WO2019143120A1 - Intelligent automatic radiotherapy planning method and system - Google Patents

Intelligent automatic radiotherapy planning method and system Download PDF

Info

Publication number
WO2019143120A1
WO2019143120A1 PCT/KR2019/000636 KR2019000636W WO2019143120A1 WO 2019143120 A1 WO2019143120 A1 WO 2019143120A1 KR 2019000636 W KR2019000636 W KR 2019000636W WO 2019143120 A1 WO2019143120 A1 WO 2019143120A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
treatment plan
feature vector
radiation
prediction model
Prior art date
Application number
PCT/KR2019/000636
Other languages
French (fr)
Korean (ko)
Inventor
주상규
홍채선
안용찬
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Publication of WO2019143120A1 publication Critical patent/WO2019143120A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1031Treatment planning systems using a specific method of dose optimization
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N2005/1041Treatment planning systems using a library of previously administered radiation treatment applied to other patients

Definitions

  • Embodiments of the present invention are directed to a method and system for intelligent automatic radiotherapy planning.
  • Radiotherapy is a method of delaying, stopping, or even destroying the growth of malignant tissue by damaging or destroying the target tissue using high-energy waves such as x-rays and gamma rays or high-energy particles such as electron beams and proton rays.
  • Radiation therapy is used not only for cancer, but also for benign tumors, medical diseases, and some skin diseases.
  • a radiotherapy method has been developed in which, instead of the neurosurgical operation method of cutting the skull, a large amount of radiation is irradiated at one time without incision surgery.
  • Radiation therapy is not only used to treat tumors as such, but also can be used in conjunction with other surgical procedures to treat localized tumors that are large and invasive and difficult to surgically remove, It can be used to make surgical operations easier or to destroy the remaining malignant cells after surgery.
  • radiotherapy planning such as determining the location of irradiation and the dose of radiation considering the size and location of the tumor present in the patient's current tissue before irradiating the tumor tissue to the patient.
  • the optimal radiation treatment plan was derived by setting the location of the tumor using tomographic images and then controlling the irradiation position and the radiation dose based on the experience and the physical knowledge of the dose planner.
  • this method is dependent on the ability and experience of the clinician participating in the dose planner and radiotherapy plan, and the quality of the treatment plan results will vary and treatment planning time and work will increase.
  • Embodiments of the present invention provide an intelligent automatic radiotherapy planning method and system that can automatically establish a radiotherapy plan.
  • An embodiment of the present invention is a medical treatment method including first information including personal information, diagnosis and examination information, disease information and medical image information on existing patients who have undergone radiotherapy, and first information including medical image information, Receiving second information including radiation dose information and radiation irradiation information performed on the first information and third information on a result obtained after performing the radiation treatment by the second information, Generating a treatment plan prediction model by performing artificial intelligence-based correlation and regression analysis on the first information to the third information, and generating a treatment plan prediction model by using the treatment plan prediction model, Evaluating and determining a radiation therapy plan of a new patient having fourth information including at least one of disease information and medical image information, A sixth information on the results obtained after performing the radiation therapy according to the plan, including the step of storing in the database, and provides automatic intelligent radiation treatment planning method.
  • the intelligent automatic radiotherapy plan planning method is a method of predicting a radiotherapy plan plan that can obtain the best result through artificial intelligence algorithm by converting various patient information into a big data Can be generated. Such a treatment plan prediction model can be applied to a new patient's computerized treatment plan to generate the best treatment plan for the patient.
  • the intelligent automatic radiotherapy planning method automatically establishes an adaptive radiotherapy plan based on various information generated during the treatment. After the treatment is completed, the therapeutic information and the clinical result are input into the victor, It can have a continuous quality improvement.
  • FIG. 1 is a schematic diagram of a system for intelligent automatic radiotherapy planning according to an embodiment of the present invention. Referring to FIG. 1
  • FIG. 2 is a block diagram schematically showing the configuration of an intelligent automatic radiotherapy planning apparatus according to an embodiment of the present invention. Referring to FIG.
  • FIG. 3 is a flowchart sequentially illustrating an intelligent automatic radiotherapy treatment planning method according to an embodiment of the present invention.
  • FIGS. 4 and 5 are diagrams for explaining a method of generating a radiation treatment plan prediction model.
  • An embodiment of the present invention is a medical treatment method including first information including personal information, diagnosis and examination information, disease information and medical image information on existing patients who have undergone radiotherapy, and first information including medical image information, Receiving second information including radiation dose information and radiation irradiation information performed on the first information and third information on a result obtained after performing the radiation treatment by the second information, Generating a treatment plan prediction model by performing artificial intelligence-based correlation and regression analysis on the first information to the third information, and generating a treatment plan prediction model by using the treatment plan prediction model, Evaluating and determining a radiation therapy plan of a new patient having fourth information including at least one of disease information and medical image information, A sixth information on the results obtained after performing the radiation therapy according to the plan, including the step of storing in the database, and provides automatic intelligent radiation treatment planning method.
  • fifth information including medical image information, diagnosis and examination information, and side effect information acquired during treatment of the new patient is received, and the fourth information is compared with the fifth information Further comprising correcting the radiation treatment plan using the treatment plan prediction model and the fifth information when a difference occurs after the radiation treatment, and the sixth information is subjected to the radiation treatment according to the corrected radiation treatment plan And may be information on the result obtained after the operation.
  • the step of generating the treatment plan prediction model may include generating a first characteristic vector from the first information, generating a second characteristic vector from the second information, Generating a plurality of patterns by combining different factors among the first information and the third information, performing a correlation analysis and a regression analysis on the generated plurality of patterns, Extracting a specific pattern of the first feature vector from the plurality of patterns using the result of the regression analysis and generating a treatment plan prediction model that derives the second feature vector as a result value using the extracted specific pattern Step < / RTI >
  • the step of generating the treatment plan prediction model may include generating a third feature vector from the third information, and using the third feature vector and the specific pattern to obtain the highest survival rate Can be derived as a result value.
  • An embodiment of the present invention is a medical treatment method including first information including personal information, diagnosis and examination information, disease information and medical image information on existing patients who have undergone radiotherapy, and first information including medical image information,
  • the second information including the radiation dose information and the radiation source information performed on the first patient, the third information on the result obtained after the radiation therapy is performed by the second information
  • the communication unit may include fifth information including medical image information, diagnosis and examination information, and side effect information acquired during treatment of the new patient, and fifth information including side effect information, It is possible to receive the sixth information about the result obtained after performing the treatment.
  • the controller compares the fourth information with the fifth information, and when the difference occurs, corrects the radiation treatment plan using the treatment plan prediction model and the fifth information can do.
  • the sixth information may be information on a result obtained after performing the radiation therapy according to the corrected radiation therapy plan.
  • control unit generates a first feature vector and a second feature vector from the first information and the second information, respectively, and calculates different factors among the first information and the third information And generating a plurality of patterns by performing a correlation analysis and a regression analysis on the generated plurality of patterns, and using the correlation analysis and the result of the regression analysis, And derive a treatment plan prediction model that derives the second feature vector as a result value using the extracted specific pattern.
  • control unit generates a third feature vector from the third information, and uses a third feature vector and the specific pattern to obtain a second feature vector having the highest survival rate as a result Value.
  • One embodiment of the present invention provides a computer program stored on a medium for performing the above method using a computer.
  • a film, an area, a component, or the like when referred to as being connected, not only the case where the film, the region, and the components are directly connected but also the case where other films, regions, And indirectly connected.
  • a film, an area, a component, and the like when a film, an area, a component, and the like are electrically connected, not only a case where a film, an area, a component, etc. are directly electrically connected but also another film, And indirectly connected electrically.
  • FIG. 1 is a schematic diagram of a system for intelligent automatic radiotherapy planning according to an embodiment of the present invention. Referring to FIG. 1
  • an intelligent automatic radiotherapy planning system may include a server 100, a user terminal 200, an external device 300, and a communication network 400 connecting them. have.
  • the intelligent automatic radiotherapy plan planning system is a system in which a server 100 receives information necessary for performing a radiotherapy of a patient such as patient information or radiotherapy plan information from an external device 300, Planned Prediction Models can be created to establish an automated radiation treatment plan.
  • the intelligent automatic radiotherapy planning planning system can further receive the state information and the like after the treatment through the user terminal 200, and apply it to the generation of the radiation treatment plan prediction model.
  • the external device 300 may refer to various devices that transmit and receive data to and from the server 100 and the user terminal 200 via the communication network 400.
  • the external device 300 may be a medical management system that manages clinical information of patients, or a treatment system that generates or manages the radiation treatment plan information.
  • the external device 300 may be a device for generating medical image information used in a radiation treatment plan.
  • the external device 300 may be a computer tomography (CT) device, an MRI (Magnetic Resonance Imaging) device, a PET (Positron Emission Tomography) device, a CT simulator, .
  • CT computer tomography
  • MRI Magnetic Resonance Imaging
  • PET PET
  • CT simulator CT simulator
  • the external device 300 may be a device that provides the server 100 with clinical information or radiotherapy plan information of patients.
  • the external device 300 may be a single number or a plurality.
  • the user terminal 200 may refer to various devices for transmitting the quality of life evaluation information of the patients to the server 100 after the radiation therapy.
  • the terminal may be the portable terminal 201 or the personal computer 202.
  • the user terminal 200 may have display means for displaying the content, and input means for obtaining the user's input on the content.
  • the input means and the display means can be configured in various ways.
  • the input means may include, but is not limited to, a keyboard, a mouse, a trackball, a microphone, a button, a touch panel,
  • the information on the quality of life of the patients is information for recording the side effects during or after the radiation therapy and evaluating the quality of life using the information.
  • the quality of life evaluation information may be a set of information that the patients entered through the user terminal 200 to input the degree of symptoms that may be caused by radiation therapy.
  • the quality of life evaluation information may include skin image information in which the patient imaged the treatment region through a camera (not shown) provided in the user terminal 200.
  • the user terminal 200 may transmit the set of information to the server 100, and may transmit the processed information to the server 100 as the processed data through a predetermined algorithm.
  • the communication network 400 connects the server 100, the user terminal 200, and the external device 300.
  • the communication network 400 provides a connection path so that the user terminal 200 can transmit and receive packet data after connecting to the server 100.
  • the communication network 400 may be a wired network such as LANs (Local Area Networks), WANs (Wide Area Networks), MANs (Metropolitan Area Networks), ISDNs (Integrated Service Digital Networks), wireless LANs, CDMA, Bluetooth, But the scope of the present invention is not limited thereto.
  • the server 100 receives information necessary for performing a patient's radiation therapy, such as patient information or radiation therapy plan information, from the external device 300, generates a radiation treatment plan prediction model, and establishes an automated radiation treatment plan can do.
  • the server 100 may further receive state information and the like after the treatment through the user terminal 200, and may apply the state information and the like to the generation of the radiation treatment plan prediction model.
  • FIG. 2 is a block diagram schematically illustrating the configuration of an intelligent automatic radiotherapy planning apparatus 110 according to an embodiment of the present invention.
  • the intelligent automatic radiotherapy planning apparatus 110 may include a communication unit 111, a control unit 112, and a memory 113.
  • the intelligent automatic radiotherapy planning apparatus 110 may further include an input / output unit, a program storage unit, and the like.
  • the communication unit 111 is connected to the intelligent automatic radiotherapy planning apparatus 110 via a wired or wireless connection with other network devices such as the user terminal 200 or the external device 300 to transmit and receive signals such as a control signal or a data signal.
  • Hardware, and software are used to transmit and receive signals such as a control signal or a data signal.
  • the control unit 112 may include any kind of device capable of processing data, such as a processor.
  • the term " processor " may refer to a data processing apparatus embedded in hardware, for example, having a circuit physically structured to perform a function represented by a code or an instruction contained in the program.
  • a microprocessor a central processing unit (CPU), a processor core, a multiprocessor, an ASIC (Application-Specific Integrated Circuit, and an FPGA (Field Programmable Gate Array), but the scope of the present invention is not limited thereto.
  • the memory 113 performs the function of temporarily or permanently storing the data processed by the intelligent automatic radiotherapy planning apparatus 110.
  • the memory 113 may include a magnetic storage medium or a flash storage medium, but the scope of the present invention is not limited thereto.
  • the intelligent automatic radiotherapy plan planning apparatus 110 may be provided separately from the server 100 according to the role allocation. However, the intelligent automatic radiotherapy plan scheduling apparatus 110 may be provided separately from the server 100 have.
  • the server 100 that is, the intelligent automatic radiotherapy plan establishing apparatus 110 receives information necessary for performing the radiotherapy of the patient, such as patient information or radiotherapy plan information from the external device 300, Radiation Therapy Plan You can create a predictive model to establish an automated radiotherapy plan.
  • the server 100 may further receive state information and the like after the treatment through the user terminal 200, and may apply the state information and the like to the generation of the radiation treatment plan prediction model.
  • FIG. 1 a method of generating a treatment plan prediction model in the server 100, that is, the intelligent automatic radiotherapy planning apparatus 110, and automatically establishing a radiation treatment plan will be described with reference to FIGS. 3 to 5.
  • FIG. 1 a method of generating a treatment plan prediction model in the server 100, that is, the intelligent automatic radiotherapy planning apparatus 110, and automatically establishing a radiation treatment plan will be described with reference to FIGS. 3 to 5.
  • FIG. 3 is a flowchart sequentially illustrating an intelligent automatic radiotherapy plan establishment method according to an embodiment of the present invention
  • FIGS. 4 and 5 are diagrams illustrating a method of generating a radiation treatment plan prediction model.
  • the communication unit 111 of the intelligent automatic radiotherapy planning apparatus 110 may transmit first to third information of existing patients from the external device 300 (S100).
  • the first information A1 may include personal information about the existing patients who have undergone radiation therapy, diagnosis and examination information, disease information, and medical image information.
  • the personal information, diagnostic and test information, and staging information may be information derived from previously performed medical records of patients.
  • the medical image information may be information generated from the medical image device.
  • a medical imaging apparatus such as a computed tomography (CT) apparatus, a magnetic resonance imaging (MRI) apparatus, a positron emission tomography (PET) apparatus, a CT simulator
  • CT computed tomography
  • MRI magnetic resonance imaging
  • PET positron emission tomography
  • CT simulator a CT simulator
  • the medical image information can be generated by photographing the living body to be examined.
  • the generated medical image information is converted into DICOM (Digital Imaging and Communications in Medicine), and it is shown in the form of a DICOM RT (Radiation Therapy) data file.
  • DICOM Digital Imaging and Communications in Medicine
  • the second information A2 may include radiation dose information and radiation irradiation information performed in the radiation therapy on the patient.
  • the second information A2 may be treatment data performed in the radiation therapy and may be a set of parameter information required for radiation therapy.
  • the second information A2 includes not only radiation dose information but also dose constraints, body contouring information, beam modality, dose schedule, beam parameter information such as beam parameters, X-rays, electron beams, types of therapeutic sources such as proton, therapeutic source energy, treatment methods such as three-dimensional and intensity control, beam direction, and the like.
  • the third information A3 may be information on the result obtained after the radiation therapy is performed by the second information A2.
  • the third information (A3) may be survival rate information or side effect information for existing patients who have undergone radiation therapy.
  • the side effect information of the third information (A3) may be information judged and recorded by a specialist such as a doctor in a medical institution.
  • the first information A1, the second information A2 and the third information A3 may be stored in the memory 113 as a database (S200).
  • the control unit 112 generates artificial intelligence-based correlation and regression analysis of the provided first information A1, second information A2, and third information A3 to generate a treatment plan prediction model M (S300). Specifically, the control unit 112 may generate a first characteristic vector 311 from the first information A1 and a second characteristic vector 313 from the second information A2.
  • the first feature vector 311 and the second feature vector 312 may be values for factors that directly or indirectly affect the determination of the treatment plan predictive model (M).
  • the first feature vector 311 and the second feature vector 312 may be values for dose-volume histogram related factors, survival probability related factors, and complication possibility related factors.
  • the first feature vector 311 and the second feature vector 312 may be a set or combination of values that are not one value.
  • the control unit 112 may generate a plurality of patterns by combining different factors among the first to third information A1 to A3, and may perform correlation analysis and regression analysis on the plurality of generated patterns.
  • the controller 112 may extract a specific pattern for the first feature vector 311 among the plurality of patterns using the correlation analysis and the result of the regression analysis performed.
  • the specific pattern described above may be a pattern that results from information extracted from existing patients and results in therapeutic results after radiotherapy.
  • the control unit 112 may generate a treatment plan prediction model M that derives a result value B1 in the form of a second feature vector using the extracted specific pattern.
  • the control unit 112 can generate the third feature vector 313 from the third information A1.
  • the control unit 112 can derive the second feature vector having the highest survival rate as the result value B1 by using the third feature vector 313 and the above-described feature pattern.
  • the control unit 112 can output the radiation treatment plan information having the highest survival rate in the form of the second feature vector .
  • control unit 112 may derive a second feature vector having the lowest side effect as a result value B1.
  • control unit 112 may derive the second feature vector having the highest survival rate and the lowest side effect as the result value B1.
  • control unit 112 may generate the treatment plan prediction model by further reflecting the quality of life evaluation information collected through the user terminal 200 described above.
  • the quality-of-life evaluation information may include information on side effects such as side effects, cough, oral dryness, headache, etc., symptom information, pain information, hair loss or skin reaction information during or after treatment.
  • the control unit 112 may be configured to classify the first to third information A1 to A3 using a logistic regression, a decision tree, a nearest-neighbor classifier, a kernel discriminate analysis, a neural network, a support vector machine, Algorithm (s) and / or method (s).
  • the control unit 112 may use an algorithm and / or a method such as Linear regression, Regression tree, Kernel regression, Support vector regression, Deep Learning, etc. to predict a treatment plan.
  • controller 112 may use algorithms and / or methods such as Principal component analysis, Non-negative matrix factorization, Independent component analysis, Manifold learning, and SVD.
  • the controller 112 may use algorithms and / or schemes such as k-means, hierarchical clustering, mean-shift, self-organizing maps (SOMs)
  • the controller 112 may use algorithms and / or methods such as Bipartite cross-matching, n-point correlation two-sample testing, and minimum spanning tree for data comparison.
  • the control unit 112 can determine the radiation treatment plan of the new patient having the fourth information A4 before treatment using the treatment plan prediction model M (S400).
  • the fourth information may be the information of the new patient corresponding to the first information A1.
  • the fourth information A4 may include personal information of new patients, diagnosis and examination information, staging information, and medical image information.
  • the control unit 112 inputs the fourth information A4 of the new patient to the treatment plan prediction model M, and outputs the second feature vector having the highest survival rate as the result B1.
  • the control unit 112 can derive the expected survival rate or the degree of side effect when the radiation therapy is performed through the result value B1 using the treatment plan prediction model M.
  • the control unit 112 may receive the fourth information (A4) and the sixth information A6 related to the result obtained after performing the radiation therapy according to the radiation therapy plan of the new patient (S500).
  • the radiation treatment plan information of the new patient may be a result value first derived from the treatment plan prediction model (M), but may be a corrected result value using the fifth information acquired during the radiation treatment.
  • M treatment plan prediction model
  • the control unit 112 may collect the patient's position error information and calculate the PTV margin of the treatment plan volume reflecting the position error.
  • the fifth information may be information reflecting the redundancy of the treatment plan volume.
  • control unit 112 may correct the radiation therapy plan using the treatment plan prediction model M and the fifth information.
  • the control unit 112 can automatically generate a radiation treatment plan considering the treatment volume reset, the prescribed dose change, and the treatment volume according to the degree of the treatment response.
  • the next control unit 112 may store the fourth to sixth information (A4 to A6) for the new patient in the database, and update the treatment plan prediction model as new data.
  • various patient information that has been treated in the past is converted into Big data, and the best result is obtained through the artificial intelligence algorithm
  • a treatment plan prediction model can be generated.
  • Such a treatment plan prediction model can be applied to a new patient's computerized treatment plan to generate the best treatment plan for the patient.
  • the intelligent automatic radiotherapy planning method automatically establishes an adaptive radiotherapy plan based on various information generated during the treatment. After the treatment is completed, the therapeutic information and the clinical result are input into the victor, It can have a continuous quality improvement.
  • the intelligent automatic radiotherapy planning apparatus can generate the artificial intelligent body contour model using the first information to the third information.
  • This artificial intelligent body profile contour model can be used for planning a new patient's radiation therapy, considering the characteristics of the patient, the stage of the patient, the treatment area, the volume including the gross tumor volume and the clinical treatment volume, It can be created automatically.
  • the embodiments of the present invention described above can be embodied in the form of a computer program that can be executed on various components on a computer, and the computer program can be recorded on a computer-readable medium.
  • the medium may be a computer-executable program. Examples of the medium include a magnetic medium such as a hard disk, a floppy disk and a magnetic tape, an optical recording medium such as CD-ROM and DVD, a magneto-optical medium such as a floptical disk, And program instructions including ROM, RAM, flash memory, and the like.
  • the computer program may be designed and configured specifically for the present invention or may be known and used by those skilled in the computer software field.
  • Examples of computer programs may include machine language code such as those produced by a compiler, as well as high-level language code that may be executed by a computer using an interpreter or the like.
  • a method for establishing an intelligent automatic radiotherapy plan is provided.
  • the embodiments of the present invention can be applied to a radiation therapy apparatus that requires an industrial radiation therapy plan.

