WO2019139355A1 - Method for preparing polyolefin by using supported hybrid metallocene catalyst - Google Patents

Method for preparing polyolefin by using supported hybrid metallocene catalyst Download PDF

Info

Publication number
WO2019139355A1
WO2019139355A1 PCT/KR2019/000354 KR2019000354W WO2019139355A1 WO 2019139355 A1 WO2019139355 A1 WO 2019139355A1 KR 2019000354 W KR2019000354 W KR 2019000354W WO 2019139355 A1 WO2019139355 A1 WO 2019139355A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
borate
polyolefin
Prior art date
Application number
PCT/KR2019/000354
Other languages
French (fr)
Korean (ko)
Inventor
홍복기
박진영
이시정
최이영
유성훈
박성현
한창완
김선미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190002462A external-priority patent/KR102363189B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980006507.9A priority Critical patent/CN111491952B/en
Priority to US16/957,925 priority patent/US11560441B2/en
Priority to EP19738286.4A priority patent/EP3715384A4/en
Publication of WO2019139355A1 publication Critical patent/WO2019139355A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride

Definitions

  • the present invention relates to a method for producing a polyolefin using a hybrid supported metallocene catalyst.
  • Olefin polymerization catalysts can be categorized into Ziegler-Natta and metallocene catalysts, and these two highly active catalysts have been developed to suit their respective characteristics.
  • Ziegler-Natta catalysts have been widely applied to existing commercial processes since the invention in the 50s, but multi-active catalysts with multiple active sites
  • the metallocene catalyst is composed of a combination of a main catalyst composed mainly of a metallocene compound and a cocatalyst composed of an organometallic compound composed of aluminum as the main component. , Copolymerization properties, molecular weight, crystallinity, etc. can be changed.
  • U. S. Patent No. 5,032, 562 describes a method for preparing a polymerization catalyst by supporting two different transition metal catalysts on one supported catalyst. 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • chlorinated polyolefins such as Chlorinated Polyethylene (CPE) are widely used for the purpose of impact modifiers for pipes and window profiles through compounding with PVC.
  • CPE Chlorinated Polyethylene
  • polyethylene is reacted with chlorine in suspension. Or by reacting polyethylene with chlorine in aqueous HC1 solution.
  • excellent impact strength is required, and the strength of the compound varies depending on the physical properties of the chlorinated polyolefin.
  • the present invention is to provide a method for producing a polyolefin showing a narrow molecular weight distribution more easily and effectively in order to improve the impact strength of the shock compound.
  • the present invention is to provide a method for producing a chlorinated polyolefin to further perform a chlorination reaction after producing the polyolefin by the above method.
  • the present invention is to provide a composition comprising a chlorinated polyolefin and a vinyl chloride polymer ( ⁇ rule) produced by the above method.
  • the present invention to metallocene supported catalyst to the the metallocene compound to the second metal at least one represented by the first sensor 25, the compound and the formula 2 as a first metal at least one represented by the general formula (1) supported on a support metal, and a co-catalyst
  • a method for producing a polyolefin comprising the step of polymerizing an olefinic monomer while introducing the promoter at 70 to 140 /.
  • 01 to 020 alkyl substituted or unsubstituted 02 to 020 and alkenyl, substituted or unsubstituted alkylaryl of 07 to 040, substituted or unsubstituted arylalkyl of 07 to 040, optionally substituted 06 to 020 Aryl, substituted or unsubstituted 01 to 020 alkylidene, substituted or unsubstituted amino group, substituted or unsubstituted alkylalkoxy of 0,2 to 020, or substituted to unsubstituted arylalkoxy;
  • are each independently of each other substituted or unsubstituted alkyl, substituted or unsubstituted 01 to (: 10 alkoxy, substituted or unsubstituted 02 to 020 alkoxyalkyl, or substituted or unsubstituted 06 To 020 aryl;
  • the show is one or more of carbon, germanium, or silicon atom-containing radicals or a combination thereof;
  • X 1 and X 2 are the same as or different from each other, and each independently a halogen atom, a substituted or unsubstituted alkyl of Cl to 020, a substituted or unsubstituted 02 to (alkenyl of 10; 0 to 0 unsubstituted) 040 alkylaryl, substituted or unsubstituted arylalkyl of 07 to 040, substituted or unsubstituted aryl of 06 to 020, substituted or unsubstituted alkylidene of 01 to 020, substituted or unsubstituted amino group, 02 to 020 Alkylalkoxy, or substituted or unsubstituted 07 to 040 arylalkoxy;
  • To Figure 17 are the same as or different from each other, and each independently hydrogen, a halogen atom, substituted or unsubstituted alkyl of 01 to 020, substituted or unsubstituted C2 to 020 alkenyl, substituted or unsubstituted 01 to ⁇ 20 Alkylsilyl, substituted or unsubstituted 01 to £ 20 silylalkyl, substituted or unsubstituted 01 to 020 alkoxysilyl, substituted or unsubstituted 01 to (10: alkoxy, substituted or unsubstituted 02 to 020 of 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • At least one is represented by the following formula (3), I? At least one of 9 to 7 is represented by the following formula (3),
  • the present invention also provides a polyolefin prepared according to the method as described above.
  • the present invention also provides a method for producing a chlorinated polyolefin comprising treating the polyolefin with chlorine (, # 10 116) to chlorinate it.
  • the present invention also provides a chlorinated polyolefin prepared according to the method as described above.
  • the present invention is the chlorinated polyolefin and chlorinated polyolefin and 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • a metallocene supported catalyst having at least one first metallocene compound represented by Formula 1 and at least one second metallocene compound represented by Formula 2 supported on a carrier, And in the presence of a cocatalyst, a method for producing a polyolefin comprising the step of polymerizing the olefin monomer 30 while the cocatalyst is added to 70 to 140 (/) can be provided.
  • the polymerization reaction is one or more first metallocene compound represented by the formula (1) and at least one second metallocene compound represented by the formula (2) is supported on the carrier It is carried out in the presence of a metallocene supported catalyst.
  • 0 1 , 0 2 are each independently substituted or unsubstituted ci to
  • the show is one or more of carbon, germanium, or silicon atom-containing radicals or a combination of sons;
  • X 1 and X 2 are the same as or different from each other, and are each independently a halogen atom, substituted or unsubstituted alkyl of 01 to 020, substituted or unsubstituted 02 to (: 10 alkenyl, substituted or unsubstituted to 040 Alkylaryl, substituted or unsubstituted arylalkyl of 07 to 040, substituted or unsubstituted aryl of 06 to 020, substituted or unsubstituted alkylidene of Cl to 020, substituted or unsubstituted amino group, 02 to 020 Alkylalkoxy, or substituted or unsubstituted 07 to 040 arylalkoxy; 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • To 7 are the same as or different from each other, and each independently hydrogen, a halogen atom, substituted or unsubstituted alkyl of 01 to 020, substituted or unsubstituted alkenyl of 02 to 020, substituted or unsubstituted Cl to 020 alkyl Silyl, substituted or unsubstituted 01-020 silylalkyl, substituted or unsubstituted 01-020 alkoxysilyl, substituted or unsubstituted 01-(: 10 alkoxy, substituted or unsubstituted 02-020 alkoxyalkyl Substituted or unsubstituted 06 to 020 aryl, substituted or unsubstituted 06 to (: 10 aryloxy, substituted or unsubstituted 07 to 040 alkylaryl, substituted or unsubstituted arylalkyl 07 to 040, Substituted or unsubstituted arylalkeny
  • 1 / is 01 to (: 10 alkylene
  • I) 1 is 06 to 020 aryl, 04 to 020 cycloalkyl, or 02 to
  • the alkyl group of 01 to 020 includes a linear, branched, and cyclic alkyl group, and specifically, methyl group (3 ⁇ 43 ⁇ 4, 111 1 ⁇ 1), ethyl group (, 11 group), propyl group (, mae), isopropyl group.
  • 11-butyl group (11-811, 11- & 71), ⁇ ; -butyl group ( ⁇ , 1 61 1; ⁇ 3 ⁇ 4 ⁇ 7 1)), pentyl group (L, near), nuclear group (3 ⁇ 4, 3 ⁇ 4 One), 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • the alkylene group of Cl to 020 includes a linear or branched alkylene group, and specifically, may include methylten group, ethylene group, propylene group, butylten group, pentylene group, and nucleosilten group. no.
  • the cycloalkyl group of 04 to 020 refers to a cyclic alkyl group among the alkyl groups described above, and specifically, but not limited to a cyclobutyl group, a cyclopentyl group, a cyclonuxyl group, and the like.
  • the alkenyl group of 02 to 020 includes a straight or branched alkenyl group, and specifically, may include an allyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, and the like, but is not limited thereto.
  • the aryl groups of 06 to 020 include monocyclic or condensed aryl groups, and specifically include phenyl groups, biphenyl groups, naphthyl groups, phenanthrenyl groups, and fluorenyl groups, but are not limited thereto.
  • Examples of 01 to 020 alkoxy groups include, but are not limited to, methoxy, ethoxy, phenyloxy and cyclonucleooxy groups.
  • the alkoxyalkyl group of 02 to 020 is a functional group in which at least one hydrogen of an alkyl group is substituted with an alkoxy group, and specifically, a methoxymethyl group, a methoxyethyl group , an ethoxymethyl group, a ⁇ 30 -propoxymethyl group, Foxy ethyl group , Alkoxyalkyl groups such as-!;-Butoxymethyl group,!:-Butoxyethyl group, and 1 61 1; -butoxy nuclear group; Or an aryloxyalkyl group such as a phenoxynucleosil group, but is not limited thereto. 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • the alkyl silyl group of 01 to 020 or the alkoxysilyl group of 01 to 020 is a functional group in which 1 to 3 hydrogens of 3 ⁇ 4 are substituted with 1 to 3 alkyl groups or alkoxy groups as described above, and specifically methylsilyl group, dimethyl Alkylsilyl groups such as silyl group, trimethylsilyl group, dimethylethylsilyl group, diethylmethylsilyl group or dimethylpropylsilyl group; Alkoxy silyl groups, such as a methoxy silyl group, a dimethoxy silyl group, a trimethoxy silyl group, or a dimethoxy ethoxy silyl group; And alkoxyalkylsilyl groups such as methoxydimethylsilyl group, diethoxymethylsilyl group or dimethoxypropylsilyl group, but are not limited thereto.
  • the silylalkyl group of Cl to 020 is 1 of
  • the halogen 0 13 1 0 yo 611 ) may be fluorine), chlorine band), bromine (a) or iodine (I).
  • the sulfonate group may be an alkyl group of 01 to 020 in the structure of -0- ' 2- .
  • the 01 to 020 sulfonate group may include a methanesulfonate group or a phenylsulfonate group, but is not limited thereto.
  • a hydroxyl group optionally within the range to be exerted; halogen; Alkyl or alkenyl, aryl, alkoxy groups; An alkyl group or alkenyl group, an aryl group, an alkoxy group containing at least one hetero atom of the group 14 to 16 hetero atoms; Silyl groups; Alkylsilyl group or alkoxysilyl group; Phosphine groups; Phosphide groups; Sulfonate groups; And it may be substituted with one or more substituents selected from the group consisting of sulfone groups.
  • the Group 4 transition metals include titanium (), zirconium ( ⁇ ), and hafnium 0, but are not limited thereto.
  • an olefin polymer prepared using a grouping medium having a transition metal compound containing a cyclopentyl radical as ligands has shown a problem of controlling molecular weight distribution.
  • polyolefins prepared using a catalyst supported with a transition metal compound having a cyclopentyl radical as a ligand have a problem that it is difficult to produce chlorinated polyolefins having a high elongation when chlorinated by a wide molecular weight distribution.
  • an olefin is used by using a hybrid supported catalyst including a metallocene compound of Formula 1 and Chemical Formula 2 as described above.
  • the first metallocene compound contains a long chain branch and is easy to prepare a low molecular weight olefin polymer, and the second metallocene compound is less than that of the first metallocene compound. It is easy to prepare olefin polymers of relatively high molecular weight, including positive long chain branches. In particular, there are many long chain branches in the polymer, and when the molecular weight is large, the melt strength increases. However, in the case of the first metallocene compound, there are limitations in improving the low molecular weight compared to the long chain branches. 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • a first metallocene compound containing a relatively large long chain branch and producing a polymer having a low molecular weight and a second metallocene compound producing a polymer having a relatively low long chain branch and a high molecular weight By using a hybrid supported catalyst, molecular weight distribution can be effectively controlled while maintaining excellent high molecular weight.
  • the long-chain branching present in the polymer is located at a relatively low molecular weight side, thereby improving molecular weight distribution.
  • the first metallocene compound represented by Chemical Formula 1 has a structure including a ligand of indenyl series, and when the catalyst of such a structure is polymerized, there is a small amount of long chain branching, and molecular weight distribution words, ⁇ ! ), Melt Flow Index 6 ⁇ ⁇ 1? 6 yo, 1 13 ⁇ 4) relatively narrow polymer can be obtained.
  • Chemical Formula 1 is or;
  • the hybrid supported catalyst can provide an olefin polymer having excellent processability.
  • Specific examples of the metallocene compound of Formula 1 may include bis (3- (6- 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • the ligand compound may be prepared by various synthesis processes, and then a metal precursor compound may be added to perform metallization (0 ⁇ 1 011) , but the present invention is not limited thereto. You can refer to it.
  • the second metallocene compound represented by the formula (2) includes a specific substituent cyclopentylmethyl group in the ligand, the ligand has a structure that is crosslinked by such. When the catalyst of this structure is polymerized, there is a small amount of long chain branching, and the molecular weight distribution 1) 1 ,
  • a narrow polymer can be obtained.
  • the molecular weight of the olefin polymer prepared by adjusting the degree of steric hindrance effect according to the type of substituted functional group of the ligand can be easily adjusted.
  • Chemical Formula 2 is, ⁇ or; The show is carbon, germanium, or silicon; 0 1 , ⁇ are each independently alkyl of 01 to 020, or alkoxyalkyl of 02 to 20; Or I? 7 is represented by the following formula (3), yo 10 or Figure 16 is represented by the following formula (3), I?
  • the remainder of 1 to 7 is hydrogen, halogen, or alkyl of 01 to 020; X 1 and X 2 may each independently be a halogen atom.
  • the catalyst can provide an olefin polymer having excellent processability.
  • Is C1 to C10 alkylene and D 2 is C6 to C20 aryl or C4 to C20 cycloalkyl.
  • D 2 is C6 to C20 aryl or C4 to C20 cycloalkyl.
  • A is silicon;
  • Q 1 , Q 2 are each independently methyl, ethyl, propyl, or tert-butoxynucleus;
  • R 2 or R 7 is represented by the following Chemical Formula 3b,
  • R 10 or R 16 is represented by the following Chemical Formula 3b, and the remaining of R 1 to R 17 are hydrogen;
  • X 1 and X 2 may be each independently a halogen atom.
  • R 2 and R 16 are represented by the following formula (3b), R 1 , R 3 to R 15 , and R 17 may be hydrogen.
  • the second metallocene compound represented by Formula 2 may be synthesized by applying known reactions. Specifically, after preparing the ligand compound through a variety of synthetic processes may be prepared by adding a metal precursor compound to perform a metal ray ( 111 31 13 011) , but is not limited to this, a more detailed synthesis method is See also. As such, the hybrid supported metallocene catalyst may include the first and second metallocene compounds, and may effectively produce a polyolefin having excellent processability and high molecular weight of a linear polymer with a wide molecular weight distribution. .
  • the mixed molar ratio of the first metallocene compound and the second metallocene compound may be about 1: 1 to 1: 3 or about 1: 1 to 1: 2.
  • the mixed molar ratio of the first metallocene compound and the second metallocene compound may be 1: 1 or more in terms of molecular weight control, and may be 1: 3 or less for high activity.
  • the method for producing a polyolefin according to the present invention by using a hybrid supported catalyst containing a specific metallocene compound as described above by optimizing the amount of cocatalyst to perform the olefin polymerization process, polyolefin showing a narrow molecular weight distribution To improve the chlorinated polyolefin and impact strength Can be manufactured effectively.
  • the polymerization reaction to prepare a polyolefin in the present invention should be carried out under a promoter in order to prevent the catalyst activity lowered by water in the polymerization solvent, the promoter is about 70 00 / ⁇ to about 140 00 / ⁇ 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • the cocatalyst may be introduced at about 80 / dl to about 135 00 / ⁇ , or about 90 (/ to about 130 / dl, or about 90 (/ addition to about 110 /).
  • the input amount of the promoter gas should be about 70 cc / hx or more in terms of complete moisture removal in the polymerization solvent, and in the case of excessive injection, about 140 00 in terms of preventing the activity deterioration due to the reaction with the catalyst. Should be less than / ⁇
  • the cocatalyst is an organometallic compound containing a Group 13 metal, and is not particularly limited as long as it can be used when polymerizing olefins under a general metallocene catalyst.
  • the polymerization reaction may be carried out by homopolymerization with one olefin monomer or copolymerization with two or more monomers using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor.
  • the polymerization reaction may be carried out in a slurry phase polymerization in a hydrocarbon solvent (for example, an aliphatic hydrocarbon solvent such as nucleic acid, butane, pentane, etc.).
  • a hydrocarbon solvent for example, an aliphatic hydrocarbon solvent such as nucleic acid, butane, pentane, etc.
  • the first and second metallocene compounds according to the present invention exhibit excellent solubility in aliphatic hydrocarbon solvents, they are stably supplied to the dissolution and reaction system, and the polymerization reaction can be effectively progressed.
  • the polyolefin and the manufacturing method according to an embodiment of the present invention In the polymerization reactor, for example, the polymerization may proceed in the presence of an inert gas such as nitrogen.
  • a hydrogen gas may be used for controlling the molecular weight and the molecular weight distribution of the polyolefin.
  • the polymerization reaction pressure is about 6.8 1 3 ⁇ 4 / 11 2 to about 8.7 1 3 ⁇ 4 / 11 2 , or about 7.0 1 3 ⁇ 4 / (pe 2 to about 8.5 1 3 ⁇ 4 / (L 2 , or about 8.0 1 3 ⁇ 4 / ( ® 2 to about 8.5 1 3 ⁇ 4 / 011 2 ).
  • the polymerization pressure is blocked by high molecular weight and overproduction 0 31 to 3 ⁇ 4 )
  • It may be about 8.7 1 3 ⁇ 4 / 2 or less under the polymerization conditions in consideration of the reduction of ethylene source unit.
  • an organic solvent may be further used in the polymerization reaction as a reaction medium or a diluent. Such an organic solvent may be used in an amount such that slurry phase polymerization may be appropriately performed in consideration of the content of the olefin monomer.
  • the cocatalyst compound may include at least one of an aluminum-containing first cocatalyst of Formula 4 and a borate-based second cocatalyst of Formula 5 below.
  • ,,, and are the same as or different from each other, and are each independently hydrogen, halogen, a hydrocarbyl group of Cl to 020, or a hydrocarbyl group of 01 to 020 substituted with halogen;
  • 01 is an integer of 2 or more
  • Is a monovalent polyvalent ion 6 is boron in the +3 oxidation state, and are each independently a hydride group, a dialkyl amido group, a halide group, an alkoxide group, an aryl oxide group, a hydrocarbyl group, and a haloka. It is selected from the group consisting of a bil group and a halo-substituted hydrocarbyl group, which has up to 20 carbons, but is a halide group at less than one position.
  • the first cocatalyst of Chemical Formula 4 may be an alkylaluminoxane compound or a trialkylaluminum compound in which a repeating unit is bonded in a linear, circular or reticulated form.
  • the alkyl group bonded to aluminum in the first cocatalyst compound may be one having 1 to 20 carbon atoms or 1 to 10 carbon atoms, respectively.
  • a first catalyst examples include alkyl aluminoxane compounds such as methyl aluminoxane ([]), ethyl aluminoxane, isobutyl aluminoxane or butyl aluminoxane; Or trialkylaluminum compounds such as trimethylaluminum, triethylaluminum 03 ⁇ 40, triisobutylaluminum, trinuxylaluminum, trioctylaluminum or isoprenylaluminum.
  • alkyl aluminoxane compounds such as methyl aluminoxane ([]), ethyl aluminoxane, isobutyl aluminoxane or butyl aluminoxane
  • trialkylaluminum compounds such as trimethylaluminum, triethylaluminum 03 ⁇ 40, triisobutylaluminum, trinuxylaluminum, trioctyla
  • the second cocatalyst of Formula 5 may be a borate compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt.
  • a second cocatalyst include trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • Borate compounds in the form of trisubstituted ammonium salts such as tetrafluorophenyl) borate; Borate type in the form of dialkyl ammonium salt, such as dioctadecyl ammonium tetrakis (pentafluorophenyl) borate, ditetedecyl ammonium tetrakis (pentafluorophenyl) borate, or dicyclonucleosilammonium tetrakis (pentafluorophenyl) borate Compound; Or triphenylphosphonium tetrakis (pentafluorophenyl) borate, methyldioctadecylphosphonium tetrakis (pentafluorophenyl) borate or tri (2,6-, 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • the first and second metallocene compounds in the hybrid supported metallocene catalyst may be stably supported on the carrier by having the above-described structural characteristics.
  • a carrier containing a hydroxyl group or a siloxane group may be used.
  • the carrier may be a carrier containing a highly reactive hydroxyl group or siloxane group by drying at high temperature to remove moisture on the surface.
  • the carrier may be silica, alumina, magnesia or mixtures thereof, and silica may be more preferable.
  • the carrier may be dried at a high temperature, for example, silica, silica-alumina, silica-magnesia, etc., dried at a high temperature may be used, which are typically 3 ⁇ 40, 3 ⁇ 4 (: 0 3, 6 3804 and 3 ⁇ 43 ⁇ 40). 3) atda can include an oxide, carbonate, sulfate, nitrate component of 2, and so on.
  • the drying temperature of the carrier is about 200 To about 800 ° C., and from about 300 0 to about 600 Further preferred, about 300 X: to about 400 X: most preferred.
  • the drying temperature of the carrier is about 200 If the water content is less than the water, the surface water and the cocatalyst react with each other. If the water content exceeds 800 ° C , the pores on the surface of the carrier are combined to reduce the surface area. The reaction site with the promoter decreases, which is undesirable.
  • the amount of hydroxy groups on the surface of the carrier is from about 0.1 1 to about 101 / to
  • 1 01 / yaw is preferred, and more preferably from about 0.5 ⁇ / dragon to about 5 11 ⁇ 101 / sugar.
  • the amount of hydroxy groups on the surface of the carrier may be determined by the method and conditions for the preparation or drying conditions, such as temperature, time, vacuum or spray drying. 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • a promoter may be further supported on a carrier to activate the metallocene compound.
  • the cocatalyst supported on the carrier is not particularly limited as long as it is an organometallic compound including a Group 13 metal, and can be used when polymerizing olefins under a general metallocene catalyst. Specific examples of such promoters are as described above.
  • the mass ratio of the total transition metal to the carrier included in the first metallocene compound and the second metallocene compound may be 1:10 to 1: 1000.
  • the mass ratio of the promoter catalyst to the carrier used in the hybrid supported metallocene catalyst may be 1: 1 to 1: 100.
  • the mass ratio includes a promoter and a carrier, the active and polymer microstructures can be optimized.
  • the hybrid supported metallocene catalyst of the embodiment the step of supporting the promoter on the carrier; Supporting the first and second metallocene compounds on the carrier on which the promoter is supported; It can be prepared by a manufacturing method comprising a.
  • the first and second metallocene compounds may be supported one by one in sequence, or two may be supported together.
