WO2019142397A1 - Optical glass, optical element equipped with optical glass, and optical device - Google Patents

Optical glass, optical element equipped with optical glass, and optical device Download PDF

Info

Publication number
WO2019142397A1
WO2019142397A1 PCT/JP2018/034202 JP2018034202W WO2019142397A1 WO 2019142397 A1 WO2019142397 A1 WO 2019142397A1 JP 2018034202 W JP2018034202 W JP 2018034202W WO 2019142397 A1 WO2019142397 A1 WO 2019142397A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical glass
glass
refractive index
light
Prior art date
Application number
PCT/JP2018/034202
Other languages
French (fr)
Japanese (ja)
Inventor
幸平 吉本
山本 博史
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2019565702A priority Critical patent/JP7024802B2/en
Publication of WO2019142397A1 publication Critical patent/WO2019142397A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus

Definitions

  • the present invention relates to an optical glass, an optical element using the optical glass, and an optical apparatus.
  • the present invention claims priority to Japanese Patent Application No. 2018-006394 filed on Jan. 18, 2018, and the contents described in that application for designated countries permitted to be incorporated by reference to the literature Incorporated herein by reference.
  • Fluorite having low refractive index and low dispersion is used as a lens material of an optical system in an optical device. Fluorite is manufactured, for example, by the descent method (Bridgeman method) as shown in Patent Document 1.
  • the first embodiment of the present invention is 30-40% of Al 3+ and 1-15% of P 5+ in terms of mole percent of cation, and 5-16 of O 2 ⁇ in terms of mole percent of anion.
  • %, F 2 ⁇ is 84 to 95%, and the ratio of the number of oxygen atoms to the number of phosphorus atoms (O / P) is less than 3.4.
  • a second aspect of the present invention is an optical element using the optical glass of the first aspect.
  • a third aspect of the present invention is an optical device comprising the optical element of the second aspect.
  • FIG. 1 It is a perspective view of an imaging device concerning this embodiment. It is a block diagram which shows the example of a structure of the multiphoton microscope which concerns on this embodiment. It is the figure which plotted the (lambda) 80 value with respect to O / P of each Example and each comparative example.
  • the present embodiment is an example for describing the present invention, and is not intended to limit the present invention to the following contents.
  • the present invention can be appropriately modified and implemented within the scope of the gist of the present invention.
  • mol% of cation and in mol% of anion.
  • mol% of cation and “mol% of anion” as used herein mean that the total amount of the cation component and the total amount of the anion component contained in the glass are 100 mol%.
  • complex salts such as carbonates, hydroxides, nitrates and hydrous salts used as raw materials of glass constituents are all decomposed at the time of melting to change into oxides and / or fluorides.
  • disassembly of complex salt is not considered as a glass structural component.
  • the optical glass according to the present embodiment has 30 to 40% of Al 3+ and 1 to 15% of P 5+ in terms of mole percent of cation, and 5 to 16 of O 2 ⁇ in terms of mole percent of anion. %, F 2 ⁇ is 84 to 95%, and the ratio of the number of oxygen atoms to the number of phosphorus atoms (O / P) is less than 3.4.
  • the fluorophosphate-based optical glass can have an optical constant of low refractive index and low dispersion, and can be excellent in ultraviolet and visible light transmittance.
  • the optical glass according to the present embodiment can solve the above-mentioned problems of fluorite while having the low refractive index and low dispersion equivalent to fluorite.
  • Al 3+ has the effect of improving the devitrification resistance of the optical glass.
  • the content of Al 3+ is 30 to 40%, preferably 32 to 38%, and more preferably 34 to 37%.
  • P 5+ has the effect of improving the devitrification resistance of the optical glass.
  • the content of P 5+ is 1 to 15%, preferably 3 to 12%, and more preferably 5 to 10%.
  • components such as Li + , Na + , K + , Mg 2+ , Ca 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ , Y 3+ , La 3+ , Gd 3+ , and Zr 4+ are appropriately contained.
  • Li + has the effect of enhancing the meltability of optical glass, but if it is introduced in excess, in addition to the resistance to devitrification being lowered, the viscosity of the glass at the time of molding is lowered and the glass tends to be difficult to mold. is there. From such a viewpoint, the content of Li + is preferably 0 to 3%, more preferably 0 to 2%, and still more preferably 0 to 1%.
  • Na + has the effect of improving the meltability of optical glass, but when it is introduced in excess, it has the tendency that the viscosity of the glass at the time of molding is lowered and the glass forming becomes difficult, in addition to the devitrification resistance being lowered. is there.
  • the content of Na + is preferably 0 to 3%, more preferably 0 to 2%, and still more preferably 0 to 1%.
  • K + has the effect of enhancing the meltability of optical glass, but if it is introduced in excess, in addition to the resistance to devitrification being lowered, the viscosity of the glass at the time of molding is lowered and the glass tends to be difficult to mold. is there. From this point of view, the content of K + is preferably 0 to 2%, more preferably 0 to 1.5%, and still more preferably 0 to 1%.
  • Mg 2+ has the effect of improving the devitrification resistance of the optical glass. If the content is too small, the effect of improving the devitrification resistance can not be obtained sufficiently. In addition, when incorporated in excess, the refractive index tends to decrease, and the devitrification resistance tends to decrease. From this point of view, the content of Mg 2+ is preferably 5 to 10%, more preferably 6 to 9%, and still more preferably 7 to 8%.
  • Ca 2+ has an effect of improving the devitrification resistance of the optical glass. If the content is too small, the effect of improving the devitrification resistance can not be obtained sufficiently. In addition, when incorporated in excess, the refractive index tends to decrease, and the devitrification resistance tends to decrease. From this point of view, the content of Ca 2+ is preferably 20 to 30%, more preferably 22 to 28%, and still more preferably 23 to 25%.
  • Sr 2+ has the effect of increasing the refractive index of the optical glass and improving the devitrification resistance. If the content is too small, the effect of increasing the refractive index and the effect of improving the devitrification resistance can not be sufficiently obtained. Moreover, when it introduce
  • Ba 2+ has the effect of increasing the refractive index of the optical glass and improving the devitrification resistance. If the content is too small, the effect of increasing the refractive index and the effect of improving the devitrification resistance can not be sufficiently obtained. Moreover, when it introduce
  • Zn 2+ has the effect of improving the devitrification resistance of the optical glass. However, when it is introduced in excess, the dispersibility tends to be too large. From this point of view, the content of Zn 2+ is preferably 0 to 3%, more preferably 0 to 2%, and still more preferably 0 to 1%.
  • Y 3 + has the effect of improving the devitrification resistance of the optical glass, maintaining the low dispersion of the optical glass and increasing the refractive index, and maintaining the meltability of the raw material to suppress the rise in liquidus temperature.
  • the content of Y 3+ is preferably 0 to 5%, more preferably 0 to 3%, still more preferably 0 to 2%, and still more preferably 0 to 1%. .
  • La 3+ has an effect of maintaining the low dispersion of the optical glass while increasing the refractive index, maintaining the meltability of the raw material, suppressing the rise of the liquidus temperature, and improving the devitrification resistance of the optical glass.
  • the content of La 3+ is preferably 0 to 5%, more preferably 0 to 3%, still more preferably 0 to 2%, and still more preferably 0 to 1%. .
  • Gd 3+ has the effect of enhancing the refractive index while maintaining the low dispersion of the optical glass, maintaining the meltability of the raw material, suppressing the rise of the liquidus temperature, and improving the devitrification resistance of the optical glass.
  • the content of Gd 3+ is preferably 0 to 5%, more preferably 0 to 3%, still more preferably 0 to 2%, still more preferably 0 to 1%. .
  • Zr 4 + has an effect of enhancing the refractive index of the optical glass, suppressing the dispersion, and improving the devitrification resistance.
  • the content of Zr 4+ is preferably 0 to 1%.
  • Li + is 0 to 3%
  • Na + is 0 to 3%
  • K + is 0 to 2%
  • Zn 2+ is 0 to 3%
  • Y 3+ is 0 to 5%
  • La 3+ is 0 to 5%
  • Gd 3+ is 0 to 5%
  • Zr 4+ is 0 to 1%.
  • the anion components O 2 ⁇ and F 2 ⁇ contribute to the refractive index, dispersibility, stability, etc. of the optical glass.
  • O 2 ⁇ is 5 to 16%, preferably 7 to 14%, more preferably 9 to 12% in terms of mol% of anions.
  • F ⁇ in terms of mol% of the anion is 84 to 95%, preferably 86 to 93%, more preferably 88 to 91%.
  • the ratio of the number of oxygen atoms to the number of phosphorus atoms (O / P) is less than 3.4, good ultraviolet transmittance can be maintained, but if it is 3.4 or more, the internal transmittance is 80%
  • the wavelength ( ⁇ 80 ) shifts to the long wavelength side, and the light transmittance in the ultraviolet region is degraded.
  • O / P is less than 3.4, preferably 3.2 or less, and more preferably 3.0 or less.
  • the ratio (O / P) of the number of oxygen atoms to the number of phosphorus atoms has the same meaning as the ratio of oxygen (O) to phosphorus (P) in atomic% (at.%).
  • the manufacturing method of the optical glass which concerns on this embodiment is not specifically limited, A well-known method is employable. Moreover, manufacturing conditions can select suitable conditions suitably. For example, raw materials such as oxides and fluorides are prepared to have a target composition, preferably melted at 850 to 1150 ° C., more preferably 950 to 1050 ° C., homogenized by stirring, and defoamed. After that, it is possible to employ a manufacturing method or the like which is flow-molded in a mold. The optical glass thus obtained can be processed into a desired shape by performing reheat press or the like as necessary, and can be polished or the like to form a desired optical element.
  • the optical glass according to the present embodiment has low refractive index and low dispersion (Abbe number ( ⁇ d ) is large).
