WO2019142828A1 - Busbar, and busbar manufacturing method - Google Patents

Busbar, and busbar manufacturing method Download PDF

Info

Publication number
WO2019142828A1
WO2019142828A1 PCT/JP2019/001111 JP2019001111W WO2019142828A1 WO 2019142828 A1 WO2019142828 A1 WO 2019142828A1 JP 2019001111 W JP2019001111 W JP 2019001111W WO 2019142828 A1 WO2019142828 A1 WO 2019142828A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
metal film
powder material
film
powder
Prior art date
Application number
PCT/JP2019/001111
Other languages
French (fr)
Japanese (ja)
Inventor
平野 正樹
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Publication of WO2019142828A1 publication Critical patent/WO2019142828A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/28Clamped connections, spring connections
    • H01R4/38Clamped connections, spring connections utilising a clamping member acted on by screw or nut
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/62Connections between conductors of different materials; Connections between or with aluminium or steel-core aluminium conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/16Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing contact members, e.g. by punching and by bending

Definitions

  • the present invention relates to a bus bar as a component for wiring and a method of manufacturing the bus bar.
  • Bus bars are conventionally used to conduct large amounts of current.
  • the bus bar is a plate-like or rod-like conductor mainly made of copper as a base material.
  • the bus bar is used for a switchboard, a control panel, an on-board battery or the like.
  • Patent Document 1 As a method of solving such a problem, for example, in Patent Document 1, the surface of aluminum is plated with tin (Sn) to reduce the contact resistance. In Patent Document 2, a cold spray method is used to deposit Sn powder on the surface of aluminum.
  • Sn tin
  • Patent Document 1 and Patent Document 2 have the following problems.
  • Patent Document 1 In the method of Patent Document 1, it is not possible to directly apply Sn plating to the surface of Al, and zincate treatment and Ni plating treatment are required as pretreatment. Furthermore, the method of Patent Document 1 also requires water washing and drying. Thus, the method of Patent Document 1 is complicated in process and expensive.
  • Patent Document 1 and Patent Document 2 have room for improvement in practical use of aluminum (Al) as a material of wiring components.
  • the present invention has been made in view of the above problems, and an object thereof is to realize a bus bar having an aluminum base material excellent in practicability and a method of manufacturing the bus bar.
  • the bus bar concerning the present invention is either an aluminum substrate and either nickel (Ni), gold (Au), zinc (Zn), silver (Ag), copper (Cu), or Cold spraying using a mixed powder material in which a first powder material containing an alloy containing two or more of these components and a second powder material containing tin (Sn) or an alloy containing Sn as a component is mixed
  • the bus bar according to the embodiment of the present invention has the following effects.
  • Sn which is a component of the second powder material
  • Sn is a component of the first powder material having a melting point higher than that of Sn (Ni, Au , Zn, Ag, Cu) more easily deformed. Therefore, Sn intrudes between particles constituting the component of the first powder material, plays a role of bonding the particles to one another, and can make the metal film a continuous film with little unevenness.
  • the conductive material is disposed on the metal film, and the aluminum base, the metal film, and the conductive material are screwed to each other by the screw.
  • the film formation of the metal film on the aluminum base can be simplified, and the adhesion of the metal film to the aluminum base can be enhanced. Furthermore, according to the above configuration, a gap does not easily occur between the metal film and the conductive material. As a result, the bus bar according to the embodiment of the present invention can lower the connection resistance as compared with the conventional bus bar.
  • the bus bar according to the embodiment of the present invention has an effect that the bus bar having excellent practicability can be realized.
  • the method of manufacturing a bus bar according to the present invention is a method of manufacturing a bus bar, and nickel (Ni), gold (Au), zinc (Zn), silver, with respect to an aluminum substrate.
  • a first powder material containing as a component an alloy containing (Ag), copper (Cu), or two or more of them, and a second powder material containing as a component tin (Sn) or an alloy containing Sn Forming a metal film on the aluminum base by cold spraying the mixed powder material mixed with the metal powder, disposing the conductive material on the metal film, and forming the aluminum base And a fixing step of fixing the material and the metal film and the conductive material to each other.
  • the bus bar according to the embodiment of the present invention has an effect that the bus bar having excellent practicability can be realized.
  • FIG. 1 is a schematic view of a cold spray device. It is the graph which compared the initial stage contact resistance about each of Ni film-forming, Sn film-forming, and Ni + Sn film-forming.
  • FIG. 1 is a cross-sectional view schematically showing a bus bar 1 according to an embodiment of the present invention.
  • the bus bar 1 is a wiring component for conducting a large capacity current.
  • the bus bar 1 includes an aluminum base 10, a metal film 12, a copper plate (conductive material) 14, and a screw 16.
  • the aluminum base 10 is used as a base material of the bus bar 1.
  • the aluminum base 10 may be an aluminum alloy (material symbol: A2000 series, A3000 series, etc.).
  • the shape, thickness or the like of the aluminum base 10 is optional.
  • the metal film 12 is a metal film formed into a film on the aluminum base 10 by spraying the mixed powder material of the Ni powder 12 a and the Sn powder 12 b onto the aluminum base 10.
  • the thermal spraying may employ a known thermal spraying method.
  • thermal spraying method for example, the following thermal spraying method is known.
  • a cold spray method is used as the thermal spraying method.
  • the mixed powder material is a first powder material containing Ni, gold (Au), zinc (Zn), silver (Ag), copper (Cu), or an alloy containing two or more of these as a component It may be a mixed powder material with a second powder material whose component is tin (Sn) or an alloy containing Sn.
  • Ni powder is used as the first powder material
  • Sn powder is used as the second powder material.
  • reasons for using Ni powder and Sn powder for example, the following points can be mentioned.
  • the Sn powder 12b has a lower melting point than Ni. Therefore, the Sn powder 12b is likely to be in a semi-molten state when cold sprayed, and the Sn enters between the Ni particles and plays a role of bonding the Ni particles to each other. Moreover, the surface of the metal film 12 becomes a continuous film with few unevenness by the function of the Sn. In addition, when the ratio of the Ni powder 12a to the mixed powder is high, the Ni density in the metal film 12 also becomes high. In addition, the Ni layer is covered with the Sn layer which is a continuous film, and the effect of the oxide is reduced.
  • the copper plate 14 is disposed on the metal film 12.
  • the shape, thickness or the like of the copper plate 14 is optional.
  • Other conductive materials for example, an aluminum plate may be used as a substitute for the copper plate 14.
  • the screw 16 screws the aluminum base 10 and the metal film 12 with the copper plate 14. Therefore, each of the aluminum base 10, the metal film 12, and the copper plate 14 has a hole for allowing the screw 16 to penetrate.
  • the screw 16 may be of any specification.
  • the screw thread of the screw 16 and the screw thread of the hole formed in each of the aluminum base 10, the metal film 12 and the copper plate 14 are omitted from the drawing for convenience.
  • bolts and nuts may be used.
  • the bus bar 1 electrically connects the aluminum base 10 and the copper plate 14 through the metal film 12 by having the above configuration.
  • the bus bar 1 is used, for example, in a switchboard, a control panel, or an on-vehicle battery.
  • FIG. 2 is a view showing a state in which the aluminum base 10 and the copper plate 14 are separated.
  • FIG. 3 is a view showing a state in which the aluminum base 10 and the copper plate 14 are screwed with a screw 16 and the aluminum base 10 and the copper plate 14 are electrically connected.
  • FIG. 4 is a flowchart illustrating a method of manufacturing the bus bar 1.
  • a test piece of A6061 having a thickness of 3.0 mm and a width of 20 mm was used as the aluminum base 10.
  • a test piece of C1020, 1.6 mm in thickness and 20 mm in width was used as the copper plate 14.
  • the metal film 12 was formed to a size of 20 mm ⁇ 20 mm.
  • the mixed powder material of the Ni powder 12a and the Sn powder 12b is cold-sprayed (details will be described later) on the aluminum substrate 10, whereby the metal film 12 is formed on the aluminum substrate 10 (S10 in FIG. 4). Film formation step).
  • the metal film 12 may be formed on at least a part of the surface of the aluminum base 10.
  • holes for penetrating the screws 16 are formed in the aluminum base 10 and the metal film 12 (S20 in FIG. 2).
  • the method of forming the holes in the aluminum substrate 10 may be a known method. Holes may be formed in the aluminum substrate 10 at a time before S10. The same applies to a copper plate 14 described later.
  • the method of forming the holes in the metal film 12 may be a known method such as masking.
  • the copper plate 14 in which the holes are formed is disposed on the metal film 12 (S30 in FIG. 4; disposition step). At this time, the holes formed in each of the aluminum base 10, the metal film 12 and the copper plate 14 are aligned.
  • the aluminum base 10 and the metal film 12 and the copper plate 14 are screwed together with the screw 16 (S40 in FIG. 4. Fixing step). Thereby, the metal film 12 and the copper plate 14 adhere.
  • the screw 16 has a diameter of 6.5 mm.
  • the metal film 12 is formed using a cold spray method.
  • the cold spray method is described below.
  • cold spray a film forming method called cold spray.
  • a carrier gas at a temperature lower than the melting point or softening temperature of the coating material is made to flow at high speed, the coating material is introduced into the carrier gas flow and accelerated, and the solid phase state is collided with the substrate at high speed.
  • Film formation method In recent years, a film forming method called cold spray, a carrier gas at a temperature lower than the melting point or softening temperature of the coating material is made to flow at high speed, the coating material is introduced into the carrier gas flow and accelerated, and the solid phase state is collided with the substrate at high speed. Film formation method.
  • the coating principle of cold spray is understood as follows.
  • FIG. 5 is a schematic view of the cold spray device 100. As shown in FIG. As shown in FIG. 5, the cold spray apparatus 100 includes a tank 110, a heater 120, a spray nozzle 160, a feeder 140, a substrate holder 150, and a control device (not shown).
  • the tank 110 stores carrier gas.
  • Carrier gas is supplied from the tank 110 to the heater 120.
  • the carrier gas include nitrogen, helium, air, or a mixed gas thereof.
  • the pressure of the carrier gas is adjusted to be, for example, 70 PSI or more and 150 PSI or less (about 0.48 Mpa or more and about 1.03 Mpa or less) at the outlet of the tank 110.
  • the pressure of the carrier gas at the outlet of the tank 110 is not limited to the above range, and is appropriately adjusted depending on the material and size of the coating material, the material of the base material, and the like.
  • the heater 120 heats the carrier gas supplied from the tank 110. More specifically, the carrier gas is heated to a temperature lower than the melting point of the film material supplied from the feeder 140 to the spray nozzle 160. For example, the carrier gas is heated in the range of 50 ° C. or more and 500 ° C. or less, as measured at the outlet of the heater 120. However, the heating temperature of the carrier gas is not limited to the above range, and is appropriately adjusted depending on the material and size of the film material, the material of the base material, and the like.
  • the carrier gas is heated by the heater 120 and then supplied to the spray nozzle 160.
  • the spray nozzle 160 accelerates the carrier gas heated by the heater 120 in the range of 300 m / s to 1200 m / s, and jets the carrier gas toward the substrate 170 (the aluminum substrate 10).
  • the velocity of the carrier gas is not limited to the above range, and may be appropriately adjusted depending on the material, size, or material of the base material.
  • Feeder 140 supplies the coating material into the flow of carrier gas accelerated by spray nozzle 160.
  • the particle size of the coating material supplied from the feeder 140 is a size of 1 ⁇ m to 50 ⁇ m.
  • the coating material supplied from the feeder 140 is sprayed from the spray nozzle 160 to the substrate 170 together with the carrier gas.
  • the substrate holder 150 fixes the substrate 170.
  • the carrier gas and the coating material are sprayed from the spray nozzle 160 to the substrate 170 fixed to the substrate holder 150.
  • the distance between the surface of the substrate 170 and the tip of the spray nozzle 160 is adjusted, for example, in the range of 1 mm to 30 mm.
  • the spray speed of the coating material is reduced. This is because the carrier gas ejected from the spray nozzle 160 flows back into the spray nozzle 160.
  • a member (a hose or the like) connected to the spray nozzle 160 may be detached due to the pressure generated when the carrier gas flows backward.
  • the coating efficiency is reduced. This makes it difficult for the carrier gas and the coating material ejected from the spray nozzle 160 to reach the substrate 170.
  • the distance between the surface of the substrate 170 and the spray nozzle 160 is not limited to the above range, and may be appropriately adjusted depending on the material, size, or material of the coating material.
  • the control device controls the cold spray device 100 based on the prestored information and / or the operator's input. More specifically, the control device controls the pressure of the carrier gas supplied from the tank 110 to the heater 120, the temperature of the carrier gas heated by the heater 120, the type and amount of the coating material supplied from the feeder 140, and the substrate The distance between the surface of 170 and the spray nozzle 160 is controlled.
  • the coating material is sprayed onto the aluminum substrate 10 by cold spray.
  • cold spray may be performed using a known thermal spray material.
  • a mixed material of tin powder and zinc powder can be used as the thermal spray material.
  • the advantages of cold spray are, for example: (1) Suppression of oxidation of the film, (2) Suppression of thermal deterioration of the film, (3) Formation of dense film, (4) Suppression of generation of fumes, (5) Minimal masking necessary, (6) By a simple device Film formation, (7) formation of thick metal film in a short time.
  • the surface of aluminum is oxidized to easily form an oxide film (Al 2 O 3 ) on the surface.
  • the oxide film increases the contact resistance of the aluminum conductive member.
  • the aluminum substrate 10 has a metal film 12 on the surface.
  • the metal film 12 is formed by cold spray deposition of a mixed powder material of Ni powder and Sn powder.
  • the bus bar 1 can reduce the initial contact resistance by providing the metal film 12. This will be described with reference to FIG.
  • FIG. 6 is a graph comparing the initial contact resistance for each of Ni film formation, Sn film formation, and Ni + Sn film formation.
  • the Ni film formation and the Sn film formation correspond to the comparative example, and the Ni + Sn film formation corresponds to the present embodiment.
  • the setting conditions of cold spray are as follows.
  • the pressure of the carrier gas was 0.9 Mpa at the outlet of the tank 110.
  • the carrier gas was 200 ° C. as measured at the outlet of the heater 120.
  • the distance between the surface of the aluminum base 10 and the tip of the spray nozzle 160 was 10 mm.
  • the film thickness of the metal film formed on the surface of the aluminum base 10 was adjusted in the range of 5 to 50 ⁇ m.
  • the Ni powder and the Sn powder subjected to cold spray are as follows.
  • the Ni powder was in a spike shape (a shape having a tip on the particle surface), and the average particle diameter (D50) was 7 ⁇ m.
  • the Sn powder was spherical and had an average particle size (D50) of 28 ⁇ m.
  • Initial contact resistance was measured by the four probe method.
  • the screwing torque was 4.5 Nm.
  • the current was 1 A DC.
  • the initial contact resistances of Ni film formation, Sn film formation, and Ni + Sn film formation were about 3.4 ⁇ , about 2.7 ⁇ , and about 1 ⁇ , respectively. That is, the initial contact resistance of the Ni + Sn film formation was a remarkably low numerical value of about 70% decrease and about 62% decrease respectively from the Ni film formation and the Sn film formation. From this result, it is shown that the present example has much room for solving the problems (following (1), (2)) which arise because initial contact resistance is larger than a comparative example.
  • (1) The electrical connection between the aluminum conductive member and the connection terminal such as the electronic component becomes difficult.
  • (2) Standard Electrode When a conductive member (for example, a copper conductive member) having a large potential difference is in contact with an aluminum conductive member, electrolytic corrosion (electrochemical corrosion) occurs at the contact portion.
  • FIG. 7 is a graph showing the contact resistance when the metal film 12 in which the mixing ratio of the Ni powder 12a and the Sn powder 12b is changed is subjected to a constant temperature and humidity test.
  • the constant temperature and humidity test was performed under the conditions of a temperature of 85 ° C., a humidity of 85%, and 1000 hours or more (actual measurement is 1063 hours).
  • the contact resistance was measured by the four probe method.
  • As the aluminum substrate 10 a test piece of A6061, 3.0 mm in thickness and 20 mm in width was used.
  • the screwing torque was 4.5 Nm.
  • the current was 1 A DC.
  • the horizontal axis shows the mixing ratio of Sn powder.
  • the proportion of Sn powder was changed to 2%, 5%, 7%, 20%, 30%, 50%.
  • the vertical axis represents the contact resistance ( ⁇ ).
  • the contact resistance in the range of 2% to 50% of the Sn powder was 3.5 ⁇ or less.
  • the contact resistance in the range of 2% to 50% of the Sn powder was 4.5 ⁇ or less. Since 4.5 ⁇ is a sufficiently practical value, it was shown that the bus bar 1 is practical even after a constant temperature and humidity test of 1000 hours or more.
  • 2% of Sn powder increased by about 300% (increased from 1 ⁇ to 3 ⁇ ).
  • the Sn powder 5% increased by about 130% (increased from 0.3 ⁇ to 0.7 ⁇ ).
  • the Sn powder 30% increased about 100% (from 1.0 ⁇ to 2.0 ⁇ ).
  • the Sn powder 50% increased by about 30% (increased from 3.5 ⁇ to 4.5 ⁇ ).
  • 7% of Sn powder had an increase of about 15% (1.3 ⁇ to 1.5 ⁇ ).
  • the change rate of the Sn powder 20% was 0% (1.0 ⁇ to 1.0 ⁇ ).
  • the rate of change in contact resistance before and after the constant temperature and humidity test is preferably small. Therefore, it is more preferable that the mixing ratio of the Sn powder is 7% or more and 20% or less which can keep the change rate of the contact resistance within 15% before and after the constant temperature and humidity test.
  • FIG. 8 is a graph showing the contact resistance when the tightening torque of the screw 16 is changed.
  • the horizontal axis indicates the composition and / or the aspect of the metal film formed on the surface of the aluminum substrate 10.
  • the vertical axis represents the contact resistance ( ⁇ ).
  • the screw tightening torque was measured in three patterns of 2.5 Nm, 3.5 Nm, and 4.5 Nm.
  • the cold spray setting conditions are the same as those described in [Initial contact resistance].
  • the result obtained from FIG. 8 is shown.
  • the contact resistance decreased as the torque increased. This is because the contact resistance is lowered by the stronger contact between the respective films and the copper plate 14.
  • the contact resistance of the Ni + Sn film can be kept low even at a weak torque (2.5 Nm) as compared with the Sn film and the Ni film.
  • the Ni + Sn film had the same contact resistance as that of the Sn plating, at 2.5 Nm, 3.5 Nm, and 4.5 Nm.
  • the bus bar 1 has a low contact resistance even in the range of 2.5 Nm or more and 4.5 Nm or less of the screw tightening torque of the screw 16 and is sufficiently practical.
  • the Sn film and the Ni film exhibited a contact resistance several times higher than that of the Ni + Sn film when the screw tightening torque of the screw 16 is in the range of 2.5 Nm to 4.5 Nm.
  • bus bar 1 can be manufactured more easily than the conventional bus bar. Further, the bus bar 1 can maintain the contact resistance in a low state even when the torque is loosened during use. Thereby, the bus bar 1 can improve the long-term stability of the device in which the bus bar 1 is incorporated.
  • FIG. 9 is a graph showing the relationship between the screw tightening torque of the screw 16 and the film thickness of the Ni + Sn film.
  • the horizontal axis represents torque (Nm)
  • the vertical axis represents contact resistance ( ⁇ ).
  • the square legend indicates the case where the film thickness of the Ni + Sn film is 63 ⁇ m on average
  • the diamond legend indicates the case where the film thickness of the Ni + Sn film is 48 ⁇ m on average.
  • the Ni + Sn film has a lower contact resistance as the film thickness becomes thinner. This is because the Ni + Sn film itself increases the contact resistance.
  • the bus bar 1 can maintain sufficiently practical contact resistance (about 3 ⁇ ) even when the film thickness of the Ni + Sn film is 63 ⁇ m on average and the screw tightening torque of the screw 16 is 2.5 Nm. Indicated.
  • the bus bar 1 includes an aluminum base 10, a metal film 12, a copper plate 14, and a screw 16.
  • the metal film 12 is a metal film formed into a film on the aluminum substrate 10 by cold-spraying a mixed powder material of the Ni powder 12 a and the Sn powder 12 b onto the aluminum substrate 10.
  • the Sn film has low strength. Therefore, the Sn film formed on the aluminum base is easily peeled off. When the Sn film separates from the aluminum substrate, the contact resistance increases. Furthermore, when the Sn film formed on the aluminum base is sandwiched between copper plates, a gap is likely to be generated between the Sn film and the copper plate. This is because when the bus bar is energized, the constituent members of the bus bar thermally expand, which causes a gap between the Sn film and the copper plate, and as a result, the contact resistance increases. Thus, various problems are recognized when Sn coating an aluminum base material.
  • the inventor of the present application has found out the bus bar 1 using the mixed powder material of the Ni powder 12a and the Sn powder 12b as the material of the metal film 12 through intensive studies. Such a metal film 12 can improve the film strength. Furthermore, the inventor of the present application is able to realize the bus bar 1 in which the contact resistance is kept low even after passing a constant temperature and humidity test for 1000 hours or more by keeping the mixing ratio of Sn powder and Ni powder in a predetermined range. I found it. In addition, the bus bar 1 can keep the tightening torque of the screw 16 lower than that of the conventional bus bar. Thereby, the bus bar 1 can improve the long-term stability of the device in which the bus bar 1 is incorporated.
  • the bus bar according to aspect 1 of the present invention is made of an aluminum base, nickel (Ni), gold (Au), zinc (Zn), silver (Ag), copper (Cu), or two or more of them.
  • a mixed powder material in which a first powder material containing an alloy containing tin and a second powder material containing tin (Sn) or an alloy containing tin as a component is mixed
  • a metal film formed into a film, a conductive material disposed on the metal film, and a screw for screwing the aluminum base, the metal film, and the conductive material to each other are included.
  • the bus bar according to the embodiment of the present invention has the following effects.
  • Sn which is a component of the second powder material
  • Sn is a component of the first powder material having a melting point higher than that of Sn (Ni, Au , Zn, Ag, and Cu)
  • Sn intrudes between particles constituting the component of the first powder material, plays a role of bonding the particles to one another, and can make the metal film a continuous film with little unevenness.
  • the conductive material is disposed on the metal film, and the aluminum base, the metal film, and the conductive material are screwed to each other by the screw.
  • the film formation of the metal film on the aluminum base can be simplified, and the adhesion of the metal film to the aluminum base can be enhanced. Furthermore, according to the above configuration, a gap does not easily occur between the metal film and the conductive material. As a result, the bus bar according to the embodiment of the present invention can lower the connection resistance as compared with the conventional bus bar.
  • the bus bar according to the embodiment of the present invention has an effect that the bus bar having excellent practicability can be realized.
  • the conductive material is a copper plate
  • the first powder material contains Ni as a component
  • the second powder material contains Sn as a component
  • the powder material contains 2% to 50% by weight of the second powder material, and the constant temperature and humidity test is performed under conditions of a temperature of 85 degrees, a humidity of 85%, and a period of 1000 hours or more. Before and after the constant humidity test, the contact resistance between the aluminum base and the conductive material may be 4.5 ⁇ or less.
  • the contact resistance between the aluminum base and the conductive material can be suppressed to 4.5 ⁇ or less. Therefore, when the specification required for the contact resistance is strict (for example, 5 ⁇ or less), it is possible to effectively utilize the bus bar according to the embodiment of the present invention.
  • the conductive material is a copper plate
  • the first powder material contains Ni as a component
  • the second powder material contains Sn as a component
  • the powder material contains 7% to 20% by weight of the second powder material
  • the constant temperature and humidity test is performed under conditions of a temperature of 85 degrees, a humidity of 85%, and a period of 1000 hours or more.
  • the change ratio of the contact resistance between the aluminum base and the conductive material may be 15% or less.
  • the change rate of the contact resistance between the aluminum base and the conductive material can be suppressed to 15% or less. Therefore, when the specification required for the change rate of the contact resistance is strict (for example, within 50%), it is possible to effectively utilize the bus bar according to the embodiment of the present invention.
  • the contact resistance may be 2 ⁇ or less in the range where the screw tightening torque of the screw is 2.5 Nm or more and 4.5 Nm or less.
  • the screw tightening torque of the screw may be smaller than the conventional screw tightening torque. Therefore, the bus bar according to an embodiment of the present invention can be manufactured more easily than the conventional bus bar. Further, the bus bar according to an embodiment of the present invention can maintain a low contact resistance even when the torque is loosened during use. Due to that effect, the bus bar according to an embodiment of the present invention can also improve the long-term stability of the device in which the bus bar is incorporated.
  • a method of manufacturing a bus bar according to aspect 5 of the present invention is a method of manufacturing a bus bar, and nickel (Ni), gold (Au), zinc (Zn), silver (Ag), copper (aluminium base)
  • a mixed powder in which a first powder material containing an alloy of any of Cu) or two or more of these as a component, and a second powder material containing tin (Sn) or an alloy containing Sn as a component Forming a metal film on the aluminum substrate by cold spraying the material, arranging a conductive material on the metal film, arranging the aluminum substrate, and the metal film And a fixing step of fixing the conductive material to each other.
  • the bus bar according to the present embodiment can also be expressed as follows.
  • the bus bar according to the present embodiment includes an aluminum base, nickel (Ni), gold (Au), zinc (Zn), silver (Ag), copper (Cu), or two or more of them.
  • a metal comprising a mixed powder material in which a first powder material containing an alloy as a component and a second powder material containing tin (Sn) or an alloy containing Sn as a component, the metal disposed on the above aluminum substrate It may be configured to include a film, a conductive material disposed on the metal film, and a screw for screwing the aluminum base, the metal film, and the conductive material to each other.

