WO2019141214A1 - 组织纤维化检测方法和装置 - Google Patents

组织纤维化检测方法和装置 Download PDF

Info

Publication number
WO2019141214A1
WO2019141214A1 PCT/CN2019/072227 CN2019072227W WO2019141214A1 WO 2019141214 A1 WO2019141214 A1 WO 2019141214A1 CN 2019072227 W CN2019072227 W CN 2019072227W WO 2019141214 A1 WO2019141214 A1 WO 2019141214A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
inflammation
hardness
activity
liver
Prior art date
Application number
PCT/CN2019/072227
Other languages
English (en)
French (fr)
Inventor
鲁凤民
姚明解
王雷婕
邵金华
孙锦
段后利
Original Assignee
无锡海斯凯尔医学技术有限公司
鲁凤民
姚明解
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡海斯凯尔医学技术有限公司, 鲁凤民, 姚明解 filed Critical 无锡海斯凯尔医学技术有限公司
Publication of WO2019141214A1 publication Critical patent/WO2019141214A1/zh
Priority to US16/932,207 priority Critical patent/US20200345329A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data

Definitions

  • the invention relates to the field of measurement, in particular to a method and a device for detecting tissue fibrosis.
  • liver elasticity information is a parameter that can be used to diagnose the degree of fibrosis of the liver.
  • Transient Elastography is a technique for quantitatively detecting tissue elastic modulus. It can reflect liver fibrosis more comprehensively by measuring liver stiffness measurement (LSM).
  • liver biopsy is a commonly used method for evaluating liver inflammation, but liver biopsy has many limiting factors, and its invasive disadvantages and risk of complications make it impossible to conduct continuous liver biopsy to evaluate liver inflammation in routine clinical practice.
  • liver biopsy is also affected by sampling errors. Therefore, it is imperative to find a new type of non-invasive tissue inflammation evaluation method.
  • Embodiments of the present invention provide a method and apparatus for detecting tissue fibrosis.
  • a brief summary is given below. This generalization is not a general comment, nor is it intended to identify key/critical constituent elements or to describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simplified form as a prelude to the following detailed description.
  • an embodiment of the present invention provides a method for detecting tissue fibrosis, the method comprising:
  • the tissue hardness or the parameter reflecting the hardness is monitored during the treatment for the tissue inflammation to determine whether the inflammation is eliminated;
  • tissue inflammation When the tissue inflammation is eliminated or there is no possibility of inflammation, information on the degree of tissue fibrosis or the degree of tissue fibrosis is obtained based on the tissue hardness or a parameter reflecting the hardness.
  • the method further includes:
  • the method further includes:
  • tissue inflammation activity or tissue inflammation activity is obtained based on the measured tissue hardness or a parameter reflecting the hardness.
  • the obtaining information about the tissue inflammation activity or the tissue inflammation activity according to the detected tissue hardness or the parameter reflecting the hardness includes:
  • the predetermined tissue hardness or the parameter reflecting the hardness According to the relationship between the predetermined tissue hardness or the parameter reflecting the hardness and the information on the tissue inflammation activity or the tissue inflammation activity, information on the tissue inflammation activity or the tissue inflammation activity is obtained.
  • the correspondence includes:
  • the corresponding tissue inflammation activity is mild tissue inflammation and necrosis
  • the corresponding tissue inflammation activity is moderate tissue inflammation and necrosis
  • the corresponding tissue inflammation activity is severe tissue inflammation and necrosis.
  • the correspondence relationship includes: tissue hardness corresponding to different causes or parameters reflecting hardness and tissue inflammation activity or tissue inflammation activity.
  • the setting method of the corresponding relationship includes:
  • test object data to establish a test object working characteristic curve
  • Sensitivity, specificity, positive predictive value and negative predictive value of the tissue hardness or the parameter reflecting the hardness of each tissue were obtained by using the tissue inflammation activity obtained by pathological detection and the working curve of the test object;
  • the Yoden index is determined by sensitivity and specificity for each tissue inflammatory activity
  • the corresponding tissue hardness or the threshold value of the parameter reflecting the hardness is determined.
  • the determining whether the tissue has an inflammation possibility includes:
  • the inflammation-related parameter indicates the presence of inflammation, it is determined that the tissue is likely to develop inflammation.
  • the determining whether the tissue has an inflammation possibility includes:
  • the inflammation-related parameter indicates that inflammation is not present, whether the tissue hardness is abnormal and continues to rise during the first set period of time;
  • the determining whether the tissue has an inflammation possibility includes:
  • an embodiment of the present invention provides a tissue fibrosis detecting device, the device comprising:
  • a memory for storing an operation instruction
  • the processor is configured to execute the operation instruction in the memory to complete the following operations:
  • the tissue hardness or the parameter reflecting the hardness is monitored during the treatment for the tissue inflammation to determine whether the inflammation is eliminated;
  • tissue inflammation When the tissue inflammation is eliminated or there is no possibility of inflammation, information on the degree of tissue fibrosis or the degree of tissue fibrosis is obtained based on the tissue hardness or a parameter reflecting the hardness.
  • an embodiment of the present invention provides a tissue fibrosis detecting device, the device comprising:
  • a receiver for receiving the detected tissue hardness from the detecting probe
  • a processor for determining whether there is a possibility of inflammation in the tissue; when there is a possibility of inflammation in the tissue, monitoring the tissue hardness during the treatment for the tissue inflammation; if the monitored tissue hardness is normal and reaching the platform value The degree of tissue fibrosis is determined according to the platform value; when the tissue inflammation is absent, the degree of tissue fibrosis is determined according to the detected tissue hardness.
  • the method and device for detecting tissue fibrosis in the embodiment of the present invention can track the hardness of the tissue or reflect the parameter of the hardness during the treatment of tissue inflammation, and judge whether the tissue inflammation has been eliminated by monitoring the hardness of the tissue or the parameter reflecting the hardness. Because the tissue hardness or the parameters reflecting the hardness can be detected by non-invasive quantitative detection of tissue elastic modulus technology, the defects caused by tissue biopsy are avoided, and tissue inflammation can be evaluated non-invasively and continuously and accurately.
  • FIG. 1 is a flow chart of a method of tissue fibrosis detection in an exemplary embodiment
  • FIG. 2 is a flow chart of a method for detecting tissue inflammatory activity in an exemplary embodiment
  • FIG. 3 is a schematic illustration of an ROC curve in an exemplary embodiment
  • FIG. 4 is a flow chart of a method for detecting tissue inflammatory activity in an exemplary embodiment
  • Figure 5 is a flow diagram of a method of detecting tissue inflammatory activity in an exemplary embodiment.
