WO2019142803A1 - Matrix resin, intermediate material, and molded article - Google Patents

Matrix resin, intermediate material, and molded article Download PDF

Info

Publication number
WO2019142803A1
WO2019142803A1 PCT/JP2019/001017 JP2019001017W WO2019142803A1 WO 2019142803 A1 WO2019142803 A1 WO 2019142803A1 JP 2019001017 W JP2019001017 W JP 2019001017W WO 2019142803 A1 WO2019142803 A1 WO 2019142803A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
matrix resin
mass
resin
formula
Prior art date
Application number
PCT/JP2019/001017
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 小笠原
征司 土屋
小並 諭吉
洋之 中尾
鍋島 泰彦
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2019506461A priority Critical patent/JP6791354B2/en
Publication of WO2019142803A1 publication Critical patent/WO2019142803A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/68Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates

Definitions

  • the present invention relates to a matrix resin, an intermediate material and a molded article.
  • Priority is claimed on Japanese Patent Application No. 2018-004833, filed January 16, 2018, the content of which is incorporated herein by reference.
  • Fiber-reinforced composite materials containing reinforcing fibers, fillers, etc. are excellent in mechanical strength, in addition to ease of processing, non-corrosion, and lightness, which are characteristics of plastics, and therefore members for electrical and electronic devices, building materials, vehicles It is widely used for the member etc.
  • Fiber reinforced composites are manufactured in a variety of ways. For example, a method of laminating a prepreg in which a matrix resin is impregnated in advance on a reinforcing fiber base made of continuous fibers, and heat curing the resin for molding is widely used. However, molding using a prepreg makes it difficult to produce a fiber-reinforced composite material of complicated shape having fine irregularities.
  • an intermediate material in which a reinforcing resin cut into a predetermined length is impregnated with a matrix resin in advance is suitable. Since the intermediate material easily flows in the mold at the time of molding, it can be applied to the formation of fine asperities.
  • the intermediate material for example, those containing a reinforcing fiber cut into a fixed length and a thermosetting resin such as an unsaturated polyester resin, an epoxy (meth) acrylate resin, etc. are known (Patent Documents 1 to 4).
  • thermosetting resin in the matrix resin contains an unsaturated polyester resin or an epoxy (meth) acrylate resin, generally, as a thickener, an alkaline earth metal salt such as MgO or CaO or a metal hydrate thereof; An isocyanate type thickener etc. are used.
  • an isocyanate-based thickener is used, the resin can be easily thickened and the handling property and the like is improved.
  • Patent Documents 5 to 7 describes a prepreg having a specific urethane-modified epoxy (meth) acrylate as an essential component.
  • a specific urethane-modified epoxy (meth) acrylate is a reaction product of an epoxy (meth) acrylate having an average number of hydroxyl groups per molecule in a specific range and a polyisocyanate having an average number of isocyanate groups per molecule in a specific range is there.
  • JP 11-147222 A Unexamined-Japanese-Patent No. 10-110048 JP 10-120736 A Japanese Patent Application Laid-Open No. 11-147221 Japanese Examined Patent Publication No. 60-24810 Japanese Examined Patent Publication 63-1332 Patent No. 6150034
  • the range (that is, process window) of the compounding ratio of the thermosetting resin and the isocyanate-based thickener which can balance the handleability and the fluidity of the intermediate material tends to be narrow. That is, the fluidity of the intermediate material may be greatly reduced or the handleability may be greatly deteriorated, as compared with the numerical value of the optimum ratio, by merely increasing or decreasing the compounding amount of the isocyanate-based thickener. As a result, product unevenness of the intermediate material may occur due to an increase or decrease in the compounding amount of the isocyanate-based thickener.
  • the process window can not always be expanded simply by setting the average number of functional groups per molecule of the epoxy (meth) acrylate resin and the isocyanate-based thickener to a specific range.
  • the ripening period may be excessively prolonged.
  • the epoxy (meth) acrylate resin contacts with a high concentration until the isocyanate-based thickener dissolves, so in the three-dimensional direction
  • a thickening reaction of the above may be induced, and product spots on the intermediate material may occur. Therefore, in the prepreg described in Patent Document 7, there is a possibility that mechanical properties and heat resistance of a molded article may be reduced.
  • the present invention has been made in view of the above circumstances, and provides a matrix resin which can widen the process window; an intermediate material having a wide process window and little product unevenness; and a molded article having excellent mechanical properties and heat resistance. With the goal.
  • the inventors of the present invention conducted intensive studies to solve the above problems, and as a result, the number of hydroxyl groups per molecule of epoxy (meth) acrylate resin and unsaturated polyester resin, and isocyanate per molecule of isocyanate-based thickener.
  • group content rate and the number of isocyanate groups within a specific range, an intermediate material having a wide process window and few product spots, and a molded article excellent in mechanical properties and heat resistance have been found, and the present invention has been completed.
  • a matrix resin of [1] which satisfies the following formulas (1) to (4). 5 ⁇ V 1 X ⁇ 40 (1) Y ⁇ 0.5 (2) 5 ⁇ V1 X + Y ⁇ 70 (3) 5 ⁇ V1 XY ⁇ 70 (4)
  • Y is a difference [mass part] to increase or decrease the blending amount of the component (A-3) with respect to the reference amount X in the formula (1).
  • V1 X + Y is a matrix resin in which the blending amount of the component (A-3) is increased relative to the reference amount X in the formula (1) by the amount of difference Y in the formula (2) [parts by mass]
  • the resulting solution had a ripening viscosity [ ⁇ 10 6 mPa ⁇ s] when allowed to stand at 23 ° C. for 168 hours.
  • V1 XY decreased the blending amount of the component (A-3) with respect to the reference amount X in the formula (1) by the difference amount Y [parts by mass] in the formula (2) It is the ripening viscosity [ ⁇ 10 6 mPa ⁇ s] when the matrix resin is allowed to stand at 23 ° C. for 168 hours.
  • V1 is the aging viscosity [ ⁇ 10 6 mPa ⁇ s] when the matrix resin is allowed to stand at 23 ° C.
  • V1 is the same as V1 in the formula (5), and V2 is a ripening viscosity [ ⁇ 10 6 mPa ⁇ s] when the matrix resin is allowed to stand at 23 ° C. for 336 hours.
  • V4 The matrix resin according to any one of [1] to [3], wherein the liquid polyisocyanate has one or more aromatic rings in the molecule.
  • [5] The matrix resin according to any one of [1] to [4], which satisfies the following formula (7) and the following formula (8).
  • Vn 0.6 ⁇ a1 / b ⁇ 0.75 (7)
  • Vn ⁇ 1000
  • a1 is the content [g] of the component (A-1)
  • b is the content [g] of the thermosetting resin composed of the component having an ethylenically unsaturated group.
  • Vn is a neat resin viscosity [mPa ⁇ s] of a thermosetting resin comprising a component having an ethylenically unsaturated group.
  • the matrix resin according to any one of [1] to [5], which satisfies the following formula (9).
  • Vs is the viscosity [mPa ⁇ s] immediately after mixing the pre-matrix resin obtained by removing the component (A-3) from the matrix resin and the component (A-3), and V10 is the above-mentioned It is a viscosity [mPa ⁇ s] when 10 minutes have elapsed by mixing the pre-matrix resin and the component (A-3).
  • An intermediate material comprising the matrix resin of any one of [1] to [6] and a carbon fiber bundle having a fiber length of 5 to 120 mm.
  • the molded article according to [8], wherein the temperature at which the loss tangent measured by dynamic viscoelasticity measurement at a frequency of 1 Hz shows a maximum value is 120 ° C. or higher.
  • a matrix resin capable of widening a process window, an intermediate material having a wide process window and little product unevenness at the time of production, and a molded article having excellent mechanical properties and heat resistance.
  • the process window of the matrix resin is wide means that the numerical range of the ratio of the blending amount of the polyisocyanate to the matrix resin is sufficiently wide, which satisfies the following requirement (I).
  • the "polymerizable unsaturated monomer” is a monomer having a polymerizable unsaturated group.
  • (Meth) acrylate is a generic term for acrylate or methacrylate
  • epoxy (meth) acrylate is a generic term for epoxy acrylate or epoxy methacrylate.
  • the "isocyanate group content” means the mass of isocyanate group per 100 g of polyisocyanate.
  • the "average number of isocyanate groups” means the average value of the number of isocyanate groups per polyisocyanate molecule.
  • “Viscosity” is a value measured at a rotor rotational speed of 60 rpm using TB-10 (manufactured by Toki Sangyo Co., Ltd.) equipped with an M3 rotor under a 23 ° C. environment.
  • the "carbon fiber content” means the content of carbon fiber with respect to 100% by mass of the intermediate material. “-” Indicating a numerical range means that numerical values described before and after that are included as the lower limit value and the upper limit value. “Making the matrix resin at a substantially constant temperature for a certain period of time” may be referred to as “aging” or “thickening”.
  • the matrix resin of the present invention contains at least a mixture of the following components (A-1) to (A-4).
  • the matrix resin of the present invention may contain the following component (A-5).
  • (A-1) Component: Both an epoxy (meth) acrylate resin and an unsaturated polyester resin having one or more ethylenically unsaturated groups in one molecule and having an average number of hydroxyl groups of 1.8 to 4.
  • Component (A-2) Ethylenically unsaturated monomer.
  • Component (A-3) Liquid polyisocyanate having an isocyanate group content of 15 to 30.5% by mass and an average number of isocyanate groups of 1.8 to 2.4.
  • Component (A-4) thermal polymerization initiator.
  • Component (A-5) a compound other than the components (A-1) and (A-2), having no hydroxyl group and having an ethylenically unsaturated group.
  • the matrix resin of the present invention contains a thermosetting resin which is a mixture of the (A-1) component and the (A-2) component.
  • the thermosetting resin is a mixture of the components (A-1), (A-2) and (A-5). That is, in the matrix resin of the present invention, the thermosetting resin comprises a component having an ethylenically unsaturated group.
  • the matrix resin of the present invention may contain other components in addition to the components (A-1) to (A-5).
  • the matrix resin of the present invention contains both an epoxy (meth) acrylate resin and an unsaturated polyester resin as the component (A-1).
  • the matrix resin of the present invention may contain one or more of each of an epoxy (meth) acrylate resin and an unsaturated polyester resin.
  • the epoxy (meth) acrylate resin has one or more ethylenically unsaturated groups in one molecule, and is not particularly limited as long as the average number of hydroxyl groups is 1.8 to 4.
  • an epoxy (meth) acrylate resin can be obtained as a reaction product of an epoxy resin and an unsaturated monobasic acid (unsaturated acid epoxy ester).
  • epoxy resin diglycidyl ether type epoxy resin whose main skeleton is bisphenol A represented by bisphenol A, bisphenol F, and brominated bisphenol A; organic polybasic acid represented by dimer acid and trimellitic acid
  • polyglycidyl ester type epoxy resin ethylene oxide or propylene oxide adduct of bisphenol A, glycol, glycidyl ether type epoxy resin having a diol compound such as hydrogenated bisphenol A as main skeleton, phenol novolac, cresol novolac, brominated phenol
  • the novolak-type epoxy resin etc. which made the main skeleton the polynuclear phenol compound represented by the novolak are illustrated.
  • These epoxy resins may be used alone or in combination of two or more.
  • epoxy (meth) acrylate resins using an epoxy resin having 1 to 4 bisphenol A skeletons in one molecule have a two-dimensional reaction preferentially at the time of the thickening reaction with the component (A-3). It is preferable because the process window of the matrix resin and the intermediate material can be further expanded.
  • an epoxy (meth) acrylate containing an epoxy resin having one or two bisphenol A skeletons as a main component can suppress the neat resin viscosity when the component (A-2) is blended. As a result, for example, when manufacturing an intermediate material having a high content of carbon fiber bundles, the quality tends to be easily maintained.
  • An unsaturated monobasic acid is a monobasic acid having an ethylenically unsaturated group.
  • unsaturated monobasic acids include acrylic acid, methacrylic acid, crotonic acid and sorbic acid. These unsaturated monobasic acid components may be used alone or in combination of two or more.
  • the epoxy (meth) acrylate resin has a hydroxyl group produced when the unsaturated monobasic acid is reacted or a hydroxyl group originally possessed by the epoxy resin.
  • the number of hydroxyl groups can be adjusted by a conventionally known method at the time of synthesis of the epoxy (meth) acrylate resin or after synthesis of the epoxy (meth) acrylate resin.
  • the number of ethylenically unsaturated groups that the epoxy (meth) acrylate resin has in one molecule is 1.0 or more, preferably 1.5 or more.
  • the number of ethylenically unsaturated groups that the epoxy (meth) acrylate resin has in one molecule is preferably 1.0 to 5.0, more preferably 1.5 to 5.0, and 1.5 to 3.0. More preferably, 1.5 to 2.5 are particularly preferred.
  • the average number of hydroxyl groups which is the average of the number of hydroxyl groups that the epoxy (meth) acrylate resin has in one molecule, is 1.8 or more, preferably 2.8 or more. When the average number of hydroxyl groups is 1.8 or more, the tackiness and the drapability of the obtained intermediate material become good.
  • the average number of hydroxyl groups is 4 or less, preferably 3.8 or less. When the average number of hydroxyl groups is 4 or less, the thickening reaction between the component (A-1) and the component (A-3) preferentially occurs in the two-dimensional direction, and the reaction in the three-dimensional direction is suppressed. As a result, the handleability and fluidity of the obtained intermediate material are excellent.
  • the average number of hydroxyl groups in one molecule of the epoxy (meth) acrylate resin is preferably 1.8 to 3.8, and more preferably 2.8 to 3.8.
  • the unsaturated polyester resin has one or more ethylenically unsaturated groups in one molecule, and is not particularly limited as long as the average number of hydroxyl groups is 1.8 to 4.
  • an unsaturated polyester resin is a polyester resin synthesized by condensation of an ⁇ , ⁇ -olefin unsaturated dicarboxylic acid and a divalent glycol (a weight of an ⁇ , ⁇ -olefin unsaturated dicarboxylic acid and a divalent glycol It can be obtained as a condensate).
  • the polyester resin is derived from an ⁇ , ⁇ -olefin unsaturated dicarboxylic acid, has an ethylenically unsaturated group, and has a hydroxyl group.
  • dicarboxylic acids other than ⁇ , ⁇ -olefin unsaturated dicarboxylic acids saturated dicarboxylic acids, aromatic dicarboxylic acids, etc.
  • dicyclopentadiene reactive with dicarboxylic acids Alcohols other than dihydric glycols (monohydric alcohols (monools), trihydric alcohols (triols, etc.), etc.) can be used in combination.
  • Examples of the ⁇ , ⁇ -olefin unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, citraconic acid, and anhydrides of these dicarboxylic acids.
  • Other dicarboxylic acids that can be used in combination with the ⁇ , ⁇ -olefin unsaturated dicarboxylic acid include adipic acid, sebacic acid, succinic acid, gluconic acid, phthalic acid anhydride, o-phthalic acid, isophthalic acid, terephthalic acid, tetrahydrofuran Phthalic acid, tetrachlorophthalic acid and the like are exemplified.
  • divalent glycols examples include alkane diols, oxa alkane diols, and alkylene oxide adducts of bisphenol A. Ethylene oxide, a propylene oxide etc. are illustrated as an alkylene oxide.
  • alkanediol ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyglycol, 1,5-pentanediol, 1,6 -Hexanediol, cyclohexanediol, etc. are exemplified.
  • oxaalkanediols examples include dioxyethylene glycol, dipropylene glycol and triethylene glycol.
  • monohydric or trihydric alcohols that can be used in combination with glycols include octyl alcohol, oleyl alcohol, trimethylolpropane and the like.
  • the number of ethylenically unsaturated groups that the unsaturated polyester resin has in one molecule is 1.0 or more, preferably 1.5 or more. Moreover, 5.0 or less is preferable and, as for the number of the said ethylenically unsaturated groups, 3.0 or less is more preferable. When the number of the ethylenically unsaturated groups is in the above range, the curability, solvent resistance, heat resistance, mechanical properties and the like of the molded article of the present invention described later are further excellent.
  • the number of ethylenic unsaturated groups that the unsaturated polyester resin has in one molecule is preferably 1 to 5, more preferably 1.5 to 5.0, and still more preferably 1.5 to 3.0.
  • the average number of hydroxyl groups which is the average of the number of hydroxyl groups that unsaturated polyester resin has in one molecule is 1.8 or more.
  • the average number of hydroxyl groups is 4 or less, preferably 3.5 or less, and more preferably 3.3 or less.
  • the average number of hydroxyl groups is 4 or less, the thickening reaction between the components (A-1) and (A-3) preferentially occurs in the two-dimensional direction, and the reaction in the three-dimensional direction is suppressed. As a result, the handleability and fluidity of the obtained intermediate material are excellent.
  • the average number of hydroxyl groups in one molecule of the unsaturated polyester resin is preferably 1.8 to 3.5, and more preferably 1.8 to 3.3.
  • the number of the ethylenically unsaturated groups which the component (A-1) has in one molecule is 1.0 or more, preferably 1.5 or more.
  • the number of the ethylenically unsaturated groups is preferably 5.0 or less, more preferably 3.0 or less, and still more preferably 2.5 or less.
  • the number of the ethylenically unsaturated group which the component (A-1) has in one molecule is preferably 1 to 5, more preferably 1.0 to 3.0, and still more preferably 1.0 to 2.5. 5 to 2.5 is particularly preferred.
  • the average number of hydroxyl groups which is the average of the number of hydroxyl groups possessed by the component (A-1) in one molecule, is 1.8 or more, preferably 2 or more.
  • the average number of hydroxyl groups is 4 or less, preferably 3.8 or less.
  • the thickening reaction between the component (A-1) and the component (A-3) preferentially occurs in the two-dimensional direction, and the reaction in the three-dimensional direction is suppressed. As a result, the handleability and fluidity of the obtained intermediate material are excellent.
  • the average of the number of hydroxyl groups that component (A-1) has in one molecule is preferably 1.8 to 3.8, and more preferably 2 to 3.8.
  • the matrix resin of the present invention contains both an epoxy (meth) acrylate resin and an unsaturated polyester resin as the component (A-1). That is, the component (A-1) is a mixture of an epoxy (meth) acrylate resin and an unsaturated polyester resin.
  • the epoxy (meth) acrylate resin and the unsaturated polyester resin in combination, a rapid increase in the viscosity increase rate (initial thickening rate) after the component (A-3) is blended is suppressed. As a result, the product unevenness at the time of manufacturing the intermediate material is reduced, and the quality of the resulting molded article is also improved.
  • solvent resistance is also improved by using an epoxy (meth) acrylate resin and an unsaturated polyester resin in combination.
  • the mass ratio of the epoxy (meth) acrylate resin to the unsaturated polyester resin is preferably 1/4 to 4/1, and 1/2 to 2/1. More preferable. When the mass ratio is in the range, the above-mentioned effects tend to be exhibited.
  • the epoxy (meth) acrylate resin can have a secondary hydroxyl group in the molecular terminal or in the molecule, and the unsaturated polyester resin can have a primary to tertiary hydroxyl group.
  • the hydroxyl group at the molecular terminal is preferentially reacted at the time of the thickening reaction with the component (A-3).
  • the matrix resin and the intermediate material obtained by this method tend to have a wider process window.
  • the content of the component (A-1) is preferably 60 to 75% by mass with respect to a total of 100% by mass of the thermosetting resin. If the content of the component (A-1) is 60% by mass or more, the component (A-2) remaining in the molded product tends not to be excessively large, and the VOC tends to be reduced.
  • VOC means an organic compound (volatile organic compound) that volatilizes under normal temperature or normal pressure or 60 to 80 ° C. environment. When the content of the component (A-1) is 60% by mass or more, the process window at the time of producing the intermediate material becomes wider.
  • the content of the component (A-1) is 75% by mass or less, the viscosity of the matrix resin does not become excessively high, and product spots and impregnation defects are not easily generated at the time of manufacturing the intermediate material. It becomes easy to get.
  • the matrix resin of the present invention contains the component (A-2).
  • the component (A-2) is also referred to as a polymerizable diluent.
  • the component (A-2) the following compounds may be mentioned.
  • the component (A-2) is not limited to the following examples.
  • Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like.
  • Styrene-based monomers such as styrene and styrene derivatives ( ⁇ -methylstyrene, pt-butylstyrene, vinyl toluene and the like).
  • (Meth) acrylamide compounds such as N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide and the like.
  • Unsaturated carboxylic acids such as (meth) acrylic acid, itaconic acid, maleic acid and fumaric acid.
  • Polymerizable unsaturated nitriles such as (meth) acrylonitrile.
  • Unsaturated carboxylic acid esters such as diethyl maleate, dibutyl maleate, dibutyl fumarate, diethyl itaconate, dibutyl itaconate and the like.
  • Vinyl esters such as vinyl acetate and vinyl propionate.
  • One of these ethylenically unsaturated monomers may be used alone, or two or more thereof may be used in combination. When using in combination of 2 or more types, it may select suitably in consideration of the reactivity at the time of polymerization. For example, when importance is given to odor reduction when used as an intermediate material, an appropriate monomer may be selected depending on the use environment and the like. For example, in order to reduce odor, a component having a boiling point of 180 ° C. or higher at normal pressure may be selected. On the other hand, when importance is placed on economics, styrene-based monomers may be used. The boiling point at normal pressure may be measured, or a value converted based on literature such as Science of Petroleum, Vol. II, p.
  • styrene is preferred from the viewpoint of economy and polymerizability. If it is economically acceptable, the combined use of styrene and (meth) acrylates is preferred from the viewpoint of suppressing the change with time of the intermediate material.
  • the content of the component (A-2) is not particularly limited.
  • the component (A-2) is preferably 10 to 40% by mass with respect to a total of 100% by mass of the thermosetting resin.
  • the content of the component (A-2) is 10% by mass or more, the amount of the component (A-2) in the thermosetting resin becomes sufficient, and the neat resin viscosity can be lowered.
  • the carbon fiber can be easily impregnated during production of the intermediate material, and the quality is further improved.
  • the content of the component (A-2) is 40% by mass or less, the amount of the component (A-2) in the thermosetting resin does not become excessive, and the VOC of the molded article can be suppressed to a low level. is there.
  • the compounding amount of the component (A-1) is not excessively reduced, the mechanical properties and Tg of the molded article can be within the suitable range.
  • the matrix resin of the present invention contains the component (A-3).
  • the lower limit value of the isocyanate group content of the polyisocyanate is 15% by mass, preferably 25% by mass.
  • the isocyanate group content is 15% by mass or more, it is not necessary to blend the polyisocyanate excessively when manufacturing the intermediate material, and the decrease in heat resistance of the resulting molded article is reduced. Specifically, a decrease in Tg of a molded article obtained by DMA measurement described later is suppressed, and good heat resistance is maintained.
  • the upper limit value of the isocyanate group content of the polyisocyanate is 30.5% by mass, preferably 30.2% by mass.
  • polyisocyanate having an isocyanate group content of more than 30.5% by mass is the content of at least one of 4,4'-diphenylmethane diisocyanate (hereinafter also referred to as "4,4 'MDI”) and its modified product Often contain a large amount of 2,4'-diphenylmethane diisocyanate (hereinafter, also referred to as "2,4 'MDI”), which is an isomer of 4,4' MDI, etc., and modified products thereof.
  • 4,4'-diphenylmethane diisocyanate hereinafter also referred to as "4,4 'MDI”
  • 2,4 'MDI 2,4'-diphenylmethane diisocyanate
  • polyisocyanate having an isocyanate group content of more than 30.5% by mass may contain a large amount of mixed modified products such as 4,4'MDI and its isomer 2,4'MDI, and others 4,4 In many cases, they are produced by including a large amount of multifunctional modified products consisting of MDI and its isomers. As a result, the ripening period after the production of the intermediate material becomes excessively long, and the process window of the intermediate material becomes narrow. Therefore, polyisocyanate having an isocyanate group content of more than 30.5% by mass is not preferable from the viewpoint of productivity.
  • the isocyanate group content of the polyisocyanate is preferably 15 to 30.2% by mass, more preferably 25 to 30.5% by mass, and still more preferably 25 to 30.2% by mass.
  • the lower limit value of the average number of isocyanate groups of the polyisocyanate is 1.8, preferably 2.0.
  • the components (A-1) and (A-3) can be reliably connected at the time of thickening, and the intermediate material containing the matrix resin of the present invention is excellent in tackiness Have sex and drapability.
  • the upper limit of the average number of isocyanate groups in the polyisocyanate is 2.4.
  • the material has excellent fluidity.
  • the average number of isocyanate groups in the polyisocyanate is preferably 2.0 to 2.4.
  • the polyisocyanate can be appropriately selected from conventionally known polyisocyanate compounds used as a thickener, isocyanate prepolymers, and isocyanate modified products.
  • the matrix resin of the present invention particularly when liquid polyisocyanate is used as the component (A-3), the handleability and dispersibility tend to be excellent when producing the intermediate material.
  • the contact between the polyisocyanate having a high concentration and the component (A-1) can be prevented until the liquid polyisocyanate is completely dissolved, as compared with the case where a solid polyisocyanate is used. It is possible to more effectively suppress the formation of polyfunctionals. As a result, it is possible to prevent the decrease in the formability of the intermediate material.
  • liquid polyisocyanate and solid polyisocyanate may be mixed, and solid polyisocyanate may be finally liquefied and used as liquid polyisocyanate.
  • polyisocyanate compounds examples include 2,4-toluene diisocyanate (2,4TDI), 2,6-toluene diisocyanate (2,6TDI), 4,4'-diphenylmethane diisocyanate (4,4'MDI), isophorone diisocyanate (IPDI) And difunctional diisocyanates such as hexamethylene diisocyanate (HDI), xylene diisocyanate (XDI), and tetramethyl xylylene diisocyanate; and other trifunctional or higher polyisocyanate compounds.
  • 2,4TDI 2,4-toluene diisocyanate
  • 2,6TDI 2,6-toluene diisocyanate
  • 4,4'MDI 4,4'-diphenylmethane diisocyanate
  • IPDI isophorone diisocyanate
  • difunctional diisocyanates such as hexamethylene diisocyanate (HDI), xy
  • an isocyanate prepolymer the compound obtained by reaction of the polyether polyol or polyester polyol which has a hydroxyl group, and diisocyanate is illustrated.
  • the isocyanate-modified product for example, carbodiimide-modified liquid MDI (MDI, MDI carbodiimide, MDI carbodiimide adduct as a main component) may be used.
  • MDI MDI carbodiimide, MDI carbodiimide adduct as a main component
  • One of these polyisocyanates may be used alone, or two or more thereof may be used in combination.
  • solid polyisocyanate it can be set as liquid polyisocyanate combining with liquid polyisocyanate.
  • the liquid polyisocyanate preferably has one or more aromatic rings in the molecule. This makes it easy to maintain high mechanical properties of the molded article of the present invention described later.
  • liquid polyisocyanates having one or more aromatic rings in the molecule include 4,4 'MDI, TDI and XDI. Among these, 4,4′MDI having an aromatic ring is more preferable from the viewpoint that the ripening period after the production of the intermediate material is not excessively long and the economic point.
  • component (A-3) is excellent in the handleability and dispersibility at the time of manufacturing the intermediate material, can shorten the aging period after manufacturing the intermediate material, and can maintain high mechanical properties of the molded product;
  • liquid polyisocyanates which contain L, 4 'MDI as a main component and are liquefied by mixing 4, 4' MDI modified products (eg, carbodiimide-modified MDI etc.).
  • Component (A-3) is an MDI isomer such as 2,4 ′ MDI, a modified product of MDI isomer (eg, a carbodiimide modified product), 4,4 ′ MDI, and the like as long as there is no problem in practical use.
  • It may contain at least one selected from the group consisting of a modified product (for example, carbodiimide modified product) consisting of a mixture of MDI isomers, the MDI isomer and a polyisocyanate other than the modified product of the MDI isomer.
  • a modified product for example, carbodiimide modified product
  • the content of the component (A-3) is preferably such that the ratio of the number of moles of isocyanate groups in the component (A-3) to the number of moles of hydroxyl groups in the component (A-1) is 0.1 to 10 .
  • the ratio is 0.1 or more, tackiness and drapeability which are suitably used as an intermediate material can be easily provided.
  • the matrix resin of the present invention preferably satisfies the following formulas (1) to (4). 5 ⁇ V 1 X ⁇ 40 (1) Y ⁇ 0.5 (2) 5 ⁇ V1 X + Y ⁇ 70 (3) 5 ⁇ V1 XY ⁇ 70 (4) Matrix resin in which V1 X is a reference amount X (parts by mass) with respect to 100 parts by mass of a thermosetting resin consisting of a component having an ethylenically unsaturated group in the formula (1). Is left to stand at 23 ° C.
  • Y is a difference [mass part] to increase or decrease the blending amount of the component (A-3) with respect to the reference amount X in the formula (1).
  • V1 X + Y is a matrix resin in which the blending amount of the component (A-3) is increased relative to the reference amount X in the formula (1) by the amount of difference Y in the formula (2) [parts by mass]
  • the resulting solution had a ripening viscosity [ ⁇ 10 6 mPa ⁇ s] when allowed to stand at 23 ° C. for 168 hours.
  • the blending amount of the component (A-3) of the matrix resin in which the blending amount of the component (A-3) is increased by 0.5 [mass part] relative to the reference amount X is X + 0.5 [mass Department].
  • V1 XY decreased the blending amount of the component (A-3) with respect to the reference amount X in the formula (1) by the difference amount Y [parts by mass] in the formula (2) It is the ripening viscosity [ ⁇ 10 6 mPa ⁇ s] when the matrix resin is allowed to stand at 23 ° C. for 168 hours.
  • the blending amount of the component (A-3) of the matrix resin in which the blending amount of the component (A-3) is reduced by 0.5 [parts by mass] with respect to the reference amount X is X-0.5 [Parts by mass]
  • the blending amount of the component (A-3) is a blending amount with respect to 100 parts by mass of the thermosetting resin.
  • the reference amount X (parts by mass) can satisfy the aging viscosity of 5 to 40 [ ⁇ 10 6 mPa ⁇ s] (A-3)
  • the compounding amount is 100 parts by mass of the thermosetting resin.
  • the ripening viscosities V1 X + Y and V1 XY both when left to stand for 168 hours satisfy 5 to 70 [ ⁇ 10 6 mPa ⁇ s].
  • a numerical range of the reference amount X [parts by mass] for example, a numerical value between 10 and 40 can be applied.
  • the blending amount of the component (A-3) blended to the matrix resin is blended When the amount increases or decreases, the handleability and flowability of the obtained intermediate material tend to be impaired.
  • the matrix resin When the matrix resin is allowed to stand for 168 hours at 23 ° C., there is a matrix resin whose aging viscosity satisfies 5 to 40 [ ⁇ 10 6 mPa ⁇ s], and the blending of the component (A-3) blended in the matrix resin If the aging viscosity of the matrix resin obtained by increasing or decreasing 0.5 parts by mass or 0.5 parts by mass or more from the amount does not satisfy 5 to 70 [ ⁇ 10 6 mPa ⁇ s] Affected and prone to spotting, spotting that impairs handling and flowability.
  • the level of the component (A-3) obtained is X [parts by mass], X + 0.5 Parts by mass] and X-0.5 [parts by mass].
  • the level of the component (A-3) obtained is X [parts by mass], X + 0.3 [parts by mass], X-0.3 [mass]
  • the level of the component (A-3) obtained is X (parts by mass), X + 1.0 (parts by mass), X-1 .0 Three parts of [mass parts].
  • the level of the component (A-3) is not limited to three.
  • the level of the component (A-3) obtained is X [parts by mass], X + 1.0 [parts by mass], X- It becomes five levels of 1.0 [parts by mass], X + 0.5 [parts by mass], and X-0.5 [parts by mass].
  • the difference amount Y [parts by mass] is preferably 0.5 or more.
  • the upper limit value of the difference amount Y [parts by mass] is preferably 5.0 or less, more preferably 3.0 or less, and still more preferably 2.0 or less.
  • the difference amount Y [parts by mass] is preferably 0.5 to 5.0, more preferably 0.5 to 3.0, and still more preferably 0.5 to 2.0.
  • the matrix resin of the present invention contains a thermal polymerization initiator as the component (A-4).
  • the thermal polymerization initiator is a compound which generates a radical species by heating.
  • the component (A-4) is not particularly limited. Examples of the component (A-4) include peroxydicarbonates, peroxyesters, peroxymonocarbonates, peroxyketals, and organic peroxides such as dialkyl peroxides.
  • component (A-4) examples include t-amylperoxypropyl carbonate (product name: AIC 75, manufactured by Kayaku Akzo Co., Ltd.), t-butylperoxy isopropyl carbonate (product name: BIC-75, chemicals) Manufactured by Akzo Co., Ltd., 1,1-di (t-hexylperoxy) cyclohexane (product name: perhexa HC), 1,1-di (t-butylperoxy) cyclohexane (product name: perhexa C-80 (S) or Examples are organic peroxides such as perhexa C-75 (EB) and the like, methyl ethyl ketone peroxide, t-butyl peroxybenzoate, benzoyl peroxide, dicumyl peroxide, cumene hydroperoxide and the like.
  • EB perhexa C-75
  • methyl ethyl ketone peroxide
  • the component (A-4) when it is desired to reduce the residual amount of the ethylenic functional group, it is preferable to use t-amyl peroxypropyl carbonate having an amyl group in the molecule. Further, from the viewpoint of the stability to various auxiliary agents and the stability with time, a compound having a small number of acyl groups in the molecule is preferable. The smaller the number of acyl groups in the molecule, the better the stability.
  • the component (A-4) can be appropriately changed depending on the temperature at which the polymerization is initiated, the curing time required, etc., and one type may be used alone, or two or more types may be used in combination. Also, it is useful to intentionally combine initiators having different 10-hour half-life temperatures in order to shorten the curing time during polymerization.
  • the content of the component (A-4) is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more based on 100% by mass of the thermosetting resin.
  • the content of the component (A-4) is preferably 5.0% by mass or less, and more preferably 3.0% by mass or less, based on 100% by mass of the thermosetting resin.
  • the content of the component (A-4) is preferably 0.1 to 5.0% by mass, more preferably 0.1 to 3.0% by mass, with respect to 100% by mass of the thermosetting resin. 5.0 mass% is more preferable, and 0.5 to 3.0 mass% is more preferable.
  • the matrix resin of the present invention may contain the component (A-5).
  • the component (A-5) include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyester (meth) acrylate oligomers, (meth) acrylate half esters and the like.
  • urethane (meth) acrylate series made by SARTOMER, such as CN9023 and CN9028, is illustrated.
  • examples of the products previously mixed with styrene include CBZ500 series, CBZ255 series, CBZ650F series, CBZFX, and R (manufactured by Japan Yupica Co., Ltd.).
  • the component (A-5) is not limited to these.
  • an example of the content of the component (A-5) can be 0 to 30% by mass with respect to 100% by mass of the thermosetting resin. .
  • the ratio of the compounding amount of the component (A-5) to the component (A-2) can be selected depending on the viscosity of the matrix resin after compounding.
  • the matrix resin of the present invention may contain other components.
  • Other components include curing accelerators, inorganic fillers, internal mold release agents, stabilizers (polymerization inhibitors), pigments, colorants, wetting and dispersing agents, water absorbing agents, ultraviolet light absorbers, light stabilizers, and antioxidants. Etc. are illustrated.
  • the curing accelerator include metal soaps represented by cobalt naphthenate, cobalt octenate, zinc octylate, vanadyl octenate, copper naphthenate, barium naphthenate, etc., vanadyl acetyl acetate, cobalt acetyl acetate, iron Metal complexes represented by acetylacetonate etc., aniline, N, N-dimethylamino-p-benzaldehyde, N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethyl-p-toluidine, N Examples are amines represented by -ethyl-m-toluidine, triethanolamine, m-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, diethanolaniline and the like.
  • the curing accelerator is not limited to these.
  • a curing accelerator a curing accelerator of amines is particularly preferable. These curing accelerators may be used alone or in combination of two or more.
  • the content of the curing accelerator is preferably 0.001 to 5 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • the inorganic filler include carbon fiber powder, carbon fiber milled, fiber milled, calcium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, silica, fused silica, barium sulfate, titanium oxide, oxide
  • examples include magnesium, calcium oxide, aluminum oxide, calcium phosphate, talc, mica, clay, glass powder and the like.
  • the inorganic filler is not limited to these.
  • One of these inorganic fillers may be used alone, or two or more thereof may be used in combination.
  • carbon fiber powder and carbon fiber milled which have a small density and a high reinforcing effect are preferably used.
  • the content of the inorganic filler is preferably minimized from the viewpoint of weight reduction.
  • the content of the inorganic filler is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • the internal mold release agent examples include fatty acid metal salts such as calcium stearate and zinc stearate; surfactants such as sodium dialkyl sulfosuccinate and the like.
  • the internal mold release agent is not limited to these. One of these internal release agents may be used alone, or two or more of them may be used in combination.
  • the content of the internal mold release agent can be appropriately set according to the level of releasability to be obtained and the additive material.
  • the content of the internal mold release agent is preferably, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • a ultraviolet absorber As a suitable specific example of a ultraviolet absorber, various additives represented by benzotriazole type and triazine type are used suitably. As a commercial item of the suitable example of a ultraviolet absorber, Tinuvin PS, Tinuvin 479, Tinuvin 571 (product name, all are BASF Corporation make) are illustrated. However, the ultraviolet absorber is not limited to these. These ultraviolet absorbers may be used alone or in combination of two or more.
  • the conventionally known component (A-1) generally has a wide light absorption band in the ultraviolet region and the visible light region, and absorbs a part of visible light. Therefore, when selecting a UV absorber, it is preferable that the UV absorber has a high absorbance and a wide absorption band, and a material whose absorption band extends to the visible light region is more preferable.
  • the matrix resin contains an ultraviolet absorber
  • the content of the ultraviolet absorber is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • the light stabilizer is not particularly limited.
  • various additives typified by hindered phenols are suitably used.
  • Tinuvin 123, Tinuvin 5100, Tinuvin 765 product name, all manufactured by BASF Corporation
  • the light stabilizer is not limited to these.
  • One of these light stabilizers may be used alone, or two or more thereof may be used in combination.
  • the matrix resin contains a light stabilizer
  • the content of the light stabilizer is preferably 1 to 5 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • the light stabilizer may be blended in a range not to inhibit the polymerization. In addition, those effects will become higher by using together a ultraviolet absorber and an optical stabilizer rather than using each independently.
  • antioxidants As a specific example of an antioxidant, various additives represented by a hindered phenol type are suitably used. Examples of commercially available antioxidants include Irganox 1010, Irganox 1726, Irganox 1035, Irganox 1076, and Irganox 1135 (product names, all manufactured by BASF Corporation). However, the antioxidant is not limited to these. One of these antioxidants may be used alone, or two or more thereof may be used in combination. When the matrix resin contains an antioxidant, the content of the antioxidant is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the thermosetting resin. Antioxidants, which have high radical sensitivity, may inhibit polymerization and curing more than light stabilizers. Therefore, it is preferable to limit the content to an optimum.
  • the ripening viscosity of the thickened material of the matrix resin of the present invention at 23 ° C. is preferably 5 [ ⁇ 10 6 mPa ⁇ s] or more, and more preferably 6 [ ⁇ 10 6 mPa ⁇ s] or more. Also, the ripening viscosity is preferably 70 [ ⁇ 10 6 mPa ⁇ s] or less, and more preferably 60 [ ⁇ 10 6 mPa ⁇ s] or less.
  • the viscosity of the thickened substance of the matrix resin is preferably 5 to 70 [ ⁇ 10 6 mPa ⁇ s], more preferably 6 to 70 [ ⁇ 10 6 mPa ⁇ s], and 5 to 60 [ ⁇ 10 6 mPa ⁇ s].
  • the viscosity is more preferably mPa ⁇ s], and particularly preferably 6 to 60 [ ⁇ 10 6 mPa ⁇ s].
  • the matrix resin of this invention satisfy
  • V1 is the aging viscosity [ ⁇ 10 6 mPa ⁇ s] when the matrix resin is allowed to stand at 23 ° C. for 168 hours.
  • V1 is the same as V1 in the formula (5)
  • V2 is a ripening viscosity [ ⁇ 10 6 mPa ⁇ s] when the matrix resin is allowed to stand at 23 ° C. for 336 hours.
  • the matrix resin of the present invention satisfies the formula (5), the handleability and fluidity of the obtained intermediate material tend to be excellent, and product spots are less likely to occur.
  • the matrix resin of the present invention satisfies the above-mentioned formula (6), the storage stability of the obtained intermediate material is excellent, the time change of the handleability and fluidity of the intermediate material is small, and the excellent characteristics can be maintained over a long period of time. is there.
  • the matrix resin of the present invention satisfies the above (5) and the above (6), the handleability and the flowability of the obtained intermediate material are further improved, and product spots are less likely to occur, and storage stability of the intermediate material Further, it is possible to maintain excellent properties such as handleability and fluidity of the intermediate material for a long time.
  • the neat resin viscosity Vn of the thermosetting resin is preferably 1000 [mPa ⁇ s] or less, and more preferably 800 [mPa ⁇ s] or less.
  • the neat resin viscosity Vn of the thermosetting resin is preferably 100 [mPa ⁇ s] or more, and more preferably 150 [mPa ⁇ s] or more.
  • the neat resin viscosity Vn of the thermosetting resin is preferably 100 to 1000 [mPa ⁇ s], more preferably 150 to 1000 [mPa ⁇ s], still more preferably 100 to 800 [mPa ⁇ s], and 150 to 800 [mPa ⁇ s]. Particularly preferred is mPa ⁇ s].
  • the matrix resin of the present invention it is preferable to set an appropriate neat resin viscosity according to the carbon fiber content required for an intermediate material described later. Specifically, for example, in the case of producing an intermediate material having a carbon fiber content of 60% by mass or more, a lower neat resin viscosity tends not to cause impregnation failure or the like.
  • the matrix resin of this invention satisfy
  • a1 is the content [g] of the component (A-1)
  • b is the content [g] of the thermosetting resin composed of the component having an ethylenically unsaturated group.
  • Vn is a neat resin viscosity [mPa ⁇ s] of a thermosetting resin comprising a component having an ethylenically unsaturated group.
  • the matrix resin of the present invention satisfies the formulas (7) and (8), VOCs are easily reduced, and it is further difficult to cause poor impregnation of the carbon fiber bundle at the time of manufacturing the intermediate material, and there are few product spots. It becomes easier to obtain the intermediate material.
  • the matrix resin of the present invention is, for example, component (A-1), component (A-2), component (A-3) and component (A-4) and, if necessary, component (A-5) and other components Can be produced by mixing
  • the method for producing the matrix resin of the present invention is not particularly limited as long as each component can be dispersed or dissolved uniformly.
  • a component (A-1), a component (A-2) and a component (A-3) are mixed, and a pre-matrix resin in which the component (A-4) is removed from the matrix resin is manufactured in advance,
  • mixers such as a three-roll mill, a planetary mixer, a kneader, a universal stirrer, a homogenizer, a homo dispenser, etc.
  • the mixer is not limited to these.
  • the matrix resin of the present invention preferably satisfies the following formula (9).
  • Vs is the viscosity [mPa ⁇ s] immediately after mixing the pre-matrix resin obtained by removing the component (A-3) from the matrix resin and the component (A-3)
  • V10 is the above-mentioned It is a viscosity [mPa ⁇ s] when 10 minutes have elapsed by mixing the pre-matrix resin and the component (A-3).
  • V10 / Vs means the initial stage viscosity rate of matrix resin.
  • the initial viscosity ratio (V10 / Vs) is preferably 1.2 or less, more preferably 1.14 or less, and still more preferably 1.10 or less.
  • the initial viscosity ratio (V10 / Vs) is 1.2 or less, product unevenness is less likely to occur during the production of the intermediate material, and it becomes easy to produce a good intermediate material.
  • the initial thickening rate (V10 / Vs) is more than 1.2, product unevenness is likely to occur during production of the intermediate material, and impregnation defects may occur in some places, and the basis weight of the intermediate material described later tends to differ from place to place There is.
  • the lower limit of the initial viscosity ratio (V10 / Vs) is theoretically 1.0.
  • the initial viscosity ratio (V10 / Vs) is preferably 1.0 to 1.2, more preferably 1.0 to 1.14, and still more preferably 1.0 to 1.10.
  • the matrix resin of the present invention described above has an isocyanate group content of 30.5 mass% or less of the liquid polyisocyanate of the component (A-3), the component (A-1) and the component 3) Even if the blending ratio with the component deviates from the optimum value due to an external factor, the influence of the blending ratio deviation becomes small and the process window becomes wider.
  • the intermediate material of the present invention comprises the matrix resin of the present invention and a carbon fiber bundle having a fiber length of 5 to 120 mm.
  • the carbon fiber bundle is obtained, for example, by cutting a carbon fiber bundle made of continuous carbon fibers.
  • Examples of carbon fibers constituting the carbon fiber bundle include polyacrylonitrile (PAN) carbon fibers, rayon carbon fibers, pitch carbon fibers, and the like. Among them, PAN-based carbon fibers are preferable in terms of excellent compressive strength and low density. These carbon fibers may be used alone or in combination of two or more.
  • the fiber length of the carbon fiber bundle is 5 mm or more, preferably 10 mm or more.
  • the fiber length of the carbon fiber bundle is 120 mm or less, preferably 80 mm or less.
  • excellent fluidity can be exhibited at the time of molding, and variations in mechanical properties and the like in the molded product can be suppressed.
  • the fiber length of the carbon fiber bundle is 5 to 120 mm, it is possible to achieve both mechanical properties of the molded product, suppression of variations in mechanical properties, and flowability at the time of molding.
  • the fiber length of the carbon fiber bundle is preferably 10 to 120 mm, more preferably 5 to 80 mm, and still more preferably 10 to 80 mm.
  • the number of filaments of the carbon fiber bundle is 1,000 or more, entanglement of the carbon fiber bundles in the intermediate material can be easily suppressed, and excellent fluidity can be easily exhibited at the time of molding. Further, the number of filaments of the carbon fiber bundle is preferably 80000 or less, more preferably 60000 or less. When the number of filaments of the carbon fiber bundle is 80,000 or less, since the size of each bundle is sufficiently small, it is easy to reduce the variation in mechanical properties in the molded product.
  • the number of filaments of the carbon fiber bundle is preferably 1000 to 80,000, more preferably 1000 to 60000, and still more preferably 2000 to 60000.
  • the number of filaments may use the thing of the said range.
  • Carbon fiber bundles having a number of filaments, for example, in the range of 30,000 to 100,000 may be used after being divided in-line or off-line to make the number of filaments within the above range.
  • the carbon fiber content is 30% by mass or more, a molded article having sufficient mechanical properties and applicable to applications requiring high strength and high elasticity is easily obtained.
  • the carbon fiber content is 70% by mass or less of the above range, it becomes easy to impregnate the carbon fiber bundle with the matrix resin, and when forming the intermediate material, it is easy to express good fluidity, and forming It tends to be easy to control the appearance defect of the product.
  • the carbon fiber content is preferably 30 to 75% by mass, more preferably 35 to 75% by mass, still more preferably 30 to 70% by mass, and particularly preferably 35 to 70% by mass.
  • the lower limit of the basis weight of the carbon fiber bundle is preferably 50 g / m 2, more preferably 500g / m 2, 800g / m 2 is more preferred.
  • the upper limit of the basis weight of the carbon fiber bundle is preferably 4000g / m 2, 3000g / m 2 is more preferable.
  • the intermediate material contains a carbon fiber bundle having a weight per unit area of 1000 g / m 2 or more, because the elastic modulus of the resulting molded product is further increased.
  • Basis weight of the carbon fiber bundle is preferably 50 ⁇ 4000g / m 2, more preferably 500 ⁇ 4000g / m 2, more preferably 800 ⁇ 4000g / m 2, particularly preferably 800 ⁇ 3000g / m 2.
  • the intermediate material of the present invention may contain a carbon fiber bundle having a fiber length of less than 5 mm and a carbon fiber bundle having a fiber length of more than 120 mm, as long as the effects of the present invention are not impaired.
  • the intermediate material of the present invention may include a fiber bundle composed of fibers other than carbon fibers, as long as the effects of the present invention are not impaired.
  • fibers other than carbon fibers include glass fiber bundles and organic fiber bundles.
  • the intermediate material of the present invention contains glass fiber bundles as fibers other than carbon fibers, the impregnation of the matrix resin at the time of manufacturing the intermediate material tends to be improved.
  • the intermediate material of the present invention includes an organic fiber bundle that can be dissolved in a matrix resin, restraint of carbon fiber bundles can be relaxed, and the fluidity of the intermediate material can be improved.
  • the ratio of the carbon fiber bundles is preferably 90% by mass or more, more preferably 95% by mass or more based on 100% by mass of the fibers contained in the intermediate material. .
  • the upper limit of the ratio of a carbon fiber bundle is 100 mass%.
  • the method for producing an intermediate material according to the present invention at least includes the following first to third steps.
  • First step a step of producing a matrix resin.
  • Second step Carbon fiber bundles having a fiber length of 5 to 120 mm are randomly deposited in two dimensions to form a sheet, and the sheet is impregnated with a matrix resin to obtain an intermediate material precursor.
  • Third step a step of thickening or aging the matrix resin contained in the intermediate material precursor. In the third step, the hydroxyl group contained in the component (A-1) derived from the matrix resin and the isocyanate group contained in the component (A-4) derived from the matrix resin are reacted.
  • the conditions for performing the third step although depending on the components contained in the matrix resin, conditions for thickening or aging usually at 10 to 80 ° C. for 0.5 to 30 days can be applied.
  • the matrix resin is aged under the conditions and thickened to obtain a thickened product of the matrix resin.
  • the aging viscosity V1 and the aging viscosity V2 are measured, and the aging viscosity V1 satisfies 5 to 40 [ ⁇ 10 6 mPa ⁇ s], and the thickening ratio (V2 / V1) is 2. It is preferable to confirm that it is 5 or less. As a result, it becomes easy to obtain an intermediate material which is excellent in storage stability, is less likely to change in handleability and fluidity over time, and can maintain excellent properties over a long period of time.
  • a matrix resin is coated on a carrier film using a doctor blade or the like.
  • the thickness of the matrix resin may be appropriately set in accordance with the application of the intermediate material to be produced.
  • the thickness of the matrix resin can be, for example, 0.1 to 3 mm.
  • a sheet-like material formed by laminating carbon fiber bundles in a two-dimensional random manner by spraying carbon fiber bundles cut into a desired length on the surface of the matrix resin coated on the carrier film.
  • another carrier film provided with a matrix resin is laminated so that the matrix resin faces the sheet-like material to produce a laminated film.
  • the sheet-like material made of carbon fiber bundles is impregnated with the matrix resin to produce an intermediate material precursor.
  • the thickness of the sheet-like material after pressing is, for example, 0.5 to 5 mm.
  • the intermediate material can be obtained by maturing the matrix resin contained in the obtained intermediate material precursor.
  • the process window is wide.
  • the matrix resin contains liquid polyisocyanate, sudden thickening reaction hardly occurs as compared with the case of using powdery isocyanate-based thickener, and epoxy (meth)
  • the three-dimensional thickening reaction between the acrylate and the liquid polyisocyanate is suppressed. Therefore, the intermediate material of the present invention has few product spots at the time of manufacture.
  • the molded article of the present invention is a cured product obtained by curing the intermediate material of the present invention and heat and pressure molding.
  • the following method can be applied as a method of curing the intermediate material of the present invention and performing heat and pressure molding.
  • the intermediate material of the present invention is placed between one or a plurality of sheets, placed between a pair of molds, and then the intermediate material placed is heated and pressed to cure the thickened product of the matrix resin contained in the intermediate material. How to
  • the temperature at the time of heat and pressure molding can be, for example, 80 to 180 ° C. It may be selected in consideration of the VOC level required for the molded product, the molding time at the time of manufacturing the molded product, and the like.
  • the time of the heating and pressurizing step is, for example, 0.5 to 60 minutes. It may be appropriately selected in consideration of the shape of the molded product, the flow thickness and the like.
  • the temperature at which the loss tangent measured by dynamic viscoelasticity measurement at a frequency of 1 Hz shows a maximum value is preferably 120 ° C or more, 130 ° C or more is more preferable, and 140 ° C. or more is particularly preferable.
  • the heat resistance of a molded article is further excellent as tandeltamax is 120 ° C or more, and it can be used conveniently irrespective of a use.
  • tandeltamax is 120 ° C or more, and it can be used conveniently irrespective of a use.
  • the molded article of the present invention comprises the intermediate material of the present invention and materials other than the intermediate material of the present invention, such as unidirectional materials, woven fabrics, non-woven fabrics, etc. composed of conventionally known thermosetting or thermoplastic prepregs or fibers. You may obtain by combining.
  • a molded article obtained by molding the intermediate material of the present invention and a thermosetting or thermoplastic prepreg exhibits superior mechanical properties by the prepreg layer.
  • the intermediate material can form convex portions such as ribs and bosses, and is excellent in the degree of freedom in forming shape.
  • the resin contained in the prepreg may be the same as or different from the matrix resin of the present invention.
  • the resin contained in the prepreg is not particularly limited as long as the strength of the interface between the prepreg and the intermediate material can be maintained at a desired level.
  • Cure Time when the curing time of the prepreg and the intermediate material of the present invention, for example, Cure Time, is made to be close to each other, appearance defects and reduction in interfacial adhesion of the resulting molded article tend to be reduced is there.
  • the molded article of the present invention comprises (1) a plurality of the intermediate materials of the present invention disposed on the surface layer, and a honeycomb structure such as cardboard as the core material between the intermediate materials; (3) It may be obtained by heat and pressure molding after filling the matrix resin containing no fiber between the above-mentioned intermediate materials. In this case, the molded article tends to exhibit excellent mechanical properties as well as the lightness is improved.
  • the molded article of the present invention described above is obtained by heat and pressure molding the above-described intermediate material of the present invention, so that an excessive amount of polyisocyanate is not present, and a decrease in Tg can be suppressed. Therefore, the molded article of the present invention is excellent in mechanical properties and heat resistance.
  • Raw materials used [A mixture of the (A-1) component and the (A-2) component] -CSVE (made by Nippon Yupika Co., Ltd., a mixture of epoxy (meth) acrylate resin and styrene, styrene content 33% by mass, average number of hydroxyl groups: 2.1) ⁇ DP 132 (made by Nippon Yupica Co., Ltd., a mixture of unsaturated polyester resin and styrene, styrene content 33 mass%, average number of hydroxyl groups 3.2) -Neopol 8051 (manufactured by Japan Yupica Co., Ltd., a mixture of epoxy (meth) acrylate resin and styrene, styrene content 32% by mass, average number of hydroxyl groups 1.8 to 4.0) [(A-3) component] ⁇ Cosmonate LL (Mitsui Chemical Co., Ltd., isocyanate group content 29.5% by mass, average is
  • ⁇ Evaluation method> (Handling) Whether or not it adheres to gloves when 3 to 20 g of resin pieces are pulled out by an operator's hand from the inside excluding 1 cm thickness from the surface layer of matrix resin left to stand for 168 hours at 23 ° C. after compounding The handling was judged by.
  • the evaluation criteria for handling are as follows. " ⁇ ”: There is no adhesion to gloves, and good handling can be expected when used as an intermediate material. " ⁇ ”: There is no adhesion to gloves, and when used as an intermediate material, it can be expected that handling is possible although the stiffness is weak. "X”: The cut-out of matrix resin is impossible, or adhesion to a glove is confirmed.
  • meltability After compounding, 1 to 5 g of resin pieces were cut out from the inside of the surface layer of the matrix resin which was left to stand at 23 ° C. for 168 hours in an environment of 1 cm in thickness. The resin piece was allowed to stand on a heating plate at 140 ° C., and then the matrix resin was moved concentrically while pressing with a spatula to confirm dissolution behavior and to evaluate meltability.
  • the criteria for evaluation of the meltability are as follows. "(Circle)": Although uniform or undissolved component is scattered, it is possible to form a uniform resin coating film, and when it is set as an intermediate material, favorable moldability can be anticipated.
  • the process window was evaluated based on the evaluation results of handleability and meltability in a plurality of matrix resins in which the blending amount of the component (A-3) was increased or decreased by the difference amount Y from the reference amount X.
  • the result of the handling evaluation is “o” or “ ⁇ ”
  • the result of the meltability evaluation is “o” satisfying the “o” component (A-3).
  • it was determined that the process window was good. This means that product unevenness can be reduced at the time of intermediate material production.
  • the impregnatability of the intermediate material is evaluated by the operator visually confirming the surface area and the inside of the intermediate material precursor and the intermediate material after removing the carrier film from the manufactured intermediate material precursor and the intermediate material. did. The inspection was conducted in the entire width direction. The judgment index is as follows. Evaluation Criteria " ⁇ ”: The wetting of the matrix resin with the carbon fiber bundle was good, and the matrix resin was present substantially uniformly throughout. "B”: The wetting of the matrix resin to the carbon fiber bundle was partially insufficient, but the impregnation proceeded at the time of thickening, and the wetting of the matrix resin to the reinforcing fiber bundle after thickening was good. "X”: The wetting of the matrix resin to the carbon fiber bundle was insufficient, and the wetting of the matrix resin to the reinforcing fiber bundle was insufficient even after thickening.
  • thermosetting resins which is a mixture of components (A-1) and (A-2) described in Tables 1 and 2 % Solution of 1,1-di (t-butylperoxy) cyclohexane as a dispersant (manufactured by NOF Corporation, product name: Perhexa C-75 (EB)) and 0.5 parts by mass of t-butylperoxyisopropyl A 74% by mass solution of carbonate (Akayaku Akzo Co., Ltd., product name: Kayacaron BIC-75) 0.5 parts by mass, and a phosphate ester derivative composition as an internal mold release agent (Axel Plastic Research Laboratory, product name) 0.5 parts by mass of MOLD WIZ INT-EQ-6, 0.02 parts by mass of 1,4-benzoquinone as a polymerization
  • UOP L-POWDER 1.2 parts by mass were blended, respectively, to obtain a sufficiently mixed and stirred pre matrix resin. Thereafter, the components (A-3) shown in Tables 1 and 2 were blended, and mixed and stirred for about 2 to 4 minutes to obtain matrix resins of the respective examples.
  • the neat resin viscosity of the thermosetting resin used in each example is shown in Tables 1 and 2.
  • the blending amount of the component (A-3) with respect to 100 parts by mass of the thermosetting resin is a difference amount Y from the reference amount X [parts by mass] [Parts by mass]
  • the amount of the component (A-3) was varied to adjust a plurality of types of matrix resins which were increased or decreased.
  • the reference amount X of the matrix resin of each example is as shown in Tables 3 to 5.
  • the reference amount X [parts by mass] is 21.5.
  • the difference amount Y [parts by mass] is 0.5 or 1.0
  • the compounding amount of the component (A-3) is X [parts by mass], X + 1.0 [parts by mass], X-1.
  • Five levels of matrix resin were prepared: 0 [parts by mass], X + 0.5 [parts by mass], and X-0.5 [parts by mass].
  • Tables 3 to 5 when the compounding amount of the component (A-3) was reduced from the reference amount, “decreased” was described in the “Relation to the reference amount” column. On the other hand, when the compounding amount was increased from the reference amount, it was described as "increase” in the "relation to the reference amount” column.
  • the aging viscosity V1 (V1 X , V1 X + Y and V1 XY ) and aging viscosity V2 were measured for a plurality of matrix resins different in the compounding amount of the component (A-3) obtained in each example, and thickening was performed.
  • the ratio (V2 / V1) was calculated and the handleability and meltability were evaluated according to the method described above. Furthermore, based on the evaluation results of the handling and melting properties, the process window was evaluated according to the method described above.
  • the aging viscosity V1 X of the matrix resin in which the compounding amount of the component (A-3) is a reference amount X is 5 to 40 [ ⁇ 10 6 mPa ⁇ s], and (A-3)
  • the aging viscosity (V1 X + 0.5 and V1 X-0.5 ) of the matrix resin obtained by increasing or decreasing the blending amount of the component by 0.5 parts by mass from the reference amount X is 5 to 70 [ ⁇ 10 6 mPa ⁇ s] Y ⁇ 0.5.
  • the evaluation result of the handling property is ⁇ or ⁇
  • the evaluation result of the meltability is ⁇
  • the aging viscosity V1 X of the matrix resin in which the compounding amount of the component (A-3) is the reference amount X satisfies 5 to 40 [ ⁇ 10 6 mPa ⁇ s], and the component (A-3)
  • the aging viscosity (V1 X + 0.5 ) of the matrix resin in which the compounding amount was increased by 0.5 parts by mass from the reference amount X satisfied 5 to 70 [ ⁇ 10 6 mPa ⁇ s].
  • the aging viscosity (V1 X-0.5 ) of the matrix resin obtained by reducing the content of the component (A-3) by 0.5 parts by mass from the reference amount X is 5 to 70 [ ⁇ 10 6 mPa ⁇ s] Not satisfied, Y ⁇ 0.5.
  • the matrix resin whose handling property evaluation result is ⁇ or ⁇ and the meltability evaluation result is ⁇ is only one level which is the matrix resin when the reference amount X is blended, so the process window is good. It was not. Thereafter, the aging viscosity V2 of the matrix resin was measured to calculate the thickening ratio. From the evaluation result of the process window and the calculation result of the thickening ratio, in Comparative Example 1, the production of the intermediate material was not performed.
  • the aging viscosity V1 X of the matrix resin in which the compounding amount of the component (A-3) is the reference amount X satisfies 5 to 40 [ ⁇ 10 6 mPa ⁇ s], and the component (A-3)
  • the aging viscosity (V1 X + 0.5 and V1 X-0.5 ) of the matrix resin in which the compounding amount is increased or decreased by 0.5 part by mass from the reference amount X satisfies 5 to 70 [ ⁇ 10 6 mPa ⁇ s], Y ⁇ It was 0.5.
  • the evaluation result of the handling property is ⁇ or ⁇
  • the evaluation result of the meltability is ⁇
  • the aging viscosity V2 of the matrix resin was measured to calculate the thickening ratio, but the thickening ratio of the matrix resin satisfying the aging viscosity V1 of 5 to 40 [ ⁇ 10 6 mPa ⁇ s] tends to exceed 2.5. was there. From the calculation results of the thickening ratio, in Comparative Example 2, the production of the intermediate material was not performed.
  • the aging viscosity V1 X of the matrix resin in which the compounding amount of the component (A-3) is the reference amount X satisfies 5 to 40 [ ⁇ 10 6 mPa ⁇ s], and the compounding of the component (A-3)
  • the aging viscosity (V1 X + 0.5 and V1 X-0.5 ) of the matrix resin whose amount is increased or decreased by 0.5 part by mass from the reference amount X satisfies 5 to 70 [ ⁇ 10 6 mPa ⁇ s], Y ⁇ 0 It was .5.
  • the matrix resin of which the evaluation result of the handleability is ⁇ or ⁇ and the melt evaluation result is ⁇ is only two levels, and the process window is not good.
  • the aging viscosity V1 X of the matrix resin in which the compounding amount of the component (A-3) is a reference amount X is 5 to 40 [ ⁇ 10 6 mPa ⁇ s], and the component (A-3) is The aging viscosity ( V1X + 0.5 and V1X-0.5 ) of the matrix resin in which the compounding amount is increased or decreased by 0.5 part by mass from the reference amount X satisfies 5 to 70 [ ⁇ 10 6 mPa ⁇ s], and Y ⁇ It was 0.5.
  • the evaluation result of the handling property is ⁇ or ⁇
  • the evaluation result of the meltability is ⁇
  • there are three levels of matrix resin, and the process window was good. Since the evaluation result of the process window was good, in Comparative Example 4, production of an intermediate material was further performed.
  • Examples 1 to 5 and Comparative Example 4 The matrix resin of Examples 1 to 5 in which the compounding amount of the component (A-3) is the reference amount X is made 0.5 to 3.0 mm in thickness on a polyethylene film (carrier film) using a doctor blade. Is applied, and a carbon fiber bundle of 15000 filaments (TR50S 15L, manufactured by Mitsubishi Chemical Corporation) is chopped to a length of 25 mm on the carbon fiber so that the basis weight of the carbon fiber is substantially uniform, And, the carbon fibers were scattered so that the directions of the carbon fibers become random, and deposited in a sheet.
  • TR50S 15L manufactured by Mitsubishi Chemical Corporation
  • Example 1 and Comparative Example 4 the intermediate material precursor A and the intermediate material A having a basis weight of 3000 ⁇ 300 g / m 2 and a carbon fiber content of 50 mass%, and a basis weight of 2800 ⁇ 280 g / m 2 And the intermediate material precursor B and the intermediate material B which are 60 mass% in carbon fiber content rate were manufactured.
  • Example 2 to 5 the same intermediate material precursor A and intermediate material A as in Example 1 were produced.
  • the impregnation evaluation was performed according to the method described above. As shown in Table 6, in Examples 1 to 5, the impregnating properties of the intermediate material precursor A and the intermediate material A were good. Moreover, although the impregnatability of the intermediate material precursor B and the intermediate material B in Examples 1 to 5 was good, the intermediate material precursor B and the intermediate material B in Comparative Example 4 tended to be slightly inferior to the infiltration property. .
  • the intermediate materials A obtained in Examples 1 to 5 were allowed to stand for 168 hours under an environment of 23 ° C. after production, and then the formability was evaluated according to the above-mentioned method. In all cases, there were no mold release defects and appearance defects, and the results were excellent in fluidity. On the other hand, although moldability evaluation was similarly implemented about comparative example 4, flowability was inferior.
  • Examples 1 to 5 and Comparative Example 4 The intermediate material A obtained in Examples 1 to 5 and Comparative Example 4 was molded to obtain a molded plate. Specifically, two sheets of intermediate material A of Examples 1 to 5 were cut out to a size of 200 mm to 250 mm to obtain a laminate. Next, using a mold with a cavity of 300 mm in length, 300 mm in width, and 2 mm in thickness, charge the laminate at a charge rate of 40 to 60% to a mold heated to 140 ° C, and close the mold quickly for molding It was heat compression molded for 5 minutes at a pressure of 8 MPa. Immediately before the completion of mold clamping, the pressure in the cavity was reduced to remove internal air.
  • the molded plates obtained in Examples 1 to 5 were free from breakage and warpage, and the surface was smooth. A bending test was performed using the formed plate. As shown in Table 6, all were favorable results. Moreover, DMA measurement was performed on the molded plates obtained in Example 1, Example 5, and Comparative Example 4. The tan ⁇ max of Example 1 was 161 ° C., and the tan ⁇ max of Example 5 was 150 ° C., and all of them had good heat resistance. On the other hand, the molded plate obtained in Comparative Example 4 had a tan ⁇ max of 167 ° C., and the heat resistance was good, but as shown in Table 6, the bending strength was lowered as compared with Examples 1 to 5. The
  • the matrix resins of Examples 1 to 5 containing at least the components (A-1) to (A-4) in the present invention had good evaluation results of the process window. Furthermore, the thickening ratios of the matrix resins of Examples 1 to 5 were all 2.0 or less, and were low. Therefore, in Examples 1 to 5, it was possible to obtain an intermediate material which is less in product unevenness at the time of production and is excellent in moldability. Further, in the case of the molded plates of Examples 1 to 5, the results of the bending test were good, and a molded plate excellent in mechanical properties could be obtained. Furthermore, in the molded plates of Example 1 and Example 5, the results of the DMA measurement were good, and it was suggested that the molded plates of Examples 2 to 4 are similarly excellent in heat resistance. Moreover, it was suggested from the results of the respective examples that the lower the neat resin viscosity of the thermosetting resin, the better the preparation of the intermediate material, in which the carbon fiber content of the intermediate material is high.
  • Comparative Examples 1 and 3 since the isocyanate group content of the compound used as the component (A-3) is more than 30.5% by mass, the process window of the matrix resin composition was narrow. In Comparative Example 2, since the isocyanate group content of the compound used as the component (A-3) was 30.5% by mass, the thickening ratio of the matrix resin composition tended to exceed 2.5. Therefore, there is a concern about the occurrence of product spots during the production of the intermediate material and the decrease in storage stability. In Comparative Example 4, since the unsaturated polyester resin is not contained as the component (A-1), the impregnation property of the matrix resin at the time of producing the intermediate material, the fluidity at the time of forming the intermediate material are inferior, and the bending strength of the molded product is inferior. It was