  • the Abbe number ( ⁇ d ) of the optical glass according to the present embodiment is preferably 92 to 97, more preferably 93 to 97, and still more preferably 94 to 97.
  • the refractive index (n d ) of the optical glass according to the present embodiment is preferably 1.41 to 1.45, more preferably 1.42 to 1.45, and still more preferably 1.43 to It is 1.45.
  • refractive index (n d) is in the range of 1.41 to 1.45, and the range Abbe number ([nu d) of 92-97 It is in.
  • the wavelength ( ⁇ 80 ) at which the internal transmittance in an optical path length of 10 mm is 80% in the optical glass according to the present embodiment is preferably 340 nm or less, more preferably Is 338 nm or less, more preferably 336 nm or less.
  • the wavelength ( ⁇ 5 ) at which the internal transmittance in an optical path length of 10 mm is 5% is preferably 300 nm or less, more preferably 298 nm or less, still more preferably 296 nm or less It is.
  • the optical glass according to the present embodiment can be suitably used, for example, as an optical element included in an optical device.
  • the optical device is particularly suitable as an imaging device and a multiphoton microscope, among others.
  • FIG. 1 shows an imaging device 1 (optical apparatus) including a lens 103 (optical element) having an optical glass according to the present embodiment as a base material.
  • the imaging apparatus 1 is a so-called digital single-lens reflex camera, and a lens barrel 102 is detachably attached to a lens mount (not shown) of a camera body 101. Then, light passing through the lens 103 of the lens barrel 102 forms an image on a sensor chip (solid-state imaging device) 104 of the multi-chip module 106 disposed on the back side of the camera body 101.
  • a sensor chip solid-state imaging device
  • the sensor chip 104 is a bare chip such as a so-called CMOS image sensor, and the multi-chip module 106 is, for example, a COG (Chip On Glass) type module in which the sensor chip 104 is bare chip mounted on a glass substrate 105.
  • COG Chip On Glass
  • optical glass according to the present embodiment is suitable as a member of such an optical device.
  • optical apparatus applicable in this embodiment not only the imaging device mentioned above but a projector etc. are mentioned, for example.
  • the optical element is not limited to the lens, and may be, for example, a prism.
  • FIG. 2 is a block diagram showing an example of the configuration of the multiphoton microscope 2 according to the present embodiment.
  • the multiphoton microscope 2 includes an objective lens 206, a condenser lens 208, and an imaging lens 210 as optical elements.
  • the optical system of the multiphoton microscope 2 will be mainly described below.
  • the pulse laser device 201 emits, for example, an ultrashort pulse light of, for example, a near infrared wavelength (about 1000 nm) and a pulse width of femtoseconds (for example, 100 femtoseconds).
  • the ultrashort pulse light immediately after being emitted from the pulse laser device 201 is generally linearly polarized light polarized in a predetermined direction.
  • the pulse splitting device 202 splits the ultrashort pulse light, raises the repetition frequency of the ultrashort pulse light, and emits it.
  • the beam adjustment unit 203 has a function of adjusting the beam diameter of the ultrashort pulse light incident from the pulse splitting device 202 according to the pupil diameter of the objective lens 206, the wavelength and ultrashort of the multiphoton excitation light emitted from the sample S Function to adjust the focusing and divergence angle of ultrashort pulse light to correct the on-axis chromatic aberration (focus difference) with the wavelength of the pulse light, the pulse width of the ultrashort pulse light while passing through the optical system It has a pre-chirp function (group velocity dispersion compensation function) or the like that gives inverse group velocity dispersion to ultrashort pulse light in order to correct spreading due to velocity dispersion.
  • group velocity dispersion compensation function group velocity dispersion compensation function
  • the repetition frequency of the ultrashort pulse light emitted from the pulse laser device 201 is increased by the pulse division device 202, and the above-described adjustment is performed by the beam adjustment unit 203. Then, the ultrashort pulse light emitted from the beam adjustment unit 203 is reflected in the direction of the dichroic mirror 205 by the dichroic mirror 204, passes through the dichroic mirror 205, is condensed by the objective lens 206, and is irradiated onto the sample S. . At this time, the ultrashort pulse light may be scanned on the observation surface of the sample S by using a scanning means (not shown).
  • the fluorescent dye to which the sample S is stained is multiphoton-excited in the region to be irradiated with the ultrashort pulse light of the sample S and the vicinity thereof. Fluorescence (hereinafter referred to as "observation light”) having a wavelength shorter than that of pulsed light is emitted.
  • the observation light emitted from the sample S in the direction of the objective lens 206 is collimated by the objective lens 206, and is reflected by the dichroic mirror 205 or transmitted through the dichroic mirror 205 according to the wavelength.
  • the observation light reflected by the dichroic mirror 205 is incident on the fluorescence detection unit 207.
  • the fluorescence detection unit 207 includes, for example, a barrier filter, a PMT (photo multiplier tube), and the like, receives the observation light reflected by the dichroic mirror 205, and outputs an electric signal according to the light amount. . Further, the fluorescence detection unit 207 detects the observation light across the observation surface of the sample S in accordance with the scanning of the ultrashort pulse light on the observation surface of the sample S.
  • the observation light transmitted through the dichroic mirror 205 is descanned by the scanning means (not shown), transmitted through the dichroic mirror 204, condensed by the condensing lens 208, and substantially conjugate with the focal position of the objective lens 206.
  • the light passes through the provided pinhole 209, passes through the imaging lens 210, and enters the fluorescence detection unit 211.
  • the fluorescence detection unit 211 includes, for example, a barrier filter, a PMT, and the like, receives the observation light focused on the light receiving surface of the fluorescence detection unit 211 by the imaging lens 210, and outputs an electrical signal according to the light amount. Further, the fluorescence detection unit 211 detects observation light across the observation surface of the sample S in accordance with the scanning of the ultrashort pulse light on the observation surface of the sample S.
  • the fluorescence detection unit 211 may detect all the observation light emitted from the sample S in the direction of the objective lens 206 by removing the dichroic mirror 205 from the light path.
  • the observation light emitted from the sample S in the opposite direction to the objective lens 206 is reflected by the dichroic mirror 212 and enters the fluorescence detection unit 213.
  • the fluorescence detection unit 213 includes, for example, a barrier filter, a PMT, and the like, receives the observation light reflected by the dichroic mirror 212, and outputs an electrical signal according to the light amount. Further, the fluorescence detection unit 213 detects observation light across the observation surface of the sample S in accordance with the scanning of the ultrashort pulse light on the observation surface of the sample S.
  • the electrical signals output from the fluorescence detection units 207, 211, and 213 are input to a computer (not shown), and the computer generates an observation image based on the input electrical signals, and generates an observation.
  • An image can be displayed and data of an observation image can be stored.
  • Each table shows the composition of the optical glass according to the example and the comparative example, the refractive index (n d ), the Abbe number (v d ), the wavelength ( ⁇ 80 ) at which the internal transmittance at an optical path length of 10 mm is 80%, It is shown together with the measurement result of the wavelength ( ⁇ 5 ) at which the internal transmittance in an optical path length of 10 mm is 5%.
  • the present invention is not limited to these examples.
  • optical glass raw materials such as oxides, phosphates and fluorides were weighed so as to have an optical glass weight of 100 g so as to obtain the chemical compositions (weight%) described in the respective tables.
  • the weighed raw materials were mixed, charged into a platinum crucible, melted at a temperature of 950 ° C. for about 1 hour, and stirred and homogenized. Thereafter, the temperature was lowered and then cast into a mold or the like, and each sample was obtained by slow cooling.
  • n d Refractive index
  • d d Abbe number
  • KPR-2000 the refractive index meter
  • n d represents the refractive index of optical glass to light of 587.562 nm.
  • d d was obtained from the following equation (1).
  • n C and n F indicate the refractive index of the optical glass with respect to light of wavelengths 656.273 nm and 486.133 nm, respectively.
  • the value of the refractive index was up to the fifth decimal place.
  • d d (n d -1) / (n F -n C ) (1)
  • Wavelength internal transmittance is wavelength at which 80% (lambda 80) and 5% ( ⁇ 5) Optically polished optical glass samples having a thickness of 12 mm and a thickness of 2 mm were prepared, and the internal transmittance in the wavelength range of 200 to 700 nm when light was incident parallel to the thickness direction was measured. Then, the wavelength at which internal transmittance in an optical path length of 10mm is 80% and lambda 80, the wavelength at which internal transmittance of 5% was lambda 5.
  • Each table shows the result of each example and comparative example, and the figure which plotted the (lambda) 80 value with respect to O / P in FIG. 3 is shown.
  • surface unless otherwise indicated, it is shown by mol% of a cation about a cation component, and mol% of an anion about an anion component.
  • “Devitrification” in the Table indicates that devitrification occurs when the optical glass is manufactured, and measurement (that is, use as an optical glass) is impossible.
  • each of the examples had a low refractive index and a low dispersion, and the transmittance was good.
  • SYMBOLS 1 ... Imaging device, 101 ... Camera body, 102 ... Lens-barrel, 103 ... Lens, 104 ... Sensor chip, 105 ... Glass substrate, 106 ... Multichip module, 2 multiphoton microscope 201 pulsed laser device 202 pulse dividing device 203 beam adjusting unit 204, 205, 212 dichroic mirror 206 objective lens 207, 211, 213 ... fluorescence detection unit, 208 ... condensing lens, 209 ... pinhole, 210 ... imaging lens, S ... sample

