WO2019144361A1 - 超声波收发器探头、超声波换能阵列装置以及胎心仪 - Google Patents

超声波收发器探头、超声波换能阵列装置以及胎心仪 Download PDF

Info

Publication number
WO2019144361A1
WO2019144361A1 PCT/CN2018/074203 CN2018074203W WO2019144361A1 WO 2019144361 A1 WO2019144361 A1 WO 2019144361A1 CN 2018074203 W CN2018074203 W CN 2018074203W WO 2019144361 A1 WO2019144361 A1 WO 2019144361A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
regions
conductive layer
conductive
signal
Prior art date
Application number
PCT/CN2018/074203
Other languages
English (en)
French (fr)
Inventor
户田实
朴庆泰
朱新云
Original Assignee
深圳市贝瑞森传感科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市贝瑞森传感科技有限公司 filed Critical 深圳市贝瑞森传感科技有限公司
Priority to PCT/CN2018/074203 priority Critical patent/WO2019144361A1/zh
Publication of WO2019144361A1 publication Critical patent/WO2019144361A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes

Definitions

  • the present invention relates to the field of electronic devices, and more particularly to ultrasonic transceiver probes, ultrasonic transducer array devices, and fetal heart monitors.
  • the fetus can be monitored for fetal abnormalities by monitoring fetal heartbeats before birth.
  • Ultrasound detection of fetal heart rate requires localization of the heart position to improve the sensitivity of detecting heart beats.
  • the existing ultrasonic transducer has a small cross-sectional area of the ultrasonic beam emitted by the ultrasonic transducer, and cannot be covered in the uterus, and is not convenient for the fetal heart rate detection.
  • Ultrasound detection of fetal heart rate preferably using an ultrasound beam with a large cross-sectional area to cover the heart or easily locate the beating heart.
  • the large cross-sectional area of the ultrasonic beam is generated by a large area ultrasonic transducer probe having a cross-section that is approximately equal to the ultrasonic transducer probe area within a specified distance and that will spread further. This phenomenon is in the near-field region, and the ultrasonic beam is divergent over a large distance.
  • the area where the ultrasonic beam does not diffuse is called the near-field area, and is more suitable for fetal heart rate detection when the heart is in the near-field area.
  • the ultrasonic signal reflected by the heart will inevitably spread to a large angle, the heart is small and the wall is curved, the reflected ultrasonic signal is scattered, and the ultrasonic signal reflected by the scattering returns to the large All areas of the area of the ultrasonic transceiver probe are used for inspection.
  • the wavelength of the ultrasonic wave used for fetal heart rate detection is very small (1.5mm for 1MHz and 0.75mm for 2MHz), and the reflected ultrasonic signal that enters the surface of the ultrasonic transceiver probe vertically is the strongest, but other positions, the heart reflects The ultrasound beam is tilted and the signal becomes weak, and each point near the probe area of the ultrasonic transceiver is different and the difference far exceeds the wavelength.
  • the strongest signal at the best position will propagate to the ultrasonic transducer probe area with weak signal and different phase, which will result in weakening of the signal at the optimal position.
  • Simply increasing the area of the ultrasonic transceiver probe will not solve the accurate detection of the fetal heartbeat. The problem.
  • the main object of the present invention is to provide an ultrasonic transceiver probe, which aims to solve the technical problem that the ultrasonic transceiver probe in the existing fetal heart rate meter cannot accurately detect the fetal heart.
  • the invention provides an ultrasonic transceiver probe, comprising a substrate, an extraction electrode, a first conductive layer and a second conductive layer;
  • the second conductive layer includes a plurality of conductive sub-regions, and the plurality of conductive sub-regions are insulated from each other;
  • the extraction electrode includes a first extraction electrode and a second extraction electrode; the first extraction electrode is electrically connected to the first conductive layer; the second extraction electrode includes a plurality of the plurality of second extraction electrodes respectively And a plurality of said conductive sub-regions.
  • the first conductive layer and the second conductive layer are formed by coating a piezoelectric material on a surface of the substrate, the piezoelectric material including one of a piezoelectric polymer, a piezoelectric ceramic, and a piezoelectric crystal. .
  • the piezoelectric polymer comprises one or both of polyvinylidene fluoride, a polyvinylidene fluoride-trifluoroethylene ethylene copolymer, and air-containing polyvinylidene fluoride.
  • the present invention also provides an ultrasonic transducer array device, comprising: the above ultrasonic transceiver probe, further comprising an ultrasonic driving device and a driving circuit;
  • One end of the driving circuit is connected to the ultrasonic driving device, and the other end is connected to each of the conductive sub-regions of the ultrasonic transceiver probe, and each of the conductive sub-regions respectively receives a driving signal sent by the ultrasonic driving device and generates an ultrasonic signal. .
  • the ultrasonic transducer array device includes a plurality of first anti-parallel diode pairs, and a plurality of the first anti-parallel diode pairs are respectively connected in series between each of the conductive sub-regions and the ultrasonic driving device; a driving signal generated by the ultrasonic driving device under the driving voltage is simultaneously applied to each of the conductive sub-regions through a plurality of the first anti-parallel diode pairs to generate an ultrasonic signal and emitted, and each of the conductive sub-regions receives The arriving ultrasonic feedback signals are respectively prevented from returning to the ultrasonic driving device by the connected first anti-parallel diode pair.
  • the ultrasonic transducer array device further includes an ultrasonic feedback signal calculation circuit, and the ultrasonic feedback signal calculation circuit is connected between each of the conductive sub-regions and each of the first anti-parallel diode pairs, and receives each The ultrasonic feedback signal received by the conductive sub-area is calculated and the size is calculated.
  • the ultrasonic feedback signal calculation circuit includes a plurality of signal processing branches, each of which outputs an ultrasonic feedback signal received by each of the conductive sub-regions, and distinguishes the signal strength according to the intensity of the ultrasonic feedback signal. The orientation of the strongest ultrasonic feedback signal.
  • the signal processing branch includes a resistor and a signal amplifier connected in series; each of the resistors is connected in series between each of the signal amplifiers and each of the conductive sub-regions.
  • the ultrasonic transducer array device further includes a plurality of second antiparallel diode pairs, one end of each of the second antiparallel diodes being connected between the resistor and the signal amplifier, and the other end being grounded.
  • the present invention also provides a fetal heart rate instrument comprising the above-described ultrasonic transducer array device.
  • the fetal heart rate device further includes a housing, the ultrasonic transceiver probe being proximate to the inner wall of the housing with a conductive layer of the first surface, the ultrasonic transceiver probe being curved in a planar shape or curved shape.
  • the thickness of the outer casing is 1/4 wavelength of the sound wave of the outer casing material; the acoustic impedance of the outer casing material is between the impedance of the ultrasonic transducer probe material and the impedance of the propagation medium.
  • the invention has the beneficial technical effects: the invention realizes that the conductive layer of the second surface of the large-area ultrasonic transceiver probe is designed to be separated from the plurality of array-distributed conductive sub-areas, and the ultrasonic driving device can be driven by the driving voltage. Simultaneously driving a plurality of conductive sub-regions to realize a large-area ultrasonic transceiver probe to emit a large cross-section ultrasonic beam to increase the coverage area to achieve accurate positioning; and when receiving the ultrasonic feedback signal, the plurality of conductive sub-regions independently receive the feedback signal to solve The technical problem of interference between the received feedback signals in different receiving areas of the integrated large-area ultrasonic transceiver probe improves the detection accuracy.
  • FIG. 1 is a schematic longitudinal sectional structural view of an ultrasonic transducer probe according to an embodiment of the present invention
  • FIG. 2 is a front structural view of an ultrasonic transceiver probe according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of an ultrasonic transducer array device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a route of an ultrasonic reflected wave reaching each conductive sub-region of an ultrasonic transducer array device according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a route of an ultrasonic reflected wave reaching each conductive sub-region of an ultrasonic transducer array device according to another embodiment of the present invention.
  • FIG. 6 is a schematic view showing the working principle of an antiparallel diode pair according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a propagation state of an ultrasonic beam emitted by a circular ultrasonic transceiver probe according to an embodiment of the present invention.
  • Figure 8 is a schematic view showing a waveform state of an ultrasonic beam emitted from a circular ultrasonic transducer probe according to an embodiment of the present invention