  • the shape of the hybrid supported metallocene catalyst may be improved by first supporting the second metallocene catalyst having a relatively poor shape ( 1110 to 1 1010 ), and thus the second metallocene. After supporting the catalyst, the first metallocene catalyst can be supported in order.
  • the supporting conditions are not particularly limited and may be performed in a range well known to those skilled in the art. For example, it is possible to proceed by using a high-temperature support and a low-temperature support as appropriate, for example, the support temperature is possible in the range of about -30 3 ⁇ 4 to 150 X :, preferably at room temperature (about 25 V)
  • the reacted supported catalyst can be used as it is by removing the reaction solvent by filtration or distillation under reduced pressure, or, if necessary, by using a Soxhlet filter with an aromatic hydrocarbon such as toluene.
  • the preparation of the supported catalyst may be performed under a solvent or a solventless.
  • the solvents that can be used include aliphatic hydrocarbon solvents such as nucleic acids or pentane, aromatic hydrocarbon solvents such as toluene or benzene, hydrocarbon solvents substituted with chlorine atoms such as dichloromethane, ethers such as diethyl ether or tetrahydrofuran 03 ⁇ 4.
  • aliphatic hydrocarbon solvents such as nucleic acids or pentane
  • aromatic hydrocarbon solvents such as toluene or benzene
  • hydrocarbon solvents substituted with chlorine atoms such as dichloromethane
  • ethers such as diethyl ether or tetrahydrofuran 03 ⁇ 4.
  • Most organic solvents, such as a solvent, acetone, and ethyl acetate, are mentioned, and nucleic acid, heptane, toluene, or dichloromethane are preferable.
  • the hybrid supported metallocene catalyst of the embodiment can be used in the polymerization of the
  • the hybrid supported metallocene catalyst may be prepared by using a prepolymerized catalyst by contact reaction with an olefinic monomer.
  • the catalyst may be used separately, such as ethylene, propylene, 1-butene, 1-nuxene, 1-octene, and the like. It can also be prepared and used as a prepolymerized catalyst by contacting with an olefinic monomer. 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • the olefinic monomer may be ethylene, alpha-olefin, cyclic olefin, diene olefin or triene olefin having two or more double bonds.
  • Specific examples of the olefin monomers include ethylene, propylene, 1-butene,
  • the metallocene supported catalyst is an aliphatic hydrocarbon solvent of 05 to (: 12, for example, pentane, nucleic acid, heptane, nonane, decane, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloromethane, chloro It may be dissolved or diluted in a hydrocarbon solvent substituted with a chlorine atom such as benzene and injected into the reaction system.
  • the solvent used herein is preferably used by removing a small amount of water, air or the like acting as a catalyst poison by treating a small amount of alkyl aluminum.
  • the polymerization reaction is carried out by supporting at least one first metallocene compound represented by Formula 1 and at least one second metallocene compound represented by Formula 2 on a carrier.
  • other additives such as molecular weight modifiers may be carried out.
  • the polyolefin obtained according to the above-described method for producing an embodiment is characterized by having a relatively narrow molecular weight distribution.
  • melt index of the polyolefin (3 ⁇ 40 5.0, conditional drawing, 190 ° 0,
  • the polyolefin Sean and a density of about 0.94 ⁇ / 0111 3 or more or about 0.94 to about 0.96 ⁇ ⁇ 3 L 3 days.
  • the content of the crystal structure of the polyolefin is high and dense, which is characterized by a hard change of the crystal structure during the chlorination process.
  • the density of the polyolefin can be measured by the method based on Show ⁇ 3 ⁇ 41 0-792. Since the polyolefin has a relatively narrow molecular weight distribution, it shows excellent chlorine distribution uniformity in polyethylene during chlorination (1 01 ⁇ 11 ) 11 , and can significantly improve elongation, compatibility with chlorinated polyolefin, and impact reinforcement performance. have.
  • the polyolefin is characterized by having a relatively narrow molecular weight distribution, the molecular weight distribution) may be about 2.3 to about 5.0. Also,
  • the molecular weight distribution may be obtained by gel permeation chromatography (GPC, gel permeat ion chromatography, manufactured by Water) to determine the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyolefin.
  • the weight average molecular weight can be measured and divided by the number average molecular weight.
  • GPC gel permeation chromatography
  • a Waters PL-GPC220 device may be used, and a Polymer Laboratores PLgel MIX-B 300 mm length column may be used.
  • the measurement temperature is 160 ° C
  • 1,2,4-trichlorobenzene (1,2, 4-Tr i chlorobenzene) can be used as a solvent
  • the flow rate can be applied at 1 mL / min.
  • the polyethylene sample was pretreated by dissolving in trichlorobenzene (1,2,4-Tr chlorobenzene) containing 0.0125% of BHT using GPC analysis device (PL-GP220) for 160 ° C for 10 hours, and 10 mg / It may be prepared at a concentration of 10 mL and then supplied in an amount of 200 y L.
  • the test curves formed using polystyrene standard specimens can be used to derive the values of Mw and Mn.
  • the weight average molecular weight of the polystyrene standard specimens is 2000 g / mol, 10000 g / mo 1, 30000 g / mol, 70000 g / mol, 200000 g / mol, 700000 g / mol, 2000000 g / mol, 4000000 g / mol, 10000000
  • the polyolefin produced by the polymerization reaction as described above may be a homopolymer of an olefin that does not contain a separate copolymer, for example, an ethylene homopolymer.
  • the polyolefin is, for example, an ethylene homopolymer, preferably a high density polyethylene
  • the above-described physical properties may be more suitably satisfied.
  • high density polyethylene has excellent softening point, hardness, strength and electrical insulation, and is used for various containers, packaging films, fibers, pipes, packings, and insulating materials.
  • the metallocene supported on which at least one first metallocene compound represented by Formula 1 and at least one second metallocene compound represented by Formula 2 is supported on a carrier Polymerizing an olefinic monomer in the presence of a catalyst and a cocatalyst, while introducing the cocatalyst at 70 to 140 (/ 1 11 .; And chlorinating the polyolefin with chlorine (h).
  • And ⁇ are the same or different from each other, and are each independently selected from the group consisting of indenyl and 4, 5, 6, 7-tetrahydro-1 -indenyl radicals, which can be substituted with 01 to 020 hydrocarbons And;
  • ⁇ And are the same as or different from each other, and are each independently hydrogen, substituted or unsubstituted Cl to 020 alkyl, substituted or unsubstituted 01 to (10: alkoxy, substituted or unsubstituted alkoxyalkyl to 02 to 020, Substituted or unsubstituted aryl of 06 to 020, substituted or unsubstituted 06 to (: 10 aryloxy, substituted or unsubstituted 02 to 020 alkenyl, substituted or unsubstituted alkylaryl of 07 to 040, substitution Optionally substituted 07 to 040 arylalkyl, optionally substituted 08 to 40 arylalkenyl, or optionally substituted 02 to (10) alkynyl;
  • the show is one or more of carbon, germanium, or silicon atom-containing radicals or a combination thereof;
  • X 1 and are the same as or different from each other, and each independently a halogen atom, substituted or unsubstituted alkyl of 01 to 020, substituted or unsubstituted 02 to (alkyl of 10, substituted or unsubstituted to 040 alkyl) Aryl, substituted or unsubstituted to arylalkyl of 04 to 04, substituted or unsubstituted aryl of 06 to 02o, substituted or unsubstituted alkylidene of Cl to 020, substituted or unsubstituted amino group, 02 to 020 alkyl Alkoxy, or substituted or unsubstituted 07 to 04 arylalkoxy;
  • To 7 are the same as or different from each other , and each independently hydrogen, a halogen atom, substituted or unsubstituted alkyl of Cl to 020, substituted or unsubstituted alkenyl of 02 to 020, substituted or unsubstituted 01 to 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • At least one is represented by the following formula (3)
  • At least one of ⁇ to 7 is represented by the formula (3)
  • I) 1 is 06 to 020 aryl, 04 to 020 cycloalkyl, or C 2 to 020 alkoxyalkyl.
  • Specific reaction conditions of the step of polymerizing the olefin monomer to prepare the polyolefin, and specific examples of the first and second metallocene compounds, the carrier, the cocatalyst, and the hybrid supported catalyst including the same are as described above.
  • Chlorinated polyolefin ( ⁇ 101 ⁇ 11 6 (1 1301 016 11) can be produced by treating polyolefin with chlorine (# 10 11 ⁇ 2) to chlorinate it.
  • Such chlorinated polyolefins can generally be prepared by an aqueous phase method in which polyolefins are reacted with chlorine in suspension, or by an acid phase method in which polyethylene is reacted with chlorine in a ⁇ 1 (: 1 aqueous solution).
  • aqueous phase method in which polyolefins are reacted with chlorine in suspension
  • acid phase method in which polyethylene is reacted with chlorine in a ⁇ 1 (: 1 aqueous solution).
  • the aqueous phase method is a method of chlorination using, for example, an emulsifier and a dispersant together with water
  • the acidic method is, for example, chlorination of an acid aqueous solution such as an aqueous solution of hydrochloric acid (HC1) using an emulsifier and a dispersant. It is a way.
  • the chlorination reaction may be performed by dispersing polyethylene with water, an emulsifier and a dispersant, and then reacting with a catalyst and chlorine.
  • the emulsifier is for example polyether or polyalkylene oxide.
  • the dispersant is for example a polymer salt or an organic acid polymer salt.
  • the organic acid may be, for example, methacrylic acid, acrylic acid, or the like.
  • the catalyst is, for example, a chlorination catalyst, and in another example, a peroxide or an organic peroxide.
  • the chlorine may be used alone or in admixture with an inert gas, for example.
  • the final chlorination reaction temperature is about 60 To about 150 ° 0, about 70X: to about 145 ° 0, about 90X: to about 140X :, or about 130 To about 137 I :.
  • the chlorination reaction time is for example about 10 minutes to about 10 hours, about 1 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • the time is about 6 hours, or about 2 hours to about 4 hours.
  • the chlorination reaction is another example of 100 parts by weight of polyethylene, about 0.01 parts by weight to about 1.0 parts by weight, or about 0.05 parts by weight to about 0.5 parts by weight, and about 0.1 parts by weight to about 10 parts by weight, or about 0.5 parts by weight of the dispersant.
  • the dispersant After dispersing about 5.0 parts by weight in water, about 0.01 parts by weight to about 1.0 parts by weight or about 0.05 parts by weight to about 0.5 parts by weight of chlorine and about 80 parts by weight to about 200 parts by weight or about 100 parts by weight to about 150 parts by weight can be added to react.
  • the chlorinated polyethylene produced by the reaction or chlorination process may be obtained as a powdered chlorinated polyethylene through further neutralization (washing) and washing (drying), for example.
  • the neutralization process may be a process of neutralizing the reactant, which has undergone chlorination, at about 70 ° C. to about 90 V or about 75 ° C. to about 80 ° C. as a basic solution for about 4 hours to about 8 hours.
  • the chlorinated polyolefin obtained according to the manufacturing method of the above-described embodiment has excellent chlorine distribution uniformity in the chlorinated polyolefin due to the narrow molecular weight distribution, and has high elongation and excellent compatibility with PVC. It is done.
  • the chlorinated polyolefin may have an elongation of at least 900% or from 900% to 1500%, or at least 950% or at 950% to 1400%, or at least 1200% or at 1200 to 1300%.
  • elongation (%) of chlorinated polyolefin can be measured by the method based on ASTMD-2240.
  • the chlorinated polyolefin may have a chlorine content of 20 to 45 wt%, 31 to 40 wt%, or 33 to 38 wt%.
  • the chlorine content of the chlorinated polyolefin is combustion ion chromatography (Combust ion IC, Ion 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • the combustion ion chromatography method uses a combustion IC (ICS-5000 / AQF-2100H) device equipped with an IonPac AS18 (4 x 250 mm) column, internal device temperature (Inlet temperature) 900 ° C, external Out let temperature Can be measured under flow conditions of 1 mL / min using K0H (30.5 mM) as eluent at a combustion temperature of 1000 ° C.
  • the chlorinated polyolefin may be, for example, a random chlorinated polyolefin such as random chlorinated polyethylene.
  • the chlorinated polyolefin prepared according to the present invention is excellent in chemical resistance, weather resistance, flame retardancy, processability and impact strength reinforcing effect, and is widely used as an impact modifier of PVC pipe and window profile. III.
  • PVC composition ICS-5000 / AQF-2100H
  • a PVC composition comprising chlorinated polyolefin and vinyl chloride polymer (PVC) prepared by the method as described above.
  • the PVC composition may include about 1% to about 40% by weight of chlorinated polyolefin and about 60% to about 99% by weight of vinyl chloride polymer (PVC) prepared by the method described above.
  • the chlorinated polyolefin may be, for example, about 1% to about 15%, or about 5% to about 10% by weight.
  • the vinyl chloride polymer (PVC) may be, for example, about 85% to about 99% by weight, or about 90% to about 95% by weight. 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • the PVC composition of the present disclosure may comprise about 1% to about 20% by weight of chlorinated polyethylene of the present disclosure, about 70% to about 90% by weight of vinyl chloride polymer (PVC), about 1% to about Ti0 2. 10% by weight, about 1% to about 10% by weight of CaC0 3 and about 1% to about 10% by weight composite stearate (Ca, Zn-stearate).
  • PVC vinyl chloride polymer
  • the PVC composition may have a plasticization time of about 170 seconds or less, about 150 seconds or less, or about 150 seconds to about 100 seconds.
  • the PVC composition has a Charpy impact strength of about 10.9 kJ / m 2 measured at a low temperature of ⁇ 10 ° C., when combined with vinyl chloride polymer (PVC), for example, under 160 ° C. to 190 ° C. conditions. Or about 10.9 kJ / m 2 to about 17 kJ / m 2 , or about 11.1 kJ / m 2 or more or about 11.1 kJ / m 2 to about 16.5 kJ / m 2 , or about 13.8 kJ / m 2 or more or about 13.8 kJ / m 2 to about 16.1 kJ / m 2 . Within this range, the physical property balance and productivity are excellent.
  • the Charpy impact strength (-10 ° C, kJ / m 2 ) of the PVC composition can be measured by the method according to ASTM D-256.
  • the polyolefin having a narrow molecular weight distribution can be very effectively by introducing the content of the promoter in an optimum range in the presence of a hybrid supported metallocene catalyst containing two or more metallocene compounds having a specific chemical structure. It can manufacture.
  • the polyolefin according to the production method of the present invention is excellent in the chlorine distribution uniformity in polyethylene during chlorination (chlor inat ion), it is possible to significantly improve the elongation of the chlorinated polyolefin and compatibility with PVC and impact reinforcement performance, As a result, it has excellent chemical resistance, weather resistance, flame retardancy, processability and impact strength reinforcing effect. It can be suitably applied as impact modifier of window profile.
  • T-Buty- 0- (CH 2) 6 -C 9 H 7 was dissolved in THF at 78 ° C., and normal butyllium (n_BuLi) was slowly added, and the reaction mixture was heated to room temperature for 8 hours.
  • the solution was again synthesized as described above in a suspension solution of ZrCl 4 ( THF) 2 ( 1.70 g, 4.50 mmol) / THF (30 mL) at -78 ° C as li thium sal t) The solution was slowly added and reacted for about 6 hours at room temperature. All volatiles were dried in vacuo and the resulting oily liquid material was filtered off by addition of a hexane solvent.
  • T-ButW-0- (CH 2) 6 _Cl is prepared by the method presented in Tetrahedron Lett. 2951 (1988 ) using 6- chlorohexanol, and 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • the nucleic acid was removed at 70 ° C to obtain a pale yellow liquid.
  • the obtained liquid was identified to be the desired methyl (6-t-butoxy hexyl) di chi orosi lane ⁇ compound through 1 H-NMR. 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • Dilithium salt (di 1 i thium sal ts) slurry solution was slowly added to a slurry solution of ZrCl 4 ( THF) 2 (2.26 g, 6 mmol) / nucleic acid (20 mL) and further reacted at room temperature for 8 hours. The precipitate was filtered and washed several times with nucleic acid to give (tert-Bu-0- (CH 2) 6) MeSi (9-C 13 H 9) 2 ZrCl 2 compound as a red solid (4.3 g, yield 94.5%). . 0 606): 1.15 (911, £), 1.26 (3 ⁇ £), 1.58 (2 «0 ,
  • the dried silica 10 sugar was put in a glass reactor at room temperature, and 100 kPa of toluene was further added and stirred. After sufficiently dispersing the silica, 100.6% methylaluminoxane (()) / toluene solution was added to 60.6 and the temperature was increased to 80 ° (1! After lowering to, toluene was washed with a sufficient amount of toluene to remove the unreacted aluminum compound, and the remaining toluene was removed by depressurizing.Toluene 100 1 was added again, the first metallocene compound according to Synthesis Example 1 0.25 was the reaction for 1 hour by introducing, as by dissolving in the out fall of toluene.
  • the dried silica 10 urine was put into a glass reactor at room temperature, and 100 kPa of toluene was further added and stirred. After sufficiently dispersing the silica, 60.6 was added to 10% methylaluminoxane ( ⁇ / toluene solution) and the reaction mixture was slowly reacted by raising the temperature to 80 ° (: lowering the temperature to 200 ° C for 16 hours.
  • the reactor was maintained at 82 ° C, pressure was maintained at 7.0 kg / cm 2 to 7.5 kg / cm 2 , and the polymerization was carried out for about 4 hours.
  • the polymerization product was then made into final polyethylene via a solvent removal plant and a dryer.
  • the polyethylene produced was mixed with 1000 ppm of calcium stearate (manufactured by Dubon Industries) and 2000 ppm of heat stabilizer 21B (manufactured by Songwon Industries) and then made into pellets.
  • Example 2 Preparation of Polyolefin
  • polyethylene was prepared in the same manner as in Example 1, except that triethylaluminum (TEAL) was adjusted at a flow rate of 110 cc / hr and 90 cc / hr, respectively.
  • TEAL triethylaluminum
  • polyethylene was prepared in the same manner as in Example 1, except that the polymerization process was performed using the hybrid supported metallocene catalyst according to Preparation Example 3 (precursors of Synthesis Examples 2 and 2). Prepared. Comparative Example 4: Preparation of Polyolefin
  • MIs . o and MFRRC 21.6 / 5) Melt Index (MI 5. o) for polyethylene was measured according to ASTM D1238 (Condition E, 190 ° C, 5.0 kg load) specification. In addition, the melt flow rate ratio (MFRR, 21.6 / 5) for polyethylene was calculated by dividing MFR 21.6 by MFR 5 and MFR 21.6 measured under a temperature of 190 ° C and a load of 21.6 kg according to ISO 1133. And MFR 5 according to ISO 1133 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • Elongation (%) of CPE The elongation (%) of chlorinated polyethylene was measured by the method according to ASTM D-2240.
  • Sharpy impact strength (-10 C kJ / m ! ) Of PVC compound: Sharpy impact strength (-10 ° C, kJ / m 2 ) was measured by the method according to ASTM D-256.
  • Examples 1 to 4 implement a high elongation after chlorination based on the narrow molecular weight distribution of high density polyethylene 2019/139355 1 »(: 1 ⁇ 1 ⁇ 2019/000354
  • Examples 3 and 4 exhibited a melt flow index (MFRR) of 10 or less through the reduction of TEAL input in the polymerization process, not only a narrow molecular weight distribution, but also excellent elongation characteristics of more than 1200%, respectively. It can be seen that the impact strength is improved to 13.8 kJ / m 2 and 16 kJ / m 2 .
  • Comparative Examples 1 to 5 have shown a problem that the elongation of the chlorinated polyethylene is lowered and the impact strength of the PVC compound is lowered due to the wider molecular weight distribution of the high density polyethylene.
  • Comparative Examples 1 to 5 show a high melt flow index (MFRR) of 13.8 to 14.5, and the elongation and impact strength inferior to the wider molecular weight distribution were shown.
  • Comparative Example 2 was found to have a lower molecular weight distribution effect in spite of the TEAL input control in the process, thereby lowering the impact strength of the final PVC compound.

Abstract

The present invention relates to a method for preparing a polyolefin by using a supported hybrid metallocene catalyst. According to the present invention, a polyolefin having a narrow molecular weight distribution can be very effectively prepared by injecting an amount of a cocatalyst in the optimum range in the presence of a supported hybrid metallocene catalyst comprising two or more types of metallocene compounds having specific chemical structures. Particularly, a polyolefin prepared according to the preparation method of the present invention shows excellent chlorine distribution uniformity within a polyolefin during chlorination, and can remarkably improve the elongation, the compatability with PVC, the impact modification performance and the like of a chlorinated polyolefin, thereby having excellent chemical resistance, weather resistance, flame retardancy, processability, impact strength modification effect and the like, and thus is suitably applicable to an impact modifier of a PVC pipe and a window profile, and the like.

Description

2019/139355 1»(:1^1{2019/000354  2019/139355 1 »(: 1 ^ 1 {2019/000354
【발명의 명칭】 [Name of invention]
혼성 담지 메탈로센촉매를이용한폴리올레핀의 제조방법  Method for producing polyolefin using hybrid supported metallocene catalyst
【기술분야】  Technical Field
관련출원들과의 상호인용  Citation with Related Applications
본 출원은 2018년 1월 11일자 한국 특허 출원 제 10-2018-0004040호 및 2019년 1월 8일자 한국 특허 출원 제 10-2019-0002462호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은본명세서의 일부로서 포함된다. 본 발명은 혼성 담지 메탈로센 촉매를 이용한 폴리올레핀의 제조 방법에 관한것이다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0004040 of January 11, 2018 and Korean Patent Application No. 10-2019-0002462 of January 8, 2019, All content disclosed in the literature is included as part of this specification. The present invention relates to a method for producing a polyolefin using a hybrid supported metallocene catalyst.