Abstract

A busbar with excellent practicality and an aluminum substrate as the base material, and a manufacturing method of said busbar are provided. This busbar is provided with: an aluminum substrate; a metal film deposited on the aluminum substrate by cold spraying using a mixed powder material obtained by mixing a first powder material, which has as a component any of nickel (Ni), gold (Au), zinc (Zn), silver (Ag) and copper (Cu), or an alloy of two or more of these, and a second powder material, which has as a component tin (Sn) or an alloy containing Sn; a conductive material arranged on the metal film; and a screw for screwing and fixing the aluminum substrate and the metal film to the conductive material.

Description

バスバー、及びバスバーの製造方法Bus bar and method of manufacturing bus bar
 本発明は、配線用部品であるバスバー、及びバスバーの製造方法に関する。 The present invention relates to a bus bar as a component for wiring and a method of manufacturing the bus bar.
 従来から大容量の電流を導電するためにバスバーが使用されている。バスバーは、主に銅を母材とした、板状又は棒状の導体である。バスバーは、配電盤、制御盤、又は車載用バッテリー等に使用されている。 Bus bars are conventionally used to conduct large amounts of current. The bus bar is a plate-like or rod-like conductor mainly made of copper as a base material. The bus bar is used for a switchboard, a control panel, an on-board battery or the like.
 近年、配線用部品の材料としてアルミニウム(Al)を利用することへの要求が高まっている。アルミニウムは、その表面が酸化され易い。アルミ導電部材が外気に晒されると、その表面が酸化されて、酸化皮膜(Al)がAl表面に形成される。この酸化皮膜によってアルミ導電部材の接触抵抗が高くなる。その結果、以下(1)、(2)の問題が生ずる。(1)アルミ導電部材と電子部品等の接続端子との間の電気的接続が困難になる。(2)標準電極電位差の大きい導電部材(例えば、銅導電部材)とアルミ導電部材とが接触した場合、接触部分において電食(電気化学的な腐食)が発生する。 In recent years, the demand for using aluminum (Al) as a material for wiring components is increasing. Aluminum is easily oxidized on its surface. When the aluminum conductive member is exposed to the air, its surface is oxidized to form an oxide film (Al 2 O 3 ) on the Al surface. The oxide film increases the contact resistance of the aluminum conductive member. As a result, the following problems (1) and (2) occur. (1) The electrical connection between the aluminum conductive member and the connection terminal such as the electronic component becomes difficult. (2) Standard Electrode When a conductive member (for example, a copper conductive member) having a large potential difference is in contact with an aluminum conductive member, electrolytic corrosion (electrochemical corrosion) occurs at the contact portion.
 このような問題を解決する方法として、例えば、特許文献1では、アルミニウムの表面に錫(Sn)メッキを施し、接触抵抗を下げている。特許文献2では、コールドスプレー法を用いて、アルミニウムの表面にSn粉末を堆積させている。 As a method of solving such a problem, for example, in Patent Document 1, the surface of aluminum is plated with tin (Sn) to reduce the contact resistance. In Patent Document 2, a cold spray method is used to deposit Sn powder on the surface of aluminum.
特開2014-43632号公報(2014年3月13日公開)Unexamined-Japanese-Patent No. 2014-43632 (March 13, 2014 publication) 特許第5333705号Patent No. 5333705
 しかしながら、特許文献1、及び特許文献2に記載の従来技術は次のような問題を有する。 However, the conventional techniques described in Patent Document 1 and Patent Document 2 have the following problems.
 特許文献1の方法では、Alの表面に対してSnメッキ処理を直接施すことはできず、前処理としてジンケート処理、及びNiメッキ処理が必要である。さらに、特許文献1の方法は、水洗処理、及び乾燥処理も必要とする。このように、特許文献1の方法は、工程が複雑であり、かつ、コスト高となる。 In the method of Patent Document 1, it is not possible to directly apply Sn plating to the surface of Al, and zincate treatment and Ni plating treatment are required as pretreatment. Furthermore, the method of Patent Document 1 also requires water washing and drying. Thus, the method of Patent Document 1 is complicated in process and expensive.
 特許文献2の方法では、AlとSnの界面にAl-Snの合金層が形成されないことから、Al基材とSn膜との密着性が低い。そのため、信頼性試験において接触抵抗が上昇する。 In the method of Patent Document 2, since the Al—Sn alloy layer is not formed at the interface between Al and Sn, the adhesion between the Al base and the Sn film is low. Therefore, the contact resistance increases in the reliability test.
 このように、特許文献1及び特許文献2の方法は、配線用部品の材料としてアルミニウム(Al)を実用的に利用するうえで改良の余地がある。 Thus, the methods of Patent Document 1 and Patent Document 2 have room for improvement in practical use of aluminum (Al) as a material of wiring components.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、実用性に優れた、アルミニウム基材を母材としたバスバー、及び当該バスバーの製造方法を実現することにある。 The present invention has been made in view of the above problems, and an object thereof is to realize a bus bar having an aluminum base material excellent in practicability and a method of manufacturing the bus bar.
 上記の課題を解決するために、本発明に係るバスバーは、アルミニウム基材と、ニッケル(Ni)、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又は、これらの2種以上を含む合金を成分とする第一粉末材料と、錫(Sn)又はSnを含む合金を成分とする第二粉末材料とが混合された混合粉末材料を用いたコールドスプレーにより上記アルミニウム基材上に成膜された金属膜と、上記金属膜上に配される導電材と、上記アルミニウム基材及び上記金属膜と上記導電材とを互いに螺子止めする螺子と、を備える構成である。 In order to solve the above-mentioned subject, the bus bar concerning the present invention is either an aluminum substrate and either nickel (Ni), gold (Au), zinc (Zn), silver (Ag), copper (Cu), or Cold spraying using a mixed powder material in which a first powder material containing an alloy containing two or more of these components and a second powder material containing tin (Sn) or an alloy containing Sn as a component is mixed A metal film formed on the aluminum base, a conductive material disposed on the metal base, and a screw for screwing the aluminum base, the metal base, and the conductive material to each other. It is.
 上記の構成によれば、本発明の一実施形態に係るバスバーは以下の効果を奏する。 According to the above configuration, the bus bar according to the embodiment of the present invention has the following effects.
 具体的に、上記混合粉末材料が上記アルミニウム基材にコールドスプレーされたときに、上記第二粉末材料の成分であるSnは、Snよりも融点の高い上記第一粉末材料の成分(Ni、Au、Zn、Ag、Cu)と比べて変形しやすい。そのため、Snは、上記第一粉末材料の成分を構成する粒子間に入り込み、当該粒子を互いに結合する役割を果たし、かつ、上記金属膜を凹凸の少ない連続膜とすることができる。その金属膜上に上記導電材が配され、かつ、上記アルミニウム基材及び上記金属膜と上記導電材とが上記螺子によって互いに螺子止めされる。 Specifically, when the mixed powder material is cold sprayed onto the aluminum base, Sn, which is a component of the second powder material, is a component of the first powder material having a melting point higher than that of Sn (Ni, Au , Zn, Ag, Cu) more easily deformed. Therefore, Sn intrudes between particles constituting the component of the first powder material, plays a role of bonding the particles to one another, and can make the metal film a continuous film with little unevenness. The conductive material is disposed on the metal film, and the aluminum base, the metal film, and the conductive material are screwed to each other by the screw.
 上記の構成によれば、上記アルミニウム基材への上記金属膜の成膜が簡素化され、かつ、上記アルミニウム基材への上記金属膜の密着性を高めることができる。さらに、上記の構成によれば、上記金属膜と上記導電材との間には隙間が生じにくい。その結果、本発明の一実施形態に係るバスバーは、従来のバスバーに比べて接続抵抗を低くすることができる。 According to the above configuration, the film formation of the metal film on the aluminum base can be simplified, and the adhesion of the metal film to the aluminum base can be enhanced. Furthermore, according to the above configuration, a gap does not easily occur between the metal film and the conductive material. As a result, the bus bar according to the embodiment of the present invention can lower the connection resistance as compared with the conventional bus bar.
 このようにして、本発明の一実施形態に係るバスバーは、実用性に優れたバスバーを実現することができるという効果を奏する。 Thus, the bus bar according to the embodiment of the present invention has an effect that the bus bar having excellent practicability can be realized.
 上記の課題を解決するために、本発明に係るバスバーの製造方法は、バスバーの製造方法であって、アルミニウム基材に対して、ニッケル(Ni)、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又は、これらの2種以上を含む合金を成分とする第一粉末材料と、錫(Sn)又はSnを含む合金を成分とする第二粉末材料とが混合された混合粉末材料をコールドスプレーすることにより、上記アルミニウム基材上に金属膜を成膜する成膜ステップと、上記金属膜上に導電材を配設する配設ステップと、上記アルミニウム基材及び上記金属膜と上記導電材とを互いに固定する固定ステップと、を含む方法である。 In order to solve the above-described problems, the method of manufacturing a bus bar according to the present invention is a method of manufacturing a bus bar, and nickel (Ni), gold (Au), zinc (Zn), silver, with respect to an aluminum substrate. A first powder material containing as a component an alloy containing (Ag), copper (Cu), or two or more of them, and a second powder material containing as a component tin (Sn) or an alloy containing Sn Forming a metal film on the aluminum base by cold spraying the mixed powder material mixed with the metal powder, disposing the conductive material on the metal film, and forming the aluminum base And a fixing step of fixing the material and the metal film and the conductive material to each other.
 上記の方法によれば、上記バスバーと同様の効果を奏する。 According to the above method, the same effect as the bus bar can be obtained.
 本発明によれば、本発明の一実施形態に係るバスバーは、実用性に優れたバスバーを実現することができるという効果を奏する。 According to the present invention, the bus bar according to the embodiment of the present invention has an effect that the bus bar having excellent practicability can be realized.
本発明の一実施形態に係るバスバーを模式的に示す断面図である。It is a sectional view showing typically the bus bar concerning one embodiment of the present invention. アルミニウム基材と銅板とが分離した状態を示す図である。It is a figure which shows the state which the aluminum base material and the copper plate isolate | separated. アルミニウム基材と銅板とが螺子により螺子止めされ、アルミニウム基材と銅板14とが電気的に接続している様子を示す図である。It is a figure which shows a mode that the aluminum base material and the copper plate are screwed by a screw and the aluminum base material and the copper plate 14 are electrically connected. 本発明の一実施形態に係るバスバーを製造する方法を説明するフローチャートである。It is a flow chart explaining a method of manufacturing a bus bar concerning one embodiment of the present invention. コールドスプレー装置の概略図である。FIG. 1 is a schematic view of a cold spray device. Ni成膜、Sn成膜、及びNi+Sn成膜それぞれについて初期接触抵抗を比較したグラフである。It is the graph which compared the initial stage contact resistance about each of Ni film-forming, Sn film-forming, and Ni + Sn film-forming. Ni粉末及びSn粉末の混合比率を変化させた金属膜を恒温恒湿試験に供したときの接触抵抗を示すグラフである。It is a graph which shows the contact resistance when the metal film to which the mixing ratio of Ni powder and Sn powder was changed is used for a constant temperature and humidity test. 螺子の締め付けトルクを変化させたときの接触抵抗を示すグラフである。It is a graph which shows the contact resistance when changing the bolting torque of a screw. 螺子のネジ締めトルクとNi+Sn膜の膜厚との関係を示すグラフである。It is a graph which shows the relationship between the screwing torque of a screw, and the film thickness of Ni + Sn film | membrane.
 〔バスバー1〕