  • Figure 9 is a schematic view showing a waveform state of an ultrasonic beam emitted from a planar ultrasonic transducer probe according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of an ultrasonic transceiver probe according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural view of an ultrasonic transceiver probe according to another embodiment of the present invention.
  • an ultrasonic transceiver probe according to an embodiment of the present invention includes a substrate 1, an extraction electrode, a first conductive layer, and a second conductive layer;
  • the second conductive layer includes a plurality of conductive sub-regions 2, and the plurality of conductive sub-regions 2 are insulated from each other;
  • the extraction electrode includes a first extraction electrode and a second extraction electrode; the first extraction electrode is electrically connected to the first conductive layer; the second extraction electrode includes a plurality of the plurality of second extraction electrodes respectively It is electrically connected to a plurality of the conductive sub-regions 2 .
  • a plurality of arrays are integrated on one substrate 1 by isolating the conductive layer of the second surface of the large-area ultrasonic transceiver probe into a plurality of conductive sub-regions 2.
  • the electron guiding region 2 forms a plurality of array distributed sensors with the conductive layer of the integrated first surface, and the ultrasonic driving device can drive the plurality of conductive sub-regions 2 synchronously under the driving voltage to realize the large-area ultrasonic transceiver.
  • the probe emits a large cross-section ultrasonic beam to increase the coverage area to achieve precise positioning; and when receiving the ultrasonic feedback signal, the plurality of conductive sub-areas 2 independently receive the feedback signal, which solves the different receiving areas of the large-area ultrasonic transceiver probe, and receives
  • the technical problems of the feedback signals interfering with each other improve the detection accuracy.
  • the ultrasonic transceiver probe of the present embodiment integrates 9 or 12 grid-like continuous rows and independent conductive sub-regions 2 on a large-area substrate.
  • the arrangement, shape, pattern and number of the conductive sub-regions 2 can be designed according to actual needs.
  • first conductive layer and the second conductive layer of the ultrasonic transceiver probe of the embodiment are formed by coating a piezoelectric material on the substrate 1, the piezoelectric material including a piezoelectric polymer, a piezoelectric ceramic, and One of the piezoelectric crystals.
  • the piezoelectric polymer is low in cost compared to the piezoelectric ceramic or the piezoelectric crystal. Therefore, in this embodiment, the piezoelectric polymer is preferably used as a coating material for the first conductive layer and the second conductive layer of the ultrasonic transducer probe to reduce the large Manufacturing cost of area ultrasonic transceiver probes.
  • one or two of polyvinylidene fluoride, a polyvinylidene fluoride-trifluoroether ethylene copolymer, and air-containing polyvinylidene fluoride are preferable.
  • the present invention further provides an ultrasonic transducer array device, comprising: the above-mentioned ultrasonic transceiver probe, further comprising an ultrasonic driving device 3 and a driving circuit;
  • One end of the driving circuit is connected to the ultrasonic driving device 3, and the other end is connected to each of the conductive sub-regions 2 of the ultrasonic transceiver probe, and each of the conductive sub-regions 2 receives a driving signal sent by the ultrasonic driving device 3, respectively. And generate an ultrasonic signal.
  • the ultrasonic driving device 3 when the driving signal is emitted, the ultrasonic driving device 3 simultaneously drives each of the conductive sub-regions 2 of the ultrasonic transceiver probe through the driving circuit, and the ultrasonic transceiver probe transmits the ultrasonic signal as a whole.
  • the coverage area of the ultrasonic signal is increased to solve the problem of difficulty in positioning.
  • the ultrasonic transducer array device includes a plurality of first antiparallel diode pairs 4, and a plurality of the first antiparallel diode pairs 4 are respectively connected in series to each of the conductive subregions 2 and the ultrasonic driving device.
  • the driving signal generated by the ultrasonic driving device 3 under the driving voltage is simultaneously applied to each of the conductive sub-regions 2 through a plurality of the first anti-parallel diode pairs 4 to generate an ultrasonic signal, and through the ultrasonic transceiver
  • the probes are emitted, and the ultrasonic feedback signals received by the respective conductive sub-areas 2 are respectively prevented from being returned to the ultrasonic driving device 3 by the connected first anti-parallel diode pairs 4.
  • each of the conductive sub-regions 2 becomes an independent feedback signal receiving region by the switching circuit composed of the first anti-parallel diode pair 4, which is the first in this embodiment.
  • the antiparallel diode pair 4 includes two diodes connected in anti-parallel, as shown in Figure 6, with a peak voltage of 0.7V, which is different from the structure of a conventional diode.
  • each of the conductive sub-areas 2 is simultaneously driven by the ultrasonic driving device through the first anti-parallel diode pair 4, as shown in FIG. 3, and each of the examples in this embodiment is illustrated by a limited number of connection relationships.
  • the electronic region 2 is connected to the first antiparallel diode pair 4, and the curved ultrasonic transducer probe or the planar ultrasonic transducer probe is connected to the first antiparallel diode pair 4 without any difference.
  • the ultrasonic transceiver probe has a driving voltage range of 10-100 V, a driving frequency of MHZ, and an ultrasonic driving device with low impedance.
  • the driving pulse period when the driving voltage is zero, the current is zero, and the first anti-parallel diode pair 4 has a high impedance, so that each of the conductive sub-areas 2 is disconnected from the ultrasonic driving device, and the feedback signal is received.
  • the feedback signal received by each of the conductive sub-areas 2 must be disconnected from the ultrasonic driving device because its low impedance absorbs or attenuates the received feedback signal, and the feedback signal received by each conductive sub-area 2 must be combined with other conductive elements.
  • the feedback signals received by the area 2 are isolated from each other to be able to effectively detect the feedback signal.
  • the voltage and current characteristics of a single diode are: when the forward voltage (from the end of the arrow to the head) is applied with a forward voltage, exceeding 0.7 At V, current flows in the direction of the arrow, but a positive current of less than 0.7 V does not generate current. But when the voltage is applied in the opposite direction (from arrow to tail), no current flows.
  • the first antiparallel diode pair 4 is a parallel connection and a reverse connection of two diodes, and the ultrasonic beam having the emission mode simultaneously has a large cross-sectional area according to the voltage and current characteristics.
  • the feedback signals received by the respective conductive sub-regions 2 are mutually It does not interfere and is not interfered by the voltage pulse of the ultrasonic driving device, thereby improving the reliability of the detection signal.
  • the substrate 1 of the ultrasonic transceiver probe of this embodiment is PVDF, and a conductive layer is uniformly coated on the first surface of the PVDF as shown in FIG. 3, and the electrodes of the conductive layer are grounded; the conductive layer on the second surface is Divided into a number of areas, each area is separated by a dotted line and independently controlled, as shown in Figure 4.
  • the ultrasonic transceiver probe is used as a transmission mode, all of the conductive sub-areas 2 are simultaneously driven, activated as a single large-area conductive area, and the contour of the transmitted ultrasonic beam has a large cross-sectional area when the ultrasonic transducer probe When bent, it will propagate a larger cross-sectional area of the ultrasonic beam.
  • the conductive region is isolated into a plurality of conductive sub-regions 2, each of which receives an ultrasonic feedback signal and selects a maximum feedback signal as a detection signal to improve detection accuracy. degree.
  • the ultrasonic signal enters the fetal heart directly from the surface of the ultrasonic transducer probe. Since the fetal heart is much smaller than the ultrasonic transducer probe, the reflected ultrasonic signal is diffused or scattered in the heart, and the scattered ultrasound is modeled as a point source of radiation. As shown in FIG.
  • the distance of the transmission path A of the conductive sub-area 2 that reaches vertically from the heart position is the shortest, and the transmission distance of the B line that has the plane-intercept with the conductive sub-area 2 is larger than the A-line.
  • the feedback signal of the shortest transmission route is the strongest, and the phase of the received signal in the same conductive sub-area 2 also affects the strength of the feedback signal. As shown in FIG. 4, the feedback of the conductive sub-region 2 corresponding to the hatched area is received. The signal is the strongest.
  • the angle of the ultrasonic wave from the heart to the ultrasonic transceiver probe section along the linear path A to the surface of the ultrasonic transducer probe is almost 90 degrees, the distance from the heart to the ultrasonic transceiver probe The shortest.