【배경기술】 Background Art
올레핀 중합촉매계는지글러 나타 및 메탈로센 촉매계로 분류할수 있으며, 이 두가지의 고활성 촉매계는각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50 년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 혼재하는 다활성점 촉매細 - 근
Figure imgf000002_0001
Olefin polymerization catalysts can be categorized into Ziegler-Natta and metallocene catalysts, and these two highly active catalysts have been developed to suit their respective characteristics. Ziegler-Natta catalysts have been widely applied to existing commercial processes since the invention in the 50s, but multi-active catalysts with multiple active sites
Figure imgf000002_0001
공단량체의 조성 분포가균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다. 특히, 넓은 분자량 분포로 인해 상대적으로 낮은 분자량을 갖는중합체 쇄들로인해 물성 저하가야기될수 있다. 한편, 메탈로센 촉매는 메탈로센 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고있다. 미국특허 제 5,032,562호에는두 개의 상이한전이금속촉매를 한 개의 담지 촉매 상에 지지시켜중합촉매를제조하는방법이 기재되어 있다. 2019/139355 1»(:1^1{2019/000354 Since the composition distribution of the comonomer is not uniform, there is a problem that there is a limit in securing the desired physical properties. In particular, due to the wide molecular weight distribution, lower physical properties may be caused by polymer chains having a relatively low molecular weight. Meanwhile, the metallocene catalyst is composed of a combination of a main catalyst composed mainly of a metallocene compound and a cocatalyst composed of an organometallic compound composed of aluminum as the main component. , Copolymerization properties, molecular weight, crystallinity, etc. can be changed. U. S. Patent No. 5,032, 562 describes a method for preparing a polymerization catalyst by supporting two different transition metal catalysts on one supported catalyst. 2019/139355 1 »(: 1 ^ 1 {2019/000354
이는 고분자량을 생성하는 티타늄 (Ti ) 계열의 지글러-나타 촉매와 저분자량을 생성하는 지르코늄 (Zr) 계열의 메탈로센 촉매를 하나의 지지체에 담지시켜 이정 분산 (bimodal di str ibut ion) 고분자를 생성하는 방법으로써, 담지 과정이 복잡하고, 조촉매로 인해 중합체의 형상 (morphology)이 나빠지는단점이 있다. 미국 특허 제 5,525,678 호에는 메탈로센 화합물과 비메탈로센 화합물을 담체 위에 동시에 담지시켜 고분자량의 중합체와 저분자량의 중합체가동시에 중합될 수 있는올레핀 중합용 촉매계를사용하는 방법을 기재하고 있다. 이는 메탈로센 화합물과 비메탈로센 화합물들을 각각 따로 담지시켜야하고, 담지 반응을위해 담체를 여러 가지 화합물로전처리해야 하는단점이 있다. 미국 특허 제 5,914,289 호에는 각각의 담체에 담지된 메탈로센 촉매를 이용하여 고분자의 분자량 및 분자량 분포를 제어하는 방법이 기재되어 있으나, 담지 촉매 제조시 사용된 용매의 양 및 제조시간이 많이 소요되고, 사용되는 메탈로센 촉매를 담체에 각각 담지시켜야 하는 번거로움이 따랐다. 더욱이, 이러한 종래 기술에 따르면, 원하는 수준의 밀도 및 좁은 분자량 분포를 동시에 만족시키는 폴리올레핀, 특히, 에틸렌 (공)중합체의 효과적으로제조하기 어렵다는단점이 있다. 특히, CPE( Chlor inated Polyethylene) 등의 염소화 폴리올레핀은 PVC 와 컴파운딩을 통해 파이프 및 윈도우 프로파일 (Window Prof i le)의 충격보강제 등의 용도로 많이 사용되는데, 일반적으로폴리에틸렌을현탁액 상태에서 클로린과 반응시켜 제조하거나 , 폴리에틸렌을 HC1 수용액에서 클로린과 반응시켜 제조할 수 있다. 이러한 PVC 컴파운드 제품의 경우, 우수한 충격강도가 요구되는데, 염소화 폴리올레핀의 물성에 따라 컴파운드의 강도가 달라진다. 현재 많이 알려져 있는 범용 염소화 2019/139355 1»(:1^1{2019/000354 It is a bimodal di str ibut ion polymer supported by supporting a titanium (Ti) -based Ziegler-Natta catalyst that generates high molecular weight and a zirconium (Zr) -based metallocene catalyst that produces low molecular weight on one support. As a production method, there are disadvantages in that the supporting process is complicated and the morphology of the polymer is deteriorated due to the promoter. U.S. Patent No. 5,525,678 describes a method of using a catalyst system for polymerization of olefins which can be polymerized simultaneously with high molecular weight polymers and low molecular weight polymers by simultaneously supporting a metallocene compound and a nonmetallocene compound on a carrier. This has the disadvantage that the metallocene compound and the nonmetallocene compound must be supported separately, and the carrier must be pretreated with various compounds for the supported reaction. U.S. Patent No. 5,914,289 describes a method for controlling the molecular weight and molecular weight distribution of a polymer using a metallocene catalyst supported on each carrier, but the amount of solvent used and the time required for preparing the supported catalyst are high. There was a hassle of supporting the metallocene catalyst to be used on the carrier, respectively. Moreover, according to this prior art, there is a disadvantage that it is difficult to effectively produce polyolefins, in particular ethylene (co) polymers, which simultaneously satisfy a desired level of density and narrow molecular weight distribution. In particular, chlorinated polyolefins such as Chlorinated Polyethylene (CPE) are widely used for the purpose of impact modifiers for pipes and window profiles through compounding with PVC. Generally, polyethylene is reacted with chlorine in suspension. Or by reacting polyethylene with chlorine in aqueous HC1 solution. In the case of such PVC compound products, excellent impact strength is required, and the strength of the compound varies depending on the physical properties of the chlorinated polyolefin. General Purpose Chlorination Now Known 2019/139355 1 »(: 1 ^ 1 {2019/000354
폴리올레핀의 경우, 지글러-나타 촉매를 사용한 폴리올레핀을 적용하기 때문에 넓은 분자량 분포에 따라 폴리올레핀내에서 염소 분포 균일성이 떨어지며 1 (:와의 컴파운딩 했을때 충격강도가부족한단점이 있다.
Figure imgf000004_0001
In the case of polyolefin, since polyolefin using Ziegler-Natta catalyst is applied, chlorine distribution uniformity decreases in polyolefin according to wide molecular weight distribution, and when compounded with 1 (), the impact strength is insufficient.
Figure imgf000004_0001
폴리올레핀에서 우수한 염소 분포 균일성이 요구되며, 이를 위하여 좁은 분자량 분포를 나타내는 폴리올레핀을 제조할 수 있는 기술의 개발이 계속적으로요구되고 있다.  Excellent chlorine distribution uniformity is required in polyolefins, and for this purpose, there is a continuous demand for development of a technology capable of producing polyolefins having a narrow molecular weight distribution.
10 【발명의 상세한설명】 10 【Detailed Description of Invention】
【기술적 과제】  [Technical problem]
본 발명은 死 컴파운드의 충격강도 향상을 위하여 좁은 분자량 분포가 나타나는 폴리올레핀을 보다 용이하고 효과적으로 제조하는 방법을 제공하기 위한것이다.  The present invention is to provide a method for producing a polyolefin showing a narrow molecular weight distribution more easily and effectively in order to improve the impact strength of the shock compound.
1515
또한, 본 발명은 상기 방법으로 폴리올레핀을 제조한 후에 염소화 반응을 추가로 수행하는 염소화 폴리올레핀의 제조 방법을 제공하기 위한 것이다.  In addition, the present invention is to provide a method for producing a chlorinated polyolefin to further perform a chlorination reaction after producing the polyolefin by the above method.
20 또한, 본 발명은 상기 방법으로 제조되는 염소화 폴리올레핀과 염화비닐중합체(^ 룰포함하는 조성물을제공하기 위한것이다. In addition, the present invention is to provide a composition comprising a chlorinated polyolefin and a vinyl chloride polymer (^ rule) produced by the above method.
【기술적 해결방법】 Technical Solution
본 발명은, 하기 화학식 1로 표시되는 1종 이상의 제 1 메탈로센 25 화합물 및 하기 화학식 2로 표시되는 1종 이상의 제 2 메탈로센 화합물이 담체에 담지된 메탈로센 담지 촉매, 및 조촉매의 존재 하에 , 상기 조촉매를 70 내지 140 / 로 투입하면서 올레핀계 단량체를 중합하는 단계를 포함하는, 폴리올레핀의 제조방법을제공한다. The present invention, to metallocene supported catalyst to the the metallocene compound to the second metal at least one represented by the first sensor 25, the compound and the formula 2 as a first metal at least one represented by the general formula (1) supported on a support metal, and a co-catalyst In the presence of, it provides a method for producing a polyolefin comprising the step of polymerizing an olefinic monomer while introducing the promoter at 70 to 140 /.
[화학식 1] [Formula 1]
Figure imgf000004_0002
2019/139355 1»(:1^1{2019/000354
Figure imgf000004_0002
2019/139355 1 »(: 1 ^ 1 {2019/000354
상기 화학식 1에서, In Chemical Formula 1,
은 4족전이금속이고; Is a Group 4 transition metal;
Figure imgf000005_0001
Figure imgf000005_0001
4, 5,6, 7 -테트라하이드로 -1 -인데닐 라디칼로 이루어진 군으로부터 선택된 어느하나이고, 이들은 01내지 020의 탄화수소로치환될수 있으며;Any one selected from the group consisting of 4, 5,6, 7-tetrahydro-1-indenyl radicals, which may be substituted with 01 to 020 hydrocarbons;
Figure imgf000005_0002
Figure imgf000005_0002
치환되거나 치환되지 않은 01 내지 020의 알킬, 치환되거나 치환되지 않은 01 내지 (:10의 알콕시, 치환되거나 치환되지 않은 02 내지 020의 알콕시알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 06내지 (:10의 아릴옥시, 치환되거나치환되지 않은 02내지 020의 알케닐, 치환되거나 치환되지 않은 07 내지 040의 알킬아릴, 치환되거나 치환되지 않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 08 내지 040의 아릴알케닐, 또는 치환되거나 치환되지 않은 02 내지 (:10의 알키닐이고; Substituted or unsubstituted 01-020 alkyl, substituted or unsubstituted 01-(: 10 alkoxy, substituted or unsubstituted alkoxyalkyl 02-020, substituted or unsubstituted 06-020 aryl, substituted or unsubstituted Unsubstituted 06 to (10: aryloxy, substituted or unsubstituted 02 to 020 alkenyl, substituted or unsubstituted alkylaryl of 07 to 040, substituted or unsubstituted arylalkyl, substituted or unsubstituted Unsubstituted 08-040 arylalkenyl or substituted or unsubstituted 02-(: 10) alkynyl;
은 각각서로 독립적으로 할로겐 원자, 치환되거나 치환되지 않은 Are each independently a halogen atom, substituted or unsubstituted
01 내지 020의 알킬, 치환되거나 치환되지 않은 02 내지 020와 알케닐, 치환되거나 치환되지 않은 07 내지 040의 알킬아릴, 치환되거나 치환되지 않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 01 내지 020의 알킬리덴, 치환되거나 치환되지 않은 아미노기, 치환되거나 치환되지 않은 0,2 내지 020의 알킬알콕시, 또는 치환되거나 치환되지 않은 내지 040의 아릴알콕시이고; 01 to 020 alkyl, substituted or unsubstituted 02 to 020 and alkenyl, substituted or unsubstituted alkylaryl of 07 to 040, substituted or unsubstituted arylalkyl of 07 to 040, optionally substituted 06 to 020 Aryl, substituted or unsubstituted 01 to 020 alkylidene, substituted or unsubstituted amino group, substituted or unsubstituted alkylalkoxy of 0,2 to 020, or substituted to unsubstituted arylalkoxy;
II은 1또는 0이고; II is 1 or 0;
2019/139355 1»(:1^1{2019/000354 2019/139355 1 »(: 1 ^ 1 {2019/000354
[화학식 2] [Formula 2]
Figure imgf000006_0001
Figure imgf000006_0001
상기 화학식 2에서, In Chemical Formula 2,
, ^는 각각 서로 독립적으로 치환되거나 치환되지 않은 다 내지 020의 알킬, 치환되거나 치환되지 않은 01 내지 (:10의 알콕시, 치환되거나 치환되지 않은 02 내지 020의 알콕시알킬, 또는 치환되거나 치환되지 않은 06내지 020의 아릴이고;  , ^ Are each independently of each other substituted or unsubstituted alkyl, substituted or unsubstituted 01 to (: 10 alkoxy, substituted or unsubstituted 02 to 020 alkoxyalkyl, or substituted or unsubstituted 06 To 020 aryl;
쇼는탄소, 게르마늄, 또는규소원자함유라디칼중하나이상또는 이들의 조합이고;  The show is one or more of carbon, germanium, or silicon atom-containing radicals or a combination thereof;
은 4족전이금속이며 ;  Is a group 4 transition metal;
X1및 X2는서로동일하거나상이하고, 각각독립적으로할로겐 원자, 치환되거나 치환되지 않은 Cl 내지 020의 알킬, 치환되거나 치환되지 않은 02내지 (:10의 알케닐, 치환되거나치환되지 않은 0내지 040의 알킬아릴, 치환되거나 치환되지 않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 01 내지 020의 알킬리덴, 치환되거나치환되지 않은아미노기, 02내지 020의 알킬알콕시, 또는치환되거나치환되지 않은 07내지 040의 아릴알콕시이고; X 1 and X 2 are the same as or different from each other, and each independently a halogen atom, a substituted or unsubstituted alkyl of Cl to 020, a substituted or unsubstituted 02 to (alkenyl of 10; 0 to 0 unsubstituted) 040 alkylaryl, substituted or unsubstituted arylalkyl of 07 to 040, substituted or unsubstituted aryl of 06 to 020, substituted or unsubstituted alkylidene of 01 to 020, substituted or unsubstituted amino group, 02 to 020 Alkylalkoxy, or substituted or unsubstituted 07 to 040 arylalkoxy;
내지 묘17은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐 원자, 치환되거나 치환되지 않은 01 내지 020의 알킬, 치환되거나 치환되지 않은 C2 내지 020의 알케닐, 치환되거나 치환되지 않은 01 내지 ◦20의 알킬실릴, 치환되거나 치환되지 않은 01 내지 £20의 실릴알킬, 치환되거나치환되지 않은 01내지 020의 알콕시실릴, 치환되거나치환되지 않은 01 내지 (:10의 알콕시, 치환되거나 치환되지 않은 02 내지 020의 2019/139355 1»(:1^1{2019/000354 To Figure 17 are the same as or different from each other, and each independently hydrogen, a halogen atom, substituted or unsubstituted alkyl of 01 to 020, substituted or unsubstituted C2 to 020 alkenyl, substituted or unsubstituted 01 to ◦20 Alkylsilyl, substituted or unsubstituted 01 to £ 20 silylalkyl, substituted or unsubstituted 01 to 020 alkoxysilyl, substituted or unsubstituted 01 to (10: alkoxy, substituted or unsubstituted 02 to 020 of 2019/139355 1 »(: 1 ^ 1 {2019/000354
알콕시알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 C6내지 (:10의 아릴옥시 , 치환되거나치환되지 않은 07내지 ◦40의 알킬아릴, 치환되거나 치환되지 않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 08 내지 040의 아릴알케닐, 또는 치환되거나 치환되지 않은 02 내지 (:10의 알키닐이며, ¾ 내지 ¾7 중 서로 인접하는 2개 이상이 서로 연결되어 치환또는 비치환된 지방족 또는 방향족고리를 형성할수있고, Alkoxyalkyl, substituted or unsubstituted 06 to 020 aryl, substituted or unsubstituted C6 to (10: aryloxy, substituted or unsubstituted 07 to 40 alkylaryl, substituted or unsubstituted 07 to 040 Arylalkyl, substituted or unsubstituted arylalkenyl of 08 to 040, or substituted or unsubstituted alkynyl of 02 to (: 10), and two or more adjacent groups of ¾ to ¾ 7 are connected to each other and substituted or unsubstituted Can form a ringed aliphatic or aromatic ring,
내지 중적어도하나는하기 화학식 3으로표시되는것이고, I?9 내지 7중적어도하나는하기 화학식 3으로표시되는것이고, At least one is represented by the following formula (3), I? At least one of 9 to 7 is represented by the following formula (3),
[화학식 3] [Formula 3]
1^  1 ^
상기 화학식 3에서,  In Chemical Formula 3,
은 01내지 (:10의 알킬렌이며 ,  Is 01 to (: 10 alkylene,
이은 06내지 020의 아릴, 04내지 020의 시클로알킬, 또는 02내지 020의 알콕시알킬이다. 또한, 본 발명은 상술한 바와 같은 방법에 따라 제조되는 폴리올레핀을제공한다. 또한, 본발명은, 상기 폴리올레핀을클로린(,此10 116)으로처리하여 염소화하는단계를포함하는염소화폴리올레핀의 제조방법을제공한다. 또한, 본 발명은 상술한 바와 같은 방법에 따라 제조되는 염소화 폴리올레핀을제공한다. 또한, 본 발명은 상기 염소화 폴리올레핀 및 염소화 폴리올레핀 및
Figure imgf000007_0001
2019/139355 1»(:1^1{2019/000354
These are 06 to 020 aryl, 04 to 020 cycloalkyl, or 02 to 020 alkoxyalkyl. The present invention also provides a polyolefin prepared according to the method as described above. The present invention also provides a method for producing a chlorinated polyolefin comprising treating the polyolefin with chlorine (, # 10 116) to chlorinate it. The present invention also provides a chlorinated polyolefin prepared according to the method as described above. In addition, the present invention is the chlorinated polyolefin and chlorinated polyolefin and
Figure imgf000007_0001
2019/139355 1 »(: 1 ^ 1 {2019/000354
본발명에서, 제 1, 제 2등의 용어는다양한구성요소들을설명하는 데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는목적으로만사용된다. In the present invention, the terms first, second, etc. are used to describe various components, which terms are only used to distinguish one component from another.
5 또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다’’, "구비하다" 또는 "가지다” 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 10 존재함을 지정하려는 것이지, 하나또는 그 이상의 다른 특징들이나숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는것으로이해되어야한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 15 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는본발명을특정한개시 형태에 대해 한정하려는 것이 아니며, 본발명의 사상및 기술범위에 포함되는모든 변경, 균등물내지 대체물을 포함하는것으로이해되어야한다. 5 In addition, the terminology used herein is for the purpose of describing example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise", "comprise" or "have" are intended to designate that the features, numbers, steps, components, or combinations thereof, are 10 , or one or more other It should be understood that it does not preclude the existence or addition of features or numbers, steps, components, or combinations thereof. The present invention is to be described in detail to illustrate the bar, in a particular embodiment 15 may have a variety of forms can be applied to various modifications. However, this is not intended to limit the invention to any particular form of disclosure, but should be understood to include all changes, equivalents, and substitutes falling within the spirit and scope of the invention.
20 이하 발명의 구체적인 구현예에 따른 폴리올레핀의 제조 방법 및 이로부터 제조되는 폴리올레핀, 염소화 폴리올레핀의 제조 방법 및 이로부터 제조되는 염소화 폴리올레핀, 및 상기 염소화 폴리올레핀을
Figure imgf000008_0001
20 or less according to a specific embodiment of the present invention, a method for producing a polyolefin and a polyolefin prepared therefrom, a method for producing a chlorinated polyolefin and a chlorinated polyolefin prepared therefrom, and the chlorinated polyolefin
Figure imgf000008_0001
25 1. 폴리올레핀의 제조방법 및폴리올레핀 25 1. Manufacturing method of polyolefin and polyolefin
발명의 일 구현예에 따르면, 상기 화학식 1로 표시되는 1종 이상의 제 1 메탈로센 화합물 및 상기 화학식 2로 표시되는 1종 이상의 제 2 메탈로센 화합물이 담체에 담지된 메탈로센 담지 촉매, 및 조촉매의 존재 하에, 상기 조촉매를 70 내지 140 ( / 로 투입하면서 올레핀계 단량체를 30 중합하는단계를포함하는폴리올레핀의 제조방법이 제공될수 있다. 2019/139355 1»(:1^1{2019/000354 According to one embodiment of the present invention, a metallocene supported catalyst having at least one first metallocene compound represented by Formula 1 and at least one second metallocene compound represented by Formula 2 supported on a carrier, And in the presence of a cocatalyst, a method for producing a polyolefin comprising the step of polymerizing the olefin monomer 30 while the cocatalyst is added to 70 to 140 (/) can be provided. 2019/139355 1 »(: 1 ^ 1 {2019/000354
본 발명에 따르면, 특정의 메탈로센 화합물을 포함하는 혼성 담지 족매를 이용하여 조족매 투입량을최적화하여 올레핀 중합공정을수행하는 경우에 , 컴파운드의 충격강도 향상을 위하여 염소화 폴리올레핀에서 우수한 염소 분포 균일성이 나타나며, 이를 위하여 좁은 분자량 분포를 나타내는폴리올레핀을효과적으로제조할수 있다. 한편, 발명의 일 구현예에 따르면, 상기 중합 반응은 하기 화학식 1로 표시되는 1종 이상의 제 1 메탈로센 화합물 및 하기 화학식 2로 표시되는 1종 이상의 제 2 메탈로센 화합물이 담체에 담지된 메탈로센 담지 촉매의 존재 하에 수행한다. According to the present invention, in the case of performing the olefin polymerization process by optimizing the amount of co-solvent by using a mixed support group containing a specific metallocene compound, excellent chlorine distribution uniformity in the chlorinated polyolefin to improve the impact strength of the compound In this case, a polyolefin having a narrow molecular weight distribution can be effectively produced. On the other hand, according to one embodiment of the invention, the polymerization reaction is one or more first metallocene compound represented by the formula (1) and at least one second metallocene compound represented by the formula (2) is supported on the carrier It is carried out in the presence of a metallocene supported catalyst.