Abstract

The present invention provides a matrix resin that allows a broader processing window. This matrix resin includes at least a mixture of components (A-1) to (A-4). The (A-1) component is an unsaturated polyester resin and an epoxy (meth)acrylate resin having one or more ethyleny unsaturated groups in a molecule and having an average number of hydroxyl groups of 1.8 to 4. The (A-2) component is an ethyleny unsaturated monomer. The (A-3) component is polyisocyanate where the content of isocyanate group is 15 to 30.5 mass%, and the average number of isocyanate groups is 1.8 to 2.4. The (A-4) component is a thermal polymerization initiator.

Description

マトリクス樹脂、中間材及び成形品Matrix resin, intermediate materials and molded products
 本発明はマトリクス樹脂、中間材及び成形品に関する。
 本願は、2018年1月16日に、日本に出願された特願2018-004833号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a matrix resin, an intermediate material and a molded article.
Priority is claimed on Japanese Patent Application No. 2018-004833, filed January 16, 2018, the content of which is incorporated herein by reference.
 強化繊維、フィラー等を含む繊維強化複合材料は、プラスチックの特性である易加工性、非腐食性、軽量性に加え、機械的強度に優れることから、電気・電子機器用部材、建築材料、車両用部材等に広く利用されている。
 繊維強化複合材料は様々な方法で製造されている。例えば連続繊維からなる強化繊維基材に予めマトリクス樹脂を含浸させたプリプレグを積層し、樹脂を加熱硬化させて成形する方法が広く用いられている。ところが、プリプレグを用いる成形では細かい凹凸を有する複雑な形状の繊維強化複合材料の製造が困難である。
Fiber-reinforced composite materials containing reinforcing fibers, fillers, etc. are excellent in mechanical strength, in addition to ease of processing, non-corrosion, and lightness, which are characteristics of plastics, and therefore members for electrical and electronic devices, building materials, vehicles It is widely used for the member etc.
Fiber reinforced composites are manufactured in a variety of ways. For example, a method of laminating a prepreg in which a matrix resin is impregnated in advance on a reinforcing fiber base made of continuous fibers, and heat curing the resin for molding is widely used. However, molding using a prepreg makes it difficult to produce a fiber-reinforced composite material of complicated shape having fine irregularities.
 細かい凹凸を有する複雑な形状の繊維強化複合材料の製造には、一定長に裁断された強化繊維に予めマトリクス樹脂を含浸させた中間材が適している。中間材は成形時に金型内で流動しやすいため、細かい凹凸形状の成形に適用できる。
 中間材としては、例えば、一定長に裁断した強化繊維と、不飽和ポリエステル樹脂、エポキシ(メタ)アクリレート樹脂等の熱硬化性樹脂とを含むものが知られている(特許文献1~4)。
For the production of a fiber-reinforced composite material having a complex shape having fine irregularities, an intermediate material in which a reinforcing resin cut into a predetermined length is impregnated with a matrix resin in advance is suitable. Since the intermediate material easily flows in the mold at the time of molding, it can be applied to the formation of fine asperities.
As the intermediate material, for example, those containing a reinforcing fiber cut into a fixed length and a thermosetting resin such as an unsaturated polyester resin, an epoxy (meth) acrylate resin, etc. are known (Patent Documents 1 to 4).
 マトリクス樹脂には、取扱性を向上させる目的で増粘剤が配合されることが多い。マトリクス樹脂中の熱硬化性樹脂が不飽和ポリエステル樹脂、エポキシ(メタ)アクリレート樹脂を含む場合、一般的に増粘剤としては、MgO、CaO等のアルカリ土類金属塩もしくはその金属水和物;イソシアネート系増粘剤等が用いられる。これらの中でもイソシアネート系増粘剤を用いると、樹脂が容易に増粘可能であり、取扱性等が向上することが知られている(特許文献5~7)。
 特許文献7には特定のウレタン変性エポキシ(メタ)アクリレートを必須成分とするプリプレグが記載されている。特定のウレタン変性エポキシ(メタ)アクリレートは、1分子当りの平均水酸基数が特定の範囲にあるエポキシ(メタ)アクリレートと1分子当たりの平均イソシアネート基数が特定の範囲にあるポリイソシアネートとの反応物である。
Thickeners are often blended into matrix resins for the purpose of improving handleability. When the thermosetting resin in the matrix resin contains an unsaturated polyester resin or an epoxy (meth) acrylate resin, generally, as a thickener, an alkaline earth metal salt such as MgO or CaO or a metal hydrate thereof; An isocyanate type thickener etc. are used. Among these, it is known that when an isocyanate-based thickener is used, the resin can be easily thickened and the handling property and the like is improved (Patent Documents 5 to 7).
Patent Document 7 describes a prepreg having a specific urethane-modified epoxy (meth) acrylate as an essential component. A specific urethane-modified epoxy (meth) acrylate is a reaction product of an epoxy (meth) acrylate having an average number of hydroxyl groups per molecule in a specific range and a polyisocyanate having an average number of isocyanate groups per molecule in a specific range is there.
特開平11-147222号公報JP 11-147222 A 特開平10-110048号公報Unexamined-Japanese-Patent No. 10-110048 特開平10-120736号公報JP 10-120736 A 特開平11-147221号公報Japanese Patent Application Laid-Open No. 11-147221 特公昭60-24810号公報Japanese Examined Patent Publication No. 60-24810 特公昭63-1332号公報Japanese Examined Patent Publication 63-1332 特許第6150034号公報Patent No. 6150034
 しかし、イソシアネート系増粘剤によって不飽和ポリエステル樹脂、エポキシ(メタ)アクリレート樹脂等を増粘させる場合、これらの熱硬化性樹脂が有する水酸基とイソシアネート系増粘剤との応答性が鋭い。そのため、中間材の取扱性と流動性とを両立できる熱硬化性樹脂とイソシアネート系増粘剤との配合比率の範囲(即ち、プロセスウインドウ)が狭くなりやすい。つまり、イソシアネート系増粘材の配合量が増減するだけで、配合比率が最適比率の数値に対して、中間材の流動性が大きく低下したり、取扱性が大きく悪化する場合がある。その結果、イソシアネート系増粘材の配合量が増減に起因して中間材の製品斑が生じることがある。 However, when thickening an unsaturated polyester resin, an epoxy (meth) acrylate resin, etc. with an isocyanate type thickener, the responsiveness of the hydroxyl group which these thermosetting resins have, and an isocyanate type thickener is sharp. Therefore, the range (that is, process window) of the compounding ratio of the thermosetting resin and the isocyanate-based thickener which can balance the handleability and the fluidity of the intermediate material tends to be narrow. That is, the fluidity of the intermediate material may be greatly reduced or the handleability may be greatly deteriorated, as compared with the numerical value of the optimum ratio, by merely increasing or decreasing the compounding amount of the isocyanate-based thickener. As a result, product unevenness of the intermediate material may occur due to an increase or decrease in the compounding amount of the isocyanate-based thickener.
 特許文献7に記載のプリプレグのように、エポキシ(メタ)アクリレート樹脂及びイソシアネート系増粘材の1分子あたりの平均官能基数を特定の範囲にするだけでは、必ずしもプロセスウインドウを広げることができない。また熟成期間が過度に長期化する可能性もある。さらに、エポキシ(メタ)アクリレート樹脂と固体のイソシアネート系増粘剤とを配合する場合、イソシアネート系増粘材が溶解するまでにエポキシ(メタ)アクリレート樹脂と高濃度に接触するため、3次元方向への増粘反応が誘発され、中間材の製品斑が生じる懸念がある。そのため、特許文献7に記載のプリプレグにあっては、成形品の力学物性及び耐熱性が低下するおそれがある。 As in the case of the prepreg described in Patent Document 7, the process window can not always be expanded simply by setting the average number of functional groups per molecule of the epoxy (meth) acrylate resin and the isocyanate-based thickener to a specific range. In addition, the ripening period may be excessively prolonged. Furthermore, in the case of blending an epoxy (meth) acrylate resin and a solid isocyanate-based thickener, the epoxy (meth) acrylate resin contacts with a high concentration until the isocyanate-based thickener dissolves, so in the three-dimensional direction There is a concern that a thickening reaction of the above may be induced, and product spots on the intermediate material may occur. Therefore, in the prepreg described in Patent Document 7, there is a possibility that mechanical properties and heat resistance of a molded article may be reduced.
 本発明は、前記事情に鑑みてなされたものであり、プロセスウインドウを広げることができるマトリクス樹脂;プロセスウインドウが広く、製品斑が少ない中間材;力学物性及び耐熱性に優れる成形品を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a matrix resin which can widen the process window; an intermediate material having a wide process window and little product unevenness; and a molded article having excellent mechanical properties and heat resistance. With the goal.
 本発明の発明者らは、前記の課題を解決すべく鋭意検討した結果、エポキシ(メタ)アクリレート樹脂及び不飽和ポリエステル樹脂の1分子あたりの水酸基数、イソシアネート系増粘材の1分子あたりのイソシアネート基含有率、イソシアネート基数を特定の範囲とすることで、プロセスウインドウが広く、製品斑が少ない中間材及び力学物性及び耐熱性に優れた成形品を見出し、本発明を完成するに至った。 The inventors of the present invention conducted intensive studies to solve the above problems, and as a result, the number of hydroxyl groups per molecule of epoxy (meth) acrylate resin and unsaturated polyester resin, and isocyanate per molecule of isocyanate-based thickener. By setting the group content rate and the number of isocyanate groups within a specific range, an intermediate material having a wide process window and few product spots, and a molded article excellent in mechanical properties and heat resistance have been found, and the present invention has been completed.
 本発明は、以下の態様を有する。
 [1] 下記(A-1)~(A-4)成分の混合物を少なくとも含む、マトリクス樹脂。
 (A-1)成分:1分子中に1個以上のエチレン性不飽和基を有し、平均水酸基数が1.8~4である、エポキシ(メタ)アクリレート樹脂及び不飽和ポリエステル樹脂の両方。
 (A-2)成分:エチレン性不飽和単量体。
 (A-3)成分:イソシアネート基含有率が15~30.5質量%であり、平均イソシアネート基数が1.8~2.4であるポリイソシアネート。
 (A-4)成分:熱重合開始剤。
[2] 下式(1)~下式(4)を満たす、[1]のマトリクス樹脂。
 5≦V1≦40 ・・・(1)
 Y≧0.5 ・・・(2)
 5≦V1X+Y≦70 ・・・(3)
 5≦V1X-Y≦70 ・・・(4)
 式(1)中、V1は(A-3)成分の配合量がエチレン性不飽和基を有する成分からなる熱硬化性樹脂100質量部に対して基準量X[質量部]であるマトリクス樹脂を23℃で168時間静置した際の熟成粘度[×10mPa・s]であり、基準量Xは10~40質量部である。
 式(2)中、Yは式(1)中の基準量Xに対して(A-3)成分の配合量を増加又は減少させる差分量[質量部]である。
 式(3)中、V1X+Yは式(1)中の基準量Xに対して、(A-3)成分の配合量を式(2)中の差分量Y[質量部]増加させたマトリクス樹脂を23℃で168時間静置した際の熟成粘度[×10mPa・s]である。
 式(4)中、V1X-Yは式(1)中の基準量Xに対して、(A-3)成分の配合量を式(2)中の差分量Y[質量部]減少させたマトリクス樹脂を23℃で168時間静置した際の熟成粘度[×10mPa・s]である。
[3] 下式(5)及び下式(6)を満たす、[1]又は[2]のマトリクス樹脂。
 5≦V1≦40 ・・・(5)
 V2/V1≦2.5 ・・・(6)
 式(5)中、V1はマトリクス樹脂を23℃で168時間静置した際の熟成粘度[×10mPa・s]である。
 式(6)中、V1は式(5)中のV1と同じであり、V2はマトリクス樹脂を23℃で336時間静置した際の熟成粘度[×10mPa・s]である。
[4] 前記液状ポリイソシアネートが分子内に1個以上の芳香環を有する、[1]~[3]のいずれかのマトリクス樹脂。
[5] 下式(7)及び下式(8)を満たす、[1]~[4]のいずれかのマトリクス樹脂。
 0.6≦a1/b≦0.75 ・・・(7)
 Vn≦1000 ・・・(8)
 式(7)中、a1は(A-1)成分の含有量[g]であり、bはエチレン性不飽和基を有する成分からなる熱硬化性樹脂の含有量[g]である。
 式(8)中、Vnはエチレン性不飽和基を有する成分からなる熱硬化性樹脂のニート樹脂粘度[mPa・s]である。
[6] 下式(9)を満たす、[1]~[5]のいずれかのマトリクス樹脂。
 V10/Vs≦1.20 ・・・(9)
 式(9)中、Vsは前記マトリクス樹脂から(A-3)成分を除いたプレマトリクス樹脂と、(A-3)成分とを混合した直後の粘度[mPa・s]であり、V10は前記プレマトリクス樹脂と(A-3)成分とを混合して10分が経過した際の粘度[mPa・s]である。
[7] [1]~[6]のいずれかのマトリクス樹脂と、繊維長が5~120mmの炭素繊維束と、を含む、中間材。
[8] [7]の中間材を加熱加圧成形して得られる、成形品。
[9] 周波数1Hzの条件下で動的粘弾性測定により測定される損失正接が極大値を示す温度が、120℃以上である、[8]の成形品。
The present invention has the following aspects.
[1] A matrix resin containing at least a mixture of the following components (A-1) to (A-4):
(A-1) Component: Both an epoxy (meth) acrylate resin and an unsaturated polyester resin having one or more ethylenically unsaturated groups in one molecule and having an average number of hydroxyl groups of 1.8 to 4.
Component (A-2): Ethylenically unsaturated monomer.
Component (A-3): polyisocyanate having an isocyanate group content of 15 to 30.5% by mass and an average number of isocyanate groups of 1.8 to 2.4.
Component (A-4): thermal polymerization initiator.
[2] A matrix resin of [1] which satisfies the following formulas (1) to (4).
5 ≦ V 1 X ≦ 40 (1)
Y ≧ 0.5 (2)
5 ≦ V1 X + Y ≦ 70 (3)
5 ≦ V1 XY ≦ 70 (4)
Matrix resin in which V1 X is a reference amount X (parts by mass) with respect to 100 parts by mass of a thermosetting resin consisting of a component having an ethylenically unsaturated group in the formula (1). Is left to stand at 23 ° C. for 168 hours, and the viscosity is [× 10 6 mPa · s], and the reference amount X is 10 to 40 parts by mass.
In the formula (2), Y is a difference [mass part] to increase or decrease the blending amount of the component (A-3) with respect to the reference amount X in the formula (1).
In the formula (3), V1 X + Y is a matrix resin in which the blending amount of the component (A-3) is increased relative to the reference amount X in the formula (1) by the amount of difference Y in the formula (2) [parts by mass] The resulting solution had a ripening viscosity [× 10 6 mPa · s] when allowed to stand at 23 ° C. for 168 hours.
In the formula (4), V1 XY decreased the blending amount of the component (A-3) with respect to the reference amount X in the formula (1) by the difference amount Y [parts by mass] in the formula (2) It is the ripening viscosity [× 10 6 mPa · s] when the matrix resin is allowed to stand at 23 ° C. for 168 hours.
[3] The matrix resin of [1] or [2], which satisfies the following formula (5) and the following formula (6).
5 ≦ V1 ≦ 40 (5)
V2 / V1 ≦ 2.5 (6)
In Formula (5), V1 is the aging viscosity [× 10 6 mPa · s] when the matrix resin is allowed to stand at 23 ° C. for 168 hours.
In the formula (6), V1 is the same as V1 in the formula (5), and V2 is a ripening viscosity [× 10 6 mPa · s] when the matrix resin is allowed to stand at 23 ° C. for 336 hours.
[4] The matrix resin according to any one of [1] to [3], wherein the liquid polyisocyanate has one or more aromatic rings in the molecule.
[5] The matrix resin according to any one of [1] to [4], which satisfies the following formula (7) and the following formula (8).
0.6 ≦ a1 / b ≦ 0.75 (7)
Vn ≦ 1000 (8)
In the formula (7), a1 is the content [g] of the component (A-1), and b is the content [g] of the thermosetting resin composed of the component having an ethylenically unsaturated group.
In Formula (8), Vn is a neat resin viscosity [mPa · s] of a thermosetting resin comprising a component having an ethylenically unsaturated group.
[6] The matrix resin according to any one of [1] to [5], which satisfies the following formula (9).
V10 / Vs ≦ 1.20 (9)
In formula (9), Vs is the viscosity [mPa · s] immediately after mixing the pre-matrix resin obtained by removing the component (A-3) from the matrix resin and the component (A-3), and V10 is the above-mentioned It is a viscosity [mPa · s] when 10 minutes have elapsed by mixing the pre-matrix resin and the component (A-3).
[7] An intermediate material comprising the matrix resin of any one of [1] to [6] and a carbon fiber bundle having a fiber length of 5 to 120 mm.
[8] A molded article obtained by heat and pressure molding the intermediate material of [7].
[9] The molded article according to [8], wherein the temperature at which the loss tangent measured by dynamic viscoelasticity measurement at a frequency of 1 Hz shows a maximum value is 120 ° C. or higher.
 本発明によれば、プロセスウインドウを広げることができるマトリクス樹脂、プロセスウインドウが広く製造時に製品斑が少ない中間材並びに力学物性及び耐熱性に優れる成形品を提供することができる。 According to the present invention, it is possible to provide a matrix resin capable of widening a process window, an intermediate material having a wide process window and little product unevenness at the time of production, and a molded article having excellent mechanical properties and heat resistance.
 本明細書において「マトリクス樹脂のプロセスウインドウが広い」とは、下記の要件(I)を満足する、マトリクス樹脂に対するポリイソシアネートの配合量の比率の数値範囲が、充分広いことを意味する。
 要件(I):マトリクス樹脂を中間材としたときの中間材に含まれる増粘後のマトリクス樹脂の粘度が適切な範囲にあり、かつ該中間材が取扱いに適したタック性及びドレープ性を具備するとともに、成形時に充分な流動性を具備する状態を発現可能であること。
 「重合性不飽和単量体」とは、重合性不飽和基を有する単量体である。
 「(メタ)アクリレート」とは、アクリレート又はメタクリレートの総称であり、「エポキシ(メタ)アクリレート」とは、エポキシアクリレート又はエポキシメタクリレートの総称である。
 「イソシアネート基含有率」とは、ポリイソシアネート100gあたりのイソシアネート基の質量を意味する。
 「平均イソシアネート基数」とは、ポリイソシアネート1分子あたりのイソシアネート基数の平均値を意味する。
 「粘度」は、23℃環境下でM3ローターを備えたTB-10(東機産業株式会社製)を用いて、ローター回転数を60rpmとして測定される値である。
 「炭素繊維含有率」とは、中間材100質量%に対する炭素繊維の含有量を意味する。
 数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
 なお、「マトリクス樹脂を一定時間ほぼ一定温度に保つこと」を「熟成させる」又は「増粘させる」と称することがある。
In the present specification, "the process window of the matrix resin is wide" means that the numerical range of the ratio of the blending amount of the polyisocyanate to the matrix resin is sufficiently wide, which satisfies the following requirement (I).
Requirement (I): The viscosity of the matrix resin after thickening contained in the intermediate material when the matrix resin is used as the intermediate material is in an appropriate range, and the intermediate material is provided with tackiness and drapability suitable for handling. At the same time, it should be able to develop a state having sufficient fluidity at the time of molding.
The "polymerizable unsaturated monomer" is a monomer having a polymerizable unsaturated group.
"(Meth) acrylate" is a generic term for acrylate or methacrylate, and "epoxy (meth) acrylate" is a generic term for epoxy acrylate or epoxy methacrylate.
The "isocyanate group content" means the mass of isocyanate group per 100 g of polyisocyanate.
The "average number of isocyanate groups" means the average value of the number of isocyanate groups per polyisocyanate molecule.
“Viscosity” is a value measured at a rotor rotational speed of 60 rpm using TB-10 (manufactured by Toki Sangyo Co., Ltd.) equipped with an M3 rotor under a 23 ° C. environment.
The "carbon fiber content" means the content of carbon fiber with respect to 100% by mass of the intermediate material.
“-” Indicating a numerical range means that numerical values described before and after that are included as the lower limit value and the upper limit value.
"Making the matrix resin at a substantially constant temperature for a certain period of time" may be referred to as "aging" or "thickening".
<マトリクス樹脂>
 本発明のマトリクス樹脂は、下記(A-1)~(A-4)成分の混合物を少なくとも含む。本発明のマトリクス樹脂は下記(A-5)成分を含んでもよい。
 (A-1)成分:1分子中に1個以上のエチレン性不飽和基を有し、平均水酸基数が1.8~4である、エポキシ(メタ)アクリレート樹脂及び不飽和ポリエステル樹脂の両方。
 (A-2)成分:エチレン性不飽和単量体。
 (A-3)成分:イソシアネート基含有率が15~30.5質量%であり、平均イソシアネート基数が1.8~2.4である液状ポリイソシアネート。
 (A-4)成分:熱重合開始剤。
 (A-5)成分:(A-1)成分及び(A-2)成分以外の化合物であって、水酸基を有さず、エチレン性不飽和基を有している化合物。
<Matrix resin>
The matrix resin of the present invention contains at least a mixture of the following components (A-1) to (A-4). The matrix resin of the present invention may contain the following component (A-5).
(A-1) Component: Both an epoxy (meth) acrylate resin and an unsaturated polyester resin having one or more ethylenically unsaturated groups in one molecule and having an average number of hydroxyl groups of 1.8 to 4.
Component (A-2): Ethylenically unsaturated monomer.
Component (A-3): Liquid polyisocyanate having an isocyanate group content of 15 to 30.5% by mass and an average number of isocyanate groups of 1.8 to 2.4.
Component (A-4): thermal polymerization initiator.
Component (A-5): a compound other than the components (A-1) and (A-2), having no hydroxyl group and having an ethylenically unsaturated group.
 本発明のマトリクス樹脂は、(A-1)成分と(A-2)成分との混合物である熱硬化性樹脂を含む。なお、マトリクス樹脂が(A-5)成分を含む場合、熱硬化性樹脂は、(A-1)成分と(A-2)成分と(A-5)成分との混合物である。すなわち、本発明のマトリクス樹脂において、熱硬化性樹脂はエチレン性不飽和基を有する成分からなる。
 本発明のマトリクス樹脂は(A-1)~(A-5)成分以外のその他の成分を含んでもよい。
The matrix resin of the present invention contains a thermosetting resin which is a mixture of the (A-1) component and the (A-2) component. When the matrix resin contains the component (A-5), the thermosetting resin is a mixture of the components (A-1), (A-2) and (A-5). That is, in the matrix resin of the present invention, the thermosetting resin comprises a component having an ethylenically unsaturated group.
The matrix resin of the present invention may contain other components in addition to the components (A-1) to (A-5).
[(A-1)成分]
 本発明のマトリクス樹脂は(A-1)成分として、エポキシ(メタ)アクリレート樹脂及び不飽和ポリエステル樹脂の両方を含む。
 本発明のマトリクス樹脂は、エポキシ(メタ)アクリレート樹脂と不飽和ポリエステル樹脂のそれぞれを1種以上含んでよい。
[(A-1) component]
The matrix resin of the present invention contains both an epoxy (meth) acrylate resin and an unsaturated polyester resin as the component (A-1).
The matrix resin of the present invention may contain one or more of each of an epoxy (meth) acrylate resin and an unsaturated polyester resin.
(エポキシ(メタ)アクリレート樹脂)
 本発明のマトリクス樹脂において、エポキシ(メタ)アクリレート樹脂は1分子中に1個以上のエチレン性不飽和基を有し、平均水酸基数が1.8~4であれば特に限定されない。例えば、エポキシ(メタ)アクリレート樹脂は、エポキシ樹脂と不飽和一塩基酸との反応生成物(不飽和酸エポキシエステル)として得ることができる。
(Epoxy (meth) acrylate resin)
In the matrix resin of the present invention, the epoxy (meth) acrylate resin has one or more ethylenically unsaturated groups in one molecule, and is not particularly limited as long as the average number of hydroxyl groups is 1.8 to 4. For example, an epoxy (meth) acrylate resin can be obtained as a reaction product of an epoxy resin and an unsaturated monobasic acid (unsaturated acid epoxy ester).
 エポキシ樹脂としては、ビスフェノールA、ビスフェノールF、ブロム化ビスフェノールAに代表されるビスフェノール化合物を主骨格としたジグリシジルエーテル型エポキシ樹脂;ダイマー酸、トリメリット酸に代表される有機多塩基酸を主骨格とするポリグリシジルエステル型エポキシ樹脂;ビスフェノールAのエチレンオキサイド又はプロピレンオキサイド付加物、グリコール、水添ビスフェノールA等のジオール化合物を主骨格としたグリシジルエーテル型エポキシ樹脂、フェノールノボラック、クレゾールノボラック、ブロム化フェノールノボラックに代表される多核フェノール化合物を主骨格としたノボラック型エポキシ樹脂等が例示される。これらのエポキシ樹脂は一種を単独で使用してもよく複数種を併用してもよい。
 中でも、ビスフェノールA骨格を1分子中に1~4個有するエポキシ樹脂を用いたエポキシ(メタ)アクリレート樹脂は、(A-3)成分との増粘反応時に2次元方向への反応が優先的に進みやすく、マトリクス樹脂及び中間材のプロセスウインドウをさらに広げることができるため好適である。特に、ビスフェノールA骨格を1~2個有するエポキシ樹脂を主成分とするエポキシ(メタ)アクリレートは、(A-2)成分を配合した際のニート樹脂粘度を低く抑えることができる。その結果、例えば炭素繊維束の含有量が高い中間材を製造する際に品質を維持しやすい傾向にある。
As epoxy resin, diglycidyl ether type epoxy resin whose main skeleton is bisphenol A represented by bisphenol A, bisphenol F, and brominated bisphenol A; organic polybasic acid represented by dimer acid and trimellitic acid Polyglycidyl ester type epoxy resin, ethylene oxide or propylene oxide adduct of bisphenol A, glycol, glycidyl ether type epoxy resin having a diol compound such as hydrogenated bisphenol A as main skeleton, phenol novolac, cresol novolac, brominated phenol The novolak-type epoxy resin etc. which made the main skeleton the polynuclear phenol compound represented by the novolak are illustrated. These epoxy resins may be used alone or in combination of two or more.
Among them, epoxy (meth) acrylate resins using an epoxy resin having 1 to 4 bisphenol A skeletons in one molecule have a two-dimensional reaction preferentially at the time of the thickening reaction with the component (A-3). It is preferable because the process window of the matrix resin and the intermediate material can be further expanded. In particular, an epoxy (meth) acrylate containing an epoxy resin having one or two bisphenol A skeletons as a main component can suppress the neat resin viscosity when the component (A-2) is blended. As a result, for example, when manufacturing an intermediate material having a high content of carbon fiber bundles, the quality tends to be easily maintained.
 不飽和一塩基酸とは、エチレン性不飽和基を有する一塩基酸である。不飽和一塩基酸としては、アクリル酸、メタクリル酸、クロトン酸、ソルビン酸等が例示される。これらの不飽和一塩基酸成分は一種を単独で使用してもよく複数種を併用してもよい。 An unsaturated monobasic acid is a monobasic acid having an ethylenically unsaturated group. Examples of unsaturated monobasic acids include acrylic acid, methacrylic acid, crotonic acid and sorbic acid. These unsaturated monobasic acid components may be used alone or in combination of two or more.
 本発明においてエポキシ(メタ)アクリレート樹脂は、不飽和一塩基酸が反応した際に生じる水酸基又はエポキシ樹脂が元来有していた水酸基を有する。また、前記水酸基以外にも、エポキシ(メタ)アクリレート樹脂の合成時又はエポキシ(メタ)アクリレート樹脂の合成後に、従来公知の手法で水酸基数を調整することができる。
 エポキシ(メタ)アクリレート樹脂が1分子中に有するエチレン性不飽和基の数は、1.0以上であり、1.5以上が好ましい。また、前記エチレン性不飽和基の数は、5.0以下が好ましく、3.0以下がより好ましく、2.5以下がさらに好ましい。前記エチレン性不飽和基の数が前記範囲内であると、後述する本発明の成形品の硬化性、耐溶剤性、耐熱性及び力学物性等がさらに優れる。
 エポキシ(メタ)アクリレート樹脂が1分子中に有するエチレン性不飽和基の数は、1.0~5.0が好ましく、1.5~5.0がより好ましく、1.5~3.0がさらに好ましく、1.5~2.5が特に好ましい。
In the present invention, the epoxy (meth) acrylate resin has a hydroxyl group produced when the unsaturated monobasic acid is reacted or a hydroxyl group originally possessed by the epoxy resin. In addition to the above hydroxyl groups, the number of hydroxyl groups can be adjusted by a conventionally known method at the time of synthesis of the epoxy (meth) acrylate resin or after synthesis of the epoxy (meth) acrylate resin.
The number of ethylenically unsaturated groups that the epoxy (meth) acrylate resin has in one molecule is 1.0 or more, preferably 1.5 or more. Moreover, 5.0 or less is preferable, as for the number of the said ethylenically unsaturated groups, 3.0 or less is more preferable, and 2.5 or less is more preferable. When the number of the ethylenically unsaturated groups is in the above range, the curability, solvent resistance, heat resistance, mechanical properties and the like of the molded article of the present invention described later are further excellent.
The number of ethylenically unsaturated groups that the epoxy (meth) acrylate resin has in one molecule is preferably 1.0 to 5.0, more preferably 1.5 to 5.0, and 1.5 to 3.0. More preferably, 1.5 to 2.5 are particularly preferred.
 エポキシ(メタ)アクリレート樹脂が1分子中に有する水酸基数の平均である平均水酸基数は、1.8以上であり、2.8以上が好ましい。前記平均水酸基数が1.8以上であると、得られる中間材のタック性やドレープ性が良好になる。
 また、前記平均水酸基数は、4以下であり、3.8以下が好ましい。平均水酸基数が4以下であると、(A-1)成分と(A-3)成分との増粘反応が2次元方向で優先的に生じ、3次元方向の反応が抑制される。その結果、得られる中間材の取扱性と流動性とが優れる。
 エポキシ(メタ)アクリレート樹脂が1分子中に有する水酸基数の平均は、1.8~3.8が好ましく、2.8~3.8がより好ましい。
The average number of hydroxyl groups, which is the average of the number of hydroxyl groups that the epoxy (meth) acrylate resin has in one molecule, is 1.8 or more, preferably 2.8 or more. When the average number of hydroxyl groups is 1.8 or more, the tackiness and the drapability of the obtained intermediate material become good.
The average number of hydroxyl groups is 4 or less, preferably 3.8 or less. When the average number of hydroxyl groups is 4 or less, the thickening reaction between the component (A-1) and the component (A-3) preferentially occurs in the two-dimensional direction, and the reaction in the three-dimensional direction is suppressed. As a result, the handleability and fluidity of the obtained intermediate material are excellent.
The average number of hydroxyl groups in one molecule of the epoxy (meth) acrylate resin is preferably 1.8 to 3.8, and more preferably 2.8 to 3.8.
(不飽和ポリエステル樹脂)
 本発明のマトリクス樹脂において、不飽和ポリエステル樹脂は1分子中に1個以上のエチレン性不飽和基を有し、平均水酸基数が1.8~4であれば特に限定されない。例えば不飽和ポリエステル樹脂は、α,β-オレフィン系不飽和ジカルボン酸と2価のグリコールとの縮合で合成されたポリエステル樹脂(α,β-オレフィン系不飽和ジカルボン酸と2価のグリコールとの重縮合体)として得ることができる。前記ポリエステル樹脂は、α,β-オレフィン系不飽和ジカルボン酸に由来して、エチレン性不飽和基を有し、かつ水酸基を有する。
 前記ポリエステル樹脂の合成においては、これら2成分のほかに、α,β-オレフィン系不飽和ジカルボン酸以外のジカルボン酸(飽和ジカルボン酸、芳香族ジカルボン酸等)、ジカルボン酸と反応するジシクロペンタジエン、2価のグリコール以外のアルコール(1価のアルコール(モノオール)、3価のアルコール(トリオール)等)等を併用することができる。
(Unsaturated polyester resin)
In the matrix resin of the present invention, the unsaturated polyester resin has one or more ethylenically unsaturated groups in one molecule, and is not particularly limited as long as the average number of hydroxyl groups is 1.8 to 4. For example, an unsaturated polyester resin is a polyester resin synthesized by condensation of an α, β-olefin unsaturated dicarboxylic acid and a divalent glycol (a weight of an α, β-olefin unsaturated dicarboxylic acid and a divalent glycol It can be obtained as a condensate). The polyester resin is derived from an α, β-olefin unsaturated dicarboxylic acid, has an ethylenically unsaturated group, and has a hydroxyl group.
In the synthesis of the polyester resin, in addition to these two components, dicarboxylic acids other than α, β-olefin unsaturated dicarboxylic acids (saturated dicarboxylic acids, aromatic dicarboxylic acids, etc.), dicyclopentadiene reactive with dicarboxylic acids, Alcohols other than dihydric glycols (monohydric alcohols (monools), trihydric alcohols (triols, etc.), etc.) can be used in combination.
 α,β-オレフィン系不飽和ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸、シトラコン酸、及びこれらジカルボン酸の無水物等が例示される。
 α,β-オレフィン系不飽和ジカルボン酸と併用可能な他のジカルボン酸としては、アジピン酸、セバシン酸、コハク酸、グルコン酸、フタル酸無水物、o-フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラクロロフタル酸等が例示される。
 2価のグリコールとしては、アルカンジオール、オキサアルカンジオール、ビスフェノールAのアルキレンオキサイド付加物等が例示される。アルキレンオキサイドとしては、エチレンオキシド、プロピレンオキシド等が例示される。
 アルカンジオールとしては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジオール等が例示される。
 オキサアルカンジオールとしては、ジオキシエチレングリコール、ジプロピレングリコール、トリエチレングリコール等が例示される。
 グリコールと併用可能な1価あるいは3価のアルコールとしては、オクチルアルコール、オレイルアルコール、トリメチロールプロパン等が例示される。
Examples of the α, β-olefin unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, citraconic acid, and anhydrides of these dicarboxylic acids.