  • the wavelength ⁇ region is the phase plane of the spherical ultrasonic wave, and the solid line curve and the broken line curve respectively indicate the positive and negative phases of the sound pressure wave.
  • the feedback signal received at the same conductive sub-area 2 is the sum of the sound pressures received at all points of the conductive sub-area 2.
  • the high phase of the sound pressure phase is almost constant in the region, but the low phase varies with the change in positive charge and varies greatly. At low phases, the positive and negative sound pressures cancel each other out and become very weak, so the signal from the low phase is much weaker than the signal from the high phase.
  • the intensity of the feedback signal received by each of the conductive sub-areas 2 is different. For example, the feedback signal received by one conductive sub-area 2 is the strongest, and the feedback signal received by the other conductive sub-area 2 is relatively weak, when all the conductive sub-areas 2 When electrically connected together, the strongest feedback signal spreads to the weaker conductive sub-area 2 of other feedback signals, causing all feedback signals to weaken.
  • the ultrasonic transducer array device further includes an ultrasonic feedback signal calculation circuit 5, and the ultrasonic feedback signal calculation circuit 5 is connected between each of the conductive sub-regions 2 and each of the first anti-parallel diode pairs 4. Receiving an ultrasonic feedback signal received by each of the conductive sub-areas 2 and calculating a size.
  • the ultrasonic feedback signal calculation circuit 5 includes a plurality of signal processing branches, each of which outputs an ultrasonic feedback signal received by each of the conductive sub-areas 2, and is distinguished according to the intensity of the ultrasonic feedback signal. The orientation of the ultrasonic feedback signal with the strongest signal strength.
  • the signal processing branch includes a resistor 50 and a signal amplifier 51 connected in series; each of the resistors 50 is connected in series between each of the signal amplifiers 51 and each of the conductive sub-regions 2.
  • the resistor 50 such as R1 and R2 is fed back to the corresponding signal amplifier 51.
  • the resistance of the resistor 50 is small, and the feedback signal can pass smoothly to output outward through the signal amplifier 51 and display the corresponding detection result.
  • the ultrasonic transducer array device further includes a plurality of second antiparallel diode pairs 52, one end of each of the second antiparallel diode pairs 52 is connected between the resistor 50 and the signal amplifier 51, and the other end Ground.
  • the second antiparallel diode pair 52 of the present embodiment functions to suppress a high voltage pulse of 0.7 V or less to prevent the driving pulse of the ultrasonic driving device from impairing the function of the high gain amplifier.
  • the second antiparallel diode pair 52 of this embodiment has a high impedance and the received signal is less than ⁇ 0.7. V, so the second anti-parallel diode pair 52 does not affect the signal amplifier 51 receiving the feedback signal.
  • the output signal of the signal amplifier 51 of the present embodiment is integrated by a Doppler method or a pulse timing method and other specific algorithms to detect the heart rate and determine whether the fetal heart is normal or abnormal.
  • the present invention also provides a fetal heart rate instrument comprising the above-described ultrasonic transducer array device.
  • the fetal heart rate device further includes a housing, and the ultrasonic transceiver probe is adjacent to the inner wall of the outer casing with a conductive layer of the first surface, and the ultrasonic transceiver probe has a planar shape or a curved shape.
  • the ultrasonic transceiver probe of the present embodiment may have a planar shape or a curved shape, but both of them satisfy the near-field distance of the heart from the ultrasonic beam emitted by the ultrasonic transducer probe.
  • the fetal heart rate meter of this embodiment has a housing that is external to the ultrasonic transceiver probe to prevent external interference from mechanical, chemical or electromagnetic sources, but the thickness and material of the housing can affect the performance of the ultrasonic transceiver probe. In terms of acoustic performance, the design of the thickness of the casing is related to the specific fraction of the wavelength in the material. Depending on the wavelength, the bandwidth can be modified to be wider or narrower.
  • the fetal heart rate meter has no outer casing, and the ultrasonic transceiver probe directly serves as a detecting contact surface.
  • the sound pressure level (SPL) is largest on the coordinate axis, and the distribution function perpendicular to the coordinate axis is weak.
  • the distribution of the SPL is determined by the frequency, the size of the frequency converter and the propagation speed, given by a simple equation of the far-field distribution.
  • the ultrasonic beam is diffused in a small area of the ultrasonic transducer probe, the diameter of the cross section of the ultrasonic beam is not large enough, and it is difficult to find the position of the heart by moving the ultrasonic transducer probe.
  • the ultrasonic beam in the near-field region C does not diffuse.
  • Figure 8 is a waveform of the ultrasonic beam of a circular ultrasonic transducer probe. It is zero at the center of the near-field region. The zero point is not close to the ultrasonic transceiver probe.
  • the ultrasonic beam is diffused according to the far-field equation.
  • the ultrasonic size is the smallest, about 40% of the cross-sectional area of the ultrasonic transceiver probe, called the beam waist or focus.
  • the ultrasonic transceiver probe is 5 degrees (1 MHz) or 2.5 degrees (2 MHz), and is converted to 17.6 mm (1.0 MHZ) at 50% of the diameter of the ultrasonic beam at 10 cm from the ultrasonic transducer probe. 8.8 mm (2.0MHZ).
  • PZT lead zirconate titanate piezoelectric ceramic
  • the ultrasonic beam does not spread severely in the far field region.
  • the average distance of the heart of the fetus from the skin is 90 mm.
  • the far field ultrasound beam has a small cross-sectional area and it is difficult to locate the heart by observing the feedback signal.
  • X N becomes larger (X N is proportional to a 2 ), much larger than the distance from the skin to the fetal heart.
  • the heart position is shorter than X N , and the cross-sectional area of the ultrasonic beam is close to the diameter of the long-sized device of 90 mm, which makes it easier to position the heart.
  • PZT materials are expensive, and the present embodiment is preferably an ultrasonic transducer probe prepared from a piezoelectric polymer.
  • the thickness of the outer casing is 1/4 wavelength of the acoustic wave of the outer casing material; and the acoustic impedance of the outer casing material is between the impedance of the ultrasonic transducer probe material and the propagation medium impedance. In order to design a wider bandwidth, it provides large pulse excitation and reception.
  • the ultrasonic transceiver probe of this embodiment has a frequency range of 1 MHZ to 2 MHZ to avoid negative effects on the fetus.
  • the resonance frequency of the single-layer PVDF and the conductive layer is too high and is not suitable for the fetal heart rate meter.
  • the resonant frequency is reduced to 2 MHz by designing a multi-layer PVDF ultrasonic transceiver probe, as shown in Fig. 10, in the polymer.
  • a metal layer is added to both sides of the layer, and a front matching layer is added to generate a bandwidth.
  • the specific structure is as follows: the two sides of the 52 ⁇ m PVDF 60 are symmetrically coated with a silver ink 61 of 12 ⁇ m, and after drying, a 5 ⁇ m epoxy resin 62 is symmetrically coated on both sides of the silver ink 61 layer, and the epoxy resin 62 on both sides is symmetrical.
  • the surface was coated with 200 ⁇ m of copper 63, respectively, and finally 300 ⁇ m of plastic 64 and mixed grease 65 were coated on the copper layer 63 on the side close to the heart.
  • the metal layer of the front and rear layers such as the above copper layer, may be removed, and when the resonance frequency is 1 MHz, the removal may also be performed.
  • the front matching layer because the material acoustic impedance is close to the human body, and the activation pulse is sharp enough to retain only the substrate PVDF60, the silver ink conductive layer 61, and the protective conductive layer.
  • a thin layer of polymer protective layer 66 of -50 ⁇ m is sufficient for application, as shown in FIG.
  • the conductive layer of the second surface of the large-area ultrasonic transceiver probe is designed to be separated from the plurality of array-distributed conductive sub-regions 2, and the ultrasonic driving device can drive synchronously under the driving voltage.
  • the conductive sub-area 2 realizes a large-area ultrasonic transceiver probe to emit a large cross-section ultrasonic beam to increase the coverage area to achieve precise positioning; and when receiving the ultrasonic feedback signal, the plurality of conductive sub-areas 2 independently receive the feedback signal, solving the large
  • the technical problems of interference between the received feedback signals in different receiving areas of the area ultrasonic transducer probes improve the detection accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声波收发器探头,包括基板(1)、引出电极、第一导电层和第二导电层;基板(1)的第一表面上贴附第一导电层,与第一表面相对的第二表面上贴附第二导电层;第二导电层包括多个导电子区域(2),多个导电子区域(2)相互绝缘地分布;引出电极包括第一引出电极和第二引出电极;第一引出电极与第一导电层电相连;第二引出电极包括多个,多个第二引出电极分别与多个导电子区域(2)电连接。通过将大面积的超声波收发器探头的第二表面的导电层设计成分离开的多个导电子区域(2),实现大面积超声波收发器探头发射大横截面超声波束以增大检测覆盖区域,接收超声波反馈信号时,多个导电子区域(2)独立接收反馈信号。

