WO2019141034A1 - 一种胰岛素注射装置 - Google Patents

一种胰岛素注射装置 Download PDF

Info

Publication number
WO2019141034A1
WO2019141034A1 PCT/CN2018/121415 CN2018121415W WO2019141034A1 WO 2019141034 A1 WO2019141034 A1 WO 2019141034A1 CN 2018121415 W CN2018121415 W CN 2018121415W WO 2019141034 A1 WO2019141034 A1 WO 2019141034A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
insulin
skin
module
piston
Prior art date
Application number
PCT/CN2018/121415
Other languages
English (en)
French (fr)
Inventor
姜峰
姜皓天
Original Assignee
苏州英诺迈医学科技服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州英诺迈医学科技服务有限公司 filed Critical 苏州英诺迈医学科技服务有限公司
Publication of WO2019141034A1 publication Critical patent/WO2019141034A1/zh
Priority to US16/932,471 priority Critical patent/US11925784B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/30Syringes for injection by jet action, without needle, e.g. for use with replaceable ampoules or carpules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/30Syringes for injection by jet action, without needle, e.g. for use with replaceable ampoules or carpules
    • A61M5/3007Syringes for injection by jet action, without needle, e.g. for use with replaceable ampoules or carpules with specially designed jet passages at the injector's distal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31511Piston or piston-rod constructions, e.g. connection of piston with piston-rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/3155Mechanically operated dose setting member by rotational movement of dose setting member, e.g. during setting or filling of a syringe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31576Constructional features or modes of drive mechanisms for piston rods
    • A61M5/31578Constructional features or modes of drive mechanisms for piston rods based on axial translation, i.e. components directly operatively associated and axially moved with plunger rod
    • A61M5/31581Constructional features or modes of drive mechanisms for piston rods based on axial translation, i.e. components directly operatively associated and axially moved with plunger rod performed by rotationally moving or pivoting actuator operated by user, e.g. an injection lever or handle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/42Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for desensitising skin, for protruding skin to facilitate piercing, or for locating point where body is to be pierced
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M2005/14208Pressure infusion, e.g. using pumps with a programmable infusion control system, characterised by the infusion program
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • A61M2005/1726Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure the body parameters being measured at, or proximate to, the infusion site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/30Syringes for injection by jet action, without needle, e.g. for use with replaceable ampoules or carpules
    • A61M2005/3022Worn on the body, e.g. as patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics

Definitions

  • the present invention relates to the field of mechanical technology, and in particular to an insulin injection device.
  • Diabetes is a metabolic disease characterized by high blood sugar. Hyperglycemia is caused by defects in insulin secretion or its biological effects, or both. Diabetes brings great pain to patients.
  • diabetes is generally controlled by means of drug treatment.
  • insulin is the main treatment method in various drug treatment methods.
  • diabetic patients are injected with insulin according to the doctor's prescription before or during the specified period of time after meals to control the increase of blood glucose in the body after meals.
  • diabetic patients inject insulin during the specified time period before or after meals, the amount and type of food consumed by each patient in diabetic meals varies.
  • the same standard of insulin injection can easily lead to hypoglycemia in diabetic patients. Or symptoms of high blood sugar. Also, patients need to remember the time of insulin injection. Therefore, it brings great inconvenience to the use of the patient.
  • Embodiments of the present invention provide an insulin injection device that can facilitate the use of a patient.
  • An embodiment of the present invention provides an insulin injection device, comprising: a wearing module, a detecting module, and a drug administering module;
  • the wearing module is respectively connected to the detecting module and the drug administering module, and can be used for fixing the detecting module and the drug administering module to a user's body;
  • the detecting module is configured to detect a blood glucose concentration of the user by using Raman spectroscopy, and determine a dose of the required insulin according to the blood glucose concentration, and generate a corresponding administration instruction according to the dose of the required insulin, and The administration instructions are sent to the drug delivery module;
  • the drug delivery module is configured to store insulin and inject a corresponding dose of the insulin into the user body according to the administration instruction.
  • the detecting module includes: a light emitter, a light receiver, and a processor;
  • the light emitter is configured to emit detection light to the subcutaneous tissue of the user through the skin of the user;
  • the light receiver is configured to receive scattered light formed by inelastic scattering of the detection light, and form a corresponding Raman spectrum according to the scattered light;
  • the processor is configured to determine a blood glucose concentration of the user according to the Raman spectrum formed by the light receiver.
  • the processor is configured to calculate, according to the Raman spectrum, a blood glucose concentration of the user by using a formula
  • the G characterizes a blood glucose concentration of the user
  • the Q 1 characterizes the intensity of scattered light formed by the detection light in the skin layer of the user
  • the Q 2 characterizes the detection light under the skin of the user
  • the intensity of the scattered light formed by the tissue layer which t characterizes the Raman shift of the Raman spectrum.
  • the detecting module further includes: a first skin tensioner
  • the first skin tensioner includes at least two fan rings, and the at least two fan rings may constitute an annular structure; each side of the fan ring that is in contact with the skin of the user is provided with an anti-slip Floor;
  • the first skin tensioner for driving the at least two fan rings to move away from a center of the annular structure before the light emitter emits the detection light to The skin of the user in the area surrounded by at least two fan rings is tensioned.
  • the drug delivery module comprises: at least one gas cylinder, a needle-free injector, a drug delivery mechanism, and a drug storage mechanism;
  • the drug delivery mechanism is configured to obtain a corresponding dose of the insulin from the drug storage mechanism according to the administration instruction, and add the obtained insulin to the needle-free injector;
  • the at least one gas cylinder is configured to charge the needle-free injector with a high-pressure driving gas after the drug delivery mechanism adds the insulin to the needle-free injector;
  • the needle-free injector for injecting the insulin into the subcutaneous tissue of the user in the form of a liquid stream driven by the high-pressure driving gas.
  • the needle-free injector includes: a cylinder, a piston, a return spring, and a piston nozzle;
  • the cylinder is a cylindrical structure, the first end of the cylinder is provided with at least one air inlet, and the second end of the cylinder is provided with the piston nozzle, wherein the air inlet passes a pipeline connected to the gas tank;
  • the piston is located inside the cylinder, and the piston can reciprocate along an axial direction of the cylinder;
  • the return spring is located inside the cylinder and is located between the piston and the piston nozzle;
  • the piston for moving along the axis of the cylinder toward the piston nozzle under the driving of the high-pressure driving gas, impinging the piston rod of the piston nozzle to be located at the piston
  • the insulin in the nozzle is ejected in the form of a liquid stream
  • the return spring is configured to drive the piston away from the piston along an axis of the cylinder after the piston moves to an extreme position in a direction toward the piston nozzle along an axis of the cylinder The direction of the nozzle moves to a free position.
  • the drug delivery module comprises: at least two gas cans;
  • the first end of the cylinder is uniformly provided with at least two of the air inlets, and each of the air inlets is connected to one of the gas cylinders through a pipe.
  • the drug storage mechanism is a wheel structure, and at least two tubular drug storage bins are disposed on an inner wall of the wheel structure, and each of the tubular drug storage bins can store a unit dose of the insulin, and the wheel
  • the structure is rotatable along the axis driven by the drug delivery mechanism;
  • the drug delivery mechanism is a rod-shaped structure for driving the drug storage mechanism to rotate according to the administration instruction, and sequentially enters at least one of the drug storage bins to store the entered storage bins
  • the insulin is advanced into the needle-free injector.
  • the drug delivery module further includes: a second skin tensioner
  • the second skin tensioner includes at least two fan rings, and the at least two fan rings may constitute an annular structure; each side of the fan ring contacting the skin of the user is provided with an anti-slip layer ;
  • the second skin tensioner for driving the at least two fan rings away from a center of the annular structure before the needle-free injector injects the insulin into the subcutaneous tissue of the user Movement to tension the skin of the user within the area surrounded by the at least two fan rings.
  • the wearing module comprises: an inflatable strap, a Velcro and an air pump;
  • the detecting module and the drug delivery module are connected to an inner side of the inflatable cable tie, and the velcro is fixed at two ends of the inflatable cable tie;
  • the velcro for fixing the position of the inflatable strap after the inflatable strap is wrapped around the user
  • the air pump is configured to inflate the reversible cable tie before the detecting module detects the blood glucose concentration of the user, so that the detecting module and the drug delivery module are attached to the skin of the user tight.
  • the embodiment of the invention provides an insulin injection device.
  • the wearing module can fix the detection module and the drug delivery module on the user, and the detection module detects the blood glucose concentration of the user through Raman spectroscopy, and generates a corresponding drug delivery command according to the blood glucose concentration.
  • the drug delivery module injects a corresponding dose of insulin into the user's body based on the received administration instructions. It can be seen that after the detection module and the drug delivery module are fixed to the diabetic patient by wearing the module, the detection module detects the blood glucose concentration of the patient and generates a corresponding administration instruction, and the drug delivery module sends the patient to the patient according to the administration instruction generated by the detection module. Injecting the corresponding dose of insulin into the body, the insulin injection is automatically completed according to the blood glucose concentration, and the patient does not need to memorize the time of injecting the insulin and manually injects it, thereby bringing convenience for the use of the diabetic patient.
  • FIG. 1 is a schematic view of an insulin injection device according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of another insulin injection device according to an embodiment of the present invention.
  • FIG. 3 is a schematic view of a first skin tensioner according to an embodiment of the present invention.
  • FIG. 4 is a schematic view of another first skin tensioner according to an embodiment of the present invention.
  • Figure 5 is a schematic view of still another insulin injection device according to an embodiment of the present invention.
  • FIG. 6 is a schematic view of a needle-free injector according to an embodiment of the present invention.
  • Figure 7 is a schematic view of a drug storage mechanism according to an embodiment of the present invention.
  • FIG. 8 is a flow chart of an insulin injection method according to an embodiment of the present invention.
  • an embodiment of the present invention provides an insulin injection device, which may include: wearing module 10, detection module 20 and drug delivery module 30;
  • the wearing module 10 is respectively connected to the detecting module 20 and the drug dispensing module 30, and can be used for fixing the detecting module 20 and the drug dispensing module 30 to the user's body;
  • the detecting module 20 is configured to detect a blood glucose concentration of the user by using Raman spectroscopy, and determine a dose of the required insulin according to the detected blood glucose concentration, and generate a corresponding administration instruction according to the determined dose of the required insulin, and generate the given medication instruction
  • the drug command is sent to the drug delivery module 30;
  • the drug delivery module 30 is configured to store insulin and inject a corresponding dose of insulin into the user's body based on the received administration instructions.
  • the embodiment of the invention provides an insulin injection device.
  • the wearing module can fix the detection module and the drug delivery module on the user, and the detection module detects the blood glucose concentration of the user through Raman spectroscopy, and generates a corresponding drug delivery command according to the blood glucose concentration.
  • the drug delivery module injects a corresponding dose of insulin into the user's body based on the received administration instructions. It can be seen that after the detection module and the drug delivery module are fixed to the diabetic patient by wearing the module, the detection module detects the blood glucose concentration of the patient and generates a corresponding administration instruction, and the drug delivery module sends the patient to the patient according to the administration instruction generated by the detection module. Injecting the corresponding dose of insulin into the body, the insulin injection is automatically completed according to the blood glucose concentration, and the patient does not need to memorize the time of injecting the insulin and manually injects it, thereby bringing convenience for the use of the diabetic patient.
  • the detection module 20 included in the insulin injection device may include: a light emitter 201, a light receiver 202, and a processor 203;
  • the light emitter 201 is configured to emit detection light to the subcutaneous tissue of the user through the skin of the user;
  • the light receiver 202 is configured to receive the scattered light formed by inelastic scattering of the detection light emitted by the light emitter 201, and form a corresponding Raman spectrum according to the received scattered light;
  • the processor 203 is configured to determine a blood glucose concentration of the user according to a Raman spectrum formed by the light receiver 202.
  • the detection light emitted by the light emitter can reach the subcutaneous tissue through the skin of the user, and the detection light reaching the subcutaneous tissue is inelastically scattered by the influence of the glucose molecules in the blood, and the scattered light formed by the inelastic scattering passes through the skin of the user.
  • the optical receiver forms a corresponding Raman spectrum based on the received scattered light. Since the content of glucose molecules in the blood affects the intensity of scattered light formed by inelastic scattering, and the Raman spectrum can reflect the intensity information of the scattered light, and the blood glucose concentration refers to the content of glucose in the blood, the processor can be based on the light receiver. The resulting Raman spectrum is used to determine the user's blood glucose concentration.
  • the processor uses the Raman spectrum formed by the optical receiver to determine the blood glucose concentration of the user, and is a non-invasive blood glucose concentration detecting method, which is capable of detecting the blood glucose concentration in vitro compared to the conventional blood sample of the user, without piercing the user's skin. In addition to reducing the pain of the user, it can also avoid infection caused by the blood collection process.
  • the detection light emitted by the light emitter may be monochromatic light or multi-color light transmitted by time division.
  • the light emitter emits multi-color light
  • the light emitter alternates between two or two according to a set interval time.
  • Another type of monochromatic light is emitted.
  • the light emitter can emit laser light as the detection light through the laser. Since the output power of the laser is stable, the laser with stable intensity can be emitted to ensure the accuracy of detecting the blood glucose concentration.
  • the processor 203 may specifically calculate the blood glucose concentration of the user by using the following formula;
  • G characterizes the blood glucose concentration of the user
  • Q 1 characterizes the intensity of the scattered light formed by the detection light emitted by the light emitter 201 in the skin layer of the user
  • Q 2 characterizes the detection light emitted by the light emitter 201.
  • the intensity of the scattered light formed by the user's subcutaneous tissue layer, t characterizes the Raman shift of the Raman spectrum formed by the light receiver 202.
  • the detection light emitted by the light emitter needs to pass through the skin layer of the user to reach the subcutaneous tissue layer, and some of the detected light is inelastically scattered in the skin layer to form corresponding scattered light, which is received by the optical receiver.
  • the detection light transmitted through the skin layer is inelastically scattered under the action of glucose molecules in the subcutaneous tissue to form corresponding scattered light, which is received by the light receiver and corresponds to the formed Raman spectrum.
  • the processor can recognize the scattered light and subcutaneous tissue formed by the skin layer from the Raman spectrum formed by the light receiver. The curve corresponding to the scattered light formed by the layer.
  • the abscissa characterizes the Raman shift, that is, the wavenumber difference of the scattered light received by the light receiver relative to the detected light emitted by the light emitter, and the ordinate characterizes the number of photons, ie, the scattered light.
  • Strength of. since the Raman shift of the Raman spectrum is continuously changed, the ⁇ (Q 2 t)dt term can be calculated by integral operation, and the product of different Raman shifts and the corresponding scattered light formed by the subcutaneous tissue can be calculated. And, and this value has a positive correlation with the user's blood glucose concentration G.
  • the correction coefficient 1+ can be Correction of ⁇ (Q 2 t)dt.
  • the ⁇ (Q 1 t)dt item has a relatively large value
  • the ⁇ (Q 2 t)dt item has a relatively small value.
  • the correction coefficient has a relatively large value
  • the ⁇ (Q 2 t)dt term having a smaller value is corrected by the correction coefficient, and the multiple of the ⁇ (Q 2 t)dt term is enlarged to ensure the calculated blood glucose.
  • the concentration G There is a small difference between the concentration G and the user's true blood glucose concentration; when the skin layer of the user receiving the detection light irradiation position is thin, the ⁇ (Q 1 t)dt item has a relatively large value, and ⁇ (Q 2 t) The dt term has a relatively large value. At this time, the correction coefficient has a relatively small value.
  • the correction coefficient is used to correct the ⁇ (Q 2 t)dt term with a larger value, and the reduction ⁇ (Q 2 t The dt term is multiplied to ensure that there is a small difference between the calculated blood glucose concentration G and the user's true blood glucose concentration.
  • the intensity of the scattered light formed by the inelastic scattering of the detected light in the user's skin layer is calculated as a calculation.
  • a parameter of the blood glucose concentration ensures the accuracy of the blood glucose concentration calculated by the processor, thereby ensuring the accuracy of the insulin dose injected into the user by the drug delivery module, and improving the safety of the user to inject insulin.
  • the detection module 20 included in the insulin injection device may further include a first skin tensioner
  • the first skin tensioner comprises at least two fan rings, and each of the fan rings included may form an annular structure; an anti-slip layer is disposed on a side of each of the fan rings that is in contact with the user's skin;
  • the respective fan rings included in the first skin tensioner move away from the center of the annular structure to tension the skin of the user in the area surrounded by the respective fan rings, so that The light emitter 201 emits detection light against the skin in a tensioned state.
  • the first skin tensioner including three fan rings as an example, as shown in FIG. 3 and FIG. 4, the first skin tensioner includes three fan rings 2041, and one side of each fan ring 2041 is provided with anti-slip. Layer 2042.
  • the three anti-slip layers 2042 are in contact with the skin of the user, and the three fan rings 2041 included in the first skin tensioner are in the state 3 shown in FIG.
  • the fan rings 2041 form an annular structure.
  • the first skin tensioner maintains the state shown in FIG. 3, and the skin in contact with the three anti-slip layers 2042 is in a natural state, ensuring that the user wears the insulin injection device on the body. Still have good comfort.
  • the three fan rings 2041 are driven to a certain distance along the radial direction of the annular structure by the driving of the corresponding driving mechanism to reach the state shown in FIG.
  • the anti-slip layer 2042 on each of the fan rings 2041 is placed in close contact with the skin of the user, because the anti-slip layer 2042 has a large friction with the skin of the user.
  • the force, each of the fan rings 2041 moves to move the skin in contact with the anti-slip layer 2042 provided on the fan ring 2041, so that the skin in the area surrounded by the three fan rings 2041 is tensioned.
  • the light emitter 201 After tensioning the user's skin, the light emitter 201 emits a single shot of light against the skin in tension, and the light receiver 202 receives the scattered light formed by the skin in tension and the scattering through the skin in tension. Light (scattered light formed by the subcutaneous tissue layer).
  • the first skin tensioner tensions the skin of the user such that the light emitter emits detection light to the skin in a tensioned state, which on the one hand can reduce the thickness of the skin and reduce the influence of scattered light formed by the skin layer on the calculation of blood glucose concentration.
  • the accuracy of the Raman spectrum formed by the receiver further increases the accuracy of the processor in calculating the user's blood glucose concentration.
  • the anti-slip layer disposed on the fan ring can be made of a material that is compatible with the human body, such as silica gel.
  • a plurality of protrusions may be provided on the surface of the anti-slip layer.
  • the drug delivery module 30 included in the insulin injection device may include: at least one gas cylinder 301, a needle-free injector 302, and a drug delivery mechanism. 303 and drug storage mechanism 304;
  • the drug delivery mechanism 303 is configured to obtain a corresponding dose of insulin from the drug storage mechanism 304 according to the administration instruction sent by the detection module 20, and add the acquired insulin to the needle-free injector 302;
  • Each of the gas cylinders 301 is configured to charge the needle-free injector 302 with a high-pressure driving gas after the administration mechanism 303 adds insulin to the needle-free injector 302;
  • the needleless injector 302 is used to inject insulin into the subcutaneous tissue of the user in the form of a liquid stream, driven by the high pressure driving gas contained in each of the gas cylinders 301.
  • the drug storage mechanism is configured to store insulin.