Abstract

One embodiment of the present invention provides an intelligent automatic radiotherapy planning method comprising the steps of: receiving and storing in a database first information including personal information, diagnosis and examination information, disease stage information, and medical image information on existing patients who have undergone radiotherapy, second information including information on dose and irradiation used in radiotherapy for the patient, and third information on the result derived after performing the radiotherapy according to the second information; generating a therapy plan prediction model by performing artificial intelligence-based correlation and regression analysis on the first to third information; determining a radiotherapy plan, for a new patient, having fourth information including personal information before therapy, diagnosis and examination information, stage information, and medical image information by using the therapy plan prediction model; and storing, in the database, the fourth information and sixth information on the result derived after performing the radiotherapy according to the radiotherapy plan of the new patient.

Description

지능형 자동 방사선 치료계획 수립방법 및 시스템Intelligent automatic radiotherapy planning method and system
본 발명의 실시예들은 지능형 자동 방사선 치료계획 수립방법 및 시스템에 관한 것이다.Embodiments of the present invention are directed to a method and system for intelligent automatic radiotherapy planning.
방사선 치료는 엑스선, 감마선과 같은 고에너지 파동 또는 전자선, 양성자선과 같은 고에너지 입자를 이용하여 타겟 조직에 손상을 가하거나 파괴함으로써 악성 조직의 성장을 지연시키거나 저지하거나 나아가 소멸시키는 방법이다. 방사선 치료는 암뿐 아니라, 양성 종양, 내과적 질병, 일부 피부질환의 치료에 이용되기도 한다. 최근에는 두개골을 절개하는 신경외과적 수술방식을 대체하여, 절개 수술 없이 한번에 다량의 방사선을 조사하여 치료하는 방사선 수술 방법도 개발되어 있다. Radiotherapy is a method of delaying, stopping, or even destroying the growth of malignant tissue by damaging or destroying the target tissue using high-energy waves such as x-rays and gamma rays or high-energy particles such as electron beams and proton rays. Radiation therapy is used not only for cancer, but also for benign tumors, medical diseases, and some skin diseases. Recently, a radiotherapy method has been developed in which, instead of the neurosurgical operation method of cutting the skull, a large amount of radiation is irradiated at one time without incision surgery.
최근에는 암환자의 약 60% 이상이 방사선 치료를 받을 정도로 일반화되어 있다. 방사선 치료는 그 자체로 종양을 치료하는 데에 이용될 뿐 아니라, 종양이 크고 침습이 되어 수술이 어렵거나, 수술로 제거하지 못한 국부를 치료하는 다른 외과적 수술과 함께 사용되어 종양의 크기를 줄여 외과적 수술을 쉽게 만들거나 수술 후에 남은 악성 세포를 파괴하는 용도로 이용될 수 있다.More recently, more than 60% of cancer patients have been generalized to receive radiation therapy. Radiation therapy is not only used to treat tumors as such, but also can be used in conjunction with other surgical procedures to treat localized tumors that are large and invasive and difficult to surgically remove, It can be used to make surgical operations easier or to destroy the remaining malignant cells after surgery.
이처럼 환자의 종양 조직으로 방사선을 조사하기 전에, 환자의 현재 신체 조직 내 존재하는 종양의 크기, 위치 등을 고려하여 방사선의 조사 위치 및 방사선량을 결정하는 등 정밀한 방사선 치료계획이 요구된다. 종래에는 단층 영상을 이용해 종양의 위치를 설정한 후 선량 설계사의 경험과 물리적 지식을 기반으로 방사선의 조사 위치 및 방사선량 등을 조절하는 것에 의해 최적의 방사선 치료계획을 도출하였다. 그러나, 이러한 방법은 선량 설계사 및 방사선치료계획에 참여하는 임상 의료진의 능력과 경험에 따라 치료계획 결과의 질이 달라지며 치료계획 시간 및 업무가 증가한다. 특히 종양의 모양이 복잡하고 주변 정상 장기가 근접한 고난도 치료계획의 경우 주변 정상장기에 가는 선량을 낮추면서 종양에 고선량을 조사하는 우수한 치료계획을 얻기가 힘들다. 치료 결과에 대한 예측이 불가능해 다양한 환자 조건에 맞는 맞춤형 치료계획 수립이 불가능하다. 또한 치료계획 시간 및 업무가 증가하므로 기존 환자들의 종양의 크기 등이 변화하는 경우에 조기 감지 및 적극적인 치료계획 변경이 어렵다.Therefore, precise radiotherapy planning is required, such as determining the location of irradiation and the dose of radiation considering the size and location of the tumor present in the patient's current tissue before irradiating the tumor tissue to the patient. In the past, the optimal radiation treatment plan was derived by setting the location of the tumor using tomographic images and then controlling the irradiation position and the radiation dose based on the experience and the physical knowledge of the dose planner. However, this method is dependent on the ability and experience of the clinician participating in the dose planner and radiotherapy plan, and the quality of the treatment plan results will vary and treatment planning time and work will increase. It is difficult to obtain an excellent treatment plan to investigate the high doses of the tumor while lowering the dose to the surrounding normal organs, particularly in the case of a complicated treatment plan in which the shape of the tumor is complex and the surrounding normal organs are close. It is impossible to predict the outcome of the treatment and it is impossible to establish a customized treatment plan for various patient conditions. In addition, as the time and workload of treatment planning increases, early detection and aggressive treatment planning changes are difficult if the size of the tumor in existing patients changes.
본 발명의 실시예들은 자동으로 방사선 치료계획을 수립할 수 있는 지능형 자동 방사선 치료계획 수립방법 및 시스템을 제공하고자 한다.Embodiments of the present invention provide an intelligent automatic radiotherapy planning method and system that can automatically establish a radiotherapy plan.
본 발명의 일 실시예는, 방사선 치료를 수행한 기존 환자들에 관한 신상정보, 진단 및 검사 정보, 병기(病氣)정보, 의료영상정보를 포함하는 제1 정보와, 상기 환자에 관한 방사선 치료에 수행된 방사선량(Dose) 정보 및 방사선 조사 정보를 포함하는 제2 정보와, 상기 제2 정보에 의해 방사선 치료를 진행한 후 도출되는 결과에 관한 제3 정보를 제공받아 데이터베이스에 저장하는 단계, 상기 제1 정보 내지 상기 제3 정보들을 인공지능 기반 상관관계 및 회귀분석을 수행하여 치료계획예측모델을 생성하는 단계, 상기 치료계획예측모델을 이용하여, 치료 전의 신상정보, 진단 및 검사 정보, 병기(病氣)정보, 의료영상정보를 포함하는 제4 정보를 갖는 신규 환자의 방사선 치료계획을 평가 및 결정하는 단계 및 상기 제4 정보와, 상기 신규 환자의 상기 방사선 치료계획에 따라 방사선 치료를 수행한 후 도출되는 결과에 관한 제6 정보를 상기 데이터베이스에 저장하는 단계를 포함하는, 지능형 자동 방사선 치료계획 수립방법을 제공한다.An embodiment of the present invention is a medical treatment method including first information including personal information, diagnosis and examination information, disease information and medical image information on existing patients who have undergone radiotherapy, and first information including medical image information, Receiving second information including radiation dose information and radiation irradiation information performed on the first information and third information on a result obtained after performing the radiation treatment by the second information, Generating a treatment plan prediction model by performing artificial intelligence-based correlation and regression analysis on the first information to the third information, and generating a treatment plan prediction model by using the treatment plan prediction model, Evaluating and determining a radiation therapy plan of a new patient having fourth information including at least one of disease information and medical image information, A sixth information on the results obtained after performing the radiation therapy according to the plan, including the step of storing in the database, and provides automatic intelligent radiation treatment planning method.
본 발명의 실시예들에 따른 지능형 자동 방사선 치료계획 수립방법은 기존에 치료했던 각종 환자 정보를 빅데이터(Big data)화하여 인공지능 알고리즘을 통해 최상의 결과를 도출할 수 있는 방사선 치료계획 예측모델을 생성할 수 있다. 이러한 치료계획예측모델은 새로운 환자의 전산화치료계획 시 적용하여 환자에게 맞는 최상의 치료계획을 생성할 수 있다. 또한, 지능형 자동 방사선 치료계획 수립방법은 치료 중 발생하는 다양한 정보를 토대로 적응방사선치료계획을 자동으로 수립하게 되며, 치료가 종료된 후, 치료 정보와 임상결과가 빅테이터 안으로 입력되어 향상 예측모델이 만들어지는 순환구조(continuous quality improvement)를 가질 수 있다.The intelligent automatic radiotherapy plan planning method according to the embodiments of the present invention is a method of predicting a radiotherapy plan plan that can obtain the best result through artificial intelligence algorithm by converting various patient information into a big data Can be generated. Such a treatment plan prediction model can be applied to a new patient's computerized treatment plan to generate the best treatment plan for the patient. In addition, the intelligent automatic radiotherapy planning method automatically establishes an adaptive radiotherapy plan based on various information generated during the treatment. After the treatment is completed, the therapeutic information and the clinical result are input into the victor, It can have a continuous quality improvement.
도 1은 본 발명의 일 실시예에 따른 지능형 자동 방사선 치료계획 수립시스템을 개략적으로 도시한 도면이다.FIG. 1 is a schematic diagram of a system for intelligent automatic radiotherapy planning according to an embodiment of the present invention. Referring to FIG.
도 2는 본 발명의 일 실시예에 따른 지능형 자동 방사선 치료계획 수립장치의 구성을 개략적으로 도시한 블록도이다.FIG. 2 is a block diagram schematically showing the configuration of an intelligent automatic radiotherapy planning apparatus according to an embodiment of the present invention. Referring to FIG.
도 3은 본 발명의 일 실시예에 따른 지능형 자동 방사선 치료계획 수립방법을 순차적으로 도시한 순서도이다. 3 is a flowchart sequentially illustrating an intelligent automatic radiotherapy treatment planning method according to an embodiment of the present invention.
도 4 및 도 5는 방사선 치료계획예측모델을 생성하는 방법을 설명하기 위한 도면이다.FIGS. 4 and 5 are diagrams for explaining a method of generating a radiation treatment plan prediction model.
본 발명의 일 실시예는, 방사선 치료를 수행한 기존 환자들에 관한 신상정보, 진단 및 검사 정보, 병기(病氣)정보, 의료영상정보를 포함하는 제1 정보와, 상기 환자에 관한 방사선 치료에 수행된 방사선량(Dose) 정보 및 방사선 조사 정보를 포함하는 제2 정보와, 상기 제2 정보에 의해 방사선 치료를 진행한 후 도출되는 결과에 관한 제3 정보를 제공받아 데이터베이스에 저장하는 단계, 상기 제1 정보 내지 상기 제3 정보들을 인공지능 기반 상관관계 및 회귀분석을 수행하여 치료계획예측모델을 생성하는 단계, 상기 치료계획예측모델을 이용하여, 치료 전의 신상정보, 진단 및 검사 정보, 병기(病氣)정보, 의료영상정보를 포함하는 제4 정보를 갖는 신규 환자의 방사선 치료계획을 평가 및 결정하는 단계 및 상기 제4 정보와, 상기 신규 환자의 상기 방사선 치료계획에 따라 방사선 치료를 수행한 후 도출되는 결과에 관한 제6 정보를 상기 데이터베이스에 저장하는 단계를 포함하는, 지능형 자동 방사선 치료계획 수립방법을 제공한다.An embodiment of the present invention is a medical treatment method including first information including personal information, diagnosis and examination information, disease information and medical image information on existing patients who have undergone radiotherapy, and first information including medical image information, Receiving second information including radiation dose information and radiation irradiation information performed on the first information and third information on a result obtained after performing the radiation treatment by the second information, Generating a treatment plan prediction model by performing artificial intelligence-based correlation and regression analysis on the first information to the third information, and generating a treatment plan prediction model by using the treatment plan prediction model, Evaluating and determining a radiation therapy plan of a new patient having fourth information including at least one of disease information and medical image information, A sixth information on the results obtained after performing the radiation therapy according to the plan, including the step of storing in the database, and provides automatic intelligent radiation treatment planning method.