  • tissue inflammation Through extensive research on a large number of clinical data, the applicant has broken through the inherent thinking in the field, and has applied quantitative evaluation of tissue inflammation by evaluating the tissue hardness parameters used to evaluate tissue fibrosis. A new perspective on the quantitative evaluation of tissue inflammation. At the same time, combined with tissue-based elastography technology for non-invasive tissue hardness testing, instead of liver penetration to detect tissue hardness, a non-invasive method for hierarchical evaluation of tissue inflammation was achieved. The technical solution is reasonable, efficient and has extremely important medical value.
  • the present invention is not intended to directly diagnose or treat diseases, and is concerned with physical parameters of inflammation, giving a new perspective on the quantitative evaluation of tissue inflammation, which breaks the inherent thinking; at the same time, based on tissue elastic imaging technology for non-invasive tissue hardness Detection, instead of liver penetration to detect tissue hardness, thereby achieving the purpose of grading evaluation of tissue inflammation parameters in a non-invasive manner.
  • the tissue fibrosis detecting method includes the following steps.
  • step 11 it is judged whether or not there is a possibility of inflammation in the tissue, and when there is a possibility that inflammation occurs in the tissue, step 12 is performed, and when tissue inflammation is eliminated or there is no possibility of inflammation, step 13 is performed.
  • step 12 tissue stiffness or a parameter reflecting stiffness is monitored during treatment of the tissue inflammation to determine if inflammation is eliminated.
  • step 13 information on the degree of tissue fibrosis or the degree of tissue fibrosis is obtained based on the tissue hardness or a parameter reflecting the hardness.
  • the tissue contains tissue organs such as liver, lung, and the like.
  • Tissue hardness can be measured by quantitative detection of tissue elastic modulus techniques. Specifically, non-invasive detection of tissue hardness can be achieved by the non-invasive liver function tester FibroTouch independently developed by the applicant.
  • tissue hardness or the parameter reflecting the hardness during the treatment of tissue inflammation it is possible to track the tissue hardness or the parameter reflecting the hardness during the treatment of tissue inflammation to determine whether the tissue inflammation has been eliminated, and the tissue hardness or the parameter reflecting the hardness can detect the tissue through non-invasive quantitative detection.
  • the elastic modulus technique detects that defects caused by tissue biopsy are avoided, and tissue inflammation can be evaluated non-invasively and continuously and accurately.
  • Tissue inflammation activity is an important parameter for evaluating tissue inflammation.
  • tissue hardness or parameters reflecting hardness can be further utilized to determine tissue inflammation activity or tissue inflammation activity related information.
  • tissue stiffness can be further utilized to determine tissue inflammation activity or tissue inflammation activity related information.
  • the tissue is a liver and the examiner is able to obtain the LSM of the liver through an instantaneous elastic detection device.
  • the above-mentioned instantaneous elastic detecting device may include a probe and a host, and the detecting person may hold the probe to contact the area where the liver of the human skin is located, transmit ultrasonic waves and shear waves to the liver through the probe, and transmit the echo signals of the received ultrasonic waves to the host.
  • the host obtains the LSM of the liver by analyzing the echo signals described above.
  • the LSM of the liver can be obtained at any time and continuously using the instantaneous elasticity detecting device.
  • FIG. 2 is a flow chart of a method of detecting tissue inflammation activity in the present exemplary embodiment, the method comprising the following steps.
  • step 21 it is determined whether the clinical condition confirms abnormal liver status, and if the liver state is abnormally confirmed, step 22 is performed.
  • the clinical status of the liver can be confirmed in a variety of ways, such as by serum analysis, or by clinical symptoms.
  • step 22 it is determined whether the inflammation-related parameter indicates the presence of inflammation, and if the inflammation-related parameter indicates the presence of inflammation, step 23 is performed.
  • inflammation-related parameters include: alanine aminotransferase (ALT) and aspartate aminotransferase (AST).
  • ALT and AST are mainly distributed in hepatocytes, and ALT and AST are elevated, indicating hepatocyte damage. ALT is the most sensitive. A 1-fold increase in serum ALT indicates 1% hepatocyte necrosis. Normally, the degree of elevation of ALT and AST is consistent with the degree of hepatocyte damage. ALT is mainly distributed in hepatocyte cytoplasm, and elevated ALT reflects damage of hepatocyte membrane. AST is mainly distributed in hepatocyte cytoplasm and hepatocyte mitochondria. Therefore, the elevation of ALT and AST in different liver inflammations is different, and the ratio of ALT to AST is also different. Different inflammation-related parameters can be used to determine whether liver inflammation exists.
  • ALT and AST are mainly distributed in hepatocytes, and ALT and AST are elevated, indicating hepatocyte damage. ALT is the most
  • ALT is an example to determine whether there is inflammation in the liver.
  • the normal value of ALT is affected by many factors such as age and gender.
  • the baseline levels of ALT vary greatly among different individuals.
  • ALT does not fully accurately reflect the "infiltration of inflammatory cells" in the liver.
  • a considerable number of patients have moderate or even severe "infiltration of inflammatory cells” by liver biopsy, but their ALT is still normal.
  • Level ie less than or equal to 40U/L. Therefore, when ALT is abnormal, it is possible to determine the presence of hepatic inflammation, but when ALT is normal, further determination is needed to determine whether or not liver inflammation exists, and in the case of normal ALT, it will be explained in other exemplary embodiments below.
  • liver inflammation activity is determined based on LSM.
  • the liver inflammation activity is determined based on the correspondence between the LSM and the liver inflammation activity set in advance.
  • the corresponding tissue inflammatory activity is mild tissue inflammation and necrosis.
  • the corresponding tissue inflammatory activity is moderate tissue inflammation and necrosis.
  • the corresponding tissue inflammation activity is severe tissue inflammation and necrosis.
  • LSM and liver inflammation activity can be set in advance for different causes.
  • the boundary value refers to the critical value of the LSM.
  • the sensitivity refers to the percentage of the actual disease that is correctly judged to be diseased according to the experimental standard.
  • the specificity refers to the actual value.
  • the disease-free percentage is correctly judged as disease-free according to the experimental standard.
  • the positive predictive value (PPV) and the negative predictive value (NPV) reflect the diagnostic value of the index in the real world. The higher the value, the higher the diagnostic value.
  • Sensitivity, specificity, PPV and NPV can be calculated by the liver biopsy results and calculated using the ROC curve, representing the sensitivity, specificity, PPV and NPV of LSM for G2 and G3.
  • Table 1 gives the corresponding relationship between LSM and liver inflammation activity for different causes, and the boundary value corresponding to each level of liver inflammation activity represents the minimum LSM that the level needs to meet. For example, for a patient with viral hepatitis, after step 21 and step 22, if the detected LSM is 10, the liver inflammation activity of the patient will be determined as G2.
  • liver inflammation activity is obtained by performing liver biopsy on patients.
  • ROC Receiver Operating Characteristic