  • the drug delivery mechanism receives the administration instruction sent by the detection module, the corresponding dose of insulin is obtained from the drug storage mechanism according to the administration instruction, and the obtained insulin is added to the needle-free injector.
  • the needle-free injector uses the high-pressure driving gas charged in each of the gas cylinders to input the insulin added by the drug delivery mechanism into the subcutaneous tissue of the user in the form of a liquid flow.
  • the needle-free injector can utilize the principle of high-pressure jet to make the liquid form a finer liquid flow and instantly penetrate the skin to reach the subcutaneous tissue.
  • insulin is injected through a needle-free syringe.
  • the insulin is dispersed in the subcutaneous tissue.
  • the insulin has a faster onset time and a higher absorption rate, which can more accurately control the blood sugar of diabetic patients and improve the control of diabetes.
  • the needle-free syringe has no needle, the user has no pain or has a small pain, which reduces the pain of the diabetic patient;
  • the formation of induration can be avoided, and the lowering can be further reduced. The pain of diabetic patients.
  • the needleless injector may include: a cylinder block 3021, a piston 3022, a return spring 3023, and a piston nozzle 3024;
  • the cylinder block 3021 has a cylindrical structure.
  • One or a plurality of air inlets 3025 are disposed at a first end of the cylinder block 3021, and a piston nozzle 3024 is disposed at a second end of the cylinder block 3021, wherein each air inlet port 3025 Connected to the gas tank 301 through a pipeline;
  • the piston 3022 is located inside the cylinder 3021 and is reciprocable along the axial direction of the cylinder 3021;
  • the return spring 3023 is also located inside the cylinder 3021, and the return spring 3023 is located between the piston 3022 and the piston nozzle 3024;
  • the piston 3022 moves in the direction of the piston nozzle 3024 along the axis of the cylinder 3021 under the driving action of the high-pressure driving gas, and the piston 3022 moves to and from the piston 3022.
  • the piston rod 30241 of the piston nozzle 3024 contacts, the piston rod 30241 is impacted, so that the piston rod 30241 injects the insulin 40 located in the piston nozzle 3024 in the form of a liquid flow;
  • the compressed return spring 3023 can drive the piston 3022 to move in the direction of the capacity piston nozzle 3024 along the axis of the cylinder 3021. Until the piston 3022 reaches the free position.
  • the piston After each gas cylinder is filled with high-pressure driving gas into the cylinder through the air inlet, the piston will impact the piston rod of the piston nozzle at a faster speed under the driving force of the high-pressure driving gas, and the piston rod will be faster after being impacted.
  • the speed pushes the insulin in the piston nozzle to the front end of the piston nozzle, and the insulin is ejected from the small hole at the front end of the piston nozzle under the push of the piston rod, ensuring that the insulin can be injected into the skin of the user in the form of a liquid flow. organization.
  • the size of the needle-free injector should not be too large, so the height of the cylinder should be controlled within a small size, but in order to ensure that insulin can be ejected in the form of a liquid flow, the piston needs to have sufficient Kinetic energy requires a larger diameter for the cylinder. Normally, the ratio of the cylinder diameter to the cylinder height needs to be greater than or equal to two.
  • the needle-free injector is a reusable insulin injection device, after the piston impacts the piston rod of the piston nozzle, it is necessary to return the piston to a position away from the piston rod.
  • a return spring is provided between the piston nozzle and the piston.
  • the return spring When the piston moves toward the piston nozzle, the return spring is compressed to store energy, and is reset after the piston moves to the extreme position in the direction of approaching the piston nozzle.
  • the spring lock stores the most energy; then the return spring releases the stored energy and elongates, pushing the piston to move away from the piston nozzle until the return spring cannot continue to push the piston, the piston reaches a free position, and the piston needs to be injected next time.
  • the drug delivery module may comprise at least two gas canisters, respectively, the first end of the needle-free injector cylinder may comprise at least two uniformly disposed Intake ports, each of which is connected to a gas tank through a pipe.
  • the gas cylinder of the drug delivery module has a small size, and the pressure provided by the smaller size gas cylinder is limited, in order to ensure that the high pressure driving gas released by the gas cylinder can drive the piston to be faster.
  • the speed impacts the piston rod of the piston nozzle, so that a plurality of gas cylinders can simultaneously fill the cylinder with high-pressure driving gas, so that the piston can obtain sufficient kinetic energy to impact the piston rod of the piston nozzle, thereby ensuring that the needle-free injector can The form of the liquid stream ejects insulin.
  • the respective air inlets on the first end of the cylinder are uniformly distributed, so that the high-pressure driving gas filled in the cylinders of the respective cylinders is evenly distributed in the cylinder body, and the driving force of the high-pressure driving gas applied to the piston is ensured along the cylinder body.
  • the direction of the axis ensures the smoothness and stability of the piston movement.
  • the drug storage mechanism 304 included in the drug delivery module is a wheel structure, and the inner wall of the wheel structure is provided with a plurality of tubular drug storage devices.
  • each tubular storage bin 3041 can store a unit dose of insulin
  • the drug storage mechanism 304 can be rotated along the axis of the wheel structure under the drive of the drug delivery mechanism.
  • the drug delivery mechanism is a rod-shaped structure, and the drug delivery mechanism determines the dose of the required insulin after receiving the administration instruction. If a unit dose of insulin is required, the drug delivery mechanism enters a tubular drug storage chamber in which the insulin is stored.
  • the drug delivery mechanism advances the insulin stored in a tubular drug storage bin 3041 to a needle-free injector
  • the drug storage mechanism 304 is driven to rotate to a certain angle to enter the next tubular storage bin 3041 to recommend the insulin stored in the tubular storage bin 3041 to the needleless syringe, and the above steps are repeated until the needleless syringe is injected.
  • the dose of insulin is the same as that required for the dosing instructions.
  • the drug storage mechanism includes a plurality of tubular drug storage bins, each of which can store a unit dose of insulin, so that the drug delivery mechanism can advance the insulin stored in one or more tubular drug storage bins according to the administration instructions.
  • the dose of insulin injected into the user's body by the needle-free injector is consistent with the user's blood glucose concentration, ensuring the accuracy of the insulin dose injected into the user.
  • the insulin stored in the tubular storage chamber can be packaged into a columnar drug package by a polymer material, and each column drug package contains a unit dose of insulin, and specifically, the polymer material can be polyvinyl chloride or polypropylene.
  • the cylindrical drug pack ruptures under the action of the drug delivery mechanism, and the insulin contained in the column drug pack enters the needle-free injector. In this way, packaging the insulin into a columnar drug package through the polymer material can ensure the purity of the insulin drug solution, prevent the contamination of the insulin drug solution, and improve the safety of the user to inject insulin.
  • the drug delivery module 30 may further include a second skin tensioner
  • the second skin tensioner comprises a plurality of fan rings, each fan ring may form an annular structure, and a side of each fan ring contacting the user's skin is provided with an anti-slip layer;
  • the second skin tensioner can drive the various fan rings to move away from the center of the annular structure, thereby tensioning the skin of the user within the area surrounding each of the fan rings.
  • the second skin tensioner can be associated with the first skin tensioner.
  • the specific structure can be described with reference to FIG. 3, FIG. 4 and the above embodiment for the first skin tensioner, where the second skin tensioner is no longer performed here. Narration.
  • the second skin tensioner tensions the skin of the corresponding area of the user, and the needle-free injector injects insulin into the subcutaneous tissue of the user through the skin in tension.
  • the thickness of the skin can be thinned and the pores can be expanded, so that the insulin in the liquid flow state can more easily reach the subcutaneous tissue of the user; on the other hand, the skin in the tension state has a more stable state, so that The relative position of the user's skin and the needle-free injector remains stable, and the fixed needle-free injector emits the direction of the liquid flow form insulin to the user's skin, ensures the success rate of the insulin injection, and can reduce the pain during the user's injection of insulin.
  • the wearing module 10 may include an inflatable strap, a Velcro, and an air pump;
  • the detection module 20 and the drug delivery module 30 are both fixed to the inside of the inflatable cable tie, and the Velcro is fixed at both ends of the inflatable cable tie. After the inflatable strap is wrapped around the user, the velcro can secure the position of the inflatable strap. After the inflatable strap is secured to the user by the velcro, when the detection module 20 is to detect the user's blood glucose concentration, the inflator initiates inflation into the inflatable strap, causing the detection module 20 and the medication module 30 to be associated with the user. The skin is close.
  • the inflation pump inflates the inflatable cable tie before the detection module 20 performs blood glucose detection, so that the detection module 20 and the drug delivery module 30 Close to the user's skin, after the blood glucose test is completed by the detecting module 20, the inflatable strap can be automatically deflated.
  • inflating into the inflatable strap ensures that the detecting mold 20 and the drug delivery module 30 are in close contact with the user's skin to ensure the accuracy of the blood glucose test result; after the blood glucose test is completed, the inflatable strap is automatically deflated to ensure that the insulin is worn. Users of injection devices have a more comfortable experience.
  • an embodiment of the present invention provides a method for injecting insulin for a user by using the insulin injection device provided by any of the above embodiments, and the method may include the following steps:
  • Step 801 Fix the detection module and the drug delivery module to the user by wearing the module.
  • a user with diabetes increases blood sugar after eating, so the user needs to wear the insulin injection device before eating, and of course wear it for a long time.
  • the detection module and the drug delivery module are fixed to the user by the wearing module, so that the detection module can detect the blood glucose concentration of the user, and the drug delivery module can inject insulin into the user.
  • the wearing module includes an inflatable strap, a Velcro, and an air pump
  • the position of the inflatable strap is fixed by the Velcro after the inflatable strap is wrapped around the user's abdomen or arm and directly in contact with the user's skin.
  • Step 802 detecting the blood glucose concentration of the user by Raman spectroscopy through the detecting module.
  • the preset detection module periodically detects the blood glucose concentration of the user.
  • the detection module detects the blood glucose concentration of the user by using Raman spectroscopy.
  • the inflator pump included in the wearing module inflates the inflatable strap so that the detection module is in close contact with the skin of the user.
  • the first skin tensioner included in the detecting module tensions the skin of the user
  • the light emitter included in the detecting module emits detecting light to the tensioned skin
  • the light included in the detecting module The receiver receives the scattered light formed by detecting the inelastic scattering of the light, and generates a corresponding Raman spectrum according to the received scattered light
  • the processor included in the detecting module calculates the Raman spectrum generated by the light receiver according to the following formula User's blood glucose concentration;
  • the G characterizes a blood glucose concentration of the user
  • the Q 1 characterizes the intensity of scattered light formed by the detection light in the skin layer of the user
  • the Q 2 characterizes the detection light under the skin of the user
  • the intensity of the scattered light formed by the tissue layer which t characterizes the Raman shift of the Raman spectrum.
  • Step 803 Determine a dose of the required insulin according to the blood glucose concentration by the detecting module, generate a corresponding administration instruction according to the dose of the required insulin, and send the administration instruction to the drug delivery module.
  • the detecting module after determining the blood glucose concentration of the user by the detecting module, determining the dose of the insulin required by the user according to the blood glucose concentration of the user, generating a corresponding administration instruction according to the dose of the desired insulin, and administering the dose.
  • the instructions are sent to the drug delivery module.
  • the detection module determines the insulin dose corresponding to the current blood glucose concentration detection result according to the correspondence between the predefined blood glucose concentration and the insulin dose.
  • the detection module generates a corresponding administration instruction according to the determined insulin dose, and sends the generated medication administration instruction to the drug delivery module; when the required insulin dose is zero, the detection module does not A dosing instruction to generate a dosing instruction or generate a desired insulin dose of zero is sent to the dosing module.
  • Step 804 Inject a corresponding dose of insulin into the user body according to the administration instruction by the drug administration module.
  • the dosing module after receiving the dosing instruction, injects a corresponding dose of insulin into the user's body in accordance with the dosing instruction.
  • the drug delivery module includes a drug delivery mechanism that receives a corresponding dose of insulin from the drug storage device according to the administration instruction, and adds the acquired insulin to the needle-free injector.
  • the second skin tensioner included in the drug delivery module tensions the skin of the user, and each of the gas cylinders is filled with a high-pressure driving gas into the needle-free injector, so that the needle-free injector flows with the liquid.
  • the form directs insulin to the skin being tensioned, thereby injecting insulin into the subcutaneous tissue of the user.
  • the above-mentioned insulin injection device provided by the foregoing various embodiments is a method for injecting insulin by a user, and only includes an overall step of injecting insulin for a user using the insulin injection device, and the step details may be performed according to the specific structure of the insulin injection device. No longer.
  • the insulin injection device provided by the various embodiments of the present invention has at least the following beneficial effects:
  • the wearing module can fix the detecting module and the drug dispensing module to the user, and the detecting module detects the blood sugar concentration of the user by Raman spectroscopy, and generates a corresponding drug delivery command according to the blood glucose concentration to send the drug to the drug delivery.
  • the module, the drug delivery module injects a corresponding dose of insulin into the user's body according to the received administration instructions. It can be seen that after the detection module and the drug delivery module are fixed to the diabetic patient by wearing the module, the detection module detects the blood glucose concentration of the patient and generates a corresponding administration instruction, and the drug delivery module sends the patient to the patient according to the administration instruction generated by the detection module. Injecting the corresponding dose of insulin into the body, the insulin injection is automatically completed according to the blood glucose concentration, and the patient does not need to memorize the time of injecting the insulin and manually injects it, thereby bringing convenience for the use of the diabetic patient.
  • the detecting module detects the blood sugar concentration of the user by using Raman spectroscopy, which is a non-invasive blood sugar concentration detecting method, and the method for detecting the blood glucose concentration in vitro is compared with the traditional collecting blood sample of the user, without piercing the user.
  • Raman spectroscopy which is a non-invasive blood sugar concentration detecting method
  • the method for detecting the blood glucose concentration in vitro is compared with the traditional collecting blood sample of the user, without piercing the user.
  • the skin can also avoid infection caused by the blood collection process.
  • the detection light is generated in the user skin layer.
  • the intensity of the scattered light formed by the elastic scattering is used as a parameter for calculating the blood glucose concentration, and the accuracy of the blood glucose concentration calculated by the processor is ensured, thereby ensuring the accuracy of the insulin dose injected into the user by the drug delivery module, and improving the insulin injection by the user. safety.
  • the skin of the user before the light emitter emits the detection light, the skin of the user is tensioned by the first skin tensioner, on the one hand, the thickness of the skin can be reduced, and the scattered light formed by the skin layer is reduced to the blood glucose concentration.
  • the effect of the calculation increases the accuracy of the processor in calculating the user's blood glucose concentration; on the other hand, the skin in the tensioned state has a more stable state, reducing the skin state change to the light emitter emitting a single light and the light receiver receiving the scattered light process The effect is to improve the accuracy of the Raman spectrum formed by the light receiver, thereby further improving the accuracy of the processor for calculating the blood glucose concentration of the user.
  • insulin is injected through a needle-free syringe, insulin is dispersed in the subcutaneous tissue, insulin has a faster onset time, and the absorption rate is higher, so that the blood sugar of the diabetic patient can be controlled more accurately.
  • needle-free syringes have no needles, users have no pain or have a small pain, which reduces the pain of diabetic patients. Since there is no repeated puncture of the needle to the injection site, the formation of induration can be avoided. Further reducing the suffering of diabetic patients.
  • the respective air inlets on the first end of the cylinder are evenly distributed, so that the high-pressure driving gas filled in the cylinders of the respective cylinders is uniformly distributed in the cylinder body, and the high-pressure driving gas is applied to the cylinders.
  • the driving force of the piston is along the axis of the cylinder to ensure the smoothness and stability of the piston movement.
  • the second skin tensioner tensions the skin of the corresponding area of the user, and the needle-free injector injects insulin through the skin in tension.
  • the subcutaneous tissue of the user prior to the needle-free injector injecting insulin into the subcutaneous tissue of the user, the second skin tensioner tensions the skin of the corresponding area of the user, and the needle-free injector injects insulin through the skin in tension.
  • the subcutaneous tissue of the user prior to the needle-free injector injecting insulin into the subcutaneous tissue of the user, the second skin tensioner tensions the skin of the corresponding area of the user, and the needle-free injector injects insulin through the skin in tension. The subcutaneous tissue of the user.
  • the thickness of the skin can be thinned and the pores can be expanded, so that the insulin in the liquid flow state can more easily reach the subcutaneous tissue of the user; on the other hand, the skin in the tension state has a more stable state, so that The relative position of the user's skin and the needle-free injector remains stable, and the fixed needle-free injector emits the direction of the liquid flow form insulin to the user's skin, ensures the success rate of the insulin injection, and can reduce the pain during the user's injection of insulin.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the steps of the foregoing method embodiments are included; and the foregoing storage medium includes: various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Emergency Medicine (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Diabetes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Dermatology (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