본 발명의 일 실시예에 있어서, 상기 신규 환자의 치료 중 획득한 의료영상정보, 진단 및 검사 정보, 부작용정보를 포함하는 제5 정보를 제공받고, 상기 제4 정보와 상기 제5 정보를 비교한 후 차이가 발생하는 경우, 상기 치료계획예측모델 및 상기 제5 정보를 이용하여 상기 방사선 치료계획을 보정하는 단계를 더 포함하고, 상기 제6 정보는 상기 보정된 방사선 치료계획에 따라 방사선 치료를 수행한 후 도출되는 결과에 관한 정보일 수 있다.In one embodiment of the present invention, fifth information including medical image information, diagnosis and examination information, and side effect information acquired during treatment of the new patient is received, and the fourth information is compared with the fifth information Further comprising correcting the radiation treatment plan using the treatment plan prediction model and the fifth information when a difference occurs after the radiation treatment, and the sixth information is subjected to the radiation treatment according to the corrected radiation treatment plan And may be information on the result obtained after the operation.
본 발명의 일 실시예에 있어서, 상기 치료계획예측모델을 생성하는 단계는, 상기 제1 정보로부터 제1 특징 벡터(Characteristic Vector)를 생성하는 단계, 상기 제2 정보로부터 제2 특징 벡터를 생성하는 단계 및 상기 제1 정보 내지 상기 제3 정보 중 서로 다른 인자들을 조합하여 복수의 패턴을 생성하고, 상기 생성된 복수의 패턴에 대한 상관관계 분석 및 회귀분석을 수행하며, 상기 수행된 상관관계 분석 및 회귀분석 결과를 이용하여 상기 복수의 패턴 중 상기 제1 특징 벡터에 대한 특정패턴을 추출하고, 상기 추출된 특정패턴을 이용하여 상기 제2 특징 벡터를 결과값으로 도출하는 치료계획예측모델을 생성하는 단계를 포함할 수 있다.In one embodiment of the present invention, the step of generating the treatment plan prediction model may include generating a first characteristic vector from the first information, generating a second characteristic vector from the second information, Generating a plurality of patterns by combining different factors among the first information and the third information, performing a correlation analysis and a regression analysis on the generated plurality of patterns, Extracting a specific pattern of the first feature vector from the plurality of patterns using the result of the regression analysis and generating a treatment plan prediction model that derives the second feature vector as a result value using the extracted specific pattern Step < / RTI >
본 발명의 일 실시예에 있어서, 상기 치료계획예측모델을 생성하는 단계는, 상기 제3 정보로부터 제3 특징 벡터를 생성하고, 상기 제3 특징 벡터와 상기 특정패턴을 이용하여 가장 높은 생존율을 갖게 하는 제2 특징 벡터를 결과값으로 도출할 수 있다.In one embodiment of the present invention, the step of generating the treatment plan prediction model may include generating a third feature vector from the third information, and using the third feature vector and the specific pattern to obtain the highest survival rate Can be derived as a result value.
본 발명의 일 실시예는, 방사선 치료를 수행한 기존 환자들에 관한 신상정보, 진단 및 검사 정보, 병기(病氣)정보, 의료영상정보를 포함하는 제1 정보와, 상기 환자에 관한 방사선 치료에 수행된 방사선량(Dose) 정보 및 방사선 선원 정보를 포함하는 제2 정보와, 상기 제2 정보에 의해 방사선 치료를 진행한 후 도출되는 결과에 관한 제3 정보와, 신규 환자에 관한 치료 전의 신상정보, 진단 및 검사 정보, 병기(病氣)정보, 의료영상정보를 포함하는 제4 정보를 수신하는 통신부 및 상기 통신부로부터 수신된 상기 제1 정보 내지 상기 제4 정보를 데이터 표준화 포맷에 맞도록 수집하고, 상기 수집된 제1 정보 내지 제3 정보를 이용하여 치료계획예측모델을 생성하며, 상기 생성된 치료계획예측모델과 상기 제4 정보를 기반으로 상기 신규 환자의 방사선 치료계획을 결정하는 제어부를 포함하는, 지능형 자동 방사선 치료계획시스템을 제공한다.An embodiment of the present invention is a medical treatment method including first information including personal information, diagnosis and examination information, disease information and medical image information on existing patients who have undergone radiotherapy, and first information including medical image information, The second information including the radiation dose information and the radiation source information performed on the first patient, the third information on the result obtained after the radiation therapy is performed by the second information, A communication unit for receiving fourth information including information, diagnosis and inspection information, disease information, and medical image information, and a communication unit for collecting the first information to the fourth information received from the communication unit according to a data standardization format And generating a treatment plan prediction model using the collected first to third information, and based on the generated treatment plan prediction model and the fourth information, It provides an intelligent automated radiation treatment planning system which includes a control unit for determining.
본 발명의 일 실시예에 있어서, 상기 통신부는 상기 신규 환자의 치료 중 획득한 의료영상정보, 진단 및 검사 정보, 부작용 정보를 포함하는 제5 정보와, 상기 신규 환자의 상기 방사선 치료계획에 따라 방사선 치료를 수행한 후 도출되는 결과에 관한 제6 정보를 더 수신할 수 있다.According to an embodiment of the present invention, the communication unit may include fifth information including medical image information, diagnosis and examination information, and side effect information acquired during treatment of the new patient, and fifth information including side effect information, It is possible to receive the sixth information about the result obtained after performing the treatment.
본 발명의 일 실시예에 있어서, 상기 제어부는 상기 제4 정보와 상기 제5 정보를 비교한 후 차이가 발생하는 경우, 상기 치료계획예측모델 및 상기 제5 정보를 이용하여 상기 방사선 치료계획을 보정할 수 있다.In one embodiment of the present invention, the controller compares the fourth information with the fifth information, and when the difference occurs, corrects the radiation treatment plan using the treatment plan prediction model and the fifth information can do.
본 발명의 일 실시예에 있어서, 상기 제6 정보는 상기 보정된 방사선 치료계획에 따라 방사선 치료를 수행한 후 도출되는 결과에 관한 정보일 수 있다.In an embodiment of the present invention, the sixth information may be information on a result obtained after performing the radiation therapy according to the corrected radiation therapy plan.
본 발명의 일 실시예에 있어서, 상기 제어부는 상기 제1 정보 및 상기 제2 정보로부터 각각 제1 특징 벡터 및 제2 특징 벡터를 생성하고, 상기 제1 정보 내지 상기 제3 정보 중 서로 다른 인자들을 조합하여 복수의 패턴을 생성하고, 상기 생성된 복수의 패턴에 대한 상관관계 분석 및 회귀분석을 수행하며, 상기 수행된 상관관계 분석 및 회귀분석 결과를 이용하여 상기 복수의 패턴 중 상기 제1 특징 벡터에 대한 특정패턴을 추출하고, 상기 추출된 특정패턴을 이용하여 상기 제2 특징 벡터를 결과값으로 도출하는 치료계획예측모델을 생성할 수 있다.In one embodiment of the present invention, the control unit generates a first feature vector and a second feature vector from the first information and the second information, respectively, and calculates different factors among the first information and the third information And generating a plurality of patterns by performing a correlation analysis and a regression analysis on the generated plurality of patterns, and using the correlation analysis and the result of the regression analysis, And derive a treatment plan prediction model that derives the second feature vector as a result value using the extracted specific pattern.
본 발명의 일 실시예에 있어서, 상기 제어부는, 상기 제3 정보로부터 제3 특징 벡터를 생성하고, 상기 제3 특징 벡터와 상기 특정패턴을 이용하여 가장 높은 생존율을 갖게 하는 제2 특징 벡터를 결과값으로 도출할 수 있다.In one embodiment of the present invention, the control unit generates a third feature vector from the third information, and uses a third feature vector and the specific pattern to obtain a second feature vector having the highest survival rate as a result Value.
본 발명의 일 실시예는, 컴퓨터를 이용하여 상기한 방법을 실행하기 위하여 매체에 저장된 컴퓨터 프로그램을 제공한다.One embodiment of the present invention provides a computer program stored on a medium for performing the above method using a computer.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.Other aspects, features, and advantages will become apparent from the following drawings, claims, and detailed description of the invention.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다. BRIEF DESCRIPTION OF THE DRAWINGS The present invention is capable of various modifications and various embodiments, and specific embodiments are illustrated in the drawings and described in detail in the detailed description. The effects and features of the present invention and methods of achieving them will be apparent with reference to the embodiments described in detail below with reference to the drawings. However, the present invention is not limited to the embodiments described below, but may be implemented in various forms.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, wherein like reference numerals refer to like or corresponding components throughout the drawings, and a duplicate description thereof will be omitted .
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다. In the following embodiments, the terms first, second, and the like are used for the purpose of distinguishing one element from another element, not the limitative meaning.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In the following examples, the singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. In the following embodiments, terms such as inclusive or possessive are intended to mean that a feature, or element, described in the specification is present, and does not preclude the possibility that one or more other features or elements may be added.
이하의 실시예에서, 막, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다. In the following embodiments, when a part of a film, an area, a component or the like is on or on another part, not only the case where the part is directly on the other part but also another film, area, And the like.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.In the drawings, components may be exaggerated or reduced in size for convenience of explanation. For example, the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of explanation, and thus the present invention is not necessarily limited to those shown in the drawings.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다. If certain embodiments are otherwise feasible, the particular process sequence may be performed differently from the sequence described. For example, two processes that are described in succession may be performed substantially concurrently, and may be performed in the reverse order of the order described.
이하의 실시예에서, 막, 영역, 구성 요소 등이 연결되었다고 할 때, 막, 영역, 구성 요소들이 직접적으로 연결된 경우뿐만 아니라 막, 영역, 구성요소들 중간에 다른 막, 영역, 구성 요소들이 개재되어 간접적으로 연결된 경우도 포함한다. 예컨대, 본 명세서에서 막, 영역, 구성 요소 등이 전기적으로 연결되었다고 할 때, 막, 영역, 구성 요소 등이 직접 전기적으로 연결된 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 간접적으로 전기적 연결된 경우도 포함한다.In the following embodiments, when a film, an area, a component, or the like is referred to as being connected, not only the case where the film, the region, and the components are directly connected but also the case where other films, regions, And indirectly connected. For example, in the present specification, when a film, an area, a component, and the like are electrically connected, not only a case where a film, an area, a component, etc. are directly electrically connected but also another film, And indirectly connected electrically.