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

An optical glass containing Al3+ and P5+ in amounts of 30 to 40% and 1 to 15%, respectively, when expressed in cation mol%, also containing O2- and F- in amounts of 5 to 16% and 84 to 95%, respectively, when expressed in anion mol%, and also having a ratio (O/P) of the number of oxygen atoms to the number of phosphorus atoms of less than 3.4.

Description

光学ガラス、光学ガラスを用いた光学素子、光学装置Optical glass, optical element using optical glass, optical device
 本発明は、光学ガラス、光学ガラスを用いた光学素子及び光学装置に関する。本発明は2018年1月18日に出願された日本国特許の出願番号2018-006394の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。 The present invention relates to an optical glass, an optical element using the optical glass, and an optical apparatus. The present invention claims priority to Japanese Patent Application No. 2018-006394 filed on Jan. 18, 2018, and the contents described in that application for designated countries permitted to be incorporated by reference to the literature Incorporated herein by reference.
 低屈折率・低分散性を有する蛍石は、光学装置における光学系のレンズ材料として使用される。蛍石は、例えば、特許文献1に示されるような坩堝降下法(ブリッジマン法)により製造される。 Fluorite having low refractive index and low dispersion is used as a lens material of an optical system in an optical device. Fluorite is manufactured, for example, by the descent method (Bridgeman method) as shown in Patent Document 1.
特開2005-330156号公報JP 2005-330156 A
 本発明の第一の態様は、カチオンのモル%表示で、Al3+が30~40%、P5+が1~15%であり、かつ、アニオンのモル%表示で、O2-が5~16%、Fが84~95%であり、かつ、リン原子の数に対する酸素原子の数の比(O/P)が3.4未満である、光学ガラスである。 The first embodiment of the present invention is 30-40% of Al 3+ and 1-15% of P 5+ in terms of mole percent of cation, and 5-16 of O 2− in terms of mole percent of anion. %, F 2 is 84 to 95%, and the ratio of the number of oxygen atoms to the number of phosphorus atoms (O / P) is less than 3.4.
 本発明の第二の態様は、第一の態様の光学ガラスを用いた、光学素子である。 A second aspect of the present invention is an optical element using the optical glass of the first aspect.
 本発明の第三の態様は、第二の態様の光学素子を備える、光学装置である。 A third aspect of the present invention is an optical device comprising the optical element of the second aspect.
本実施形態に係る撮像装置の斜視図である。It is a perspective view of an imaging device concerning this embodiment. 本実施形態に係る多光子顕微鏡の構成の例を示すブロック図である。It is a block diagram which shows the example of a structure of the multiphoton microscope which concerns on this embodiment. 各実施例及び各比較例のO/Pに対するλ80値をプロットした図である。It is the figure which plotted the (lambda) 80 value with respect to O / P of each Example and each comparative example.
 以下、本発明の実施形態(以下、「本実施形態」という。)について説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。 Hereinafter, an embodiment of the present invention (hereinafter, referred to as "the present embodiment") will be described. The following present embodiment is an example for describing the present invention, and is not intended to limit the present invention to the following contents. The present invention can be appropriately modified and implemented within the scope of the gist of the present invention.
 本明細書中において、特に断りがない場合、各成分の含有量は、カチオンのモル%表示、及びアニオンのモル%表示で示される。ここでいうカチオンのモル%、及びアニオンのモル%とは、ガラス中に含まれるカチオン成分の総量とアニオン成分の総量をそれぞれ100モル%とするものである。ガラス構成成分の原料として使用される炭酸塩、水酸塩、硝酸塩、含水塩等の複合塩は、熔解時に全て分解されて酸化物及び/又はフッ化物に変化すると仮定している。なお、複合塩の分解によって生じるガス成分はガラス構成成分として考慮しない。 In the present specification, unless otherwise specified, the content of each component is shown in terms of mol% of cation and in mol% of anion. The term “mol% of cation” and “mol% of anion” as used herein mean that the total amount of the cation component and the total amount of the anion component contained in the glass are 100 mol%. It is assumed that complex salts such as carbonates, hydroxides, nitrates and hydrous salts used as raw materials of glass constituents are all decomposed at the time of melting to change into oxides and / or fluorides. In addition, the gas component produced by decomposition | disassembly of complex salt is not considered as a glass structural component.
 本実施形態に係る光学ガラスは、カチオンのモル%表示で、Al3+が30~40%、P5+が1~15%であり、かつ、アニオンのモル%表示で、O2-が5~16%、Fが84~95%であり、かつ、リン原子の数に対する酸素原子の数の比(O/P)が3.4未満である、光学ガラスである。本実施形態によれば、フツリン酸塩系光学ガラスにおいて、低屈折率・低分散の光学恒数を有し、紫外及び可視光透過率の良好な光学ガラスとすることが可能となる。 The optical glass according to the present embodiment has 30 to 40% of Al 3+ and 1 to 15% of P 5+ in terms of mole percent of cation, and 5 to 16 of O 2− in terms of mole percent of anion. %, F 2 is 84 to 95%, and the ratio of the number of oxygen atoms to the number of phosphorus atoms (O / P) is less than 3.4. According to this embodiment, the fluorophosphate-based optical glass can have an optical constant of low refractive index and low dispersion, and can be excellent in ultraviolet and visible light transmittance.
 例えば、蛍石はブリッジマン法により製造されるが、一度に製造できる量が限られ、時間もかかるため、大量生産に不向きであるといった問題がある。また、蛍石は、劈開性を有するため、機械的強度が乏しく、加工が困難であるという問題もある。これらの点について、本実施形態に係る光学ガラスは、蛍石相当の低屈折率・低分散性を有していながら、蛍石が抱える上記のような問題も解消できる。 For example, although fluorite is manufactured by the Bridgman method, it has a problem that it is unsuitable for mass production because the amount that can be manufactured at one time is limited and it takes time. In addition, since fluorite has cleavage properties, there is also a problem that mechanical strength is poor and processing is difficult. With regard to these points, the optical glass according to the present embodiment can solve the above-mentioned problems of fluorite while having the low refractive index and low dispersion equivalent to fluorite.
(カチオン成分)
 Al3+は光学ガラスの耐失透性を向上させる効果がある。その含有量が少ないと光学ガラスが失透しやすくなるが、過剰に導入しても光学ガラスが失透しやすくなる。かかる観点から、Al3+の含有量は、30~40%であり、好ましくは32~38%であり、より好ましくは34~37%である。
(Cation component)
Al 3+ has the effect of improving the devitrification resistance of the optical glass. When the content is small, the optical glass is easily devitrified, but even if it is introduced in excess, the optical glass is easily devitrified. From this point of view, the content of Al 3+ is 30 to 40%, preferably 32 to 38%, and more preferably 34 to 37%.
 P5+は光学ガラスの耐失透性を向上させる効果がある。その含有量が少ないと光学ガラスが失透しやすくなるが、過剰に導入すると分散が大きくなりすぎてしまう。かかる観点から、P5+の含有量は、1~15%であり、好ましくは3~12%であり、より好ましくは5~10%である。 P 5+ has the effect of improving the devitrification resistance of the optical glass. When the content is small, the optical glass is easily devitrified, but when it is introduced excessively, the dispersion becomes too large. From this viewpoint, the content of P 5+ is 1 to 15%, preferably 3 to 12%, and more preferably 5 to 10%.
 本実施形態では、例えば、Li、Na、K、Mg2+、Ca2+、Sr2+、Ba2+、Zn2+、Y3+、La3+、Gd3+、Zr4+等の成分を適宜含有することができる。 In the present embodiment, for example, components such as Li + , Na + , K + , Mg 2+ , Ca 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ , Y 3+ , La 3+ , Gd 3+ , and Zr 4+ are appropriately contained. Can.
 Liは、光学ガラスの熔解性を高める効果を有するが、過剰に導入すると耐失透性が低下することに加え、成形時におけるガラスの粘性が低下し、ガラスの成形が困難となる傾向にある。かかる観点から、Liの含有量は、好ましくは0~3%であり、より好ましくは0~2%であり、更に好ましくは0~1%である。 Li + has the effect of enhancing the meltability of optical glass, but if it is introduced in excess, in addition to the resistance to devitrification being lowered, the viscosity of the glass at the time of molding is lowered and the glass tends to be difficult to mold. is there. From such a viewpoint, the content of Li + is preferably 0 to 3%, more preferably 0 to 2%, and still more preferably 0 to 1%.
 Naは、光学ガラスの熔解性を高める効果を有するが、過剰に導入すると耐失透性が低下することに加え、成形時におけるガラスの粘性が低下し、ガラスの成形が困難となる傾向にある。かかる観点から、Naの含有量は、好ましくは0~3%であり、より好ましくは0~2%であり、更に好ましくは0~1%である。 Na + has the effect of improving the meltability of optical glass, but when it is introduced in excess, it has the tendency that the viscosity of the glass at the time of molding is lowered and the glass forming becomes difficult, in addition to the devitrification resistance being lowered. is there. From such a viewpoint, the content of Na + is preferably 0 to 3%, more preferably 0 to 2%, and still more preferably 0 to 1%.
 Kは、光学ガラスの熔解性を高める効果を有するが、過剰に導入すると耐失透性が低下することに加え、成形時におけるガラスの粘性が低下し、ガラスの成形が困難となる傾向にある。かかる観点から、Kの含有量は、好ましくは0~2%であり、より好ましくは0~1.5%であり、更に好ましくは0~1%である。 K + has the effect of enhancing the meltability of optical glass, but if it is introduced in excess, in addition to the resistance to devitrification being lowered, the viscosity of the glass at the time of molding is lowered and the glass tends to be difficult to mold. is there. From this point of view, the content of K + is preferably 0 to 2%, more preferably 0 to 1.5%, and still more preferably 0 to 1%.