 図1は、本発明の実施形態に係るバスバー1を模式的に示す断面図である。バスバー1は、大容量の電流を導電するための配線用部品である。バスバー1は、アルミニウム基材10と、金属膜12と、銅板(導電材)14と、螺子16と、を備える。
[Bus bar 1]
FIG. 1 is a cross-sectional view schematically showing a bus bar 1 according to an embodiment of the present invention. The bus bar 1 is a wiring component for conducting a large capacity current. The bus bar 1 includes an aluminum base 10, a metal film 12, a copper plate (conductive material) 14, and a screw 16.
 アルミニウム基材10は、バスバー1の母材として用いられる。アルミニウム基材10は、アルミ合金であってもよい(材料記号:A2000系、A3000系等)。アルミニウム基材10の形状、又は厚み等は任意である。 The aluminum base 10 is used as a base material of the bus bar 1. The aluminum base 10 may be an aluminum alloy (material symbol: A2000 series, A3000 series, etc.). The shape, thickness or the like of the aluminum base 10 is optional.
 金属膜12は、Ni粉末12aとSn粉末12bとの混合粉末材料がアルミニウム基材10上に溶射されることにより、アルミニウム基材10上に成膜された金属膜である。溶射は、周知の溶射方法を採用してよい。 The metal film 12 is a metal film formed into a film on the aluminum base 10 by spraying the mixed powder material of the Ni powder 12 a and the Sn powder 12 b onto the aluminum base 10. The thermal spraying may employ a known thermal spraying method.
 周知の溶射方法として、例えば次の溶射方法が知られている。ウォームスプレー、エアロゾルデポジション、フリージェットPVD、フレーム溶射、溶線式フレーム溶射、粉末式フレーム溶射、溶棒式フレーム溶射、高速フレーム溶射、爆発溶射、電気式溶射、アーク溶射、プラズマ溶射、線爆溶射、コールドスプレー。 As a known thermal spraying method, for example, the following thermal spraying method is known. Warm spray, aerosol deposition, free jet PVD, flame spraying, wire flame spraying, powder flame spraying, barbed flame spraying, high speed flame spraying, detonation spraying, electric spraying, arc spraying, plasma spraying, wire blast spraying , Cold spray.
 以下の説明では、溶射方法としてコールドスプレー法を使用するものとする。 In the following description, a cold spray method is used as the thermal spraying method.
 上記混合粉末材料は、Ni、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又は、これらの2種以上を含む合金を成分とする第一粉末材料と、錫(Sn)又はSnを含む合金を成分とする第二粉末材料との混合粉末材料であってもよい。 The mixed powder material is a first powder material containing Ni, gold (Au), zinc (Zn), silver (Ag), copper (Cu), or an alloy containing two or more of these as a component It may be a mixed powder material with a second powder material whose component is tin (Sn) or an alloy containing Sn.
 本実施形態では、第一粉末材料としてNi粉末、第二粉末材料としてSn粉末を使用するものとする。Ni粉末及びSn粉末を使用する理由として、例えば以下の点を挙げることができる。 In the present embodiment, Ni powder is used as the first powder material, and Sn powder is used as the second powder material. As reasons for using Ni powder and Sn powder, for example, the following points can be mentioned.
 Snは、Niよりも融点が低い。そのため、Sn粉末12bはコールドスプレーされたときに半溶融状態となりやすく、Snは、Ni粒子の間に入り込み、Ni粒子を互いに結合する役割を果たす。また、そのSnの働きにより、金属膜12の表面は凹凸が少ない連続膜となる。また、混合粉末に占めるNi粉末12aの割合が高い場合には、金属膜12におけるNi密度も高くなる。加えて、Ni層は、連続膜であるSn層に覆われており、酸化物の影響が低くなる。 Sn has a lower melting point than Ni. Therefore, the Sn powder 12b is likely to be in a semi-molten state when cold sprayed, and the Sn enters between the Ni particles and plays a role of bonding the Ni particles to each other. Moreover, the surface of the metal film 12 becomes a continuous film with few unevenness by the function of the Sn. In addition, when the ratio of the Ni powder 12a to the mixed powder is high, the Ni density in the metal film 12 also becomes high. In addition, the Ni layer is covered with the Sn layer which is a continuous film, and the effect of the oxide is reduced.
 銅板14は、金属膜12上に配される。銅板14の形状、又は厚み等は任意である。銅板14の代替として他の導電材(例えば、アルミニウム板)が用いられてもよい。 The copper plate 14 is disposed on the metal film 12. The shape, thickness or the like of the copper plate 14 is optional. Other conductive materials (for example, an aluminum plate) may be used as a substitute for the copper plate 14.
 螺子16は、アルミニウム基材10及び金属膜12と銅板14とを螺子止めする。そのため、アルミニウム基材10、金属膜12、及び銅板14はそれぞれ、螺子16を貫通させるための孔を有する。螺子16は、任意の仕様であってよい。螺子16のネジ山、及び、アルミニウム基材10、金属膜12、及び銅板14それぞれに形成された孔のネジ山は、便宜上、図面中の記載を省略している。螺子16の代替として、ボルト・ナットが使用されてもよい。 The screw 16 screws the aluminum base 10 and the metal film 12 with the copper plate 14. Therefore, each of the aluminum base 10, the metal film 12, and the copper plate 14 has a hole for allowing the screw 16 to penetrate. The screw 16 may be of any specification. The screw thread of the screw 16 and the screw thread of the hole formed in each of the aluminum base 10, the metal film 12 and the copper plate 14 are omitted from the drawing for convenience. As an alternative to the screw 16, bolts and nuts may be used.
 バスバー1は、上記構成を備えることにより、金属膜12を介して、アルミニウム基材10と銅板14とを電気的に接続する。バスバー1は、例えば、配電盤、制御盤、又は車載用バッテリー等に使用される。 The bus bar 1 electrically connects the aluminum base 10 and the copper plate 14 through the metal film 12 by having the above configuration. The bus bar 1 is used, for example, in a switchboard, a control panel, or an on-vehicle battery.
 〔実施例〕
  〔バスバー1〕
 バスバー1の実施例を図2~図4により説明する。図2は、アルミニウム基材10と銅板14とが分離した状態を示す図である。図3は、アルミニウム基材10と銅板14とが螺子16により螺子止めされ、アルミニウム基材10と銅板14とが電気的に接続している様子を示す図である。図4は、バスバー1を製造する方法を説明するフローチャートである。
〔Example〕
[Bus bar 1]
An embodiment of the bus bar 1 will be described with reference to FIGS. FIG. 2 is a view showing a state in which the aluminum base 10 and the copper plate 14 are separated. FIG. 3 is a view showing a state in which the aluminum base 10 and the copper plate 14 are screwed with a screw 16 and the aluminum base 10 and the copper plate 14 are electrically connected. FIG. 4 is a flowchart illustrating a method of manufacturing the bus bar 1.
 図2を参照して、アルミニウム基材10は、A6061、厚み3.0mm、幅20mmの試験片が用いられた。銅板14は、C1020、厚み1.6mm、幅20mmの試験片が用いられた。金属膜12は、20mm×20mmのサイズで形成された。 Referring to FIG. 2, a test piece of A6061 having a thickness of 3.0 mm and a width of 20 mm was used as the aluminum base 10. As the copper plate 14, a test piece of C1020, 1.6 mm in thickness and 20 mm in width was used. The metal film 12 was formed to a size of 20 mm × 20 mm.
 Ni粉末12aとSn粉末12bとの混合粉末材料がアルミニウム基材10上にコールドスプレー(詳細は後述)されることにより、アルミニウム基材10上に金属膜12が成膜される(図4のS10。成膜ステップ)。金属膜12は、アルミニウム基材10の表面の少なくとも一部に形成されていればよい。 The mixed powder material of the Ni powder 12a and the Sn powder 12b is cold-sprayed (details will be described later) on the aluminum substrate 10, whereby the metal film 12 is formed on the aluminum substrate 10 (S10 in FIG. 4). Film formation step). The metal film 12 may be formed on at least a part of the surface of the aluminum base 10.
 次に、螺子16を貫通させるための孔をアルミニウム基材10及び金属膜12に形成する(図2のS20)。アルミニウム基材10に孔を形成する方法は周知の方法であってよい。S10の前の時点でアルミニウム基材10に孔が形成されていてよい。このことは、後述する銅板14についても同様である。金属膜12に孔を形成する方法は、マスキング等の周知の方法であってよい。 Next, holes for penetrating the screws 16 are formed in the aluminum base 10 and the metal film 12 (S20 in FIG. 2). The method of forming the holes in the aluminum substrate 10 may be a known method. Holes may be formed in the aluminum substrate 10 at a time before S10. The same applies to a copper plate 14 described later. The method of forming the holes in the metal film 12 may be a known method such as masking.
 続いて、孔が形成された銅板14を金属膜12上に配設する(図4のS30。配設ステップ)。このとき、アルミニウム基材10、金属膜12、及び銅板14それぞれに形成された孔が位置合わせされる。 Subsequently, the copper plate 14 in which the holes are formed is disposed on the metal film 12 (S30 in FIG. 4; disposition step). At this time, the holes formed in each of the aluminum base 10, the metal film 12 and the copper plate 14 are aligned.
 最後に、アルミニウム基材10及び金属膜12と銅板14とが螺子16により螺子止めされる(図4のS40。固定ステップ)。これにより、金属膜12と銅板14とが固着する。本実施例において、螺子16は、φ6.5mmであった。 Finally, the aluminum base 10 and the metal film 12 and the copper plate 14 are screwed together with the screw 16 (S40 in FIG. 4. Fixing step). Thereby, the metal film 12 and the copper plate 14 adhere. In the present embodiment, the screw 16 has a diameter of 6.5 mm.
  〔コールドスプレー〕
 本実施例では、コールドスプレー法を用いて金属膜12を成膜している。以下、コールドスプレー法について説明する。
[Cold spray]
In the present embodiment, the metal film 12 is formed using a cold spray method. The cold spray method is described below.
 近年、コールドスプレーと呼ばれる皮膜形成法が利用されている。コールドスプレーは、皮膜材料の融点または軟化温度よりも低い温度のキャリアガスを高速流にし、そのキャリアガス流中に皮膜材料を投入し加速させ、固相状態のまま基材等に高速で衝突させて皮膜を形成する方法である。 In recent years, a film forming method called cold spray has been used. In cold spray, a carrier gas at a temperature lower than the melting point or softening temperature of the coating material is made to flow at high speed, the coating material is introduced into the carrier gas flow and accelerated, and the solid phase state is collided with the substrate at high speed. Film formation method.
 コールドスプレーの皮膜原理は、次のように理解されている。 The coating principle of cold spray is understood as follows.
 皮膜材料が基材に付着・堆積して皮膜するには、ある臨界値以上の衝突速度が必要であり、これを臨界速度と称する。皮膜材料が臨界速度よりも低い速度で基材と衝突すると、基材が摩耗し、基材には小さなクレーター状の窪みしかできない。臨界速度は、皮膜材料の材質、大きさ、形状、温度、酸素含有量、又は基材の材質などによって変化する。 In order for the coating material to adhere and deposit on the substrate to form a film, an impact velocity of a certain critical value or more is required, which is referred to as a critical velocity. When the coating material collides with the substrate at a velocity lower than the critical velocity, the substrate wears and the substrate can only have small crater-like depressions. The critical speed changes depending on the material, size, shape, temperature, oxygen content of the coating material, or the material of the substrate.
 皮膜材料が基材に対して臨界速度以上の速度で衝突すると、皮膜材料と基材(あるいはすでに成形された皮膜)との界面付近で大きなせん断による塑性変形が生じる。この塑性変形、及び衝突による固体内の強い衝撃波の発生に伴い、界面付近の温度も上昇し、その過程で、皮膜材料と基材、および、皮膜材料と皮膜(すでに付着した皮膜材料)との間で固相接合が生じる。 When the coating material collides with the substrate at a velocity higher than the critical velocity, a large shear plastic deformation occurs near the interface between the coating material and the substrate (or a film that has already been formed). With the plastic deformation and the occurrence of a strong shock wave in the solid due to collision, the temperature near the interface also rises, and in the process, the coating material and the substrate, and the coating material and the coating (the coating material already adhered) Solid phase bonding occurs between them.
 (コールドスプレー装置100)
 図5は、コールドスプレー装置100の概略図である。図5に示すように、コールドスプレー装置100は、タンク110と、ヒーター120と、スプレーノズル160と、フィーダ140と、基材ホルダー150と、制御装置(不図示)とを備える。
(Cold spray device 100)
FIG. 5 is a schematic view of the cold spray device 100. As shown in FIG. As shown in FIG. 5, the cold spray apparatus 100 includes a tank 110, a heater 120, a spray nozzle 160, a feeder 140, a substrate holder 150, and a control device (not shown).