Description

超声波收发器探头、超声波换能阵列装置以及胎心仪 技术领域
本发明涉及到电子器件领域,特别是涉及到超声波收发器探头、超声波换能阵列装置以及胎心仪。
背景技术
胎儿出生前可通过监测胎儿心脏跳动,检测胎儿是否异常。超声波检测胎儿心率,需要定位到心脏位置才能提高检测心脏跳动的灵敏度。但由于位于子宫内的胎儿心脏位置是未知的,不得不通过频繁移动超声波换能器来寻找胎儿心脏位置。现有超声波换能器由于超声波收发器探头小,发射的超声波束的横截面积较小,在子宫范围内无法实现覆盖,不便于应用于胎心检测。超声波检测胎儿心率,最好使用具有大横截面积的超声波束,以覆盖心脏或容易定位到跳动的心脏。大横截面积的超声波束通过大面积的超声波收发器探头产生,超声波束的横截面在指定距离内与超声波收发器探头区域大致相等,且会扩散的更远。这种现象在近场区域内,而且在大距离范围内超声波束是发散的。超声波束不扩散的区域称为近场区域,当心脏处于近场区域时,更适用于胎心检测。因为当超声波束区域覆盖心脏时,心脏反射的超声波信号必然会扩散到一个大的角度,心脏体积小且心墙是弯曲的,反射的超声波信号呈现散射状,经散射反射的超声波信号返回到大面积的超声波收发器探头的所有区域用于检测。但为了保护胎儿,用于胎心检测的超声波的波长很小(1MHz的1.5mm和2MHz的0.75mm),垂直进入到超声波收发器探头表面的反射超声波信号最强,但其他位置,心脏反射的超声波束是倾斜的,信号变得很弱,超声波收发器探头区域附近的每个点都是不同的,且差异远超过波长。最佳位置上最强的信号会传播到信号弱且相位不同的超声波收发器探头区域,而导致在最佳位置的信号变弱,简单增大超声波收发器探头的面积也无法解决精准检测胎儿心跳的问题。
因此,现有技术还有待改进。
技术问题
本发明的主要目的为提供一种超声波收发器探头,旨在解决现有胎心仪中的超声波收发器探头不能精准检测胎儿心脏的技术问题。
技术解决方案
本发明提出一种超声波收发器探头,包括基板、引出电极、第一导电层和第二导电层;
所述基板的第一表面上贴附所述第一导电层,与所述第一表面相对的第二表面上贴附所述第二导电层;
所述第二导电层包括多个导电子区域,多个所述导电子区域相互绝缘地分布;
所述引出电极包括第一引出电极和第二引出电极;所述第一引出电极与所述第一导电层电相连;所述第二引出电极包括多个,多个所述第二引出电极分别与多个所述导电子区域。
优选地,所述第一导电层和第二导电层通过在所述基板表面上涂覆压电材料形成,所述压电材料包括压电聚合物、压电陶瓷和压电晶体中的一种。
优选地,所述压电聚合物包括聚偏氟乙烯、聚偏氟乙烯-三氟醚乙烯共聚物和内含空气的聚偏氟乙烯中一种或两种。
本发明还提供了一种超声波换能阵列装置,包括:上述的超声波收发器探头,还包括超声波驱动装置、驱动电路;
所述驱动电路一端连接所述超声波驱动装置,另一端连接所述超声波收发器探头的各所述导电子区域,各所述导电子区域分别接收所述超声波驱动装置发送的驱动信号并产生超声波信号。
优选地,所述超声波换能阵列装置,包括多个第一反平行二极管对,多个所述第一反平行二极管对分别串联连接于各所述导电子区域与所述超声波驱动装置之间;超声波驱动装置在驱动电压作用下产生的驱动信号,通过多个所述第一反平行二极管对同时作用于各所述导电子区域,以产生超声波信号并发射出去,且各所述导电子区域接收到的超声波反馈信号分别被相连的所述第一反平行二极管对阻止返回到所述超声波驱动装置。
优选地,所述超声波换能阵列装置,还包括超声波反馈信号计算电路,所述超声波反馈信号计算电路连接于各所述导电子区域与各所述第一反平行二极管对之间,接收各所述导电子区域接收到的超声波反馈信号并计算大小。
优选地,所述超声波反馈信号计算电路包括多条信号处理支路,每条信号处理支路分别输出各所述导电子区域接收到的超声波反馈信号,并根据超声波反馈信号的强度大小辨别信号强度最强的超声波反馈信号的方位。
优选地,所述信号处理支路包括串联的电阻器和信号放大器;各所述电阻器串联于各所述信号放大器与各所述导电子区域之间。
优选地,所述超声波换能阵列装置,还包括多个第二反平行二极管对,各所述第二反平行二极管对一端连接于所述电阻器和信号放大器之间,另一端接地。
本发明还提供一种胎心仪,包括上述的超声波换能阵列装置。
优选地,所述胎心仪,还包括外壳,所述超声波收发器探头以所述第一表面的导电层贴近所述外壳内壁,所述超声波收发器探头呈平面状或弧形弯曲状。
优选地,所述外壳的厚度为外壳材料声波的1/4波长;所述外壳材料的声阻抗处于超声波收发器探头材料阻抗和传播介质阻抗之间。
优选地,所述外壳的厚度为外壳材料声波的半波长的N倍,N=0、1、2、3或4;所述外壳材料的声阻抗处于超声波收发器探头材料阻抗和传播介质阻抗之间。
有益效果
本发明有益技术效果:本发明通过将一个大面积的超声波收发器探头的第二表面的导电层设计成分离开的多个阵列分布的导电子区域,超声波驱动装置在驱动电压的驱动下,可实现同步驱动多个导电子区域,实现大面积超声波收发器探头发射大横截面超声波束以增大覆盖区域,实现精准定位;并在接收超声波反馈信号时,多个导电子区域独立接收反馈信号,解决了一体化大面积超声波收发器探头的不同接收区域,接收的反馈信号相互干涉的技术问题,提高检测精度。
附图说明
图1 本发明一实施例的超声波收发器探头的纵截面结构示意图;
图2 本发明一实施例的超声波收发器探头的正面结构示意图;
图3 本发明一实施例的超声波换能阵列装置的结构示意图;
图4 本发明一实施例的超声波反射波到达超声波换能阵列装置各导电子区域的路线示意图;
图5 本发明另一实施例的超声波反射波到达超声波换能阵列装置各导电子区域的路线示意图;
图6 本发明一实施例的反平行二极管对的工作原理示意图;
图7 本发明一实施例的圆形超声波收发器探头发射的超声波束的传播状态示意图;
图8 本发明一实施例的圆形超声波收发器探头发射的超声波束的波形状态示意图;
图9 本发明一实施例的平面状超声波收发器探头发射的超声波束的波形状态示意图;
图10 本发明一实施例的超声波收发器探头的结构示意图;
图11 本发明另一实施例的超声波收发器探头的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的最佳实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1,本发明一实施例的超声波收发器探头,包括基板1、引出电极、第一导电层和第二导电层;