  • Figure 3 shows an example of the ROC curve, where the abscissa of the curve is 100-specificity and the ordinate is Sensitivity, VH stands for viral hepatitis patients, AIH stands for autoimmune hepatitis patients, PBC stands for patients with primary biliary cholangitis, NAFLD stands for non-alcoholic fatty liver patients, and OTHER stands for other causes (nonalcoholic fatty liver disease, drug-induced liver disease) And liver disease patients with unknown etiology;
  • VH viral hepatitis patients
  • AIH for autoimmune hepatitis patients
  • PBC stands for patients with primary biliary cholangitis
  • NAFLD non-alcoholic fatty liver patients
  • OTHER stands for other causes (nonalcoholic fatty liver disease, drug-induced liver disease) And liver disease patients with unknown etiology;
  • the Yoden index refers to the sum of sensitivity and specificity minus one
  • the statistical software of SPSS21.0 (SPSS, Chicago, Illinois, USA) can be used for statistical analysis.
  • the continuous variables are selected according to their distribution characteristics, and the quantitative data approximate to the normal distribution are adopted.
  • the quantitative data of skewed distribution were described by median (M) and interquartile range, and the ⁇ 2 test was used for qualitative data comparison.
  • the Mann-Whitny U test was used for comparison between two independent samples.
  • the tissue is a liver and the examiner is able to obtain the LSM of the liver through an instantaneous elastic detection device.
  • the above-mentioned instantaneous elastic detecting device may include a probe and a host, and the detecting person may hold the probe to contact the area where the liver of the human skin is located, transmit ultrasonic waves and shear waves to the liver through the probe, and transmit the echo signals of the received ultrasonic waves to the host.
  • the host obtains the LSM of the liver by analyzing the echo signals described above.
  • the LSM of the liver can be obtained at any time and continuously using the instantaneous elasticity detecting device.
  • a sensitive and efficient diagnosis is achieved by detecting the inflammatory activity of the liver measurable index.
  • FIG. 4 is a flow chart of a method of detecting tissue inflammation activity in the present exemplary embodiment, the method comprising the following steps.
  • step 41 it is determined whether the clinical condition confirms abnormal liver status, and if the liver state is abnormally confirmed, step 42 is performed.
  • the clinical status of the liver can be confirmed in a variety of ways, such as by serum analysis, or by clinical symptoms.
  • step 42 it is determined whether the inflammation-related parameter indicates the presence of inflammation, and if the inflammation-related parameter indicates that inflammation is not present, step 43 is performed.
  • ALT liver inflammation
  • the normal value of ALT is affected by many factors such as age and gender.
  • the baseline levels of ALT vary greatly among different individuals.
  • ALT does not fully accurately reflect the "infiltration of inflammatory cells" in the liver.
  • a considerable number of patients have moderate or even severe "infiltration of inflammatory cells” by liver biopsy, but their ALT is still normal.
  • Level ie less than or equal to 40U/L. Therefore, when ALT is abnormal, liver inflammation can be confirmed, but when ALT is normal, further confirmation of the presence of liver inflammation is needed.
  • step 43 the LSM is monitored for abnormality and continues to rise during the first set period of time, and if the LSM is abnormal and continues to rise, it is determined that liver inflammation is present.
  • the abnormality refers to a higher than normal value.
  • the first set time period is a custom setting value, for example, 3 months, and the LSM needs to be continuously monitored during the first set time period.
  • LSM abnormalities increase with the increase of liver inflammation activity, and are significantly positively correlated with liver inflammation activity. Therefore, if LSM abnormality is detected and continues to rise during the first set time period, Determine the presence of liver inflammation.
  • liver inflammation activity is determined using LSM.
  • the liver inflammation activity is determined based on the correspondence between the LSM and the liver inflammation activity set in advance.
  • the corresponding tissue inflammatory activity is mild tissue inflammation and necrosis.
  • the corresponding tissue inflammatory activity is moderate tissue inflammation and necrosis.
  • the corresponding tissue inflammation activity is severe tissue inflammation and necrosis.
  • LSM and liver inflammation activity can be set in advance for different causes.
  • step 45 the LSM is monitored during the course of treatment for hepatic inflammation. If it is detected that the LSM reaches the platform value during the second set time period, it is determined whether the platform value is abnormal, and if the platform value is abnormal, step 46 is performed.
  • the abnormality means higher than the normal value.
  • the second set time period is a custom setting value, for example, half a year. If the LSM reaches the platform value during the second set time period and is abnormal, it indicates that the liver inflammation has not been effectively treated, or the liver fiber is indicated. Chemical.
  • liver fibrosis is determined or liver inflammation is determined to be not effectively treated.
  • the tissue is a liver and the examiner is able to obtain the LSM of the liver through an instantaneous elastic detection device.
  • the above-mentioned instantaneous elastic detecting device may include a probe and a host, and the detecting person may hold the probe to contact the area where the liver of the human skin is located, transmit ultrasonic waves and shear waves to the liver through the probe, and transmit the echo signals of the received ultrasonic waves to the host.
  • the host obtains the LSM of the liver by analyzing the echo signals described above.
  • the LSM of the liver can be obtained at any time and continuously using the instantaneous elasticity detecting device.
  • the therapeutic effect is judged sensitively and efficiently by detecting the measurable index of liver inflammation activity.
  • Fig. 5 is a flow chart showing a method of detecting tissue inflammation activity in the present exemplary embodiment, the method comprising the following steps.
  • step 51 it is confirmed whether the clinical treatment has been treated with antiviral liver inflammation, and step 52 is performed during clinical treatment of antiviral tissue inflammation or within a predetermined time after treatment.
  • inflammation is not rapidly eliminated when the treated virus is eliminated, so that it is possible to determine the possibility of inflammation in the liver when it is confirmed that the clinical treatment with antiviral liver inflammation.
  • step 52 it is determined that there is a possibility of inflammation occurring in the liver.
  • liver inflammation activity is determined using LSM.
  • the liver inflammation activity is determined based on the correspondence between the LSM and the liver inflammation activity set in advance.
  • the corresponding tissue inflammatory activity is mild tissue inflammation and necrosis.
  • the corresponding tissue inflammatory activity is moderate tissue inflammation and necrosis.
  • the corresponding tissue inflammation activity is severe tissue inflammation and necrosis.
  • LSM and liver inflammation activity can be set in advance for different causes.
  • tissue fibrosis detecting apparatus may include a memory and a processor.
  • a memory for storing operational instructions.
  • a processor for executing the operational instructions in the memory completes the content described in the method steps of the foregoing exemplary embodiments.
  • tissue fibrosis detecting device comprising: a receiver and a processor.
  • the tissue fibrosis detecting device can be located on the side of the host.
  • a receiver for receiving the detected tissue hardness from the detecting probe