 タンク110は、キャリアガスを貯蔵する。キャリアガスは、タンク110からヒーター120へ供給される。キャリアガスの一例として、窒素、ヘリウム、空気、またはそれらの混合ガスが挙げられる。キャリアガスの圧力は、タンク110の出口において、例えば70PSI以上150PSI以下(約0.48Mpa以上約1.03Mpa以下)となるよう調整される。ただし、タンク110の出口におけるキャリアガスの圧力は、上記の範囲に限られるものではなく、皮膜材料の材質、大きさ、又は基材の材質等により適宜調整される。 The tank 110 stores carrier gas. Carrier gas is supplied from the tank 110 to the heater 120. Examples of the carrier gas include nitrogen, helium, air, or a mixed gas thereof. The pressure of the carrier gas is adjusted to be, for example, 70 PSI or more and 150 PSI or less (about 0.48 Mpa or more and about 1.03 Mpa or less) at the outlet of the tank 110. However, the pressure of the carrier gas at the outlet of the tank 110 is not limited to the above range, and is appropriately adjusted depending on the material and size of the coating material, the material of the base material, and the like.
 ヒーター120は、タンク110から供給されたキャリアガスを加熱する。より具体的に、キャリアガスは、フィーダ140からスプレーノズル160に供給される皮膜材料の融点より低い温度に加熱される。例えば、キャリアガスは、ヒーター120の出口において測定したときに、50℃以上500℃以下の範囲で加熱される。ただし、キャリアガスの加熱温度は、上記の範囲に限られるものではなく、皮膜材料の材質、大きさ、又は基材の材質等により適宜調整される。 The heater 120 heats the carrier gas supplied from the tank 110. More specifically, the carrier gas is heated to a temperature lower than the melting point of the film material supplied from the feeder 140 to the spray nozzle 160. For example, the carrier gas is heated in the range of 50 ° C. or more and 500 ° C. or less, as measured at the outlet of the heater 120. However, the heating temperature of the carrier gas is not limited to the above range, and is appropriately adjusted depending on the material and size of the film material, the material of the base material, and the like.
 キャリアガスは、ヒーター120により加熱された後、スプレーノズル160へ供給される。 The carrier gas is heated by the heater 120 and then supplied to the spray nozzle 160.
 スプレーノズル160は、ヒーター120により加熱されたキャリアガスを300m/s以上1200m/s以下の範囲で加速し、基材170(アルミニウム基材10)へ向けて噴射する。なお、キャリアガスの速度は、上記の範囲に限られるものではなく、皮膜材料の材質、大きさ、又は基材の材質等により適宜調整される。 The spray nozzle 160 accelerates the carrier gas heated by the heater 120 in the range of 300 m / s to 1200 m / s, and jets the carrier gas toward the substrate 170 (the aluminum substrate 10). The velocity of the carrier gas is not limited to the above range, and may be appropriately adjusted depending on the material, size, or material of the base material.
 フィーダ140は、スプレーノズル160により加速されるキャリアガスの流れの中に皮膜材料を供給する。フィーダ140から供給される皮膜材料の粒径は、1μm以上50μm以下といった大きさである。フィーダ140から供給された皮膜材料は、スプレーノズル160からキャリアガスとともに基材170へ噴射される。 Feeder 140 supplies the coating material into the flow of carrier gas accelerated by spray nozzle 160. The particle size of the coating material supplied from the feeder 140 is a size of 1 μm to 50 μm. The coating material supplied from the feeder 140 is sprayed from the spray nozzle 160 to the substrate 170 together with the carrier gas.
 基材ホルダー150は、基材170を固定する。基材ホルダー150に固定された基材170に対して、キャリアガス、及び皮膜材料がスプレーノズル160から噴射される。基材170の表面とスプレーノズル160の先端との距離は、例えば、1mm以上30mm以下の範囲で調整される。基材170の表面とスプレーノズル160の先端との距離が1mmよりも近いと皮膜材料の噴射速度が低下する。これは、スプレーノズル160から噴出したキャリアガスがスプレーノズル160内に逆流するためである。このとき、キャリアガスが逆流した際に生じる圧力により、スプレーノズル160に接続された部材(ホース等)が外れる場合もある。一方、基材170の表面とスプレーノズル160の先端との距離が30mmよりも離れると皮膜効率が低下する。これは、スプレーノズル160から噴出したキャリアガス及び皮膜材料が基材170に到達し難くなるである。 The substrate holder 150 fixes the substrate 170. The carrier gas and the coating material are sprayed from the spray nozzle 160 to the substrate 170 fixed to the substrate holder 150. The distance between the surface of the substrate 170 and the tip of the spray nozzle 160 is adjusted, for example, in the range of 1 mm to 30 mm. When the distance between the surface of the substrate 170 and the tip of the spray nozzle 160 is smaller than 1 mm, the spray speed of the coating material is reduced. This is because the carrier gas ejected from the spray nozzle 160 flows back into the spray nozzle 160. At this time, a member (a hose or the like) connected to the spray nozzle 160 may be detached due to the pressure generated when the carrier gas flows backward. On the other hand, when the distance between the surface of the substrate 170 and the tip of the spray nozzle 160 is more than 30 mm, the coating efficiency is reduced. This makes it difficult for the carrier gas and the coating material ejected from the spray nozzle 160 to reach the substrate 170.
 ただし、基材170の表面とスプレーノズル160との距離は、上記の範囲に限られるものではなく、皮膜材料の材質、大きさ、又は基材の材質等により適宜調整される。 However, the distance between the surface of the substrate 170 and the spray nozzle 160 is not limited to the above range, and may be appropriately adjusted depending on the material, size, or material of the coating material.
 制御装置は、予め記憶した情報、及び/又は、オペレーターの入力に基づいて、コールドスプレー装置100を制御する。より具体的に、制御装置は、タンク110からヒーター120へ供給されるキャリアガスの圧力、ヒーター120により加熱されるキャリアガスの温度、フィーダ140から供給される皮膜材料の種類および量、及び基材170の表面とスプレーノズル160との距離など制御する。 The control device controls the cold spray device 100 based on the prestored information and / or the operator's input. More specifically, the control device controls the pressure of the carrier gas supplied from the tank 110 to the heater 120, the temperature of the carrier gas heated by the heater 120, the type and amount of the coating material supplied from the feeder 140, and the substrate The distance between the surface of 170 and the spray nozzle 160 is controlled.
 本実施例では、皮膜材料は、コールドスプレーによりアルミニウム基材10に噴射される。コールドスプレー装置100では、周知の溶射材料を用いてコールドスプレーしてよい。例えば、溶射材料として、錫粉末と亜鉛粉末の混合材料を用いることができる。 In the present embodiment, the coating material is sprayed onto the aluminum substrate 10 by cold spray. In the cold spray apparatus 100, cold spray may be performed using a known thermal spray material. For example, a mixed material of tin powder and zinc powder can be used as the thermal spray material.
 コールドスプレー装置100を用いることにより、コールドスプレーの利点を享受することができる。コールドスプレーの利点は、例えば次のとおりである。(1)皮膜の酸化抑制、(2)皮膜の熱変質の抑制、(3)緻密な皮膜形成、(4)ヒュームの発生抑制、(5)必要最小限のマスキング、(6)シンプルな装置による皮膜形成、(7)短時間での厚い金属皮膜の形成。 By using the cold spray device 100, the advantages of cold spray can be enjoyed. The advantages of cold spray are, for example: (1) Suppression of oxidation of the film, (2) Suppression of thermal deterioration of the film, (3) Formation of dense film, (4) Suppression of generation of fumes, (5) Minimal masking necessary, (6) By a simple device Film formation, (7) formation of thick metal film in a short time.
  〔初期接触抵抗〕
 アルミニウムは、その表面が酸化されて、酸化皮膜(Al)が表面に形成されやすい。この酸化皮膜によってアルミ導電部材の接触抵抗が高くなる。アルミニウム基材10は、表面に金属膜12を有する。金属膜12は、Ni粉末とSn粉末との混合粉末材料がコールドスプレーにより堆積したものである。バスバー1は、金属膜12を備えることにより、初期接触抵抗を低下することができる。このことを図6により説明する。
Initial contact resistance
The surface of aluminum is oxidized to easily form an oxide film (Al 2 O 3 ) on the surface. The oxide film increases the contact resistance of the aluminum conductive member. The aluminum substrate 10 has a metal film 12 on the surface. The metal film 12 is formed by cold spray deposition of a mixed powder material of Ni powder and Sn powder. The bus bar 1 can reduce the initial contact resistance by providing the metal film 12. This will be described with reference to FIG.
 図6は、Ni成膜、Sn成膜、及びNi+Sn成膜それぞれについて初期接触抵抗を比較したグラフである。Ni成膜、Sn成膜、及びNi+Sn成膜(Sn:Ni=20%:80%)は、アルミニウム基材10の表面に対してコールドスプレーすることにより成膜されたものである。Ni成膜及びSn成膜は比較例に対応し、Ni+Sn成膜は本実施例に対応する。 FIG. 6 is a graph comparing the initial contact resistance for each of Ni film formation, Sn film formation, and Ni + Sn film formation. The Ni film formation, the Sn film formation, and the Ni + Sn film formation (Sn: Ni = 20%: 80%) are films formed by cold spraying on the surface of the aluminum base 10. The Ni film formation and the Sn film formation correspond to the comparative example, and the Ni + Sn film formation corresponds to the present embodiment.
 コールドスプレーの設定条件は以下のとおりである。キャリアガスの圧力は、タンク110の出口において0.9Mpaであった。キャリアガスは、ヒーター120の出口において測定したときに200℃であった。アルミニウム基材10の表面とスプレーノズル160の先端との距離は10mmであった。アルミニウム基材10の表面に形成される金属膜の膜厚は5~50μmの範囲内に調整された。 The setting conditions of cold spray are as follows. The pressure of the carrier gas was 0.9 Mpa at the outlet of the tank 110. The carrier gas was 200 ° C. as measured at the outlet of the heater 120. The distance between the surface of the aluminum base 10 and the tip of the spray nozzle 160 was 10 mm. The film thickness of the metal film formed on the surface of the aluminum base 10 was adjusted in the range of 5 to 50 μm.
 コールドスプレーに供したNi粉末、及びSn粉末は以下のとおりである。Ni粉末は、スパイク状(粒子表面に先鋭部を有する形状)であり、平均粒径(D50)は7μmであった。Sn粉末は、球状であり、平均粒径(D50)は28μmであった。 The Ni powder and the Sn powder subjected to cold spray are as follows. The Ni powder was in a spike shape (a shape having a tip on the particle surface), and the average particle diameter (D50) was 7 μm. The Sn powder was spherical and had an average particle size (D50) of 28 μm.
 初期接触抵抗は4端子法により測定された。アルミニウム基材10は、A6061、厚み3.0mm、幅20mmの試験片が用いられた。銅板14は、C1020、厚み1.6mm、幅20mmの試験片が用いられた。螺子止めトルクは4.5Nmであった。電流は直流1Aであった。 Initial contact resistance was measured by the four probe method. As the aluminum substrate 10, a test piece of A6061, 3.0 mm in thickness and 20 mm in width was used. As the copper plate 14, a test piece of C1020, 1.6 mm in thickness and 20 mm in width was used. The screwing torque was 4.5 Nm. The current was 1 A DC.
 以上の条件のもと、Ni成膜、Sn成膜、及びNi+Sn成膜それぞれの初期接触抵抗は、順に、約3.4μΩ、約2.7μΩ、約1μΩであった。つまり、Ni+Sn成膜の初期接触抵抗は、Ni成膜及びSn成膜それぞれから約70%減、約62%減という顕著に低い数値であった。この結果より、本実施例は、比較例よりも、初期接触抵抗が大きいことにより生ずる問題(以下(1)、(2))を解決する余地が大きいことが示された。(1)アルミ導電部材と電子部品等の接続端子との間の電気的接続が困難になる。(2)標準電極電位差の大きい導電部材(例えば、銅導電部材)とアルミ導電部材とが接触した場合、接触部分において電食(電気化学的な腐食)が発生する。 Under the above conditions, the initial contact resistances of Ni film formation, Sn film formation, and Ni + Sn film formation were about 3.4 μΩ, about 2.7 μΩ, and about 1 μΩ, respectively. That is, the initial contact resistance of the Ni + Sn film formation was a remarkably low numerical value of about 70% decrease and about 62% decrease respectively from the Ni film formation and the Sn film formation. From this result, it is shown that the present example has much room for solving the problems (following (1), (2)) which arise because initial contact resistance is larger than a comparative example. (1) The electrical connection between the aluminum conductive member and the connection terminal such as the electronic component becomes difficult. (2) Standard Electrode When a conductive member (for example, a copper conductive member) having a large potential difference is in contact with an aluminum conductive member, electrolytic corrosion (electrochemical corrosion) occurs at the contact portion.