[화학식 1] 고; [Formula 1] go;
Figure imgf000009_0001
일하거나상이하고, 각각독립적으로 인데닐 및 4, 5, 6, 7 -테트라하이드로 -1 -인데닐 라디칼로 이루어진 군으로부터 선택된 어느하나이고, 이들은 01내지 020의 탄화수소로치환될수있으며;
Figure imgf000009_0001
Working or different, each independently selected from the group consisting of indenyl and 4, 5, 6, 7-tetrahydro-1 -indenyl radicals, which may be substituted with 01 to 020 hydrocarbons;
및 는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 치환되거나 치환되지 않은 01 내지 020의 알킬, 치환되거나 치환되지 않은 01 내지 (:10의 알콕시, 치환되거나 치환되지 않은 02 내지 020의 알콕시알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 06내지 (:10의 아릴옥시, 치환되거나치환되지 않은 02내지 020의 알케닐, 치환되거나 치환되지 않은 07 내지 040의 알킬아릴, 치환되거나 치환되지 않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 08 내지 040의 아릴알케닐, 또는 치환되거나 치환되지 않은 02 내지 。10의 알키닐이고;  And are the same as or different from each other, and each independently hydrogen, substituted or unsubstituted alkyl of 01 to 020, substituted or unsubstituted 01 to (10: alkoxy, substituted or unsubstituted alkoxyalkyl of 02 to 020, substituted Optionally substituted 06-020 aryl, substituted or unsubstituted 06 to (: 10 aryloxy, substituted or unsubstituted 02 to 020 alkenyl, substituted or unsubstituted alkylaryl of 07 to 040, substituted Unsubstituted arylalkyl of 07 to 040, substituted or unsubstituted arylalkenyl of 08 to 040, or substituted or unsubstituted alkynyl of 02 to .10;
은 각각서로 독립적으로 할로겐 원자, 치환되거나 치환되지 않은 01 내지 020의 알킬, 치환되거나 치환되지 않은 02 내지 020의 알케닐, 치환되거나 치환되지 않은 07 내지 040의 알킬아릴, 치환되거나 치환되지 2019/139355 1»(:1/10公019/000354 Are each independently a halogen atom, substituted or unsubstituted alkyl of 01 to 020, substituted or unsubstituted alkenyl, substituted or unsubstituted alkylaryl of 07 to 040, substituted or unsubstituted 2019/139355 1 »(: 1/10 公 019/000354
않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 Cl 내지 020의 알킬리덴, 치환되거나 치환되지 않은 아미노기, 치환되거나 치환되지 않은 02 내지 020의 알킬알콕시, 또는 치환되거나 치환되지 않은 07 내지 040의 아릴알콕시이고; Unsubstituted arylalkyl of 07 to 040, substituted or unsubstituted aryl of 06 to 020, substituted or unsubstituted alkylidene of Cl to 020, substituted or unsubstituted amino group, substituted or unsubstituted alkylalkoxy of 02 to 020 , Or substituted or unsubstituted arylalkoxy of 07 to 040 ;
11은 1또는 0이고; 11 is 1 or 0;
Figure imgf000010_0001
Figure imgf000010_0001
상기 화학식 2에서,  In Chemical Formula 2,
01, 02는 각각 서로 독립적으로 치환되거나 치환되지 않은 ci 내지0 1 , 0 2 are each independently substituted or unsubstituted ci to
020의 알킬, 치환되거나치환되지 않은 Cl 내지 (:10의 알콕시, 치환되거나 치환되지 않은 02 내지 02◦의 알콕시알킬, 또는 치환되거나 치환되지 않은 06내지 020의 아릴이고; 020 alkyl, substituted or unsubstituted Cl to (10: alkoxy, substituted or unsubstituted 02 to 02o alkoxyalkyl, or substituted or unsubstituted 06 to 020 aryl;
쇼는탄소, 게르마늄, 또는규소원자함유라디칼중하나이상또는 아들의 조합이고; The show is one or more of carbon, germanium, or silicon atom-containing radicals or a combination of sons;
Figure imgf000010_0002
Figure imgf000010_0002
X1및 X2는서로동일하거나상이하고, 각각독립적으로할로겐 원자, 치환되거나 치환되지 않은 01 내지 020의 알킬, 치환되거나 치환되지 않은 02내지 (:10의 알케닐, 치환되거나치환되지 않은 내지 040의 알킬아릴, 치환되거나 치환되지 않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 Cl 내지 020의 알킬리덴, 치환되거나치환되지 않은아미노기, 02내지 020의 알킬알콕시, 또는치환되거나치환되지 않은 07내지 040의 아릴알콕시이고; 2019/139355 1»(:1^1{2019/000354 X 1 and X 2 are the same as or different from each other, and are each independently a halogen atom, substituted or unsubstituted alkyl of 01 to 020, substituted or unsubstituted 02 to (: 10 alkenyl, substituted or unsubstituted to 040 Alkylaryl, substituted or unsubstituted arylalkyl of 07 to 040, substituted or unsubstituted aryl of 06 to 020, substituted or unsubstituted alkylidene of Cl to 020, substituted or unsubstituted amino group, 02 to 020 Alkylalkoxy, or substituted or unsubstituted 07 to 040 arylalkoxy; 2019/139355 1 »(: 1 ^ 1 {2019/000354
내지 7은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐 원자, 치환되거나 치환되지 않은 01 내지 020의 알킬, 치환되거나 치환되지 않은 02 내지 020의 알케닐, 치환되거나 치환되지 않은 Cl 내지 020의 알킬실릴, 치환되거나 치환되지 않은 01 내지 020의 실릴알킬, 치환되거나치환되지 않은 01내지 020의 알콕시실릴, 치환되거나치환되지 않은 01 내지 (:10의 알콕시, 치환되거나 치환되지 않은 02 내지 020의 알콕시알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 06내지 (:10의 아릴옥시, 치환되거나치환되지 않은 07내지 040의 알킬아릴, 치환되거나 치환되지 않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 08 내지 040의 아릴알케닐, 또는 치환되거나 치환되지 않은 02 내지 (:10의 알키닐이며, ¾ 내지 ¾7 중 서로 인접하는 2개 이상이 서로 연결되어 치환또는 비치환된 지방족 또는 방향족 고리를 형성할수있고, To 7 are the same as or different from each other, and each independently hydrogen, a halogen atom, substituted or unsubstituted alkyl of 01 to 020, substituted or unsubstituted alkenyl of 02 to 020, substituted or unsubstituted Cl to 020 alkyl Silyl, substituted or unsubstituted 01-020 silylalkyl, substituted or unsubstituted 01-020 alkoxysilyl, substituted or unsubstituted 01-(: 10 alkoxy, substituted or unsubstituted 02-020 alkoxyalkyl Substituted or unsubstituted 06 to 020 aryl, substituted or unsubstituted 06 to (: 10 aryloxy, substituted or unsubstituted 07 to 040 alkylaryl, substituted or unsubstituted arylalkyl 07 to 040, Substituted or unsubstituted arylalkenyl of 08 to 040, or substituted or unsubstituted alkynyl of 02 to (: 10) , At least two of which are adjacent to each other to ¾ ¾ 7 are connected to each other and can form a substituted or unsubstituted aliphatic or aromatic ring,
내지 ^중적어도하나는하기 화학식 3으로표시되는것이고, ^ 내지 요17중적어도하나는하기 화학식 3으로표시되는것이고, At least one of which is represented by the following formula (3), and at least one of ^ to yo 17 is represented by the following formula (3),
[화학식 3] [Formula 3]
Figure imgf000011_0001
Figure imgf000011_0001
상기 화학식 3에서,  In Chemical Formula 3,
1/은 01내지(:10의 알킬렌이며 ,  1 / is 01 to (: 10 alkylene,
I)1은 06내지 020의 아릴, 04내지 020의 시클로알킬, 또는 02내지I) 1 is 06 to 020 aryl, 04 to 020 cycloalkyl, or 02 to
。20의 알콕시알킬이다. 본 발명의 폴리올레핀 제조 방법에서 사용될 수 있는 혼성 담지 메탈로센 촉매 관련하여, 상기 화학식 1 및 2 의 치환기들을 보다 구체적으로설명하면하기와같다. 상기 01 내지 020 의 알킬기로는 직쇄 또는 분지쇄, 고리형의 알킬기를 포함하고, 구체적으로 메틸기(¾¾, 111 1攻1), 에틸기( , 11기) , 프로필기( , 매 ), 이소프로필기, 11-부틸기(11-811, 11-& 71), †;- 부틸기(卜 , 161 1;~¾71)), 펜틸기(라 , 근 ), 핵실기(¾, ¾ 1), 2019/139355 1»(:1^1{2019/000354 It is an alkoxyalkyl of .20. With respect to the hybrid supported metallocene catalyst that can be used in the polyolefin production method of the present invention, the substituents of Chemical Formulas 1 and 2 will be described in more detail. The alkyl group of 01 to 020 includes a linear, branched, and cyclic alkyl group, and specifically, methyl group (¾¾, 111 1 攻 1), ethyl group (, 11 group), propyl group (, mae), isopropyl group. , 11-butyl group (11-811, 11- & 71), †; -butyl group (卜, 1 61 1; ~ ¾7 1)), pentyl group (L, near), nuclear group (¾, ¾ One), 2019/139355 1 »(: 1 ^ 1 {2019/000354
헵틸기, 옥틸기, 시클로부틸기, 시클로펜틸기, 시클로핵실기 등을 들 수 있으나, 이에만한정되는것은아니다. 상기 Cl 내지 020 의 알킬렌기로는 직쇄 또는 분지쇄의 알킬렌기를 포함하고, 구체적으로 메틸텐기, 에틸렌기, 프로필렌기, 부틸텐기, 펜틸렌기, 핵실텐기 등을들수 있으나, 이에만한정되는것은아니다. 상기 04 내지 020 의 시클로알킬기로는 상술한 바와 같은 알킬기 중에서 고리형의 알킬기를 지칭하는 것으로, 구체적으로 시클로부틸기, 시클로펜틸기, 시클로핵실기 등을 들 수 있으나, 이에만 한정되는 것은 아니다. 상기 02 내지 020 의 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 등을들수 있으나, 이에만한정되는것은아니다. 상기 06 내지 020 의 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 플루오레닐기 등을들수있으나, 이에만한정되는것은아니다. 상기 01내지 020의 알콕시기로는메톡시기, 에톡시기, 페닐옥시기, 시클로핵실옥시기 등을들수있으나, 이에만한정되는것은아니다. 상기 02내지 020의 알콕시알킬기는상술한바와같은알킬기의 1개 이상의 수소가 알콕시기로 치환된 작용기이며, 구체적으로 메톡시메틸기, 메톡시에틸기, 에톡시메틸기, { 30 -프로폭시메틸기,
Figure imgf000012_0001
폭시에틸기,
Figure imgf000012_0002
근·!;-부톡시메틸기, !:-부톡시에틸기 , 1611;- 부톡시핵실기 등의 알콕시알킬기; 또는 페녹시핵실기 등의 아릴옥시알킬기를들수 있으나, 이에만한정되는것은아니다. 2019/139355 1»(:1^1{2019/000354
Heptyl, octyl, and the like, but a cyclobutyl group, a cyclopentyl group, a cycloalkyl group the nucleus, not limited to this only. The alkylene group of Cl to 020 includes a linear or branched alkylene group, and specifically, may include methylten group, ethylene group, propylene group, butylten group, pentylene group, and nucleosilten group. no. The cycloalkyl group of 04 to 020 refers to a cyclic alkyl group among the alkyl groups described above, and specifically, but not limited to a cyclobutyl group, a cyclopentyl group, a cyclonuxyl group, and the like. The alkenyl group of 02 to 020 includes a straight or branched alkenyl group, and specifically, may include an allyl group, an ethenyl group, a propenyl group, a butenyl group, a pentenyl group, and the like, but is not limited thereto. The aryl groups of 06 to 020 include monocyclic or condensed aryl groups, and specifically include phenyl groups, biphenyl groups, naphthyl groups, phenanthrenyl groups, and fluorenyl groups, but are not limited thereto. Examples of 01 to 020 alkoxy groups include, but are not limited to, methoxy, ethoxy, phenyloxy and cyclonucleooxy groups. The alkoxyalkyl group of 02 to 020 is a functional group in which at least one hydrogen of an alkyl group is substituted with an alkoxy group, and specifically, a methoxymethyl group, a methoxyethyl group , an ethoxymethyl group, a {30 -propoxymethyl group,
Figure imgf000012_0001
Foxy ethyl group ,
Figure imgf000012_0002
Alkoxyalkyl groups such as-!;-Butoxymethyl group,!:-Butoxyethyl group, and 1 61 1; -butoxy nuclear group; Or an aryloxyalkyl group such as a phenoxynucleosil group, but is not limited thereto. 2019/139355 1 »(: 1 ^ 1 {2019/000354
상기 01내지 020의 알킬실릴기 또는 01내지 020의 알콕시실릴기는 - ¾의 1내지 3개의 수소가 1내지 3개의 상술한바와같은알킬기 또는 알콕시기로 치환된 작용기이며 , 구체적으로 메틸실릴기 , 다이메틸실릴기 , 트라이메틸실릴기, 다이메틸에틸실릴기, 다이에틸메틸실릴기 또는 다이메틸프로필실릴기 등의 알킬실릴기; 메톡시실릴기, 다이메톡시실릴기, 트라이메톡시실릴기 또는 다이메톡시에톡시실릴기 등의 알콕시실릴기; 메톡시다이메틸실릴기, 다이에톡시메틸실릴기 또는 다이메톡시프로필실릴기 등의 알콕시알킬실릴기를들수있으나, 이에만한정되는것은아니다. 상기 Cl 내지 020 의 실릴알킬기는 상술한 바와 같은 알킬기의 1
Figure imgf000013_0001
The alkyl silyl group of 01 to 020 or the alkoxysilyl group of 01 to 020 is a functional group in which 1 to 3 hydrogens of ¾ are substituted with 1 to 3 alkyl groups or alkoxy groups as described above, and specifically methylsilyl group, dimethyl Alkylsilyl groups such as silyl group, trimethylsilyl group, dimethylethylsilyl group, diethylmethylsilyl group or dimethylpropylsilyl group; Alkoxy silyl groups, such as a methoxy silyl group, a dimethoxy silyl group, a trimethoxy silyl group, or a dimethoxy ethoxy silyl group; And alkoxyalkylsilyl groups such as methoxydimethylsilyl group, diethoxymethylsilyl group or dimethoxypropylsilyl group, but are not limited thereto. The silylalkyl group of Cl to 020 is 1 of the alkyl group as described above.
Figure imgf000013_0001
메틸실릴메틸기 또는 다이메틸에톡시실릴프로필기 등을 들 수 있으나, 이에만한정되는것은아니다. 상기 할로겐 01310611)은 불소어), 염소띠) , 브롬(아) 또는 요오드(I)일수있다. 상기 술포네이트기는 -0-엤2- 의 구조로 묘’는 01 내지 020 의 알킬기일 수 있다. 구체적으로, 01 내지 020 술포네이트기는 메탄설포네이트기 또는 페닐설포네이트기 등을 들 수 있으나, 이에만 한정되는것은아니다. 또한, 본 명세서에서 서로 인접하는 2 개의 치환기가서로 연결되어 지방족 또는 방향족 고리를 형성한다는 것은 2개의 치환기의 원자(들) 및 상기 2개의 치환기가 결합된 원자가(원자들이) 서로 연결되어 고리를 이루는 것을 의미한다. 구체적으로, 내지 묘17 중 인접한 치환기들,
Figure imgf000013_0002
Methyl silyl methyl group or dimethyl ethoxy silyl propyl group, etc., but it is not limited to this. The halogen 0 13 1 0 yo 611 ) may be fluorine), chlorine band), bromine (a) or iodine (I). The sulfonate group may be an alkyl group of 01 to 020 in the structure of -0- ' 2- . Specifically, the 01 to 020 sulfonate group may include a methanesulfonate group or a phenylsulfonate group, but is not limited thereto. In addition, in the present specification, when two substituents adjacent to each other are connected to each other to form an aliphatic or aromatic ring, the atom (s) of the two substituents and the valences (atoms) to which the two substituents are bonded to each other form a ring. Means that. Specifically, adjacent substituents in the to Figure 17 ,
Figure imgf000013_0002
수 있다. 상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 2019/139355 1»(:1^1{2019/000354 Can be. The substituents described above have the same or similar effects as the desired effect. 2019/139355 1 »(: 1 ^ 1 {2019/000354
발휘하는 범위 내에서 임의적으로 하이드록시기; 할로겐; 알킬기 또는 알케닐기, 아릴기, 알콕시기; 14족 내지 16족의 헤테로 원자들 중 하나 이상의 헤테로 원자를 포함하는 알킬기 또는 알케닐기, 아릴기, 알콕시기; 실릴기; 알킬실릴기 또는 알콕시실릴기; 포스파인기; 포스파이드기; 술포네이트기; 및 술폰기로 이루어진 군에서 선택된 1 이상의 치환기로 치환될수 있다. 상기 4 족 전이금속으로는 티타늄( ), 지르코늄( ·), 하프늄어0 등을들수있으나, 이에만한정되는것은아니다. 종래 시클로펜틸라디칼을리간드로하는전이 금속화합물이 담지된 족매를 이용하여 제조된 올레핀 중합체는 분자량 분포 조절의 문제를 나타내었다. 이로 인해, 시클로펜틸 라디칼을 리간드로 하는 전이 금속 화합물이 담지된 촉매를 이용하여 제조된 폴리올레핀은 넓은분자량분포에 의해 염화 가공할 때 높은 신율의 염소화 폴리올레핀을 제조하기 어려운 문제가있어 왔다. 그러나, 발명의 일구현예에서와같이 상술한바와같이 화학식 1및 화학 2의 메탈로센 화합물을 포함하는 혼성 담지 촉매를 이용하여 올레핀
Figure imgf000014_0001
A hydroxyl group optionally within the range to be exerted; halogen; Alkyl or alkenyl, aryl, alkoxy groups; An alkyl group or alkenyl group, an aryl group, an alkoxy group containing at least one hetero atom of the group 14 to 16 hetero atoms; Silyl groups; Alkylsilyl group or alkoxysilyl group; Phosphine groups; Phosphide groups; Sulfonate groups; And it may be substituted with one or more substituents selected from the group consisting of sulfone groups. The Group 4 transition metals include titanium (), zirconium (·), and hafnium 0, but are not limited thereto. Conventionally, an olefin polymer prepared using a grouping medium having a transition metal compound containing a cyclopentyl radical as ligands has shown a problem of controlling molecular weight distribution. For this reason, polyolefins prepared using a catalyst supported with a transition metal compound having a cyclopentyl radical as a ligand have a problem that it is difficult to produce chlorinated polyolefins having a high elongation when chlorinated by a wide molecular weight distribution. However, as described above, in one embodiment of the present invention, an olefin is used by using a hybrid supported catalyst including a metallocene compound of Formula 1 and Chemical Formula 2 as described above.
Figure imgf000014_0001
염소화 폴리올레핀에서 우수한 염소 분포 균일성이 나타나며, 이를 위하여 좁은분자량분포를나타내는폴리올레핀을효과적으로제조할수있다. 구체적으로, 상기 혼성 담지 촉매에 있어서, 제 1 메탈로센 화합물은 장쇄 분지를 포함하고 낮은 분자량의 올레핀 중합체의 제조에 용이하고, 제 2 메탈로센 화합물은 상기 제 1 메탈로센 화합물에 비해 적은 양의 장쇄 분지를포함하고상대적으로높은분자량의 올레핀 중합체 제조에 용이하다. 특히, 중합체 내에 장쇄 분지가 많고, 분자량이 클 때 용융 강도가 커지는데, 제 1 메탈로센 화합물의 경우 장쇄 분지가 많은데 비해 분자량이 낮아이를개선하는데 한계가있다. 2019/139355 1»(:1^1{2019/000354 Excellent chlorine distribution uniformity is obtained in chlorinated polyolefins, and polyolefins with narrow molecular weight distribution can be effectively produced. Specifically, in the hybrid supported catalyst, the first metallocene compound contains a long chain branch and is easy to prepare a low molecular weight olefin polymer, and the second metallocene compound is less than that of the first metallocene compound. It is easy to prepare olefin polymers of relatively high molecular weight, including positive long chain branches. In particular, there are many long chain branches in the polymer, and when the molecular weight is large, the melt strength increases. However, in the case of the first metallocene compound, there are limitations in improving the low molecular weight compared to the long chain branches. 2019/139355 1 »(: 1 ^ 1 {2019/000354
본 발명의 폴리올레핀 중합 공정에서는, 장쇄 분지를 상대적으로 많이 포함하고 분자량이 낮은 중합체를 생성하는 제 1 메탈로센 화합물과 상대적으로 적은 장쇄 분지와 높은 분자량의 중합체를 생성하는 제 2 메탈로센 화합물을 혼성 담지한 촉매를 사용하여 우수한 고분자량을 유지하면서 분자량 분포를 효과적으로 조절할 수 있다. 상기 2종의 메탈로센 화합물을 혼성 담지함으로써 중합체 내에 존재하는 장쇄 분지가 상대적으로 저분자량쪽에 위치하게 되기 때문에 분자량분포를 개선할수 있는것이다. 보다구체적으로, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물은 인데닐 계열의 리간드를 포함하는 구조를 가지며, 이러한 구조의 촉매를 중합하면 적은 양의 장쇄 분지가 있고, 분자량 분포어이, ■!),
Figure imgf000015_0001
용융흐름 지수어6 먀이¥ 1? 6요 比, 1 1¾)이 상대적으로 좁은 중합체를 얻을수 있다. 구체적으로, 상기 화학식 1로표시되는 제 1 메탈로센 화합물의 구조 내에서 인데닐 또는 4, 5, 6, 7 -테트라하이드로 -1 -인데닐 라디칼 리간드는, 예를들면, 올레핀중합활성에 영향을미칠수 있다. 또한, 상기 화학식 1에서 은 , 또는 이고;
Figure imgf000015_0002
In the polyolefin polymerization process of the present invention, a first metallocene compound containing a relatively large long chain branch and producing a polymer having a low molecular weight and a second metallocene compound producing a polymer having a relatively low long chain branch and a high molecular weight By using a hybrid supported catalyst, molecular weight distribution can be effectively controlled while maintaining excellent high molecular weight. By hybridly supporting the two metallocene compounds, the long-chain branching present in the polymer is located at a relatively low molecular weight side, thereby improving molecular weight distribution. More specifically, the first metallocene compound represented by Chemical Formula 1 has a structure including a ligand of indenyl series, and when the catalyst of such a structure is polymerized, there is a small amount of long chain branching, and molecular weight distribution words, ■! ),
Figure imgf000015_0001
Melt Flow Index 6 ¥ ¥ 1? 6 yo, 1 1¾) relatively narrow polymer can be obtained. Specifically, indenyl or 4, 5, 6, 7-tetrahydro-1 -indenyl radical ligand in the structure of the first metallocene compound represented by Formula 1, for example, affects the olefin polymerization activity Can be crazy. In addition, in Chemical Formula 1 is or;
Figure imgf000015_0002
동일하거나상이하고, 각각독립적으로수소, 01내지 020의 알킬, 02내지 ◦20의 알콕시알킬, 또는 내지 040의 아릴알킬이고; 은 할로겐 원자일 수 있다. 또는, 상기 화학식 1에서 。 및
Figure imgf000015_0003
각각 독립적으로 인데닐 또는 4,5,6,7 -테트라하이드로 -1 -인데닐이고; 및 는 각각 독립적으로 수소, 메틸, 또는 16 _부톡시 핵실이고; 은 分이고; 은 염소 등의 할로겐 원자일 수 있다. 이러한 경우 상기 혼성 담지 촉매는 우수한 가공성을가지는올레핀중합체를제공할수 있다. 상기 화학식 1의 메탈로센 화합물의 구체적인 예로, 비스 (3-(6- 2019/139355 1»(:1^1{2019/000354
The same or different and each independently hydrogen, 01 to 020 alkyl, 02 to 20 alkoxyalkyl, or 040 alkyl; May be a halogen atom. Or, in Formula 1 and
Figure imgf000015_0003
Each independently is indenyl or 4,5,6,7-tetrahydro-1-indenyl; And are each independently hydrogen, methyl, or 1 6 _butoxy nuclear chamber; Is minutes; May be a halogen atom such as chlorine. In this case, the hybrid supported catalyst can provide an olefin polymer having excellent processability. Specific examples of the metallocene compound of Formula 1 may include bis (3- (6- 2019/139355 1 »(: 1 ^ 1 {2019/000354
(tert-부톡시)핵실)- 1片인덴- 1-일)지르코늄 (IV) 클로라이드 [Bi s(3-(6-(tert-butoxy) nucleosil)-1piece inden-1-yl) zirconium (IV) chloride [Bi s (3- (6-
( t er t -but oxy ) hexy 1 )-l/Mnden-l-yl )zi rconium(IV) chlor i de], 비스 (3-(6- (tert-부톡시)핵실)- 4,5,6,7-테트라하이드로-1片인덴-1-일)지르코늄(1 클로라이드 [Bi s(3-(6-(tert-butoxy)hexyl ) -4 , 5 , 6 , 7- 1 e t r ahydr o- 1H i nden- l-yl )zi rconium(IV) chlor ide] 등을 들 수 있으나, 이에 한정되는 것은 아니다. 상기 화학식 1로 표시되는 제 1 메탈로센 화합물은 공지의 반응들을 응용하여 합성될 수 있다. 구체적으로는, 다양한 합성 공정을 통해 리간드 화합물을 제조한 후에 금속 전구체 화합물을 투입하여 메탈레이션 0^ 1 011)을 수행함으로써 제조될 수 있으나 이에 한정되는 것은아니며, 보다상세한합성 방법은실시예를참고할수 있다. 한편, 상기 혼성 담지 촉매에 있어서 , 상기 화학식 2로표시되는제 2 메탈로센 화합물은 리간드에 특정 치환기 시클로펜틸메틸기를 포함하며, 상기 리간드는 등에 의하여 가교되어 있는 구조를 가진다. 이러한 구조의 촉매를 중합하면 적은 양의 장쇄 분지가 있고, 분자량 분포 1)1,
Figure imgf000016_0001
(t er t -but oxy) hexy 1) -l / Mnden-l-yl) zi rconium (IV) chlor i de], bis (3- (6- (tert-butoxy) nucleus) -4,5, 6,7-tetrahydro-1 片 inden-1-yl) zirconium (1 chloride [Bi s (3- (6- (tert-butoxy) hexyl) -4, 5, 6, 7-1 etr ahydr o-1H i nden-yl-zi rconium (IV) chlor ide], etc. The first metallocene compound represented by Chemical Formula 1 may be synthesized by applying known reactions. Specifically, the ligand compound may be prepared by various synthesis processes, and then a metal precursor compound may be added to perform metallization (0 ^ 1 011) , but the present invention is not limited thereto. You can refer to it. On the other hand, in the hybrid supported catalyst, the second metallocene compound represented by the formula (2) includes a specific substituent cyclopentylmethyl group in the ligand, the ligand has a structure that is crosslinked by such. When the catalyst of this structure is polymerized, there is a small amount of long chain branching, and the molecular weight distribution 1) 1 ,
Figure imgf000016_0001
좁은중합체를얻을수있다. 구체적으로, 상기 화학식 2로표시되는 제 2 메탈로센 화합물의 구조 내에서 리간드의 치환된 작용기 종류에 따라 입체 장애 효과의 정도를 조절하여 제조되는올레핀중합체의 분자량을용이하게 조절할수있다. 구체적으로, 상기 화학식 2에서 은 , 如또는 이고; 쇼는탄소, 게르마늄, 또는 규소이고; 01, ^는 각각 독립적으로 01 내지 020의 알킬, 또는 02 내지 20의 알콕시알킬이고; 또는 I?7은 하기 화학식 3크로 표시되는 것이고, 요10 또는 묘16은 하기 화학식 3크로 표시되는 것이고, I?1 내지 7 중 나머지는수소, 할로겐, 또는 01 내지 020의 알킬이고; X1 및 X2는각각독립적으로할로겐 원자일 수 있다. 이러한경우상기 혼성 담지 2019/139355 1»(:1^1{2019/000354 A narrow polymer can be obtained. Specifically, in the structure of the second metallocene compound represented by Formula 2, the molecular weight of the olefin polymer prepared by adjusting the degree of steric hindrance effect according to the type of substituted functional group of the ligand can be easily adjusted. Specifically, in Chemical Formula 2 is, 如 or; The show is carbon, germanium, or silicon; 0 1 , ^ are each independently alkyl of 01 to 020, or alkoxyalkyl of 02 to 20; Or I? 7 is represented by the following formula (3), yo 10 or Figure 16 is represented by the following formula (3), I? The remainder of 1 to 7 is hydrogen, halogen, or alkyl of 01 to 020; X 1 and X 2 may each independently be a halogen atom. In this case, the hybrid support 2019/139355 1 »(: 1 ^ 1 {2019/000354
촉매는우수한가공성을가지는올레핀중합체를제공할수 있다. The catalyst can provide an olefin polymer having excellent processability.