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Vascular Medicine (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

组织纤维化检测方法及装置。检测方法包括:判断组织是否存在发生炎症可能性(11);当组织存在发生炎症可能性时,在针对组织炎症的治疗过程中监测组织硬度或者反映硬度的参量,以判断炎症是否消除(12);当组织炎症消除或者不存在发生炎症可能性时,根据组织硬度或者反映硬度的参量获得组织纤维化程度或者组织纤维化程度相关信息(13)。组织纤维化检测方法及装置能够在组织炎症的治疗过程中追踪监测组织硬度,来判断组织炎症是否已消除,由于组织硬度能通过无创的定量检测组织弹性模量技术检测得出,避免了组织活检带来的缺陷,能够无创、且连续准确的评价组织炎症。

Description

组织纤维化检测方法和装置 技术领域
本发明涉及测量领域,特别涉及组织纤维化检测方法及装置。
背景技术
各种慢性肝病如病毒性肝炎(甲肝、乙肝、丙肝等)发展过程中会伴随着肝脏的纤维化,肝脏纤维化过程中会伴随着肝脏弹性的变化。因此,肝脏弹性信息是可用于诊断肝脏的纤维化程度的参数。
瞬时弹性成像技术(Transient Elastography,英文缩写TE)是一种定量检测组织弹性模量的技术,能够通过测量肝脏硬度值(Liver stiffness measurement,英文缩写LSM),较为全面的反映肝脏的纤维化程度。
通过LSM诊断肝脏的纤维化程度,易受肝脏炎症的影响。目前临床病理检测,即肝脏活检是评价肝脏炎症的常用手段,但是肝活检具有许多限制因素,其侵入性的缺点、并发症风险使得在常规临床实践中不能进行连续的肝活检来评价肝脏炎症,同时肝活检还受到抽样误差的影响。因此,寻找新型的无创组织炎症评价方式势在必行。
发明内容
本发明实施例提供了组织纤维化检测方法和装置。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
第一方面,本发明实施例提供了一种组织纤维化检测方法,所述方法包括:
判断组织是否存在发生炎症可能性;
当所述组织存在发生炎症可能性时,在针对所述组织炎症的治疗过程中监测组织硬度或者反映硬度的参量,以判断炎症是否消除;
当所述组织炎症消除或者不存在发生炎症的可能性时,根据组织硬度或者反映硬度的参量获得组织纤维化程度或者组织纤维化程度相关信息。
基于所述方法,作为可选的第一实施例,所述方法还包括:
在针对所述组织炎症的治疗过程中,如果组织硬度或者反映硬度的参量持续下降并达到一平台值,则认为炎症消除。
基于所述方法,作为可选的第二实施例,所述方法还包括:
当所述组织存在发生炎症可能性时,根据检测的组织硬度或者反映硬度的参量获得组织炎症活动度或组织炎症活动度相关信息。
基于所述第二实施例,作为可选的第三实施例,所述根据检测的组织硬度或者反映硬度的参量获得组织炎症活动度或组织炎症活动度相关信息,包括:
根据预先设定的组织硬度或者反映硬度的参量与组织炎症活动度或组织炎症活动度相关信息的对应关系,获得组织炎症活动度或组织炎症活动度相关信息。
基于所述第三实施例,作为可选的第四实施例,所述对应关系包括:
肝脏硬度LSM为6.1-8.7kpa时,对应组织炎症活动度为轻度组织炎症坏死;
LSM为8.7-13.2kpa时,对应组织炎症活动度为中度组织炎症坏死;
LSM为13.2kpa以上时,对应组织炎症活动度为重度组织炎症坏死。
基于所述第三实施例,作为可选的第五实施例,所述对应关系包括:不同病因所对应的组织硬度或者反映硬度的参量及组织炎症活动度或组织炎症活动度相关信息。
基于所述第三实施例,作为可选的第六实施例,所述对应关系的设置方法,包括:
利用受试对象数据,建立受试对象工作特征曲线;
利用基于病理检测得到的组织炎症活动度和所述受试对象工作曲线,得到组织硬度或者反映硬度的参量对每一组织炎症活动度的灵敏度、特异度、阳性预测值和阴性预测值;
针对每一组织炎症活动度,利用灵敏度和特异度确定约登指数;
利用所述约登指数,确定对应的组织硬度或者反映硬度的参量的界值。
基于所述方法,作为可选的第七实施例,所述判断组织是否存在发生炎症可能性,包括:
判断临床是否确认组织状态异常;
当临床确认组织状态异常时,判断炎症相关参数是否指示炎症存在;
当所述炎症相关参数指示炎症存在时,确定所述组织存在发生炎症可能性。
基于所述方法,作为可选的第八实施例,所述判断组织是否存在发生炎症可能性,包括:
判断临床是否确认组织状态异常;
当临床确认组织状态异常时,判断炎症相关参数是否指示炎症存在;
当所述炎症相关参数指示炎症不存在时,在第一设定时间段内监测组织硬度是否异常并持续升高;
当在第一设定时间段内监测组织硬度异常并持续升高时,确定所述组织存在发生炎症可能性。
基于所述方法,作为可选的第九实施例,所述判断组织是否存在发生炎症可能性,包括:
确认临床是否经过抗病毒组织炎症治疗;
当临床经过抗病毒组织炎症治疗过程中,或治疗后一预设时间内时,确定所述组织存在发生炎症可能性。
第二方面,本发明实施例提供了一种组织纤维化检测装置,所述装置包括:
存储器,用于存储操作指令;
处理器,用于执行所述存储器中的操作指令完成如下操作:
判断组织是否存在发生炎症可能性;
当所述组织存在发生炎症可能性时,在针对所述组织炎症的治疗过程中监测组织硬度或者反映硬度的参量,以判断炎症是否消除;
当所述组织炎症消除或者不存在发生炎症的可能性时,根据组织硬度或者反映硬度的参量获得组织纤维化程度或者组织纤维化程度相关信息。
第三方面,本发明实施例提供了一种组织纤维化检测装置,所述装置包括:
接收器,用于从检测探头接收检测的组织硬度;
处理器,用于判断组织是否存在发生炎症可能性;当所述组织存在发生炎症可能性时,在针对所述组织炎症的治疗过程中监测组织硬度;如果监测到的组织硬度正常且到达平台值,根据所述平台值确定组织纤维化程度;当所述组织炎症不存在时,根据检测的组织硬度确定组织纤维化程度。
本发明实施例中的组织纤维化检测方法及装置,能够在组织炎症的治疗过程中追踪监测组织硬度或者反映硬度的参量,并通过监测组织硬度或反映硬度的参量,来判断组织炎症是否已消除,由于组织硬度或者反映硬度的参量能通过无创的定量检测组织弹性模量技术检测得出,避免了组织活检带来的缺陷,能够无创、且连续准确的评价组织炎症。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是一示例性实施例中组织纤维化检测方法的流程图;
图2是一示例性实施例中组织炎症活动度检测方法的流程图;
图3是一示例性实施例中ROC曲线的示意图;
图4是一示例性实施例中组织炎症活动度检测方法的流程图;