  〔恒温恒湿試験〕
 次に、Ni粉末12a及びSn粉末12bの混合比率を変化させた金属膜12を恒温恒湿試験に供したときの接触抵抗を図7により説明する。図7は、Ni粉末12a及びSn粉末12bの混合比率を変化させた金属膜12を恒温恒湿試験に供したときの接触抵抗を示すグラフである。
[Constant temperature and humidity test]
Next, the contact resistance when the metal film 12 in which the mixing ratio of the Ni powder 12a and the Sn powder 12b is changed is subjected to a constant temperature and humidity test will be described with reference to FIG. FIG. 7 is a graph showing the contact resistance when the metal film 12 in which the mixing ratio of the Ni powder 12a and the Sn powder 12b is changed is subjected to a constant temperature and humidity test.
 恒温恒湿試験は、温度85℃、湿度85%、1000時間以上(実際の測定は1063hr)の条件で行った。接触抵抗は4端子法により測定された。アルミニウム基材10は、A6061、厚み3.0mm、幅20mmの試験片が用いられた。銅板14は、C1020、厚み1.6mm、幅20mmの試験片が用いられた。螺子止めトルクは4.5Nmであった。電流は直流1Aであった。 The constant temperature and humidity test was performed under the conditions of a temperature of 85 ° C., a humidity of 85%, and 1000 hours or more (actual measurement is 1063 hours). The contact resistance was measured by the four probe method. As the aluminum substrate 10, a test piece of A6061, 3.0 mm in thickness and 20 mm in width was used. As the copper plate 14, a test piece of C1020, 1.6 mm in thickness and 20 mm in width was used. The screwing torque was 4.5 Nm. The current was 1 A DC.
 図7において、横軸はSn粉末の混合比率を示す。Sn粉末の比率は、2%、5%、7%、20%、30%、50%と変化させた。縦軸は接触抵抗(μΩ)を示す。以下、図7から得られた結果を示す。
・恒温恒湿試験前、Sn粉末の比率2%~50%の範囲における接触抵抗は、いずれも3.5μΩ以下を示した。
・恒温恒湿試験後、Sn粉末の比率2%~50%の範囲における接触抵抗は、いずれも4.5μΩ以下を示した。4.5μΩは十分に実用的な数値であることから、1000hr以上の恒温恒湿試験を経てもなお、バスバー1は実用的であることが示された。
・恒温恒湿試験前後の接触抵抗の変化率を確認すると、Sn粉末2%は約300%の増加であった(1μΩから3μΩへ増加)。Sn粉末5%は約130%の増加であった(0.3μΩから0.7μΩへ増加)。Sn粉末30%は約100%の増加であった(1.0μΩから2.0μΩへ増加)。Sn粉末50%は約30%の増加であった(3.5μΩから4.5μΩへ増加)。これに対して、Sn粉末7%は約15%の増加であった(1.3μΩから1.5μΩ)。Sn粉末20%は変化率0%であった(1.0μΩから1.0μΩ)。恒温恒湿試験前後の接触抵抗の変化率は小さい方が好ましい。従って、Sn粉末の混合比率は、恒温恒湿試験前後の接触抵抗の変化率を15%以内に収めることが可能な7%以上20%以下であることがより好ましいこと。
In FIG. 7, the horizontal axis shows the mixing ratio of Sn powder. The proportion of Sn powder was changed to 2%, 5%, 7%, 20%, 30%, 50%. The vertical axis represents the contact resistance (μΩ). Hereinafter, the result obtained from FIG. 7 is shown.
Before the constant temperature and humidity test, the contact resistance in the range of 2% to 50% of the Sn powder was 3.5 μΩ or less.
After the constant temperature and constant humidity test, the contact resistance in the range of 2% to 50% of the Sn powder was 4.5 μΩ or less. Since 4.5 μΩ is a sufficiently practical value, it was shown that the bus bar 1 is practical even after a constant temperature and humidity test of 1000 hours or more.
Confirming the rate of change in contact resistance before and after the constant temperature and humidity test, 2% of Sn powder increased by about 300% (increased from 1 μΩ to 3 μΩ). The Sn powder 5% increased by about 130% (increased from 0.3 μΩ to 0.7 μΩ). The Sn powder 30% increased about 100% (from 1.0 μΩ to 2.0 μΩ). The Sn powder 50% increased by about 30% (increased from 3.5 μΩ to 4.5 μΩ). In contrast, 7% of Sn powder had an increase of about 15% (1.3 μΩ to 1.5 μΩ). The change rate of the Sn powder 20% was 0% (1.0 μΩ to 1.0 μΩ). The rate of change in contact resistance before and after the constant temperature and humidity test is preferably small. Therefore, it is more preferable that the mixing ratio of the Sn powder is 7% or more and 20% or less which can keep the change rate of the contact resistance within 15% before and after the constant temperature and humidity test.
  〔螺子締め付けトルク〕
 次に、螺子16の締め付けトルクを変化させたときの接触抵抗を図8により説明する。図8は、螺子16の締め付けトルクを変化させたときの接触抵抗を示すグラフである。
[Screw tightening torque]
Next, the contact resistance when the tightening torque of the screw 16 is changed will be described with reference to FIG. FIG. 8 is a graph showing the contact resistance when the tightening torque of the screw 16 is changed.
 図8において、横軸は、アルミニウム基材10の表面に形成される金属膜の組成、及び/又は、態様を示す。左から順に、Snメッキ、Ni+Sn膜(Sn:Ni=20%:80%)、Sn膜、Ni膜を示す。縦軸は接触抵抗(μΩ)を示す。螺子締め付けトルクは、2.5Nm、3.5Nm、4.5Nmの3パターンで測定した。 In FIG. 8, the horizontal axis indicates the composition and / or the aspect of the metal film formed on the surface of the aluminum substrate 10. The left side shows Sn plating, Ni + Sn film (Sn: Ni = 20%: 80%), Sn film, Ni film in order from the left. The vertical axis represents the contact resistance (μΩ). The screw tightening torque was measured in three patterns of 2.5 Nm, 3.5 Nm, and 4.5 Nm.
 Ni+Sn膜(Sn:Ni=20%:80%)、Sn膜、及びNi膜は、いずれもコールドスプレー法を用いて成膜された。コールドスプレーの設定条件は、〔初期接触抵抗〕で説明したのと同じ条件である。以下、図8から得られる結果を示す。
・Snメッキ、Ni+Sn膜、Sn膜、Ni膜はいずれも、トルクを強くするほど接触抵抗が減少した。これは、それぞれの膜と銅板14とがより強固に接触することにより、接触抵抗が低下することによる。
・Ni+Sn膜は、Sn膜及びNi膜と比較して、弱いトルク(2.5Nm)であっても接触抵抗を低く保つことができた。
・Ni+Sn膜は、2.5Nm、3.5Nm、4.5Nmいずれにおいても、Snメッキと同程度の接触抵抗であった。
The Ni + Sn film (Sn: Ni = 20%: 80%), the Sn film, and the Ni film were all formed using a cold spray method. The cold spray setting conditions are the same as those described in [Initial contact resistance]. Hereinafter, the result obtained from FIG. 8 is shown.
In all of the Sn plating, Ni + Sn film, Sn film, and Ni film, the contact resistance decreased as the torque increased. This is because the contact resistance is lowered by the stronger contact between the respective films and the copper plate 14.
The contact resistance of the Ni + Sn film can be kept low even at a weak torque (2.5 Nm) as compared with the Sn film and the Ni film.
The Ni + Sn film had the same contact resistance as that of the Sn plating, at 2.5 Nm, 3.5 Nm, and 4.5 Nm.
 以上の結果から、バスバー1は、螺子16のネジ締めトルクが2.5Nm以上4.5Nm以下の範囲においても接触抵抗は低く、十分に実用的であることが示された。これに対して、螺子16のネジ締めトルクが2.5Nm以上4.5Nm以下の範囲では、Sn膜及びNi膜は、Ni+Sn膜よりも数倍高い接触抵抗を示した。 From the above results, the bus bar 1 has a low contact resistance even in the range of 2.5 Nm or more and 4.5 Nm or less of the screw tightening torque of the screw 16 and is sufficiently practical. On the other hand, the Sn film and the Ni film exhibited a contact resistance several times higher than that of the Ni + Sn film when the screw tightening torque of the screw 16 is in the range of 2.5 Nm to 4.5 Nm.
 このように、螺子16のネジ締めトルクが従来のネジ締めトルクよりも小さくてよいことから、バスバー1は、従来のバスバーよりも容易に製造することができる。また、バスバー1は、使用中にトルクが緩んだ場合であっても、接触抵抗を低い状態に維持することができる。これにより、バスバー1は、バスバー1が組み込まれる装置の長期安定性を改善できる。 Thus, since the screw tightening torque of screw 16 may be smaller than the conventional screw tightening torque, bus bar 1 can be manufactured more easily than the conventional bus bar. Further, the bus bar 1 can maintain the contact resistance in a low state even when the torque is loosened during use. Thereby, the bus bar 1 can improve the long-term stability of the device in which the bus bar 1 is incorporated.
  〔金属膜12の膜厚に対する接触抵抗〕
 次に、螺子16のネジ締めトルクとNi+Sn膜(Sn:Ni=20%:80%)の膜厚との関係を図9により説明する。図9は、螺子16のネジ締めトルクとNi+Sn膜の膜厚との関係を示すグラフである。図9において、横軸はトルク(Nm)を示し、縦軸は接触抵抗(μΩ)を示す。四角の凡例はNi+Sn膜の膜厚が平均63μmの場合を示し、菱形の凡例はNi+Sn膜の膜厚が平均48μmの場合を示す。
[Contact resistance to film thickness of metal film 12]
Next, the relationship between the tightening torque of the screw 16 and the film thickness of the Ni + Sn film (Sn: Ni = 20%: 80%) will be described with reference to FIG. FIG. 9 is a graph showing the relationship between the screw tightening torque of the screw 16 and the film thickness of the Ni + Sn film. In FIG. 9, the horizontal axis represents torque (Nm), and the vertical axis represents contact resistance (μΩ). The square legend indicates the case where the film thickness of the Ni + Sn film is 63 μm on average, and the diamond legend indicates the case where the film thickness of the Ni + Sn film is 48 μm on average.
 図示するように、Ni+Sn膜は、膜厚が薄いほど接触抵抗が低くなる。これは、Ni+Sn膜そのものが接触抵抗を高くするためである。ただし、バスバー1は、Ni+Sn膜の膜厚が平均63μmの場合、かつ、螺子16のネジ締めトルクが2.5Nmである場合においても、十分に実用的な接触抵抗(約3μΩ)を保つことが示された。 As shown, the Ni + Sn film has a lower contact resistance as the film thickness becomes thinner. This is because the Ni + Sn film itself increases the contact resistance. However, the bus bar 1 can maintain sufficiently practical contact resistance (about 3 μΩ) even when the film thickness of the Ni + Sn film is 63 μm on average and the screw tightening torque of the screw 16 is 2.5 Nm. Indicated.
 〔小括〕
 バスバー1は、アルミニウム基材10と、金属膜12と、銅板14と、螺子16と、を備える。金属膜12は、Ni粉末12aとSn粉末12bとの混合粉末材料がアルミニウム基材10上にコールドスプレーされることにより、アルミニウム基材10上に成膜された金属膜である。
〔Brief Summary〕
The bus bar 1 includes an aluminum base 10, a metal film 12, a copper plate 14, and a screw 16. The metal film 12 is a metal film formed into a film on the aluminum substrate 10 by cold-spraying a mixed powder material of the Ni powder 12 a and the Sn powder 12 b onto the aluminum substrate 10.
 Ni粉末12aとSn粉末12bとの混合粉末材料を金属膜12の材料として用いる理由の一つとして、アルミニウム基材をSnコーティングした場合の課題が挙げられる。具体的に、Sn皮膜は強度が低い。そのため、アルミニウム基材に形成されたSn皮膜は剥離しやすい。Sn膜がアルミニウム基材から剥離すると、接触抵抗は上昇する。さらに、アルミニウム基材に形成されたSn膜を銅板で挟み込んだ場合、Sn膜と銅板との間にも隙間が生じやすい。これは、バスバーが通電するとバスバーの構成部材が熱膨張し、その影響でSn膜と銅板との間に隙間が生じ、その結果、接触抵抗が上昇するためである。このように、アルミニウム基材をSnコーティングした場合に様々な課題が認められる。 One of the reasons for using the mixed powder material of the Ni powder 12a and the Sn powder 12b as the material of the metal film 12 is the problem in the case where the aluminum base is coated with Sn. Specifically, the Sn film has low strength. Therefore, the Sn film formed on the aluminum base is easily peeled off. When the Sn film separates from the aluminum substrate, the contact resistance increases. Furthermore, when the Sn film formed on the aluminum base is sandwiched between copper plates, a gap is likely to be generated between the Sn film and the copper plate. This is because when the bus bar is energized, the constituent members of the bus bar thermally expand, which causes a gap between the Sn film and the copper plate, and as a result, the contact resistance increases. Thus, various problems are recognized when Sn coating an aluminum base material.
 そこで、本願発明者は、鋭意検討の末、Ni粉末12aとSn粉末12bとの混合粉末材料を金属膜12の材料として用いたバスバー1を見出すに至った。このような金属膜12は、皮膜強度を向上させることが可能である。さらに、本願発明者は、Sn粉末とNi粉末の混合比率を所定の範囲に収めることにより、1000時間以上の恒温恒湿試験を経てもなお、接触抵抗が低く保持されたバスバー1を実現できることを見出した。加えて、バスバー1は、従来のバスバーよりも螺子16の締め付けトルクを低く保持することができる。これにより、バスバー1は、バスバー1が組み込まれる装置の長期安定性を改善することができる。