Other dicarboxylic acids that can be used in combination with the α, β-olefin unsaturated dicarboxylic acid include adipic acid, sebacic acid, succinic acid, gluconic acid, phthalic acid anhydride, o-phthalic acid, isophthalic acid, terephthalic acid, tetrahydrofuran Phthalic acid, tetrachlorophthalic acid and the like are exemplified.
Examples of divalent glycols include alkane diols, oxa alkane diols, and alkylene oxide adducts of bisphenol A. Ethylene oxide, a propylene oxide etc. are illustrated as an alkylene oxide.
As the alkanediol, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyglycol, 1,5-pentanediol, 1,6 -Hexanediol, cyclohexanediol, etc. are exemplified.
Examples of oxaalkanediols include dioxyethylene glycol, dipropylene glycol and triethylene glycol.
Examples of monohydric or trihydric alcohols that can be used in combination with glycols include octyl alcohol, oleyl alcohol, trimethylolpropane and the like.
 不飽和ポリエステル樹脂が1分子中に有するエチレン性不飽和基の数は、1.0以上であり、1.5以上が好ましい。また、前記エチレン性不飽和基の数は、5.0以下が好ましく、3.0以下がより好ましい。前記エチレン性不飽和基の数が前記範囲内であると、後述する本発明の成形品の硬化性、耐溶剤性、耐熱性及び力学物性等がさらに優れる。
 不飽和ポリエステル樹脂が1分子中に有するエチレン性不飽和基の数は、1~5が好ましく、1.5~5.0がより好ましく、1.5~3.0がさらに好ましい。
The number of ethylenically unsaturated groups that the unsaturated polyester resin has in one molecule is 1.0 or more, preferably 1.5 or more. Moreover, 5.0 or less is preferable and, as for the number of the said ethylenically unsaturated groups, 3.0 or less is more preferable. When the number of the ethylenically unsaturated groups is in the above range, the curability, solvent resistance, heat resistance, mechanical properties and the like of the molded article of the present invention described later are further excellent.
The number of ethylenic unsaturated groups that the unsaturated polyester resin has in one molecule is preferably 1 to 5, more preferably 1.5 to 5.0, and still more preferably 1.5 to 3.0.
 不飽和ポリエステル樹脂が1分子中に有する水酸基数の平均である平均水酸基数は、1.8以上である。前記平均水酸基数が1.8以上であると、得られる中間材のタック性やドレープ性が良好になる。
 また、前記平均水酸基数は、4以下であり、3.5以下が好ましく、3.3以下がより好ましい。平均水酸基数が4以下であると、(A-1)成分と(A-3)成分との増粘反応が2次元方向に優先的に生じ、3次元方向の反応が抑制される。その結果、得られる中間材の取扱性と流動性とが優れる。
 不飽和ポリエステル樹脂が1分子中に有する水酸基数の平均は1.8~3.5が好ましく、1.8~3.3がより好ましい。
The average number of hydroxyl groups which is the average of the number of hydroxyl groups that unsaturated polyester resin has in one molecule is 1.8 or more. When the average number of hydroxyl groups is 1.8 or more, the tackiness and the drapability of the obtained intermediate material become good.
The average number of hydroxyl groups is 4 or less, preferably 3.5 or less, and more preferably 3.3 or less. When the average number of hydroxyl groups is 4 or less, the thickening reaction between the components (A-1) and (A-3) preferentially occurs in the two-dimensional direction, and the reaction in the three-dimensional direction is suppressed. As a result, the handleability and fluidity of the obtained intermediate material are excellent.
The average number of hydroxyl groups in one molecule of the unsaturated polyester resin is preferably 1.8 to 3.5, and more preferably 1.8 to 3.3.
 本発明のマトリクス樹脂において、(A-1)成分が1分子中に有するエチレン性不飽和基の数は、1.0以上であり、1.5以上が好ましい。また、前記エチレン性不飽和基の数は、5.0以下が好ましく、3.0以下がより好ましく、2.5個以下がさらに好ましい。前記エチレン性不飽和基の数が前記範囲内であると、後述する本発明の成形品の硬化性、耐溶剤性、耐熱性及び力学物性等がさらに優れる。
 (A-1)成分が1分子中に有するエチレン性不飽和基の数は1~5が好ましく、1.0~3.0がより好ましく、1.0~2.5がさらに好ましく、1.5~2.5が特に好ましい。
In the matrix resin of the present invention, the number of the ethylenically unsaturated groups which the component (A-1) has in one molecule is 1.0 or more, preferably 1.5 or more. In addition, the number of the ethylenically unsaturated groups is preferably 5.0 or less, more preferably 3.0 or less, and still more preferably 2.5 or less. When the number of the ethylenically unsaturated groups is in the above range, the curability, solvent resistance, heat resistance, mechanical properties and the like of the molded article of the present invention described later are further excellent.
The number of the ethylenically unsaturated group which the component (A-1) has in one molecule is preferably 1 to 5, more preferably 1.0 to 3.0, and still more preferably 1.0 to 2.5. 5 to 2.5 is particularly preferred.
 本発明のマトリクス樹脂において、(A-1)成分が1分子中に有する水酸基数の平均である平均水酸基数は、1.8以上であり、2以上が好ましい。前記平均水酸基数が1.8以上であると、得られる中間材のタック性やドレープ性が良好になる。
 また、前記平均水酸基数は、4以下であり、3.8以下が好ましい。
 また、平均水酸基数が4以下であると、(A-1)成分と(A-3)成分との増粘反応が2次元方向で優先的に生じ、3次元方向の反応が抑制される。その結果、得られる中間材の取扱性と流動性とが優れる。
 (A-1)成分が1分子中に有する水酸基数の平均は1.8~3.8が好ましく、2~3.8がより好ましい。
In the matrix resin of the present invention, the average number of hydroxyl groups, which is the average of the number of hydroxyl groups possessed by the component (A-1) in one molecule, is 1.8 or more, preferably 2 or more. When the average number of hydroxyl groups is 1.8 or more, the tackiness and the drapability of the obtained intermediate material become good.
The average number of hydroxyl groups is 4 or less, preferably 3.8 or less.
Further, when the average number of hydroxyl groups is 4 or less, the thickening reaction between the component (A-1) and the component (A-3) preferentially occurs in the two-dimensional direction, and the reaction in the three-dimensional direction is suppressed. As a result, the handleability and fluidity of the obtained intermediate material are excellent.
The average of the number of hydroxyl groups that component (A-1) has in one molecule is preferably 1.8 to 3.8, and more preferably 2 to 3.8.
 本発明のマトリクス樹脂は(A-1)成分として、エポキシ(メタ)アクリレート樹脂及び不飽和ポリエステル樹脂の両方を含む。すなわち、(A-1)成分はエポキシ(メタ)アクリレート樹脂と不飽和ポリエステル樹脂との混合物である。エポキシ(メタ)アクリレート樹脂及び不飽和ポリエステル樹脂を併用することで、(A-3)成分を配合した後の粘度上昇速度(初期増粘率)の急激な増加が抑制される。その結果、中間材製造時の製品斑が低減され、得られる成形品の品質も良好になる。加えて、エポキシ(メタ)アクリレート樹脂と不飽和ポリエステル樹脂を併用することで、耐溶剤性も向上する。
 なお、エポキシ(メタ)アクリレート樹脂と不飽和ポリエステル樹脂との質量比(エポキシ(メタ)アクリレート樹脂/不飽和ポリエステル樹脂)は、1/4~4/1が好ましく、1/2~2/1がより好ましい。前記質量比が前記範囲内にあると、前述の効果が発現される傾向にある。
 その他、一般的にエポキシ(メタ)アクリレート樹脂は、分子末端もしくは分子中に2級水酸基を有し、不飽和ポリエステル樹脂は、1~3級水酸基を有することができる。そこで、分子末端に1級水酸基を有する不飽和ポリエステル樹脂と、エポキシ(メタ)アクリレートを併用することで、(A-3)成分との増粘反応時に、分子末端の水酸基を優先的に反応させる手法がある。この手法で得られるマトリクス樹脂及び中間材は、プロセスウインドウがさらに広くなる傾向がある。
The matrix resin of the present invention contains both an epoxy (meth) acrylate resin and an unsaturated polyester resin as the component (A-1). That is, the component (A-1) is a mixture of an epoxy (meth) acrylate resin and an unsaturated polyester resin. By using the epoxy (meth) acrylate resin and the unsaturated polyester resin in combination, a rapid increase in the viscosity increase rate (initial thickening rate) after the component (A-3) is blended is suppressed. As a result, the product unevenness at the time of manufacturing the intermediate material is reduced, and the quality of the resulting molded article is also improved. In addition, solvent resistance is also improved by using an epoxy (meth) acrylate resin and an unsaturated polyester resin in combination.
The mass ratio of the epoxy (meth) acrylate resin to the unsaturated polyester resin (epoxy (meth) acrylate resin / unsaturated polyester resin) is preferably 1/4 to 4/1, and 1/2 to 2/1. More preferable. When the mass ratio is in the range, the above-mentioned effects tend to be exhibited.
In addition, in general, the epoxy (meth) acrylate resin can have a secondary hydroxyl group in the molecular terminal or in the molecule, and the unsaturated polyester resin can have a primary to tertiary hydroxyl group. Therefore, by using an unsaturated polyester resin having a primary hydroxyl group at the molecular terminal in combination with an epoxy (meth) acrylate, the hydroxyl group at the molecular terminal is preferentially reacted at the time of the thickening reaction with the component (A-3). There is a method. The matrix resin and the intermediate material obtained by this method tend to have a wider process window.
 (A-1)成分の含有量は、熱硬化性樹脂の合計100質量%に対して、60~75質量%が好ましい。(A-1)成分の含有量が60質量%以上であると、成形品に残存する(A-2)成分が過度に多くならずVOCが低減される傾向にある。なお、「VOC」とは、常温常圧や常圧60~80℃環境下において、揮発する有機化合物(揮発性有機化合物)を意味する。
 (A-1)成分の含有量が60質量%以上であると、中間材製造時のプロセスウインドウがさらに広くなる。また、(A-1)成分の含有量が75質量%以下であると、マトリクス樹脂の粘度が過度に高くならず、中間材製造時に製品斑や含浸不良が生じにくく、良好な中間材をさらに得やすくなる。
The content of the component (A-1) is preferably 60 to 75% by mass with respect to a total of 100% by mass of the thermosetting resin. If the content of the component (A-1) is 60% by mass or more, the component (A-2) remaining in the molded product tends not to be excessively large, and the VOC tends to be reduced. Note that “VOC” means an organic compound (volatile organic compound) that volatilizes under normal temperature or normal pressure or 60 to 80 ° C. environment.
When the content of the component (A-1) is 60% by mass or more, the process window at the time of producing the intermediate material becomes wider. Further, when the content of the component (A-1) is 75% by mass or less, the viscosity of the matrix resin does not become excessively high, and product spots and impregnation defects are not easily generated at the time of manufacturing the intermediate material. It becomes easy to get.
[(A-2)成分]
 本発明のマトリクス樹脂は(A-2)成分を含む。(A-2)成分は、重合性稀釈媒とも称される。
 (A-2)成分の具体例としては、以下の化合物が例示される。ただし、(A-2)成分は以下の例示物に限定されない。
[(A-2) component]
The matrix resin of the present invention contains the component (A-2). The component (A-2) is also referred to as a polymerizable diluent.
As specific examples of the component (A-2), the following compounds may be mentioned. However, the component (A-2) is not limited to the following examples.
 メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ノニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、2-ジシクロペンテノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、メトキシエトキシエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート類、エチレングリコールジ(メタ)アクリレート類、ヘキサンジオールジ(メタ)アクリレート類、トリメチロールプロパントリ(メタ)アクリレート等の(メタ)アクリレート類。 Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n- Nonyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 2-dicyclopentenoxyethyl (meth) acrylate, isobornyl ( Meta) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, methoxyethoxyethyl (meth) acrylate, ethoxyethoxyethyl (meth) acrylate ) Acrylate, tetrahydrofurfuryl (meth) acrylate, butanediol di (meth) acrylates, ethylene glycol di (meth) acrylates, hexanediol di (meth) acrylates, trimethylolpropane tri (meth) acrylate etc ) Acrylates.
 2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類。
 2-ヒドロキシエチル(メタ)アクリレートとエチレンオキシドの付加物、2-ヒドロキシエチル(メタ)アクリレートとプロピレンオキシドの付加物、2-ヒドロキシエチル(メタ)アクリレートと有機ラクトン類(ε-カプロラクトン等)の付加物等の水酸基含有ビニル単量体。
Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like.
Adducts of 2-hydroxyethyl (meth) acrylate and ethylene oxide, adducts of 2-hydroxyethyl (meth) acrylate and propylene oxide, adducts of 2-hydroxyethyl (meth) acrylate and organic lactones (such as ε-caprolactone) And hydroxyl group-containing vinyl monomers.
 スチレン、スチレン誘導体(α-メチルスチレン、p-t-ブチルスチレン、ビニルトルエン等)等のスチレン系単量体。
 N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物。(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸等の不飽和カルボン酸類。
 (メタ)アクリロニトリル等の重合性不飽和ニトリル類。
 マレイン酸ジエチル、マレイン酸ジブチル、フマル酸ジブチル、イタコン酸ジエチル、イタコン酸ジブチル等の不飽和カルボン酸エステル類。
 酢酸ビニル、プロピオン酸ビニル等のビニルエステル類。
Styrene-based monomers such as styrene and styrene derivatives (α-methylstyrene, pt-butylstyrene, vinyl toluene and the like).
(Meth) acrylamide compounds such as N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide and the like. Unsaturated carboxylic acids such as (meth) acrylic acid, itaconic acid, maleic acid and fumaric acid.
Polymerizable unsaturated nitriles such as (meth) acrylonitrile.
Unsaturated carboxylic acid esters such as diethyl maleate, dibutyl maleate, dibutyl fumarate, diethyl itaconate, dibutyl itaconate and the like.
Vinyl esters such as vinyl acetate and vinyl propionate.
 これらエチレン性不飽和単量体は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。2種以上を組み合わせて使用する場合、重合時の反応性を考慮して適宜選択すればよい。例えば、中間材とした際に臭気の低減を重視する場合は、使用環境等によって適切な単量体を選定すればよい。例えば、臭気の低減を目的とする場合、常圧時の沸点が180℃以上である成分を選定すればよい。一方、経済性を重視する場合は、スチレン系単量体を用いてもよい。なお、常圧時の沸点は、実測してもよく、Science of Petroleum,Vol.II.p.1281(1938)等の文献をもとに換算した値を参考にしてもよい。
 また、スチレン系単量体に近い性状の単量体としては、ビニルトルエン、ブタンジオールジ(メタ)アクリレートを好適に用いることができる。これらの中でも経済性や重合性の観点からスチレンが好ましい。経済的に許容されれば、スチレンと(メタ)アクリレート類の併用が中間材の経時変化の抑制の点から好ましい。
One of these ethylenically unsaturated monomers may be used alone, or two or more thereof may be used in combination. When using in combination of 2 or more types, it may select suitably in consideration of the reactivity at the time of polymerization. For example, when importance is given to odor reduction when used as an intermediate material, an appropriate monomer may be selected depending on the use environment and the like. For example, in order to reduce odor, a component having a boiling point of 180 ° C. or higher at normal pressure may be selected. On the other hand, when importance is placed on economics, styrene-based monomers may be used. The boiling point at normal pressure may be measured, or a value converted based on literature such as Science of Petroleum, Vol. II, p. 1281 (1938) may be referred to.
Moreover, as a monomer of the property close | similar to a styrene-type monomer, vinyltoluene and butanediol di (meth) acrylate can be used suitably. Among these, styrene is preferred from the viewpoint of economy and polymerizability. If it is economically acceptable, the combined use of styrene and (meth) acrylates is preferred from the viewpoint of suppressing the change with time of the intermediate material.
 (A-2)成分の含有量は特に制限されない。本発明のマトリクス樹脂は、例えば、(A-2)成分を熱硬化性樹脂の合計100質量%に対して、10~40質量%が好ましい。
 (A-2)成分の含有量が10質量%以上であると、熱硬化性樹脂中の(A-2)成分の量が充分となり、ニート樹脂粘度を下げることができる。その結果、中間材製造時の炭素繊維への含浸が容易となり品質がさらに向上する。また成形品に残存するVOCを低く抑えることができる傾向にある。
 (A-2)成分の含有量が40質量%以下であると、熱硬化性樹脂中の(A-2)成分の量が過剰にならず、成形品のVOCを低く抑えることができる傾向にある。また、(A-1)成分の配合量も過度に少なくならないため、成形品の力学物性やTgも好適な範囲に収めることができる。
The content of the component (A-2) is not particularly limited. In the matrix resin of the present invention, for example, the component (A-2) is preferably 10 to 40% by mass with respect to a total of 100% by mass of the thermosetting resin.
When the content of the component (A-2) is 10% by mass or more, the amount of the component (A-2) in the thermosetting resin becomes sufficient, and the neat resin viscosity can be lowered. As a result, the carbon fiber can be easily impregnated during production of the intermediate material, and the quality is further improved. In addition, there is a tendency that the VOC remaining in the molded article can be reduced.
If the content of the component (A-2) is 40% by mass or less, the amount of the component (A-2) in the thermosetting resin does not become excessive, and the VOC of the molded article can be suppressed to a low level. is there. In addition, since the compounding amount of the component (A-1) is not excessively reduced, the mechanical properties and Tg of the molded article can be within the suitable range.
[(A-3)成分]
 本発明のマトリクス樹脂は(A-3)成分を含む。
 ポリイソシアネートのイソシアネート基含有率の下限値は15質量%であり、25質量%が好ましい。イソシアネート基含有率が15質量%以上であることにより、中間材製造時に過剰にポリイソシアネートを配合する必要がなくなり、得られる成形品の耐熱性の低下が低減される。具体的には、後述するDMA測定によって得られる成形品のTgの低下が抑えられ、良好な耐熱性が維持される。
[(A-3) component]
The matrix resin of the present invention contains the component (A-3).
The lower limit value of the isocyanate group content of the polyisocyanate is 15% by mass, preferably 25% by mass. When the isocyanate group content is 15% by mass or more, it is not necessary to blend the polyisocyanate excessively when manufacturing the intermediate material, and the decrease in heat resistance of the resulting molded article is reduced. Specifically, a decrease in Tg of a molded article obtained by DMA measurement described later is suppressed, and good heat resistance is maintained.
 ポリイソシアネートのイソシアネート基含有率の上限値は、30.5質量%であり、30.2質量%が好ましい。イソシアネート基含有率が30.5質量%以下であることにより、中間材製造時に(A-1)成分と(A-3)成分との配合比率が外的要因により最適値からずれてしまった場合でも、そのズレの影響を小さくできる。そのためプロセスウインドウが広くなる。
 一方、イソシアネート基含有率が30.5質量%超であるポリイソシアネートは、4,4’-ジフェニルメタンジイソシアネート(以下、「4,4’MDI」とも記す。)及びその変性物の少なくとも一方の含有量が少なかったり、4,4’MDIの異性体である2,4’-ジフェニルメタンジイソシアネート(以下、「2,4’MDI」とも記す。)等及びその変性物を多く含有している場合が多い。また、イソシアネート基含有率が30.5質量%超であるポリイソシアネートは、4,4’MDIとその異性体である2,4’MDI等の混合変性物を多く含ませること、その他4,4’MDIやその異性体からなる多官能変性物を多く含ませることで製造されている場合が多い。その結果、中間材の製造後の熟成期間が過度に長くなったり、中間材のプロセスウインドウが狭くなる。よって、イソシアネート基含有率が30.5質量%超であるポリイソシアネートは、生産性の観点から好ましくない。
 ポリイソシアネートのイソシアネート基含有率は、15~30.2質量%が好ましく、25~30.5質量%がより好ましく、25~30.2質量%がさらに好ましい。
The upper limit value of the isocyanate group content of the polyisocyanate is 30.5% by mass, preferably 30.2% by mass. When the blending ratio of the component (A-1) to the component (A-3) deviates from the optimum value due to an external factor during production of the intermediate material because the isocyanate group content is 30.5 mass% or less However, the influence of the deviation can be reduced. Therefore, the process window becomes wider.
On the other hand, polyisocyanate having an isocyanate group content of more than 30.5% by mass is the content of at least one of 4,4'-diphenylmethane diisocyanate (hereinafter also referred to as "4,4 'MDI") and its modified product Often contain a large amount of 2,4'-diphenylmethane diisocyanate (hereinafter, also referred to as "2,4 'MDI"), which is an isomer of 4,4' MDI, etc., and modified products thereof. In addition, polyisocyanate having an isocyanate group content of more than 30.5% by mass may contain a large amount of mixed modified products such as 4,4'MDI and its isomer 2,4'MDI, and others 4,4 In many cases, they are produced by including a large amount of multifunctional modified products consisting of MDI and its isomers. As a result, the ripening period after the production of the intermediate material becomes excessively long, and the process window of the intermediate material becomes narrow. Therefore, polyisocyanate having an isocyanate group content of more than 30.5% by mass is not preferable from the viewpoint of productivity.
The isocyanate group content of the polyisocyanate is preferably 15 to 30.2% by mass, more preferably 25 to 30.5% by mass, and still more preferably 25 to 30.2% by mass.
 ポリイソシアネートの平均イソシアネート基数の下限値は、1.8であり、2.0が好ましい。平均イソシアネート基数が1.8以上であると、増粘時に(A-1)成分と(A-3)成分とを確実に繋げることができ、本発明のマトリクス樹脂を含む中間材が優れたタック性及びドレープ性を具備する。
 ポリイソシアネートの平均イソシアネート基数の上限値は2.4である。これにより、(A-1)成分と(A-3)成分との増粘反応が2次元方向に優先的に進むことができる一方、3次元方向への増粘反応を抑制できるため、前記中間材が優れた流動性を具備する。
 ポリイソシアネートの平均イソシアネート基数は2.0~2.4が好ましい。
The lower limit value of the average number of isocyanate groups of the polyisocyanate is 1.8, preferably 2.0. When the average number of isocyanate groups is 1.8 or more, the components (A-1) and (A-3) can be reliably connected at the time of thickening, and the intermediate material containing the matrix resin of the present invention is excellent in tackiness Have sex and drapability.
The upper limit of the average number of isocyanate groups in the polyisocyanate is 2.4. Thus, while the thickening reaction of the components (A-1) and (A-3) can proceed preferentially in the two-dimensional direction, the thickening reaction in the three-dimensional direction can be suppressed. The material has excellent fluidity.
The average number of isocyanate groups in the polyisocyanate is preferably 2.0 to 2.4.
 ポリイソシアネートは、増粘材として用いられる従来公知のポリイソシアネート化合物、イソシアネートプレポリマー、イソシアネート変性物から適宜選択することができる。
 本発明のマトリクス樹脂において、特に(A-3)成分として液状のポリイソシアネートを用いる場合、中間材を製造する際の取扱性や分散性が優れる傾向にある。この場合においては、固体状のポリイソシアネートを用いる場合と比べ、液状ポリイソシアネートが完全溶解するまでに高濃度のポリイソシアネートと(A-1)成分との接触を防ぐことができ、3次元方向や多官能体の生成をさらに効果的に抑えることができる。その結果、中間材の成形性の低下を防ぐことができる。なお、本発明においては、液体のポリイソシアネートと固体のポリイソシアネートとを混合し、固体のポリイソシアネートを最終的に液化させて液状ポリイソシアネートとして用いてもよい。
The polyisocyanate can be appropriately selected from conventionally known polyisocyanate compounds used as a thickener, isocyanate prepolymers, and isocyanate modified products.
In the matrix resin of the present invention, particularly when liquid polyisocyanate is used as the component (A-3), the handleability and dispersibility tend to be excellent when producing the intermediate material. In this case, the contact between the polyisocyanate having a high concentration and the component (A-1) can be prevented until the liquid polyisocyanate is completely dissolved, as compared with the case where a solid polyisocyanate is used. It is possible to more effectively suppress the formation of polyfunctionals. As a result, it is possible to prevent the decrease in the formability of the intermediate material. In the present invention, liquid polyisocyanate and solid polyisocyanate may be mixed, and solid polyisocyanate may be finally liquefied and used as liquid polyisocyanate.
 ポリイソシアネート化合物としては、2,4-トルエンジイソシアネート(2,4TDI)、2,6-トルエンジイソシアネート(2,6TDI)、4,4’-ジフェニルメタンジイソシアネート(4,4’MDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、キシレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート等の2官能ジイソシアネート;その他3官能以上のポリイソシアネート化合物が例示される。
 イソシアネートプレポリマーとしては、水酸基を有するポリエーテルポリオール又はポリエステルポリオールとジイソシアネートとの反応により得られる化合物が例示される。
 イソシアネート変性物としては、例えば、カルボジイミド変性液状MDI(MDI、MDIカルボジイミド、MDIカルボジイミドアダクト体を主要成分とするもの)を用いてもよい。
 これらのポリイソシアネートは、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。なお、固体のポリイソシアネートを用いる場合においては、液体のポリイソシアネートと組み合わせ、液状ポリイソシアネートとすることができる。
Examples of polyisocyanate compounds include 2,4-toluene diisocyanate (2,4TDI), 2,6-toluene diisocyanate (2,6TDI), 4,4'-diphenylmethane diisocyanate (4,4'MDI), isophorone diisocyanate (IPDI) And difunctional diisocyanates such as hexamethylene diisocyanate (HDI), xylene diisocyanate (XDI), and tetramethyl xylylene diisocyanate; and other trifunctional or higher polyisocyanate compounds.
As an isocyanate prepolymer, the compound obtained by reaction of the polyether polyol or polyester polyol which has a hydroxyl group, and diisocyanate is illustrated.
As the isocyanate-modified product, for example, carbodiimide-modified liquid MDI (MDI, MDI carbodiimide, MDI carbodiimide adduct as a main component) may be used.
One of these polyisocyanates may be used alone, or two or more thereof may be used in combination. In addition, when using solid polyisocyanate, it can be set as liquid polyisocyanate combining with liquid polyisocyanate.
 本発明のマトリクス樹脂においては、液状ポリイソシアネートが分子内に1個以上の芳香環を有することが好ましい。これにより後述する本発明の成形品の力学物性を高く維持しやすくなる。分子内に1個以上の芳香環を有する液状ポリイソシアネートとしては、4,4’MDI、TDI、XDI例示される。これらの中でも中間材製造後の熟成期間が過度に長くならない点や経済性の点から芳香環を有した4,4’MDIがより好ましい。
 以上より、(A-3)成分としては、中間材製造時の取扱性や分散性に優れ、中間材製造後の熟成期間を短くでき、かつ成形品の力学物性を高く維持できる点から、4,4’MDIを主成分として含み、かつ、4,4’MDIの変性物(例えばカルボジイミド変性MDI等)を混合することで液化した液状ポリイソシアネートが最適である。
 なお、(A-3)成分は、実使用で問題ない範囲であれば、2,4’MDI等のMDI異性体、MDI異性体の変性物(例えばカルボジイミド変性物)、4,4’MDI及びMDI異性体の混合物からなる変性物(例えばカルボジイミド変性物)、前記MDI異性体及び前記MDI異性体の変性物以外のポリイソシアネートからなる群より選ばれる少なくとも一つを含んでもよい。
In the matrix resin of the present invention, the liquid polyisocyanate preferably has one or more aromatic rings in the molecule. This makes it easy to maintain high mechanical properties of the molded article of the present invention described later. Examples of liquid polyisocyanates having one or more aromatic rings in the molecule include 4,4 'MDI, TDI and XDI. Among these, 4,4′MDI having an aromatic ring is more preferable from the viewpoint that the ripening period after the production of the intermediate material is not excessively long and the economic point.
From the above, component (A-3) is excellent in the handleability and dispersibility at the time of manufacturing the intermediate material, can shorten the aging period after manufacturing the intermediate material, and can maintain high mechanical properties of the molded product; Most preferred are liquid polyisocyanates which contain L, 4 'MDI as a main component and are liquefied by mixing 4, 4' MDI modified products (eg, carbodiimide-modified MDI etc.).
Component (A-3) is an MDI isomer such as 2,4 ′ MDI, a modified product of MDI isomer (eg, a carbodiimide modified product), 4,4 ′ MDI, and the like as long as there is no problem in practical use. It may contain at least one selected from the group consisting of a modified product (for example, carbodiimide modified product) consisting of a mixture of MDI isomers, the MDI isomer and a polyisocyanate other than the modified product of the MDI isomer.
 (A-3)成分の含有量は、(A-1)成分が有する水酸基のmol数に対する(A-3)成分が有するイソシアネート基のmol数の比率が0.1~10となる量が好ましい。前記比率が0.1以上であると、中間材として好適に用いられるタック性やドレープ性を付与しやすくなる。また、水酸基とイソシアネート基との反応は、過剰にイソシアネート基が存在する場合、先に形成されたウレタン結合部にイソシアネート基が反応し多官能構造を取ることが知られている。前期多官能構造が過度に生じる場合は、中間材の流動性を劣化させる可能性があるため、前記比率を10以下とすることが好ましい。 The content of the component (A-3) is preferably such that the ratio of the number of moles of isocyanate groups in the component (A-3) to the number of moles of hydroxyl groups in the component (A-1) is 0.1 to 10 . When the ratio is 0.1 or more, tackiness and drapeability which are suitably used as an intermediate material can be easily provided. In addition, it is known that in the reaction of a hydroxyl group and an isocyanate group, when an isocyanate group is present in excess, the isocyanate group reacts with the previously formed urethane bond to take a polyfunctional structure. If the multi-functional structure is generated excessively, the fluidity of the intermediate material may be deteriorated, so the ratio is preferably 10 or less.
 (A-3)成分の熱硬化性樹脂100質量部に対する配合量に関して、本発明のマトリクス樹脂は下式(1)~下式(4)を満たすことが好ましい。
 5≦V1≦40 ・・・(1)
 Y≧0.5 ・・・(2)
 5≦V1X+Y≦70 ・・・(3)
 5≦V1X-Y≦70 ・・・(4)
 式(1)中、V1は(A-3)成分の配合量がエチレン性不飽和基を有する成分からなる熱硬化性樹脂100質量部に対して基準量X[質量部]であるマトリクス樹脂を23℃で168時間静置した際の熟成粘度[×10mPa・s]であり、基準量Xは10~40質量部である。
 式(2)中、Yは式(1)中の基準量Xに対して(A-3)成分の配合量を増加又は減少させる差分量[質量部]である。
 式(3)中、V1X+Yは式(1)中の基準量Xに対して、(A-3)成分の配合量を式(2)中の差分量Y[質量部]増加させたマトリクス樹脂を23℃で168時間静置した際の熟成粘度[×10mPa・s]である。例えば、基準量Xに対して、(A-3)成分の配合量を差分量0.5[質量部]増加させたマトリクス樹脂の(A-3)成分の配合量は、X+0.5[質量部]である。
 式(4)中、V1X-Yは式(1)中の基準量Xに対して、(A-3)成分の配合量を式(2)中の差分量Y[質量部]減少させたマトリクス樹脂を23℃で168時間静置した際の熟成粘度[×10mPa・s]である。例えば、基準量Xに対して、(A-3)成分の配合量を差分量0.5[質量部]減少させたマトリクス樹脂の(A-3)成分の配合量は、X-0.5[質量部]である。
 なお、式(1)~式(4)中、(A-3)成分の配合量は熱硬化性樹脂100質量部に対する配合量である。
Regarding the blending amount of the component (A-3) with respect to 100 parts by mass of the thermosetting resin, the matrix resin of the present invention preferably satisfies the following formulas (1) to (4).
5 ≦ V 1 X ≦ 40 (1)
Y ≧ 0.5 (2)
5 ≦ V1 X + Y ≦ 70 (3)
5 ≦ V1 XY ≦ 70 (4)
Matrix resin in which V1 X is a reference amount X (parts by mass) with respect to 100 parts by mass of a thermosetting resin consisting of a component having an ethylenically unsaturated group in the formula (1). Is left to stand at 23 ° C. for 168 hours, and the viscosity is [× 10 6 mPa · s], and the reference amount X is 10 to 40 parts by mass.
In the formula (2), Y is a difference [mass part] to increase or decrease the blending amount of the component (A-3) with respect to the reference amount X in the formula (1).
In the formula (3), V1 X + Y is a matrix resin in which the blending amount of the component (A-3) is increased relative to the reference amount X in the formula (1) by the amount of difference Y in the formula (2) [parts by mass] The resulting solution had a ripening viscosity [× 10 6 mPa · s] when allowed to stand at 23 ° C. for 168 hours. For example, the blending amount of the component (A-3) of the matrix resin in which the blending amount of the component (A-3) is increased by 0.5 [mass part] relative to the reference amount X is X + 0.5 [mass Department].