所述基板1的第一表面上贴附所述第一导电层,与所述第一表面相对的第二表面上贴附所述第二导电层;
所述第二导电层包括多个导电子区域2,多个所述导电子区域2相互绝缘地分布;
所述引出电极包括第一引出电极和第二引出电极;所述第一引出电极与所述第一导电层电相连;所述第二引出电极包括多个,多个所述第二引出电极分别与多个所述导电子区域2电连接。
如图2所示,本发明实施例通过将一个大面积的超声波收发器探头的第二表面的导电层隔离成多个导电子区域2,在一张基板1上集成了多个阵列排布的导电子区域2,与一体化的第一表面的导电层形成多个阵列分布的传感器,超声波驱动装置在驱动电压的驱动下,可实现同步驱动多个导电子区域2,实现大面积超声波收发器探头发射大横截面超声波束以增大覆盖区域,实现精准定位;并在接收超声波反馈信号时,多个导电子区域2独立接收反馈信号,解决了大面积超声波收发器探头的不同接收区域,接收的反馈信号相互干涉的技术问题,提高检测精度。举例地,本实施例的超声波收发器探头为一张大面积基板上集成了9个或12个格栅状连续排布、且相互独立的导电子区域2。本发明其他实施例中导电子区域2的排布方式、形状、图案以及数量可根据实际需要进行设计。
进一步地,本实施例的超声波收发器探头的第一导电层和第二导电层通过在所述基板1上涂覆压电材料形成,所述压电材料包括压电聚合物、压电陶瓷和压电晶体中的一种。
压电聚合物相比于压电陶瓷或压电晶体,成本低,因此本实施例优选了压电聚合物作为超声波收发器探头第一导电层和第二导电层的涂覆材料,以降低大面积超声波收发器探头的制作成本。本实施例优选了聚偏氟乙烯、聚偏氟乙烯-三氟醚乙烯共聚物和内含空气的聚偏氟乙烯中一种或两种。
参照图3,本发明还提供了一种超声波换能阵列装置,包括:上述的超声波收发器探头,还包括超声波驱动装置3、驱动电路;
所述驱动电路一端连接所述超声波驱动装置3,另一端连接所述超声波收发器探头的各所述导电子区域2,各所述导电子区域2分别接收所述超声波驱动装置3发送的驱动信号并产生超声波信号。
本实施例的超声波换能阵列装置,在发射驱动信号时,超声波驱动装置3通过驱动电路同时驱动超声波收发器探头的各所述导电子区域2,超声波收发器探头作为一个整体向外发射超声波信号,以增大超声波收发器探头发射超声波束的有效横截面积,增大超声波信号的覆盖区域,以解决不易定位的问题。
进一步地,所述超声波换能阵列装置,包括多个第一反平行二极管对4,多个所述第一反平行二极管对4分别串联连接于各所述导电子区域2与所述超声波驱动装置3之间;超声波驱动装置3在驱动电压作用下产生的驱动信号,通过多个所述第一反平行二极管对4同时作用于各所述导电子区域2以产生超声波信号,并通过超声波收发器探头发射出去,且各所述导电子区域2接收到的超声波反馈信号分别被相连的所述第一反平行二极管对4阻止返回到所述超声波驱动装置3。
本实施例的超声波换能阵列装置,在接收反馈信号时,通过第一反平行二极管对4组成的开关电路使各所述导电子区域2成为独立的反馈信号接收区,本实施例的第一反平行二极管对4包括两个反向平行相连的二极管,如图6所示,峰值电压为0.7V,与常规二极管的结构不同。本实施例中每个导电子区域2均由超声波驱动装置分别通过第一反平行二极管对4同时驱动,如图3所示,图中以有限数量的连接关系示例,本实施例的每个导电子区域2都连接有第一反平行二极管对4,而且弯曲的超声波收发器探头或平面超声波收发器探头连接的第一反平行二极管对4也无任何差别。本实施例超声波收发器探头的驱动电压范围为10-100V,驱动频率为MHZ,超声波驱动装置阻抗低。在驱动脉冲周期内,当驱动电压为零时,电流为零,第一反平行二极管对4具有很高的阻抗,致使每个导电子区域2均与超声波驱动装置断开连接,接收反馈信号时,每个导电子区域2接收到的反馈信号必须与超声波驱动装置断开,因为它的低阻抗吸收或减弱接收到的反馈信号,而且每个导电子区域2接收的反馈信号必须与其他导电子区域2接收的反馈信号彼此隔离断开,才可有效的检测到反馈信号,本实施例通过第一反平行二极管对4和特别结构设计的超声波收发器探头匹配的方式优化解决了上述技术方案。如图6所示,单个二极管的电压电流特性为:当正向电压(从箭尾到头部)施加正向电压,超过0.7 V时,电流流向箭头方向,但小于0.7 V的正方向电流不会产生电流。但当电压被应用到反方向(从箭头到尾方向)时,无电流流动。第一反平行二极管对4为两个二极管并联和反向连接,根据电压电流特性同时达到了发射模式的超声波束具有大的横截面积,接收模式下,各导电子区域2接收的反馈信号互不干扰,且不受超声波驱动装置的电压脉冲干扰,提高检测信号的可靠性。
本实施例的超声波收发器探头的基板1为PVDF,如图3所示在PVDF的第一表面上均匀地涂敷导电层,且导电层的电极是接地的;第二表面上的导电层被划分为很多区域,各区域间用虚线分开,并独立控制,如图4所示。当超声波收发器探头作为传输方式使用时,所有的导电子区域2被同时驱动,作为一个单一的大面积导电区域被激活,发射的超声波束的轮廓具有大的横截面积,当超声波收发器探头弯曲使用时,会传播更大横截面积的超声波束。当超声波收发器探头作为接收方式使用时,导电区域被孤立成多个导电子区域2,每个导电子区域2分别接收到超声波反馈信号,并选择最大的反馈信号作为检测信号,以提高检测精准度。在发射模式下,超声波信号直接从超声波收发器探头表面进入胎儿心脏。由于胎儿心脏比超声波收发器探头的尺寸小得多,反射的超声波信号在心脏中扩散或散射,散射的超声波被建模为辐射的点源。如图5所示,从心脏位置垂直到达的导电子区域2的传输路线A的距离是最短的,而与导电子区域2存在平面夹度的B路线的传输距离大于A路线。距离最短的传输路线的反馈信号最强,并且在同一导电子区域2中接收信号的相位也影响反馈信号的强弱,如图4所示,阴影线区域对应的导电子区域2接收到的反馈信号最强。