[화학식 3a]  [Formula 3a]
-L2-D2 -L 2 -D 2
상기 화학식 3a에서, In Chemical Formula 3a,
는 C1내지 C10의 알킬렌이며, D2는 C6내지 C20의 아릴 또는 C4 내지 C20의 시클로알킬이다. 또는, 상기 화학식 2에서 은 Zr이고; A는규소이고; Q1, Q2는각각 독립적으로 메틸, 에틸, 프로필, 또는 tert-부톡시핵실이고; R2 또는 R7은 하기 화학식 3b로 표시되는 것이고, R10 또는 R16은 하기 화학식 3b로 표시되는 것이고, R1 내지 R17 중 나머지는 수소이고; X1 및 X2는 각각 독립적으로 할로겐 원자일 수 있다. 특히, R2 및 R16은 하기 화학식 3b로 표시되는것이고, R1, R3내지 R15,및 R17은수소일수있다. Is C1 to C10 alkylene and D 2 is C6 to C20 aryl or C4 to C20 cycloalkyl. Or, in Formula 2 is Zr; A is silicon; Q 1 , Q 2 are each independently methyl, ethyl, propyl, or tert-butoxynucleus; R 2 or R 7 is represented by the following Chemical Formula 3b, R 10 or R 16 is represented by the following Chemical Formula 3b, and the remaining of R 1 to R 17 are hydrogen; X 1 and X 2 may be each independently a halogen atom. In particular, R 2 and R 16 are represented by the following formula (3b), R 1 , R 3 to R 15 , and R 17 may be hydrogen.
[화학식 3b]  [Formula 3b]
-L3-D3 -L 3 -D 3
상기 화학식 3b에서, In Chemical Formula 3b,
는 C1내지 C2의 알킬렌이며, D3는 C6내지 C8의 아릴 또는 C5 내지 C6의 시클로알킬이다. 한편, 상기 화학식 2로 표시되는 제 2메탈로센 화합물의 구체적인 예로, 디클로로 [[ [6- (tert-부특시 )핵실]메틸실릴렌]비스 [(4a,4b,8a,9,9a_ )-2-(시클로펜틸메틸)- 9 f루오렌 -9 -일리덴]]지르코늄 (Dichloro[[[6-Is C1 to C2 alkylene and D 3 is C6 to C8 aryl or C5 to C6 cycloalkyl. On the other hand, as a specific example of the second metallocene compound represented by the formula (2), dichloro [[[[6- (tert-subspecific) nucleosil] methylsilylene] bis [(4a, 4b, 8a, 9,9a _)- 2- (cyclopentylmethyl) -9 fruorene-9-ylidene]] zirconium (Dichloro [[[6-
(tert-butoxy)hexyl ]methylsi lylene]bis[(4a,4b,8a,9,9a- rt )-2- (cyclopentylmethyl )-9分- f luoren-9-yl idene] ] zirconium) , 디클로로 [[[6-(tert-butoxy) hexyl] methylsi lylene] bis [(4a, 4b, 8a, 9,9a-rt) -2- (cyclopentylmethyl) -9min- f luoren-9-yl idene]] zirconium), dichloro [[ [6-
(tert-부톡시 )핵실]메틸실릴렌]비스 [(4a, 4b, 8a,9,9a- a )-2-(페닐메틸)- 9片 플루오렌 -9 -일리덴]]지르코늄 (Dichloro[ [ [6-( ter t- butoxy) hexyl ]methylsi lylene]bis[(4a,4b,8a,9,9a- a )-2- (phenyl methyl )- 9¥-f luoren-9-yl idene] ] zirconium) , 또는 디클로로 [[[6_(tert_ 부톡시)핵실]메틸실릴렌]비스 [(43,41),83,9,93-11)-2-(시클로핵실메틸)-9 플루오렌 -9 -일리덴]]지르코늄 (Dichlorot [ [6-( tert- 2019/139355 1»(:1^1{2019/000354
Figure imgf000018_0001
(tert-butoxy) nucleosil] methylsilylene] bis [(4a, 4b, 8a, 9,9a-a) -2- (phenylmethyl) -9 fluorene-9-ylidene]] zirconium (Dichloro [ [[6- (ter t-butoxy) hexyl] methylsi lylene] bis [(4a, 4b, 8a, 9,9a- a) -2- (phenyl methyl) -9 ¥ -f luoren-9-yl idene] zirconium), or dichloro [[[6_ (tert_butoxy) nucleosil] methylsilylene] bis [(4 3,41), 83,9,93-11) -2- ( cyclonucleomethylmethyl ) -9 fluorene- 9-ylidene]] zirconium (Dichlorot [[6- (tert- 2019/139355 1 »(: 1 ^ 1 {2019/000354
Figure imgf000018_0001
(:。 。1()116 71111 】171 )-9分- 1110 】-9 - 근]] 1ᅮ0 ·) 등을 들 수 있으나, 이에 한정되는것은아니다. 상기 화학식 2로 표시되는 제 2 메탈로센 화합물은 공지의 반응들을 응용하여 합성될 수 있다. 구체적으로는, 다양한 합성 공정을 통해 리간드 화합물을 제조한 후에 금속 전구체 화합물을 투입하여 메탈레이선 (111 31 13 011)을 수행함으로써 제조될 수 있으나 이에 한정되는 것은아니며, 보다상세한합성 방법은실시예를참고할수 있다. 이와 같이, 상기 혼성 담지 메탈로센 촉매는 상기 제 1 및 제 2 메탈로센 화합물을 포함하여, 가공성이 우수할 뿐만 아니라 넓은 분자량 분포와 함께 선형 고분자의 분자량이 높게 나타나는 폴리올레핀을 매우 효과적으로제조할수있다. 특히, 상기 제 1 메탈로센 화합물 및 제 2메탈로센 화합물의 혼합몰 비는 약 1: 1내지 1:3또는 약 1: 1내지 1:2일 수 있다. 상기 제 1메탈로센 화합물 및 제 2 메탈로센 화합물의 혼합몰 비는분자량조절 측면에서 1: 1 이상이 될수있으며, 고활성 구현을위해서 1:3이하가될수 있다. 한편, 본발명에 따른폴리올레핀의 제조방법은, 상술한바와같은 특정의 메탈로센 화합물을 포함하는 혼성 담지 촉매를 이용하여 조촉매 투입량을 최적화하여 올레핀 중합 공정을 수행함으로써, 좁은 분자량 분포를 나타내는 폴리올레핀을 제조하여 우수한 염소 분포 균일성을 갖는 염소화 폴리올레핀 및 충격강도가 향상된
Figure imgf000018_0002
효과적으로 제조할 수있다. 구체적으로, 본 발명에서 폴리올레핀을 제조하는 상기 중합 반응은 중합 용매 내의 수분에 의한 촉매 활성 저하를 방지하기 위하여 조촉매 하에서 수행해야 하며, 상기 조촉매는 약 70 00/^ 내지 약 140 00/^ 을 2019/139355 1»(:1^1{2019/000354
(:。 。1 () 116 71111 ) 171) -9min-1110】 -9-min]] 1 TT0 ·), but are not limited to these. The second metallocene compound represented by Formula 2 may be synthesized by applying known reactions. Specifically, after preparing the ligand compound through a variety of synthetic processes may be prepared by adding a metal precursor compound to perform a metal ray ( 111 31 13 011) , but is not limited to this, a more detailed synthesis method is See also. As such, the hybrid supported metallocene catalyst may include the first and second metallocene compounds, and may effectively produce a polyolefin having excellent processability and high molecular weight of a linear polymer with a wide molecular weight distribution. . In particular, the mixed molar ratio of the first metallocene compound and the second metallocene compound may be about 1: 1 to 1: 3 or about 1: 1 to 1: 2. The mixed molar ratio of the first metallocene compound and the second metallocene compound may be 1: 1 or more in terms of molecular weight control, and may be 1: 3 or less for high activity. On the other hand, the method for producing a polyolefin according to the present invention, by using a hybrid supported catalyst containing a specific metallocene compound as described above by optimizing the amount of cocatalyst to perform the olefin polymerization process, polyolefin showing a narrow molecular weight distribution To improve the chlorinated polyolefin and impact strength
Figure imgf000018_0002
Can be manufactured effectively. Specifically, the polymerization reaction to prepare a polyolefin in the present invention should be carried out under a promoter in order to prevent the catalyst activity lowered by water in the polymerization solvent, the promoter is about 70 00 / ^ to about 140 00 / ^ 2019/139355 1 »(: 1 ^ 1 {2019/000354
투입한다. 구체적으로, 상기 조촉매는 약 80 /切 내지 약 135 00/^ , 또는 약 90 ( / 내지 약 130 /位, 또는 약 90 ( /加 내지 약 110 / 으로투입할수 있다. 상기 조촉매 기체의 투입량은중합용매 내의 완벽한수분 제거 측면에서 약 70 cc/hx 이상이 되어야하고, 과량투입의 경우에 조촉매 자체가 촉매와의 반응으로 인한 활성 저하를 방자하는 측면에서 약 140 00/^ 이하가되어야한다. 상기 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센촉매 하에 올레핀을중합할때 사용될 수 있는 것이라면 특별히 한정되는것은아니다. 또한, 상기 중합 반응은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상반응기 또는용액 반응기를 이용하여 하나의 올레핀계 단량체로 호모중합하거나 또는 2종 이상의 단량체로 공중합여 진행할 수 있다. 다만, 일 구현예의 방법에 따라, 보다 효과적으로 분자량 분포를 조절하기 위하여 슬러리 중합 또는 기상 중합으로 올레핀계 단량체를 중합하는것이 좀더 적절하다. 특히, 상기 중합 반응은 탄화수소계 용매(예를 들어, 핵산, 부탄, 펜탄 등의 지방족 탄화수소계 용매) 내에서 슬러리상 중합으로 진행될 수 있다. 본 발명에 따른 상기 제 1 및 제 2 메탈로센 화합물는 지방족 탄화수소계 용매에 대해서도 우수한 용해도를 나타냄에 따라, 이들이 안정적으로 용해 및 반응계에 공급되어, 상기 중합 반응이 효과적으로 진행될수있다. 그리고, 발명의 일 구현 예에 따른폴리올레핀와제조방법은단일_
Figure imgf000019_0001
상기 중합 반응기에서는, 예를 들어, 질소와 같은 불활성 기체의 존재 하에 중합이 진행될 수 있다. 상기 불활성 기체는 중합 반응 초기에 2019/139355 1»(:1^1{2019/000354
Input. Specifically, the cocatalyst may be introduced at about 80 / dl to about 135 00 / ^, or about 90 (/ to about 130 / dl, or about 90 (/ addition to about 110 /). The input amount of the promoter gas should be about 70 cc / hx or more in terms of complete moisture removal in the polymerization solvent, and in the case of excessive injection, about 140 00 in terms of preventing the activity deterioration due to the reaction with the catalyst. Should be less than / ^ The cocatalyst is an organometallic compound containing a Group 13 metal, and is not particularly limited as long as it can be used when polymerizing olefins under a general metallocene catalyst. In addition, the polymerization reaction may be carried out by homopolymerization with one olefin monomer or copolymerization with two or more monomers using one continuous slurry polymerization reactor, a loop slurry reactor, a gas phase reactor, or a solution reactor. However, according to the method of the embodiment, it is more appropriate to polymerize the olefin monomer by slurry polymerization or gas phase polymerization in order to more effectively control the molecular weight distribution. In particular, the polymerization reaction may be carried out in a slurry phase polymerization in a hydrocarbon solvent (for example, an aliphatic hydrocarbon solvent such as nucleic acid, butane, pentane, etc.). As the first and second metallocene compounds according to the present invention exhibit excellent solubility in aliphatic hydrocarbon solvents, they are stably supplied to the dissolution and reaction system, and the polymerization reaction can be effectively progressed. In addition, the polyolefin and the manufacturing method according to an embodiment of the present invention
Figure imgf000019_0001
In the polymerization reactor, for example, the polymerization may proceed in the presence of an inert gas such as nitrogen. The inert gas at the beginning of the polymerization reaction 2019/139355 1 »(: 1 ^ 1 {2019/000354
메탈로센 촉매의 급격한 반응을 억제함으로써 촉매내에 포함된 메탈로센 화합물의 반응활성을길게지속시키는역할을할수 있다. 그리고, 상기 중합 반응에서는, 폴리올레핀의 분자량 및 분자량 분포를조절하기 위한목적으로수소기체가사용될수 있다.
Figure imgf000020_0001
By suppressing the rapid reaction of the metallocene catalyst can play a role of long-lasting the reaction activity of the metallocene compound contained in the catalyst. In the polymerization reaction, a hydrogen gas may be used for controlling the molecular weight and the molecular weight distribution of the polyolefin.
Figure imgf000020_0001
내지 약 90 X: 혹은 약 81 V 또는 약 83 方가 될 수 있다. 이러한 중합 반응 온도가 지나치게 낮아지면 중합 속도 및 생산성 측면에서 적절하지 않고, 반대로 중합 반응온도가 필요 이상으로 높아지면 반응기 내 파울링 현상이 유발될수있다. 또한, 상기 중합 반응 압력은 최적의 생산상 확보를 통한 촉매 경제성 구현을 위하여 약 6.8 1¾/ 11 2 내지 약 8.7 1¾/ 11 2, 또는 약 7.0 1¾/(페2내지 약 8.5 1¾/(패2, 혹은약 8.0 1¾/(® 2내지 약 8.5 1¾/0112로될수 있다. 상기 중합반응 압력은고분자량과다생성에 의한블록킹 031¾
Figure imgf000020_0002
To about 90 X: or about 81 V or about 83 degrees. If the polymerization temperature is too low, it is not suitable in terms of polymerization rate and productivity, and conversely, if the polymerization reaction temperature is higher than necessary, fouling in the reactor may be caused. In addition, the polymerization reaction pressure is about 6.8 1 ¾ / 11 2 to about 8.7 1 ¾ / 11 2 , or about 7.0 1 ¾ / (pe 2 to about 8.5 1 ¾ / (L 2 , or about 8.0 1 ¾ / ( ® 2 to about 8.5 1 ¾ / 011 2 ). The polymerization pressure is blocked by high molecular weight and overproduction 0 31 to ¾
Figure imgf000020_0002
중합조건하에서 에틸렌원 단위 저하를 고려하여 약 8.7 1¾/ 2이하가 될 수있다. It may be about 8.7 1 ¾ / 2 or less under the polymerization conditions in consideration of the reduction of ethylene source unit.
.  .
그리고, 상기 중합반응에는반응매질또는희석제로서 유기 용매가 더 사용될 수 있다. 이러한 유기 용매는 올레핀계 단량체의 함량을 고려하여 슬러리상 중합 등이 적절히 수행될 수 있는 정도의 함량으로 사용될수있다. 구체적으로, 상기 조촉매 화합물은 하기 화학식 4의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 5의 보레이트계 제 2 조촉매 중 하나 이상을 포함할수있다.  In addition, an organic solvent may be further used in the polymerization reaction as a reaction medium or a diluent. Such an organic solvent may be used in an amount such that slurry phase polymerization may be appropriately performed in consideration of the content of the olefin monomer. Specifically, the cocatalyst compound may include at least one of an aluminum-containing first cocatalyst of Formula 4 and a borate-based second cocatalyst of Formula 5 below.