In the formula (4), V1 XY decreased the blending amount of the component (A-3) with respect to the reference amount X in the formula (1) by the difference amount Y [parts by mass] in the formula (2) It is the ripening viscosity [× 10 6 mPa · s] when the matrix resin is allowed to stand at 23 ° C. for 168 hours. For example, the blending amount of the component (A-3) of the matrix resin in which the blending amount of the component (A-3) is reduced by 0.5 [parts by mass] with respect to the reference amount X is X-0.5 [Parts by mass]
In the formulas (1) to (4), the blending amount of the component (A-3) is a blending amount with respect to 100 parts by mass of the thermosetting resin.
 基準量X[質量部]は、本発明のマトリクス樹脂を23℃で168時間静置した際の熟成粘度が5~40[×10mPa・s]を満たすことができる(A-3)成分の熱硬化性樹脂100質量部に対する配合量である。この場合において、(A-3)成分の配合量を基準量X[質量部]から0.5質量部以上、差分量Y[質量部]として増減させた際に得られるマトリクス樹脂を23℃で168時間静置した際の熟成粘度V1X+Y及びV1X-Yがともに、5~70[×10mPa・s]を満たすことが好ましい。
 基準量X[質量部]の数値範囲としては、例えば10~40の間の数値を適用することができる。
When the matrix resin of the present invention is allowed to stand at 23 ° C. for 168 hours, the reference amount X (parts by mass) can satisfy the aging viscosity of 5 to 40 [× 10 6 mPa · s] (A-3) The compounding amount is 100 parts by mass of the thermosetting resin. In this case, at 23 ° C., the matrix resin obtained when the compounding amount of the component (A-3) is increased or decreased by 0.5 parts by mass or more from the reference amount X [parts by mass] as the difference amount Y [parts by mass] It is preferable that the ripening viscosities V1 X + Y and V1 XY both when left to stand for 168 hours satisfy 5 to 70 [× 10 6 mPa · s].
As a numerical range of the reference amount X [parts by mass], for example, a numerical value between 10 and 40 can be applied.
 マトリクス樹脂を23℃で168時間静置した際の熟成粘度が5~40[×10mPa・s]を満たさない場合、前記マトリクス樹脂に配合された(A-3)成分の配合量から配合量が増減した際に、得られる中間材の取扱性及び流動性が損なわれる傾向にある。
 マトリクス樹脂を23℃で168時間静置した際の熟成粘度が5~40[×10mPa・s]を満たすマトリクス樹脂が存在し、そのマトリクス樹脂に配合された(A-3)成分の配合量から0.5質量部又は0.5質量部以上を増減させて得られるマトリクス樹脂の熟成粘度が5~70[×10mPa・s]を満たさない場合、中間材製造時の製造振れの影響を受けて場所斑が生じやすくなり、取扱性及び流動性を損なうような斑が生じやすくなる。
 具体例として、基準量X[質量部]に対する差分量Y[質量部]が0.5質量部である場合、得られる(A-3)成分の水準はX[質量部]、X+0.5[質量部]、X-0.5[質量部]の3水準となる。他にもY[質量部]が0.3質量部である場合、得られる(A-3)成分の水準はX[質量部]、X+0.3[質量部]、X-0.3[質量部]の3水準となり、Y[質量部]が1.0質量部である場合、得られる(A-3)成分の水準はX[質量部]、X+1.0[質量部]、X-1.0[質量部]の3水準となる。ただし、(A-3)成分の水準は3水準に限定されない。例えば、Y[質量部]が1.0質量部又は0.5質量部である場合、得られる(A-3)成分の水準はX[質量部]、X+1.0[質量部]、X-1.0[質量部]、X+0.5[質量部]、X-0.5[質量部]の5水準となる。
When the aging viscosity when the matrix resin is allowed to stand at 23 ° C. for 168 hours does not satisfy 5 to 40 [× 10 6 mPa · s], the blending amount of the component (A-3) blended to the matrix resin is blended When the amount increases or decreases, the handleability and flowability of the obtained intermediate material tend to be impaired.
When the matrix resin is allowed to stand for 168 hours at 23 ° C., there is a matrix resin whose aging viscosity satisfies 5 to 40 [× 10 6 mPa · s], and the blending of the component (A-3) blended in the matrix resin If the aging viscosity of the matrix resin obtained by increasing or decreasing 0.5 parts by mass or 0.5 parts by mass or more from the amount does not satisfy 5 to 70 [× 10 6 mPa · s] Affected and prone to spotting, spotting that impairs handling and flowability.
As a specific example, when the difference amount Y [parts by mass] to the reference amount X [parts by mass] is 0.5 parts by mass, the level of the component (A-3) obtained is X [parts by mass], X + 0.5 Parts by mass] and X-0.5 [parts by mass]. In addition, when Y [parts by mass] is 0.3 parts by mass, the level of the component (A-3) obtained is X [parts by mass], X + 0.3 [parts by mass], X-0.3 [mass] When the Y (parts by mass) is 1.0 parts by mass, the level of the component (A-3) obtained is X (parts by mass), X + 1.0 (parts by mass), X-1 .0 Three parts of [mass parts]. However, the level of the component (A-3) is not limited to three. For example, when Y [parts by mass] is 1.0 part by mass or 0.5 parts by mass, the level of the component (A-3) obtained is X [parts by mass], X + 1.0 [parts by mass], X- It becomes five levels of 1.0 [parts by mass], X + 0.5 [parts by mass], and X-0.5 [parts by mass].
 差分量Y[質量部]が0.5未満であると、中間材製造時に用いられる設備や機器の精度によって、(A-3)成分の配合量が増減した場合、中間材に製造斑が生じやすくなる恐れがある。そのため、差分量Y[質量部]は0.5以上であることが好ましい。なお、差分量Y[質量部]の上限値は5.0以下が好ましく、3.0以下がより好ましく、2.0以下がさらに好ましい。
 差分量Y[質量部]は、0.5~5.0が好ましく、0.5~3.0がより好ましく、0.5~2.0がさらに好ましい。
If the difference amount Y [parts by mass] is less than 0.5, when the compounding amount of the component (A-3) is increased or decreased depending on the accuracy of equipment or equipment used at the time of manufacturing the intermediate material, manufacturing unevenness occurs in the intermediate material There is a risk of becoming easier. Therefore, the difference amount Y [parts by mass] is preferably 0.5 or more. The upper limit value of the difference amount Y [parts by mass] is preferably 5.0 or less, more preferably 3.0 or less, and still more preferably 2.0 or less.
The difference amount Y [parts by mass] is preferably 0.5 to 5.0, more preferably 0.5 to 3.0, and still more preferably 0.5 to 2.0.
[(A-4)成分]
 本発明のマトリクス樹脂は(A-4)成分として、熱重合開始剤を含む。熱重合開始剤は加熱によってラジカル種を生じさせる化合物である。(A-4)成分は特に限定されない。(A-4)成分としては、パーオキシジカーボネート類、パーオキシエステル類、パーオキシモノカーボネート類、パーオキシケタール類、ジアルキルパーオキサイド類等の有機過酸化物が例示される。
[(A-4) component]
The matrix resin of the present invention contains a thermal polymerization initiator as the component (A-4). The thermal polymerization initiator is a compound which generates a radical species by heating. The component (A-4) is not particularly limited. Examples of the component (A-4) include peroxydicarbonates, peroxyesters, peroxymonocarbonates, peroxyketals, and organic peroxides such as dialkyl peroxides.
 (A-4)成分の具体例としては、t-アミルパーオキシプロピルカーボネート(製品名:AIC75、化薬アクゾ株式会社製)、t-ブチルパーオキシイソプロピルカーボネート(製品名:BIC-75、化薬アクゾ株式会社製)、1,1-ジ(t-ヘキシルペルオキシ)シクロヘキサン(製品名:パーヘキサHC)、1,1-ジ(t-ブチルペルオキシ)シクロヘキサン(製品名:パーヘキサC-80(S)やパーヘキサC-75(EB)等)、メチルエチルケトンパーオキサイド、t-ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、ジクミルパーオキサイド、クメンハイドロパーオキサイド等の有機過酸化物が例示される。これらの中でも(A-4)成分としては、エチレン性官能基の残存量を減らしたい場合には、分子内にアミル基を有する、t-アミルパーオキシプロピルカーボネートを用いることが好ましい。また、各種助剤に対する安定性及び経時的な安定性の観点から分子内のアシル基の数が少ない化合物が好ましい。分子内のアシル基の数が少ない化合物ほど、安定性に優れる傾向にある。 Specific examples of the component (A-4) include t-amylperoxypropyl carbonate (product name: AIC 75, manufactured by Kayaku Akzo Co., Ltd.), t-butylperoxy isopropyl carbonate (product name: BIC-75, chemicals) Manufactured by Akzo Co., Ltd., 1,1-di (t-hexylperoxy) cyclohexane (product name: perhexa HC), 1,1-di (t-butylperoxy) cyclohexane (product name: perhexa C-80 (S) or Examples are organic peroxides such as perhexa C-75 (EB) and the like, methyl ethyl ketone peroxide, t-butyl peroxybenzoate, benzoyl peroxide, dicumyl peroxide, cumene hydroperoxide and the like. Among these, as the component (A-4), when it is desired to reduce the residual amount of the ethylenic functional group, it is preferable to use t-amyl peroxypropyl carbonate having an amyl group in the molecule. Further, from the viewpoint of the stability to various auxiliary agents and the stability with time, a compound having a small number of acyl groups in the molecule is preferable. The smaller the number of acyl groups in the molecule, the better the stability.
 (A-4)成分は、重合開始の温度及び要求する硬化時間等により適宜変更でき、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、10時間半減期温度の異なる開始剤を意図的に併用することも、重合時の硬化時間の短縮のために有用である。 The component (A-4) can be appropriately changed depending on the temperature at which the polymerization is initiated, the curing time required, etc., and one type may be used alone, or two or more types may be used in combination. Also, it is useful to intentionally combine initiators having different 10-hour half-life temperatures in order to shorten the curing time during polymerization.
 (A-4)成分の含有量は、熱硬化性樹脂100質量%に対して0.1質量%以上が好ましく、0.5質量%以上がより好ましい。(A-4)成分の含有量が0.1質量%以上であると、成形品に含まれる残存モノマーの含有量をさらに少なくすることが可能となり、結果成形品から生じるVOCをさらに低減させることができる。
 また、(A-4)成分の含有量は、熱硬化性樹脂100質量%に対して5.0質量%以下が好ましく、3.0質量%以下がより好ましい。(A-4)成分の含有量が5.0質量%以下であると、成形品に含まれる熱硬化性樹脂の硬化物の分子量が過度に小さくならず、成形品の力学物性やTgの低下を防ぎやすくなる。
 (A-4)成分の含有量は、熱硬化性樹脂100質量%に対して0.1~5.0質量%が好ましく、0.1~3.0質量%がより好ましく、0.5~5.0質量%がより好ましく、0.5~3.0質量%がさらに好ましい。
The content of the component (A-4) is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more based on 100% by mass of the thermosetting resin. When the content of the component (A-4) is 0.1% by mass or more, the content of the residual monomer contained in the molded product can be further reduced, and as a result, the VOC generated from the molded product can be further reduced. Can.
The content of the component (A-4) is preferably 5.0% by mass or less, and more preferably 3.0% by mass or less, based on 100% by mass of the thermosetting resin. When the content of the component (A-4) is 5.0% by mass or less, the molecular weight of the cured product of the thermosetting resin contained in the molded product does not become excessively small, and the mechanical properties of the molded product and the Tg decrease. Will be easier to prevent.
The content of the component (A-4) is preferably 0.1 to 5.0% by mass, more preferably 0.1 to 3.0% by mass, with respect to 100% by mass of the thermosetting resin. 5.0 mass% is more preferable, and 0.5 to 3.0 mass% is more preferable.
[(A-5)成分]
 本発明のマトリクス樹脂は(A-5)成分を含んでもよい。
 (A-5)成分としては、ウレタン(メタ)アクリレートオリゴマー類、エポキシ(メタ)アクリレートオリゴマー類、ポリエステル(メタ)アクリレートオリゴマー類、(メタ)アクリレートハーフエステル類等が例示される。
 (A-5)成分の市販品としては、CN9023、CN9028等のウレタン(メタ)アクリレートシリーズ(SARTOMER社製)が例示される。その他、スチレンと予め混合された製品としては、CBZ500シリーズ、CBZ255シリーズ、CBZ650Fシリーズ、CBZFX、R(日本ユピカ株式会社製)が例示される。ただし、(A-5)成分はこれらに限定されない。
 本発明のマトリクス樹脂が(A-5)成分を含む場合、(A-5)成分の含有量の一例としては、熱硬化性樹脂100質量%に対して0~30質量%とすることができる。本発明においては、配合後のマトリクス樹脂の粘度に応じて、(A-5)成分と(A-2)成分との配合量の比率を選択することができる。
[(A-5) component]
The matrix resin of the present invention may contain the component (A-5).
Examples of the component (A-5) include urethane (meth) acrylate oligomers, epoxy (meth) acrylate oligomers, polyester (meth) acrylate oligomers, (meth) acrylate half esters and the like.
As a commercial item of (A-5) component, urethane (meth) acrylate series (made by SARTOMER), such as CN9023 and CN9028, is illustrated. In addition, examples of the products previously mixed with styrene include CBZ500 series, CBZ255 series, CBZ650F series, CBZFX, and R (manufactured by Japan Yupica Co., Ltd.). However, the component (A-5) is not limited to these.
When the matrix resin of the present invention contains the component (A-5), an example of the content of the component (A-5) can be 0 to 30% by mass with respect to 100% by mass of the thermosetting resin. . In the present invention, depending on the viscosity of the matrix resin after compounding, the ratio of the compounding amount of the component (A-5) to the component (A-2) can be selected.
[その他の成分]
 本発明のマトリクス樹脂はその他の成分を含んでもよい。その他の成分としては、硬化促進剤、無機充填剤、内部離型剤、安定剤(重合禁止剤)、顔料、着色料、湿潤分散剤、吸水剤、紫外線吸収剤、光安定剤、酸化防止剤等が例示される。
 硬化促進剤の具体例としては、ナフテン酸コバルト、オクテン酸コバルト、オクチル酸亜鉛、オクテン酸バナジル、ナフテン酸銅、ナフテン酸バリウム等に代表される金属石鹸類、バナジルアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等に代表される金属錯体類、アニリン、N,N-ジメチルアミノ-p-ベンズアルデヒド、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ジメチル-p-トルイジン、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニルモルホリン、ピペリジン、ジエタノールアニリン等に代表されるアミン類が例示される。ただし、硬化促進剤はこれらに限定されない。
 これらの中でも硬化促進剤としては、特にアミン類の硬化促進剤が好ましい。これら硬化促進剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 マトリクス樹脂が硬化促進剤を含む場合、硬化促進剤の含有量は熱硬化性樹脂100質量部に対して0.001~5質量部が好ましい。
[Other ingredients]
The matrix resin of the present invention may contain other components. Other components include curing accelerators, inorganic fillers, internal mold release agents, stabilizers (polymerization inhibitors), pigments, colorants, wetting and dispersing agents, water absorbing agents, ultraviolet light absorbers, light stabilizers, and antioxidants. Etc. are illustrated.
Specific examples of the curing accelerator include metal soaps represented by cobalt naphthenate, cobalt octenate, zinc octylate, vanadyl octenate, copper naphthenate, barium naphthenate, etc., vanadyl acetyl acetate, cobalt acetyl acetate, iron Metal complexes represented by acetylacetonate etc., aniline, N, N-dimethylamino-p-benzaldehyde, N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethyl-p-toluidine, N Examples are amines represented by -ethyl-m-toluidine, triethanolamine, m-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, diethanolaniline and the like. However, the curing accelerator is not limited to these.
Among these, as a curing accelerator, a curing accelerator of amines is particularly preferable. These curing accelerators may be used alone or in combination of two or more.
When the matrix resin contains a curing accelerator, the content of the curing accelerator is preferably 0.001 to 5 parts by mass with respect to 100 parts by mass of the thermosetting resin.
 無機充填剤の具体例としては、炭素繊維粉、炭素繊維ミルド、繊維ミルド、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、シリカ、溶融シリカ、硫酸バリウム、酸化チタン、酸化マグネシウム、酸化カルシウム、酸化アルミニウム、リン酸カルシウム、タルク、マイカ、クレー、ガラスパウダー等が例示される。ただし、無機充填剤はこれらに限定されない。
 これら無機充填剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。これらの中でも密度が小さく補強効果の高い炭素繊維粉及び炭素繊維ミルドが好適に用いられる。
 マトリクス樹脂が無機充填剤を含む場合、無機充填剤の含有量は、軽量化の観点から必要最小限とすることが好ましい。例えば、無機充填剤の含有量は、熱硬化性樹脂100質量部に対して、1~20質量部が好ましい。
Specific examples of the inorganic filler include carbon fiber powder, carbon fiber milled, fiber milled, calcium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, silica, fused silica, barium sulfate, titanium oxide, oxide Examples include magnesium, calcium oxide, aluminum oxide, calcium phosphate, talc, mica, clay, glass powder and the like. However, the inorganic filler is not limited to these.
One of these inorganic fillers may be used alone, or two or more thereof may be used in combination. Among these, carbon fiber powder and carbon fiber milled which have a small density and a high reinforcing effect are preferably used.
When the matrix resin contains an inorganic filler, the content of the inorganic filler is preferably minimized from the viewpoint of weight reduction. For example, the content of the inorganic filler is preferably 1 to 20 parts by mass with respect to 100 parts by mass of the thermosetting resin.
 内部離型剤の具体例としては、ステアリン酸カルシウム、ステアリン酸亜鉛等の脂肪酸金属塩;ジアルキルスルホコハク酸ナトリウム等の界面活性剤等が例示される。ただし、内部離型剤はこれらに限定されない。
 これら内部離型剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 マトリクス樹脂が内部離型剤を含む場合、内部離型剤の含有量は、求める離型性水準及び添加材料により適宜設定することができる。内部離型剤の含有量は、例えば、熱硬化性樹脂100質量部に対して、0.1~10質量部が好ましい。
Specific examples of the internal mold release agent include fatty acid metal salts such as calcium stearate and zinc stearate; surfactants such as sodium dialkyl sulfosuccinate and the like. However, the internal mold release agent is not limited to these.
One of these internal release agents may be used alone, or two or more of them may be used in combination.
When the matrix resin contains an internal mold release agent, the content of the internal mold release agent can be appropriately set according to the level of releasability to be obtained and the additive material. The content of the internal mold release agent is preferably, for example, 0.1 to 10 parts by mass with respect to 100 parts by mass of the thermosetting resin.
 紫外線吸収剤の好適な具体例としては、ベンゾトリアゾール系、トリアジン系に代表される各種添加剤が好適に用いられる。紫外線吸収剤の好適な具体例の市販品としては、Tinuvin PS、Tinuvin 479、Tinuvin 571(製品名、いずれもBASF社製)が例示される。ただし、紫外線吸収剤はこれらに限定されない。これらの紫外線吸収剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 As a suitable specific example of a ultraviolet absorber, various additives represented by benzotriazole type and triazine type are used suitably. As a commercial item of the suitable example of a ultraviolet absorber, Tinuvin PS, Tinuvin 479, Tinuvin 571 (product name, all are BASF Corporation make) are illustrated. However, the ultraviolet absorber is not limited to these. These ultraviolet absorbers may be used alone or in combination of two or more.
 従来公知の(A-1)成分は一般的に紫外線領域及び可視光線領域での光吸収帯が広く、可視光の一部まで吸光することが知られている。したがって、紫外線吸収剤の選定の際には、紫外線吸収剤の吸光度が高く、吸収帯域が広いものが好ましく、吸収帯域が可視光線領域までに至る材料がより好ましい。
 マトリクス樹脂が紫外線吸収剤を含む場合、紫外線吸収剤の含有量は、熱硬化性樹脂100質量部に対して、1~10質量部が好ましい。
It is known that the conventionally known component (A-1) generally has a wide light absorption band in the ultraviolet region and the visible light region, and absorbs a part of visible light. Therefore, when selecting a UV absorber, it is preferable that the UV absorber has a high absorbance and a wide absorption band, and a material whose absorption band extends to the visible light region is more preferable.
When the matrix resin contains an ultraviolet absorber, the content of the ultraviolet absorber is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the thermosetting resin.
 光安定剤は、特に限定されない。光安定剤としては、例えば、ヒンダードフェノール系に代表される各種添加剤が好適に用いられる。例えば、Tinuvin 123、Tinuvin 5100、Tinuvin 765(製品名、いずれもBASF社製)が例示される。ただし、光安定剤はこれらに限定されない。これらの光安定剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 マトリクス樹脂が光安定剤を含む場合、光安定剤の含有量は、熱硬化性樹脂100質量部に対して、1~5質量部が好ましい。光安定剤は重合を阻害しない範囲で配合すればよい。
 なお、紫外線吸収剤及び光安定剤はそれぞれを単独で用いるより、併用することでそれらの効果がより高くなる。
The light stabilizer is not particularly limited. As the light stabilizer, for example, various additives typified by hindered phenols are suitably used. For example, Tinuvin 123, Tinuvin 5100, Tinuvin 765 (product name, all manufactured by BASF Corporation) are exemplified. However, the light stabilizer is not limited to these. One of these light stabilizers may be used alone, or two or more thereof may be used in combination.
When the matrix resin contains a light stabilizer, the content of the light stabilizer is preferably 1 to 5 parts by mass with respect to 100 parts by mass of the thermosetting resin. The light stabilizer may be blended in a range not to inhibit the polymerization.
In addition, those effects will become higher by using together a ultraviolet absorber and an optical stabilizer rather than using each independently.
 酸化防止剤の具体例としては、ヒンダードフェノール系に代表される各種添加剤が好適に用いられる。酸化防止剤の市販品としては、Irganox 1010、Irganox 1726、Irganox 1035、Irganox 1076、Irganox 1135(製品名、いずれもBASF社製)が例示される。ただし、酸化防止剤はこれらに限定されない。これら酸化防止剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 マトリクス樹脂が酸化防止剤を含む場合、酸化防止剤の含有量は、熱硬化性樹脂100質量部に対して、1~10質量部が好ましい。酸化防止剤は、ラジカル感応性が高いため、光安定剤以上に重合硬化を阻害してしまう可能性がある。そのため最適な含有量にとどめることが好ましい。
As a specific example of an antioxidant, various additives represented by a hindered phenol type are suitably used. Examples of commercially available antioxidants include Irganox 1010, Irganox 1726, Irganox 1035, Irganox 1076, and Irganox 1135 (product names, all manufactured by BASF Corporation). However, the antioxidant is not limited to these. One of these antioxidants may be used alone, or two or more thereof may be used in combination.
When the matrix resin contains an antioxidant, the content of the antioxidant is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the thermosetting resin. Antioxidants, which have high radical sensitivity, may inhibit polymerization and curing more than light stabilizers. Therefore, it is preferable to limit the content to an optimum.
 本発明のマトリクス樹脂の増粘物の23℃における熟成粘度は、5[×10mPa・s]以上が好ましく、6[×10mPa・s]以上がより好ましい。また、熟成粘度は70[×10mPa・s]以下が好ましく、60[×10mPa・s]以下がより好ましい。
 マトリクス樹脂の増粘物の23℃における熟成粘度は、5~70[×10mPa・s]が好ましく、6~70[×10mPa・s]がより好ましく、5~60[×10mPa・s]がさらに好ましく、6~60[×10mPa・s]が特に好ましい。
The ripening viscosity of the thickened material of the matrix resin of the present invention at 23 ° C. is preferably 5 [× 10 6 mPa · s] or more, and more preferably 6 [× 10 6 mPa · s] or more. Also, the ripening viscosity is preferably 70 [× 10 6 mPa · s] or less, and more preferably 60 [× 10 6 mPa · s] or less.
The aging viscosity at 23 ° C. of the thickened substance of the matrix resin is preferably 5 to 70 [× 10 6 mPa · s], more preferably 6 to 70 [× 10 6 mPa · s], and 5 to 60 [× 10 6 mPa · s]. The viscosity is more preferably mPa · s], and particularly preferably 6 to 60 [× 10 6 mPa · s].
 本発明のマトリクス樹脂は、下式(5)及び下式(6)を満たすことが好ましい。
 5≦V1≦40 ・・・(5)
 V2/V1≦2.5 ・・・(6)
 式(5)中、V1はマトリクス樹脂を23℃で168時間静置した際の熟成粘度[×10mPa・s]である。
 式(6)中、V1は式(5)中のV1と同じであり、V2はマトリクス樹脂を23℃で336時間静置した際の熟成粘度[×10mPa・s]である。
It is preferable that the matrix resin of this invention satisfy | fills the following Formula (5) and the following Formula (6).
5 ≦ V1 ≦ 40 (5)
V2 / V1 ≦ 2.5 (6)
In Formula (5), V1 is the aging viscosity [× 10 6 mPa · s] when the matrix resin is allowed to stand at 23 ° C. for 168 hours.
In the formula (6), V1 is the same as V1 in the formula (5), and V2 is a ripening viscosity [× 10 6 mPa · s] when the matrix resin is allowed to stand at 23 ° C. for 336 hours.
 本発明のマトリクス樹脂が前記式(5)を満たすと、得られる中間材の取扱性及び流動性が優れる傾向にあり、製品斑が生じにくくなる。
 本発明のマトリクス樹脂が前記式(6)を満たすと、得られる中間材の貯蔵安定性が優れ、中間材の取扱性及び流動性の時間変化が少なく、長期にわたって優れた特性を維持できる傾向にある。
 以上より、本発明のマトリクス樹脂が前記(5)及び前記(6)を満たすと、得られる中間材の取扱性及び流動性がさらに優れ、製品斑がさらに生じにくくなるとともに、中間材の貯蔵安定性がさらに優れ、中間材の取扱性及び流動性等の優れた特性を長期間維持できる。
When the matrix resin of the present invention satisfies the formula (5), the handleability and fluidity of the obtained intermediate material tend to be excellent, and product spots are less likely to occur.
When the matrix resin of the present invention satisfies the above-mentioned formula (6), the storage stability of the obtained intermediate material is excellent, the time change of the handleability and fluidity of the intermediate material is small, and the excellent characteristics can be maintained over a long period of time. is there.
From the above, when the matrix resin of the present invention satisfies the above (5) and the above (6), the handleability and the flowability of the obtained intermediate material are further improved, and product spots are less likely to occur, and storage stability of the intermediate material Further, it is possible to maintain excellent properties such as handleability and fluidity of the intermediate material for a long time.
 本発明のマトリクス樹脂において、熱硬化性樹脂のニート樹脂粘度Vnは、1000[mPa・s]以下が好ましく、800[mPa・s]以下がより好ましい。ニート樹脂粘度Vnが1000[mPa・s]以下であると、中間材製造時に炭素繊維束への含浸不良が生じにくく、製品斑の少ない中間材を得やすくなる。
 熱硬化性樹脂のニート樹脂粘度Vnは、100[mPa・s]以上が好ましく、150[mPa・s]以上がより好ましい。ニート樹脂粘度Vnが100[mPa・s]以上であると、(A-2)成分を過度に配合する必要がなく、中間材製造時に熱硬化性樹脂の増粘物と炭素繊維束との分離が生じにくくなる傾向にある。また(A-1)成分の分子量を極端に低下させる必要が生じず、中間材のタックが過度に強くならず取扱性に優れた中間材を得ることができる傾向にある。
 熱硬化性樹脂のニート樹脂粘度Vnは、100~1000[mPa・s]が好ましく、150~1000[mPa・s]がより好ましく、100~800[mPa・s]がさらに好ましく、150~800[mPa・s]が特に好ましい。
In the matrix resin of the present invention, the neat resin viscosity Vn of the thermosetting resin is preferably 1000 [mPa · s] or less, and more preferably 800 [mPa · s] or less. When the neat resin viscosity Vn is 1000 [mPa · s] or less, it is difficult for the carbon fiber bundle to be poorly impregnated during the production of the intermediate material, and it becomes easy to obtain the intermediate material with few product spots.
The neat resin viscosity Vn of the thermosetting resin is preferably 100 [mPa · s] or more, and more preferably 150 [mPa · s] or more. When the neat resin viscosity Vn is not less than 100 [mPa · s], it is not necessary to excessively add the component (A-2), and separation of a thickened product of a thermosetting resin and a carbon fiber bundle at the time of intermediate material production Is less likely to occur. In addition, it is not necessary to extremely reduce the molecular weight of the component (A-1), and the tackiness of the intermediate material does not become excessively strong, which tends to make it possible to obtain an intermediate material having excellent handleability.
The neat resin viscosity Vn of the thermosetting resin is preferably 100 to 1000 [mPa · s], more preferably 150 to 1000 [mPa · s], still more preferably 100 to 800 [mPa · s], and 150 to 800 [mPa · s]. Particularly preferred is mPa · s].
 本発明のマトリクス樹脂においては、後述する中間材に求める炭素繊維含有率に応じて、適切なニート樹脂粘度とすることが好ましい。具体的には、例えば、炭素繊維含有率60質量%以上の中間材を製造する場合は、ニート樹脂粘度は低い方が含浸不良等を生じさせない傾向にある。 In the matrix resin of the present invention, it is preferable to set an appropriate neat resin viscosity according to the carbon fiber content required for an intermediate material described later. Specifically, for example, in the case of producing an intermediate material having a carbon fiber content of 60% by mass or more, a lower neat resin viscosity tends not to cause impregnation failure or the like.
 本発明のマトリクス樹脂は、下式(7)及び下式(8)を満たすことが好ましい。
 0.6≦a1/b≦0.75 ・・・(7)
 Vn≦1000 ・・・(8)
 式(7)中、a1は(A-1)成分の含有量[g]であり、bはエチレン性不飽和基を有する成分からなる熱硬化性樹脂の含有量[g]である。
 式(8)中、Vnはエチレン性不飽和基を有する成分からなる熱硬化性樹脂のニート樹脂粘度[mPa・s]である。
It is preferable that the matrix resin of this invention satisfy | fills the following Formula (7) and the following Formula (8).
0.6 ≦ a1 / b ≦ 0.75 (7)
Vn ≦ 1000 (8)
In the formula (7), a1 is the content [g] of the component (A-1), and b is the content [g] of the thermosetting resin composed of the component having an ethylenically unsaturated group.
In Formula (8), Vn is a neat resin viscosity [mPa · s] of a thermosetting resin comprising a component having an ethylenically unsaturated group.
 本発明のマトリクス樹脂が前記式(7)及び前記式(8)を満たすと、VOCが低減されやすくなるとともに、中間材製造時に炭素繊維束への含浸不良がさらに生じにくくなり、製品斑の少ない中間材をさらに得やすくなる。 When the matrix resin of the present invention satisfies the formulas (7) and (8), VOCs are easily reduced, and it is further difficult to cause poor impregnation of the carbon fiber bundle at the time of manufacturing the intermediate material, and there are few product spots. It becomes easier to obtain the intermediate material.
 本発明のマトリクス樹脂は、例えば(A-1)成分、(A-2)成分、(A-3)成分及び(A-4)成分並びに必要に応じて(A-5)成分及びその他の成分を混合することにより製造することができる。
 本発明のマトリクス樹脂の製造には、各成分を均一に分散又は溶解可能な方法であれば、特に限定されない。例えば、(A-1)成分、(A-2)成分及び(A-3)成分を混合し、マトリクス樹脂から(A-4)成分を除いたプレマトリクス樹脂を予め製造し、次にプレマトリクス樹脂と(A-4)成分とを混合する方法がある。この方法は、制御が簡便であり、かつ中間材製造時に製品斑を生じさせにくいため好適に用いられる。
 なお、プレマトリクス樹脂又はマトリクス樹脂を製造する際は、三本ロールミル、プラネタリミキサー、ニーダー、万能攪拌機、ホモジナイザー、ホモディスペンサー等の混合機を用いることができる。ただし、混合機はこれらに限定されない。
The matrix resin of the present invention is, for example, component (A-1), component (A-2), component (A-3) and component (A-4) and, if necessary, component (A-5) and other components Can be produced by mixing
The method for producing the matrix resin of the present invention is not particularly limited as long as each component can be dispersed or dissolved uniformly. For example, a component (A-1), a component (A-2) and a component (A-3) are mixed, and a pre-matrix resin in which the component (A-4) is removed from the matrix resin is manufactured in advance, There is a method of mixing the resin and the component (A-4). This method is preferably used because it is easy to control and it is difficult to cause product spots during intermediate material production.
In addition, when manufacturing pre-matrix resin or matrix resin, mixers, such as a three-roll mill, a planetary mixer, a kneader, a universal stirrer, a homogenizer, a homo dispenser, etc., can be used. However, the mixer is not limited to these.
 本発明のマトリクス樹脂は、下式(9)を満たすことが好ましい。
 V10/Vs≦1.20 ・・・(9)
 式(9)中、Vsは前記マトリクス樹脂から(A-3)成分を除いたプレマトリクス樹脂と、(A-3)成分とを混合した直後の粘度[mPa・s]であり、V10は前記プレマトリクス樹脂と(A-3)成分とを混合して10分が経過した際の粘度[mPa・s]である。
The matrix resin of the present invention preferably satisfies the following formula (9).