一种胰岛素注射装置,包括:佩戴模块(10)、检测模块(20)和给药模块(30);佩戴模块(10)分别与检测模块(20)和给药模块(30)相连,可用于将检测模块(20)和给药模块(30)固定在用户的身上;检测模块(20),用于利用拉曼光谱检测用户的血糖浓度,并根据血糖浓度确定所需胰岛素的剂量,根据所需胰岛素的剂量生成对应的给药指令,并将给药指令发送给给药模块(30);给药模块(30),用于存储胰岛素,并根据给药指令向用户体内注入对应剂量的胰岛素。本装置能够为患者的使用带来方便。

Description

一种胰岛素注射装置 技术领域
本发明涉及机械技术领域,特别涉及一种胰岛素注射装置。
背景技术
糖尿病是一种以高血糖为特征的代谢性疾病。高血糖则是由于胰岛素分泌缺陷或其生物作用受损,或两者兼有而引起的。糖尿病为患者带来了较大的痛苦。
目前治疗糖尿病的方法中,一般采用药物治疗的方式对糖尿病进行控制。其中,在各种药物治疗方法中以注射胰岛素为主要治疗方法。
在利用胰岛素治疗糖尿病时,糖尿病患者根据医嘱在饭前或饭后的指定时间段内注射胰岛素,以控制饭后体内血糖的增高。虽然糖尿病患者在饭前或饭后的指定时间段内注射胰岛素,但是糖尿病患者每顿餐饭所摄入食物的量和类型各不相同,采用相同的标准注射胰岛素,容易导致糖尿病患者出现低血糖或高血糖的症状。并且,患者还需要自己记住注射胰岛素的时间。因此,为患者的使用带来了较大的不便。
发明内容
本发明实施例提供了一种胰岛素注射装置,能够为患者的使用带来方便。
本发明实施例提供了一种胰岛素注射装置,包括:佩戴模块、检测模块和给药模块;
所述佩戴模块分别与所述检测模块和所述给药模块相连,可用于将所述检测模块和所述给药模块固定在用户的身上;
所述检测模块,用于利用拉曼光谱检测所述用户的血糖浓度,并根据所述血糖浓度确定所需胰岛素的剂量,根据所述所需胰岛素的剂量生成对应的给药指令,并将所述给药指令发送给所述给药模块;
所述给药模块,用于存储胰岛素,并根据所述给药指令向所述用户体内注入对应剂量的所述胰岛素。
可选地,
所述检测模块包括:光发射器、光接收器和处理器;
所述光发射器,用于透过所述用户的皮肤向所述用户的皮下组织发射检测光;
所述光接收器,用于接收所述检测光发生非弹性散射后所形成的散射光,根据所述散射光形成对应的拉曼光谱;
所述处理器,用于根据所述光接收器形成的所述拉曼光谱,确定所述用户的血糖浓度。
可选地,
所述处理器,用于根据所述拉曼光谱,通过如下公式计算所述用户的血糖浓度;
Figure PCTCN2018121415-appb-000001
其中,所述G表征所述用户的血糖浓度,所述Q 1表征所述检测光在所述用户皮肤层所形成散射光的强度,所述Q 2表征所述检测光在所述用户的皮下组织层所形成散射光的强度,所述t表征所述拉曼光谱的拉曼位移。
可选地,
所述检测模块进一步包括:第一皮肤张紧器;
所述第一皮肤张紧器包括至少两个扇环,所述至少两个扇环可组成圆环状结构;每一个所述扇环上与所述用户的皮肤相接触的一侧设置有防滑层;
所述第一皮肤张紧器,用于在所述光发射器发射所述检测光之前,驱动所述至少两个扇环向远离所述圆环状结构的圆心的方向运动,以将所述至少 两个扇环所环绕区域内的所述用户的皮肤张紧。
可选地,
所述给药模块包括:至少一个气罐、无针注射器、给药机构和储药机构;
所述给药机构,用于根据所述给药指令,从所述储药机构中获取对应剂量的所述胰岛素,并将获取到的所述胰岛素添加到所述无针注射器中;
所述至少一个气罐,用于在所述给药机构将所述胰岛素添加到所述无针注射器中之后,向所述无针注射器中充入高压驱动气体;
所述无针注射器,用于在所述高压驱动气体的驱动下,以液体流的形式将所述胰岛素注入到所述用户的皮下组织。
可选地,
所述无针注射器包括:缸体、活塞、复位弹簧和活塞式喷嘴;
所述缸体为圆筒状结构,所述缸体的第一端设置有至少一个进气口,所述缸体的第二端设置有所述活塞式喷嘴,其中,所述进气口通过管路与所述气罐相连;
所述活塞位于所述缸体内部,所述活塞能够沿所述缸体的轴线方向往复运动;
所述复位弹簧位于所述缸体内部,并位于所述活塞与所述活塞式喷嘴之间;
所述活塞,用于在所述高压驱动气体的驱动作用下沿所述缸体的轴线向靠近所述活塞式喷嘴的方向运动,冲击所述活塞式喷嘴的活塞杆,以将位于所述活塞式喷嘴内的所述胰岛素以液体流的形式射出;
所述复位弹簧,用于在所述活塞沿所述缸体的轴线向靠近所述活塞式喷嘴的方向运动至极限位置后,驱动所述活塞沿所述缸体的轴线向远离所述活塞式喷嘴的方向运动至自由位置。
可选地,
所述给药模块包括:至少两个气罐;
所述缸体的第一端均匀设置有至少两个所述进气口,每一个所述进气口 通过管道与一个所述气罐相连。
可选的,
所述储药机构为轮式结构,在所述轮式结构的内壁上设置有至少两个管状储药仓,每一个所述管状储药仓可以存放单位剂量的所述胰岛素,且所述轮式结构能够在所述给药机构的驱动下沿轴线旋转;
所述给药机构为杆状结构,用于根据所述给药指令,驱动所述储药机构转动,并依次进入至少一个所述储药仓,以将进入的各个所述储药仓中存放的所述胰岛素推进到所述无针注射器中。
可选地,
所述给药模块进一步包括:第二皮肤张紧器;
所述第二皮肤张紧器包括至少两个扇环,所述至少两个扇环可组成圆环状结构;每一个所述扇环与所述用户的皮肤相接触的一侧设置有防滑层;
所述第二皮肤张紧器,用于在所述无针注射器向所述用户的皮下组织注射所述胰岛素之前,驱动所述至少两个扇环向远离所述圆环状结构的圆心的方向运动,以将所述至少两个扇环所环绕区域内的所述用户的皮肤张紧。
可选地,
所述佩戴模块包括:可充气扎带、魔术贴和充气泵;
所述检测模块和所述给药模块连接在所述可充气扎带的内侧,所述魔术贴固定在所述可充气扎带的两端;
所述魔术贴,用于在所述可充气扎带缠绕在所述用户的身上之后,对所述可充气扎带的位置进行固定;
所述充气泵,用于在所述检测模块检测所述用户的血糖浓度之前,向所述可重启扎带中充气,以使所述检测模块和所述给药模块与所述用户的皮肤贴紧。
本发明实施例提供了一种胰岛素注射装置,佩戴模块可以将检测模块和给药模块固定在用户身上,检测模块通过拉曼光谱检测用户的血糖浓度,并 根据血糖浓度生成对应的给药指令发送给给药模块,给药模块根据接收到的给药指令向用户体内注入对应剂量的胰岛素。由此可见,通过佩戴模块将检测模块和给药模块固定到糖尿病患者的身上后,检测模块检测患者的血糖浓度并生成对应的给药指令,给药模块根据检测模块生成的给药指令向患者体内注入对应剂量的胰岛素,实现了根据血糖浓度自动完成胰岛素注射,患者无需自己记忆注射胰岛素的时间并手动注射,从而为糖尿病患者的使用带来了方便。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例提供的一种胰岛素注射装置的示意图;
图2是本发明一个实施例提供的另一种胰岛素注射装置的示意图;
图3是本发明一个实施例提供的一种第一皮肤张紧器的示意图;
图4是本发明一个实施例提供的另一种第一皮肤张紧器的示意图;
图5是本发明一个实施例提供的又一种胰岛素注射装置的示意图;
图6是本发明一个实施例提供的一种无针注射器的示意图;
图7是本发明一个实施例提供的一种储药机构的示意图;
图8是本发明一个实施例提供的一种胰岛素注射方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所 获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供了一种胰岛素注射装置,该装置可以包括:佩戴模块10、检测模块20和给药模块30;
佩戴模块10分别与检测模块20和给药模块30相连,可用于将检测模块20和给药模块30固定在用户的身上;
检测模块20用于利用拉曼光谱检测用户的血糖浓度,并根据检测出的血糖浓度确定所需胰岛素的剂量,根据确定出的所需胰岛素的剂量生成对应的给药指令,并将生成的给药指令发送给给药模块30;
给药模块30用于存储胰岛素,并根据接收到的给药指令向用户体内注入对应剂量的胰岛素。
本发明实施例提供了一种胰岛素注射装置,佩戴模块可以将检测模块和给药模块固定在用户身上,检测模块通过拉曼光谱检测用户的血糖浓度,并根据血糖浓度生成对应的给药指令发送给给药模块,给药模块根据接收到的给药指令向用户体内注入对应剂量的胰岛素。由此可见,通过佩戴模块将检测模块和给药模块固定到糖尿病患者的身上后,检测模块检测患者的血糖浓度并生成对应的给药指令,给药模块根据检测模块生成的给药指令向患者体内注入对应剂量的胰岛素,实现了根据血糖浓度自动完成胰岛素注射,患者无需自己记忆注射胰岛素的时间并手动注射,从而为糖尿病患者的使用带来了方便。
可选地,在图1所示胰岛素注射装置的基础上,如图2所示,胰岛素注射装置所包括的检测模块20可以包括:光发射器201、光接收器202和处理器203;
光发射器201用于透过用户的皮肤向用户的皮下组织发射检测光;
光接收器202用于接收光发射器201所发射检测光发生非弹性散射后所形成的散射光,并根据接收到的散射光形成对应的拉曼光谱;
处理器203用于根据光接收器202所形成的拉曼光谱,确定用户的血糖浓度。
光发射器所发射的检测光可以透过用户的皮肤到达皮下组织,到达皮下组织的检测光受血液中葡萄糖分子的影响发生非弹性散射,非弹性散射所形成的散射光穿出用户的皮肤后被光接收器所接收,光接收器根据接收到的散射光形成对应的拉曼光谱。由于血液中葡萄糖分子的含量会影响非弹性散射所形成散射光的强度,而拉曼光谱可以反映散射光的强度信息,并且血糖浓度是指血液中葡萄糖的含量,因此处理器可以根据光接收器所形成的拉曼光谱来确定用户的血糖浓度。
处理器利用光接收器所形成的拉曼光谱来确定用户的血糖浓度,是一种无创的血糖浓度检测方法,相对传统采集用户血液样本进行体外血糖浓度检测的方法,无需刺穿用户的皮肤,除了可以降低用户的痛苦外,还可以避免采血过程导致的感染。
具体地,光发射器所发射的检测光可以是单色光,也可以是分时发送的多色光,当光发射器发射多色光时,光发射器按照设定的间隔时间交替对两种或另种以上的单色光进行发射。比如,光发射器可以通过激光器发射激光作为检测光,由于激光器的输出功率稳定,可以发射具有稳定强度的激光,保证对血糖浓度进行检测的准确性。
可选地,如图2所示,处理器203在根据光接收器202所形成的拉曼光谱确定用户的血糖浓度时,处理器203具体可以通过如下公式计算用户的血糖浓度;
Figure PCTCN2018121415-appb-000002