相位效应对反馈信号的影响,如图5所示,从心脏到超声波收发器探头截面的超声波沿直线路线A与超声波收发器探头表面的角度几乎是90度,从心脏到达超声波收发器探头的距离最短。图5中波长λ区域为球面超声波的相位面,实线曲线和虚线曲线分别表示声压波的正负相。在同一个导电子区域2接收到的反馈信号是该导电子区域2所有点接收到的声压总和。声压相位的高相位在区域内几乎是恒定的,但低相位随正电荷的变化而变化,而且变化非常大。在低相位上,正负声压相互抵消,变得非常弱,所以来自低相位的信号比来自高相位的信号弱很多。如上所述,每个导电子区域2接收的反馈信号的强度不同,比如一个导电子区域2接收的反馈信号最强,其他导电子区域2接收的反馈信号比较弱,当所有的导电子区域2电连接在一起时,强度最强的反馈信号向其他反馈信号比较弱的导电子区域2扩散传播,导致所有的反馈信号均变弱。
进一步地,所述超声波换能阵列装置,还包括超声波反馈信号计算电路5,所述超声波反馈信号计算电路5连接于各所述导电子区域2与各所述第一反平行二极管对4之间,接收各所述导电子区域2接收到的超声波反馈信号并计算大小。
本实施例在接收反馈信号时,每个导电子区域2接收到的反馈信号通过超声波反馈信号计算电路5向外输出。进一步地,所述超声波反馈信号计算电路5包括多条信号处理支路,每条信号处理支路分别输出各所述导电子区域2接收到的超声波反馈信号,并根据超声波反馈信号的强度大小辨别信号强度最强的超声波反馈信号的方位。
进一步地,所述信号处理支路包括串联的电阻器50和信号放大器51;各所述电阻器50串联于各所述信号放大器51与各所述导电子区域2之间。R1、R2等电阻器50反馈到相应的信号放大器51,电阻器50的阻值很小,反馈信号可顺利通过,以便通过信号放大器51向外输出并显示相应的检测结果。
进一步地,所述超声波换能阵列装置,还包括多个第二反平行二极管对52,各所述第二反平行二极管对52一端连接于所述电阻器50和信号放大器51之间,另一端接地。
本实施例的第二反平行二极管对52的作用是抑制0.7V以下的高压脉冲,以避免超声波驱动装置的驱动脉冲损害高增益放大器的功能。本实施例的第二反平行二极管对52,具有很高的阻抗且接收信号小于±0.7 V,所以第二反平行二极管对52不影响信号放大器51接收反馈信号。本实施例的信号放大器51的输出信号通过多普勒方法或脉冲计时法和其他特定的算法进行综合处理,以检测心脏的率动,并确定胎心正常或不正常的情况。
本发明还提供一种胎心仪,包括上述的超声波换能阵列装置。进一步地,所述胎心仪,还包括外壳,所述超声波收发器探头以所述第一表面的导电层贴近所述外壳内壁,所述超声波收发器探头呈平面状或弧形弯曲状。
本实施例的超声波收发器探头的装配形状可为平面状或弧形弯曲状,但均要满足心脏在超声波收发器探头发射超声波束的近场距离范围内。本实施例的胎心仪具有外壳,外壳是超声波收发器探头的外结构,以防止来自机械、化学或电磁来源的外部干扰,但外壳的厚度和材料会影响超声波收发器探头的性能。从声学性能来看,外壳厚度的设计与材料中波长的具体分数有关。根据与波长的关系,带宽可以被修改成更宽或更窄。当脉冲计时测量用于检测胎儿心脏运动时,需要使用尖锐脉冲,需要宽带宽。当使用多普勒频移时,由于灵敏度高,需要使用长脉冲(脉冲)和窄带宽。本发明其他实施例中胎心仪无外壳,超声波收发器探头直接作为检测接触面。
如图7所示,超声波收发器探头发射的超声波束直接从超声波收发器探头中传播,但在近场区域C的一个临界点X =X N,超声波束开始扩散,远场区域D内,呈扩散状态。在此扩散区,声压级(SPL)在坐标轴上最大,与坐标轴垂直方向的分布函数较弱。SPL的分布由频率、变频器大小和传播速度决定,通过远场分布的简单方程给出。角θ 1/2处声压变成50%,θ 1/2= arcsin(1.1λ/πa)≌0.35λ/a, (λ为波长,2 a为超声波收发器探头的直径),例如,直径2a = 12毫米,λ= 1.5毫米(1 MHz), θ 1/2 = 5.0度,或λ= 0.75毫米(2 MHz), θ 1/2 = 2.5度(2 MHz)。但是小面积的超声波收发器探头即使超声波束发生扩散,超声波束的横截面的直径也不够大,通过移动超声波收发器探头很难找到心脏位置。但是近场区域C内的超声波束不会发生扩散,超声波束的轮廓或尺寸与超声波收发器探头的尺寸大致相同或略小,且在临界点X =X N处最小,距离大于X =X N以后开始发散,近场区域C内的超声波束的分布状态显示了复杂的模式,不能用简单的方程表示,称为近场分布。图8为圆形超声波收发器探头的超声波束的波形分布,在近场中区的中心处为零点,零点不靠近于超声波收发器探头,最好设计 X N大于超声波收发器探头到心脏的距离,如图所示,当X= X N/3时的超声波束的尺寸比X= X N/2时的超声波束的尺寸大,X= X N时最小,且X> X N时,超声波束开始扩散。
小尺寸的圆形超声波收发器探头(2 a=12mm),近场区域到远场区域之间通过X N = a 2/λ进行过渡,比如,直径24mm(1MHZ)和直径48mm(2MHZ)。在远场区域,超声波束根据远场方程进行扩散,在临界点X= X N时超声波尺寸最小,约为超声波收发器探头横截面积的40%,称为光束腰或焦点。以直径12mm的超声波束扩散为例,超声波收发器探头5度(1MHZ)或2.5度(2MHZ),在距离超声波收发器探头10cm处超声波束的直径的50%转换为17.6 mm (1.0 MHZ)和8.8 mm (2.0MHZ)。
本发明另一实施例中使用直径12mm的PZT(1或2MHZ,PZT指锆钛酸铅压电陶瓷)时,超声波束在远场区域内不会严重扩散。胎儿的心脏距离皮肤的平均距离为90mm。远场超声波束具有小的横截面积,难以通过观察反馈信号定位心脏。当PZT直径尺寸变大时,X N变得更大(X N与a 2成正比),远大于皮肤到胎儿心脏的距离。为了得到X N=400mm,超声波收发器探头直径必须为49mm(1MHZ)或35mm(2MHZ),这样心脏位于近场区域,心脏位置处的超声波束的直径尺寸为49mm或35mm,虽然尺寸不够大,单也不是太小。因此,超声波收发器探头的直径2a = 50mm为最小尺寸,当超声波收发器探头直径尺寸小于50mm, 比如2a = 30mm,使得心脏距离比X N稍短,而且超声波束的尺寸远小于30mm,无法定位心脏位置。若要更方便的定位心脏位置,需要大横截面积的超声波束,所以超声波收发器探头的直径尺寸必须尽可能大。比如,超声波收发器探头直径2a = 90mm,频率为2MHZ,X N为2.7m,心脏位置比X N短,超声波束的横截面积接近长安器的直径大小90mm,更容易点位心脏位置。但PZT材料成本高,本实施例优选压电聚合物制备的超声波收发器探头。