 Mg2+は、光学ガラスの耐失透性を向上させる効果がある。その含有量が少なすぎると耐失透性を向上させる効果を十分に得ることができない。また、過剰に導入すると屈折率が低下し、かえって耐失透性も低下する傾向にある。かかる観点から、Mg2+の含有量は、好ましくは5~10%であり、より好ましくは6~9%であり、更に好ましくは7~8%である。 Mg 2+ has the effect of improving the devitrification resistance of the optical glass. If the content is too small, the effect of improving the devitrification resistance can not be obtained sufficiently. In addition, when incorporated in excess, the refractive index tends to decrease, and the devitrification resistance tends to decrease. From this point of view, the content of Mg 2+ is preferably 5 to 10%, more preferably 6 to 9%, and still more preferably 7 to 8%.
 Ca2+は、光学ガラスの耐失透性を向上させる効果がある。その含有量が少なすぎると耐失透性を向上させる効果を十分に得ることができない。また、過剰に導入すると屈折率が低下し、かえって耐失透性も低下する傾向にある。かかる観点から、Ca2+の含有量は、好ましくは20~30%であり、より好ましくは22~28%であり、更に好ましくは23~25%である。 Ca 2+ has an effect of improving the devitrification resistance of the optical glass. If the content is too small, the effect of improving the devitrification resistance can not be obtained sufficiently. In addition, when incorporated in excess, the refractive index tends to decrease, and the devitrification resistance tends to decrease. From this point of view, the content of Ca 2+ is preferably 20 to 30%, more preferably 22 to 28%, and still more preferably 23 to 25%.
 Sr2+は、光学ガラスの屈折率を高め、耐失透性を向上させる効果がある。その含有量が少なすぎると、屈折率を高める効果と耐失透性を向上させる効果を十分に得ることができない。また、過剰に導入すると分散性が大きくなりすぎてしまい、かえって耐失透性も低下する傾向にある。かかる観点から、Sr2+の含有量は、好ましくは10~20%であり、より好ましくは12~18%であり、更に好ましくは14~17%である。 Sr 2+ has the effect of increasing the refractive index of the optical glass and improving the devitrification resistance. If the content is too small, the effect of increasing the refractive index and the effect of improving the devitrification resistance can not be sufficiently obtained. Moreover, when it introduce | transduces excessively, a dispersibility will become large too much, and it exists in the tendency for devitrification resistance to fall on the contrary. From this point of view, the content of Sr 2+ is preferably 10 to 20%, more preferably 12 to 18%, and still more preferably 14 to 17%.
 Ba2+は、光学ガラスの屈折率を高め、耐失透性を向上させる効果がある。その含有量が少なすぎると、屈折率を高める効果と耐失透性を向上させる効果を十分に得ることができない。また、過剰に導入すると分散性が大きくなりすぎてしまい、かえって耐失透性も低下する傾向にある。かかる観点から、Ba2+の含有量は、好ましくは3~10%であり、より好ましくは4~9%であり、更に好ましくは5~8%である。 Ba 2+ has the effect of increasing the refractive index of the optical glass and improving the devitrification resistance. If the content is too small, the effect of increasing the refractive index and the effect of improving the devitrification resistance can not be sufficiently obtained. Moreover, when it introduce | transduces excessively, a dispersibility will become large too much, and it exists in the tendency for devitrification resistance to fall on the contrary. From this point of view, the content of Ba 2+ is preferably 3 to 10%, more preferably 4 to 9%, and still more preferably 5 to 8%.
 Zn2+は、光学ガラスの耐失透性を向上させる効果がある。しかしながら、過剰に導入すると分散性が大きくなりすぎる傾向にある。かかる観点から、Zn2+の含有量は、好ましくは0~3%であり、より好ましくは0~2%であり、更に好ましくは0~1%である。 Zn 2+ has the effect of improving the devitrification resistance of the optical glass. However, when it is introduced in excess, the dispersibility tends to be too large. From this point of view, the content of Zn 2+ is preferably 0 to 3%, more preferably 0 to 2%, and still more preferably 0 to 1%.
 Y3+は、光学ガラスの低分散性を維持しつつ屈折率を高めるとともに、原料の熔解性を維持し液相温度の上昇を抑制し、光学ガラスの耐失透性を向上させる効果を有する。しかしながら、過剰に導入するとガラス原料の熔解性が悪化し、かつ液相温度が上昇してガラスの耐失透性を低下させる傾向にある。かかる観点から、Y3+の含有量は、好ましくは0~5%であり、より好ましくは0~3%であり、更に好ましくは0~2%であり、より更に好ましくは0~1%である。 Y 3 + has the effect of improving the devitrification resistance of the optical glass, maintaining the low dispersion of the optical glass and increasing the refractive index, and maintaining the meltability of the raw material to suppress the rise in liquidus temperature. However, when it is introduced in excess, the meltability of the glass raw material is deteriorated, and the liquidus temperature tends to rise to lower the devitrification resistance of the glass. From this point of view, the content of Y 3+ is preferably 0 to 5%, more preferably 0 to 3%, still more preferably 0 to 2%, and still more preferably 0 to 1%. .
 La3+は、光学ガラスの低分散性を維持しつつ屈折率を高めるとともに、原料の熔解性を維持し液相温度の上昇を抑制し、光学ガラスの耐失透性を向上させる効果を有する。しかしながら、過剰に導入するとガラス原料の熔解性が悪化し、かつ液相温度が上昇してガラスの耐失透性を低下させる傾向にある。かかる観点から、La3+の含有量は、好ましくは0~5%であり、より好ましくは0~3%であり、更に好ましくは0~2%であり、より更に好ましくは0~1%である。 La 3+ has an effect of maintaining the low dispersion of the optical glass while increasing the refractive index, maintaining the meltability of the raw material, suppressing the rise of the liquidus temperature, and improving the devitrification resistance of the optical glass. However, when it is introduced in excess, the meltability of the glass raw material is deteriorated, and the liquidus temperature tends to rise to lower the devitrification resistance of the glass. From this point of view, the content of La 3+ is preferably 0 to 5%, more preferably 0 to 3%, still more preferably 0 to 2%, and still more preferably 0 to 1%. .
 Gd3+は、光学ガラスの低分散性を維持しつつ屈折率を高めるとともに、原料の熔解性を維持し液相温度の上昇を抑制し、光学ガラスの耐失透性を向上させる効果を有する。しかしながら、過剰に導入するとガラス原料の熔解性が悪化し、かつ液相温度が上昇してガラスの耐失透性を低下させる傾向にある。かかる観点から、Gd3+の含有量は、好ましくは0~5%であり、より好ましくは0~3%であり、更に好ましくは0~2%であり、より更に好ましくは0~1%である。 Gd 3+ has the effect of enhancing the refractive index while maintaining the low dispersion of the optical glass, maintaining the meltability of the raw material, suppressing the rise of the liquidus temperature, and improving the devitrification resistance of the optical glass. However, when it is introduced in excess, the meltability of the glass raw material is deteriorated, and the liquidus temperature tends to rise to lower the devitrification resistance of the glass. From this point of view, the content of Gd 3+ is preferably 0 to 5%, more preferably 0 to 3%, still more preferably 0 to 2%, still more preferably 0 to 1%. .
 Zr4+は、光学ガラスの屈折率を高め、分散を抑えるとともに、耐失透性を向上させる効果を有する。しかしながら、過剰に導入すると分散性が大きくなりすぎてしまい、耐失透性も低下する傾向にある。かかる観点から、Zr4+の含有量は、好ましくは0~1%である。 Zr 4 + has an effect of enhancing the refractive index of the optical glass, suppressing the dispersion, and improving the devitrification resistance. However, when incorporated in excess, the dispersibility becomes too large, and the devitrification resistance also tends to decrease. From this point of view, the content of Zr 4+ is preferably 0 to 1%.
 上述した成分についての好適な含有量の組み合わせとしては、Mg2+が5~10%、Ca2+が20~30%、Sr2+が10~20%、Ba2+が3~10%である。また、Liが0~3%、Naが0~3%、Kが0~2%、Zn2+が0~3%である。また、Y3+が0~5%、La3+が0~5%、Gd3+が0~5%、Zr4+が0~1%である。 As preferable combinations of the contents of the above-mentioned components, 5 to 10% of Mg 2+ , 20 to 30% of Ca 2+ , 10 to 20% of Sr 2+ , and 3 to 10% of Ba 2+ . In addition, Li + is 0 to 3%, Na + is 0 to 3%, K + is 0 to 2%, and Zn 2+ is 0 to 3%. Further, Y 3+ is 0 to 5%, La 3+ is 0 to 5%, Gd 3+ is 0 to 5%, and Zr 4+ is 0 to 1%.
(アニオン成分)
 アニオン成分であるO2-とFは、光学ガラスの屈折率、分散性、安定性等に寄与する。光学ガラスの分散と屈折率の観点から、アニオンのモル%表示でO2-は、5~16%であり、好ましくは7~14%であり、より好ましくは9~12%である。光学ガラスの分散と屈折率の観点から、アニオンのモル%表示でFは84~95%であり、好ましくは86~93%であり、より好ましくは88~91%である。
(Anion component)
The anion components O 2− and F 2 contribute to the refractive index, dispersibility, stability, etc. of the optical glass. From the viewpoint of the dispersion of the optical glass and the refractive index, O 2− is 5 to 16%, preferably 7 to 14%, more preferably 9 to 12% in terms of mol% of anions. From the viewpoint of dispersion of the optical glass and the refractive index, F − in terms of mol% of the anion is 84 to 95%, preferably 86 to 93%, more preferably 88 to 91%.
 リン原子の数に対する酸素原子の数の比(O/P)は、3.4未満であれば良好な紫外透過率を維持できるが、3.4以上であると内部透過率が80%となる波長(λ80)が長波長側へシフトし、紫外域の光透過性が悪化する。かかる観点から、O/Pは、3.4未満であり、好ましくは3.2以下であり、より好ましくは3.0以下である。なお、リン原子の数に対する酸素原子の数の比(O/P)とは、原子%(at.%)表示におけるリン(P)に対する酸素(O)の比と同等の意味である。 If the ratio of the number of oxygen atoms to the number of phosphorus atoms (O / P) is less than 3.4, good ultraviolet transmittance can be maintained, but if it is 3.4 or more, the internal transmittance is 80% The wavelength (λ 80 ) shifts to the long wavelength side, and the light transmittance in the ultraviolet region is degraded. From this point of view, O / P is less than 3.4, preferably 3.2 or less, and more preferably 3.0 or less. The ratio (O / P) of the number of oxygen atoms to the number of phosphorus atoms has the same meaning as the ratio of oxygen (O) to phosphorus (P) in atomic% (at.%).
 上記成分に限らず、本実施形態に係る光学ガラスの効果が得られる範囲でその他成分を添加することもできる。 Not only the said component but another component can also be added in the range from which the effect of the optical glass which concerns on this embodiment is acquired.