在上述公式中,G表征了用户的血糖浓度,Q 1表征了光发射器201所发射检测光在用户的皮肤层所形成散射光的强度,Q 2表征了光发射器201所发射检测光在用户的皮下组织层所形成散射光的强度,t表征了光接收器202所形成的拉曼光谱的拉曼位移。
光发射器所发射的检测光需要透过用户的皮肤层才能到达皮下组织层,部分检测光在皮肤层发生非弹性散射形成对应的散射光,这部分散射光被光 接收器接收到后,会在所形成的拉曼光谱上对应一条曲线。透过皮肤层的检测光在皮下组织中葡萄糖分子的作用下发生非弹性散射形成对应的散射光,这部分散射光在被光接收器接收到后,会在所形成的拉曼光谱上对应另一条曲线。由于皮肤层所形成散射光会优先于皮下组织层所形成散射光被光接收器接收到,所以处理器能够从光接收器所形成的拉曼光谱上识别出皮肤层所形成散射光和皮下组织层所形成散射光对应的曲线。
在光接收器所形成的拉曼光谱中,横坐标表征拉曼位移,即光接收器所接收散射光相对于光发射器所发射检测光的波数差,纵坐标表征光子的数量,即散射光的强度。在上述公式中,由于拉曼光谱的拉曼位移是连续变化的,因此∫(Q 2t)dt项通过积分运算,可以计算不同拉曼位移与相对应的皮下组织成所形成散射光乘积之和,而该值与用户血糖浓度G存在正相关关系。
光发射器所发射检测光透过不同厚度的皮肤层时,在皮肤层所形成散射光的强度也不相同,在光发射器所发射检测光强度一点的前提下,皮肤层所形成散射光的强度与皮下组织层所形成散射光的强度存在负相关关系。因此,考虑到用户皮肤层厚度对血糖浓度检测结果的影响,可以通过修正系数1+
Figure PCTCN2018121415-appb-000003
对∫(Q 2t)dt进行修正。可见,当用户身上接受检测光照射位置的皮肤层较厚时,∫(Q 1t)dt项具有相对较大的数值,而∫(Q 2t)dt项具有相对较小的数值,此时修正系数具有相对较大的数值,通过修正系数对具有较小数值的∫(Q 2t)dt项进行修正,增大对∫(Q 2t)dt项进行放大的倍数,保证计算获得的血糖浓度G与用户的真实血糖浓度之间具有较小的差值;当用户身上接受检测光照射位置的皮肤层较薄时,∫(Q 1t)dt项具有相对较的数值,而∫(Q 2t)dt项具有相对较大的数值,此时修正系数具有相对较小的数值,通过修正系数对具有较大数值的∫(Q 2t)dt项进行修正,缩小对∫(Q 2t)dt项进行放大的倍数,保证计算获得的血糖浓度G与用户的真实血糖浓度之间具有较小的差值。
由于用户身上被光发射器所发射检测光照射位置的皮肤厚度会对光接收 器所形成的拉曼光谱造成影响,为此将检测光在用户皮肤层发生非弹性散射所形成散射光强度作为计算血糖浓度的一个参数,保证处理器计算出的血糖浓度的准确性,从而可以保证给药模块向用户体内所注入胰岛素剂量的准确性,提高了用户注射胰岛素的安全性。
可选地,在图2所示胰岛素注射装置的基础上,该胰岛素注射装置所包括的检测模块20还可以包括第一皮肤张紧器;
第一皮肤张紧器包括有至少两个扇环,所包括的各个扇环可以组成圆环状结构;每一个扇环上与用户皮肤像接触的一侧设置有防滑层;
在光发射器201发射检测光之前,第一皮肤张紧器所包括的各个扇环向远离圆环状结构的圆心的方向运动,以将各个扇环所环绕区域内用户的皮肤张紧,以便光发射器201对着处于张紧状态的皮肤发射检测光。
以第一皮肤张紧器包括有3个扇环为例,如图3和图4所示,第一皮肤张紧器包括有3个扇环2041,每个扇环2041的一侧设置有防滑层2042。
用户在通过佩戴模块将检测模块和给药模块固定到身上时,3个防滑层2042与用户的皮肤相接触,第一皮肤张紧器包括的3个扇环2041处于图3所示的状态3个扇环2041组成圆环状结构。在光发射器201没有发射检测光时,第一皮肤张紧器保持图3所示的状态,此时与3个防滑层2042相接触的皮肤处于自然状态,保证用户将胰岛素注射装置佩戴上身上后仍具有良好的舒适性。
在光发射器201发射检测光之前,3个扇环2041在相应驱动机构的驱动作用下沿圆环状结构的径向运到一定距离,达到图4所示的状态。在扇环2041向远离圆环状结构圆心的方向运动过程中,设置与各个扇环2041上的防滑层2042与用户的皮肤紧贴,由于防滑层2042与用户的皮肤之间具有较大的摩擦力,每一个扇环2041运动时会带动与该扇环2041上所设置防滑层2042相接触的皮肤运动,从而使得3个扇环2041所环绕区域内的皮肤张紧。在将用户的皮肤张紧后,光发射器201对着处于张紧状态的皮肤发射单射光,光接收器202接收处于张紧状态皮肤所形成的散射光和透过处于张紧状态皮肤 的散射光(皮下组织层形成的散射光)。
第一皮肤张紧器将用户的皮肤张紧,使得光发射器向处于张紧状态的皮肤发射检测光,一方面可以减薄皮肤厚度,降低皮肤层所形成散射光对血糖浓度计算的影响,提高处理器计算用户血糖浓度的准确性;另一方面处于张紧状态的皮肤具有更加稳定的状态,减小皮肤状态改变对光发射器发射单射光和光接收器接收散射光过程的影响,提高光接收器所形成拉曼光谱的准确性,进而进一步提高处理器计算用户血糖浓度的准确性。
设置于扇环上的防滑层可以通过亲和人体的材料制成,比如硅胶。为了提高防滑层与用户皮肤之间的摩擦力,可以在防滑层的表面设置多个突起。
可选地,在图1所示胰岛素注射装置的基础上,如图2所示,该胰岛素注射装置所包括的给药模块30可以包括:至少一个气罐301、无针注射器302、给药机构303和储药机构304;
给药机构303用于根据检测模块20发送的给药指令,从储药机构304中获取对应剂量的胰岛素,并将获取都的胰岛素添加到无针注射器302中;
各个气罐301用于在给药机构303将胰岛素添加到无针注射器302中之后,向无针注射器302中充入高压驱动气体;
无针注射器302用于在各个气罐301所充入高压驱动气体的驱动下,以液态流的形式将胰岛素注入到用户皮下组织。
储药机构用于存储胰岛素,当给药机构接收到检测模块发送的给药指令后,根据给药指令从储药机构处获取对应剂量的胰岛素,并将获取到的胰岛素添加到无针注射器中,无针注射器利用各个气罐充入的高压驱动气体,以液体流的形式将给药机构添加的胰岛素输入到用户的皮下组织。无针注射器可以利用高压射流的原理,使药液形成较细的液体流,瞬间穿透皮肤到达皮下组织。
其一,通过无针注射器注射胰岛素,胰岛素在皮下组织呈弥散分布状态,胰岛素的起效时间更快,吸收率更高,从而可以更加精确地对糖尿病患者的血糖进行控制,提升对糖尿病进行控制的效果;其二,无针注射器没有针头, 用户无痛感或具有很小的痛感,降低了糖尿病患者的痛苦;其三,由于没有针头对注射部位的反复穿刺,可以避免硬结的形成,进一步降低了糖尿病患者的痛苦。
可选地,在图5所示胰岛素注射装置的基础上,如图6所示,无针注射器可以包括:缸体3021、活塞3022、复位弹簧3023和活塞式喷嘴3024;
缸体3021为圆筒状结构,在缸体3021的第一端设置有一个或多个进气口3025,在缸体3021的第二端设置有活塞式喷嘴3024,其中,各个进气口3025通过管路与气罐301相连;
活塞3022位于缸体3021内部,能够沿缸体3021的轴线方向往复运动;
复位弹簧3023也位于缸体3021内部,并且复位弹簧3023位于活塞3022和活塞式喷嘴3024之间;
气罐301从进气口3025向气缸3021中充入高压驱动气体后,活塞3022在高压驱动气体的驱动作用下沿缸体3021的轴线向靠近活塞式喷嘴3024的方向运动,活塞3022运动至与活塞式喷嘴3024的活塞杆30241接触后对活塞杆30241产生冲击作用,使得活塞杆30241将位于活塞式喷嘴3024内的胰岛素40以液体流的形式射出;
在活塞3022沿缸体3021的轴线向靠近活塞式喷嘴3024的方向运动至极限位置后,被压缩后的复位弹簧3023可以驱动活塞3022沿缸体3021的轴线向运力活塞式喷嘴3024的方向运动,直至活塞3022到达自由位置。
各个气罐通过进气口向缸体中充入高压驱动气体后,活塞在高压驱动气体的驱动作用下会以较快的速度冲击活塞式喷嘴的活塞杆,活塞杆被冲击后将以较快的速度推动位于活塞式喷嘴中的胰岛素向活塞式喷嘴的前端运动,胰岛素在活塞杆的推动作用下从活塞式喷嘴前端的小孔射出,保证能够以液体流的形式将胰岛素注入到用户的皮下组织。为了便于该胰岛素注射装置的便携性,无针注射器的尺寸不能过大,因此缸体的高度应控制在较小的尺寸内,但是为了保证胰岛素能够以液体流的形式射出,活塞需要具有足够的动能,为此需要缸体具有较大的直径,通常情况下缸体直径与缸体高度的比值 需要大于等于2。
由于无针注射器是可以重复使用的胰岛素注射器件,在活塞冲击活塞式喷嘴的活塞杆后,需要使活塞恢复到远离活塞杆的位置。为此,在活塞喷嘴与活塞之间设置复位弹簧,当活塞向靠近活塞式喷嘴的方向运动时,复位弹簧被压缩而存储能量,在活塞向靠近活塞式喷嘴的方向运动至极限位置后,复位弹簧锁存储的能量最大;之后复位弹簧释放存储的能量而伸长,推动活塞向远离活塞式喷嘴的方向运动,直至复位弹簧无法继续推动活塞运动,活塞达到自由位置,在下一次需要注射胰岛素时活塞又可以在高压驱动气体的作用下冲击活塞式喷嘴的活塞杆。这样,在复位弹簧的作用下活塞可以在缸体内实现往复运动,使得无针注射器可以多次进行胰岛素注射。
可选地,在包括图6所示无针注射器的胰岛素注射装置中,给药模块可以包括至少两个气罐,相应地无针注射器缸体的第一端上可以包括均匀设置的至少两个进气口,每一个进气口通过管道与一个气罐相连。
为了保证胰岛素注射装置的便携性,给药模块所包括气罐具有较小的尺寸,较小尺寸气罐所提供的压力有限,为了保证气罐所释放的高压驱动气体能够驱动活塞以较快的速度冲击活塞式喷嘴的活塞杆,可以使多个气罐同时向缸体中充入高压驱动气体,保证活塞能够获得足够的动能对活塞式喷嘴的活塞杆进行冲击,进而保证无针注射器能够以液体流的形式将胰岛素射出。
另外,位于缸体第一端上的各个进气口均匀分布,使各个气罐充入缸体内的高压驱动气体在缸体内均匀分布,保证高压驱动气体施加给活塞的驱动力沿缸体的轴线方向,保证活塞运动的流畅性和稳定性。
可选地,在图5所示胰岛素注射装置的基础上,如图7所示,给药模块所包括的储药机构304为轮式结构,轮式结构的内壁上设置有多个管状储药仓3041,每一个管状储药仓3041可以存放单位剂量的胰岛素,且储药机构304可以在给药机构的驱动下沿轮式结构的轴线旋转。相应地,给药机构为杆状结构,给药机构在接收到给药指令后,确定所需胰岛素的剂量,如果需要单位剂量的胰岛素,则给药机构进入一个存储有胰岛素的管状储药仓3041, 将该管状储药仓3041中存储的单位剂量胰岛素推进到无针注射器中;如果需要多个单位剂量的胰岛素,给药机构将一个管状储药仓3041中存储的胰岛素推进到无针注射器之后,驱动储药机构304转动一定角度,进入下一个管状储药仓3041,以将所进入管状储药仓3041中存储的胰岛素推荐到无针注射器中,重复上述步骤直至向无针注射器中注入胰岛素的剂量与给药指令所要求的剂量相同。