V10 / Vs ≦ 1.20 (9)
In formula (9), Vs is the viscosity [mPa · s] immediately after mixing the pre-matrix resin obtained by removing the component (A-3) from the matrix resin and the component (A-3), and V10 is the above-mentioned It is a viscosity [mPa · s] when 10 minutes have elapsed by mixing the pre-matrix resin and the component (A-3).
 前記式(9)中、V10/Vsはマトリクス樹脂の初期増粘率を意味する。初期増粘率(V10/Vs)は、1.2以下が好ましく、1.14以下がより好ましく、1.10以下がさらに好ましい。初期増粘率(V10/Vs)が1.2以下であると、中間材製造時に製品斑が生じにくく、良好な中間材を製造しやすくなる。
 初期増粘率(V10/Vs)が1.2超であると、中間材製造時に製品斑が生じやすく含浸不良が所々に生じたり、後述する中間材の目付が場所毎に異なる傾向を示すおそれがある。
 初期増粘率(V10/Vs)の下限値は理論的には1.0である。初期増粘率(V10/Vs)は1.0~1.2が好ましく、1.0~1.14がより好ましく、1.0~1.10がさらに好ましい。
In said Formula (9), V10 / Vs means the initial stage viscosity rate of matrix resin. The initial viscosity ratio (V10 / Vs) is preferably 1.2 or less, more preferably 1.14 or less, and still more preferably 1.10 or less. When the initial viscosity ratio (V10 / Vs) is 1.2 or less, product unevenness is less likely to occur during the production of the intermediate material, and it becomes easy to produce a good intermediate material.
If the initial thickening rate (V10 / Vs) is more than 1.2, product unevenness is likely to occur during production of the intermediate material, and impregnation defects may occur in some places, and the basis weight of the intermediate material described later tends to differ from place to place There is.
The lower limit of the initial viscosity ratio (V10 / Vs) is theoretically 1.0. The initial viscosity ratio (V10 / Vs) is preferably 1.0 to 1.2, more preferably 1.0 to 1.14, and still more preferably 1.0 to 1.10.
(作用効果)
 以上説明した本発明のマトリクス樹脂は、(A-3)成分の液状ポリイソシアネートのイソシアネート基含有率が30.5質量%以下であるため、中間材製造時に(A-1)成分と(A-3)成分との配合比率が外的要因により最適値からずれてしまった場合でも、その配合比率のずれによる影響が小さくなり、プロセスウインドウが広くなる。
(Action effect)
Since the matrix resin of the present invention described above has an isocyanate group content of 30.5 mass% or less of the liquid polyisocyanate of the component (A-3), the component (A-1) and the component 3) Even if the blending ratio with the component deviates from the optimum value due to an external factor, the influence of the blending ratio deviation becomes small and the process window becomes wider.
<中間材>
 本発明の中間材は、本発明のマトリクス樹脂と、繊維長が5~120mmの炭素繊維束とを含む。
<Intermediate material>
The intermediate material of the present invention comprises the matrix resin of the present invention and a carbon fiber bundle having a fiber length of 5 to 120 mm.
[炭素繊維束]
 炭素繊維束は、例えば連続する炭素繊維からなる炭素繊維束を裁断することで得られる。
 炭素繊維束を構成する炭素繊維としては、例えば、ポリアクリロニトリル(PAN)系炭素繊維、レーヨン系炭素繊維、ピッチ系炭素繊維等が例示される。なかでも、圧縮強度に優れ、低密度である点から、PAN系炭素繊維が好ましい。これら炭素繊維は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
[Carbon fiber bundle]
The carbon fiber bundle is obtained, for example, by cutting a carbon fiber bundle made of continuous carbon fibers.
Examples of carbon fibers constituting the carbon fiber bundle include polyacrylonitrile (PAN) carbon fibers, rayon carbon fibers, pitch carbon fibers, and the like. Among them, PAN-based carbon fibers are preferable in terms of excellent compressive strength and low density. These carbon fibers may be used alone or in combination of two or more.
 炭素繊維束の繊維長は5mm以上であり、10mm以上が好ましい。炭素繊維束の繊維長が5mm以上であると、中間材の力学物性が充分な特性を示し、高強度、高弾性が求められる用途に適用可能な成形品を得ることができる。
 炭素繊維束の繊維長は、120mm以下であり、80mm以下が好ましい。炭素繊維束の繊維長が120mm以下であると、成形時に優れた流動性を発現するとともに、成形品内における力学物性等のバラつきを抑制できる。
 本発明の中間材においては、炭素繊維束の繊維長が5~120mmであるため、成形品の力学物性、力学物性のバラつきの抑制、成形時の流動性を両立することができる。
 炭素繊維束の繊維長は10~120mmが好ましく、5~80mmがより好ましく、10~80mmがさらに好ましい。
The fiber length of the carbon fiber bundle is 5 mm or more, preferably 10 mm or more. When the fiber length of the carbon fiber bundle is 5 mm or more, the mechanical properties of the intermediate material show sufficient characteristics, and a molded article applicable to applications requiring high strength and high elasticity can be obtained.
The fiber length of the carbon fiber bundle is 120 mm or less, preferably 80 mm or less. When the fiber length of the carbon fiber bundle is 120 mm or less, excellent fluidity can be exhibited at the time of molding, and variations in mechanical properties and the like in the molded product can be suppressed.
In the intermediate material of the present invention, since the fiber length of the carbon fiber bundle is 5 to 120 mm, it is possible to achieve both mechanical properties of the molded product, suppression of variations in mechanical properties, and flowability at the time of molding.
The fiber length of the carbon fiber bundle is preferably 10 to 120 mm, more preferably 5 to 80 mm, and still more preferably 10 to 80 mm.
 炭素繊維束のフィラメント数は、1000本以上が好ましく、2000本以上がより好ましい。炭素繊維束のフィラメント数が1000本以上であると、中間材内の炭素繊維束同士の絡み合いを抑えやすく、成形時に優れた流動性を発現しやすくなる。また、炭素繊維束のフィラメント数は、80000本以下が好ましく、60000本以下がより好ましい。炭素繊維束のフィラメント数が80000本以下であると、束一つ一つの大きさが充分に小さいため、成形品内の力学物性のバラつきを低減しやすくなる。
 炭素繊維束のフィラメント数は1000~80000本が好ましく、1000~60000本がより好ましく、2000~60000本がさらに好ましい。
 炭素繊維束としては、フィラメント数が前記範囲のものを用いてもよい。フィラメント数が例えば30000~100000本の範囲の炭素繊維束を、インライン又はオフラインで分割してフィラメント数を前記範囲とした後に使用してもよい。
1000 or more are preferable and, as for the filament number of a carbon fiber bundle, 2000 or more are more preferable. If the number of filaments of the carbon fiber bundle is 1,000 or more, entanglement of the carbon fiber bundles in the intermediate material can be easily suppressed, and excellent fluidity can be easily exhibited at the time of molding. Further, the number of filaments of the carbon fiber bundle is preferably 80000 or less, more preferably 60000 or less. When the number of filaments of the carbon fiber bundle is 80,000 or less, since the size of each bundle is sufficiently small, it is easy to reduce the variation in mechanical properties in the molded product.
The number of filaments of the carbon fiber bundle is preferably 1000 to 80,000, more preferably 1000 to 60000, and still more preferably 2000 to 60000.
As a carbon fiber bundle, the number of filaments may use the thing of the said range. Carbon fiber bundles having a number of filaments, for example, in the range of 30,000 to 100,000 may be used after being divided in-line or off-line to make the number of filaments within the above range.
 本発明の中間材における炭素繊維束の割合、すなわち炭素繊維含有率は、30質量%以上が好ましく、35質量%以上がより好ましい。また、炭素繊維含有率は75質量%以下が好ましく、70質量%以下がより好ましい。炭素繊維含有率が30質量%以上であると、充分な力学物性を具備し、高強度や高弾性が求められる用途にも適用できる成形品が得られやすくなる。炭素繊維含有率が前記範囲の70質量%以下であると、炭素繊維束にマトリクス樹脂を含浸させることが容易になり、また中間材を成形する際に良好な流動性を発現しやすく、また成形品の外観不良を抑制しやすい傾向にある。
 炭素繊維含有率は、30~75質量%が好ましく、35~75質量%がより好ましく、30~70質量%がさらに好ましく、35~70質量%が特に好ましい。
30 mass% or more is preferable, and, as for the ratio of the carbon fiber bundle in the intermediate material of this invention, ie, carbon fiber content, 35 mass% or more is more preferable. Moreover, 75 mass% or less is preferable, and, as for the carbon fiber content rate, 70 mass% or less is more preferable. When the carbon fiber content is 30% by mass or more, a molded article having sufficient mechanical properties and applicable to applications requiring high strength and high elasticity is easily obtained. When the carbon fiber content is 70% by mass or less of the above range, it becomes easy to impregnate the carbon fiber bundle with the matrix resin, and when forming the intermediate material, it is easy to express good fluidity, and forming It tends to be easy to control the appearance defect of the product.
The carbon fiber content is preferably 30 to 75% by mass, more preferably 35 to 75% by mass, still more preferably 30 to 70% by mass, and particularly preferably 35 to 70% by mass.
 炭素繊維束の目付の下限値は、50g/mが好ましく、500g/mがより好ましく、800g/mがさらに好ましい。また、炭素繊維束の目付の上限値は4000g/mが好ましく、3000g/mがより好ましい。炭素繊維束の目付が前記上限値及び前記下限値の範囲内であると、中間材中の炭素繊維が均一になりやすく、後述する本発明の成形品の力学物性が良好となりやすく、力学物性のバラつきを低減しやすくなる。特に中間材が1000g/m以上の目付の炭素繊維束を含むと、得られる成形品の弾性率がさらに高くなるため好ましい。
 炭素繊維束の目付は50~4000g/mが好ましく、500~4000g/mがより好ましく、800~4000g/mがさらに好ましく、800~3000g/mが特に好ましい。
The lower limit of the basis weight of the carbon fiber bundle is preferably 50 g / m 2, more preferably 500g / m 2, 800g / m 2 is more preferred. The upper limit of the basis weight of the carbon fiber bundle is preferably 4000g / m 2, 3000g / m 2 is more preferable. When the weight per unit area of the carbon fiber bundle is within the above upper limit value and the above lower limit value, carbon fibers in the intermediate material tend to be uniform, mechanical properties of the molded article of the present invention described later tend to be good, It becomes easy to reduce the variation. In particular, it is preferable that the intermediate material contains a carbon fiber bundle having a weight per unit area of 1000 g / m 2 or more, because the elastic modulus of the resulting molded product is further increased.
Basis weight of the carbon fiber bundle is preferably 50 ~ 4000g / m 2, more preferably 500 ~ 4000g / m 2, more preferably 800 ~ 4000g / m 2, particularly preferably 800 ~ 3000g / m 2.
 本発明の中間材は、本発明の効果を損なわない範囲であれば、繊維長が5mm未満の炭素繊維束、繊維長が120mm超の炭素繊維束を含んでもよい。また、本発明の中間材は、本発明の効果を損なわない範囲であれば、炭素繊維以外の繊維からなる繊維束を含んでもよい。
 炭素繊維以外の繊維としては、ガラス繊維束、有機繊維束等が例示される。例えば、本発明の中間材が炭素繊維以外の繊維としてガラス繊維束を含むと、中間材製造時のマトリクス樹脂の含浸性が向上する傾向にある。他にも、本発明の中間材がマトリクス樹脂に溶解可能な有機繊維束を含むと、炭素繊維束同士の拘束を緩和させることができ、中間材の流動性を向上させることができる。
The intermediate material of the present invention may contain a carbon fiber bundle having a fiber length of less than 5 mm and a carbon fiber bundle having a fiber length of more than 120 mm, as long as the effects of the present invention are not impaired. In addition, the intermediate material of the present invention may include a fiber bundle composed of fibers other than carbon fibers, as long as the effects of the present invention are not impaired.
Examples of fibers other than carbon fibers include glass fiber bundles and organic fiber bundles. For example, when the intermediate material of the present invention contains glass fiber bundles as fibers other than carbon fibers, the impregnation of the matrix resin at the time of manufacturing the intermediate material tends to be improved. In addition, when the intermediate material of the present invention includes an organic fiber bundle that can be dissolved in a matrix resin, restraint of carbon fiber bundles can be relaxed, and the fluidity of the intermediate material can be improved.
 本発明の中間材が炭素繊維束以外の繊維を含む場合、炭素繊維束の割合は中間材が含む繊維の総質量100質量%に対して90質量%以上が好ましく、95質量%以上がより好ましい。なお、炭素繊維束の割合の上限は100質量%である。 When the intermediate material of the present invention contains fibers other than carbon fiber bundles, the ratio of the carbon fiber bundles is preferably 90% by mass or more, more preferably 95% by mass or more based on 100% by mass of the fibers contained in the intermediate material. . In addition, the upper limit of the ratio of a carbon fiber bundle is 100 mass%.
 本発明に係る中間材の製造方法は、下記の第1~第3の各工程を少なくとも含む。
 第1の工程:マトリクス樹脂を製造する工程。
 第2の工程:繊維長が5~120mmの炭素繊維束を二次元にランダムに堆積してシート状物とし、シート状物にマトリクス樹脂を含浸させて中間材前駆体を得る工程。
 第3の工程:中間材前駆体に含まれるマトリクス樹脂を増粘又は熟成させる工程。
 第3の工程により、マトリクス樹脂由来の(A-1)成分が有する水酸基と、マトリクス樹脂由来の(A-4)成分が有するイソシアネート基とが反応する。
The method for producing an intermediate material according to the present invention at least includes the following first to third steps.
First step: a step of producing a matrix resin.
Second step: Carbon fiber bundles having a fiber length of 5 to 120 mm are randomly deposited in two dimensions to form a sheet, and the sheet is impregnated with a matrix resin to obtain an intermediate material precursor.
Third step: a step of thickening or aging the matrix resin contained in the intermediate material precursor.
In the third step, the hydroxyl group contained in the component (A-1) derived from the matrix resin and the isocyanate group contained in the component (A-4) derived from the matrix resin are reacted.
 第3の工程を行う条件としては、マトリクス樹脂に含まれる成分により異なるが、通常10~80℃で、0.5~30日間増粘又は熟成させる条件を適用できる。当該条件でマトリクス樹脂を熟成し、増粘させることによりマトリクス樹脂の増粘物が得られる。
 第3の工程を行う際には、熟成粘度V1及び熟成粘度V2を測定し、熟成粘度V1が5~40[×10mPa・s]を満たし、増粘比(V2/V1)が2.5以下であることを確認することが好ましい。これにより、貯蔵安定性に優れ、取扱性及び流動性の時間変化が少なく、長期にわたって優れた特性を維持できる中間材を得やすくなる。
As the conditions for performing the third step, although depending on the components contained in the matrix resin, conditions for thickening or aging usually at 10 to 80 ° C. for 0.5 to 30 days can be applied. The matrix resin is aged under the conditions and thickened to obtain a thickened product of the matrix resin.
When the third step is carried out, the aging viscosity V1 and the aging viscosity V2 are measured, and the aging viscosity V1 satisfies 5 to 40 [× 10 6 mPa · s], and the thickening ratio (V2 / V1) is 2. It is preferable to confirm that it is 5 or less. As a result, it becomes easy to obtain an intermediate material which is excellent in storage stability, is less likely to change in handleability and fluidity over time, and can maintain excellent properties over a long period of time.
 中間材の具体的な製造方法例としては、まずドクターブレード等を用いてマトリクス樹脂をキャリアフィルム上に塗布する。マトリクス樹脂の厚さは、製造する中間材の用途等に応じて適宜設定すればよい。マトリクス樹脂の厚さは、例えば、0.1~3mmとすることができる。次に、当該キャリアフィルム上に塗工されたマトリクス樹脂の表面に、所望の長さに裁断された炭素繊維束を散布することにより、炭素繊維束が二次元ランダムに積層してなるシート状物を形成する。次いでマトリクス樹脂が設けられた他のキャリアフィルムを、当該マトリクス樹脂が当該シート状物に対向するように積層して積層フィルムを作製する。積層フィルムを加圧することにより、炭素繊維束からなるシート状物にマトリクス樹脂を含浸させ、中間材前駆体を作製する。加圧後のシート状物の厚さは、例えば、0.5~5mmである。最後に、得られた中間材前駆体に含まれるマトリクス樹脂を熟成させることで、中間材を得ることができる。 As a specific manufacturing method example of the intermediate material, first, a matrix resin is coated on a carrier film using a doctor blade or the like. The thickness of the matrix resin may be appropriately set in accordance with the application of the intermediate material to be produced. The thickness of the matrix resin can be, for example, 0.1 to 3 mm. Next, a sheet-like material formed by laminating carbon fiber bundles in a two-dimensional random manner by spraying carbon fiber bundles cut into a desired length on the surface of the matrix resin coated on the carrier film. Form Next, another carrier film provided with a matrix resin is laminated so that the matrix resin faces the sheet-like material to produce a laminated film. By pressurizing the laminated film, the sheet-like material made of carbon fiber bundles is impregnated with the matrix resin to produce an intermediate material precursor. The thickness of the sheet-like material after pressing is, for example, 0.5 to 5 mm. Finally, the intermediate material can be obtained by maturing the matrix resin contained in the obtained intermediate material precursor.
 以上説明した本発明の中間材は本発明のマトリクス樹脂を含むため、プロセスウインドウが広い。本発明の中間材の製造時にあっては、マトリクス樹脂が液状ポリイソシアネートを含むため、粉末状のイソシアネート系増粘材を用いる場合と比べて突発的な増粘反応が起きにくく、エポキシ(メタ)アクリレートと液状ポリイソシアネートとの3次元方向の増粘反応が抑制される。よって、本発明の中間材は製造時の製品斑が少ない。 Since the intermediate material of the present invention described above contains the matrix resin of the present invention, the process window is wide. At the time of production of the intermediate material of the present invention, since the matrix resin contains liquid polyisocyanate, sudden thickening reaction hardly occurs as compared with the case of using powdery isocyanate-based thickener, and epoxy (meth) The three-dimensional thickening reaction between the acrylate and the liquid polyisocyanate is suppressed. Therefore, the intermediate material of the present invention has few product spots at the time of manufacture.
<成形品>
 本発明の成形品は、本発明の中間材を硬化させて加熱加圧成形して得られる硬化物である。
 本発明の中間材を硬化させて加熱加圧成形する方法としては、例えば、以下の方法を適用できる。
 本発明の中間材を一枚又は複数枚重ねたものを、一対の金型の間に配置した後、配置した中間材を加熱加圧して、中間材に含まれるマトリクス樹脂の増粘物を硬化させる方法。
<Molded item>
The molded article of the present invention is a cured product obtained by curing the intermediate material of the present invention and heat and pressure molding.
For example, the following method can be applied as a method of curing the intermediate material of the present invention and performing heat and pressure molding.
The intermediate material of the present invention is placed between one or a plurality of sheets, placed between a pair of molds, and then the intermediate material placed is heated and pressed to cure the thickened product of the matrix resin contained in the intermediate material. How to
 加熱加圧成形する際の温度としては、例えば、80~180℃とすることができる。成形品に要求されるVOCレベルや成形品製造時の成形時間等を鑑みて選択すればよい。
 加熱加圧工程の時間としては、例えば、0.5~60分間である。成形品の形状、流動厚み等を鑑みて適宜選択すればよい。
The temperature at the time of heat and pressure molding can be, for example, 80 to 180 ° C. It may be selected in consideration of the VOC level required for the molded product, the molding time at the time of manufacturing the molded product, and the like.
The time of the heating and pressurizing step is, for example, 0.5 to 60 minutes. It may be appropriately selected in consideration of the shape of the molded product, the flow thickness and the like.
 本発明の成形品においては、周波数1Hzの条件下で動的粘弾性測定により測定される損失正接が極大値を示す温度(以下、「tanδmax」とも記す。)は、120℃以上が好ましく、130℃以上がより好ましく、140℃以上が特に好ましい。tanδmaxが120℃以上であると、成形品の耐熱性がさらに優れ、用途を問わず好適に用いることができる。また、成形時の上下の金型の温度が高温である場合及び上下の金型に温度差がある場合でも、好適に脱型できる傾向があり、生産性がさらに優れる。 In the molded article of the present invention, the temperature at which the loss tangent measured by dynamic viscoelasticity measurement at a frequency of 1 Hz shows a maximum value (hereinafter also referred to as "tan δmax") is preferably 120 ° C or more, 130 ° C or more is more preferable, and 140 ° C. or more is particularly preferable. The heat resistance of a molded article is further excellent as tandeltamax is 120 ° C or more, and it can be used conveniently irrespective of a use. In addition, even when the temperatures of the upper and lower molds at the time of molding are high and there is a temperature difference between the upper and lower molds, there is a tendency to be able to be suitably released, and the productivity is further excellent.
 本発明の成形品は、本発明の中間材と、従来公知の熱硬化性もしくは熱可塑性のプリプレグ又は繊維から構成される一方向材・織布・不織布等の本発明の中間材以外の材料とを組み合わせて得てもよい。特に、本発明の中間材と熱硬化性又は熱可塑性のプリプレグとを成形して得られる成形品は、プリプレグ層により優れた力学物性を発現する。加えて、当該中間材がリブ及びボス等の凸部を形成でき成形形状の自由度に優れる。 The molded article of the present invention comprises the intermediate material of the present invention and materials other than the intermediate material of the present invention, such as unidirectional materials, woven fabrics, non-woven fabrics, etc. composed of conventionally known thermosetting or thermoplastic prepregs or fibers. You may obtain by combining. In particular, a molded article obtained by molding the intermediate material of the present invention and a thermosetting or thermoplastic prepreg exhibits superior mechanical properties by the prepreg layer. In addition, the intermediate material can form convex portions such as ribs and bosses, and is excellent in the degree of freedom in forming shape.
 本発明の中間材と熱硬化性又は熱可塑性のプリプレグとを成形する場合においては、前記プリプレグに含まれる樹脂は、本発明のマトリクス樹脂とを同一でも、異なってもよい。プリプレグに含まれる樹脂は、プリプレグと中間材との界面の強度を所望する水準に維持できれば特に限定されない。なお、成形形状にもよるが、前記プリプレグと本発明の中間材との硬化時間、例えばCure Timeを互いに近づけることで、得られる成形品の外観不良及び界面密着性の低下が低減される傾向にある。 In the case of molding the intermediate material of the present invention and a thermosetting or thermoplastic prepreg, the resin contained in the prepreg may be the same as or different from the matrix resin of the present invention. The resin contained in the prepreg is not particularly limited as long as the strength of the interface between the prepreg and the intermediate material can be maintained at a desired level. In addition, depending on the molding shape, when the curing time of the prepreg and the intermediate material of the present invention, for example, Cure Time, is made to be close to each other, appearance defects and reduction in interfacial adhesion of the resulting molded article tend to be reduced is there.
 本発明の成形品は、(1)本発明の中間材を表層に複数配置し、前記中間材の間に例えばダンボール等のハニカム構造体を芯材としたり;(2)前記中間材の間を中空にしたり;(3)前記中間材の間に繊維を含まないマトリクス樹脂を充填してから、加熱加圧成形して得てもよい。この場合において成形品は、軽量度が向上するとともに優れた力学物性を発現する傾向にある。 The molded article of the present invention comprises (1) a plurality of the intermediate materials of the present invention disposed on the surface layer, and a honeycomb structure such as cardboard as the core material between the intermediate materials; (3) It may be obtained by heat and pressure molding after filling the matrix resin containing no fiber between the above-mentioned intermediate materials. In this case, the molded article tends to exhibit excellent mechanical properties as well as the lightness is improved.
 以上説明した本発明の成形品は上述した本発明の中間材を加熱加圧成形して得られるため、過剰量のポリイソシアネートが存在せず、Tgの低下を抑えることができる。よって、本発明の成形品は力学物性及び耐熱性に優れる。 The molded article of the present invention described above is obtained by heat and pressure molding the above-described intermediate material of the present invention, so that an excessive amount of polyisocyanate is not present, and a decrease in Tg can be suppressed. Therefore, the molded article of the present invention is excellent in mechanical properties and heat resistance.
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the embodiments are also possible. It is included in the technical scope of the present invention.
 以下、本発明を実施例により具体的に説明するが、本発明は以下の記載によっては限定されない。なお、実施例中の「部」及び「%」は、それぞれ「質量部」及び「質量%」を表す。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited by the following description. In addition, "part" and "%" in an Example represent "mass part" and "mass%", respectively.
<使用原料>
[(A-1)成分及び(A-2)成分の混合物]
・CSVE(日本ユピカ株式会社製、エポキシ(メタ)アクリレート樹脂とスチレンの混合物、スチレン含有率33質量%、平均水酸基数2.1)
・DP132(日本ユピカ株式会社製、不飽和ポリエステル樹脂とスチレンの混合物、スチレン含有率33質量%、平均水酸基数3.2)
・ネオポール8051(日本ユピカ株式会社製、エポキシ(メタ)アクリレート樹脂とスチレンの混合物、スチレン含有率32質量%、平均水酸基数数1.8~4.0)
[(A-3)成分]
・コスモネートLL(三井化学製、イソシアネート基含有率29.5質量%、平均イソシアネート基数2.1、主成分4,4’MDI)
・Lupranate MM103(BASF社製、イソシアネート基含有率29.5質量%、平均イソシアネート基数2.2、主成分4,4’MDI)
・SUPRASEC 2020(HUNTSMAN社製、イソシアネート基含有率29.5質量%、平均イソシアネート基数2.1、主成分4,4’MDI)
・Desmodur CD-S(Covestro社製、イソシアネート基含有率29.7質量%、平均イソシアネート基数2.1、主成分4,4’MDI)
・Dion 31100(Reichhold社製、イソシアネート基含有率22.7質量%、平均イソシアネート基数2.4以下、主成分4,4’MDI)
・Mondur MR(Covestro社製、イソシアネート基含有率31.5質量%、平均イソシアネート基数2.8、主成分4,4’MDI以外)
・SUPRASEC 2385(HUNTSMAN社製、イソシアネート基含有率30.9質量%、平均イソシアネート基数2.0、主成分4,4’MDI)
・Lupranate MX121/1(BASF社製、イソシアネート基含有率33質量%、平均イソシアネート基数2.2、主成分4,4’MDI以外)
Raw materials used
[A mixture of the (A-1) component and the (A-2) component]
-CSVE (made by Nippon Yupika Co., Ltd., a mixture of epoxy (meth) acrylate resin and styrene, styrene content 33% by mass, average number of hydroxyl groups: 2.1)
・ DP 132 (made by Nippon Yupica Co., Ltd., a mixture of unsaturated polyester resin and styrene, styrene content 33 mass%, average number of hydroxyl groups 3.2)
-Neopol 8051 (manufactured by Japan Yupica Co., Ltd., a mixture of epoxy (meth) acrylate resin and styrene, styrene content 32% by mass, average number of hydroxyl groups 1.8 to 4.0)
[(A-3) component]
・ Cosmonate LL (Mitsui Chemical Co., Ltd., isocyanate group content 29.5% by mass, average isocyanate group number 2.1, main component 4, 4 'MDI)
-Lupranate MM103 (manufactured by BASF, 29.5% by mass of isocyanate group content, average number of isocyanate groups 2.2, main component 4, 4 'MDI)
-SUPRASEC 2020 (manufactured by HUNTSMAN, isocyanate content: 29.5% by mass, average number of isocyanate groups: 2.1, main component 4, 4 'MDI)
Desmodur CD-S (Covestro Co., Ltd., isocyanate content: 29.7% by mass, average number of isocyanate groups: 2.1, main component 4, 4 'MDI)
-Dion 31100 (made by Reichhold, isocyanate group content 22.7 mass%, average isocyanate group number 2.4 or less, main component 4, 4 'MDI)
-Mondur MR (manufactured by Covestro, 31.5% by mass of isocyanate group content, average number of isocyanate groups: 2.8, other than main component 4, 4 'MDI)
-SUPRASEC 2385 (manufactured by HUNTSMAN, isocyanate content 30.9% by mass, average number of isocyanate groups 2.0, main component 4, 4 'MDI)
-Lupranate MX121 / 1 (manufactured by BASF, having an isocyanate content of 33% by mass, an average number of isocyanate groups of 2.2, other than the main component 4, 4 'MDI)
<測定方法>
(ニート樹脂粘度Vn)
 エチレン性不飽和基を有する成分からなる熱硬化性樹脂のニート樹脂粘度Vn、プレマトリクス樹脂の粘度Vs、マトリクス樹脂の粘度V10は、23℃環境下でM3ローターを備えたTB-10(東機産業株式会社製)を用いて測定を行なった。ローター回転数は60rpmで実施した。
<Measurement method>
(Neat resin viscosity Vn)
Neat resin viscosity Vn of thermosetting resin consisting of component having ethylenic unsaturated group, viscosity Vs of pre-matrix resin, viscosity V10 of matrix resin, TB-10 equipped with M3 rotor under 23 ° C. environment The measurement was performed using an industrial company). The rotor rotational speed was implemented at 60 rpm.
(熟成粘度)
 マトリクス樹脂を23℃環境に168時間静置した後の熟成粘度V1及びマトリクス樹脂を23℃環境に336時間静置した後の熟成粘度V2を、T-BarスピンドルT-Fを備えたヘリパス型デジタル粘度計HB DV-1 prime(BROOKFIELD社製)を用いて行った。
 熟成粘度はマトリクス樹脂の表面から下面に向けて下降しながら測定を行い、マトリクス樹脂の表面に接触した際を0秒とし、120~150秒経過した段階での瞬間値を用いた。スピンドル回転数は0.3~50rpmの範囲とし、測定時のトルクが10~70%の範囲内、好ましくは30~50%の範囲内になるようにスピンドル回転数を調整して行った。
(Aging viscosity)
Aging viscosity V1 after leaving the matrix resin to stand in a 23 ° C environment for 168 hours, and a aging viscosity V2 after leaving the matrix resin to stand in a 23 ° C environment for 336 hours, helipath type digital equipped with T-Bar spindle TF It was carried out using a viscometer HB DV-1 prime (manufactured by BROOKFIELD).
The ripening viscosity was measured while descending from the surface to the lower surface of the matrix resin, and was 0 seconds when it was in contact with the surface of the matrix resin, and the instantaneous value at the time of 120 to 150 seconds was used. The spindle rotational speed was adjusted in the range of 0.3 to 50 rpm, and was adjusted so that the torque at the time of measurement was in the range of 10 to 70%, preferably in the range of 30 to 50%.
(増粘比)
 熟成粘度の測定により得られた熟成粘度V1及び熟成粘度V2を基に下式(10)により増粘比を算出した。増粘比が2.5以下の場合、熟成後の安定性に優れ、中間材とした際の貯蔵安定性に優れると判断した。なお、増粘比の算出は熟成粘度V1が3.0[×10mPa・s]以上であるマトリクス樹脂について行った。
 (増粘比)=V2/V1 ・・・(10)
(Thickening ratio)
Based on the aging viscosity V1 and the aging viscosity V2 obtained by measuring the aging viscosity, the thickening ratio was calculated by the following equation (10). When the thickening ratio was 2.5 or less, it was judged that the stability after aging was excellent, and the storage stability when used as an intermediate material was excellent. In addition, calculation of the thickening ratio was performed about matrix resin whose ripening viscosity V1 is 3.0 [* 10 < 6 > mPa * s] or more.
(Thickening ratio) = V2 / V1 (10)
(初期増粘率)
 プレマトリクス樹脂に(A-3)成分を配合し、混合攪拌した直後のマトリクス樹脂の粘度Vs及び(A-3)成分を配合し、混合攪拌した直後から10分経過した時のマトリクス樹脂の粘度V10をニート樹脂粘度Vnと同様にして測定した。得られたVs及びV10を基に、下式(11)により初期増粘率を算出した。
 (初期増粘率)=V10/Vs ・・・(11)
(Initial thickening rate)
The viscosity Vs of the matrix resin immediately after mixing and stirring the component (A-3) with the pre-matrix resin, and the viscosity Vs of the matrix resin after mixing and stirring, and the viscosity of the matrix resin when 10 minutes have passed immediately after mixing and stirring V10 was measured in the same manner as neat resin viscosity Vn. Based on Vs and V10 thus obtained, the initial thickening rate was calculated by the following equation (11).
(Initial thickening rate) = V10 / Vs (11)
(DMA測定)
 成形板から長さ55mm、幅12.7mm、厚さ2mmの試験片を切り出し、(ティー・エイ・インスツルメント・ジャパン株式会社製、「ARES-RDS」)を用いて、測定周波数1Hz、昇温速度5℃/分で、30~250℃までの領域において測定を行い、logG’及びlogG’’及び損失正接(tanδ)を温度に対してプロットし、周波数1Hzの条件下で動的粘弾性測定により測定される損失正接(tanδ)が極大値を示す温度をtanδmaxとした。tanδmaxが大きいほど、耐熱性に優れることを意味する。なお、tanδmaxが120℃以上であるとき耐熱性が良好であるとし、tanδmaxが140℃以上である場合は、耐熱性が優れていると判断した。