도 1은 본 발명의 일 실시예에 따른 지능형 자동 방사선 치료계획 수립시스템을 개략적으로 도시한 도면이다. FIG. 1 is a schematic diagram of a system for intelligent automatic radiotherapy planning according to an embodiment of the present invention. Referring to FIG.
도 1을 참조하면, 본 발명의 일 실시예에 따른 지능형 자동 방사선 치료계획 수립시스템은 서버(100), 사용자 단말(200), 외부장치(300) 및 이들을 연결하는 통신망(400)을 포함할 수 있다.Referring to FIG. 1, an intelligent automatic radiotherapy planning system according to an embodiment of the present invention may include a server 100, a user terminal 200, an external device 300, and a communication network 400 connecting them. have.
본 발명의 일 실시예에 따른 지능형 자동 방사선 치료계획 수립시스템은 서버(100)가 외부장치(300)로부터 환자의 정보 또는 방사선 치료계획 정보 등 환자의 방사선 치료 수행 시 필요한 정보들을 수신하고, 방사선 치료계획예측모델을 생성하여 자동화된 방사선 치료계획을 수립할 수 있다. 또한, 지능형 자동 방사선 치료계획 수립시스템은 사용자 단말(200)을 통해 치료 후의 상태 정보 등을 더 수신하고, 이를 방사선 치료계획예측모델의 생성함에 있어 적용시킬 수 있다. The intelligent automatic radiotherapy plan planning system according to an embodiment of the present invention is a system in which a server 100 receives information necessary for performing a radiotherapy of a patient such as patient information or radiotherapy plan information from an external device 300, Planned Prediction Models can be created to establish an automated radiation treatment plan. In addition, the intelligent automatic radiotherapy planning planning system can further receive the state information and the like after the treatment through the user terminal 200, and apply it to the generation of the radiation treatment plan prediction model.
외부 장치(300)는 서버(100) 및 사용자 단말(200)과 통신망(400)을 통하여 데이터를 송수신하는 다양한 장치를 의미할 수 있다. 구체적으로 본 발명에서 외부 장치(300)는 기존에 환자들의 임상 정보를 관리하는 의료 관리 시스템일수도 있고, 방사선 치료계획 정보를 생성하거나 관리하는 치료 시스템일 수 있다. 일 실시예로서, 외부 장치(300)는 방사선 치료계획에 사용되는 의료 영상 정보를 생성하는 장치일 수 있다. 예를 들면, 외부 장치(300)는 CT(Computed Tommography) 장치, MRI(Magnetic Resonance Imaging)장치, PET(Positron Emission Tomography) 장치, 컴퓨터단층촬영모의치료기(CT Simulator), CR(Computed Radiography) 등 일 수 있다. 외부 장치(300)는 환자들의 임상 정보 또는 방사선 치료계획 정보를 서버(100)로 제공하는 장치일 수 있다. 이와 같은 외부 장치(300)는 단수일 수도 있고, 복수일 수도 있다.The external device 300 may refer to various devices that transmit and receive data to and from the server 100 and the user terminal 200 via the communication network 400. Specifically, in the present invention, the external device 300 may be a medical management system that manages clinical information of patients, or a treatment system that generates or manages the radiation treatment plan information. In one embodiment, the external device 300 may be a device for generating medical image information used in a radiation treatment plan. For example, the external device 300 may be a computer tomography (CT) device, an MRI (Magnetic Resonance Imaging) device, a PET (Positron Emission Tomography) device, a CT simulator, . The external device 300 may be a device that provides the server 100 with clinical information or radiotherapy plan information of patients. The external device 300 may be a single number or a plurality.
사용자 단말(200)은 방사선 치료 후 환자들의 삶의 질 평가 정보를 서버(100)로 전송하는 다양한 장치를 의미할 수 있다. 이때, 단말은 휴대용 단말(201)일 수도 있고, 퍼스널 컴퓨터(202)일 수도 있다. The user terminal 200 may refer to various devices for transmitting the quality of life evaluation information of the patients to the server 100 after the radiation therapy. At this time, the terminal may be the portable terminal 201 or the personal computer 202.
사용자 단말(200)은 콘텐츠를 표시하기 위한 표시 수단, 이러한 콘텐츠에 대한 사용자의 입력을 획득하기 위한 입력 수단을 구비할 수 있다. 이때, 입력수단 및 표시수단은 다양하게 구성될 수 있다. 가령 입력수단은 키보드, 마우스, 트랙볼, 마이크, 버튼, 터치패널 등을 포함할 수 있으나 이에 한정되지 않는다. The user terminal 200 may have display means for displaying the content, and input means for obtaining the user's input on the content. At this time, the input means and the display means can be configured in various ways. For example, the input means may include, but is not limited to, a keyboard, a mouse, a trackball, a microphone, a button, a touch panel,
여기서, 환자들의 삶의 질 평가 정보는 방사선 치료 중 또는 치료 후의 부작용 여부 등을 기록하고, 이를 이용하여 삶의 질을 평가하는 정보이다. 삶의 질 평가 정보는 환자들이 사용자 단말(200)을 통해, 방사선 치료로 인하여 나타날 수 있는 증상들에 대한 정도를 입력한 정보들의 집합일 수 있다. 또한, 삶의 질 평가 정보는 환자들이 사용자 단말(200)에 구비된 카메라(미도시)를 통해 치료 부위를 촬상한 피부 영상 정보를 포함할 수도 있다. Here, the information on the quality of life of the patients is information for recording the side effects during or after the radiation therapy and evaluating the quality of life using the information. The quality of life evaluation information may be a set of information that the patients entered through the user terminal 200 to input the degree of symptoms that may be caused by radiation therapy. In addition, the quality of life evaluation information may include skin image information in which the patient imaged the treatment region through a camera (not shown) provided in the user terminal 200.
사용자 단말(200)은 상기한 정보들의 집합을 서버(100)로 전송할 수도 있고, 상기한 정보들을 사전에 설정된 알고리즘을 통해 가공하여 가공 데이터로서 서버(100)로 전송할 수도 있다.The user terminal 200 may transmit the set of information to the server 100, and may transmit the processed information to the server 100 as the processed data through a predetermined algorithm.
본 발명에서 통신망(400)은 서버(100), 사용자 단말(200) 및 외부 장치(300)를 연결하는 역할을 수행한다. 예를 들어, 통신망(400)은 사용자 단말(200)이 서버(100)에 접속한 후 패킷 데이터를 송수신할 수 있도록 접속 경로를 제공한다. 통신망(400)은 예컨대 LANs(Local Area Networks), WANs(Wide Area Networks), MANs(Metropolitan Area Networks), ISDNs(Integrated Service Digital Networks) 등의 유선 네트워크나, 무선 LANs, CDMA, 블루투스, 위성 통신 등의 무선 네트워크를 망라할 수 있으나, 본 발명의 범위가 이에 한정되는 것은 아니다. In the present invention, the communication network 400 connects the server 100, the user terminal 200, and the external device 300. For example, the communication network 400 provides a connection path so that the user terminal 200 can transmit and receive packet data after connecting to the server 100. The communication network 400 may be a wired network such as LANs (Local Area Networks), WANs (Wide Area Networks), MANs (Metropolitan Area Networks), ISDNs (Integrated Service Digital Networks), wireless LANs, CDMA, Bluetooth, But the scope of the present invention is not limited thereto.
본 발명에서 서버(100)는 외부장치(300)로부터 환자의 정보 또는 방사선 치료계획 정보 등 환자의 방사선 치료 수행 시 필요한 정보들을 수신하고, 방사선 치료계획예측모델을 생성하여 자동화된 방사선 치료계획을 수립할 수 있다. 또한, 서버(100)는 사용자 단말(200)을 통해 치료 후의 상태 정보 등을 더 수신하고, 이를 방사선 치료계획예측모델의 생성함에 있어 적용시킬 수 있다.In the present invention, the server 100 receives information necessary for performing a patient's radiation therapy, such as patient information or radiation therapy plan information, from the external device 300, generates a radiation treatment plan prediction model, and establishes an automated radiation treatment plan can do. In addition, the server 100 may further receive state information and the like after the treatment through the user terminal 200, and may apply the state information and the like to the generation of the radiation treatment plan prediction model.
도 2는 본 발명의 일 실시예에 따른 지능형 자동 방사선 치료계획 수립장치(110)의 구성을 개략적으로 도시한 블록도이다.FIG. 2 is a block diagram schematically illustrating the configuration of an intelligent automatic radiotherapy planning apparatus 110 according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 실시예에 따른 지능형 자동 방사선 치료계획 수립장치(110)는 통신부(111), 제어부(112) 및 메모리(113)를 포함할 수 있다. 또한, 도면에는 도시되지 않았으나, 본 발명의 일 실시예에 따른 지능형 자동 방사선 치료계획 수립장치(110)는 입/출력부, 프로그램 저장부 등을 더 포함할 수 있다. Referring to FIG. 2, the intelligent automatic radiotherapy planning apparatus 110 according to an embodiment of the present invention may include a communication unit 111, a control unit 112, and a memory 113. In addition, although not shown in the drawing, the intelligent automatic radiotherapy planning apparatus 110 according to an embodiment of the present invention may further include an input / output unit, a program storage unit, and the like.
통신부(111)는 지능형 자동 방사선 치료계획 수립장치(110)가 사용자 단말(200) 또는 외부 장치(300)와 같은 다른 네트워크 장치와 유무선 연결을 통해 제어 신호 또는 데이터 신호와 같은 신호를 송수신하기 위해 필요한 하드웨어 및 소프트웨어를 포함하는 장치일 수 있다. The communication unit 111 is connected to the intelligent automatic radiotherapy planning apparatus 110 via a wired or wireless connection with other network devices such as the user terminal 200 or the external device 300 to transmit and receive signals such as a control signal or a data signal. Hardware, and software.
제어부(112)는 프로세서(processor)와 같이 데이터를 처리할 수 있는 모든 종류의 장치를 포함할 수 있다. 여기서, '프로세서(processor)'는, 예를 들어 프로그램 내에 포함된 코드 또는 명령으로 표현된 기능을 수행하기 위해 물리적으로 구조화된 회로를 갖는, 하드웨어에 내장된 데이터 처리 장치를 의미할 수 있다. 이와 같이 하드웨어에 내장된 데이터 처리 장치의 일 예로써, 마이크로프로세서(Microprocessor), 중앙처리장치(Central Processing Unit: CPU), 프로세서 코어(Processor Core), 멀티프로세서(Multiprocessor), ASIC(Application-Specific Integrated Circuit), FPGA(Field Programmable Gate Array) 등의 처리 장치를 망라할 수 있으나, 본 발명의 범위가 이에 한정되는 것은 아니다.The control unit 112 may include any kind of device capable of processing data, such as a processor. Herein, the term " processor " may refer to a data processing apparatus embedded in hardware, for example, having a circuit physically structured to perform a function represented by a code or an instruction contained in the program. As an example of the data processing apparatus built in hardware, a microprocessor, a central processing unit (CPU), a processor core, a multiprocessor, an ASIC (Application-Specific Integrated Circuit, and an FPGA (Field Programmable Gate Array), but the scope of the present invention is not limited thereto.
메모리(113)는 지능형 자동 방사선 치료계획 수립장치(110)가 처리하는 데이터를 일시적 또는 영구적으로 저장하는 기능을 수행한다. 메모리(113)는 자기 저장 매체(Magnetic Storage Media) 또는 플래시 저장 매체(Flash Storage Media)를 포함할 수 있으나, 본 발명의 범위가 이에 한정되는 것은 아니다. The memory 113 performs the function of temporarily or permanently storing the data processed by the intelligent automatic radiotherapy planning apparatus 110. The memory 113 may include a magnetic storage medium or a flash storage medium, but the scope of the present invention is not limited thereto.
이하에서는 지능형 자동 방사선 치료계획 수립장치(110)가 서버(100)에 구비되는 것을 전제로 설명하지만, 역할배분에 따라 지능형 자동 방사선 치료계획 수립장치(110)는 서버(100)와 별도로 구비될 수도 있다. The intelligent automatic radiotherapy plan planning apparatus 110 may be provided separately from the server 100 according to the role allocation. However, the intelligent automatic radiotherapy plan scheduling apparatus 110 may be provided separately from the server 100 have.