本发明一实施例中,所述外壳的厚度为外壳材料声波的1/4波长;所述外壳材料的声阻抗处于超声波收发器探头材料阻抗和传播介质阻抗之间。以便设计更广泛的带宽提供大幅脉冲激发和接收。
本发明另一实施例中,为了更有利于高信号振幅的长脉冲逐步增长和逐渐衰减,设计了窄带宽的尖锐的共振超声波收发器探头,所述外壳的厚度为外壳材料声波的半波长的N倍,N=0、1、2、3或4;所述外壳材料的声阻抗处于超声波收发器探头材料阻抗和传播介质阻抗之间。
本实施例的超声波收发器探头频率范围为1MHZ至2MHZ,以避免对胎儿造成负面影响。单层的PVDF与导电层的共振频率太高,不适用于胎心仪,本实施例通过设计多层的PVDF超声波收发器探头,使共振频率降低到2MHZ,如图10所示,在聚合物层的两侧表面添加了金属层,并添加了前匹配层以产生带宽。具体结构如下:52μm的PVDF60的两侧表面,对称涂覆12μm的银墨61,干燥后在两侧银墨61层上对称涂覆5μm的环氧基树脂62,两侧环氧基树脂62的表面分别涂覆200μm的铜63,最后在靠近心脏一侧的铜层63上涂覆300μm的塑料64和混合油脂65。
本发明其他实施例中,当PVDF为内中空结构(或内充空气),且厚度达到500μm时,可除去前后层的金属层,比如上述铜层,而且当共振频率为1MHZ时,也可去除前匹配层,因为材料声阻抗接近人体,而且激活脉冲足够尖锐,只保留基板PVDF60、银墨导电层61以及保护导电层的25 -50μm的薄层聚合物保护层66即可满足应用,如图11所示。
本发明实施例通过将一个大面积的超声波收发器探头的第二表面的导电层设计成分离开的多个阵列分布的导电子区域2,超声波驱动装置在驱动电压的驱动下,可实现同步驱动多个导电子区域2,实现大面积超声波收发器探头发射大横截面超声波束以增大覆盖区域,实现精准定位;并在接收超声波反馈信号时,多个导电子区域2独立接收反馈信号,解决大面积超声波收发器探头的不同接收区域,接收的反馈信号相互干涉的技术问题,提高检测精度。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种超声波收发器探头,其特征在于,包括基板、引出电极、第一导电层和第二导电层;
    所述基板的第一表面上贴附所述第一导电层,与所述第一表面相对的第二表面上贴附所述第二导电层;
    所述第二导电层包括多个导电子区域,多个所述导电子区域相互绝缘地分布;
    所述引出电极包括第一引出电极和第二引出电极;所述第一引出电极与所述第一导电层电相连;所述第二引出电极包括多个,多个所述第二引出电极分别与多个所述导电子区域电连接。
  2. 根据权利要求1所述的超声波收发器探头,其特征在于,所述第一导电层和第二导电层通过在所述基板表面上涂覆压电材料形成,所述压电材料包括压电聚合物、压电陶瓷和压电晶体中的一种。
  3. 根据权利要求2所述的超声波收发器探头,其特征在于,所述压电聚合物包括聚偏氟乙烯、聚偏氟乙烯-三氟醚乙烯共聚物和内含空气的聚偏氟乙烯中一种或两种。
  4. 一种超声波换能阵列装置,其特征在于,包括:权利要求1-3中任一项所述的超声波收发器探头,还包括超声波驱动装置、驱动电路;
    所述驱动电路一端连接所述超声波驱动装置,另一端连接所述超声波收发器探头的各所述导电子区域,各所述导电子区域分别接收所述超声波驱动装置发送的驱动信号并产生超声波信号。
  5. 根据权利要求4所述的超声波换能阵列装置,其特征在于,包括多个第一反平行二极管对,多个所述第一反平行二极管对分别串联连接于各所述导电子区域与所述超声波驱动装置之间;超声波驱动装置在驱动电压作用下产生的驱动信号,通过多个所述第一反平行二极管对同时作用于各所述导电子区域以产生超声波信号并发射出去,且各所述导电子区域接收到的超声波反馈信号分别被相连的所述第一反平行二极管对阻止返回到所述超声波驱动装置。
  6. 根据权利要求5所述的超声波换能阵列装置,其特征在于,还包括超声波反馈信号计算电路,所述超声波反馈信号计算电路连接于各所述导电子区域与各所述第一反平行二极管对之间,接收各所述导电子区域接收到的超声波反馈信号并计算大小。
  7. 根据权利要求6所述的超声波换能阵列装置,其特征在于,所述超声波反馈信号计算电路包括多条信号处理支路,每条信号处理支路分别输出各所述导电子区域接收到的超声波反馈信号,并根据超声波反馈信号的强度大小辨别信号强度最强的超声波反馈信号的方位。
  8. 根据权利要求7所述的超声波换能阵列装置,其特征在于,所述信号处理支路包括串联的电阻器和信号放大器;各所述电阻器串联于各所述信号放大器与各所述导电子区域之间。
  9. 根据权利要求8所述的超声波换能阵列装置,其特征在于,还包括多个第二反平行二极管对,各所述第二反平行二极管对一端连接于所述电阻器和信号放大器之间,另一端接地。
  10. 一种胎心仪,其特征在于,包括权利要求9所述的超声波换能阵列装置。
  11. 根据权利要求10所述的胎心仪,其特征在于,还包括外壳,所述超声波收发器探头以所述第一表面的导电层贴近所述外壳内壁,所述超声波收发器探头呈平面状或弧形弯曲状。
  12. 根据权利要求10所述的胎心仪,其特征在于,所述外壳的厚度为外壳材料声波的1/4波长;所述外壳材料的声阻抗处于超声波收发器探头材料阻抗和传播介质阻抗之间。
  13. 根据权利要求10所述的胎心仪,其特征在于,所述外壳的厚度为外壳材料声波的半波长的N倍,N=0、1、2、3或4;所述外壳材料的声阻抗处于超声波收发器探头材料阻抗和传播介质阻抗之间。
PCT/CN2018/074203 2018-01-25 2018-01-25 超声波收发器探头、超声波换能阵列装置以及胎心仪 WO2019144361A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/074203 WO2019144361A1 (zh) 2018-01-25 2018-01-25 超声波收发器探头、超声波换能阵列装置以及胎心仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/074203 WO2019144361A1 (zh) 2018-01-25 2018-01-25 超声波收发器探头、超声波换能阵列装置以及胎心仪