(DMA measurement)
A test piece 55 mm long, 12.7 mm wide, and 2 mm thick is cut out from a molded plate, and the measurement frequency is increased by 1 Hz using (ARES-RDS, manufactured by TA Instruments Japan Co., Ltd.) Measurements are made at a temperature rate of 5 ° C./min in the region from 30 to 250 ° C., log G ′ and log G ′ ′ and loss tangent (tan δ) are plotted against temperature, dynamic viscoelasticity under the condition of frequency 1 Hz The temperature at which the loss tangent (tan δ) measured by the measurement shows a maximum value was taken as tan δ max. The larger the tan δmax, the better the heat resistance. In addition, when tan δmax was 120 ° C. or more, the heat resistance was good, and when tan δ max was 140 ° C. or more, it was judged that the heat resistance was excellent.
<評価方法>
(取扱性)
 調合後23℃環境に168時間静置したマトリクス樹脂の表層かから厚み1cm分を除いた内部から3~20gの樹脂片を作業者の手で掴みだした際に、手袋に付着したか否かで取扱性を判断した。取扱性の評価基準は以下の通りである。
 「○」:手袋への付着は無く、中間材とした際に良好な取扱性が期待できる。
 「△」:手袋への付着は無く、中間材とした際にコシが弱いが取扱が可能であると期待できる。
 「×」:マトリクス樹脂の切り出しが不可能又は手袋への付着が確認される。
<Evaluation method>
(Handling)
Whether or not it adheres to gloves when 3 to 20 g of resin pieces are pulled out by an operator's hand from the inside excluding 1 cm thickness from the surface layer of matrix resin left to stand for 168 hours at 23 ° C. after compounding The handling was judged by. The evaluation criteria for handling are as follows.
"○": There is no adhesion to gloves, and good handling can be expected when used as an intermediate material.
"△": There is no adhesion to gloves, and when used as an intermediate material, it can be expected that handling is possible although the stiffness is weak.
"X": The cut-out of matrix resin is impossible, or adhesion to a glove is confirmed.
(融解性)
 調合後23℃環境に168時間静置したマトリクス樹脂の表層から厚み1cm分を除いた内部から1~5gの樹脂片を切り出した。当該樹脂片を140℃の加熱盤上に静置した後、スパーチュラで押し付けながら同心円状にマトリクス樹脂を移動させて溶解挙動を確認して融解性を評価した。融解性の評価基準は以下の通りである。
 「○」:均一、又は未溶解成分が散見されるが均一な樹脂塗膜を形成することが可能であり、中間材とした際に良好な成形性が期待できる。
 「△」:加熱盤に未溶解成分が付着するが、塗膜の形成には至らない。中間材とした際に成形性が劣ることが予想される。
 「×」:加熱盤に付着しない。中間材とした際に成形性が著しく劣ると予想される。
(Melting ability)
After compounding, 1 to 5 g of resin pieces were cut out from the inside of the surface layer of the matrix resin which was left to stand at 23 ° C. for 168 hours in an environment of 1 cm in thickness. The resin piece was allowed to stand on a heating plate at 140 ° C., and then the matrix resin was moved concentrically while pressing with a spatula to confirm dissolution behavior and to evaluate meltability. The criteria for evaluation of the meltability are as follows.
"(Circle)": Although uniform or undissolved component is scattered, it is possible to form a uniform resin coating film, and when it is set as an intermediate material, favorable moldability can be anticipated.
"(Triangle | delta)": Although the undissolved component adheres to a heating board, it does not lead to formation of a coating film. When it is used as an intermediate material, it is expected that the formability is inferior.
"X": does not adhere to the heating plate. When it is used as an intermediate material, the formability is expected to be extremely poor.
(プロセスウインドウ)
 プロセスウインドウは、(A-3)成分の配合量を基準量Xから差分量Y増減させた複数のマトリクス樹脂における取扱性と融解性の各評価結果に基づき評価した。プロセスウインドウの判定は、取扱性評価の結果が「〇」又は「△」であり、かつ、融解性評価の結果が「〇」を満たす(A-3)成分の配合量の水準が三準以上あるとき、プロセスウインドウが良好であると判断した。これは、中間材製造時に製品斑を少なくできることを意味する。
(Process window)
The process window was evaluated based on the evaluation results of handleability and meltability in a plurality of matrix resins in which the blending amount of the component (A-3) was increased or decreased by the difference amount Y from the reference amount X. As for the judgment of the process window, the result of the handling evaluation is “o” or “Δ”, and the result of the meltability evaluation is “o” satisfying the “o” component (A-3). At one time, it was determined that the process window was good. This means that product unevenness can be reduced at the time of intermediate material production.
(中間材の含浸性)
 中間材の含浸性は、製造した中間材前駆体及び中間材からキャリアフィルムを除去した後、中間材前駆体及び中間材の表面部分と内部とを作業者が目視及び触手で確認することにより評価した。検査は幅方向全域とした。判断指標は以下の通りである。
 評価基準
 「〇」:マトリクス樹脂の炭素繊維束への濡れが良好であり、マトリクス樹脂が全体に略均一に存在していた。
 「△」:マトリクス樹脂の炭素繊維束への濡れが一部不充分であるが、増粘時に含浸が進み増粘後のマトリクス樹脂の強化繊維束への濡れは良好であった。
 「×」:マトリクス樹脂の炭素繊維束への濡れが不充分であり、増粘後もマトリクス樹脂の強化繊維束への濡れは不充分であった。
(Impregnability of intermediate material)
The impregnatability of the intermediate material is evaluated by the operator visually confirming the surface area and the inside of the intermediate material precursor and the intermediate material after removing the carrier film from the manufactured intermediate material precursor and the intermediate material. did. The inspection was conducted in the entire width direction. The judgment index is as follows.
Evaluation Criteria "〇": The wetting of the matrix resin with the carbon fiber bundle was good, and the matrix resin was present substantially uniformly throughout.
"B": The wetting of the matrix resin to the carbon fiber bundle was partially insufficient, but the impregnation proceeded at the time of thickening, and the wetting of the matrix resin to the reinforcing fiber bundle after thickening was good.
"X": The wetting of the matrix resin to the carbon fiber bundle was insufficient, and the wetting of the matrix resin to the reinforcing fiber bundle was insufficient even after thickening.
(曲げ試験)
 300mm×300mmの成形板から長さ100mm、幅25mm、厚さ2mmの試験片を12枚切り出し、5kNインストロン万能試験機を用い、L/D=40、クロスヘッド速度5mm/分の条件で3点曲げ試験を実施し、曲げ強度と曲げ弾性率の平均値を求めた。いずれも数値が高いほど力学物性に優れることを意味する。
(Bending test)
Twelve test pieces of 100 mm long, 25 mm wide and 2 mm thick from a molded plate of 300 mm x 300 mm, using a 5 kN Instron universal testing machine, L / D = 40, crosshead speed 5 mm / min 3 A point bending test was carried out to determine the average value of bending strength and flexural modulus. In any case, the higher the numerical value, the better the mechanical properties.
(成形性)
 製造後23℃環境下で168時間静置した中間材を60~80mm角に複数枚切出し積層体を得た。積層体の質量は90gになるように積層枚数を調整した。評価には、100tプレス機と、コア(下型)とキャビティ(上型)とからなる内部空間が直径100mmの円筒形状を形成しており、かつ前記円筒空間のキャビティ側の最上部側面に厚み1.5~2mm、幅50mmの流路が形成された金型を用いた。成形性評価として、コアに積層体をチャージしてから10秒経過してから、コアを上昇させた後10MPaで加圧を行い、流路中に流れ出た成形材の流動長(mm)を測定した。コア・キャビティ及び流路は何れも140℃に加熱した。成形時間は120秒とした。流動長が420mm以上であれば好適な成形性があると判断し、450mm以上であれば成形性が優れると判断し、480mm以上であれば特に成形性が優れると判断した。
(Formability)
A plurality of intermediate materials which were allowed to stand for 168 hours in a 23 ° C. environment after production were cut out into 60 to 80 mm squares to obtain a laminate. The number of stacked layers was adjusted so that the weight of the stack was 90 g. For evaluation, the internal space consisting of a 100t press machine, core (lower mold) and cavity (upper mold) forms a cylindrical shape with a diameter of 100 mm, and the thickness of the top side of the cylindrical space on the cavity side A mold having a channel of 1.5 to 2 mm and a width of 50 mm was used. As evaluation of formability, 10 seconds after charging the laminate to the core, the core is raised and then pressurized at 10 MPa, and the flow length (mm) of the forming material flowing out into the flow path is measured did. Both the core cavity and the channels were heated to 140 ° C. The molding time was 120 seconds. It was judged that there is suitable moldability if the flow length is 420 mm or more, and it is judged that the moldability is excellent if it is 450 mm or more, and the moldability is particularly excellent if it is 480 mm or more.
<マトリクス樹脂の調製>
(実施例1~5、比較例1~4)
 表1,2に記載の(A-1)成分及び(A-2)成分の混合物である1種類又は2種類の熱硬化性樹脂100質量部に、(A-4)成分である熱重合開始剤として1,1-ジ(t-ブチルパーオキシ)シクロヘキサンの75質量%溶液(日本油脂株式会社製、製品名:パーヘキサC-75(EB))0.5質量部及びt-ブチルパーオキシイソプロピルカーボネートの74質量%溶液(化薬アクゾ株式会社製、製品名:カヤカルボンBIC-75)0.5質量部、内部離型剤としてリン酸エステル系誘導体組成物(アクセルプラスチックリサーチラボラトリー社製、製品名:MOLD WIZ INT-EQ-6)0.5質量部、重合禁止剤として1,4-ベンゾキノン0.02質量部、吸湿剤としてモレキュラーシーブ(A Honeywell Company社製 UOP L-POWDER)1.2質量部をそれぞれ配合し、充分に混合撹拌しプレマトリクス樹脂を得た。その後、表1,2に記載の(A-3)成分を配合し、2~4分程度混合攪拌することで各例のマトリクス樹脂を得た。
 なお、各例で用いた熱硬化性樹脂のニート樹脂粘度を表1,2に示した。
<Preparation of matrix resin>
(Examples 1 to 5 and Comparative Examples 1 to 4)
Thermal polymerization initiation of component (A-4) in 100 parts by mass of one or two kinds of thermosetting resins which is a mixture of components (A-1) and (A-2) described in Tables 1 and 2 % Solution of 1,1-di (t-butylperoxy) cyclohexane as a dispersant (manufactured by NOF Corporation, product name: Perhexa C-75 (EB)) and 0.5 parts by mass of t-butylperoxyisopropyl A 74% by mass solution of carbonate (Akayaku Akzo Co., Ltd., product name: Kayacaron BIC-75) 0.5 parts by mass, and a phosphate ester derivative composition as an internal mold release agent (Axel Plastic Research Laboratory, product name) 0.5 parts by mass of MOLD WIZ INT-EQ-6, 0.02 parts by mass of 1,4-benzoquinone as a polymerization inhibitor, and molecular sieve (A Honeywel) as a moisture absorbent Company Inc. UOP L-POWDER) 1.2 parts by mass were blended, respectively, to obtain a sufficiently mixed and stirred pre matrix resin. Thereafter, the components (A-3) shown in Tables 1 and 2 were blended, and mixed and stirred for about 2 to 4 minutes to obtain matrix resins of the respective examples.
The neat resin viscosity of the thermosetting resin used in each example is shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表3~5に示すように、各例のマトリクス樹脂を調整する際には、熱硬化性樹脂100質量部に対する(A-3)成分の配合量を基準量X[質量部]から差分量Y[質量部]増減させ、(A-3)成分の配合量が異なる複数種類のマトリクス樹脂を調整した。
 各例のマトリクス樹脂の基準量Xは表3~5に示すとおりである。例えば、表3に示すように、実施例1では基準量X[質量部]が21.5である。これに対して、差分量Y[質量部]を0.5又は1.0とし、(A-3)成分の配合量がX[質量部]、X+1.0[質量部]、X-1.0[質量部]、X+0.5[質量部]、X-0.5[質量部]の5水準のマトリクス樹脂を調整した。
 表3~5において、(A-3)成分の配合量に関して、配合量を基準量より減少させた場合、「基準量との関係」の欄に「減」と記載した。一方、配合量を基準量より増加させた場合、「基準量との関係」の欄に「増」と記載した。
As shown in Tables 3 to 5, when adjusting the matrix resin of each example, the blending amount of the component (A-3) with respect to 100 parts by mass of the thermosetting resin is a difference amount Y from the reference amount X [parts by mass] [Parts by mass] The amount of the component (A-3) was varied to adjust a plurality of types of matrix resins which were increased or decreased.
The reference amount X of the matrix resin of each example is as shown in Tables 3 to 5. For example, as shown in Table 3, in Example 1, the reference amount X [parts by mass] is 21.5. On the other hand, the difference amount Y [parts by mass] is 0.5 or 1.0, and the compounding amount of the component (A-3) is X [parts by mass], X + 1.0 [parts by mass], X-1. Five levels of matrix resin were prepared: 0 [parts by mass], X + 0.5 [parts by mass], and X-0.5 [parts by mass].
In Tables 3 to 5, when the compounding amount of the component (A-3) was reduced from the reference amount, “decreased” was described in the “Relation to the reference amount” column. On the other hand, when the compounding amount was increased from the reference amount, it was described as "increase" in the "relation to the reference amount" column.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 各例で得られた(A-3)成分の配合量が異なる複数種類のマトリクス樹脂について、熟成粘度V1(V1、V1X+Y及びV1X-Y)及び熟成粘度V2の測定を行い、増粘比(V2/V1)を算出し、上述の方法に従って取扱性及び融解性を評価した。さらに、取扱性及び融解性の評価結果に基づき、上述の方法に従ってプロセスウインドウを評価した。 The aging viscosity V1 (V1 X , V1 X + Y and V1 XY ) and aging viscosity V2 were measured for a plurality of matrix resins different in the compounding amount of the component (A-3) obtained in each example, and thickening was performed. The ratio (V2 / V1) was calculated and the handleability and meltability were evaluated according to the method described above. Furthermore, based on the evaluation results of the handling and melting properties, the process window was evaluated according to the method described above.
 実施例1~5では、(A-3)成分の配合量が基準量Xであるマトリクス樹脂の熟成粘度V1が、5~40[×10mPa・s]であり、(A-3)成分の配合量を基準量Xから0.5質量部増減させたマトリクス樹脂の熟成粘度(V1X+0.5及びV1X-0.5)が5~70[×10mPa・s]であり、Y≧0.5であった。また、取扱性の評価結果が△又は○であり、融解性の評価結果が○であるマトリクス樹脂が3水準又は4水準あり、プロセスウインドウは良好であった。
 プロセスウインドウの評価結果が良好であったため、実施例1~5では中間材の製造をさらに実施した。中間材については後述する。
In Examples 1 to 5, the aging viscosity V1 X of the matrix resin in which the compounding amount of the component (A-3) is a reference amount X is 5 to 40 [× 10 6 mPa · s], and (A-3) The aging viscosity (V1 X + 0.5 and V1 X-0.5 ) of the matrix resin obtained by increasing or decreasing the blending amount of the component by 0.5 parts by mass from the reference amount X is 5 to 70 [× 10 6 mPa · s] Y ≧ 0.5. Moreover, the evaluation result of the handling property is △ or 、, and the evaluation result of the meltability is ○, there are three or four levels of the matrix resin, and the process window was good.
Since the evaluation results of the process window were good, in Examples 1 to 5, production of the intermediate material was further performed. The intermediate material will be described later.
 比較例1では、(A-3)成分の配合量が基準量Xであるマトリクス樹脂の熟成粘度V1は、5~40[×10mPa・s]を満たし、(A-3)成分の配合量を基準量Xから0.5質量部増加させたマトリクス樹脂の熟成粘度(V1X+0.5)は、5~70[×10mPa・s]を満たした。しかし、(A-3)成分の配合量を基準量Xから0.5質量部減少させたマトリクス樹脂の熟成粘度(V1X-0.5)が、5~70[×10mPa・s]を満たさず、Y<0.5であった。また、取扱性の評価結果が△又は○であり、融解性の評価結果が○であるマトリクス樹脂は、基準量Xを配合した時のマトリクス樹脂である1水準のみであったため、プロセスウインドウは良好ではなかった。その後、マトリクス樹脂の熟成粘度V2を測定し増粘比を算出した。プロセスウインドウの評価結果と増粘比の算出結果から、比較例1では中間材の製造を実施しなかった。 In Comparative Example 1, the aging viscosity V1 X of the matrix resin in which the compounding amount of the component (A-3) is the reference amount X satisfies 5 to 40 [× 10 6 mPa · s], and the component (A-3) The aging viscosity (V1 X + 0.5 ) of the matrix resin in which the compounding amount was increased by 0.5 parts by mass from the reference amount X satisfied 5 to 70 [× 10 6 mPa · s]. However, the aging viscosity (V1 X-0.5 ) of the matrix resin obtained by reducing the content of the component (A-3) by 0.5 parts by mass from the reference amount X is 5 to 70 [× 10 6 mPa · s] Not satisfied, Y <0.5. In addition, the matrix resin whose handling property evaluation result is Δ or 、 and the meltability evaluation result is ○ is only one level which is the matrix resin when the reference amount X is blended, so the process window is good. It was not. Thereafter, the aging viscosity V2 of the matrix resin was measured to calculate the thickening ratio. From the evaluation result of the process window and the calculation result of the thickening ratio, in Comparative Example 1, the production of the intermediate material was not performed.
 比較例2では、(A-3)成分の配合量が基準量Xであるマトリクス樹脂の熟成粘度V1は、5~40[×10mPa・s]を満たし、(A-3)成分の配合量を基準量Xから0.5質量部増減させたマトリクス樹脂の熟成粘度(V1X+0.5及びV1X-0.5)が5~70[×10mPa・s]を満たし、Y≧0.5であった。また、取扱性の評価結果が△又は○であり、融解性の評価結果が○であるマトリクス樹脂が3水準以上あり、プロセスウインドウは良好であった。
 その後、マトリクス樹脂の熟成粘度V2を測定し増粘比を算出したが、熟成粘度V1が5~40[×10mPa・s]を満たすマトリクス樹脂の増粘比は、2.5を超える傾向があった。増粘比の算出結果から、比較例2では中間材の製造を実施しなかった。
In Comparative Example 2, the aging viscosity V1 X of the matrix resin in which the compounding amount of the component (A-3) is the reference amount X satisfies 5 to 40 [× 10 6 mPa · s], and the component (A-3) The aging viscosity (V1 X + 0.5 and V1 X-0.5 ) of the matrix resin in which the compounding amount is increased or decreased by 0.5 part by mass from the reference amount X satisfies 5 to 70 [× 10 6 mPa · s], Y ≧ It was 0.5. Moreover, the evaluation result of the handling property is Δ or 、, and the evaluation result of the meltability is ○, there are three or more levels of the matrix resin, and the process window is good.
Thereafter, the aging viscosity V2 of the matrix resin was measured to calculate the thickening ratio, but the thickening ratio of the matrix resin satisfying the aging viscosity V1 of 5 to 40 [× 10 6 mPa · s] tends to exceed 2.5. was there. From the calculation results of the thickening ratio, in Comparative Example 2, the production of the intermediate material was not performed.
 比較例3では、(A-3)成分の配合量が基準量Xであるマトリクス樹脂の熟成粘度V1が5~40[×10mPa・s]を満たし、(A-3)成分の配合量を基準量Xから0.5質量部増減させたマトリクス樹脂の熟成粘度(V1X+0.5及びV1X-0.5)が5~70[×10mPa・s]を満たし、Y≧0.5であった。しかし、取扱性の評価結果が△又は○であり、融解性の評価結果が○であるマトリクス樹脂は2水準のみであり、プロセスウインドウは良好ではなかった。
 その後、マトリクス樹脂の熟成粘度V2を測定し増粘比を算出したが、熟成粘度V1が5~40[×10mPa・s]を満たすマトリクス樹脂の増粘比はいずれも2.5超となった。増粘比の算出結果から、比較例3では中間材の製造を実施しなかった。
 比較例4では、(A-3)成分の配合量が基準量Xであるマトリクス樹脂の熟成粘度V1は、5~40[×10mPa・s]であり、(A-3)成分の配合量を基準量Xから0.5質量部増減させたマトリクス樹脂の熟成粘度(V1X+0.5及びV1X-0.5)は5~70[×10mPa・s]を満たし、Y≧0.5であった。また、取扱性の評価結果が△又は○であり、融解性の評価結果が○であるマトリクス樹脂が3水準あり、プロセスウインドウは良好であった。
 プロセスウインドウの評価結果が良好であったため、比較例4では中間材の製造をさらに実施した。
In Comparative Example 3, the aging viscosity V1 X of the matrix resin in which the compounding amount of the component (A-3) is the reference amount X satisfies 5 to 40 [× 10 6 mPa · s], and the compounding of the component (A-3) The aging viscosity (V1 X + 0.5 and V1 X-0.5 ) of the matrix resin whose amount is increased or decreased by 0.5 part by mass from the reference amount X satisfies 5 to 70 [× 10 6 mPa · s], Y ≧ 0 It was .5. However, the matrix resin of which the evaluation result of the handleability is Δ or 、 and the melt evaluation result is ○ is only two levels, and the process window is not good.
Thereafter, the aging viscosity V2 of the matrix resin was measured to calculate the thickening ratio, but the thickening ratio of the matrix resin satisfying the aging viscosity V1 of 5 to 40 [× 10 6 mPa · s] was all over 2.5. became. From the calculation results of the thickening ratio, in Comparative Example 3, the production of the intermediate material was not performed.
In Comparative Example 4, the aging viscosity V1 X of the matrix resin in which the compounding amount of the component (A-3) is a reference amount X is 5 to 40 [× 10 6 mPa · s], and the component (A-3) is The aging viscosity ( V1X + 0.5 and V1X-0.5 ) of the matrix resin in which the compounding amount is increased or decreased by 0.5 part by mass from the reference amount X satisfies 5 to 70 [× 10 6 mPa · s], and Y ≧ It was 0.5. Moreover, the evaluation result of the handling property is △ or 、, and the evaluation result of the meltability is ○, there are three levels of matrix resin, and the process window was good.
Since the evaluation result of the process window was good, in Comparative Example 4, production of an intermediate material was further performed.
<中間材の製造>
(実施例1~5、比較例4)
 (A-3)成分の配合量が基準量Xである実施例1~5のマトリクス樹脂を、ドクターブレードを用いてポリエチレン製フィルム(キャリアフィルム)上に厚さ0.5~3.0mmになるように塗布し、その上に、フィラメント数が15000本の炭素繊維束(三菱ケミカル株式会社製、TR50S 15L)を長さ25mmにチョップしたものを、炭素繊維の目付が略均一になるように、かつ、炭素繊維の方向がランダムになるように散布し、シート状に堆積させた。その上に、同マトリクス樹脂を厚さ0.5~3.0mmになるように塗布した別のポリエチレン製のキャリアフィルムを、マトリクス樹脂が炭素繊維束と接するように重ね合わせ、ロール対の間を通して押圧して、シート状の炭素繊維束に上下からマトリクス樹脂を含浸させ中間材前駆体を得た。得られた中間材前駆体を23℃にて168時間静置することによりマトリクス樹脂を充分に増粘させて中間材を得た。
<Manufacturing of intermediate materials>
(Examples 1 to 5 and Comparative Example 4)
The matrix resin of Examples 1 to 5 in which the compounding amount of the component (A-3) is the reference amount X is made 0.5 to 3.0 mm in thickness on a polyethylene film (carrier film) using a doctor blade. Is applied, and a carbon fiber bundle of 15000 filaments (TR50S 15L, manufactured by Mitsubishi Chemical Corporation) is chopped to a length of 25 mm on the carbon fiber so that the basis weight of the carbon fiber is substantially uniform, And, the carbon fibers were scattered so that the directions of the carbon fibers become random, and deposited in a sheet. Then, another polyethylene carrier film coated with the same matrix resin to a thickness of 0.5 to 3.0 mm is superposed so that the matrix resin is in contact with the carbon fiber bundle, and passed between the pair of rolls. The mixture was pressed to impregnate sheet-like carbon fiber bundles from above and below with a matrix resin to obtain an intermediate material precursor. The obtained intermediate material precursor was allowed to stand at 23 ° C. for 168 hours to sufficiently thicken the matrix resin to obtain an intermediate material.
 ここで、マトリクス樹脂の調製時に(A-3)成分を混合攪拌した直後のマトリクス樹脂の粘度Vsと、混合・攪拌した直後から10分経過した際のマトリクス樹脂の粘度V10を測定し、初期増粘率を算出した。いずれも初期増粘率は1.20以下と低く、良好な結果であった。結果を表6に示す。
 実施例1と比較例4では、目付が3000±300g/mであり、炭素繊維含有率が50質量%である中間材前駆体A及び中間材Aと、目付2800±280g/mであり、かつ炭素繊維含有率が60質量%である中間材前駆体B及び中間材Bとを製造した。実施例2~5では、実施例1と同様の中間材前駆体A及び中間材Aを製造した。
Here, the viscosity Vs of the matrix resin immediately after mixing and stirring the component (A-3) at the time of preparation of the matrix resin, and the viscosity V10 of the matrix resin when 10 minutes have elapsed from immediately after mixing and stirring are measured. The viscosity was calculated. In all cases, the initial viscosity ratio was as low as 1.20 or less, which was a good result. The results are shown in Table 6.
In Example 1 and Comparative Example 4, the intermediate material precursor A and the intermediate material A having a basis weight of 3000 ± 300 g / m 2 and a carbon fiber content of 50 mass%, and a basis weight of 2800 ± 280 g / m 2 And the intermediate material precursor B and the intermediate material B which are 60 mass% in carbon fiber content rate were manufactured. In Examples 2 to 5, the same intermediate material precursor A and intermediate material A as in Example 1 were produced.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 得られた中間材前駆体及び中間材について、上述の方法に従って含浸性評価を実施した。表6に示すように、実施例1~5において中間材前駆体A及び中間材Aの含浸性は良好であった。また、実施例1~5の中間材前駆体B及び中間材Bの含浸性は良好であったが、比較例4の中間材前駆体B及び中間材Bは含浸性に少し劣る傾向であった。
 実施例1~5で得られた中間材Aを、製造後23℃度環境下で168時間静置した後、上述の方法に従って成形性評価を実施した。いずれも、脱型不良や外観不良がなく、また流動性に優れる結果であった。一方、比較例4について同様に成形性評価を実施したが、流動性が劣っていた。
For the obtained intermediate material precursor and the intermediate material, the impregnation evaluation was performed according to the method described above. As shown in Table 6, in Examples 1 to 5, the impregnating properties of the intermediate material precursor A and the intermediate material A were good. Moreover, although the impregnatability of the intermediate material precursor B and the intermediate material B in Examples 1 to 5 was good, the intermediate material precursor B and the intermediate material B in Comparative Example 4 tended to be slightly inferior to the infiltration property. .
The intermediate materials A obtained in Examples 1 to 5 were allowed to stand for 168 hours under an environment of 23 ° C. after production, and then the formability was evaluated according to the above-mentioned method. In all cases, there were no mold release defects and appearance defects, and the results were excellent in fluidity. On the other hand, although moldability evaluation was similarly implemented about comparative example 4, flowability was inferior.
<成形板の作製>
(実施例1~5、比較例4)
 実施例1~5、及び比較例4で得られた中間材Aを成形して成形板を得た。具体的には実施例1~5の中間材Aを200mm~250mm角に2枚切り出し積層物を得た。次いで、長さ300mm、幅300mm、厚さ2mmのキャビティが形成された金型を用い、140℃に加熱した金型に積層物をチャージ率40~60%でチャージし、素早く型を閉じて成形圧力8MPaで5分間加熱圧縮成形した。なお、型締の完了の直前にキャビティ内を減圧し内在空気を除去した。
 実施例1~5で得られた成形板は、欠損や反りも無く、表面も平滑であった。成形板を用いて、曲げ試験を行った。表6に示すように、いずれも良好な結果であった。
 また、実施例1、実施例5、比較例4で得られた成形板について、DMA測定を行った。実施例1のtanδmaxは161℃、実施例5のtanδmaxは150℃であり、いずれも耐熱性は良好であった。
 一方、比較例4で得られた成形板は、tanδmaxが167℃であり、耐熱性は良好であったが、表6に示すように曲げ強度が実施例1~5と比較して低下していた。
<Production of molded plate>
(Examples 1 to 5 and Comparative Example 4)
The intermediate material A obtained in Examples 1 to 5 and Comparative Example 4 was molded to obtain a molded plate. Specifically, two sheets of intermediate material A of Examples 1 to 5 were cut out to a size of 200 mm to 250 mm to obtain a laminate. Next, using a mold with a cavity of 300 mm in length, 300 mm in width, and 2 mm in thickness, charge the laminate at a charge rate of 40 to 60% to a mold heated to 140 ° C, and close the mold quickly for molding It was heat compression molded for 5 minutes at a pressure of 8 MPa. Immediately before the completion of mold clamping, the pressure in the cavity was reduced to remove internal air.
The molded plates obtained in Examples 1 to 5 were free from breakage and warpage, and the surface was smooth. A bending test was performed using the formed plate. As shown in Table 6, all were favorable results.
Moreover, DMA measurement was performed on the molded plates obtained in Example 1, Example 5, and Comparative Example 4. The tan δmax of Example 1 was 161 ° C., and the tan δmax of Example 5 was 150 ° C., and all of them had good heat resistance.
On the other hand, the molded plate obtained in Comparative Example 4 had a tan δmax of 167 ° C., and the heat resistance was good, but as shown in Table 6, the bending strength was lowered as compared with Examples 1 to 5. The
 以上より、本発明における(A-1)成分~(A-4)成分を少なくとも含む実施例1~5のマトリクス樹脂は、プロセスウインドウの評価結果が良好であった。さらに、実施例1~5のマトリクス樹脂の増粘比はいずれも2.0以下であり、低かった。そのため、実施例1~5では製造時の製品斑の少なく、成形性に優れる中間材を得ることができた。また、実施例1~5の成形板では、曲げ試験の結果が良好であり、力学物性に優れる成形板を得ることができた。さらに、実施例1及び実施例5の成形板では、DMA測定の結果が良好であり、実施例2~4の成形板も同様に耐熱性に優れることが示唆された。
 また、各実施例の結果から、熱硬化性樹脂のニート樹脂粘度がより低いほうが、中間材の炭素繊維含有率が高い中間材の製造に好適であることが示唆された。
From the above, the matrix resins of Examples 1 to 5 containing at least the components (A-1) to (A-4) in the present invention had good evaluation results of the process window. Furthermore, the thickening ratios of the matrix resins of Examples 1 to 5 were all 2.0 or less, and were low. Therefore, in Examples 1 to 5, it was possible to obtain an intermediate material which is less in product unevenness at the time of production and is excellent in moldability. Further, in the case of the molded plates of Examples 1 to 5, the results of the bending test were good, and a molded plate excellent in mechanical properties could be obtained. Furthermore, in the molded plates of Example 1 and Example 5, the results of the DMA measurement were good, and it was suggested that the molded plates of Examples 2 to 4 are similarly excellent in heat resistance.
Moreover, it was suggested from the results of the respective examples that the lower the neat resin viscosity of the thermosetting resin, the better the preparation of the intermediate material, in which the carbon fiber content of the intermediate material is high.
 比較例1,3では、(A-3)成分として用いた化合物のイソシアネート基含有率が30.5質量%超であるため、マトリクス樹脂組成物のプロセスウインドウが狭かった。
 比較例2では、(A-3)成分として用いた化合物のイソシアネート基含有率が30.5質量%であるため、マトリクス樹脂組成物の増粘比が2.5を超える傾向にあった。そのため、中間材製造時の製品斑の発生及び貯蔵安定性の低下が懸念される。
 比較例4では、(A-1)成分として不飽和ポリエステル樹脂を含まないため、中間材製造時のマトリクス樹脂の含浸性、中間材の成形時の流動性が劣り、成形品の曲げ強度も劣っていた。
In Comparative Examples 1 and 3, since the isocyanate group content of the compound used as the component (A-3) is more than 30.5% by mass, the process window of the matrix resin composition was narrow.
In Comparative Example 2, since the isocyanate group content of the compound used as the component (A-3) was 30.5% by mass, the thickening ratio of the matrix resin composition tended to exceed 2.5. Therefore, there is a concern about the occurrence of product spots during the production of the intermediate material and the decrease in storage stability.
In Comparative Example 4, since the unsaturated polyester resin is not contained as the component (A-1), the impregnation property of the matrix resin at the time of producing the intermediate material, the fluidity at the time of forming the intermediate material are inferior, and the bending strength of the molded product is inferior. It was