한편, 전술한 바와 같이 서버(100), 즉 지능형 자동 방사선 치료계획 수립장치(110)는 외부장치(300)로부터 환자의 정보 또는 방사선 치료계획 정보 등 환자의 방사선 치료 수행 시 필요한 정보들을 수신하고, 방사선 치료계획예측모델을 생성하여 자동화된 방사선 치료계획을 수립할 수 있다. 또한, 서버(100)는 사용자 단말(200)을 통해 치료 후의 상태 정보 등을 더 수신하고, 이를 방사선 치료계획예측모델의 생성함에 있어 적용시킬 수 있다.Meanwhile, as described above, the server 100, that is, the intelligent automatic radiotherapy plan establishing apparatus 110 receives information necessary for performing the radiotherapy of the patient, such as patient information or radiotherapy plan information from the external device 300, Radiation Therapy Plan You can create a predictive model to establish an automated radiotherapy plan. In addition, the server 100 may further receive state information and the like after the treatment through the user terminal 200, and may apply the state information and the like to the generation of the radiation treatment plan prediction model.
이하에서는 도 3 내지 도 5를 참조하여, 서버(100), 즉 지능형 자동 방사선 치료계획 수립장치(110)에서 치료계획예측모델을 생성하고, 방사선 치료계획을 자동으로 수립하는 방법을 설명한다. Hereinafter, a method of generating a treatment plan prediction model in the server 100, that is, the intelligent automatic radiotherapy planning apparatus 110, and automatically establishing a radiation treatment plan will be described with reference to FIGS. 3 to 5. FIG.
도 3은 본 발명의 일 실시예에 따른 지능형 자동 방사선 치료계획 수립방법을 순차적으로 도시한 순서도이고, 도 4 및 도 5는 방사선 치료계획예측모델을 생성하는 방법을 설명하기 위한 도면이다. FIG. 3 is a flowchart sequentially illustrating an intelligent automatic radiotherapy plan establishment method according to an embodiment of the present invention, and FIGS. 4 and 5 are diagrams illustrating a method of generating a radiation treatment plan prediction model.
도 3 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 지능형 자동 방사선 치료계획 수립장치(110)의 통신부(111)는 기존 환자들의 제1 정보 내지 제3 정보를 외부 장치(300)로부터 제공받을 수 있다(S100). 3 to 5, the communication unit 111 of the intelligent automatic radiotherapy planning apparatus 110 according to an embodiment of the present invention may transmit first to third information of existing patients from the external device 300 (S100).
이때, 제1 정보(A1)는 방사선 치료를 수행한 기존 환자들에 관한 신상정보, 진단 및 검사 정보, 병기(病氣)정보, 의료영상정보를 포함할 수 있다. 신상정보, 진단 및 검사 정보 및 병기 정보는 기존에 수행된 환자들의 의료 기록으로부터 도출된 정보일 수 있다. 의료영상정보는 의료 영상 장치로부터 생성된 정보일 수 있다. 예를 들면, CT(Computed Tommography) 장치, MRI(Magnetic Resonance Imaging)장치, PET(Positron Emission Tomography) 장치, 컴퓨터단층촬영모의치료기(CT Simulator), CR(Computed Radiography) 등과 같은 의료영상장치를 통해 방사선을 조사하고자 하는 생체를 촬영하여 의료영상정보가 생성될 수 있다. 생성된 의료영상정보는 의료 디지털 이미지 통신 규격(DICOM, Digital Imaging and Communications in Medicine)으로 변환하여 DICOM RT(Radiation Therapy) 데이터 파일 형태로 이루어지는 것을 나타낸다.At this time, the first information A1 may include personal information about the existing patients who have undergone radiation therapy, diagnosis and examination information, disease information, and medical image information. The personal information, diagnostic and test information, and staging information may be information derived from previously performed medical records of patients. The medical image information may be information generated from the medical image device. For example, a medical imaging apparatus such as a computed tomography (CT) apparatus, a magnetic resonance imaging (MRI) apparatus, a positron emission tomography (PET) apparatus, a CT simulator, The medical image information can be generated by photographing the living body to be examined. The generated medical image information is converted into DICOM (Digital Imaging and Communications in Medicine), and it is shown in the form of a DICOM RT (Radiation Therapy) data file.
제2 정보(A2)는 환자에 관한 방사선 치료에 수행된 방사선량(Dose) 정보 및 방사선 조사 정보를 포함할 수 있다. 제2 정보(A2)는 방사선 치료에 수행된 치료데이터일 수 있으며, 방사선 치료에 요구되는 파라미터 정보들의 집합일 수 있다. 제2 정보(A2)는 방사선량 정보뿐만 아니라, 방사선량 제약정보(dose constraints), 체표윤곽 정보(contouring information), 빔 양상정보(beam modality), 방사선량 계획정보(dose schedule), 빔 파라미터정보(beam parameter), X-선, 전자선, 양성자와 같은 치료 선원의 종류, 치료선원의 에너지, 삼차원 및 세기조절과 같은 치료방법, 빔 방향 등의 방사선 조사 정보를 포함할 수 있다. The second information A2 may include radiation dose information and radiation irradiation information performed in the radiation therapy on the patient. The second information A2 may be treatment data performed in the radiation therapy and may be a set of parameter information required for radiation therapy. The second information A2 includes not only radiation dose information but also dose constraints, body contouring information, beam modality, dose schedule, beam parameter information such as beam parameters, X-rays, electron beams, types of therapeutic sources such as proton, therapeutic source energy, treatment methods such as three-dimensional and intensity control, beam direction, and the like.
제3 정보(A3)는 제2 정보(A2)에 의해 방사선 치료를 진행한 후 도출된 결과에 관한 정보일 수 있다. 제3 정보(A3)는 방사선 치료를 수행한 기존 환자들에 대한 생존률 정보 또는 부작용 정보일 수 있다. 제3 정보(A3)의 부작용 정보는 의료기관에서 의사와 같은 전문가에 의해 판단되어 기록된 정보일 수 있다. The third information A3 may be information on the result obtained after the radiation therapy is performed by the second information A2. The third information (A3) may be survival rate information or side effect information for existing patients who have undergone radiation therapy. The side effect information of the third information (A3) may be information judged and recorded by a specialist such as a doctor in a medical institution.
상기한 제1 정보(A1), 제2 정보(A2) 및 제3 정보(A3)는 메모리(113)에 데이터베이스로 저장될 수 있다(S200). The first information A1, the second information A2 and the third information A3 may be stored in the memory 113 as a database (S200).
다음, 제어부(112)는 제공된 제1 정보(A1), 제2 정보(A2) 및 제3 정보(A3)를 인공지능 기반 상관관계 및 회귀분석을 수행하여 치료계획예측모델(M)을 생성할 수 있다(S300). 구체적으로, 제어부(112)는 제1 정보(A1)로부터 제1 특징 벡터(Characteristic Vector, 311)를 생성하고, 제2 정보(A2)로부터 제2 특징 벡터(313)를 생성할 수 있다. 제1 특징 벡터(311) 및 제2 특징 벡터(312)는 치료계획예측모델(M)을 결정함에 있어 직접적 또는 간접적으로 영향을 미치는 인자들에 대한 값일 수 있다. 예를 들면, 제1 특징 벡터(311) 및 제2 특징 벡터(312)는 선량-부피 히스토그램 관련한 인자, 생존 가능성 관련한 인자, 합병증 가능성 관련한 인자들에 대한 값일 수 있다. 또는, 제1 특징 벡터(311) 및 제2 특징 벡터(312)는 하나의 값이 아닌 값들의 집합 또는 조합일 수도 있다. Next, the control unit 112 generates artificial intelligence-based correlation and regression analysis of the provided first information A1, second information A2, and third information A3 to generate a treatment plan prediction model M (S300). Specifically, the control unit 112 may generate a first characteristic vector 311 from the first information A1 and a second characteristic vector 313 from the second information A2. The first feature vector 311 and the second feature vector 312 may be values for factors that directly or indirectly affect the determination of the treatment plan predictive model (M). For example, the first feature vector 311 and the second feature vector 312 may be values for dose-volume histogram related factors, survival probability related factors, and complication possibility related factors. Alternatively, the first feature vector 311 and the second feature vector 312 may be a set or combination of values that are not one value.
제어부(112)는 제1 정보 내지 제3 정보(A1 내지 A3) 중 서로 다른 인자들을 조합하여 복수의 패턴을 생성하고, 생성된 복수의 패턴에 대한 상관관계 분석 및 회귀 분석을 수행할 수 있다. 제어부(112)는 수행된 상관관계 분석 및 회귀분석 결과를 이용하여 복수의 패턴 중 제1 특징 벡터(311)에 대한 특정 패턴을 추출할 수 있다. 다시 말해, 상기한 특정 패턴은 기존 환자들로부터 추출된 정보가 원인이 되며 방사선 치료 후 치료 성적이 결과가 되는 패턴일 수 있다. 제어부(112)는 추출된 특정 패턴을 이용하여 제2 특징 벡터의 형태로 결과값(B1)을 도출하는 치료계획예측모델(M)을 생성할 수 있다. The control unit 112 may generate a plurality of patterns by combining different factors among the first to third information A1 to A3, and may perform correlation analysis and regression analysis on the plurality of generated patterns. The controller 112 may extract a specific pattern for the first feature vector 311 among the plurality of patterns using the correlation analysis and the result of the regression analysis performed. In other words, the specific pattern described above may be a pattern that results from information extracted from existing patients and results in therapeutic results after radiotherapy. The control unit 112 may generate a treatment plan prediction model M that derives a result value B1 in the form of a second feature vector using the extracted specific pattern.
제어부(112)는 제3 정보(A1)로부터 제3 특징 벡터(313)를 생성할 수 있다. 제어부(112)는 제3 특징 벡터(313)와 전술한 특징 패턴을 이용하여 가장 높은 생존율을 갖게 하는 제2 특징 벡터를 결과값(B1)으로 도출할 수 있다. 다시 말해, 제어부(112)는 치료계획예측모델(M)을 생성한 후 신규 환자에 대한 정보가 입력되면, 가장 높은 생존율을 갖게 하는 방사선 치료계획 정보를 제2 특징 벡터의 형태로 출력할 수 있다. The control unit 112 can generate the third feature vector 313 from the third information A1. The control unit 112 can derive the second feature vector having the highest survival rate as the result value B1 by using the third feature vector 313 and the above-described feature pattern. In other words, when the information on the new patient is inputted after generating the treatment plan prediction model (M), the control unit 112 can output the radiation treatment plan information having the highest survival rate in the form of the second feature vector .
다른 실시예로서, 제어부(112)는 가장 낮은 부작용을 갖게 하는 제2 특징 벡터를 결과값(B1)으로 도출할 수 있다. 또는, 제어부(112)는 가장 높은 생존율 및 가장 낮은 부작용을 갖게 하는 제2 특징 벡터를 결과값(B1)으로 도출할 수 있다. As another example, the control unit 112 may derive a second feature vector having the lowest side effect as a result value B1. Alternatively, the control unit 112 may derive the second feature vector having the highest survival rate and the lowest side effect as the result value B1.
한편, 제어부(112)는 전술한 사용자 단말(200)을 통해 수집된 삶의 질 평가 정보를 더 반영하여 치료계획예측모델을 생성할 수 있다. 삶의 질 평가 정보는 치료 중 또는 치료 종료 후 부작용 정보, 기침, 구강 건조, 두통 등 질환별 환자 증상 정보, 통증 정보, 탈모나 피부 반응 정보 등을 포함할 수 있다. Meanwhile, the control unit 112 may generate the treatment plan prediction model by further reflecting the quality of life evaluation information collected through the user terminal 200 described above. The quality-of-life evaluation information may include information on side effects such as side effects, cough, oral dryness, headache, etc., symptom information, pain information, hair loss or skin reaction information during or after treatment.
제어부(112)는 제1 정보 내지 제3 정보(A1 내지 A3)를 분류하기 위해 Logistic regression, Decision tree, Nearest-neighbor classifier, Kernel discriminate analysis, Neural network, Support Vector Machine, Random forest, Boosted tree 등의 알고리즘 및/또는 방식(기법)을 사용할 수 있다.The control unit 112 may be configured to classify the first to third information A1 to A3 using a logistic regression, a decision tree, a nearest-neighbor classifier, a kernel discriminate analysis, a neural network, a support vector machine, Algorithm (s) and / or method (s).