储药机构包括有多个管状储药仓,每一个管状储药仓中可以存储单位剂量的胰岛素,这样给药机构可以根据给药指令将一个或多个管状储药仓中存储的胰岛素推进到无针注射器中,使得无针注射器向用户体内所注射胰岛素的剂量与用户血糖浓度相符,保证向用户体内所注射胰岛素剂量的准确性。
存储于管状储药仓中的胰岛素可以通过高分子材料包装成柱状药包,每一个柱状药包中容纳有单位剂量的胰岛素,具体地高分子材料可以为聚氯乙烯或聚丙烯。柱状药包在给药机构的推进作用下会发生破裂,使柱状药包中容纳的胰岛素进入无针注射器中。这样,通过高分子材料将胰岛素包装为柱状药包,可以保证胰岛素药液的纯净性,防止胰岛素药液被污染,提高用户注射胰岛素的安全性。
可选地,在图5所示胰岛素注射装置的基础上,给药模块30还可以包括第二皮肤张紧器;
第二皮肤张紧器包括有多个扇环,各个扇环可以组成圆环状结构,且每一个扇环与用户皮肤相接触的一侧设置有防滑层;
在无针注射器向用户的皮下组织注射胰岛素之前,第二皮肤张紧器可以驱动各个扇环向远离圆环状结构圆心的方向运动,从而将各个扇环所环绕区域内用户的皮肤张紧。
第二皮肤张紧器可以与第一皮肤张紧器,具体结构可以参见图3、图4以及上述实施例对第一皮肤张紧器的描述,此处不再对第二皮肤张紧器进行赘述。
在无针注射器向用户皮下组织注射胰岛素之前,第二皮肤张紧器将用户 对应区域的皮肤张紧,无针注射器通过处于张紧状态的皮肤将胰岛素注射到用户的皮下组织。一方面,张紧皮肤后可以减薄皮肤的厚度,并使毛孔扩张,使得液体流状态的胰岛素更加容易达到用户的皮下组织;另一方面,处于张紧状态的皮肤具有更加稳定的状态,使得用户皮肤与无针注射器的相对位置保持稳定,固定无针注射器向用户皮肤发射液体流形式胰岛素的方向,保证胰岛素注射的成功率,并可以减小用户注射胰岛素过程中的痛感。
可选地,在图1所示胰岛素注射装置的基础上,佩戴模块10可以包括可充气扎带、魔术贴和充气泵;
检测模块20和给药模块30均固定在可充气扎带的内侧,魔术贴固定在可充气扎带的两端。当可充气扎带被缠绕到用户的身上之后,魔术贴可以对可充气扎带的位置进行固定。在通过魔术贴将可充气扎带固定到用户的身上之后,当检测模块20要检测用户的血糖浓度时,充气泵启动向可充气扎带中充气,使检测模块20和给药模块30与用户的皮肤贴紧。
由于检测模块20可以是周期性工作的,比如每隔30分钟对用户的血糖进行一次检测,在检测模块20进行血糖检测之前充气泵向可充气扎带充气,使检测模块20和给药模块30与用户皮肤贴紧,在检测模块20完成一次血糖检测后,可充气扎带可以自动放气。这样,向可充气扎带中充气保证检测模20和给药模块30与用户皮肤贴紧,保证血糖检测结果的准确性;在血糖检测完成后,可充气扎带自动放气,保证佩戴该胰岛素注射装置的用户具有较舒适的体验。
如图8所示,本发明一个实施例提供了一种利用上述任一实施例提供的胰岛素注射装置为用户注射胰岛素的方法,该方法可以包括以下步骤:
步骤801:通过佩戴模块将检测模块和给药模块固定在用户身上。
在本发明一个实施例中,患有糖尿病的用户在进食后血糖会升高,因此用户需要在进食之前佩戴该胰岛素注射装置,当然也可以长时间佩戴。具体地,用户在佩戴该胰岛素注射装置时,通过佩戴模块将检测模块和给药模块 固定在用户的身上,使得检测模块能够检测用户的血糖浓度,给药模块能够向用户体内注射胰岛素。
例如,当佩戴模块包括可充气扎带、魔术贴和充气泵时,将可充气扎带缠绕在用户的腹部或臂部并与用户的皮肤直接接触后,通过魔术贴固定可充气扎带的位置。
步骤802:通过检测模块,利用拉曼光谱检测用户的血糖浓度。
在本发明一个实施例中,预先设定检测模块周期性检测用户的血糖浓度,当检测模块需要检测用户的血糖浓度时,检测模块利用拉曼光谱检测用户的血糖浓度。
例如,在检测模块需要检测用户的血糖浓度时,佩戴模块所包括的充气泵向可充气扎带中充气,使得检测模块与用户的皮肤贴紧。在检测模块与用户的皮肤贴紧后,检测模块所包括的第一皮肤张紧器将用户的皮肤张紧,检测模块包括的光发射器向张紧的皮肤发射检测光,检测模块包括的光接收器接收检测光发生非弹性散射后形成的散射光,并根据接收到的散射光生成对应的拉曼光谱,检测模块所包括的处理器根据光接收器生成的拉曼光谱,通过如下公式计算用户的血糖浓度;
Figure PCTCN2018121415-appb-000004
其中,所述G表征所述用户的血糖浓度,所述Q 1表征所述检测光在所述用户皮肤层所形成散射光的强度,所述Q 2表征所述检测光在所述用户的皮下组织层所形成散射光的强度,所述t表征所述拉曼光谱的拉曼位移。
步骤803:通过检测模块根据血糖浓度确定所需胰岛素的剂量,根据所需胰岛素的剂量生成对应的给药指令,并将给药指令发送给给药模块。
在本发明一个实施例中,在通过检测模块确定出用户的血糖浓度后,根据用户的血糖浓度确定用户所需胰岛素的剂量,根据所需胰岛素的剂量生成对应的给药指令,并将给药指令发送给给药模块。
例如,检测模块检测出用户的血糖浓度后,检测模块根据预先定义血糖 浓度与胰岛素剂量之间的对应关系,确定与本次血糖浓度检测结果相对应的胰岛素剂量。当所需胰岛素剂量不为零时,检测模块根据确定出的胰岛素剂量生成对应的给药指令,并将生成的给药指令发送给给药模块;当所需胰岛素剂量为零时,检测模块不生成给药指令或生成所需胰岛素剂量为零的给药指令发送给给药模块。
步骤804:通过给药模块,根据给药指令向用户体内注入对应剂量的胰岛素。
在本发明一个实施例中,给药模块在接收到给药指令后,根据给药指令向用户体内注入对应剂量的胰岛素。
例如,给药模块在接收到给药指令后,给药模块包括的给药机构根据给药指令从储药机构中获取对应剂量的胰岛素,并将获取到的胰岛素添加到无针注射器中。在将胰岛素添加到无针注射器中之后,给药模块包括的第二皮肤张紧器将用户的皮肤张紧,各个气罐向无针注射器中充入高压驱动气体,使得无针注射器以液体流的形式将胰岛素射向被张紧的皮肤,从而将胰岛素注射到用户的皮下组织。
上述利于前述各个实施例提供的胰岛素注射装置为用户注射胰岛素的方法,仅包括了使用该胰岛素注射装置为用户注射胰岛素的总体步骤,步骤细节可以根据该胰岛素注射装置的具体结构而进行,在此不再赘述。
综上所述,本发明各个实施例提供的胰岛素注射装置,至少具有如下有益效果:
1、在本发明实施例中,佩戴模块可以将检测模块和给药模块固定在用户身上,检测模块通过拉曼光谱检测用户的血糖浓度,并根据血糖浓度生成对应的给药指令发送给给药模块,给药模块根据接收到的给药指令向用户体内注入对应剂量的胰岛素。由此可见,通过佩戴模块将检测模块和给药模块固定到糖尿病患者的身上后,检测模块检测患者的血糖浓度并生成对应的给药指令,给药模块根据检测模块生成的给药指令向患者体内注入对应剂量的胰 岛素,实现了根据血糖浓度自动完成胰岛素注射,患者无需自己记忆注射胰岛素的时间并手动注射,从而为糖尿病患者的使用带来了方便。
2、在本发明实施例中,检测模块利用拉曼光谱检测用户的血糖浓度,这是一种无创的血糖浓度检测方法,相对传统采集用户血液样本进行体外血糖浓度检测的方法,无需刺穿用户的皮肤,除了可以降低用户的痛苦外,还可以避免采血过程导致的感染。
3、在本发明实施例中,由于用户身上被光发射器所发射检测光照射位置的皮肤厚度会对光接收器所形成的拉曼光谱造成影响,为此将检测光在用户皮肤层发生非弹性散射所形成散射光强度作为计算血糖浓度的一个参数,保证处理器计算出的血糖浓度的准确性,从而可以保证给药模块向用户体内所注入胰岛素剂量的准确性,提高了用户注射胰岛素的安全性。
4、在本发明实施例中,在光发射器发射检测光之前,通过第一皮肤张紧器将用户的皮肤张紧,一方面可以减薄皮肤厚度,降低皮肤层所形成散射光对血糖浓度计算的影响,提高处理器计算用户血糖浓度的准确性;另一方面处于张紧状态的皮肤具有更加稳定的状态,减小皮肤状态改变对光发射器发射单射光和光接收器接收散射光过程的影响,提高光接收器所形成拉曼光谱的准确性,进而进一步提高处理器计算用户血糖浓度的准确性。
5、在本发明实施例中,通过无针注射器注射胰岛素,胰岛素在皮下组织呈弥散分布状态,胰岛素的起效时间更快,吸收率更高,从而可以更加精确地对糖尿病患者的血糖进行控制,提升对糖尿病进行控制的效果,另外,无针注射器没有针头,用户无痛感或具有很小的痛感,降低了糖尿病患者的痛苦,由于没有针头对注射部位的反复穿刺,可以避免硬结的形成,进一步降低了糖尿病患者的痛苦。
6、在本发明实施例中,位于缸体第一端上的各个进气口均匀分布,使各个气罐充入缸体内的高压驱动气体在缸体内均匀分布,保证高压驱动气体施加给活塞的驱动力沿缸体的轴线方向,保证活塞运动的流畅性和稳定性。
7、在本发明实施例中,在无针注射器向用户皮下组织注射胰岛素之前, 第二皮肤张紧器将用户对应区域的皮肤张紧,无针注射器通过处于张紧状态的皮肤将胰岛素注射到用户的皮下组织。一方面,张紧皮肤后可以减薄皮肤的厚度,并使毛孔扩张,使得液体流状态的胰岛素更加容易达到用户的皮下组织;另一方面,处于张紧状态的皮肤具有更加稳定的状态,使得用户皮肤与无针注射器的相对位置保持稳定,固定无针注射器向用户皮肤发射液体流形式胰岛素的方向,保证胰岛素注射的成功率,并可以减小用户注射胰岛素过程中的痛感。
需要说明的是,在本文中,诸如第一和第二之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个······”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同因素。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储在计算机可读取的存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质中。
最后需要说明的是:以上所述仅为本发明的较佳实施例,仅用于说明本发明的技术方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所做的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (10)

