上阵列设置多个LED光源,其中,所述反射片上位于每一LED光源外侧,间隔设置有多个呈三角棱型的微结构,每一微结构均具有朝向所述LED光源的反射面,用于反射所述LED光源发出的光线。
  2. 如权利要求1所述的结构,其中,所述位于每一LED光源外侧的多个微结构具有相同的高度,每一微结构中朝向所述LED光源的反射面与水平面呈夹角,所述夹角为锐角。
  3. 如权利要求1所述的结构,其中,所述位于每一LED光源外侧的多个微结构随着距离所述LED光源位置越远,其高度越高,在相邻两个LED光源中间的微结构具有最高的高度。
  4. 如权利要求2所述的结构,其中,所述位于每一LED光源外侧的多个微结构中,其朝向所述LED光源的反射面与水平面的夹角距离所述LED光源位置越远,其角度越大,在相邻两个LED光源中间的微结构的夹角最大。
  5. 如权利要求3所述的结构,其中,所述位于每一LED光源外侧的多个微结构中,其朝向所述LED光源的反射面与水平面的夹角距离所述LED光源位置越远,其角度越大,在相邻两个LED光源中间的微结构的夹角最大。
  6. 如权利要求5所述的结构,其中,所述微结构采用热吸塑方式形成。
  7. 一种直下式背光模组,其中,包括反射片、与所述反射片配合的背板、LED光源,以及光学模组,其中:
    所述背板设置在所述反射片的一侧并与所述反射片相固定;所述光学模 组设置于所述反射片的另一侧,用于将所述反射片反射的光线均匀射出;
    在所述反射片上阵列设置有多个LED光源,在每一个LED光源的出光面设置有一个二次透镜;在所述反射片上位于每一LED光源外侧,间隔设置有多个呈三角棱型的微结构,每一微结构均具有朝向所述LED光源的反射面,用于接收来自所述二次透镜的光线并进行反射。
  8. 如权利要求7所述的直下式背光模组,其中,所述位于每一LED光源外侧的多个微结构具有相同的高度,每一微结构中朝向所述LED光源的反射面与水平面呈夹角,所述夹角为锐角。
  9. 如权利要求7所述的直下式背光模组,其中,所述位于每一LED光源外侧的多个微结构随着距离所述LED光源位置越远,其高度越高,在相邻两个LED光源中间的微结构具有最高的高度。
  10. 如权利要求8所述的直下式背光模组,其中,所述位于每一LED光源外侧的多个微结构中,其朝向所述LED光源的反射面与水平面的夹角距离所述LED光源位置越远,其角度越大,在相邻两个LED光源中间的微结构的夹角最大。
  11. 如权利要求10所述的直下式背光模组,其中,每一所述微结构的高度均大于或等于所述二次透镜的高度。
  12. 如权利要求9所述的直下式背光模组,其中,所述位于每一LED光源外侧的多个微结构中,其朝向所述LED光源的反射面与水平面的夹角距离所述LED光源位置越远,其角度越大,在相邻两个LED光源中间的微结构的夹角最大。
  13. 如权利要求12所述的直下式背光模组,其中,每一所述微结构的高度均大于或等于所述二次透镜的高度。
PCT/CN2018/078801 2018-01-24 2018-03-13 一种直下式反射片结构及背光模组 WO2019144476A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/023,593 US10802194B2 (en) 2018-01-24 2018-06-29 Direct type reflective sheet structure and backlight module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810066613.3 2018-01-24
CN201810066613.3A CN108459436A (zh) 2018-01-24 2018-01-24 一种直下式反射片结构及背光模组

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/023,593 Continuation US10802194B2 (en) 2018-01-24 2018-06-29 Direct type reflective sheet structure and backlight module

Publications (1)

Publication Number Publication Date
WO2019144476A1 true WO2019144476A1 (zh) 2019-08-01

Family

ID=63238620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078801 WO2019144476A1 (zh) 2018-01-24 2018-03-13 一种直下式反射片结构及背光模组

Country Status (2)

Country Link
CN (1) CN108459436A (zh)
WO (1) WO2019144476A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983496A (zh) * 2018-08-02 2018-12-11 深圳市华星光电技术有限公司 背光模块及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421727A (zh) * 2001-11-30 2003-06-04 奇美电子股份有限公司 用于直下式背光模块的多角度反射板
US20090316402A1 (en) * 2008-06-24 2009-12-24 Chung Yuan Christian University Reflecting Device And Application thereof in Backlight Unit For Enhancing Light Directivity
CN101839419A (zh) * 2009-03-18 2010-09-22 北京京东方光电科技有限公司 直下式背光源模块
CN102287722A (zh) * 2011-09-07 2011-12-21 上海蓝光科技有限公司 直下式背光源模组
WO2012141094A1 (ja) * 2011-04-13 2012-10-18 シャープ株式会社 光源モジュールおよびこれを備えた電子機器
CN106773286A (zh) * 2016-12-06 2017-05-31 深圳市华星光电技术有限公司 局部控光的背光单元及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1421727A (zh) * 2001-11-30 2003-06-04 奇美电子股份有限公司 用于直下式背光模块的多角度反射板
US20090316402A1 (en) * 2008-06-24 2009-12-24 Chung Yuan Christian University Reflecting Device And Application thereof in Backlight Unit For Enhancing Light Directivity
CN101839419A (zh) * 2009-03-18 2010-09-22 北京京东方光电科技有限公司 直下式背光源模块
WO2012141094A1 (ja) * 2011-04-13 2012-10-18 シャープ株式会社 光源モジュールおよびこれを備えた電子機器
CN102287722A (zh) * 2011-09-07 2011-12-21 上海蓝光科技有限公司 直下式背光源模组
CN106773286A (zh) * 2016-12-06 2017-05-31 深圳市华星光电技术有限公司 局部控光的背光单元及显示装置

Also Published As

Publication number Publication date
CN108459436A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
EP3173859B1 (en) Backlight module, driving method thereof, and display apparatus using the backlight module
US8272771B2 (en) Backlight device, light source device, lens, electronic apparatus and light guide plate
JP4053626B2 (ja) 面光源装置並びに非対称プリズムシート
US10598847B2 (en) Light source module and prism sheet thereof
US9429700B2 (en) Backlight module
US20070046856A1 (en) Liquid crystal display device
US9435929B2 (en) Back light module
US7517129B2 (en) Light guide plate, backlight assembly having the same, display apparatus having the same and method of manufacturing the same
US10386565B2 (en) Surface light source assembly having light guide with groove structures for out-coupling light, and backlight module having the surface light source assembly
US8220979B2 (en) Light guide plate and backlight module
US20160370527A1 (en) Surface light source module
US11022842B2 (en) Planar light source device and display device
US20180157115A1 (en) Edge-lit backlight device and liquid crystal display device
CN213843580U (zh) 导光板、背光模组及显示装置
KR101408324B1 (ko) 광 확산렌즈
US20090296022A1 (en) Optical sheet, backlight unit, and liquid crystal display
US10802194B2 (en) Direct type reflective sheet structure and backlight module
WO2019144476A1 (zh) 一种直下式反射片结构及背光模组
US11988866B2 (en) Light condensing light guide plate and display apparatus
US20120039078A1 (en) Lighting device and displaying device
JP5293177B2 (ja) 光学シート、面光源装置および表示装置
WO2023208035A1 (zh) 背光模组及显示装置
TWI446030B (zh) 用於液晶顯示器之新穎轉向膜
US20230313971A1 (en) Backlight structure and display device
US20240184033A1 (en) Light source module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.10.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18902828

Country of ref document: EP

Kind code of ref document: A1