图5是一示例性实施例中组织炎症活动度检测方法的流程图。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要 自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的结构、产品等而言,由于其与实施例公开的部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
申请人通过对大量的临床数据进行多年深入的研究,突破了本领域固有思维,通过将以往用于评价组织纤维化的组织硬度参量应用于评价组织炎症,实现对组织炎症进行量化评价,提供了一种全新的组织炎症量化评价视角。同时,结合基于组织弹性成像技术进行无创的组织硬度检测,替代肝穿检测组织硬度,从而实现了以无创方式对组织炎症进行分级评价的方案。该技术方案合理、高效,具有极其重要的医学价值。
本发明并非用于直接诊断或者治疗疾病,所关注的是炎症物理参量,给出一种全新视角的组织炎症量化评价方案,该方案打破固有思维;同时,基于组织弹性成像技术进行无创的组织硬度检测,替代肝穿检测组织硬度,从而实现了以无创方式对组织炎症参量进行分级评价的目的。
在一示例性实施例中,如图1所示,组织纤维化检测方法包括如下步骤。
在步骤11中,判断组织是否存在发生炎症可能性,当所述组织存在发生炎症可能性时,执行步骤12,当组织炎症消除或者不存在发生炎症可能性时,执行步骤13。
在步骤12中,在针对所述组织炎症的治疗过程中监测组织硬度或者反映硬度的参量,以判断炎症是否消除。
在步骤13中,根据组织硬度或者反映硬度的参量获得组织纤维化程度或者组织纤维化程度相关信息。
根据组织硬度或者反映硬度的参量来获得组织纤维化程度或者组织纤 维化程度相关信息,可以通过常用方式实现。
在本示例性实施例中,组织包含肝脏、肺等组织器官。组织硬度能通过定量检测组织弹性模量技术检测得出。具体的,可通过申请人自主研发的无创肝脏功能检测仪FibroTouch实现无创检测组织硬度。
可见,本示例性实施例中,能够在组织炎症的治疗过程中追踪监测组织硬度或者反映硬度的参量,来判断组织炎症是否已消除,由于组织硬度或者反映硬度的参量能通过无创的定量检测组织弹性模量技术检测得出,避免了组织活检带来的缺陷,能够无创、且连续准确的评价组织炎症。
组织炎症活动度是评价组织炎症的重要参数,当所述组织存在发生炎症可能性时,可以进一步利用组织硬度或者反映硬度的参量来确定组织炎症活动度或组织炎症活动度相关信息。下面给出利用组织硬度来确定组织炎症活动度的几种举例。
在一示例性实施例中,组织为肝脏,检测人员通过瞬时弹性检测设备能够获得肝脏的LSM。上述瞬时弹性检测设备可以包括探头和主机,检测人员可以手持探头接触人体皮肤的肝脏所在区域,通过探头向肝脏发射超声波和剪切波,并把接收到的超声波的回波信号传送给主机。主机通过分析上述回波信号,得出肝脏的LSM。利用瞬时弹性检测设备,可以随时并连续的获取肝脏的LSM。
在本示例性实施例中,组织炎症活动度可以包括:轻度组织炎症坏死(G>=1)、中度组织炎症坏死(G>=2)及重度组织炎症坏死(G>=3)。
图2是本示例性实施例中组织炎症活动度检测方法的流程图,该方法包括如下步骤。
在步骤21中,判断临床是否确认肝脏状态异常,如果临床确认肝脏状态异常,执行步骤22。
本步骤中,临床可以通过多种方式确认肝脏状态是否异常,例如通过血清分析,或者通过临床症状等。
在步骤22中,判断炎症相关参数是否指示炎症存在,如果炎症相关参数指示炎症存在,执行步骤23。
本步骤中,炎症相关参数包括:丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)。ALT与AST主要分布在肝细胞内,ALT和AST升高,说明肝 细胞受损。ALT最为敏感。血清中的ALT增加1倍表明1%肝细胞坏死。通常情况下ALT和AST升高程度与肝细胞受损程度相一致。ALT主要分布在肝细胞浆,ALT升高反映了肝细胞膜的损伤,AST主要分布在肝细胞浆和肝细胞线粒体。因此不同的肝脏炎症所出现的ALT、AST升高情况是不同的,ALT与AST的比值也是不同的,可以选用不同的炎症相关参数来判断肝脏炎症是否存在。
以通过ALT来判断肝脏炎症是否存在为例。ALT正常值受年龄,性别等多种因素的影响,同时不同个体间,ALT的基线水平相差较大。在实际应用中,ALT并不能够完全准确的反映肝脏的“炎症细胞的浸润”,有相当一部分患者通过肝活检发现有中度乃至重度的肝脏“炎症细胞的浸润”,但其ALT仍处于正常水平,即小于等于40U/L。因此,当ALT异常时,可以确定肝脏炎症存在,但当ALT正常时,还需进一步来确定肝脏炎症是否存在,对于ALT正常的情况,将在下文其他示例性实施例中进行说明。
在步骤23中,根据LSM确定肝脏炎症活动度。
在本步骤中,根据预先设置的LSM及肝脏炎症活动度的对应关系,确定肝脏炎症活动度。
作为可选的实施方式,当LSM为6.1-8.7kpa时,对应组织炎症活动度为轻度组织炎症坏死,当LSM为8.7-13.2kpa时,对应组织炎症活动度为中度组织炎症坏死,当LSM为13.2kpa以上时,对应组织炎症活动度为重度组织炎症坏死。
进一步,可以针对不同的病因,分别预先设置LSM及肝脏炎症活动度的对应关系。
如下表1所示,给出了上述对应关系的一种举例,其中界值指LSM的临界值,灵敏度指代实际有病而按实验标准被正确判断为有病的百分率,特异度指代实际无病而按实验标准被正确判断为无病的百分率,阳性预测值(PPV)和阴性预测值(NPV)反映在真实世界中指标的诊断价值,数值越高代表诊断价值越高。灵敏度、特异度、PPV和NPV可以肝脏活检结果为金标准并运用ROC曲线计算得出,代表LSM对G2和G3的灵敏度、特异度、PPV和NPV。可以看出,表1针对不同的病因,给出了LSM与肝脏炎症活动度的对应关系,肝脏炎症活动度的每一等级对应的界值,代表该 等级所需满足的最低LSM。例如,针对某病毒性肝炎患者,在经过步骤21和步骤22之后,如果检测出的LSM为10,则该患者的肝脏炎症活动度将被确定为G2。
表1
Figure PCTCN2019072227-appb-000001
上述表1需要在实施本示例性实施例的方法之前预先设置,设置所基于的数据通过实验得出。
实验的研究对象为614名进行肝脏活检的病患,包括296例病毒性肝炎,66例自身免疫性肝炎,77例原发性胆汁性胆管炎,107例非酒精脂肪 肝,以及68例其他病因导致的慢性肝病患者(药物性肝病及病因不明的肝病患者)。如下表2给出了这些研究对象的基本情况,其中的肝脏炎症活动度通过对患者进行肝脏活检获得。
表2
Figure PCTCN2019072227-appb-000002
基于对研究对象的实验数据,针对每种病因,可以按照如下步骤1)-3)设置前文中的对应关系:
1)利用受试对象数据,建立受试对象工作特征(Receiver Operating Characteristic,英文缩写ROC)曲线;图3给出了ROC曲线的示例,其中,曲线的横坐标为100-特异度、纵坐标为灵敏度,VH代表病毒性肝炎患者,AIH代表自身免疫性肝炎患者,PBC代表原发性胆汁性胆管炎患者,NAFLD代表非酒精脂肪肝患者,OTHER代表其他病因(非酒精性脂肪肝、药物性肝病及病因不明的肝病)肝病患者;