  1. 一种胰岛素注射装置,其特征在于,包括:佩戴模块、检测模块和给药模块;
    所述佩戴模块分别与所述检测模块和所述给药模块相连,可用于将所述检测模块和所述给药模块固定在用户的身上;
    所述检测模块,用于利用拉曼光谱检测所述用户的血糖浓度,并根据所述血糖浓度确定所需胰岛素的剂量,根据所述所需胰岛素的剂量生成对应的给药指令,并将所述给药指令发送给所述给药模块;
    所述给药模块,用于存储胰岛素,并根据所述给药指令向所述用户体内注入对应剂量的所述胰岛素。
  2. 根据权利要求1所述的胰岛素注射装置,其特征在于,
    所述检测模块包括:光发射器、光接收器和处理器;
    所述光发射器,用于透过所述用户的皮肤向所述用户的皮下组织发射检测光;
    所述光接收器,用于接收所述检测光发生非弹性散射后所形成的散射光,根据所述散射光形成对应的拉曼光谱;
    所述处理器,用于根据所述光接收器形成的所述拉曼光谱,确定所述用户的血糖浓度。
  3. 根据权利要求2所述的胰岛素注射装置,其特征在于,
    所述处理器,用于根据所述拉曼光谱,通过如下公式计算所述用户的血糖浓度;
    Figure PCTCN2018121415-appb-100001
    其中,所述G表征所述用户的血糖浓度,所述Q 1表征所述检测光在所述用户皮肤层所形成散射光的强度,所述Q 2表征所述检测光在所述用户的皮下组织层所形成散射光的强度,所述t表征所述拉曼光谱的拉曼位移。
  4. 根据权利要求2所述的胰岛素注射装置,其特征在于,
    所述检测模块进一步包括:第一皮肤张紧器;
    所述第一皮肤张紧器包括至少两个扇环,所述至少两个扇环可组成圆环状结构;每一个所述扇环上与所述用户的皮肤相接触的一侧设置有防滑层;
    所述第一皮肤张紧器,用于在所述光发射器发射所述检测光之前,驱动所述至少两个扇环向远离所述圆环状结构的圆心的方向运动,以将所述至少两个扇环所环绕区域内的所述用户的皮肤张紧。
  5. 根据权利要求1所述的胰岛素注射装置,其特征在于,
    所述给药模块包括:至少一个气罐、无针注射器、给药机构和储药机构;
    所述给药机构,用于根据所述给药指令,从所述储药机构中获取对应剂量的所述胰岛素,并将获取到的所述胰岛素添加到所述无针注射器中;
    所述至少一个气罐,用于在所述给药机构将所述胰岛素添加到所述无针注射器中之后,向所述无针注射器中充入高压驱动气体;
    所述无针注射器,用于在所述高压驱动气体的驱动下,以液体流的形式将所述胰岛素注入到所述用户的皮下组织。
  6. 根据权利要求5所述的胰岛素注射装置,其特征在于,
    所述无针注射器包括:缸体、活塞、复位弹簧和活塞式喷嘴;
    所述缸体为圆筒状结构,所述缸体的第一端设置有至少一个进气口,所述缸体的第二端设置有所述活塞式喷嘴,其中,所述进气口通过管路与所述气罐相连;
    所述活塞位于所述缸体内部,所述活塞能够沿所述缸体的轴线方向往复运动;
    所述复位弹簧位于所述缸体内部,并位于所述活塞与所述活塞式喷嘴之间;
    所述活塞,用于在所述高压驱动气体的驱动作用下沿所述缸体的轴线向靠近所述活塞式喷嘴的方向运动,冲击所述活塞式喷嘴的活塞杆,以将位于所述活塞式喷嘴内的所述胰岛素以液体流的形式射出;
    所述复位弹簧,用于在所述活塞沿所述缸体的轴线向靠近所述活塞式喷嘴的方向运动至极限位置后,驱动所述活塞沿所述缸体的轴线向远离所述活塞式喷嘴的方向运动至自由位置。
  7. 根据权利要求6所述的胰岛素注射装置,其特征在于,
    所述给药模块包括:至少两个气罐;
    所述缸体的第一端均匀设置有至少两个所述进气口,每一个所述进气口通过管道与一个所述气罐相连。
  8. 根据权利要求5所述的胰岛素注射装置,其特征在于,
    所述储药机构为轮式结构,在所述轮式结构的内壁上设置有至少两个管状储药仓,每一个所述管状储药仓可以存放单位剂量的所述胰岛素,且所述轮式结构能够在所述给药机构的驱动下沿轴线旋转;
    所述给药机构为杆状结构,用于根据所述给药指令,驱动所述储药机构转动,并依次进入至少一个所述储药仓,以将进入的各个所述储药仓中存放的所述胰岛素推进到所述无针注射器中。
  9. 根据权利要求5所述的胰岛素注射装置,其特征在于,
    所述给药模块进一步包括:第二皮肤张紧器;
    所述第二皮肤张紧器包括至少两个扇环,所述至少两个扇环可组成圆环状结构;每一个所述扇环与所述用户的皮肤相接触的一侧设置有防滑层;
    所述第二皮肤张紧器,用于在所述无针注射器向所述用户的皮下组织注射所述胰岛素之前,驱动所述至少两个扇环向远离所述圆环状结构的圆心的方向运动,以将所述至少两个扇环所环绕区域内的所述用户的皮肤张紧。
  10. 根据权利要求1至9中任一所述的胰岛素注射装置,其特征在于,
    所述佩戴模块包括:可充气扎带、魔术贴和充气泵;
    所述检测模块和所述给药模块连接在所述可充气扎带的内侧,所述魔术贴固定在所述可充气扎带的两端;
    所述魔术贴,用于在所述可充气扎带缠绕在所述用户的身上之后,对所述可充气扎带的位置进行固定;
    所述充气泵,用于在所述检测模块检测所述用户的血糖浓度之前,向所述可重启扎带中充气,以使所述检测模块和所述给药模块与所述用户的皮肤贴紧。
PCT/CN2018/121415 2018-01-19 2018-12-17 一种胰岛素注射装置 WO2019141034A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/932,471 US11925784B2 (en) 2018-01-19 2020-07-17 Insulin injection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810054424.4 2018-01-19
CN201810054424.4A CN108245742A (zh) 2018-01-19 2018-01-19 一种胰岛素注射装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/932,471 Continuation US11925784B2 (en) 2018-01-19 2020-07-17 Insulin injection device