제어부(112)는 치료계획을 예측하기 위해, Linear regression, Regression tree, Kernel regression, Support vector regression, Deep Learning 등의 알고리즘 및/또는 방식(기법)을 사용할 수 있다.The control unit 112 may use an algorithm and / or a method such as Linear regression, Regression tree, Kernel regression, Support vector regression, Deep Learning, etc. to predict a treatment plan.
또한 제어부(112)는 벡터의 연산을 위해 Principal component analysis, Non-negative matrix factorization, Independent component analysis, Manifold learning, SVD 등의 알고리즘 및/또는 방식(기법)을 사용할 수 있다.In addition, the controller 112 may use algorithms and / or methods such as Principal component analysis, Non-negative matrix factorization, Independent component analysis, Manifold learning, and SVD.
제어부(112)는 정보들의 그룹화를 위해 k-means, Hierarchical clustering, mean-shift, self-organizing maps(SOMs) 등의 알고리즘 및/또는 방식(기법)을 사용할 수 있다. The controller 112 may use algorithms and / or schemes such as k-means, hierarchical clustering, mean-shift, self-organizing maps (SOMs)
제어부(112)는 데이터 비교를 위해 Bipartite cross-matching, n-point correlation two-sample testing, minimum spanning tree 등의 알고리즘 및/또는 방식(기법)을 사용할 수 있다.The controller 112 may use algorithms and / or methods such as Bipartite cross-matching, n-point correlation two-sample testing, and minimum spanning tree for data comparison.
다만 전술한 알고리즘 및/또는 방식(기법)은 예시적인 것으로 본 발명의 사상이 이에 한정되는 것은 아니다. However, the above-described algorithms and / or schemes are illustrative and not intended to limit the scope of the present invention.
다음, 제어부(112)는 치료계획예측모델(M)을 이용하여 치료 전의 제4 정보(A4)를 갖는 신규 환자의 방사선 치료계획을 결정할 수 있다(S400). 이때, 제4 정보는 제1 정보(A1)에 대응되는 신규 환자의 정보일 수 있다. 다시 말해, 제4 정보(A4)는 신규 환자의 신상정보, 진단 및 검사 정보, 병기 정보, 의료영상정보를 포함할 수 있다. 도 5에 도시된 바와 같이, 제어부(112)는 치료계획예측모델(M)에 신규 환자의 제4 정보(A4)를 입력하고, 가장 높은 생존율을 갖게 하는 제2 특징 벡터를 결과값(B1)으로 도출할 수 있다. 또한, 제어부(112)는 치료계획예측모델(M)을 이용하여 이러한 결과값(B1)을 통해 방사선 치료를 수행하는 경우 예상되는 생존율 또는 부작용 정도를 도출할 수 있다. Next, the control unit 112 can determine the radiation treatment plan of the new patient having the fourth information A4 before treatment using the treatment plan prediction model M (S400). At this time, the fourth information may be the information of the new patient corresponding to the first information A1. In other words, the fourth information A4 may include personal information of new patients, diagnosis and examination information, staging information, and medical image information. 5, the control unit 112 inputs the fourth information A4 of the new patient to the treatment plan prediction model M, and outputs the second feature vector having the highest survival rate as the result B1. . In addition, the control unit 112 can derive the expected survival rate or the degree of side effect when the radiation therapy is performed through the result value B1 using the treatment plan prediction model M. [
다음, 제어부(112)는 제4 정보(A4)와, 신규 환자의 방사선 치료계획에 따라 방사선 치료를 수행한 후 도출되는 결과에 관한 제6 정보(A6)를 제공받을 수 있다(S500). 이때, 신규 환자의 방사선 치료계획 정보는 상기 치료계획예측모델(M)로부터 최초로 도출된 결과값일 수 있으나, 방사선 치료 중 획득한 제5 정보를 이용하여 보정된 결과값일 수 있다. 다시 말해, 방사선 치료는 환자의 자세 불확실성, 치료용적의 변화, 환자 정상조직 및 체형의 변화 등으로 인하여 셋업 오차가 발생할 수 있다. 제어부(112)는 환자의 자세오차 정보를 수집하고, 이러한 자세오차를 반영한 치료계획용적의 여분(PTV margin)을 계산할 수 있다. 제5 정보는 상기한 치료계획용적의 여분이 반영된 정보일 수 있다. Next, the control unit 112 may receive the fourth information (A4) and the sixth information A6 related to the result obtained after performing the radiation therapy according to the radiation therapy plan of the new patient (S500). At this time, the radiation treatment plan information of the new patient may be a result value first derived from the treatment plan prediction model (M), but may be a corrected result value using the fifth information acquired during the radiation treatment. In other words, radiation therapy can lead to set-up errors due to patient's postural uncertainty, changes in the volume of the treatment, changes in normal tissue and body shape of the patient. The control unit 112 may collect the patient's position error information and calculate the PTV margin of the treatment plan volume reflecting the position error. The fifth information may be information reflecting the redundancy of the treatment plan volume.
제어부(112)는 상기한 제5 정보와 제4 정보에 차이가 발생하는 경우, 치료계획예측모델(M) 및 제5 정보를 이용하여 방사선 치료계획을 보정할 수 있다. 제어부(112)는 치료 반응 정도에 따라 치료용적 재설정 및 처방선량 변경, 그리고 이를 고려한 방사선 치료계획을 자동으로 생성할 수 있다. If there is a difference between the fifth information and the fourth information, the control unit 112 may correct the radiation therapy plan using the treatment plan prediction model M and the fifth information. The control unit 112 can automatically generate a radiation treatment plan considering the treatment volume reset, the prescribed dose change, and the treatment volume according to the degree of the treatment response.
다음 제어부(112)는 신규 환자에 대한 제4 정보 내지 제6 정보(A4 내지 A6)를 데이터베이스로 저장하여, 새로운 데이터로서 치료계획예측모델을 업데이트할 수 있다. The next control unit 112 may store the fourth to sixth information (A4 to A6) for the new patient in the database, and update the treatment plan prediction model as new data.
전술한 바와 같이, 본 발명의 실시예들에 따른 지능형 자동 방사선 치료계획 수립방법은 기존에 치료했던 각종 환자 정보를 빅데이터(Big data)화하여 인공지능 알고리즘을 통해 최상의 결과를 도출할 수 있는 방사선 치료계획 예측모델을 생성할 수 있다. 이러한 치료계획예측모델은 새로운 환자의 전산화치료계획 시 적용하여 환자에게 맞는 최상의 치료계획을 생성할 수 있다. 또한, 지능형 자동 방사선 치료계획 수립방법은 치료 중 발생하는 다양한 정보를 토대로 적응방사선치료계획을 자동으로 수립하게 되며, 치료가 종료된 후, 치료 정보와 임상결과가 빅테이터 안으로 입력되어 향상 예측모델이 만들어지는 순환구조(continuous quality improvement)를 가질 수 있다. As described above, in the intelligent automatic radiotherapy planning planning method according to the embodiments of the present invention, various patient information that has been treated in the past is converted into Big data, and the best result is obtained through the artificial intelligence algorithm A treatment plan prediction model can be generated. Such a treatment plan prediction model can be applied to a new patient's computerized treatment plan to generate the best treatment plan for the patient. In addition, the intelligent automatic radiotherapy planning method automatically establishes an adaptive radiotherapy plan based on various information generated during the treatment. After the treatment is completed, the therapeutic information and the clinical result are input into the victor, It can have a continuous quality improvement.
한편, 본 발명의 일 실시예에 따른 지능형 자동 방사선 치료계획 수립장치는 제1 정보 내지 제3 정보를 이용하여 인공지능형 체표윤곽 모델을 생성할 수 있다. 이러한 인공지능형 체표윤곽모델은 신규 환자의 방사선 치료계획 시, 해당 환자의 특성과 병기, 치료부위 등을 고려하여 육안적 종양용적 및 임상적 치료용적을 포함하는 치료 용적과, 정상장기를 인공지능으로 자동으로 생성할 수 있다. Meanwhile, the intelligent automatic radiotherapy planning apparatus according to an embodiment of the present invention can generate the artificial intelligent body contour model using the first information to the third information. This artificial intelligent body profile contour model can be used for planning a new patient's radiation therapy, considering the characteristics of the patient, the stage of the patient, the treatment area, the volume including the gross tumor volume and the clinical treatment volume, It can be created automatically.
이상 설명된 본 발명에 따른 실시예는 컴퓨터 상에서 다양한 구성요소를 통하여 실행될 수 있는 컴퓨터 프로그램의 형태로 구현될 수 있으며, 이와 같은 컴퓨터 프로그램은 컴퓨터로 판독 가능한 매체에 기록될 수 있다. 이때, 매체는 컴퓨터로 실행 가능한 프로그램을 저장하는 것일 수 있다. 매체의 예시로는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등을 포함하여 프로그램 명령어가 저장되도록 구성된 것이 있을 수 있다. The embodiments of the present invention described above can be embodied in the form of a computer program that can be executed on various components on a computer, and the computer program can be recorded on a computer-readable medium. At this time, the medium may be a computer-executable program. Examples of the medium include a magnetic medium such as a hard disk, a floppy disk and a magnetic tape, an optical recording medium such as CD-ROM and DVD, a magneto-optical medium such as a floptical disk, And program instructions including ROM, RAM, flash memory, and the like.
한편, 상기 컴퓨터 프로그램은 본 발명을 위하여 특별히 설계되고 구성된 것이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수 있다. 컴퓨터 프로그램의 예에는, 컴파일러에 의하여 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함될 수 있다.Meanwhile, the computer program may be designed and configured specifically for the present invention or may be known and used by those skilled in the computer software field. Examples of computer programs may include machine language code such as those produced by a compiler, as well as high-level language code that may be executed by a computer using an interpreter or the like.
본 발명에서 설명하는 특정 실행들은 일 실시 예들로서, 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다. 명세서의 간결함을 위하여, 종래 전자적인 구성들, 제어 시스템들, 소프트웨어, 상기 시스템들의 다른 기능적인 측면들의 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다. 또한, "필수적인", "중요하게" 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.The specific acts described in the present invention are, by way of example, not intended to limit the scope of the invention in any way. For brevity of description, descriptions of conventional electronic configurations, control systems, software, and other functional aspects of such systems may be omitted. Also, the connections or connecting members of the lines between the components shown in the figures are illustrative of functional connections and / or physical or circuit connections, which may be replaced or additionally provided by a variety of functional connections, physical Connection, or circuit connections. Also, unless explicitly mentioned, such as "essential "," importantly ", etc., it may not be a necessary component for application of the present invention.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 또는 이로부터 등가적으로 변경된 모든 범위는 본 발명의 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be construed as being limited to the above-described embodiments, and all ranges that are equivalent to or equivalent to the claims of the present invention as well as the claims .
본 발명의 일 실시예에 의하면, 지능형 자동 방사선 치료계획 수립방법을 제공한다. 또한, 산업상 이용하는 방사선 치료계획이 필요한 방사선 치료 장치 등에 본 발명의 실시예들을 적용할 수 있다.According to an embodiment of the present invention, a method for establishing an intelligent automatic radiotherapy plan is provided. In addition, the embodiments of the present invention can be applied to a radiation therapy apparatus that requires an industrial radiation therapy plan.