 本実施形態に係る光学ガラスの製造方法は、特に限定されず、公知の方法を採用することができる。また、製造条件は、適宜好適な条件を選択することができる。例えば、酸化物、フッ化物等の原料を目標組成となるように調合し、好ましくは850~1150℃、より好ましくは950~1050℃にて熔解し、攪拌することで均一化し、泡切れを行った後、金型に流し成形する製造方法等を採用できる。このようにして得られた光学ガラスは、必要に応じてリヒートプレス等を行って所望の形状に加工し、研磨等を施すことで、所望の光学素子とすることができる。 The manufacturing method of the optical glass which concerns on this embodiment is not specifically limited, A well-known method is employable. Moreover, manufacturing conditions can select suitable conditions suitably. For example, raw materials such as oxides and fluorides are prepared to have a target composition, preferably melted at 850 to 1150 ° C., more preferably 950 to 1050 ° C., homogenized by stirring, and defoamed. After that, it is possible to employ a manufacturing method or the like which is flow-molded in a mold. The optical glass thus obtained can be processed into a desired shape by performing reheat press or the like as necessary, and can be polished or the like to form a desired optical element.
 次に、本実施形態に係る光学ガラスの物性値について説明する。 Next, physical property values of the optical glass according to the present embodiment will be described.
 本実施形態に係る光学ガラスは、低屈折率・低分散(アッベ数(ν)が大きい)である。本実施形態に係る光学ガラスのアッベ数(ν)は、好ましくは92~97であり、より好ましくは93~97であり、更に好ましくは94~97である。また、本実施形態に係る光学ガラスの屈折率(n)は、好ましくは1.41~1.45であり、より好ましくは1.42~1.45であり、更に好ましくは1.43~1.45である。そして、本実施形態に係る光学ガラスの物性として好適な組み合わせは、屈折率(n)が1.41~1.45の範囲であり、かつ、アッベ数(ν)が92~97の範囲にある。 The optical glass according to the present embodiment has low refractive index and low dispersion (Abbe number (数d ) is large). The Abbe number (ν d ) of the optical glass according to the present embodiment is preferably 92 to 97, more preferably 93 to 97, and still more preferably 94 to 97. In addition, the refractive index (n d ) of the optical glass according to the present embodiment is preferably 1.41 to 1.45, more preferably 1.42 to 1.45, and still more preferably 1.43 to It is 1.45. The preferred combination as the physical properties of the optical glass according to this embodiment, refractive index (n d) is in the range of 1.41 to 1.45, and the range Abbe number ([nu d) of 92-97 It is in.
 光学系の紫外及び可視光透過率の観点から、本実施形態に係る光学ガラスにおける、光路長10mmにおける内部透過率が80%となる波長(λ80)は、好ましくは340nm以下であり、より好ましくは338nm以下であり、更に好ましくは336nm以下である。 From the viewpoint of the ultraviolet and visible light transmittances of the optical system, the wavelength (λ 80 ) at which the internal transmittance in an optical path length of 10 mm is 80% in the optical glass according to the present embodiment is preferably 340 nm or less, more preferably Is 338 nm or less, more preferably 336 nm or less.
 また、本実施形態に係る光学ガラスにおける、光路長10mmにおける内部透過率が5%となる波長(λ)は、好ましくは300nm以下であり、より好ましくは298nm以下であり、更に好ましくは296nm以下である。 In the optical glass according to this embodiment, the wavelength (λ 5 ) at which the internal transmittance in an optical path length of 10 mm is 5% is preferably 300 nm or less, more preferably 298 nm or less, still more preferably 296 nm or less It is.
 上述した観点から、本実施形態に係る光学ガラスは、例えば、光学機器が備える光学素子として好適に用いることができる。光学装置としては、とりわけ撮像装置や多光子顕微鏡として特に好適である。 From the viewpoint described above, the optical glass according to the present embodiment can be suitably used, for example, as an optical element included in an optical device. The optical device is particularly suitable as an imaging device and a multiphoton microscope, among others.
<撮像装置>
 図1に、本実施形態に係る光学ガラスを母材とするレンズ103(光学素子)を備えた撮像装置1(光学機器)を示す。撮像装置1はいわゆるデジタル一眼レフカメラであり、カメラボディ101のレンズマウント(不図示)にレンズ鏡筒102が着脱自在に取り付けられる。そして、該レンズ鏡筒102のレンズ103を通した光がカメラボディ101の背面側に配置されたマルチチップモジュール106のセンサチップ(固体撮像素子)104上に結像される。このセンサチップ104は、いわゆるCMOSイメージセンサー等のベアチップであり、マルチチップモジュール106は、例えばセンサチップ104がガラス基板105上にベアチップ実装されたCOG(Chip On Glass)タイプのモジュールである。
<Imaging device>
FIG. 1 shows an imaging device 1 (optical apparatus) including a lens 103 (optical element) having an optical glass according to the present embodiment as a base material. The imaging apparatus 1 is a so-called digital single-lens reflex camera, and a lens barrel 102 is detachably attached to a lens mount (not shown) of a camera body 101. Then, light passing through the lens 103 of the lens barrel 102 forms an image on a sensor chip (solid-state imaging device) 104 of the multi-chip module 106 disposed on the back side of the camera body 101. The sensor chip 104 is a bare chip such as a so-called CMOS image sensor, and the multi-chip module 106 is, for example, a COG (Chip On Glass) type module in which the sensor chip 104 is bare chip mounted on a glass substrate 105.
 このようなデジタルカメラ等に用いられる光学系には、より高い解像度、軽量化、小型化が求められる。これらを実現するには光学系に高屈折率な光学ガラスを用いることが有効である。かかる観点から、本実施形態に係る光学ガラスは、かかる光学機器の部材として好適である。なお、本実施形態において適用可能な光学機器としては、上述した撮像装置に限らず、例えばプロジェクタ等も挙げられる。光学素子についても、レンズに限らず、例えばプリズム等も挙げられる。 Higher resolution, lighter weight, and smaller size are required for an optical system used for such a digital camera or the like. In order to realize these, it is effective to use high refractive index optical glass in the optical system. From this point of view, the optical glass according to the present embodiment is suitable as a member of such an optical device. In addition, as an optical apparatus applicable in this embodiment, not only the imaging device mentioned above but a projector etc. are mentioned, for example. The optical element is not limited to the lens, and may be, for example, a prism.
<多光子顕微鏡>
 図2は、本実施形態に係る多光子顕微鏡2の構成の例を示すブロック図である。多光子顕微鏡2は、光学素子として、対物レンズ206、集光レンズ208、結像レンズ210を備える。以下、多光子顕微鏡2の光学系を中心に説明する。
<Multiphoton microscope>
FIG. 2 is a block diagram showing an example of the configuration of the multiphoton microscope 2 according to the present embodiment. The multiphoton microscope 2 includes an objective lens 206, a condenser lens 208, and an imaging lens 210 as optical elements. The optical system of the multiphoton microscope 2 will be mainly described below.
 パルスレーザ装置201は、例えば、近赤外波長(約1000nm)であって、パルス幅がフェムト秒単位の(例えば、100フェムト秒の)超短パルス光を射出する。パルスレーザ装置201から射出された直後の超短パルス光は、一般に所定の方向に偏光された直線偏光となっている。 The pulse laser device 201 emits, for example, an ultrashort pulse light of, for example, a near infrared wavelength (about 1000 nm) and a pulse width of femtoseconds (for example, 100 femtoseconds). The ultrashort pulse light immediately after being emitted from the pulse laser device 201 is generally linearly polarized light polarized in a predetermined direction.
 パルス分割装置202は、超短パルス光を分割し、超短パルス光の繰り返し周波数を高くして射出する。 The pulse splitting device 202 splits the ultrashort pulse light, raises the repetition frequency of the ultrashort pulse light, and emits it.
 ビーム調整部203は、パルス分割装置202から入射される超短パルス光のビーム径を、対物レンズ206の瞳径に合わせて調整する機能、試料Sから発せられる多光子励起光の波長と超短パルス光の波長との軸上の色収差(ピント差)を補正するために超短パルス光の集光及び発散角度を調整する機能、超短パルス光のパルス幅が光学系を通過する間に群速度分散により広がってしまうのを補正するために、逆の群速度分散を超短パルス光に与えるプリチャープ機能(群速度分散補償機能)等を有する。 The beam adjustment unit 203 has a function of adjusting the beam diameter of the ultrashort pulse light incident from the pulse splitting device 202 according to the pupil diameter of the objective lens 206, the wavelength and ultrashort of the multiphoton excitation light emitted from the sample S Function to adjust the focusing and divergence angle of ultrashort pulse light to correct the on-axis chromatic aberration (focus difference) with the wavelength of the pulse light, the pulse width of the ultrashort pulse light while passing through the optical system It has a pre-chirp function (group velocity dispersion compensation function) or the like that gives inverse group velocity dispersion to ultrashort pulse light in order to correct spreading due to velocity dispersion.
 パルスレーザ装置201から射出された超短パルス光は、パルス分割装置202によりその繰り返し周波数が大きくされ、ビーム調整部203により上記した調整が行われる。そして、ビーム調整部203から射出された超短パルス光は、ダイクロイックミラー204によりダイクロイックミラー205の方向に反射され、ダイクロイックミラー205を通過し、対物レンズ206により集光されて試料Sに照射される。このとき、走査手段(不図示)を用いることにより、超短パルス光を試料Sの観察面上に走査させてもよい。 The repetition frequency of the ultrashort pulse light emitted from the pulse laser device 201 is increased by the pulse division device 202, and the above-described adjustment is performed by the beam adjustment unit 203. Then, the ultrashort pulse light emitted from the beam adjustment unit 203 is reflected in the direction of the dichroic mirror 205 by the dichroic mirror 204, passes through the dichroic mirror 205, is condensed by the objective lens 206, and is irradiated onto the sample S. . At this time, the ultrashort pulse light may be scanned on the observation surface of the sample S by using a scanning means (not shown).
 例えば、試料Sを蛍光観察する場合には、試料Sの超短パルス光の被照射領域及びその近傍では、試料Sが染色されている蛍光色素が多光子励起され、赤外波長である超短パルス光より波長が短い蛍光(以下、「観察光」という。)が発せられる。 For example, when fluorescently observing the sample S, the fluorescent dye to which the sample S is stained is multiphoton-excited in the region to be irradiated with the ultrashort pulse light of the sample S and the vicinity thereof. Fluorescence (hereinafter referred to as "observation light") having a wavelength shorter than that of pulsed light is emitted.