[화학식 4] [Formula 4]
-[시(1 -01 ]„1 2019/139355 1»(:1^1{2019/000354 -[Hour (1 -0 1] „1 2019/139355 1 »(: 1 ^ 1 {2019/000354
상기 화학식 4에서, In Chemical Formula 4,
, , 및 는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, Cl 내지 020의 하이드로카빌기, 또는 할로겐으로 치환된 01 내지 020의 하이드로카빌기이고;  ,,, And are the same as or different from each other, and are each independently hydrogen, halogen, a hydrocarbyl group of Cl to 020, or a hydrocarbyl group of 01 to 020 substituted with halogen;
1은 0또는 1이며,  1 is 0 or 1,
01은 2이상의 정수이고; 01 is an integer of 2 or more;
[화학식 5]  [Formula 5]
t[BG4T t [BG 4 T
화학식 5에서,  In Chemical Formula 5,
亡은 +1가의 다원자이온이고, 6는 +3산화상태의 붕소이고, 는 각각 서로 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기, 알콕사이드기, 아릴옥사이드기, 하이드로카빌기 , 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 는 20개 이하의 탄소를가지나, 단하나이하의 위치에서 는할라이드기이다. 상기 화학식 4의 제 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물, 또는 트리알킬알루미늄 화합물등이 될수 있다. 또한, 상기 제 1조촉매 화합물중에서 알루미늄에 결합된 알킬기는 각각 탄소수 1 내지 20 또는 탄소수 1 내지 10으로 이루어진 것일 수 있다. 구체적으로, 이러한제 1조촉매의 구체적인 예로는, 메틸알루미녹산( 〔)), 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등의 알킬알루미녹산계 화합물 ; 또는 트리메틸알루미늄 , 트리에틸알루미늄 0¾ 0, 트리이소부틸알루미늄, 트리핵실알루미늄, 트리옥틸알루미늄 또는 이소프레닐알루미늄 등의 트리알킬알루미늄 화합물을들수있다. 또한, 상기 화학식 5의 제 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트 , 2019/139355 1»(:1^1{2019/000354 Is a monovalent polyvalent ion, 6 is boron in the +3 oxidation state, and are each independently a hydride group, a dialkyl amido group, a halide group, an alkoxide group, an aryl oxide group, a hydrocarbyl group, and a haloka. It is selected from the group consisting of a bil group and a halo-substituted hydrocarbyl group, which has up to 20 carbons, but is a halide group at less than one position. The first cocatalyst of Chemical Formula 4 may be an alkylaluminoxane compound or a trialkylaluminum compound in which a repeating unit is bonded in a linear, circular or reticulated form. In addition, the alkyl group bonded to aluminum in the first cocatalyst compound may be one having 1 to 20 carbon atoms or 1 to 10 carbon atoms, respectively. Specifically, specific examples of such a first catalyst include alkyl aluminoxane compounds such as methyl aluminoxane ([]), ethyl aluminoxane, isobutyl aluminoxane or butyl aluminoxane; Or trialkylaluminum compounds such as trimethylaluminum, triethylaluminum 0¾0, triisobutylaluminum, trinuxylaluminum, trioctylaluminum or isoprenylaluminum. In addition, the second cocatalyst of Formula 5 may be a borate compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt. Specific examples of such a second cocatalyst include trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, 2019/139355 1 »(: 1 ^ 1 {2019/000354
트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리(11-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트 , N,N- 디메틸아닐늄 테트라페닐보레이트, N,N -디에틸아닐늄 테트라페닐보레이트, -디메틸(2, 4,6 -트리메틸아닐늄)테트라페닐보레이트 , 트리메틸암모늄 데트라키스(펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스(펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스(펜타플루오로페닐)보레이트, Triethylammonium Tetraphenylborate, Tripropylammonium Tetraphenylborate, Tri ( 11- butyl) ammonium Tetraphenylborate, Methyltetracyclooctadecylammonium Tetraphenylborate, N, N-Dimethylaniline Tetraphenylborate, N, N -Diethylaninium tetraphenylborate, -dimethyl (2,4,6-trimethylaninium) tetraphenylborate, trimethylammonium detrakis (pentafluorophenyl) borate, methyl ditetradecyl ammonium tetrakis (pentaphenyl) borate , Methyldioctadecyl ammonium tetrakis (pentafluorophenyl) borate, triethylammonium, tetrakis (pentafluorophenyl) borate,
트리프로필암모늄테트라키스(펜타프루오로페닐)보레이트 , 트리 - 부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(2급 부틸)암모늄테트라키스(펜타플루오로페닐)보레이트 , N,N -디메틸아닐늄 테트라키스(펜타플루오로페닐)보레이트, 比 디에틸아닐늄테트라키스(펜타플루오로페닐)보레이트, N,N -디메틸(2,4, 6- 트리메틸아닐늄)테트라키스(펜타플루오로페닐)보레이트, Tripropylammonium tetrakis (pentafluorophenyl) borate, tri-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (secondary butyl) ammonium tetrakis (pentafluorophenyl) borate, N, N- tetrakis not dimethyl (pentafluorophenyl) borate, diethyl比not tetrakis (pentafluorophenyl) borate, N, N - dimethyl (2, 4, 6-trimethyl not titanium) with tetrakis (pentafluoro Phenyl) borate ,
트리메틸암모늄테트라키스(2, 3 , 4 , 6 -테트라플루오로페닐)보레이트, Trimethylammonium tetrakis (2, 3, 4, 6-tetrafluorophenyl) borate,
트리에틸암모늄 테트라키스(2 , 3 , 4, 6 -테트라플루오로페닐)보레이트 , 트리프로필암모늄 테트라키스(2 , 3, 4, 6 -테트라플루오로페닐)보레이트, 트리 -부틸)암모늄 테트라키스(2 , 3, 4, 6 -,테트라플루오로페닐)보레이트, 디메틸(1:-부틸)암모늄 테트라키스(2,3,4,6 -테트라플루오로페닐)보레이트, -디메틸아닐늄 테트라키스(2,3,4,6 -테트라플루오로페닐)보레미트, 比 디에틸아닐늄 테트라키스(2,3,4,6 -테트라플루오로페닐)보레이트 또는
Figure imgf000022_0001
디메틸-(2,4,6 -트리메틸아닐늄)테트라키스-(2,3,4,6_
Triethylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, tripropylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, tri-butyl) ammonium tetrakis ( 2, 3, 4, 6-, tetrafluorophenyl) borate, dimethyl (1: -butyl) ammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, -dimethylaninium tetrakis (2 , 3,4,6-tetrafluorophenyl) boremit, non-diethylaninium tetrakis (2,3,4,6-tetrafluorophenyl) borate or
Figure imgf000022_0001
Dimethyl- (2,4,6-trimethylaninynium) tetrakis- (2,3,4,6_
테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물 ; 디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트 , 디테트라데실암모늄 테트라키스(펜타플루오로페닐)보레이트 또는 디사이클로핵실암모늄 테트라키스(펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물 ; 또는 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스(펜타플루오로페닐)보레이트 또는 트리(2,6 -, 2019/139355 1»(:1^1{2019/000354 Borate compounds in the form of trisubstituted ammonium salts such as tetrafluorophenyl) borate; Borate type in the form of dialkyl ammonium salt, such as dioctadecyl ammonium tetrakis (pentafluorophenyl) borate, ditetedecyl ammonium tetrakis (pentafluorophenyl) borate, or dicyclonucleosilammonium tetrakis (pentafluorophenyl) borate Compound; Or triphenylphosphonium tetrakis (pentafluorophenyl) borate, methyldioctadecylphosphonium tetrakis (pentafluorophenyl) borate or tri (2,6-, 2019/139355 1 »(: 1 ^ 1 {2019/000354
디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물등을들수 있다. 한편, 발명의 일 구현예에 따르면, 본 발명에서 상기 혼성 담지 메탈로센 촉매 중 상기 제 1 및 제 2 메탈로센 화합물은 상술한 구조적 특징을가져 담체에 안정적으로담지될수있다. 상기 담체로는 표면에 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 구체적으로, 상기 담체로는 고온에서 건조하여 표면에 수분을 제거함으로써 반응성이 큰 하이드록시기 또는 실록산기를 함유하는담체를사용할수 있다. 보다구체적으로, 상기 담체로는실리카, 알루미나, 마그네시아 또는 이들의 혼합물 등을 사용할 수 있으며, 이 중에서도 실리카가 보다 바람직할 수 있다. 상기 담체는 고온에서 건조된 것일 수 있고, 예컨대, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 ¾0 , ¾(:03 , 63804 및 ¾¾어032등의 산화물, 탄산염, 황산염 , 질산염 성분을포함할수 았다. 상기 담체의 건조 온도는 약 200
Figure imgf000023_0001
내지 약 800 ᄃ가 바람직하고, 약 300 0 내지 약 600
Figure imgf000023_0002
가더욱바람직하며 , 약 300 X: 내지 약 400 X:가 가장바람직하다. 상기 담체의 건조온도가 약 200
Figure imgf000023_0003
미만인 경우수분이 너무많아서 표면의 수분과조촉매가반응하게 되고, 약 800 °(:를초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가감소하기 때문에 바람직하지 않다. 상기 담체 표면의 하이드록시기 양은 약 0.1 1101 /용 내지 약 10
And a borate compound in the form of a trisubstituted phosphonium salt such as dimethylphenyl) phosphonium tetrakis (pentafluorophenyl) borate. Meanwhile, according to one embodiment of the present invention, the first and second metallocene compounds in the hybrid supported metallocene catalyst may be stably supported on the carrier by having the above-described structural characteristics. As the carrier, a carrier containing a hydroxyl group or a siloxane group may be used. Specifically, the carrier may be a carrier containing a highly reactive hydroxyl group or siloxane group by drying at high temperature to remove moisture on the surface. More specifically, the carrier may be silica, alumina, magnesia or mixtures thereof, and silica may be more preferable. The carrier may be dried at a high temperature, for example, silica, silica-alumina, silica-magnesia, etc., dried at a high temperature may be used, which are typically ¾0, ¾ (: 0 3, 6 3804 and ¾¾0). 3) atda can include an oxide, carbonate, sulfate, nitrate component of 2, and so on. The drying temperature of the carrier is about 200
Figure imgf000023_0001
To about 800 ° C., and from about 300 0 to about 600
Figure imgf000023_0002
Further preferred, about 300 X: to about 400 X: most preferred. The drying temperature of the carrier is about 200
Figure imgf000023_0003
If the water content is less than the water, the surface water and the cocatalyst react with each other. If the water content exceeds 800 ° C , the pores on the surface of the carrier are combined to reduce the surface area. The reaction site with the promoter decreases, which is undesirable. The amount of hydroxy groups on the surface of the carrier is from about 0.1 1 to about 101 / to
1 01/요이 바람직하며, 약 0.5 /용 내지 약 5 11^101/당일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 2019/139355 1»(:1^1{2019/000354 1 01 / yaw is preferred, and more preferably from about 0.5 / dragon to about 5 11 ^ 101 / sugar. The amount of hydroxy groups on the surface of the carrier may be determined by the method and conditions for the preparation or drying conditions, such as temperature, time, vacuum or spray drying. 2019/139355 1 »(: 1 ^ 1 {2019/000354
등에 의해조절할수있다. 상기 하이드록시기의 양이 약 0.1 1 01/용 미만이면 조촉매와의 반응자리가 적고, 약 10 11111101 /융을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다. 또한, 상기 일 구현예의 혼성 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 조촉매를 추가로 담지시켜 사용할 수도 있다. 상기 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다. 이러한 조촉매의 구체적인 일례는전술한바와같다. 상기 일 구현예의 혼성 담지 메탈로센 촉매에 있어서 , 제 1 메탈로센 화합물 및 제 2 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1: 10 내지 1: 1000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을포함할때, 최적의 형상을나타낼수있다. 또한, 상기 혼성 담지 메탈로센 촉매에 ¾용되는 조촉매 화합물 대 담체의 질량비는 1: 1 내지 1: 100일 수 있다. 상기 질량비로 조촉매 및 담체를포함할때, 활성 및 고분자미세구조를최적화할수 있다. 한편, 상기 일 구현예의 혼성 담지 메탈로센 촉매는, 담체에 조촉매를 담지시키는 단계; 상기 조촉매가 담지된 담체에 제 1 및 제 2 메탈로센 화합물을담지시키는단계; 를포함하는제조방법에 의해 제조될 수있다. 이 때, 상기 제 1 및 제 2 메탈로센 화합물은 1종씩 순차적으로 담지시킬 수도 있고, 2종을 함께 담지시킬 수도 있다. 이 때, 담지 2019/139355 1»(:1^1{2019/000354 Can be adjusted by If the amount of the hydroxy group is less than about 0.1 1 01 / yong, the reaction site with the cocatalyst is small, and if it exceeds about 10 11111101 / melting, it may be due to moisture other than the hydroxyl group present on the surface of the carrier particle. Because it is not desirable . In addition, in the hybrid supported metallocene catalyst of the above embodiment, a promoter may be further supported on a carrier to activate the metallocene compound. The cocatalyst supported on the carrier is not particularly limited as long as it is an organometallic compound including a Group 13 metal, and can be used when polymerizing olefins under a general metallocene catalyst. Specific examples of such promoters are as described above. In the hybrid supported metallocene catalyst of the above embodiment, the mass ratio of the total transition metal to the carrier included in the first metallocene compound and the second metallocene compound may be 1:10 to 1: 1000. When including the carrier and the metallocene compound in the mass ratio, the optimum shape can be obtained. In addition, the mass ratio of the promoter catalyst to the carrier used in the hybrid supported metallocene catalyst may be 1: 1 to 1: 100. When the mass ratio includes a promoter and a carrier, the active and polymer microstructures can be optimized. On the other hand, the hybrid supported metallocene catalyst of the embodiment, the step of supporting the promoter on the carrier; Supporting the first and second metallocene compounds on the carrier on which the promoter is supported; It can be prepared by a manufacturing method comprising a. In this case, the first and second metallocene compounds may be supported one by one in sequence, or two may be supported together. At this time 2019/139355 1 »(: 1 ^ 1 {2019/000354
순서에는 제한이 없으나, 형상(1110대11010 )이 상대적으로 좋지 못한 제 2 메탈로센 촉매를 우선 담지함으로써 상기 혼성 담지 메탈로센 촉매의 형상을 개선할 수 있으며, 이에 따라 제 2 메탈로센 촉매을 담지한 이후에 제 1메탈로센촉매를순서대로담지할수 있다. 상기 방법에서, 담지 조건은 특별히 한정되지 않고 이 분야의 당업자들에게 잘 알려진 범위에서 수행할 수 있다. 예를 들면, 고온 담지 및 저온담지를 적절히 이용하여 진행할수 있고, 예를 들어, 담지 온도는 약 -30 ¾ 내지 150 X:의 범위에서 가능하고, 바람직하게는상온(약 25 V)
Figure imgf000025_0001
Although the order is not limited, the shape of the hybrid supported metallocene catalyst may be improved by first supporting the second metallocene catalyst having a relatively poor shape ( 1110 to 1 1010 ), and thus the second metallocene. After supporting the catalyst, the first metallocene catalyst can be supported in order. In the above method, the supporting conditions are not particularly limited and may be performed in a range well known to those skilled in the art. For example, it is possible to proceed by using a high-temperature support and a low-temperature support as appropriate, for example, the support temperature is possible in the range of about -30 ¾ to 150 X :, preferably at room temperature (about 25 V)
Figure imgf000025_0001
담지하고자 하는 메탈로센 화합물의 양에 따라 적절하게 조절될 수 있다. 반응시킨 담지 촉매는 반응 용매를 여과하거나 감압 증류시켜 제거하여 그대로사용할수 있고, 필요하면 톨루엔과같은방향족탄화수소로속실렛 필터하여 사용할수 있다. 그리고, 상기 담지 촉매의 제조는용매 또는무용매 하에 수행될 수 있다. 용매가 사용될 경우, 사용 가능한 용매로는 핵산 또는 펜탄과 같은 지방족 탄화수소 용매, 톨루엔 또는 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄과 같은 염소 원자로 치환된 탄화수소 용매, 디에틸에테르 또는 테트라하이드로퓨란 0¾ 과 같은 에테르계 용매, 아세톤, 에틸아세테이트등의 대부분유기 용매를들수 있고, 핵산, 헵탄, 톨루엔, 또는디클로로메탄이 바람직하다. 한편, 상기 일 구현예의 혼성 담지 메탈로센 촉매는 그 자체로서 올레핀계 단량체의 중합에 사용될수 있다. 또한, 상기 혼성 담지 메탈로센 촉매는 올레핀계 단량체와 접촉 반응되어 예비 중합된 촉매로 제조하여 사용할수도 있으며, 예컨대 촉매를 별도로 에틸렌, 프로필텐, 1 -부텐, 1 - 핵센, 1 -옥텐 등과 같은 올레핀계 단량체와 접촉시켜 예비 중합된 촉매로 제조하여 사용할수도있다. 2019/139355 1»(:1^1{2019/000354 It can be suitably adjusted according to the amount of the metallocene compound to be supported. The reacted supported catalyst can be used as it is by removing the reaction solvent by filtration or distillation under reduced pressure, or, if necessary, by using a Soxhlet filter with an aromatic hydrocarbon such as toluene. In addition, the preparation of the supported catalyst may be performed under a solvent or a solventless. When solvents are used, the solvents that can be used include aliphatic hydrocarbon solvents such as nucleic acids or pentane, aromatic hydrocarbon solvents such as toluene or benzene, hydrocarbon solvents substituted with chlorine atoms such as dichloromethane, ethers such as diethyl ether or tetrahydrofuran 0¾. Most organic solvents, such as a solvent, acetone, and ethyl acetate, are mentioned, and nucleic acid, heptane, toluene, or dichloromethane are preferable. On the other hand, the hybrid supported metallocene catalyst of the embodiment can be used in the polymerization of the olefin monomer as it is. In addition, the hybrid supported metallocene catalyst may be prepared by using a prepolymerized catalyst by contact reaction with an olefinic monomer. For example, the catalyst may be used separately, such as ethylene, propylene, 1-butene, 1-nuxene, 1-octene, and the like. It can also be prepared and used as a prepolymerized catalyst by contacting with an olefinic monomer. 2019/139355 1 »(: 1 ^ 1 {2019/000354
그리고, 상기 올레핀계 단량체는 에틸렌, 알파-올레핀, 사이클릭 올레핀 , 이중 결합을 2개 이상 가지고 있는 디엔 올레핀 또는 트리엔 올레핀일수있다. 상기 올레핀계 단량체의 구체적인 예로서, 에틸렌, 프로필렌, 1 -부텐,The olefinic monomer may be ethylene, alpha-olefin, cyclic olefin, diene olefin or triene olefin having two or more double bonds. Specific examples of the olefin monomers include ethylene, propylene, 1-butene,
1 -펜텐, 4 -메틸- 1 -펜텐, 1 -핵센, 1 -헵텐, 1 -옥텐, 1 -데센, 1 -운데센, 1- 도데센, 1 -테트라데센, 1 -핵사데센, 1 -아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨 , 디사이클로펜타디엔, 1,4- 부타디엔, 1,5 -펜타디엔, 1,6 -핵사디엔, 스티텐, 알파-메틸스티렌, 디비닐벤젠, 3 -클로로메틸스티렌 등을 들 수 있으며, 이들 단량체를 2종 이상혼합하여 공중합할수도 있다. 또, 상기 메탈로센담지 촉매는 05내지 (:12의 지방족탄화수소용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 반응계에 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는것이 바람직하다. 본발명에 따른폴리올레핀의 제조방법에서 , 상기 중합반응은상기 화학식 1로표시되는 1종 이상의 제 1 메탈로센 화합물 및 하기 화학식 2로 표시되는 1종 이상의 제 2 메탈로센 화합물이 담체에 담지된 메탈로센 담지 촉매, 및 조촉매 화합물과 함께 분자량 조절제 등의 기타 첨가제를 주가하여 수행할수있다. 상술한 일 구현예의 제조 방법에 따라수득된 폴리올레핀은, 비교적 좁은 분자량 분포를 갖는 것을 특징으로 한다. 특히, 상기 폴리올레핀은 1-pentene, 4-methyl- 1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1 -nuxadecene, 1- Itosen, norbornene, norbornadiene, ethylidene norbornene, phenylnorbornene, vinyl norbornene, dicyclopentadiene, 1,4-butadiene, 1,5-pentadiene, 1,6-nuxadiene, styrene And alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, and the like, and these monomers may be mixed and copolymerized. In addition, the metallocene supported catalyst is an aliphatic hydrocarbon solvent of 05 to (: 12, for example, pentane, nucleic acid, heptane, nonane, decane, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloromethane, chloro It may be dissolved or diluted in a hydrocarbon solvent substituted with a chlorine atom such as benzene and injected into the reaction system. The solvent used herein is preferably used by removing a small amount of water, air or the like acting as a catalyst poison by treating a small amount of alkyl aluminum. In the method for preparing a polyolefin according to the present invention, the polymerization reaction is carried out by supporting at least one first metallocene compound represented by Formula 1 and at least one second metallocene compound represented by Formula 2 on a carrier. In addition to the metallocene supported catalyst and the cocatalyst compound, other additives such as molecular weight modifiers may be carried out. The polyolefin obtained according to the above-described method for producing an embodiment is characterized by having a relatively narrow molecular weight distribution. In particular, the polyolefin
약 8.0내지 약 13, 혹은 약 12.5이하또는 약 8.2내지 약 12.5, 혹은 약 2019/139355 1»(:1^1{2019/000354 About 8.0 to about 13, or about 12.5 or less, or about 8.2 to about 12.5, or about 2019/139355 1 »(: 1 ^ 1 {2019/000354
11.5 이하또는 약 8.5 내지 약 11.5, 혹은 약 10 이하또는 약 9.0 내지 약 10일 수 있다. 또한, 상기 폴리올레핀의 용융지수(¾05.0 , 조건묘, 190 °0 , About 11.5 or less, or about 8.5 to about 11.5, or about 10 or less, or about 9.0 to about 10. Further, the melt index of the polyolefin (¾0 5.0, conditional drawing, 190 ° 0,
Figure imgf000027_0001
상기 폴리올레핀숀, 밀도가 약 0.94 §/0111 3 이상또는 약 0.94 3 내지 약 0.96 §八패3일수 있다. 이는폴리올레핀의 결정 구조의 함량이 높고 치밀하다는 것을 의미하며, 이는 염소화 공정 중 결정 구조의 변화가 일어나기 어려운 특징을 갖는다. 일 예로, 상기 폴리올레핀의 밀도는쇼^¾1 0-792에 의거한방법으로측정할수 있다. 이러한 폴리올레핀은 비교적 좁은 분자량 분포를 가짐으로써, 염소화( 101^1111)시 폴리에틸렌 내의 염소 분포 균일성이 우수하게 나타나며, 염소화폴리올레핀의 신율및 와의 상용성 및 충격보강성능 등을현저히 향상시킬 수 있다. 이로써, 우수한내화학성, 내후성, 난연성, 가공성 및 충격강도 보강효과 등을 나타내며, PVC 파이프 및 윈도우 프로파일(別11(1( 0 16)의 충격보강제등으로적합하게 적용될수 있다. 특히, 상기 폴리올레핀은, 비교적 좁은 분자량 분포를 갖는 것을 특징으로하며, 분자량분포 )가 약 2.3내지 약 5.0일 수 있다. 또한,
Figure imgf000027_0002
Figure imgf000027_0001
The polyolefin Sean, and a density of about 0.94 § / 0111 3 or more or about 0.94 to about 0.96 §3 L 3 days. This means that the content of the crystal structure of the polyolefin is high and dense, which is characterized by a hard change of the crystal structure during the chlorination process. For example, the density of the polyolefin can be measured by the method based on Show ^ ¾1 0-792. Since the polyolefin has a relatively narrow molecular weight distribution, it shows excellent chlorine distribution uniformity in polyethylene during chlorination (1 01 ^ 11 ) 11 , and can significantly improve elongation, compatibility with chlorinated polyolefin, and impact reinforcement performance. have. As a result, it exhibits excellent chemical resistance, weather resistance, flame retardancy, workability and impact strength reinforcement effect, and can be suitably applied as an impact modifier of PVC pipe and window profile (別11 (1 ( 0 1 6 )). In particular, the polyolefin is characterized by having a relatively narrow molecular weight distribution, the molecular weight distribution) may be about 2.3 to about 5.0. Also,
Figure imgf000027_0002
g/mo\ , 또는 약 10000당 내지 약 1000000용/0101, 또는 약 50000용/, 1 내지 약 200000 §^01 일수있다. 2019/139355 1»(:1^1{2019/000354 g / mo \, or about 10000 to about 1000000 for / 0101 , or about 50000 for /, 1 to about 200000 § ^ 01 . 2019/139355 1 »(: 1 ^ 1 {2019/000354
일 예로, 상기 분자량 분포 (MWD, polydi spersi ty index)는 겔 투과 크로마토그래피 (GPC, gel permeat ion chromatography, Water 사 제조)를 이용하여 폴리올레핀의 중량평균 분자량 (Mw)과 수평균 분자량 (Mn)을 측정하고, 중량평균분자량을수평균분자량으로나누어 산측할수 있다. 구체적으로, 겔투과크로마토그래피 (GPC) 장치로는 Waters PL-GPC220 기기를 이용하고, Polymer Laborator i es PLgel MIX-B 300 mm 길이 칼럼을 사용할 수 있다. 이때 측정 온도는 160 °C이며, 1,2,4- 트리클로로벤젠 (1,2, 4-Tr i chlorobenzene)을 용매로서 사용할 수 있으며, 유속은 1 mL/min로적용할수 있다. 상기 폴리에틸렌시료는각각 GPC분석 기기 (PL-GP220)을 이용하여 BHT 0.0125% 포함된 트리클로로벤젠 (1,2,4- Tr i chlorobenzene)에서 160 °C , 10 시간 동안 녹여 전처리하고 , 10 mg/10mL 의 농도로 조제한 다음, 200 y L 의 양으로 공급할 수 있다. 폴리스티렌표준시편을이용하여 형성된검정 곡선을이용하여 Mw및 Mn의 값을 유도할 수 있다. 폴리스티렌 표준 시편의 중량평균 분자량은 2000 g/mol , 10000 g/mo 1 , 30000 g/mol , 70000 g/mol , 200000 g/mol , 700000 g/mol , 2000000 g/mol , 4000000 g/mol , 10000000 g/mol의 9종을사용할수 있다. 또한, 상술한 바와 같은 중합 반응으로 제조되는 폴리올레핀은, 별도의 공중합체를 포함하지 않는 올레핀의 호모 중합체, 예컨대, 에틸렌 호모 중합체일 수 있다. 일예로, 상기 폴리올레핀이, 예를 들어 에틸렌 호모 중합체, 바람직하게는 고밀도 폴리에틸렌어 인 경우, 상기한 물성적 특징을 보다 적절히 충족할 수 있다. 특히, 고밀도 폴리에틸렌은 연화점, 굳기, 강도 및 전기절연성이 뛰어나, 각종 용기, 포장용 필름 , 섬유, 파이프, 패킹, 절연재료등에 사용된다. For example, the molecular weight distribution (MWD, polydi spersi ty index) may be obtained by gel permeation chromatography (GPC, gel permeat ion chromatography, manufactured by Water) to determine the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyolefin. The weight average molecular weight can be measured and divided by the number average molecular weight. Specifically, as a gel permeation chromatography (GPC) apparatus, a Waters PL-GPC220 device may be used, and a Polymer Laboratores PLgel MIX-B 300 mm length column may be used. At this time, the measurement temperature is 160 ° C, 1,2,4-trichlorobenzene (1,2, 4-Tr i chlorobenzene) can be used as a solvent, the flow rate can be applied at 1 mL / min. The polyethylene sample was pretreated by dissolving in trichlorobenzene (1,2,4-Tr chlorobenzene) containing 0.0125% of BHT using GPC analysis device (PL-GP220) for 160 ° C for 10 hours, and 10 mg / It may be prepared at a concentration of 10 mL and then supplied in an amount of 200 y L. The test curves formed using polystyrene standard specimens can be used to derive the values of Mw and Mn. The weight average molecular weight of the polystyrene standard specimens is 2000 g / mol, 10000 g / mo 1, 30000 g / mol, 70000 g / mol, 200000 g / mol, 700000 g / mol, 2000000 g / mol, 4000000 g / mol, 10000000 Nine kinds of g / mol can be used. In addition, the polyolefin produced by the polymerization reaction as described above may be a homopolymer of an olefin that does not contain a separate copolymer, for example, an ethylene homopolymer. For example, when the polyolefin is, for example, an ethylene homopolymer, preferably a high density polyethylene, the above-described physical properties may be more suitably satisfied. In particular, high density polyethylene has excellent softening point, hardness, strength and electrical insulation, and is used for various containers, packaging films, fibers, pipes, packings, and insulating materials.
II. 염소화폴리올레핀의 제조방법 및 염소화폴리올레핀 II. Method for preparing chlorinated polyolefin and chlorinated polyolefin
발명의 다른일구현예에 따르면, 상술한바와같은방법으로제조된
Figure imgf000028_0001
2019/139355 1»(:1^1{2019/000354
According to another embodiment of the invention, it is produced in the same manner as described above
Figure imgf000028_0001
2019/139355 1 »(: 1 ^ 1 {2019/000354
염소화폴리올레핀의 제조방법이 제공된다. 본 발명의 염소화 폴리올레핀의 제조 방법은, 하기 화학식 1로 표시되는 1종 이상의 제 1 메탈로센 화합물 및 하기 화학식 2로 표시되는 1종 이상의 제 2 메탈로센 화합물이 담체에 담지된 메탈로센 담지 촉매, 및 조촉매의 존재 하에, 상기 조촉매를 70 내지 140 ( /111·로 투입하면서 올레핀계 단량체를 중합하는 단계; 및 상기 폴리올레핀을 클로린( 아 )으로처리하여 염소화하는단계 ;를포함한다. Provided are methods for preparing chlorinated polyolefins. In the method for producing a chlorinated polyolefin of the present invention, the metallocene supported on which at least one first metallocene compound represented by Formula 1 and at least one second metallocene compound represented by Formula 2 is supported on a carrier Polymerizing an olefinic monomer in the presence of a catalyst and a cocatalyst, while introducing the cocatalyst at 70 to 140 (/ 1 11 .; And chlorinating the polyolefin with chlorine (h).