Claims (11)

  1. 방사선 치료를 수행한 기존 환자들에 관한 신상정보, 진단 및 검사 정보, 병기(病氣)정보, 의료영상정보를 포함하는 제1 정보와, 상기 환자에 관한 방사선 치료에 수행된 방사선량(Dose) 정보 및 방사선 조사 정보를 포함하는 제2 정보와, 상기 제2 정보에 의해 방사선 치료를 진행한 후 도출되는 결과에 관한 제3 정보를 제공받아 데이터베이스에 저장하는 단계; The first information including personal information, diagnostic and test information, disease information and medical image information about the existing patients who have undergone radiotherapy and the first information including the radiation dose (Dose) Receiving second information including information and radiation irradiation information, and third information on a result obtained after performing the radiation treatment by the second information, and storing the received third information in a database;
    상기 제1 정보, 상기 제2 정보 및 제3 정보를 인공지능 기반 상관관계 및 회귀분석을 수행하여 치료계획예측모델을 생성하는 단계;Generating a treatment plan prediction model by performing artificial intelligence-based correlation and regression analysis on the first information, the second information, and the third information;
    상기 치료계획예측모델을 이용하여, 치료 전의 신상정보, 진단 및 검사 정보, 병기(病氣)정보, 의료영상정보를 포함하는 제4 정보를 갖는 신규 환자의 방사선 치료계획을 평가 및 결정하는 단계; 및Evaluating and determining a radiation therapy plan of a new patient having fourth information including personal information before diagnosis, diagnosis and examination information, disease information, and medical image information using the treatment plan prediction model; And
    상기 제4 정보와, 상기 신규 환자의 상기 방사선 치료계획에 따라 방사선 치료를 수행한 후 도출되는 결과에 관한 제6 정보를 상기 데이터베이스에 저장하는 단계;를 포함하는, 지능형 자동 방사선 치료계획 수립방법.Storing the fourth information and sixth information on the result obtained after performing the radiation therapy according to the radiation therapy plan of the new patient in the database.
  2. 제1 항에 있어서,The method according to claim 1,
    상기 신규 환자의 치료 중 획득한 의료영상정보, 진단 및 검사 정보, 부작용정보를 포함하는 제5 정보를 제공받고, 상기 제4 정보와 상기 제5 정보를 비교한 후 차이가 발생하는 경우, 상기 치료계획예측모델 및 상기 제5 정보를 이용하여 상기 방사선 치료계획을 보정하는 단계; 를 더 포함하고,Fifth information including medical image information, diagnosis and examination information, and side effect information acquired during treatment of the new patient is received, and when the fourth information is compared with the fifth information, Correcting the radiotherapy plan using the plan prediction model and the fifth information; Further comprising:
    상기 제6 정보는 상기 보정된 방사선 치료계획에 따라 방사선 치료를 수행한 후 도출되는 결과에 관한 정보인, 지능형 자동 방사선 치료계획 수립방법.Wherein the sixth information is information on results obtained after performing the radiation therapy according to the corrected radiation treatment plan.
  3. 제1 항에 있어서,The method according to claim 1,
    상기 치료계획예측모델을 생성하는 단계는,Wherein the step of generating the treatment plan prediction model comprises:
    상기 제1 정보로부터 제1 특징 벡터(Characteristic Vector)를 생성하는 단계; Generating a first characteristic vector from the first information;
    상기 제2 정보로부터 제2 특징 벡터를 생성하는 단계; 및Generating a second feature vector from the second information; And
    상기 제1 정보 내지 상기 제3 정보 중 서로 다른 인자들을 조합하여 복수의 패턴을 생성하고, 상기 생성된 복수의 패턴에 대한 상관관계 분석 및 회귀분석을 수행하며, 상기 수행된 상관관계 분석 및 회귀분석 결과를 이용하여 상기 복수의 패턴 중 상기 제1 특징 벡터에 대한 특정패턴을 추출하고, 상기 추출된 특정패턴을 이용하여 상기 제2 특징 벡터를 결과값으로 도출하는 치료계획예측모델을 생성하는 단계;를 포함하는, 지능형 자동 방사선 치료계획 수립방법.Generating a plurality of patterns by combining different factors among the first information and the third information, performing a correlation analysis and a regression analysis on the generated plurality of patterns, and performing the correlation analysis and the regression analysis Extracting a specific pattern for the first feature vector among the plurality of patterns using the result and generating a treatment plan prediction model for deriving the second feature vector as a result value using the extracted specific pattern; The method comprising the steps of:
  4. 제3 항에 있어서,The method of claim 3,
    상기 치료계획예측모델을 생성하는 단계는,Wherein the step of generating the treatment plan prediction model comprises:
    상기 제3 정보로부터 제3 특징 벡터를 생성하고, Generating a third feature vector from the third information,
    상기 제3 특징 벡터와 상기 특정패턴을 이용하여 가장 높은 생존율을 갖게 하는 제2 특징 벡터를 결과값으로 도출하는, 지능형 자동 방사선 치료계획 수립방법.And deriving a second feature vector having the highest survival rate as a result value using the third feature vector and the specific pattern.
  5. 방사선 치료를 수행한 기존 환자들에 관한 신상정보, 진단 및 검사 정보, 병기(病氣)정보, 의료영상정보를 포함하는 제1 정보와, 상기 환자에 관한 방사선 치료에 수행된 방사선량(Dose) 정보 및 방사선 선원 정보를 포함하는 제2 정보와, 상기 제2 정보에 의해 방사선 치료를 진행한 후 도출되는 결과에 관한 제3 정보와, 신규 환자에 관한 치료 전의 신상정보, 진단 및 검사 정보, 병기(病氣)정보, 의료영상정보를 포함하는 제4 정보를 수신하는 통신부; 및The first information including personal information, diagnostic and test information, disease information and medical image information about the existing patients who have undergone radiotherapy and the first information including the radiation dose (Dose) Second information including information and radiation source information, third information relating to a result obtained after the radiation therapy is performed by the second information, personal information before treatment relating to the new patient, diagnosis and examination information, A medical information receiving unit for receiving fourth information including disease information and medical image information; And
    상기 통신부로부터 수신된 상기 제1 정보 내지 상기 제4 정보를 데이터 표준화 포맷에 맞도록 수집하고, 상기 수집된 제1 정보 내지 제3 정보를 이용하여 치료계획예측모델을 생성하며, 상기 생성된 치료계획예측모델과 상기 제4 정보를 기반으로 상기 신규 환자의 방사선 치료계획을 결정하는 제어부;를 포함하는, 지능형 자동 방사선 치료계획시스템.Collecting the first information to the fourth information received from the communication unit according to a data standardization format, generating a treatment plan prediction model using the collected first information to third information, And a controller for determining a radiation treatment plan of the new patient based on the prediction model and the fourth information.
  6. 제5 항에 있어서,6. The method of claim 5,
    상기 통신부는 상기 신규 환자의 치료 중 획득한 의료영상정보, 진단 및 검사 정보, 부작용 정보를 포함하는 제5 정보와, 상기 신규 환자의 상기 방사선 치료계획에 따라 방사선 치료를 수행한 후 도출되는 결과에 관한 제6 정보를 더 수신하는, 지능형 자동 방사선 치료계획시스템.Wherein the communication unit includes fifth information including medical image information, diagnosis and examination information, and side effect information acquired during the treatment of the new patient, and fifth information including information on the result obtained after performing the radiation therapy according to the radiation treatment plan of the new patient Wherein the second information is further received from the first information processing apparatus.
  7. 제6 항에 있어서,The method according to claim 6,
    상기 제어부는 상기 제4 정보와 상기 제5 정보를 비교한 후 차이가 발생하는 경우, 상기 치료계획예측모델 및 상기 제5 정보를 이용하여 상기 방사선 치료계획을 보정하는, 지능형 자동 방사선 치료계획시스템.Wherein the controller compares the fourth information with the fifth information and corrects the radiation treatment plan using the treatment plan prediction model and the fifth information when a difference occurs.
  8. 제7 항에 있어서,8. The method of claim 7,
    상기 제6 정보는 상기 보정된 방사선 치료계획에 따라 방사선 치료를 수행한 후 도출되는 결과에 관한 정보인, 지능형 자동 방사선 치료계획시스템.Wherein the sixth information is information about results obtained after performing the radiation therapy according to the corrected radiation treatment plan.
  9. 제5 항에 있어서,6. The method of claim 5,
    상기 제어부는 상기 제1 정보 및 상기 제2 정보로부터 각각 제1 특징 벡터 및 제2 특징 벡터를 생성하고, 상기 제1 정보 내지 상기 제3 정보 중 서로 다른 인자들을 조합하여 복수의 패턴을 생성하고, 상기 생성된 복수의 패턴에 대한 상관관계 분석 및 회귀분석을 수행하며, 상기 수행된 상관관계 분석 및 회귀분석 결과를 이용하여 상기 복수의 패턴 중 상기 제1 특징 벡터에 대한 특정패턴을 추출하고, 상기 추출된 특정패턴을 이용하여 상기 제2 특징 벡터를 결과값으로 도출하는 치료계획예측모델을 생성하는, 지능형 자동 방사선 치료계획시스템.Wherein the controller generates a first feature vector and a second feature vector from the first information and the second information, generates a plurality of patterns by combining different factors of the first information and the third information, Performing a correlation analysis and a regression analysis on the generated plurality of patterns, extracting a specific pattern for the first feature vector among the plurality of patterns using the correlation analysis and the result of the regression analysis, And generates a treatment plan prediction model that derives the second feature vector as a result value using the extracted specific pattern.
  10. 제9 항에 있어서,10. The method of claim 9,
    상기 제어부는, 상기 제3 정보로부터 제3 특징 벡터를 생성하고, 상기 제3 특징 벡터와 상기 특정패턴을 이용하여 가장 높은 생존율을 갖게 하는 제2 특징 벡터를 결과값으로 도출하는, 지능형 자동 방사선 치료계획시스템. Wherein the control unit generates a third feature vector from the third information and derives a second feature vector having the highest survival rate using the third feature vector and the specific pattern as a result value, Planning system.
  11. 컴퓨터를 이용하여 제1 항 내지 제4항 중 어느 한 항의 방법을 실행하기 위하여 매체에 저장된 컴퓨터 프로그램.A computer program stored on a medium for carrying out the method of any one of claims 1 to 4 using a computer.
PCT/KR2019/000636 2018-01-17 2019-01-16 Intelligent automatic radiotherapy planning method and system WO2019143120A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180006272A KR101968671B1 (en) 2018-01-17 2018-01-17 Intelligent automated method and system for setting radiation therapy plan
KR10-2018-0006272 2018-01-17