 試料Sから対物レンズ206の方向に発せられた観察光は、対物レンズ206によりコリメートされ、その波長に応じて、ダイクロイックミラー205により反射されたり、あるいは、ダイクロイックミラー205を透過したりする。 The observation light emitted from the sample S in the direction of the objective lens 206 is collimated by the objective lens 206, and is reflected by the dichroic mirror 205 or transmitted through the dichroic mirror 205 according to the wavelength.
 ダイクロイックミラー205により反射された観察光は、蛍光検出部207に入射する。蛍光検出部207は、例えば、バリアフィルタ、PMT(photo multiplier tube:光電子増倍管)等により構成され、ダイクロイックミラー205により反射された観察光を受光し、その光量に応じた電気信号を出力する。また、蛍光検出部207は、超短パルス光が試料Sの観察面において走査されるのに合わせて、試料Sの観察面にわたる観察光を検出する。 The observation light reflected by the dichroic mirror 205 is incident on the fluorescence detection unit 207. The fluorescence detection unit 207 includes, for example, a barrier filter, a PMT (photo multiplier tube), and the like, receives the observation light reflected by the dichroic mirror 205, and outputs an electric signal according to the light amount. . Further, the fluorescence detection unit 207 detects the observation light across the observation surface of the sample S in accordance with the scanning of the ultrashort pulse light on the observation surface of the sample S.
 一方、ダイクロイックミラー205を透過した観察光は、走査手段(不図示)によりデスキャンされ、ダイクロイックミラー204を透過し、集光レンズ208により集光され、対物レンズ206の焦点位置とほぼ共役な位置に設けられているピンホール209を通過し、結像レンズ210を透過して、蛍光検出部211に入射する。 On the other hand, the observation light transmitted through the dichroic mirror 205 is descanned by the scanning means (not shown), transmitted through the dichroic mirror 204, condensed by the condensing lens 208, and substantially conjugate with the focal position of the objective lens 206. The light passes through the provided pinhole 209, passes through the imaging lens 210, and enters the fluorescence detection unit 211.
 蛍光検出部211は、例えば、バリアフィルタ、PMT等により構成され、結像レンズ210により蛍光検出部211の受光面において結像した観察光を受光し、その光量に応じた電気信号を出力する。また、蛍光検出部211は、超短パルス光が試料Sの観察面において走査されるのに合わせて、試料Sの観察面にわたる観察光を検出する。 The fluorescence detection unit 211 includes, for example, a barrier filter, a PMT, and the like, receives the observation light focused on the light receiving surface of the fluorescence detection unit 211 by the imaging lens 210, and outputs an electrical signal according to the light amount. Further, the fluorescence detection unit 211 detects observation light across the observation surface of the sample S in accordance with the scanning of the ultrashort pulse light on the observation surface of the sample S.
 なお、ダイクロイックミラー205を光路から外すことにより、試料Sから対物レンズ206の方向に発せられた全ての観察光を蛍光検出部211で検出するようにしてもよい。 Note that the fluorescence detection unit 211 may detect all the observation light emitted from the sample S in the direction of the objective lens 206 by removing the dichroic mirror 205 from the light path.
 また、試料Sから対物レンズ206と逆の方向に発せられた観察光は、ダイクロイックミラー212により反射され、蛍光検出部213に入射する。蛍光検出部213は、例えば、バリアフィルタ、PMT等により構成され、ダイクロイックミラー212により反射された観察光を受光し、その光量に応じた電気信号を出力する。また、蛍光検出部213は、超短パルス光が試料Sの観察面において走査されるのに合わせて、試料Sの観察面にわたる観察光を検出する。 The observation light emitted from the sample S in the opposite direction to the objective lens 206 is reflected by the dichroic mirror 212 and enters the fluorescence detection unit 213. The fluorescence detection unit 213 includes, for example, a barrier filter, a PMT, and the like, receives the observation light reflected by the dichroic mirror 212, and outputs an electrical signal according to the light amount. Further, the fluorescence detection unit 213 detects observation light across the observation surface of the sample S in accordance with the scanning of the ultrashort pulse light on the observation surface of the sample S.
 蛍光検出部207、211、213からそれぞれ出力された電気信号は、例えば、コンピュータ(不図示)に入力され、そのコンピュータは、入力された電気信号に基づいて、観察画像を生成し、生成した観察画像を表示したり、観察画像のデータを記憶したりすることができる。 For example, the electrical signals output from the fluorescence detection units 207, 211, and 213 are input to a computer (not shown), and the computer generates an observation image based on the input electrical signals, and generates an observation. An image can be displayed and data of an observation image can be stored.
 本発明の実施例及び比較例について説明する。各表は、実施例及び比較例に係る光学ガラスの組成を、屈折率(n)、アッベ数(ν)、光路長10mmにおける内部透過率が80%となる波長(λ80)、及び光路長10mmにおける内部透過率が5%となる波長(λ)の測定結果と共に示したものである。なお、本発明はこれら実施例に限定されるものではない。 Examples of the present invention and comparative examples will be described. Each table shows the composition of the optical glass according to the example and the comparative example, the refractive index (n d ), the Abbe number (v d ), the wavelength (λ 80 ) at which the internal transmittance at an optical path length of 10 mm is 80%, It is shown together with the measurement result of the wavelength (λ 5 ) at which the internal transmittance in an optical path length of 10 mm is 5%. The present invention is not limited to these examples.
<光学ガラスの作製>
 各実施例及び比較例に係る光学ガラスは、以下の手順で作製した。まず、各表に記載の化学組成(重量%)となるよう、酸化物、リン酸塩及びフッ化物等の光学ガラス原料を光学ガラス重量が100gとなるよう秤量した。次に、秤量した原料を混合して白金ルツボに投入して、950℃の温度で1時間程度熔解し、攪拌均質化した。その後、温度を下げてから金型等に鋳込みし、徐冷することにより、各サンプルを得た。
<Preparation of optical glass>
The optical glass which concerns on each Example and a comparative example was produced in the following procedures. First, optical glass raw materials such as oxides, phosphates and fluorides were weighed so as to have an optical glass weight of 100 g so as to obtain the chemical compositions (weight%) described in the respective tables. Next, the weighed raw materials were mixed, charged into a platinum crucible, melted at a temperature of 950 ° C. for about 1 hour, and stirred and homogenized. Thereafter, the temperature was lowered and then cast into a mold or the like, and each sample was obtained by slow cooling.
<光学ガラスの測定>
1.屈折率(n)とアッベ数(ν
 各サンプルの屈折率(n)及びアッベ数(ν)は、屈折率測定器(株式会社島津製作所製;「KPR-2000」)を用いて測定及び算出した。nは、587.562nmの光に対する光学ガラスの屈折率を示す。νは、以下の式(1)より求めた。n、nは、それぞれ波長656.273nm、486.133nmの光に対する光学ガラスの屈折率を示す。なお、屈折率の値は、小数点以下第5位までとした。
 ν=(n-1)/(n-n)・・・(1)
<Measurement of optical glass>
1. Refractive index (n d ) and Abbe number ( d d )
The refractive index of each sample (n d) and Abbe number ([nu d), the refractive index meter (manufactured by Shimadzu Corporation; "KPR-2000") was measured and calculated using. n d represents the refractive index of optical glass to light of 587.562 nm. d d was obtained from the following equation (1). n C and n F indicate the refractive index of the optical glass with respect to light of wavelengths 656.273 nm and 486.133 nm, respectively. The value of the refractive index was up to the fifth decimal place.
d d = (n d -1) / (n F -n C ) (1)
2.内部透過率が80%となる波長(λ80)と5%となる波長(λ
 12mm厚と2mm厚の光学研磨された互いに平行な光学ガラス試料を用意し、厚み方向と平行に光が入射した際の波長200~700nmの範囲における内部透過率を測定した。そして、光路長10mmにおける内部透過率が80%となる波長をλ80とし、内部透過率が5%となる波長をλとした。
2. Wavelength internal transmittance is wavelength at which 80% (lambda 80) and 5% (λ 5)
Optically polished optical glass samples having a thickness of 12 mm and a thickness of 2 mm were prepared, and the internal transmittance in the wavelength range of 200 to 700 nm when light was incident parallel to the thickness direction was measured. Then, the wavelength at which internal transmittance in an optical path length of 10mm is 80% and lambda 80, the wavelength at which internal transmittance of 5% was lambda 5.
 各表に各実施例及び比較例の結果を示し、図3にO/Pに対するλ80値をプロットした図を示す。なお、表中の組成の数値について、特に断りがない限り、カチオン成分についてはカチオンのモル%で、アニオン成分についてはアニオンのモル%で示している。また、表中の「失透」とは、光学ガラスを製造した際に失透が生じ、測定(即ち、光学ガラスとしての使用)が不可能であったことを示すものである。 Each table shows the result of each example and comparative example, and the figure which plotted the (lambda) 80 value with respect to O / P in FIG. 3 is shown. In addition, about the numerical value of the composition in a table | surface, unless otherwise indicated, it is shown by mol% of a cation about a cation component, and mol% of an anion about an anion component. Further, “Devitrification” in the Table indicates that devitrification occurs when the optical glass is manufactured, and measurement (that is, use as an optical glass) is impossible.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 各実施例はいずれも低屈折率かつ低分散であり、透過率が良好であることが確認された。 It was confirmed that each of the examples had a low refractive index and a low dispersion, and the transmittance was good.
1・・・撮像装置、101・・・カメラボディ、102・・・レンズ鏡筒、103・・・レンズ、104・・・センサチップ、105・・・ガラス基板、106・・・マルチチップモジュール、2・・・多光子顕微鏡、201・・・パルスレーザ装置、202・・・パルス分割装置、203・・・ビーム調整部、204,205,212・・・ダイクロイックミラー、206・・・対物レンズ、207,211,213・・・蛍光検出部、208・・・集光レンズ、209・・・ピンホール、210・・・結像レンズ、S・・・試料 DESCRIPTION OF SYMBOLS 1 ... Imaging device, 101 ... Camera body, 102 ... Lens-barrel, 103 ... Lens, 104 ... Sensor chip, 105 ... Glass substrate, 106 ... Multichip module, 2 multiphoton microscope 201 pulsed laser device 202 pulse dividing device 203 beam adjusting unit 204, 205, 212 dichroic mirror 206 objective lens 207, 211, 213 ... fluorescence detection unit, 208 ... condensing lens, 209 ... pinhole, 210 ... imaging lens, S ... sample