[화학식 1] [Formula 1]
Figure imgf000029_0001
Figure imgf000029_0001
상기 화학식 1에서, In Chemical Formula 1,
은 4족전이금속이고;  Is a Group 4 transition metal;
。 및 。 는서로동일하거나상이하고, 각각독립적으로 인데닐 및 4, 5, 6, 7 -테트라하이드로 -1 -인데닐 라디칼로 이루어진 군으로부터 선택된 어느하나이고, 이들은 01내지 020의 탄화수소로치환될수 있으며 ;  And。 are the same or different from each other, and are each independently selected from the group consisting of indenyl and 4, 5, 6, 7-tetrahydro-1 -indenyl radicals, which can be substituted with 01 to 020 hydrocarbons And;
^ 및 는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 치환되거나 치환되지 않은 Cl 내지 020의 알킬, 치환되거나 치환되지 않은 01 내지 (:10의 알콕시, 치환되거나 치환되지 않은 02 내지 020의 알콕시알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 06내지 (:10의 아릴옥시, 치환되거나치환되지 않은 02내지 020의 알케닐, 치환되거나 치환되지 않은 07 내지 040의 알킬아릴, 치환되거나 치환되지 않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 08 내지 40의 아릴알케닐, 또는 치환되거나 치환되지 않은 02 내지 (:10의 알키닐이고;  ^ And are the same as or different from each other, and are each independently hydrogen, substituted or unsubstituted Cl to 020 alkyl, substituted or unsubstituted 01 to (10: alkoxy, substituted or unsubstituted alkoxyalkyl to 02 to 020, Substituted or unsubstituted aryl of 06 to 020, substituted or unsubstituted 06 to (: 10 aryloxy, substituted or unsubstituted 02 to 020 alkenyl, substituted or unsubstituted alkylaryl of 07 to 040, substitution Optionally substituted 07 to 040 arylalkyl, optionally substituted 08 to 40 arylalkenyl, or optionally substituted 02 to (10) alkynyl;
은 각각서로 독립적으로 할로겐 원자, 치환되거나 치환되지 않은 Are each independently a halogen atom, substituted or unsubstituted
01 내지 020의 알킬, 치환되거나 치환되지 않은 02 내지 020의 알케닐, 치환되거나 치환되지 않은 07 내지 040의 알킬아릴, 치환되거나 치환되지 않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 Cl 내지 020의 알킬리덴, 치환되거나 치환되지 않은 아미노기, 치환되거나 치환되지 않은 02 내지 020의 2019/139355 1»(:1^1{2019/000354 01 to 020 alkyl, substituted or unsubstituted 02 to 020 alkenyl, substituted or unsubstituted alkylaryl of 07 to 040, substituted or unsubstituted arylalkyl of 07 to 040, substituted or unsubstituted 06 to 020 Of aryl, substituted or unsubstituted Cl to 020 alkylidene, substituted or unsubstituted amino group, substituted or unsubstituted 02 to 020 2019/139355 1 »(: 1 ^ 1 {2019/000354
알킬알콕시, 또는 치환되거나 치환되지 않은 내지 040의 아릴알콕시이고; Alkylalkoxy or substituted or unsubstituted arylalkoxy of 040;
은 1또는 0이고;  Is 1 or 0;
[화학식 2]  [Formula 2]
Figure imgf000030_0001
독립적으로 치환되거나 치환되지 않은 01 내지 020의 알킬, 치환되거나 치환되지 않은 01 내지 (:10의 알콕시 , 치환되거나 치환되지 않은 02 내지 020의 알콕시알킬, 또는 치환되거나 치환되지 않은 06내지 020의 아릴이고;
Figure imgf000030_0001
Independently substituted or unsubstituted 01-020 alkyl, substituted or unsubstituted 01-(: 10 alkoxy, substituted or unsubstituted alkoxyalkyl 02-020, or substituted or unsubstituted 06-020 aryl ;
쇼는탄소, 게르마늄, 또는규소원자함유라디칼중하나이상또는 이들의 조합이고; The show is one or more of carbon, germanium, or silicon atom-containing radicals or a combination thereof;
2은 4족전이금속이며 ;  2 is a group 4 transition metal;
X1및 는서로동일하거나상이하고, 각각독립적으로할로겐 원자, 치환되거나 치환되지 않은 01 내지 020의 알킬, 치환되거나 치환되지 않은 02내지 (:10의 알케닐, 치환되거나치환되지 않은 내지 040의 알킬아릴, 치환되거나 치환되지 않은 내지 04◦의 아릴알킬, 치환되거나 치환되지 않은 06 내지 02◦의 아릴, 치환되거나 치환되지 않은 Cl 내지 020의 알킬리덴, 치환되거나치환되지 않은아미노기, 02내지 020의 알킬알콕시, 또는치환되거나치환되지 않은 07내지 04◦의 아릴알콕시이고; X 1 and are the same as or different from each other, and each independently a halogen atom, substituted or unsubstituted alkyl of 01 to 020, substituted or unsubstituted 02 to (alkyl of 10, substituted or unsubstituted to 040 alkyl) Aryl, substituted or unsubstituted to arylalkyl of 04 to 04, substituted or unsubstituted aryl of 06 to 02o, substituted or unsubstituted alkylidene of Cl to 020, substituted or unsubstituted amino group, 02 to 020 alkyl Alkoxy, or substituted or unsubstituted 07 to 04 arylalkoxy;
내지 7은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐 원자, 치환되거나 치환되지 않은 Cl 내지 020의 알킬, 치환되거나 치환되지 않은 02 내지 020의 알케닐, 치환되거나 치환되지 않은 01 내지 2019/139355 1»(:1^1{2019/000354 To 7 are the same as or different from each other , and each independently hydrogen, a halogen atom, substituted or unsubstituted alkyl of Cl to 020, substituted or unsubstituted alkenyl of 02 to 020, substituted or unsubstituted 01 to 2019/139355 1 »(: 1 ^ 1 {2019/000354
020의 알킬실릴, 치환되거나 치환되지 않은 01 내지 020의 실릴알킬, 치환되거나치환되지 않은 01내지 020의 알콕시실릴, 치환되거나치환되지 않은 01 내지 (:10의 알콕시, 치환되거나 치환되지 않은 02 내지 020의 알콕시알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 06내지 (:10의 아릴옥시, 치환되거나치환되지 않은 07내지 040의 알킬아릴, 치환되거나 치환되지 않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 08 내지 040의 아릴알케닐, 또는 치환되거나 치환되지 않은 02 내지 (:10의 알키닐이며, ¾ 내지 ¾7 중 서로 인접하는 2개 이상이 서로 연결되어 치환또는 비치환된 지방족 또는 방향족 고리를 형성할수 있고, 020 alkylsilyl, substituted or unsubstituted 01-020 silylalkyl, substituted or unsubstituted 01-020 alkoxysilyl, substituted or unsubstituted 01-(: 10 alkoxy, substituted or unsubstituted 02-020 Alkoxyalkyl, substituted or unsubstituted 06 to 020 aryl, substituted or unsubstituted 06 to (: 10 aryloxy, substituted or unsubstituted 07 to 040 alkylaryl, substituted or unsubstituted 07 to 040 Arylalkyl, substituted or unsubstituted arylalkenyl of 08 to 040, or substituted or unsubstituted alkynyl of 02 to (: 10), and two or more adjacent groups of ¾ to ¾ 7 are connected to each other to be substituted or unsubstituted Can form a ringed aliphatic or aromatic ring,
내지 ^중적어도하나는하기 화학식 3으로표시되는것이고, ^ 내지 7중적어도하나는하기 화학식 3으로표시되는것이고, At least one is represented by the following formula (3), At least one of ^ to 7 is represented by the formula (3),
[화학식 3]  [Formula 3]
-匕1-!)1 -匕1- !) 1
상기 화학식 3에서,  In Chemical Formula 3,
은 01내지 (:10의 알킬렌이며,  Is 01 to (: 10 alkylene,
I)1은 06내지 020의 아릴, 04내지 020의 시클로알킬, 또는 C2내지 020의 알콕시알킬이다. 상기 폴리올레핀을 제조하기 위하여 올레핀계 단량체를 중합하는 단계의 구체적인 반응 조건과 제 1 및 제 2 메탈로센 화합물, 담체, 조촉매, 이를포함하는혼성 담지 촉매에 대한구체적인 일례는전술한바와같다. 염소화 폴리올레핀((止101^11 6(1 1301 016 11)은 폴리올레핀을 클로린(此10 1½)으로처리하여 염소화하여 제조할수 있다. 이러한 염소화 폴리올레핀은 일반적으로 폴리올레핀을 현탁액 상태에서 클로린과 반응시키는 수상법으로 제조하거나, 폴리에틸렌을 ^1(:1 수용액에서 클로린과 반응시키는 산상법으로 제조할 수 있다. 이러한 수상법 또는 산상법을 적용하는 경우에, 염소화 폴리올레핀의 염화 시간, 2019/139355 1»(:1^1{2019/000354 I) 1 is 06 to 020 aryl, 04 to 020 cycloalkyl, or C 2 to 020 alkoxyalkyl. Specific reaction conditions of the step of polymerizing the olefin monomer to prepare the polyolefin, and specific examples of the first and second metallocene compounds, the carrier, the cocatalyst, and the hybrid supported catalyst including the same are as described above. Chlorinated polyolefin (止 101 ^ 11 6 (1 1301 016 11) can be produced by treating polyolefin with chlorine (# 10 1½) to chlorinate it. Such chlorinated polyolefins can generally be prepared by an aqueous phase method in which polyolefins are reacted with chlorine in suspension, or by an acid phase method in which polyethylene is reacted with chlorine in a ^ 1 (: 1 aqueous solution). When applying this water phase method or the acid phase method, the chloride time of chlorinated polyolefin, 2019/139355 1 »(: 1 ^ 1 {2019/000354
및 중화, 수세 등후처리 시간이 크게 단축되는효과가 있다. 또한, 염소화 폴리올레핀 내의 염소 분포가 균일하여 제조되는 염소화 폴리올레핀의 유연성 (elast ic)을 향상시키는 효과가 있다. 일 예로, 상기 수상법은 일례로 물 (water)과 함께 유화제 및 분산제를 사용하여 염소화시키는 방법이고, 상기 산상법은 일례로 염산 (HC1 ) 수용액 등과 같은 산 수용액을 유화제 및분산제를사용하여 염소화시키는방법이다. 좀더 구체적으로, 본 발명에 따라 염소화 폴리에틸렌을 제조하는 방법에서, 일례로 상기 염소화 반응은 폴리에틸렌을 물, 유화제 및 분산제에 의해 분산시킨 후, 촉매와 클로린 (chlorine)을 투입하여 반응시키는것으로이뤄질수 있다. 상기 유화제는 일례로 폴리에테르 (polyether) 혹은 폴리알킬렌 옥사이드 (polyalkylene oxide)이다. 상기 분산제는일례로중합체 염 혹은유기산중합체 염이다. 상기 유기산은일례로메타크릴산, 아크릴산등일수있다. 상기 촉매는 일례로 염소화촉매이고, 또다른 예로 과산화물, 혹은 유기 과산화물이다. 상기 클로린은 일례로 단독또는 비활성 가스와혼합하여 사용할수 있다. 상기 최종 염소화 반응온도는 일례로 약 60
Figure imgf000032_0001
내지 약 150 °0 , 약 70 X: 내지 약 145 °0 , 약 90 X: 내지 약 140 X :, 혹은 약 130
Figure imgf000032_0002
내지 약 137 I:이다. 상기 염소화 반응시간은 일례로 약 10 분 내지 약 10 시간, 약 1 2019/139355 1»(:1^1{2019/000354
And neutralization, water washing post-treatment time is greatly shortened. In addition, there is an effect of improving the elasticity (elast ic) of the chlorinated polyolefin produced by uniform chlorine distribution in the chlorinated polyolefin. For example, the aqueous phase method is a method of chlorination using, for example, an emulsifier and a dispersant together with water, and the acidic method is, for example, chlorination of an acid aqueous solution such as an aqueous solution of hydrochloric acid (HC1) using an emulsifier and a dispersant. It is a way. More specifically, in the method for producing chlorinated polyethylene according to the present invention, for example, the chlorination reaction may be performed by dispersing polyethylene with water, an emulsifier and a dispersant, and then reacting with a catalyst and chlorine. . The emulsifier is for example polyether or polyalkylene oxide. The dispersant is for example a polymer salt or an organic acid polymer salt. The organic acid may be, for example, methacrylic acid, acrylic acid, or the like. The catalyst is, for example, a chlorination catalyst, and in another example, a peroxide or an organic peroxide. The chlorine may be used alone or in admixture with an inert gas, for example. The final chlorination reaction temperature is about 60
Figure imgf000032_0001
To about 150 ° 0, about 70X: to about 145 ° 0, about 90X: to about 140X :, or about 130
Figure imgf000032_0002
To about 137 I :. The chlorination reaction time is for example about 10 minutes to about 10 hours, about 1 2019/139355 1 »(: 1 ^ 1 {2019/000354
시간내지 약 6시간, 혹은약 2시간내지 약 4시간이다. 한편, 상기 염소화 반응은 또 다른 일례로 폴리에틸렌 100 중량부, 유화제 약 0.01 중량부 내지 약 1.0 중량부 혹은 약 0.05 중량부 내지 약 0.5 중량부 및 분산제 약 0.1 중량부 내지 약 10 중량부 혹은 약 0.5 중량부내자 약 5.0중량부를물에 분산시킨후, 촉매 약 0.01중량부내지 약 1.0 중량부 혹은 약 0.05 중량부 내지 약 0.5 중량부와 클로린 약 80 중량부 내지 약 200 중량부 혹은 약 100 중량부 내지 약 150 중량부를 투입하여 반응시키는것으로이뤄질수있다. 상기 반응또는염소화공정으로제조된 염소화폴리에틸렌은일례로 중화공정 (neutral i zat ion) , 세정공정 (washing) 및 건조공정 (drying)을 더 거쳐 분말상의 염소화폴리에틸렌으로수득할수 있다. 상기 중화공정은일례로염소화공정을거친 반응물을염기 용액으로 약 70 °C 내지 약 90 V 혹은 약 75 °C 내지 약 80 °C에서, 약 4시간내지 약 8시간동안중화하는공정일수있다. 상술한 일 구현예의 제조 방법에 따라수득된 염소화폴리올레핀은, 상기 폴리올레핀이 좁은 분자량 분포를 가짐으로 인해 염소화 폴리올레핀 내의 염소 분포 균일성이 우수하게 나타나며, 높은 신율 및 PVC와의 상용성이 우수하게 나타나는 것을 특징으로 한다. 특히, 상기 염소화 폴리올레핀은 신율이 900% 이상 또는 900% 내지 1500%, 혹은 950% 이상 또는 950%내지 1400%, 혹은 1200%이상또는 1200%내지 1300%일 수 있다. 여기서, 염소화 폴리올레핀의 신율 (%)은 ASTM D-2240에 의거한 방법으로 측정할수있다. 상기 염소화폴리올레핀은일례로염소함량이 20내지 45중량%, 31 내지 40 중량%, 혹은 33 내지 38 중량%일 수 있다. 일예로, 상기 염소화 폴리올레핀의 염소 함량은 연소 이온크로마토그래피 (Combust ion IC, Ion 2019/139355 1»(:1^1{2019/000354 The time is about 6 hours, or about 2 hours to about 4 hours. Meanwhile, the chlorination reaction is another example of 100 parts by weight of polyethylene, about 0.01 parts by weight to about 1.0 parts by weight, or about 0.05 parts by weight to about 0.5 parts by weight, and about 0.1 parts by weight to about 10 parts by weight, or about 0.5 parts by weight of the dispersant. After dispersing about 5.0 parts by weight in water, about 0.01 parts by weight to about 1.0 parts by weight or about 0.05 parts by weight to about 0.5 parts by weight of chlorine and about 80 parts by weight to about 200 parts by weight or about 100 parts by weight to about 150 parts by weight can be added to react. The chlorinated polyethylene produced by the reaction or chlorination process may be obtained as a powdered chlorinated polyethylene through further neutralization (washing) and washing (drying), for example. For example, the neutralization process may be a process of neutralizing the reactant, which has undergone chlorination, at about 70 ° C. to about 90 V or about 75 ° C. to about 80 ° C. as a basic solution for about 4 hours to about 8 hours. The chlorinated polyolefin obtained according to the manufacturing method of the above-described embodiment has excellent chlorine distribution uniformity in the chlorinated polyolefin due to the narrow molecular weight distribution, and has high elongation and excellent compatibility with PVC. It is done. In particular, the chlorinated polyolefin may have an elongation of at least 900% or from 900% to 1500%, or at least 950% or at 950% to 1400%, or at least 1200% or at 1200 to 1300%. Here, elongation (%) of chlorinated polyolefin can be measured by the method based on ASTMD-2240. For example, the chlorinated polyolefin may have a chlorine content of 20 to 45 wt%, 31 to 40 wt%, or 33 to 38 wt%. For example, the chlorine content of the chlorinated polyolefin is combustion ion chromatography (Combust ion IC, Ion 2019/139355 1 »(: 1 ^ 1 {2019/000354
Chromatography) 분석법을 이용하여 측정할 수 있다. 일예로, 상기 연소 이온크로마토그래피 분석법은 IonPac AS18 (4 x 250 mm) 컬럼이 장착된 연소 IC (ICS-5000/AQF-2100H) 장치를 사용하여, 내부 장치 온도 ( Inlet temperature) 900 °C, 외부장치 온도 (Out let temperature) 1000 °C의 연소 온도에서 용리액 (Eluent)로서 K0H (30.5 mM)를 사용하여 1 mL/min의 유량 조건하에서 측정할수 있다. 상기 염소화폴리올레핀은 일례로 랜덤 염소화폴리올레핀, 예컨대, 랜덤 염소화폴리에틸렌일수 있다. 본 발명에 따라 제조된 염소화 폴리올레핀은, 내화학성, 내후성, 난연성, 가공성 및 충격강도보강효과등이 우수하여 PVC파이프및 윈도우 프로파일 (Window Prof i le)의 충격보강제 등으로많이 사용된다. III . PVC조성물 Chromatography) can be used to measure. In one example, the combustion ion chromatography method uses a combustion IC (ICS-5000 / AQF-2100H) device equipped with an IonPac AS18 (4 x 250 mm) column, internal device temperature (Inlet temperature) 900 ° C, external Out let temperature Can be measured under flow conditions of 1 mL / min using K0H (30.5 mM) as eluent at a combustion temperature of 1000 ° C. The chlorinated polyolefin may be, for example, a random chlorinated polyolefin such as random chlorinated polyethylene. The chlorinated polyolefin prepared according to the present invention is excellent in chemical resistance, weather resistance, flame retardancy, processability and impact strength reinforcing effect, and is widely used as an impact modifier of PVC pipe and window profile. III. PVC composition
발명의 또 다른 일 구현예에 따르면, 상술한 바와 같은 방법으로 제조된 염소화 폴리올레핀 및 염화비닐 중합체 (PVC)를 포함하는 PVC 조성물이 제공된다. 상기 PVC조성물은일례로상술한바와같은방법으로제조된 염소화 폴리올레핀 약 1 중량% 내지 약 40 중량% 및 염화비닐 중합체 (PVC, Polyvinyl Chlor ide) 약 60 중량% 내지 약 99 중량%!를 포함하여 이루어질 수있다. 상기 염소화 폴리올레핀은 일례로 약 1 중량% 내지 약 15 중량%, 혹은약 5중량%내지 약 10중량%일수 있다. 상기 염화비닐중합체 (PVC)는일례로 약 85중량%내지 약 99중량%, 혹은약 90중량%내지 약 95중량%일수 있다. 2019/139355 1»(:1^1{2019/000354 According to another embodiment of the invention, there is provided a PVC composition comprising chlorinated polyolefin and vinyl chloride polymer (PVC) prepared by the method as described above. The PVC composition may include about 1% to about 40% by weight of chlorinated polyolefin and about 60% to about 99% by weight of vinyl chloride polymer (PVC) prepared by the method described above. Can be. The chlorinated polyolefin may be, for example, about 1% to about 15%, or about 5% to about 10% by weight. The vinyl chloride polymer (PVC) may be, for example, about 85% to about 99% by weight, or about 90% to about 95% by weight. 2019/139355 1 »(: 1 ^ 1 {2019/000354
또 다른 일례로, 본 기재의 PVC 조성물은 본 기재의 염소화 폴리에틸렌 약 1 중량% 내지 약 20 중량%, 염화비닐 중합체 (PVC) 약 70 중량% 내지 약 90 중량%, Ti02 약 1 중량%내지 약 10 중량%, CaC03 약 1 중량% 내지 약 10 중량% 및 복합 스테아레이트 (Ca, Zn-stearate) 약 1 중량%내지 약 10중량%를포함하여 이루어질수 있다. 상기 PVC조성물은일례로가소화시간이 약 170초이하, 약 150초 이하, 또는 약 150초내지 약 100초일 수 있다. 또한, 상기 PVC조성물은, 예컨대 160 °C 내지 190 °C 조건 하에서 염화비닐 중합체 (PVC)와 배합하였을 때, -10 °C의 저온에서 측정한샤르피 (Sharpy) 충격 강도가 약 10.9 kJ/m2 이상또는 약 10.9 kJ/m2내지 약 17 kJ/m2, 혹은 약 11.1 kJ/m2 이상 또는 약 11.1 kJ/m2 내지 약 16.5 kJ/m2, 혹은 약 13.8 kJ/m2 이상 또는 약 13.8 kJ/m2 내지 약 16.1 kJ/m2일 수 있다. 이 범위 내에서 물성 밸런스 및 생산성이 우수한 효과가 있다. 여기서, PVC 조성물의 샤르피 (Sharpy) 충격 강도 (-10 °C, kJ/m2)는 ASTM D-256에 의거한방법으로 측정할수있다. In another example, the PVC composition of the present disclosure may comprise about 1% to about 20% by weight of chlorinated polyethylene of the present disclosure, about 70% to about 90% by weight of vinyl chloride polymer (PVC), about 1% to about Ti0 2. 10% by weight, about 1% to about 10% by weight of CaC0 3 and about 1% to about 10% by weight composite stearate (Ca, Zn-stearate). For example, the PVC composition may have a plasticization time of about 170 seconds or less, about 150 seconds or less, or about 150 seconds to about 100 seconds. In addition, the PVC composition has a Charpy impact strength of about 10.9 kJ / m 2 measured at a low temperature of −10 ° C., when combined with vinyl chloride polymer (PVC), for example, under 160 ° C. to 190 ° C. conditions. Or about 10.9 kJ / m 2 to about 17 kJ / m 2 , or about 11.1 kJ / m 2 or more or about 11.1 kJ / m 2 to about 16.5 kJ / m 2 , or about 13.8 kJ / m 2 or more or about 13.8 kJ / m 2 to about 16.1 kJ / m 2 . Within this range, the physical property balance and productivity are excellent. Here, the Charpy impact strength (-10 ° C, kJ / m 2 ) of the PVC composition can be measured by the method according to ASTM D-256.