〔まとめ〕
 本発明の態様1に係るバスバーは、アルミニウム基材と、ニッケル(Ni)、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又は、これらの2種以上を含む合金を成分とする第一粉末材料と、錫(Sn)又はSnを含む合金を成分とする第二粉末材料とが混合された混合粉末材料を用いたコールドスプレーにより上記アルミニウム基材上に成膜された金属膜と、上記金属膜上に配される導電材と、上記アルミニウム基材及び上記金属膜と上記導電材とを互いに螺子止めする螺子と、を備える構成である。
Therefore, the inventor of the present application has found out the bus bar 1 using the mixed powder material of the Ni powder 12a and the Sn powder 12b as the material of the metal film 12 through intensive studies. Such a metal film 12 can improve the film strength. Furthermore, the inventor of the present application is able to realize the bus bar 1 in which the contact resistance is kept low even after passing a constant temperature and humidity test for 1000 hours or more by keeping the mixing ratio of Sn powder and Ni powder in a predetermined range. I found it. In addition, the bus bar 1 can keep the tightening torque of the screw 16 lower than that of the conventional bus bar. Thereby, the bus bar 1 can improve the long-term stability of the device in which the bus bar 1 is incorporated.
[Summary]
The bus bar according to aspect 1 of the present invention is made of an aluminum base, nickel (Ni), gold (Au), zinc (Zn), silver (Ag), copper (Cu), or two or more of them. On the above aluminum substrate by cold spray using a mixed powder material in which a first powder material containing an alloy containing tin and a second powder material containing tin (Sn) or an alloy containing tin as a component is mixed A metal film formed into a film, a conductive material disposed on the metal film, and a screw for screwing the aluminum base, the metal film, and the conductive material to each other are included.
 上記の構成によれば、本発明の一実施形態に係るバスバーは以下の効果を奏する。 According to the above configuration, the bus bar according to the embodiment of the present invention has the following effects.
 具体的に、上記混合粉末材料が上記アルミニウム基材にコールドスプレーされたときに、上記第二粉末材料の成分であるSnは、Snよりも融点の高い上記第一粉末材料の成分(Ni、Au、Zn、Ag、Cu)と比べて、半溶融状態となりやすい。そのため、Snは、上記第一粉末材料の成分を構成する粒子間に入り込み、当該粒子を互いに結合する役割を果たし、かつ、上記金属膜を凹凸の少ない連続膜とすることができる。その金属膜上に上記導電材が配され、かつ、上記アルミニウム基材及び上記金属膜と上記導電材とが上記螺子によって互いに螺子止めされる。 Specifically, when the mixed powder material is cold sprayed onto the aluminum base, Sn, which is a component of the second powder material, is a component of the first powder material having a melting point higher than that of Sn (Ni, Au , Zn, Ag, and Cu), it tends to be in a semi-molten state. Therefore, Sn intrudes between particles constituting the component of the first powder material, plays a role of bonding the particles to one another, and can make the metal film a continuous film with little unevenness. The conductive material is disposed on the metal film, and the aluminum base, the metal film, and the conductive material are screwed to each other by the screw.
 上記の構成によれば、上記アルミニウム基材への上記金属膜の成膜が簡素化され、かつ、上記アルミニウム基材への上記金属膜の密着性を高めることができる。さらに、上記の構成によれば、上記金属膜と上記導電材との間には隙間が生じにくい。その結果、本発明の一実施形態に係るバスバーは、従来のバスバーに比べて接続抵抗を低くすることができる。 According to the above configuration, the film formation of the metal film on the aluminum base can be simplified, and the adhesion of the metal film to the aluminum base can be enhanced. Furthermore, according to the above configuration, a gap does not easily occur between the metal film and the conductive material. As a result, the bus bar according to the embodiment of the present invention can lower the connection resistance as compared with the conventional bus bar.
 このようにして、本発明の一実施形態に係るバスバーは、実用性に優れたバスバーを実現することができるという効果を奏する。 Thus, the bus bar according to the embodiment of the present invention has an effect that the bus bar having excellent practicability can be realized.
 本発明の態様2に係るバスバーは、上記の態様1において、上記導電材は銅板であり、上記第一粉末材料は、Niを成分とし、上記第二粉末材料は、Snを成分とし、上記混合粉末材料は、重量比で、上記第二粉末材料を2%以上50%以下含んでおり、温度85度、湿度85%、1000時間以上の条件で恒温恒湿試験を行ったときに、当該恒温恒湿試験の前後において、上記アルミニウム基材と上記導電材との接触抵抗が4.5μΩ以下である構成としてもよい。 In the bus bar according to aspect 2 of the present invention, in the above aspect 1, the conductive material is a copper plate, the first powder material contains Ni as a component, and the second powder material contains Sn as a component The powder material contains 2% to 50% by weight of the second powder material, and the constant temperature and humidity test is performed under conditions of a temperature of 85 degrees, a humidity of 85%, and a period of 1000 hours or more. Before and after the constant humidity test, the contact resistance between the aluminum base and the conductive material may be 4.5 μΩ or less.
 上記の構成によれば、上記恒温恒湿試験の後であっても、上記アルミニウム基材と上記導電材との接触抵抗を4.5μΩ以下に抑えることができる。それゆえ、接触抵抗に対して要求される仕様が厳しい場合(例えば、5μΩ以下)において、本発明の一実施形態に係るバスバーを有効に活用することが可能となる。 According to the above configuration, even after the constant temperature and humidity test, the contact resistance between the aluminum base and the conductive material can be suppressed to 4.5 μΩ or less. Therefore, when the specification required for the contact resistance is strict (for example, 5 μΩ or less), it is possible to effectively utilize the bus bar according to the embodiment of the present invention.
 本発明の態様3に係るバスバーは、上記の態様1において、上記導電材は銅板であり、上記第一粉末材料は、Niを成分とし、上記第二粉末材料は、Snを成分とし、上記混合粉末材料は、重量比で、上記第二粉末材料を7%以上20%以下含んでおり、温度85度、湿度85%、1000時間以上の条件で恒温恒湿試験を行ったときに、当該恒温恒湿試験の前後において、上記アルミニウム基材と上記導電材との接触抵抗の変化率が15%以内である構成としてもよい。 In the bus bar according to aspect 3 of the present invention, in the above aspect 1, the conductive material is a copper plate, the first powder material contains Ni as a component, and the second powder material contains Sn as a component The powder material contains 7% to 20% by weight of the second powder material, and the constant temperature and humidity test is performed under conditions of a temperature of 85 degrees, a humidity of 85%, and a period of 1000 hours or more. Before and after the constant humidity test, the change ratio of the contact resistance between the aluminum base and the conductive material may be 15% or less.
 上記の構成によれば、上記恒温恒湿試験を実施した後であっても、上記アルミニウム基材と上記導電材との接触抵抗の変化率を15%以内に抑えることができる。それゆえ、接触抵抗の変化率に対して要求される仕様が厳しい場合(例えば、50%以内)において、本発明の一実施形態に係るバスバーを有効に活用することが可能となる。 According to the above configuration, even after the constant temperature and humidity test is performed, the change rate of the contact resistance between the aluminum base and the conductive material can be suppressed to 15% or less. Therefore, when the specification required for the change rate of the contact resistance is strict (for example, within 50%), it is possible to effectively utilize the bus bar according to the embodiment of the present invention.
 本発明の態様4に係るバスバーは、上記の態様3において、上記螺子のネジ締めトルクが2.5Nm以上4.5Nm以内の範囲において、上記接触抵抗が2μΩ以下である構成としてもよい。 In the bus bar according to aspect 4 of the present invention, in the above aspect 3, the contact resistance may be 2 μΩ or less in the range where the screw tightening torque of the screw is 2.5 Nm or more and 4.5 Nm or less.
 上記の構成によれば、上記螺子のネジ締めトルクは従来のネジ締めトルクよりも小さくてよい。従って、本発明の一実施形態に係るバスバーは、従来のバスバーよりも容易に製造することができる。また、本発明の一実施形態に係るバスバーは、使用中にトルクが緩んだ場合であっても、接触抵抗が低い状態を維持することができる。その効果ゆえに、本発明の一実施形態に係るバスバーは、当該バスバーが組み込まれる装置の長期安定性を改善することも可能である。 According to the above configuration, the screw tightening torque of the screw may be smaller than the conventional screw tightening torque. Therefore, the bus bar according to an embodiment of the present invention can be manufactured more easily than the conventional bus bar. Further, the bus bar according to an embodiment of the present invention can maintain a low contact resistance even when the torque is loosened during use. Due to that effect, the bus bar according to an embodiment of the present invention can also improve the long-term stability of the device in which the bus bar is incorporated.
 本発明の態様5に係るバスバーの製造方法は、バスバーの製造方法であって、アルミニウム基材に対して、ニッケル(Ni)、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又は、これらの2種以上を含む合金を成分とする第一粉末材料と、錫(Sn)又はSnを含む合金を成分とする第二粉末材料とが混合された混合粉末材料をコールドスプレーすることにより、上記アルミニウム基材上に金属膜を成膜する成膜ステップと、上記金属膜上に導電材を配設する配設ステップと、上記アルミニウム基材及び上記金属膜と上記導電材とを互いに固定する固定ステップと、を含む方法である。 A method of manufacturing a bus bar according to aspect 5 of the present invention is a method of manufacturing a bus bar, and nickel (Ni), gold (Au), zinc (Zn), silver (Ag), copper (aluminium base) A mixed powder in which a first powder material containing an alloy of any of Cu) or two or more of these as a component, and a second powder material containing tin (Sn) or an alloy containing Sn as a component Forming a metal film on the aluminum substrate by cold spraying the material, arranging a conductive material on the metal film, arranging the aluminum substrate, and the metal film And a fixing step of fixing the conductive material to each other.
 上記の方法によれば、上記バスバーと同様の効果を奏する。
 本実施形態に係るバスバーは、次のように表現することもできる。
 本実施形態に係るバスバーは、アルミニウム基材と、ニッケル(Ni)、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又は、これらの2種以上を含む合金を成分とする第一粉末材料と、錫(Sn)又はSnを含む合金を成分とする第二粉末材料とが混合された混合粉末材料で構成され、上記アルミニウム基材上に配された金属膜と、上記金属膜上に配される導電材と、上記アルミニウム基材及び上記金属膜と上記導電材とを互いに螺子止めする螺子と、を備える構成であってもよい。
According to the above method, the same effect as the bus bar can be obtained.
The bus bar according to the present embodiment can also be expressed as follows.
The bus bar according to the present embodiment includes an aluminum base, nickel (Ni), gold (Au), zinc (Zn), silver (Ag), copper (Cu), or two or more of them. A metal comprising a mixed powder material in which a first powder material containing an alloy as a component and a second powder material containing tin (Sn) or an alloy containing Sn as a component, the metal disposed on the above aluminum substrate It may be configured to include a film, a conductive material disposed on the metal film, and a screw for screwing the aluminum base, the metal film, and the conductive material to each other.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
1  スバー
10 アルミニウム基材
12 金属膜
12a Ni粉末
12b Sn粉末
14 銅板(導電材)
16 螺子
100 コールドスプレー装置
110 タンク
120 ヒーター
140 フィーダ
150 基材ホルダー
160 スプレーノズル
170 基材
DESCRIPTION OF SYMBOLS 1 Swar 10 aluminum base 12 metal film 12a Ni powder 12b Sn powder 14 copper plate (electrically conductive material)
16 screw 100 cold spray apparatus 110 tank 120 heater 140 feeder 150 substrate holder 160 spray nozzle 170 substrate