2)利用ROC曲线,确定约登指数;约登指数指的是灵敏度和特异度之和减1;
3)确定约登指数所对应的LSM为界值。
在上述步骤1)中,可以应用SPSS21.0(SPSS,Chicago,Illinois,USA)统计软件进行统计学分析,连续变量根据其分布特征选择描述方法,近似服从正态分布的定量资料采用
Figure PCTCN2019072227-appb-000003
表示,呈偏态分布的定量资料采用中位数(M)及四分位间距描述其分布特征,定性资料组间比较采用χ2检验,两独立样本间比较采用Mann-Whitny U检验,多组样本之间采用Kruskal Wallis检验,建立ROC曲线,根据ROC曲线下面积比较不同指标对肝脏炎症活动度的评估价值,以α=0.05检验水准。
实验表明,在614例慢性肝病患者中,348例(56.7%)患者有中度及 以上炎症坏死(G≥2)。348例中度及以上炎症坏死患者中305例(87.6%)患者LSM(LSM>6.1kpa)升高,242例(69.5%)患者ALT升高(ALT>40U/L),在111例中度及以上炎症坏死且ALT正常的患者中有91例(82.0%)LSM升高。此数据体现对于中度炎症坏死中LSM对于检测的灵敏度高于血清ALT。
在一示例性实施例中,组织为肝脏,检测人员通过瞬时弹性检测设备能够获得肝脏的LSM。上述瞬时弹性检测设备可以包括探头和主机,检测人员可以手持探头接触人体皮肤的肝脏所在区域,通过探头向肝脏发射超声波和剪切波,并把接收到的超声波的回波信号传送给主机。主机通过分析上述回波信号,得出肝脏的LSM。利用瞬时弹性检测设备,可以随时并连续的获取肝脏的LSM。
在本示例性实施例中,组织炎症活动度可以包括:轻度组织炎症坏死(G>=1)、中度组织炎症坏死(G>=2)及重度组织炎症坏死(G>=3)。
在本示例性实施例中,对炎症相关参数正常、无法判断肝脏炎症活动度的慢性肝炎患者,通过可量化指标肝脏炎症活动度的检测,实现灵敏、高效的诊断。
图4是本示例性实施例中组织炎症活动度检测方法的流程图,该方法包括如下步骤。
在步骤41中,判断临床是否确认肝脏状态异常,如果临床确认肝脏状态异常,执行步骤42。
本步骤中,临床可以通过多种方式确认肝脏状态是否异常,例如通过血清分析,或者通过临床症状等。
在步骤42中,判断炎症相关参数是否指示炎症存在,如果炎症相关参数指示炎症不存在,执行步骤43。
本步骤中,仍以通过ALT来判断肝脏炎症是否存在为例。ALT正常值受年龄,性别等多种因素的影响,同时不同个体间,ALT的基线水平相差较大。在实际应用中,ALT并不能够完全准确的反映肝脏的“炎症细胞的浸润”,有相当一部分患者通过肝活检发现有中度乃至重度的肝脏“炎症细胞的浸润”,但其ALT仍处于正常水平,即小于等于40U/L。因此,当ALT异常时,可以确定肝脏炎症存在,但当ALT正常时,还需进一步来确定肝 脏炎症是否存在。
在步骤43中,在第一设定时间段内监测LSM是否异常并持续升高,如果LSM异常并持续升高,确定肝脏炎症存在。
本步骤中,异常指高于正常值。
本步骤中,第一设定时间段为自定义设置值,例如3个月,在第一设定时间段内需要持续监测LSM。通过实验得知,LSM异常并随肝脏炎症活动度的加重而升高,且与肝脏炎症活动度成显著正相关,因此在第一设定时间段内如果监测到LSM异常并持续升高,可以确定肝脏炎症存在。
在步骤44中,利用LSM确定肝脏炎症活动度。
在本步骤中,根据预先设置的LSM及肝脏炎症活动度的对应关系,确定肝脏炎症活动度。
作为可选的实施方式,当LSM为6.1-8.7kpa时,对应组织炎症活动度为轻度组织炎症坏死,当LSM为8.7-13.2kpa时,对应组织炎症活动度为中度组织炎症坏死,当LSM为13.2kpa以上时,对应组织炎症活动度为重度组织炎症坏死。
进一步,可以针对不同的病因,分别预先设置LSM及肝脏炎症活动度的对应关系。
上述对应关系的设置方法与前文所述相同,这里不再赘述。
在步骤45中,在针对肝脏炎症治疗的过程中监测LSM,如果监测到在第二设定时间段内LSM达到平台值,确定平台值是否异常,如果平台值异常,执行步骤46。
在本步骤中,异常指高于正常值。
在本步骤中,第二设定时间段为自定义设置值,例如半年,如果监测到在第二设定时间段内LSM达到平台值且异常,说明肝脏炎症尚未得到有效治疗,或者说明肝脏纤维化。
在步骤46中,确定肝脏纤维化或确定肝脏炎症未得到有效治疗。
在一示例性实施例中,组织为肝脏,检测人员通过瞬时弹性检测设备能够获得肝脏的LSM。上述瞬时弹性检测设备可以包括探头和主机,检测人员可以手持探头接触人体皮肤的肝脏所在区域,通过探头向肝脏发射超声波和剪切波,并把接收到的超声波的回波信号传送给主机。主机通过分 析上述回波信号,得出肝脏的LSM。利用瞬时弹性检测设备,可以随时并连续的获取肝脏的LSM。
在本示例性实施例中,组织炎症活动度可以包括:轻度组织炎症坏死(G>=1)、中度组织炎症坏死(G>=2)及重度组织炎症坏死(G>=3)。
在本示例性实施例中,对于病毒性肝炎,采取抗病毒治疗后,通过对可量化指标肝脏炎症活动度的检测,灵敏、高效地判断治疗效果。
图5是本示例性实施例中组织炎症活动度检测方法的流程图,该方法包括如下步骤。
在步骤51中,确认临床是否经过抗病毒肝脏炎症治疗,当临床经过抗病毒组织炎症治疗过程中,或治疗后一预设时间内时,执行步骤52。
在本步骤中,当经过治疗病毒消除后,炎症并不能迅速消除,因此在确认临床经过抗病毒肝脏炎症治疗时,可以确定肝脏存在发生炎症的可能性。
在步骤52中,确定肝脏存在发生炎症的可能性。
在步骤53中,利用LSM确定肝脏炎症活动度。
在本步骤中,根据预先设置的LSM及肝脏炎症活动度的对应关系,确定肝脏炎症活动度。
作为可选的实施方式,当LSM为6.1-8.7kpa时,对应组织炎症活动度为轻度组织炎症坏死,当LSM为8.7-13.2kpa时,对应组织炎症活动度为中度组织炎症坏死,当LSM为13.2kpa以上时,对应组织炎症活动度为重度组织炎症坏死。
进一步,可以针对不同的病因,分别预先设置LSM及肝脏炎症活动度的对应关系。
上述对应关系的设置方法与前文所述相同,这里不再赘述。
前文所述的方法的各示例性实施例,可以通过软件算法实现,组织纤维化检测装置可以包括:存储器和处理器。
存储器,用于存储操作指令。
处理器,用于执行存储器中的操作指令完成前文各示例性实施例中的方法步骤中描述的内容。
前文所述的方法的各示例性实施例,可以通过组织纤维化检测装置实 现,组织纤维化检测装置包括:接收器和处理器。组织纤维化检测装置可以位于主机一侧。
接收器,用于从检测探头接收检测的组织硬度;
处理器,用于完成前文各示例性实施例中的方法步骤中描述的内容。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (11)