Publications (1)

Publication Number Publication Date
WO2019141034A1 true WO2019141034A1 (zh) 2019-07-25

Family

ID=62726761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121415 WO2019141034A1 (zh) 2018-01-19 2018-12-17 一种胰岛素注射装置

Country Status (3)

Country Link
US (1) US11925784B2 (zh)
CN (1) CN108245742A (zh)
WO (1) WO2019141034A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114392049A (zh) * 2022-01-25 2022-04-26 深圳市阿瑞医疗电子有限公司 一种一体平衡敷贴式药液输注系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108245742A (zh) * 2018-01-19 2018-07-06 苏州英诺迈医学科技服务有限公司 一种胰岛素注射装置
EP3714778A1 (en) * 2019-03-29 2020-09-30 Koninklijke Philips N.V. Wearable sensor device
CN109999275A (zh) * 2019-04-28 2019-07-12 甘甘医疗科技江苏有限公司 一种基于智能遥控的胰岛素注射装置
EP4093460A4 (en) * 2020-01-21 2023-09-27 Medtrum Technologies Inc. MEDICAL DEVICE WITH SAFETY VERIFICATION AND METHOD FOR SAFETY VERIFICATION THEREOF
CN114010879A (zh) * 2021-12-02 2022-02-08 郭潘婷 一种智能控量式胰岛素无针注射笔及注射系统
CN116492539A (zh) * 2023-06-25 2023-07-28 山东欣悦健康科技有限公司 一种人工胰腺智能控制方法及人工胰腺系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280494A (en) * 1979-06-26 1981-07-28 Cosgrove Robert J Jun System for automatic feedback-controlled administration of drugs
US20030104982A1 (en) * 2000-02-10 2003-06-05 Uwe Wittmann Array and method for dosing a hormone regulating blood sugar in a patient
CN101132821A (zh) * 2005-02-11 2008-02-27 麻省理工学院 无针透皮传送装置
CN101646470A (zh) * 2007-03-27 2010-02-10 皇家飞利浦电子股份有限公司 基于由加速度传感器测量的患者活动状态的给药
CN107174257A (zh) * 2017-04-14 2017-09-19 浙江澍源智能技术有限公司 一种微型可穿戴式无创血糖监测仪
CN108245742A (zh) * 2018-01-19 2018-07-06 苏州英诺迈医学科技服务有限公司 一种胰岛素注射装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039446B2 (en) * 2001-01-26 2006-05-02 Sensys Medical, Inc. Indirect measurement of tissue analytes through tissue properties
AU782610B2 (en) * 1999-12-10 2005-08-11 Alza Corporation Skin treatment apparatus for sustained transdermal drug delivery
CA2380671A1 (fr) * 2002-04-05 2003-10-05 Stephane Dufresne Seringue sans aiguille pour l'injection sous-cutanee de gouttelettes medicamenteuses
US7833189B2 (en) 2005-02-11 2010-11-16 Massachusetts Institute Of Technology Controlled needle-free transport
US7699802B2 (en) * 2005-05-03 2010-04-20 Pharmajet, Inc. Needle-less injector
AU2008327483A1 (en) * 2007-11-21 2009-05-28 Medingo Ltd. Analyte monitoring and fluid dispensing system
CN102805888A (zh) * 2011-06-02 2012-12-05 张文芳 一种带数显屏的气动冲击系统
JP2013103094A (ja) * 2011-11-16 2013-05-30 Sony Corp 測定装置、測定方法、プログラム及び記録媒体
TW201321038A (zh) * 2011-11-18 2013-06-01 Univ Central Taiwan Sci & Tech 胰島素即時注射裝置
CN102772839B (zh) * 2012-08-06 2013-10-16 安徽理工大学 无针注射器的辅助注射装置
CN102836481B (zh) * 2012-09-29 2014-08-20 哈尔滨工业大学 一种新型胰岛素泵
CN102928394B (zh) * 2012-10-16 2015-06-17 江苏学府医疗科技有限公司 一种便携式拉曼光谱无创伤血糖仪
CN203619988U (zh) * 2013-11-04 2014-06-04 理康互联科技(北京)有限公司 闭环药物释放系统
US9924894B2 (en) * 2015-06-03 2018-03-27 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Non-invasive measurement of skin thickness and glucose concentration with Raman spectroscopy and method of calibration thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280494A (en) * 1979-06-26 1981-07-28 Cosgrove Robert J Jun System for automatic feedback-controlled administration of drugs
US20030104982A1 (en) * 2000-02-10 2003-06-05 Uwe Wittmann Array and method for dosing a hormone regulating blood sugar in a patient
CN101132821A (zh) * 2005-02-11 2008-02-27 麻省理工学院 无针透皮传送装置
CN101646470A (zh) * 2007-03-27 2010-02-10 皇家飞利浦电子股份有限公司 基于由加速度传感器测量的患者活动状态的给药
CN107174257A (zh) * 2017-04-14 2017-09-19 浙江澍源智能技术有限公司 一种微型可穿戴式无创血糖监测仪
CN108245742A (zh) * 2018-01-19 2018-07-06 苏州英诺迈医学科技服务有限公司 一种胰岛素注射装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114392049A (zh) * 2022-01-25 2022-04-26 深圳市阿瑞医疗电子有限公司 一种一体平衡敷贴式药液输注系统

Also Published As

Publication number Publication date
US20200345928A1 (en) 2020-11-05
US11925784B2 (en) 2024-03-12
CN108245742A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
WO2019141034A1 (zh) 一种胰岛素注射装置
ES2666724T3 (es) Conjunto de cámara doble y bomba de engranaje para un sistema de administración a alta presión
US9662449B2 (en) Needle-free injectors and design parameters thereof that optimize injection performance
RU2481128C2 (ru) Устройство для доставки лекарственного средства
US9555186B2 (en) Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US20140074062A1 (en) Piston pump devices
JP2010509030A (ja) 無針注射器及び流動体送達方法
WO2013056588A1 (zh) 一次性阵列式微型注射针头及其预灌装注射器
CA2937327C (en) Force actuated injection device
JP2014240033A (ja) 薬物送達器材
JP2010522013A5 (zh)
CN107427646A (zh) 注射针组装体和药剂注射装置
US20220088293A1 (en) Syringe pump
US20140276427A1 (en) Rugged iv infusion device
CN112402740A (zh) 注射笔及注射装置
US20240091435A1 (en) Mechanism providing variable fill capability for a liquid reservoir and pump
JP3959285B2 (ja) 液体供給具
CN113440415A (zh) 一种重症监护的辅助喂药装置
JPH0345686Y2 (zh)
WO2023141627A2 (en) Systems, devices, and methods for fluidic throttle control of the delivery of therapies in needle-based delivery systems
CA3165115A1 (en) Injection pump needle mechanics
Rahman et al. Comparative Studies of Needle Free Needle Injection: A
Labu Comparative Studies of Needle Free Injection Systems and Hypodermic Needle Injection: A Global Perspective

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901601

Country of ref document: EP

Kind code of ref document: A1