Claims (9)

  1.  下記(A-1)~(A-4)成分の混合物を少なくとも含む、マトリクス樹脂。
     (A-1)成分:1分子中に1個以上のエチレン性不飽和基を有し、平均水酸基数が1.8~4である、エポキシ(メタ)アクリレート樹脂及び不飽和ポリエステル樹脂の両方。
     (A-2)成分:エチレン性不飽和単量体。
     (A-3)成分:イソシアネート基含有率が15~30.5質量%であり、平均イソシアネート基数が1.8~2.4であるポリイソシアネート。
     (A-4)成分:熱重合開始剤。
    Matrix resin containing at least a mixture of the following components (A-1) to (A-4):
    (A-1) Component: Both an epoxy (meth) acrylate resin and an unsaturated polyester resin having one or more ethylenically unsaturated groups in one molecule and having an average number of hydroxyl groups of 1.8 to 4.
    Component (A-2): Ethylenically unsaturated monomer.
    Component (A-3): polyisocyanate having an isocyanate group content of 15 to 30.5% by mass and an average number of isocyanate groups of 1.8 to 2.4.
    Component (A-4): thermal polymerization initiator.
  2.  下式(1)~下式(4)を満たす、請求項1に記載のマトリクス樹脂。
     5≦V1≦40 ・・・(1)
     Y≧0.5 ・・・(2)
     5≦V1X+Y≦70 ・・・(3)
     5≦V1X-Y≦70 ・・・(4)
     式(1)中、V1は(A-3)成分の配合量がエチレン性不飽和基を有する成分からなる熱硬化性樹脂100質量部に対して基準量X[質量部]であるマトリクス樹脂を23℃で168時間静置した際の熟成粘度[×10mPa・s]であり、基準量Xは10~40質量部である。
     式(2)中、Yは式(1)中の基準量Xに対して(A-3)成分の配合量を増加又は減少させる差分量[質量部]である。
     式(3)中、V1X+Yは式(1)中の基準量Xに対して、(A-3)成分の配合量を式(2)中の差分量Y[質量部]増加させたマトリクス樹脂を23℃で168時間静置した際の熟成粘度[×10mPa・s]である。
     式(4)中、V1X-Yは式(1)中の基準量Xに対して、(A-3)成分の配合量を式(2)中の差分量Y[質量部]減少させたマトリクス樹脂を23℃で168時間静置した際の熟成粘度[×10mPa・s]である。
    The matrix resin according to claim 1, satisfying the following formulas (1) to (4).
    5 ≦ V 1 X ≦ 40 (1)
    Y ≧ 0.5 (2)
    5 ≦ V1 X + Y ≦ 70 (3)
    5 ≦ V1 XY ≦ 70 (4)
    Matrix resin in which V1 X is a reference amount X (parts by mass) with respect to 100 parts by mass of a thermosetting resin consisting of a component having an ethylenically unsaturated group in the formula (1). Is left to stand at 23 ° C. for 168 hours, and the viscosity is [× 10 6 mPa · s], and the reference amount X is 10 to 40 parts by mass.
    In the formula (2), Y is a difference [mass part] to increase or decrease the blending amount of the component (A-3) with respect to the reference amount X in the formula (1).
    In the formula (3), V1 X + Y is a matrix resin in which the blending amount of the component (A-3) is increased relative to the reference amount X in the formula (1) by the amount of difference Y in the formula (2) [parts by mass] The resulting solution had a ripening viscosity [× 10 6 mPa · s] when allowed to stand at 23 ° C. for 168 hours.
    In the formula (4), V1 XY decreased the blending amount of the component (A-3) with respect to the reference amount X in the formula (1) by the difference amount Y [parts by mass] in the formula (2) It is the ripening viscosity [× 10 6 mPa · s] when the matrix resin is allowed to stand at 23 ° C. for 168 hours.
  3.  下式(5)及び下式(6)を満たす、請求項1又は2に記載のマトリクス樹脂。
     5≦V1≦40 ・・・(5)
     V2/V1≦2.5 ・・・(6)
     式(5)中、V1はマトリクス樹脂を23℃で168時間静置した際の熟成粘度[×10mPa・s]である。
     式(6)中、V1は式(5)中のV1と同じであり、V2はマトリクス樹脂を23℃で336時間静置した際の熟成粘度[×10mPa・s]である。
    The matrix resin of Claim 1 or 2 which satisfy | fills following Formula (5) and the following Formula (6).
    5 ≦ V1 ≦ 40 (5)
    V2 / V1 ≦ 2.5 (6)
    In Formula (5), V1 is the aging viscosity [× 10 6 mPa · s] when the matrix resin is allowed to stand at 23 ° C. for 168 hours.
    In the formula (6), V1 is the same as V1 in the formula (5), and V2 is a ripening viscosity [× 10 6 mPa · s] when the matrix resin is allowed to stand at 23 ° C. for 336 hours.
  4.  前記液状ポリイソシアネートが分子内に1個以上の芳香環を有する、請求項1~3のいずれか一項に記載のマトリクス樹脂。 The matrix resin according to any one of claims 1 to 3, wherein the liquid polyisocyanate has one or more aromatic rings in the molecule.
  5.  下式(7)及び下式(8)を満たす、請求項1~4のいずれか一項に記載のマトリクス樹脂。
     0.6≦a1/b≦0.75 ・・・(7)
     Vn≦1000 ・・・(8)
     式(7)中、a1は(A-1)成分の含有量[g]であり、bはエチレン性不飽和基を有する成分からなる熱硬化性樹脂の含有量[g]である。
     式(8)中、Vnはエチレン性不飽和基を有する成分からなる熱硬化性樹脂のニート樹脂粘度[mPa・s]である。
    The matrix resin according to any one of claims 1 to 4, which satisfies the following formula (7) and the following formula (8).
    0.6 ≦ a1 / b ≦ 0.75 (7)
    Vn ≦ 1000 (8)
    In the formula (7), a1 is the content [g] of the component (A-1), and b is the content [g] of the thermosetting resin composed of the component having an ethylenically unsaturated group.
    In Formula (8), Vn is a neat resin viscosity [mPa · s] of a thermosetting resin comprising a component having an ethylenically unsaturated group.
  6.  下式(9)を満たす、請求項1~5のいずれか一項に記載のマトリクス樹脂。
     V10/Vs≦1.20 ・・・(9)
     式(9)中、Vsは前記マトリクス樹脂から(A-3)成分を除いたプレマトリクス樹脂と、(A-3)成分とを混合した直後の粘度[mPa・s]であり、V10は前記プレマトリクス樹脂と(A-3)成分とを混合して10分が経過した際の粘度[mPa・s]である。
    The matrix resin according to any one of claims 1 to 5, which satisfies the following formula (9).
    V10 / Vs ≦ 1.20 (9)
    In formula (9), Vs is the viscosity [mPa · s] immediately after mixing the pre-matrix resin obtained by removing the component (A-3) from the matrix resin and the component (A-3), and V10 is the above-mentioned It is a viscosity [mPa · s] when 10 minutes have elapsed by mixing the pre-matrix resin and the component (A-3).
  7.  請求項1~6のいずれか一項に記載のマトリクス樹脂と、
     繊維長が5~120mmの炭素繊維束と、
     を含む、中間材。
    A matrix resin according to any one of claims 1 to 6;
    Carbon fiber bundles with a fiber length of 5 to 120 mm,
    Intermediate materials, including
  8.  請求項7に記載の中間材を加熱加圧成形して得られる、成形品。 A molded article obtained by heating and pressing the intermediate material according to claim 7.
  9.  周波数1Hzの条件下で動的粘弾性測定により測定される損失正接が極大値を示す温度が、120℃以上である、請求項8に記載の成形品。 The molded article according to claim 8, wherein the temperature at which the loss tangent measured by dynamic viscoelasticity measurement at a frequency of 1 Hz shows a maximum value is 120 ° C or higher.
PCT/JP2019/001017 2018-01-16 2019-01-16 Matrix resin, intermediate material, and molded article WO2019142803A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019506461A JP6791354B2 (en) 2018-01-16 2019-01-16 Matrix resin, intermediate materials and molded products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-004833 2018-01-16
JP2018004833 2018-01-16