Claims (5)

  1.  アルミニウム基材と、
     ニッケル(Ni)、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又は、これらの2種以上を含む合金を成分とする第一粉末材料と、錫(Sn)又はSnを含む合金を成分とする第二粉末材料とが混合された混合粉末材料を用いたコールドスプレーにより上記アルミニウム基材上に成膜された金属膜と、
     上記金属膜上に配される導電材と、
     上記アルミニウム基材及び上記金属膜と上記導電材とを互いに螺子止めする螺子と、を備えることを特徴とするバスバー。
    Aluminum base,
    A first powder material containing an alloy of nickel (Ni), gold (Au), zinc (Zn), silver (Ag), copper (Cu), or an alloy containing two or more of them, tin ( A metal film formed on the above aluminum substrate by cold spray using a mixed powder material in which a second powder material containing Sn) or an alloy containing Sn as a component is mixed;
    A conductive material disposed on the metal film;
    A bus bar comprising: a screw for screwing together the aluminum base and the metal film and the conductive material.
  2.  上記導電材は銅板であり、
     上記第一粉末材料は、Niを成分とし、
     上記第二粉末材料は、Snを成分とし、
     上記混合粉末材料は、重量比で、上記第二粉末材料を2%以上50%以下含んでおり、
     温度85度、湿度85%、1000時間以上の条件で恒温恒湿試験を行ったときに、当該恒温恒湿試験の前後において、上記アルミニウム基材と上記導電材との接触抵抗が4.5μΩ以下であることを特徴とする請求項1に記載のバスバー。
    The conductive material is a copper plate,
    The first powder material contains Ni as a component,
    The second powder material contains Sn as a component,
    The mixed powder material contains 2% or more and 50% or less by weight of the second powder material,
    When the constant temperature and humidity test is performed under conditions of a temperature of 85 degrees and a humidity of 85% for 1000 hours or more, the contact resistance between the aluminum base and the conductive material is 4.5 μΩ or less before and after the constant temperature and humidity test. The bus bar according to claim 1, characterized in that:
  3.  上記導電材は銅板であり、
     上記第一粉末材料は、Niを成分とし、
     上記第二粉末材料は、Snを成分とし、
     上記混合粉末材料は、重量比で、上記第二粉末材料を7%以上20%以下含んでおり、
     温度85度、湿度85%、1000時間以上の条件で恒温恒湿試験を行ったときに、当該恒温恒湿試験の前後において、上記アルミニウム基材と上記導電材との接触抵抗の変化率が15%以内であることを特徴とする請求項1に記載のバスバー。
    The conductive material is a copper plate,
    The first powder material contains Ni as a component,
    The second powder material contains Sn as a component,
    The mixed powder material contains 7% to 20% by weight of the second powder material,
    When the constant temperature and humidity test is performed under the conditions of a temperature of 85 degrees and a humidity of 85% for 1000 hours or more, the change ratio of the contact resistance between the aluminum base and the conductive material is 15 before and after the constant temperature and humidity test. The bus bar according to claim 1, characterized in that it is within%.
  4.  上記螺子のネジ締めトルクが2.5Nm以上4.5Nm以内の範囲において、上記接触抵抗が2μΩ以下であることを特徴とする請求項3に記載のバスバー。 The bus bar according to claim 3, wherein the contact resistance is 2 μΩ or less in a range where a screw tightening torque of the screw is 2.5 Nm or more and 4.5 Nm or less.
  5.  バスバーの製造方法であって、
     アルミニウム基材に対して、ニッケル(Ni)、金(Au)、亜鉛(Zn)、銀(Ag)、銅(Cu)のいずれか、又は、これらの2種以上を含む合金を成分とする第一粉末材料と、錫(Sn)又はSnを含む合金を成分とする第二粉末材料とが混合された混合粉末材料をコールドスプレーすることにより、上記アルミニウム基材上に金属膜を成膜する成膜ステップと、
     上記金属膜上に導電材を配設する配設ステップと、
     上記アルミニウム基材及び上記金属膜と上記導電材とを互いに固定する固定ステップと、を含むことを特徴とするバスバーの製造方法。
    A method of manufacturing a bus bar,
    The aluminum base material is made of nickel (Ni), gold (Au), zinc (Zn), silver (Ag), copper (Cu), or an alloy containing two or more of these as a component Forming a metal film on the above aluminum substrate by cold spraying a mixed powder material in which one powder material and a second powder material containing tin (Sn) or an alloy containing Sn as a component are mixed Membrane step,
    Arranging the conductive material on the metal film;
    And a fixing step of fixing the aluminum base material, the metal film, and the conductive material to each other.
PCT/JP2019/001111 2018-01-19 2019-01-16 Busbar, and busbar manufacturing method WO2019142828A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-007623 2018-01-19
JP2018007623A JP2019127599A (en) 2018-01-19 2018-01-19 Bus bar, and manufacturing method of bus bar