  1. 一种组织纤维化检测方法,其特征在于,所述方法包括:
    判断组织是否存在发生炎症可能性;
    当所述组织存在发生炎症可能性时,在针对所述组织炎症的治疗过程中监测组织硬度或者反映硬度的参量,以判断炎症是否消除;
    当所述组织炎症消除或者不存在发生炎症可能性时,根据组织硬度或者反映硬度的参量获得组织纤维化程度或者组织纤维化程度相关信息。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    在针对所述组织炎症的治疗过程中,如果组织硬度或者反映硬度的参量持续下降并达到一平台值,则认为炎症消除。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述组织存在发生炎症可能性时,根据检测的组织硬度或者反映硬度的参量获得组织炎症活动度或组织炎症活动度相关信息。
  4. 如权利要求3所述的方法,其特征在于,所述根据检测的组织硬度或者反映硬度的参量获得组织炎症活动度或组织炎症活动度相关信息,包括:根据预先设定的组织硬度或者反映硬度的参量与组织炎症活动度或组织炎症活动度相关信息的对应关系,获得组织炎症活动度或组织炎症活动度相关信息。
  5. 如权利要求4所述的方法,其特征在于,所述对应关系包括:
    肝脏硬度LSM为6.1-8.7kpa时,对应组织炎症活动度为轻度组织炎症坏死;
    LSM为8.7-13.2kpa时,对应组织炎症活动度为中度组织炎症坏死;
    LSM为13.2kpa以上时,对应组织炎症活动度为重度组织炎症坏死。
  6. 如权利要求4所述的方法,其特征在于,所述对应关系包括:不同病因所对应的组织硬度或者反映硬度的参量及组织炎症活动度或组织炎症活动度相关信息。
  7. 如权利要求4所述的方法,其特征在于,所述对应关系的设置方法,包括:
    利用受试对象数据,建立受试对象工作特征曲线;
    利用基于病理检测得到的组织炎症活动度和所述受试对象工作曲线,得到组织硬度或者反映硬度的参量对每一组织炎症活动度的灵敏度、特异 度、阳性预测值和阴性预测值;
    针对每一组织炎症活动度,利用灵敏度和特异度确定约登指数;
    利用所述约登指数,确定对应的组织硬度或者反映硬度的参量的界值。
  8. 如权利要求1所述的方法,其特征在于,所述判断组织是否存在发生炎症可能性,包括:
    判断临床是否确认组织状态异常;
    当临床确认组织状态异常时,判断炎症相关参数是否指示炎症存在;
    当所述炎症相关参数指示炎症存在时,确定所述组织存在发生炎症可能性。
  9. 如权利要求1所述的方法,其特征在于,所述判断组织是否存在发生炎症可能性,包括:
    判断临床是否确认组织状态异常;
    当临床确认组织状态异常时,判断炎症相关参数是否指示炎症存在;
    当所述炎症相关参数指示炎症不存在时,在第一设定时间段内监测组织硬度是否异常并持续升高;
    当在第一设定时间段内监测组织硬度异常并持续升高时,确定所述组织存在发生炎症可能性。
  10. 如权利要求1所述的方法,其特征在于,所述判断组织是否存在发生炎症可能性,包括:
    确认临床是否经过抗病毒组织炎症治疗;
    当临床经过抗病毒组织炎症治疗过程中,或治疗后一预设时间内时,确定所述组织存在发生炎症可能性。
  11. 一种组织纤维化检测装置,其特征在于,所述装置包括:
    存储器,用于存储操作指令;
    处理器,用于执行所述存储器中的操作指令完成如下操作:
    判断组织是否存在发生炎症可能性;
    当所述组织存在发生炎症可能性时,在针对所述组织炎症的治疗过程中监测组织硬度或者反映硬度的参量,以判断炎症是否消除;
    当所述组织炎症消除或者不存在发生炎症可能性时,根据组织硬度或者反映硬度的参量获得组织纤维化程度或者组织纤维化程度相关信息。
PCT/CN2019/072227 2018-01-19 2019-01-17 组织纤维化检测方法和装置 WO2019141214A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/932,207 US20200345329A1 (en) 2018-01-19 2020-07-17 Method and device for detecting tissue fibrosis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810055510.7A CN108309348B (zh) 2018-01-19 2018-01-19 组织纤维化检测装置
CN201810055510.7 2018-01-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/932,207 Continuation US20200345329A1 (en) 2018-01-19 2020-07-17 Method and device for detecting tissue fibrosis