Claims (10)

  1.  カチオンのモル%表示で、
     Al3+が30~40%、
     P5+が1~15%であり、かつ、
     アニオンのモル%表示で、
     O2-が5~16%、
     Fが84~95%であり、かつ、
     リン原子の数に対する酸素原子の数の比(O/P)が3.4未満であることを特徴とする、光学ガラス。
    In terms of mol% of cation,
    30-40% of Al 3+ ,
    P 5+ is 1 to 15%, and
    In mole% of anion,
    O 2− is 5 to 16%,
    F - is 84 to 95%, and
    Optical glass, characterized in that the ratio of the number of oxygen atoms to the number of phosphorus atoms (O / P) is less than 3.4.
  2.  カチオンのモル%表示で、
     Mg2+が5~10%、
     Ca2+が20~30%、
     Sr2+が10~20%、
     Ba2+が3~10%であることを特徴とする、請求項1に記載の光学ガラス。
    In terms of mol% of cation,
    5 to 10% of Mg 2+ ,
    20-30% of Ca 2+ ,
    10 to 20% of Sr 2+ ,
    The optical glass according to claim 1, wherein Ba 2+ is 3 to 10%.
  3.  カチオンのモル%表示で、
     Liが0~3%、
     Naが0~3%、
     Kが0~2%、
     Zn2+が0~3%であることを特徴とする、請求項1又は2に記載の光学ガラス。
    In terms of mol% of cation,
    0 to 3% of Li + ,
    Na + is 0 to 3%,
    K + 0 to 2%,
    The optical glass according to claim 1 or 2, wherein Zn 2+ is 0 to 3%.
  4.  カチオンのモル%表示で、
     Y3+が0~5%、
     La3+が0~5%、
     Gd3+が0~5%、
     Zr4+が0~1%であることを特徴とする、請求項1~3のいずれか一項に記載の光学ガラス。
    In terms of mol% of cation,
    Y 3+ is 0-5%,
    La 3+ is 0-5%,
    Gd 3+ is 0-5%,
    The optical glass according to any one of claims 1 to 3, wherein Zr 4+ is 0 to 1%.
  5.  屈折率(n)が1.41~1.45の範囲であることを特徴とする、請求項1~4のいずれか一項に記載の光学ガラス。 The optical glass according to any one of claims 1 to 4, characterized in that the refractive index (n d ) is in the range of 1.41 to 1.45.
  6.  アッベ数(ν)が92~97の範囲であることを特徴とする、請求項1~5のいずれか一項に記載の光学ガラス。 The optical glass according to any one of claims 1 to 5, wherein the Abbe number (ν d ) is in the range of 92 to 97.
  7.  光路長10mmにおける内部透過率が80%となる波長(λ80)が、340nm以下であることを特徴とする、請求項1~6のいずれか一項に記載の光学ガラス。 The optical glass according to any one of claims 1 to 6, wherein a wavelength (λ 80 ) at which the internal transmittance at an optical path length of 10 mm is 80% is 340 nm or less.
  8.  光路長10mmにおける内部透過率が5%となる波長(λ)が、300nm以下であることを特徴とする、請求項1~7のいずれか一項に記載の光学ガラス。 The optical glass according to any one of claims 1 to 7, wherein a wavelength (λ 5 ) at which the internal transmittance in an optical path length of 10 mm is 5% is 300 nm or less.
  9.  請求項1~8のいずれか一項に記載の光学ガラスを用いた、光学素子。 An optical element using the optical glass according to any one of claims 1 to 8.
  10.  請求項9に記載の光学素子を備える、光学装置。 An optical apparatus comprising the optical element according to claim 9.
PCT/JP2018/034202 2018-01-18 2018-09-14 Optical glass, optical element equipped with optical glass, and optical device WO2019142397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019565702A JP7024802B2 (en) 2018-01-18 2018-09-14 Optical glass, optical elements equipped with optical glass, lens barrels, objective lenses for microscopes, optical devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-006394 2018-01-18
JP2018006394 2018-01-18