Publications (1)

Publication Number Publication Date
WO2019142828A1 true WO2019142828A1 (en) 2019-07-25

Family

ID=67302214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001111 WO2019142828A1 (en) 2018-01-19 2019-01-16 Busbar, and busbar manufacturing method

Country Status (2)

Country Link
JP (1) JP2019127599A (en)
WO (1) WO2019142828A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023244716A1 (en) * 2022-06-15 2023-12-21 Rogers Corporation Busbar contact coatings by cold spray deposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233273A (en) * 2010-04-23 2011-11-17 Nhk Spring Co Ltd Conductive member and method of manufacturing the same
JP2015065105A (en) * 2013-09-26 2015-04-09 日産自動車株式会社 Member for electrical connection
JP2016216771A (en) * 2015-05-18 2016-12-22 タツタ電線株式会社 Solder connection structure and film deposition method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233273A (en) * 2010-04-23 2011-11-17 Nhk Spring Co Ltd Conductive member and method of manufacturing the same
JP2015065105A (en) * 2013-09-26 2015-04-09 日産自動車株式会社 Member for electrical connection
JP2016216771A (en) * 2015-05-18 2016-12-22 タツタ電線株式会社 Solder connection structure and film deposition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023244716A1 (en) * 2022-06-15 2023-12-21 Rogers Corporation Busbar contact coatings by cold spray deposition

Also Published As

Publication number Publication date
JP2019127599A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
US6043451A (en) Plasma spraying of nickel-titanium compound
US6455108B1 (en) Method for preparation of a thermal spray coated substrate for use in an electrical energy storage device
TWI663289B (en) Film formation method
US20130072075A1 (en) Conductive member and method of manufacturing the same
US20190094643A1 (en) Metal accretion bus bars
US6099974A (en) Coating that enables soldering to non-solderable surfaces
RU2422555C1 (en) Procedure for electric-explosive application of metal coating on contact surfaces
US20180174769A1 (en) Contact assembly for electrical devices and method for making
US6685988B2 (en) Kinetic sprayed electrical contacts on conductive substrates
CN102763183B (en) Methods for manufacturing an electrical contact pad and electrical contact
KR101013078B1 (en) Method of fabrication electrode using cold spray and electrode by the same
WO2019142828A1 (en) Busbar, and busbar manufacturing method
WO2016185996A1 (en) Solder connection structure and film forming method
EP3573436A1 (en) Method for producing ceramic circuit board
JP6008443B2 (en) Laminate spray coating formation method
US11570901B2 (en) Method for manufacturing aluminum circuit board
HU189862B (en) Method for making electric contact
US20090304942A1 (en) Wire-arc spraying of a zinc-nickel coating
WO2013141250A1 (en) METHOD FOR ANCHORING Sn POWDER ON ALUMINIUM SUBSTRATE AND ALUMINIUM ELECRTOCONDUCTIVE MEMBER
KR20150062557A (en) Method of forming amorphous alloy film and printed wiring board obtained by said forming method
JP2013193037A (en) Laminate and method for producing laminate
JP3525618B2 (en) Plating method for metal substrate
JP3282478B2 (en) Plating method for metal substrate
WO2011030443A1 (en) Corrosion-resistant coating layer on steel material and method of forming same
GB2327092A (en) Thermal spraying aluminium onto a non-roughened aluminium substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19741613

Country of ref document: EP

Kind code of ref document: A1