Publications (1)

Publication Number Publication Date
WO2019141214A1 true WO2019141214A1 (zh) 2019-07-25

Family

ID=62887785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072227 WO2019141214A1 (zh) 2018-01-19 2019-01-17 组织纤维化检测方法和装置

Country Status (3)

Country Link
US (1) US20200345329A1 (zh)
CN (1) CN108309348B (zh)
WO (1) WO2019141214A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108309348B (zh) * 2018-01-19 2020-10-30 无锡海斯凯尔医学技术有限公司 组织纤维化检测装置
CN110477954B (zh) * 2019-07-08 2021-07-27 无锡海斯凯尔医学技术有限公司 基于弹性成像的检测设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058295A2 (en) * 2008-11-18 2010-05-27 Universite D'angers Non-invasive in vitro method for quantifying liver lesions
CN102302358A (zh) * 2011-06-29 2012-01-04 内蒙古福瑞中蒙药科技股份有限公司 肝纤维化检测设备和系统
CN102334122A (zh) * 2009-02-26 2012-01-25 昂热大学 肝纤维化或肝硬化的改进诊断
US20150148671A1 (en) * 2013-11-22 2015-05-28 National Taiwan University Non-invasive Liver Fibrosis Evaluation Device and a Method Thereof
CN108095767A (zh) * 2018-01-19 2018-06-01 无锡海斯凯尔医学技术有限公司 组织炎症活动度检测方法和装置
CN108309348A (zh) * 2018-01-19 2018-07-24 无锡海斯凯尔医学技术有限公司 组织纤维化检测方法和装置
CN108378870A (zh) * 2018-01-19 2018-08-10 无锡海斯凯尔医学技术有限公司 组织炎症活动度训练方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130202619A1 (en) * 2010-04-23 2013-08-08 Mayo Foundation For Medical Education And Research Methods and materials for reducing liver fibrosis
US9554777B2 (en) * 2011-05-23 2017-01-31 University of Pittsburgh—of the Commonwealth System of Higher Education Methods and apparatuses for measuring tissue stiffness changes using ultrasound elasticity imaging
WO2014011925A2 (en) * 2012-07-11 2014-01-16 University Of Mississippi Medical Center Method for the detection and staging of liver fibrosis from image acquired data
AU2014210241A1 (en) * 2013-01-25 2015-07-16 Aarhus Universitet Novel disease-marker
US11154543B2 (en) * 2015-10-15 2021-10-26 The Schepens Eye Research Institute, Inc. P38 MAP kinase inhibitors for wound healing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058295A2 (en) * 2008-11-18 2010-05-27 Universite D'angers Non-invasive in vitro method for quantifying liver lesions
CN102334122A (zh) * 2009-02-26 2012-01-25 昂热大学 肝纤维化或肝硬化的改进诊断
CN102302358A (zh) * 2011-06-29 2012-01-04 内蒙古福瑞中蒙药科技股份有限公司 肝纤维化检测设备和系统
US20150148671A1 (en) * 2013-11-22 2015-05-28 National Taiwan University Non-invasive Liver Fibrosis Evaluation Device and a Method Thereof
CN108095767A (zh) * 2018-01-19 2018-06-01 无锡海斯凯尔医学技术有限公司 组织炎症活动度检测方法和装置
CN108309348A (zh) * 2018-01-19 2018-07-24 无锡海斯凯尔医学技术有限公司 组织纤维化检测方法和装置
CN108378870A (zh) * 2018-01-19 2018-08-10 无锡海斯凯尔医学技术有限公司 组织炎症活动度训练方法和装置

Also Published As

Publication number Publication date
US20200345329A1 (en) 2020-11-05
CN108309348B (zh) 2020-10-30
CN108309348A (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
WO2019141216A1 (zh) 组织炎症活动度检测方法和装置
WO2019141215A1 (zh) 组织炎症活动度训练方法和装置
Machado et al. Non-invasive diagnosis of non-alcoholic fatty liver disease. A critical appraisal
Jung et al. Clinical applications of transient elastography
Gomez‐Dominguez et al. Transient elastography: a valid alternative to biopsy in patients with chronic liver disease
Papastergiou et al. Non-invasive assessment of liver fibrosis
Ferraioli et al. Ultrasound point shear wave elastography assessment of liver and spleen stiffness: effect of training on repeatability of measurements
Buechter et al. Spleen and liver stiffness is positively correlated with the risk of esophageal variceal bleeding
Berends et al. Biochemical and biophysical assessment of MTX‐induced liver fibrosis in psoriasis patients: Fibrotest predicts the presence and Fibroscan® predicts the absence of significant liver fibrosis
Dai Kwon et al. Usefulness of transient elastography for non-invasive diagnosis of liver fibrosis in pediatric non-alcoholic steatohepatitis
Pradhan et al. Feasibility and reliability of the FibroScan S2 (pediatric) probe compared with the M probe for liver stiffness measurement in small adults with chronic liver disease
Gonzalez et al. Role of liver biopsy in the era of direct-acting antivirals
WO2019141214A1 (zh) 组织纤维化检测方法和装置
RU2583939C1 (ru) Способ лабораторной диагностики стадии фиброза печени при хроническом вирусном гепатите с
Bende et al. The performance of a 2-dimensional shear-wave elastography technique for predicting different stages of liver fibrosis using transient elastography as the control method
Bâldea et al. Comparative study between the diagnostic performance of point and 2-D shear-wave elastography for the non-invasive assessment of liver fibrosis in patients with chronic hepatitis C using transient elastography as reference
Bader et al. Controlled attenuation parameter: a measure of hepatic steatosis in patients with cystic fibrosis
Kapur et al. Comparison of elastography point quantification with transient elastography in patients with chronic viral hepatitis and nonalcoholic fatty liver disease: a pilot study
Medellin et al. Acoustic radiation force impulse and conventional ultrasound in the prediction of cirrhosis complicating fatty liver: does body mass index independently alter the results?
Orloff et al. A randomized controlled trial of emergency treatment of bleeding esophageal varices in cirrhosis for hepatocellular carcinoma
RU2406445C2 (ru) Способ неинвазивной оценки объема функционирующей паренхимы печени у пациентов с циррозом печени и портальной гипертензией
Preciado-Puga et al. Non-invasive diagnosis of non-alcoholic fatty liver disease using an algorithm combining clinical indexes and ultrasonographic measures
RU2629626C1 (ru) Способ оценки эффективности лечения болезни Гоше у детей
Wang et al. Assessment of hepatic fat content in using quantitative ultrasound measurement of hepatic/renal ratio and hepatic echo-intensity attenuation rate
Kong et al. Stratifying Non-alcoholic Steatohepatitis With the Non-invasive Ultrasound Markers Shear Wave Dispersion Slope and Shear Wave Velocity: An Animal Study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19741664

Country of ref document: EP

Kind code of ref document: A1