Publications (1)

Publication Number Publication Date
WO2019142397A1 true WO2019142397A1 (en) 2019-07-25

Family

ID=67302101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034202 WO2019142397A1 (en) 2018-01-18 2018-09-14 Optical glass, optical element equipped with optical glass, and optical device

Country Status (2)

Country Link
JP (1) JP7024802B2 (en)
WO (1) WO2019142397A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983960A (en) * 1982-11-06 1984-05-15 Minolta Camera Co Ltd Glass having anomalous dispersion
JPS60210545A (en) * 1984-03-30 1985-10-23 Ohara Inc Optical fluorophosphate glass
JPS63144141A (en) * 1986-12-08 1988-06-16 Sumita Kogaku Glass Seizosho:Kk Fluorophosphate optical glass
JPH01270537A (en) * 1988-04-20 1989-10-27 Sumita Kogaku Glass Seizosho:Kk Fluorophosphate optical glass
JPH06191876A (en) * 1992-12-25 1994-07-12 Hoya Corp Composition for fluorophosphate optical glass
JPH08104538A (en) * 1994-10-03 1996-04-23 Hoya Corp High ultraviolet transmission fluorophosphate glass and its production
JPH10139454A (en) * 1996-11-13 1998-05-26 Fuji Photo Optical Co Ltd Injection molding of fluorophosphate-based optical glass
JP2005075687A (en) * 2003-09-01 2005-03-24 Hoya Corp Method of manufacturing preform for precision press molding, preform for precision press molding, optical device and method of manufacturing the same
JP2005247658A (en) * 2004-03-05 2005-09-15 Hoya Corp Method for producing precision press molding preform and method for producing optical element
JP2008088047A (en) * 2006-09-07 2008-04-17 Ohara Inc Glass
JP2008094650A (en) * 2006-10-10 2008-04-24 Ohara Inc Optical glass

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983960A (en) * 1982-11-06 1984-05-15 Minolta Camera Co Ltd Glass having anomalous dispersion
JPS60210545A (en) * 1984-03-30 1985-10-23 Ohara Inc Optical fluorophosphate glass
JPS63144141A (en) * 1986-12-08 1988-06-16 Sumita Kogaku Glass Seizosho:Kk Fluorophosphate optical glass
JPH01270537A (en) * 1988-04-20 1989-10-27 Sumita Kogaku Glass Seizosho:Kk Fluorophosphate optical glass
JPH06191876A (en) * 1992-12-25 1994-07-12 Hoya Corp Composition for fluorophosphate optical glass
JPH08104538A (en) * 1994-10-03 1996-04-23 Hoya Corp High ultraviolet transmission fluorophosphate glass and its production
JPH10139454A (en) * 1996-11-13 1998-05-26 Fuji Photo Optical Co Ltd Injection molding of fluorophosphate-based optical glass
JP2005075687A (en) * 2003-09-01 2005-03-24 Hoya Corp Method of manufacturing preform for precision press molding, preform for precision press molding, optical device and method of manufacturing the same
JP2005247658A (en) * 2004-03-05 2005-09-15 Hoya Corp Method for producing precision press molding preform and method for producing optical element
JP2008088047A (en) * 2006-09-07 2008-04-17 Ohara Inc Glass
JP2008094650A (en) * 2006-10-10 2008-04-24 Ohara Inc Optical glass

Also Published As

Publication number Publication date
JP7024802B2 (en) 2022-02-24
JPWO2019142397A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP7408600B2 (en) Optical glass, optical elements and optical devices using the same
JP7388505B2 (en) Optical glass, optical elements using the same, optical devices equipped with the optical elements, cemented lenses, optical systems, interchangeable lenses for cameras, and optical devices including the optical systems
JP2024056885A (en) Optical glass, optical elements, optical systems, interchangeable lenses and optical devices
JP2024026121A (en) Optical glass, optical element, optical system, interchangeable lens, and optical device
JP2023116631A (en) Optical glass, optical element using the same, optical system, interchangeable lens for camera, and optical device
JP2020059641A (en) Optical glass, optical element using optical glass, optical system, interchangeable lens, optical device, and manufacturing method of optical glass
JP7410929B2 (en) Optical glass, optical elements, optical systems, interchangeable lenses and optical devices
WO2019142397A1 (en) Optical glass, optical element equipped with optical glass, and optical device
JP2021011409A (en) Optical glass, optical element, optical system, interchangeable lense and optical device
JP2018104204A (en) Optical glass, optical element using optical glass, and optical device
JP7325253B2 (en) Optical glass, optical elements, optical systems, interchangeable lenses and optical devices
WO2022102043A1 (en) Optical glass, optical element, optical system, doublet lens, interchangeable lens for camera, objective lens for microscope, and optical device
JP6809480B2 (en) Optical glass, optical elements and optical devices using optical glass
JP6985173B2 (en) Optical glass, optical elements, optical systems, interchangeable lenses for cameras and optical devices
JP2023104597A (en) Optical glass, optical element, interchangeable lens for camera, objective lens for microscope, cemented lens, optical system, and optical device
CN116507594A (en) Optical glass, optical element, optical system, junction lens, interchangeable lens for camera, objective lens for microscope, and optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565702

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901299

Country of ref document: EP

Kind code of ref document: A1