Publications (1)

Publication Number Publication Date
WO2019142803A1 true WO2019142803A1 (en) 2019-07-25

Family

ID=67301018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001017 WO2019142803A1 (en) 2018-01-16 2019-01-16 Matrix resin, intermediate material, and molded article

Country Status (2)

Country Link
JP (1) JP6791354B2 (en)
WO (1) WO2019142803A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021193248A1 (en) * 2020-03-27 2021-09-30
CN114729144A (en) * 2019-12-25 2022-07-08 Dic株式会社 Prepreg and molded article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667322A (en) * 1979-11-05 1981-06-06 Showa Highpolymer Co Ltd Curable resin composition
JPH03103422A (en) * 1989-05-11 1991-04-30 Teijin Ltd Composite curable liquid resin composition
JP2005154589A (en) * 2003-11-26 2005-06-16 Dainippon Ink & Chem Inc Resin composition for sheet molding compound and bulk molding compound and application thereof
WO2016039326A1 (en) * 2014-09-12 2016-03-17 三菱レイヨン株式会社 Molding material, sheet molding compound, and fiber-reinforced composite material obtained using same
WO2017175430A1 (en) * 2016-04-06 2017-10-12 三菱ケミカル株式会社 Thermosetting resin composition, sheet-molding compound and production method therefor, and fiber-reinforced composite material
JP2018048238A (en) * 2016-09-20 2018-03-29 三菱ケミカル株式会社 Thermosetting resin composition, molding material, fiber-reinforced composite material, and method for producing sheet molding compound
WO2019017254A1 (en) * 2017-07-20 2019-01-24 三菱ケミカル株式会社 Sheet molding compound, fiber-reinforced composite material, and method for producing fiber-reinforced composite material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667322A (en) * 1979-11-05 1981-06-06 Showa Highpolymer Co Ltd Curable resin composition
JPH03103422A (en) * 1989-05-11 1991-04-30 Teijin Ltd Composite curable liquid resin composition
JP2005154589A (en) * 2003-11-26 2005-06-16 Dainippon Ink & Chem Inc Resin composition for sheet molding compound and bulk molding compound and application thereof
WO2016039326A1 (en) * 2014-09-12 2016-03-17 三菱レイヨン株式会社 Molding material, sheet molding compound, and fiber-reinforced composite material obtained using same
WO2017175430A1 (en) * 2016-04-06 2017-10-12 三菱ケミカル株式会社 Thermosetting resin composition, sheet-molding compound and production method therefor, and fiber-reinforced composite material
JP2018048238A (en) * 2016-09-20 2018-03-29 三菱ケミカル株式会社 Thermosetting resin composition, molding material, fiber-reinforced composite material, and method for producing sheet molding compound
WO2019017254A1 (en) * 2017-07-20 2019-01-24 三菱ケミカル株式会社 Sheet molding compound, fiber-reinforced composite material, and method for producing fiber-reinforced composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114729144A (en) * 2019-12-25 2022-07-08 Dic株式会社 Prepreg and molded article
CN114729144B (en) * 2019-12-25 2024-04-12 Dic株式会社 Prepreg and molded article
JPWO2021193248A1 (en) * 2020-03-27 2021-09-30
WO2021193248A1 (en) * 2020-03-27 2021-09-30 旭化成株式会社 Continuous fiber reinforced resin composite material, method for manufacturing same and continuous fiber reinforced resin molded product
JP7253112B2 (en) 2020-03-27 2023-04-05 旭化成株式会社 CONTINUOUS FIBER REINFORCED RESIN COMPOSITE MATERIAL AND MANUFACTURING METHOD THEREOF AND CONTINUOUS FIBER REINFORCED RESIN MOLDED PRODUCT

Also Published As

Publication number Publication date
JP6791354B2 (en) 2020-11-25
JPWO2019142803A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
EP3395869B1 (en) Prepreg and molded article
US10920009B2 (en) Thermosetting resin composition, sheet-molding compound and production method therefor, and fiber-reinforced composite material
CN111133040B (en) Resin composition for prepreg, and molded article
CN111164137B (en) Resin composition for prepreg, and molded article
JP6156612B1 (en) Molding material for heat compression molding, molded product using the same, and method for producing the same
JP5950050B2 (en) Molding material for heat compression molding, molded product using the same, and method for producing the same
WO2017163899A1 (en) Prepreg and molded article
WO2021131566A1 (en) Prepreg and molded article
JP6791354B2 (en) Matrix resin, intermediate materials and molded products
US10899856B2 (en) Molding material, sheet molding compound and fiber-reinforced composite material
JP2018187862A (en) Method for manufacturing carbon fiber reinforced composite material molding
JP6673481B2 (en) Fiber reinforced molding material and molded body
JP7003583B2 (en) Fiber reinforced molding material and molded products using it
JPWO2019220846A1 (en) Method for manufacturing sheet molding compound, carbon fiber bundle, and use of carbon fiber bundle
JP6715666B2 (en) Sheet molding compound, its manufacturing method and molded article
JP6966026B2 (en) Fiber reinforced molding material and molded products using it
JP7288235B2 (en) Structure reinforcement/repair method and structure
WO2021187030A1 (en) Prepreg and molded article
TW202033599A (en) Resin composition for prepreg, prepreg, and molded article which is a kind of fiber strengthened resin composite material and excellent in workability, heat resistance, and molding properties

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019506461

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19741541

Country of ref document: EP

Kind code of ref document: A1