Publications (1)

Publication Number Publication Date
WO2019144361A1 true WO2019144361A1 (zh) 2019-08-01

Family

ID=67395157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074203 WO2019144361A1 (zh) 2018-01-25 2018-01-25 超声波收发器探头、超声波换能阵列装置以及胎心仪

Country Status (1)

Country Link
WO (1) WO2019144361A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100324425A1 (en) * 2009-06-23 2010-12-23 Medison Co., Ltd. Transducer For Ultrasonic Diagnosis Device And Method For Manufacturing The Same
CN102599931A (zh) * 2011-01-25 2012-07-25 富士胶片株式会社 超声波探测器和超声波诊断设备
CN105127082A (zh) * 2015-09-16 2015-12-09 深圳市理邦精密仪器股份有限公司 超声换能器及其制作方法
CN106725606A (zh) * 2016-12-08 2017-05-31 麦克思商务咨询(深圳)有限公司 感测器
CN206672915U (zh) * 2016-09-05 2017-11-24 南昌欧菲生物识别技术有限公司 封装结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100324425A1 (en) * 2009-06-23 2010-12-23 Medison Co., Ltd. Transducer For Ultrasonic Diagnosis Device And Method For Manufacturing The Same
CN102599931A (zh) * 2011-01-25 2012-07-25 富士胶片株式会社 超声波探测器和超声波诊断设备
CN105127082A (zh) * 2015-09-16 2015-12-09 深圳市理邦精密仪器股份有限公司 超声换能器及其制作方法
CN206672915U (zh) * 2016-09-05 2017-11-24 南昌欧菲生物识别技术有限公司 封装结构
CN106725606A (zh) * 2016-12-08 2017-05-31 麦克思商务咨询(深圳)有限公司 感测器

Similar Documents

Publication Publication Date Title
US8911376B2 (en) Array of electroacoustic transducers and electronic probe for three-dimensional imaging
JP7190590B2 (ja) プログラム可能な生体構造及びフロー撮像を有する超音波撮像デバイス
JP4990272B2 (ja) 超音波探触子
US5217018A (en) Acoustic transmission through cladded core waveguide
US9656300B2 (en) Unimorph-type ultrasound probe
WO2008056643A1 (en) Ultrasonic probe and ultrasonographic device using the same
CN111820946A (zh) 一种用于多普勒超声探测的柔性测速装置及其应用
JP2012015680A (ja) 超音波プローブ及び超音波診断装置
KR101915255B1 (ko) 초음파 프로브의 제조 방법 및 그 초음파 프로브
KR102044705B1 (ko) 복합 구조의 정합층을 가진 초음파 트랜스듀서 및 그 제조방법
CN108175446B (zh) 超声波收发器探头、超声波换能阵列装置以及胎心仪
JP2008119318A (ja) 超音波探触子及び超音波診断装置
CN109758180B (zh) 一种柔性超声探头及其超声诊断装置、方法
WO1991011145A1 (en) Ultrasonic nondiffracting transducer
WO2019144361A1 (zh) 超声波收发器探头、超声波换能阵列装置以及胎心仪
JPH09299370A (ja) 超音波探触子
EP2549273B1 (en) Ultrasonic probe using rear-side acoustic matching layer
Herrera et al. PMUT-enabled underwater acoustic source localization system
CN208625742U (zh) 超声波收发器探头、超声波换能阵列装置以及胎心仪
KR100732371B1 (ko) 초음파 거리측정 장치
JPH0448039B2 (zh)
JP7124949B2 (ja) 血管位置検出装置、および、血流量計測装置
US9675316B2 (en) Focused ultrasonic diffraction-grating transducer
JPH07222286A (ja) 超音波振動子
KR101638578B1 (ko) 열 분산 향상을 위한 흡음층을 가진 초음파 트랜스듀서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902015

Country of ref document: EP

Kind code of ref document: A1