Publications (1)

Publication Number Publication Date
WO2019143120A1 true WO2019143120A1 (en) 2019-07-25

Family

ID=66167620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000636 WO2019143120A1 (en) 2018-01-17 2019-01-16 Intelligent automatic radiotherapy planning method and system

Country Status (2)

Country Link
KR (1) KR101968671B1 (en)
WO (1) WO2019143120A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111128340A (en) * 2019-12-25 2020-05-08 上海联影医疗科技有限公司 Radiotherapy plan generation device, radiotherapy plan generation apparatus, and storage medium
WO2022142770A1 (en) * 2020-12-28 2022-07-07 北京医智影科技有限公司 Automatic radiation treatment planning system and method, and computer program product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102273862B1 (en) * 2019-05-21 2021-07-06 사회복지법인 삼성생명공익재단 System and method for respiration-gated radiotherapy evaluation using machine learning

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167117A (en) * 2004-12-15 2006-06-29 Toshiba Corp Radiation therapy management system
KR20100119103A (en) * 2009-04-30 2010-11-09 주식회사 서울씨앤제이 System for saving and managing radiotherapy information
KR20140009619A (en) * 2012-07-12 2014-01-23 주식회사 인피니트헬스케어 Radiation treatment planning apparatus and method thereof
KR20140061271A (en) * 2012-11-12 2014-05-21 지멘스 피엘씨 Combined mri and radiation therapy system
KR101673931B1 (en) * 2015-11-10 2016-11-08 한국원자력연구원 Apparatus for radiotherapy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6615070B2 (en) * 2000-06-01 2003-09-02 Georgia Tech Research Corporation Automated planning volume contouring algorithm for adjuvant brachytherapy treatment planning in sarcoma
KR101117792B1 (en) * 2009-01-23 2012-03-08 사회복지법인 삼성생명공익재단 System and method for controlling radiation therapy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167117A (en) * 2004-12-15 2006-06-29 Toshiba Corp Radiation therapy management system
KR20100119103A (en) * 2009-04-30 2010-11-09 주식회사 서울씨앤제이 System for saving and managing radiotherapy information
KR20140009619A (en) * 2012-07-12 2014-01-23 주식회사 인피니트헬스케어 Radiation treatment planning apparatus and method thereof
KR20140061271A (en) * 2012-11-12 2014-05-21 지멘스 피엘씨 Combined mri and radiation therapy system
KR101673931B1 (en) * 2015-11-10 2016-11-08 한국원자력연구원 Apparatus for radiotherapy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111128340A (en) * 2019-12-25 2020-05-08 上海联影医疗科技有限公司 Radiotherapy plan generation device, radiotherapy plan generation apparatus, and storage medium
WO2022142770A1 (en) * 2020-12-28 2022-07-07 北京医智影科技有限公司 Automatic radiation treatment planning system and method, and computer program product

Also Published As

Publication number Publication date
KR101968671B1 (en) 2019-04-12

Similar Documents

Publication Publication Date Title
Field et al. Machine learning applications in radiation oncology
RU2529381C2 (en) Formation of improved image model
WO2019143120A1 (en) Intelligent automatic radiotherapy planning method and system
CN108778416A (en) It is generated according to the pseudo- CT of MR data using organizational parameter estimation
US20060059145A1 (en) System and method for analyzing medical data to determine diagnosis and treatment
CN108770373A (en) It is generated according to the pseudo- CT of MR data using feature regression model
CN107072624A (en) system and method for automatic treatment plan
CN108367161A (en) Radiotherapy system, data processing method and storage medium
EP3503971B1 (en) Medical image processing apparatus, treatment system, and medical image processing program
Rancati et al. Modelling radiotherapy side effects: Practical applications for planning optimisation
CN115666717A (en) Method and apparatus for deriving and using virtual volume structures to predict potential collisions in delivering therapeutic radiation
Li et al. Applications of artificial intelligence in radiophysics
Luximon et al. Development and interinstitutional validation of an automatic vertebral‐body misalignment error detector for cone‐beam CT‐guided radiotherapy
KR102098254B1 (en) Evaluation system for radiodermatitis and evaluation method using the same
Reijtenbagh et al. Multi-center dosimetric predictions to improve plan quality for brachytherapy for cervical cancer treatment
Adetiba et al. Estimating an optimal backpropagation algorithm for training an ANN with the EGFR exon 19 nucleotide sequence: an electronic diagnostic basis for non-small cell lung cancer (NSCLC)
Takaki et al. Calculating the target exposure index using a deep convolutional neural network and a rule base
Pocė et al. Pancreas segmentation in CT images: state of the art in clinical practice
US20080292158A1 (en) Method and Device for Planning a Treatment
CN117238484B (en) Intelligent diagnosis and treatment device, electronic equipment and storage medium
WO2022220318A1 (en) Non-invasive treatment planning method using ct image generated from artificial-intelligence-based brain mri image, apparatus therefor, and computer program therefor
KR102598233B1 (en) System and method for providing medical information based on deep learning targeting medical images
KR102409284B1 (en) Automatic Evaluation Apparatus for Tracking Tumors and Radiation Therapy System using the same
Abdullah et al. Designation of thorax and non-thorax regions for lung cancer detection in CT scan images using deep learning
Thool et al. Artificial Intelligence in Medical Imaging Data Analytics using CT Images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19741165

Country of ref document: EP

Kind code of ref document: A1