【발명의 효과】 【Effects of the Invention】
본 발명에 따르면, 특정의 화학 구조를 갖는 메탈로센 화합물 2 종 이상을 포함하는 혼성 담지 메탈로센 촉매의 존재 하에서 조촉매의 함량을 최적 범위로 투입함으로써, 좁은 분자량 분포를 갖는 폴리올레핀을 매우 효과적으로 제조할 수 있다. 특히, 본 발명의 제조 방법에 따른 폴리올레핀은 염소화 (chlor inat ion)시 폴리에틸렌 내의 염소분포균일성이 우수하게 나타나며, 염소화 폴리올레핀의 신율 및 PVC 와의 상용성 및 충격보강 성능 등을 현저히 향상시킬 수 있고, 이로써 내화학성, 내후성, 난연성, 가공성 및 충격강도보강효과등이 우수하여 PVC파이프 및 윈도우. 프로파일 (Window Prof i le)의 충격보강제등으로적합하게 적용될수 있다.  According to the present invention, the polyolefin having a narrow molecular weight distribution can be very effectively by introducing the content of the promoter in an optimum range in the presence of a hybrid supported metallocene catalyst containing two or more metallocene compounds having a specific chemical structure. It can manufacture. In particular, the polyolefin according to the production method of the present invention is excellent in the chlorine distribution uniformity in polyethylene during chlorination (chlor inat ion), it is possible to significantly improve the elongation of the chlorinated polyolefin and compatibility with PVC and impact reinforcement performance, As a result, it has excellent chemical resistance, weather resistance, flame retardancy, processability and impact strength reinforcing effect. It can be suitably applied as impact modifier of window profile.
【발명의 실시를위한최선의 형태】 2019/139355 1»(:1^1{2019/000354 [Best Mode for Implementation of the Invention] 2019/139355 1 »(: 1 ^ 1 {2019/000354
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는것은아니다. <실시예> The invention is explained in more detail in the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples. <Example>
<메탈로센화합물의 합성예>  <Synthesis example of metallocene compound>
합성예 1: 제 1메탈로센화합물 [^u-O-CCH^fi-CflHfilpZrCb Synthesis Example 1 First Metallocene Compound [^ uO-CCH ^ fi -C fl H fi lpZrCb
6 -클로로핵사놀 (6-chlorohexanol )을사용하여 문헌 (Tetrahedron Lett . 2951 (1988))에 제시된 방법으로 卜8 -0-((:¾)6-(:1을 제조하고, 여기에 Indene을 반응시켜 t-Butyl-(HCH2)6-C9H7룰 얻었다 (수율 90%) . 또한, -6-0-((: ¾) 6- ( : 1 was prepared using 6-chlorohexanol using the method shown in Tetrahedron Lett. 2951 (1988), and Indene was prepared. The reaction was carried out to obtain t-Butyl- (HCH 2) 6 -C 9 H 7 (yield 90%).
78 °C에서 t-Buty卜 0-(CH2)6-C9H7를 THF에 녹이고, 노르말 부틸리륨 (n_ BuLi )을 천천히 가한 후, 실온으로 승온 시킨 후, 8시간 반응시켰다. 그 용액을 다시 -78 °C에서 ZrCl4(THF)2( 1.70 g, 4.50 mmol )/THF(30 mL)의 서스펜젼 (suspension) 용액에 상술한 바와 같이 합성된 리튬염 ( l i thium sal t) 용액을천천히 가하고실온에서 약 6시간동안더 반응시켰다. 모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 핵산 (hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 핵산을 가해 저온 (-20 °C )에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 비스 (3-(6-(tert-부톡시)핵실)- 1 인덴- 1- 일)지르코늄 (IV) 클로라이드 [Bi s(3-(6-(tert_butoxy)hexyl )-I_inden_l- yl )zi rconium(IV) chlor ide, [ ^u-O- ( CH2 ) 6 _CgH6 ] 2Zr C 12 ] 화합물을 얻었다 (수율 88%) . T-Buty- 0- (CH 2) 6 -C 9 H 7 was dissolved in THF at 78 ° C., and normal butyllium (n_BuLi) was slowly added, and the reaction mixture was heated to room temperature for 8 hours. The solution was again synthesized as described above in a suspension solution of ZrCl 4 ( THF) 2 ( 1.70 g, 4.50 mmol) / THF (30 mL) at -78 ° C as li thium sal t) The solution was slowly added and reacted for about 6 hours at room temperature. All volatiles were dried in vacuo and the resulting oily liquid material was filtered off by addition of a hexane solvent. The filtered solution was dried in vacuo and nucleic acid was added to induce precipitate at low temperature (-20 ° C). The precipitate obtained was filtered at low temperature to give bis (3- (6- (tert-butoxy) nucleosil) -1 inden-1-yl) zirconium (IV) chloride [Bi s (3- (6- (tert_butoxy) in the form of a white solid. ) hexyl) -I / ¥ _inden_l-yl) zirconium (IV) chloride, [^ uO- (CH 2) 6 _ CgH 6] 2 Zr C 1 2] compound was obtained (yield 88%).
¾ NMR (300 MHz, CDC13): O.M-1.63 (38H, m) , 2.61-2.76 (1H, m) , 2.87-2.97 (1H, m) , 3.24-3.33 (4H, m) , 5.66 (0.5H, d) , 5.80 (0.5H, d) ,¾ NMR (300 MHz, CDC1 3) : OM-1.63 (38H, m), 2.61-2.76 (1H, m), 2.87-2.97 (1H, m), 3.24-3.33 (4H, m), 5.66 (0.5H , d), 5.80 (0.5H, d),
6.04 (0.5H, d) , 6.28 (0.5H, d) , 7.18-7.63 (8H, m) 합성예 2: 제 1메탈로센화합물 [tBu-CHCHA-C3Hj必
Figure imgf000036_0001
6.04 (0.5H, d), 6.28 (0.5H, d), 7.18-7.63 (8H, m) Synthesis Example 2: First metallocene compound [ t Bu-CHCHA-C 3 Hj 必
Figure imgf000036_0001
6 -클로로핵사놀 (6-chlorohexanol )을사용하여 문헌 (Tetrahedron Lett . 2951 (1988))에 제시된 방법으로 t-ButW-0-(CH2)6_Cl을 제조하고, 여기에 2019/139355 1»(:1^1{2019/000354 T-ButW-0- (CH 2) 6 _Cl is prepared by the method presented in Tetrahedron Lett. 2951 (1988 ) using 6- chlorohexanol, and 2019/139355 1 »(: 1 ^ 1 {2019/000354
加01)를 반응시켜 1:내位기-0-((:¾)6-(:5¾를 얻었다(수율 60%, 80 °0 / 0.1 _¾) .The reaction was carried out by 加 01) to obtain 1: Nagyo-0-((: ¾) 6 − (: 5 ¾ (Yield 60%, 80 ° 0 / 0.1 ¾).
Figure imgf000037_0001
Figure imgf000037_0001
부틸리튬 -此니)을 천천히 가한 후, 실온으로 승온시킨 후, 8 시간 반응시켰다. 그 용액을 다시 -78 I:에서 次이40 )2(1.70 §, 4.50After slowly adding butyllithium-nitrogen, the temperature was raised to room temperature and allowed to react for 8 hours. The solution is again -78 I : From 次4 0) 2 (1.70 § 4.50
^01)/¾?(30 11 )의 서스펜젼(3113?61131011) 용액에 기 합성된 리튬염(1^11111111 5311) 용액을 천천히 가하고 실온에서 6 시간 동안 더 반응시켰다. 모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 핵산(뇨근 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 투, 핵산을 가해 저온(-20 °0에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [ 11-0-((:¾)6 - ¾¾]2 (:12 화합물을 얻었다(수율 92%).
Figure imgf000037_0002
00013): 6.28 (1, 1 = 2.6 ¾, 2 , 6.19 (1, ] =
A solution of a pre -synthesized lithium salt (1 ^ 1 1111111 5311 ) was added slowly to the suspension solution of ^ 01 ) / ¾? (30 11 ) and further reacted at room temperature for 6 hours. All volatiles were dried in vacuo and the resulting oily liquid material was filtered off by addition of nucleic acid (urine muscle solvent). The filtered solution was vacuum dried, and nucleic acid was added to induce precipitate at low temperature (-20 ° 0). The obtained precipitate was filtered at low temperature to give a white solid [ 11-0- (: ¾) 6 -¾¾] 2 (: 1 2 compound) (yield 92%).
Figure imgf000037_0002
0001 3 :: 6.28 (1, 1 = 2.6 ¾ , 2, 6.19 (1,] =
2.6 ¾,
Figure imgf000037_0003
3.31 (1;, 6.6 ¾, 2 ¾, 2.62 (1, 1 = 8 ¾), 1.7 - 1.3 (
2.6 ¾,
Figure imgf000037_0003
3.31 (1 ;; 6.6 ¾, 2 ¾, 2.62 (1, 1 = 8 ¾), 1.7-1.3 (
8 , 1.17 (£, 9 . 8, 1.17 (£, 9.
130 _ (00013): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66,1 3 0 _ (0001 3 ) : 135.09, 116.66, 112.28, 72.42, 61.52, 30.66,
30.61, 30.14, 29.18, 27.58, 26.00. 합성예 3: 제 2메탈로센화합물( 11-0-(抑 )¾16 (9~(: 1;0;切(:12 용매 하에서 1라1:-加-0-(抑26(:1 화합물과 ¾¾(0) 간의 반응으로부터 그리냐드( 패 ) 시약인 1라1;-811-0-((¾261¾ 1 용액 1.0 을얻었다.상기 제조된그리냐드화합물을약 -30꼇의 상태의 6 (:13 화합물(176.1 , 1.5«101)과 冊 此)가 담겨있는 플라스크에 가하고, 상온에서 약 8시간이상교반시킨 후, 걸러낸용액을진공건조하여
Figure imgf000037_0004
加-0-(대263: 6(:12의 화합물을얻었다(수율 92%) . 2019/139355 1»(:1^1{2019/000354
30.61, 30.14, 29.18, 27.58, 26.00. Synthesis Example 3: the metallocene compound (11 -0- (抑) ¾1 6 (9 ~ to a second metal (: 1; 0;切( : 1 2 under 1 la 1 solvent: -加-0- (抑2) 6 (: 1, and the Grignard compound (L) from the reaction between the reagent ¾¾ (0) 1 La 1; -8 11 -0 - (( ¾ 2) 61¾ obtain a first solution of about 1.0 and a Grignard compound prepared above - of 30 kkyeot state 6 (: 13 compound (176.1, 1.5 «101) and冊此) was added to the flask which contained a stirring over about 8 hours at room temperature, and vacuum drying the filtered out solution
Figure imgf000037_0004
+ -0- (large 2 ) 63: 6 (: 1 2) The compound was obtained (yield 92%). 2019/139355 1 »(: 1 ^ 1 {2019/000354
약 -20 °C의 dryice/acetone bath에 2-(cyclopentylmethyl )-9H- 플루오렌 (3.33 g, 20 mmol)을 diethyl ether 약 50 에 녹여 4.4 mL (11 mmol)의 n-BuLi (2.5 M in Hexane)을 천천히 가하고, 상온에서 약 6 시간 교반시켜 2-(cyclopentylmethyl )-9H-플루오레닐 리튬 용액을 제조하였다. 교반이 종결된 후, 반응기 온도를 -30 °C로 냉각시키고, 약 -30 °C에서 핵산(100 mL)에 녹아있는 tert-Bu-0-(C¾)6SiMeCl2 (1.49 g, 5.5 mmol ) 용액에 상기 제조된 2-(cyclopentylmethyl )-9H-플루오레닐 리튬 용액을 약 1시간에 걸쳐 천천히 가하였다. 상온에서 약 8시간이상교반한후, 물을 첨가하여 추출하고, 건조(evaporat ion)하여 (6-(tert~butoxy)hexyl )bis(2- (cyclopentylmethyl )-9H-fluoren-9-yl ) (methyl )si lane 화합물을 얻었다(3.06 g, 수율 88.1%). 리간드의 구조는 1H-NMR을통해 확인하였다. 4.4 mL (11 mmol) of n-BuLi (2.5 M in Hexane) was dissolved in about 50 diethyl ether in 2- (cyclopentylmethyl) -9H-fluorene (3.33 g, 20 mmol) in a dryice / acetone bath at -20 ° C. ) Was slowly added and stirred at room temperature for about 6 hours to prepare 2- (cyclopentylmethyl) -9H-fluorenyl lithium solution. After stirring was complete, the reactor temperature was cooled to -30 ° C and tert-Bu-0- (C¾) 6 SiMeCl 2 (1.49 g, 5.5 mmol) dissolved in nucleic acid (100 mL) at about -30 ° C. The prepared 2- (cyclopentylmethyl) -9H-fluorenyl lithium solution was slowly added to the solution over about 1 hour. After stirring at room temperature for about 8 hours or more, water was added for extraction, followed by evaporat ion (6- (tert ~ butoxy) hexyl) bis (2- (cyclopentylmethyl) -9H-fluoren-9-yl) (methyl ) si lane compound was obtained (3.06 g, yield 88.1%). The structure of the ligand was confirmed by 1 H-NMR.
¾ NMR (500MHz, CDC13): -0.32 (3H, d) , 0.25-1.73 (35H, m), 2.09- 2.14 (2H, dd), 2.64-2.71 (4H, m) , 3.21-3.24 (2H, m), 4.04 (1H, d), 4.10 (1H, d), 7.16-7.84 (14H, m) 약 -20 °C에서 (6-(tert-butoxy)hexy1 )bis(2-(eyelopentylmethyl)- 9H-fluoren-9-yl Kmethyl )si lane (3.06 g, 4.4 mmol)을 톨루엔 약 50 에 녹이고, MTBE(methyl tert-butyl ether) 2.1 mL을 주가한용액에 3.9 mL의 n-BuLi (2.5 M in Hexane)을 천천히 가하고 상온으로 올리면서 약 8 시간 이상 반응시킨 후, 약 -20 °C에서 상기 제조된 디리튬염 (di 1 ithium salts) 슬러리 용액을 ZrCl4(THF)2(1.66 g, 4.4 mmol)/톨루엔(100 mL)의 슬러리 용액으로천천히 가하고상온에서 약 8시간동안더 반응시켰다. 침전물을 여과하고 여러 번 핵산으로 씻어내어 고체 형태의 디클로로[[[6-(tert- 부톡시 )핵실]메틸실릴렌]비스[ 此 요^ᅡ요-이클로펜틸메틸)-^^ 플루오렌-9 -일리덴] ]지르코늄 (Dichloro[ [ [6ᅳ(tert_ butoxy)hexyl]methylsi ly1ene]bis[(4a,4b,8a,9,9a- a )-2- (cyclopentylmethyl )-9j¥-fluoren-9-yl idene] ] zirconium, (lBu-0-¾ NMR (500MHz, CDC1 3) : -0.32 (3H, d), 0.25-1.73 (35H, m), 2.09-2.14 (2H, dd), 2.64-2.71 (4H, m), 3.21-3.24 (2H, m), 4.04 (1H, d), 4.10 (1H, d), 7.16-7.84 (14H, m) (6- (tert-butoxy) hexy1) bis (2- (eyelopentylmethyl) -9H at about -20 ° C Dissolve -fluoren-9-yl Kmethyl) si lane (3.06 g, 4.4 mmol) in about 50 toluene and add 2.1 mL of methyl tert-butyl ether (MTBE) to 3.9 mL of n-BuLi (2.5 M in Hexane). ) Was added slowly and allowed to react at room temperature for at least 8 hours. Then, the prepared dilithium salts slurry solution was prepared at about -20 ° C. ZrCl 4 (THF) 2 (1.66 g, 4.4 mmol) / Slowly added to a slurry solution of toluene (100 mL) and reacted for about 8 hours at room temperature. The precipitate was filtered off and washed with nucleic acid several times to give dichloro [[[[6- (tert-butoxy) nucleosil] methylsilylene] bis [in yo-cyclopentylmethyl)-^^ fluorene-9 in solid form. -Ylidene]] zirconium (Dichloro [[[6 [(tert_butoxy) hexyl] methylsi ly1ene] bis [(4a, 4b, 8a, 9,9a-a) -2- (cyclopentylmethyl) -9j ¥ fluorine-9 -yl idene]] zirconium, ( l Bu-0-
(CH2)6)MeSi(9-C19H15)2ZrCl2)화합물을얻었다(1.25 g, 수율 33.2%). 2019/139355 1»(:1^1{2019/000354 (CH 2 ) 6 ) MeSi (9-C 19 H 15 ) 2 ZrCl 2 ) was obtained (1.25 g, yield 33.2%). 2019/139355 1 »(: 1 ^ 1 {2019/000354
¾ NMR(500 MHz, CDC13) : 1.21-1.27 (12H, m) , 1.59-1.89 (22H, m) , 2.10-2.24 (6H, m) , 2.49_2.72(4H, m) , 3.46(2H, t) , 7.02-1.41 (14H, m) 합성예 4: 제 2 메탈로센 화합물 ( 11-0-(抑 )((¾) ( ((¾)4) (1如- N)TiCh ¾ NMR (500 MHz, CDC1 3): 1.21-1.27 (12H, m), 1.59-1.89 (22H, m), 2.10-2.24 (6H, m), 2.49_2.72 (4H, m), 3.46 (2H, t), 7.02-1.41 ( 14H, m) synthesis example 4: the metallocene compound to the second metal (11 -0- (抑) (( ¾) (((¾) 4) (1如- N) TiCh
상온에서 50 g의 Mg(s)를 10 L 반응기에 가한 후, THF 300 irL을 가하였다. 12를 0.5 g 정도 가한 후, 반응기 온도를 50 °C로 유지하였다. 반응기 온도가 안정화된 후 250 용의 6-t-부톡시핵실 클로라이드 (6-t- buthoxyhexyl chlor ide)를 피딩펌프 ( feeding pump)를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 6-t-부톡시핵실 클로라이드를 가함에 따라 반응기 온도가 약 4 °C 내지 5 °C 정도 상승하는 것을 관찰하였다. 계속적으로 6-t-부톡시핵실 클로라이드을 가하면서 12 시간 교반하였다. 반응 12시간후 검은색의 반응용액을 얻었다. 생성된 검은색의 용액 2 mL
Figure imgf000039_0001
50 g of Mg (s) was added to a 10 L reactor at room temperature, followed by addition of 300 irL of THF. After 0.5 g of 1 2 was added, the reactor temperature was maintained at 50 ° C. After the reactor temperature was stabilized, 6-t-buthoxyhexyl chloride for 250 was added to the reactor at a rate of 5 mL / min using a feeding pump. It was observed that the reactor temperature rose by about 4 ° C to 5 ° C with the addition of 6-t-butoxynucleus chloride. The mixture was stirred for 12 hours while adding 6-t-butoxynuxyl chloride. After 12 hours, a black reaction solution was obtained. 2 mL of black solution formed
Figure imgf000039_0001
buthoxyhexane)을 확인하였다. 상기 6-t-부톡시핵산으로부터 그리냐드 (Gr inganrd) 반응이 잘진행되었음을 알수 있었다. 그리하여 6_t_ 부톡시핵실 마그네슘 클로라이드 (6-t-buthoxyhexyl magnes ium chlor ide)를 합성하였다. MeSiCls 500 g과 1 L의 THF를 반응기에 가한 후 반응기 온도를 -buthoxyhexane) was confirmed. From the 6-t-butoxynucleic acid, it was found that the Gr inganrd reaction proceeded well. Thus, 6_t_ butoxynuxyl magnesium chloride (6-t-buthoxyhexyl magnesium chloride) was synthesized. 500 g of MeSiCls and 1 L of THF were added to the reactor, followed by
20 °C까지 냉각하였다. 합성한 6-t-부톡시핵실 마그네슘클로라이드중 560 g을 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 그리냐드 시약 (Gr ignard reagent)꾀 피딩 (feeding)이 끝난 후 반응기 온도를 천천히 상온으로올리면서 12시간교반하였다. 반응 12시간후흰색의 MgCl2염이 생성되는 것을 확인하였다. 핵산 4 L을 가하여 랩도리 ( l abdor i )을 통해 염을 제거하여 필터용액을 얻었다. 얻은 필터용액을 반응기에 가한 후Cooled to 20 ° C. 560 g of the synthesized 6-t-butoxynucleosil magnesium chloride was added to the reactor at a rate of 5 mL / min using a feeding pump. Grignard reagent After the feeding was completed, the reaction mixture was stirred for 12 hours while slowly raising the temperature to room temperature. After 12 hours of reaction, white MgCl 2 salt was produced. 4 L of nucleic acid was added to remove the salt through a labyrinth (l abdor i) to obtain a filter solution. After adding the obtained filter solution to the reactor
70 °C에서 핵산을제거하여 엷은노란색의 액체를 얻었다. 얻은 액체를 1H- NMR을 통해 원하는 메틸 (6-t-부톡시 핵실)디클로로실란 {Methyl (6-t-buthoxy hexyl )di chi orosi lane}화합물임을확인하였다. 2019/139355 1»(:1^1{2019/000354 The nucleic acid was removed at 70 ° C to obtain a pale yellow liquid. The obtained liquid was identified to be the desired methyl (6-t-butoxy hexyl) di chi orosi lane} compound through 1 H-NMR. 2019/139355 1 »(: 1 ^ 1 {2019/000354
¾-■ (CDCls): 3.3 (t , 2H) , 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H) , 1.1 (m, 2H) , 0.7 (s, 3H) 테트라메틸시클로펜타디엔 (tetramethyl cyclopentadi ene) 1.2 mol (150 g)와 2.4 L의 THF를 반응기에 가한 후 반응기 온도를 -20 °C로 냉각하였다. n-BuLi 480 mL 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. n-BuLi을 가한 후 반응기 온도를 천천히 상온으로 올리면서 12 시간 교반하였다. 반응 12 시간 후, 당량의 메틸 (6-t-부톡시 핵실)디클로로실란 (Methyl (6-t-buthoxy hexyl )di chlorosi lane) (326 g, 350 mL)을 빠르게 반응기에 가하였다. 반응기 온도를 천천히 상온으로 올리면서 약 12시간교반한후 다시 반응기 온도를 0 °C로 냉각시킨 후 2 당량의 t-BuNH2을 가하였다. 반응기 온도를 천천히 상온으로 올리면서 12 사간 교반하였다. 반응 12 시간 후 THF을 제거하고 4 L의 핵산을 가하여 랩도리를 통해 염을 제거한 필터용액을 얻었다. 필터용액을 다시 반응기에 가한 후, 핵산을 70 °C에서 제거하여 노란색의 용액을 얻었다. 얻을 노란색의 용액을 ^-NMR을 통해 메틸 (6-t- 부톡시핵실) (테트라메틸시클로펜타디에닐) t-부틸아미노실란 [Methyl (6-t- buthoxyhexyl ) (tetraraethyl cyc lopentadi enyl )卜 butyl aminos i l ane] ¾- (CDCls): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7 (s, 3H) tetramethyl 1.2 mol (150 g) of cyclopentadiene and 2.4 L of THF were added to the reactor, and the reactor temperature was cooled to -20 ° C. The reactor was added at a rate of 5 mL / min using an n-BuLi 480 mL feeding pump. After n-BuLi was added, the reaction mixture was stirred for 12 hours while slowly raising the temperature of the reactor. After 12 hours of reaction, an equivalent of methyl (6-t-butoxy hexyl) dichlorosilane (326 g, 350 mL) was quickly added to the reactor. After stirring for 12 hours while slowly raising the temperature of the reactor to room temperature, the reactor was cooled to 0 ° C again, and 2 equivalents of t-BuNH 2 was added thereto. Stirring for 12 hours while slowly raising the reactor temperature to room temperature. After 12 hours of reaction, THF was removed and 4 L of nucleic acid was added to obtain a filter solution from which salt was removed through labdori. After adding the filter solution to the reactor again, the nucleic acid was removed at 70 ° C to obtain a yellow solution. Obtain a yellow solution through ^ -NMR methyl (6-t-butoxynucleosil) (tetramethylcyclopentadienyl) t-butylaminosilane [Methyl (6-t-buthoxyhexyl) (tetraraethyl cyc lopentadi enyl) 卜 butyl aminos il ane]
화합물임을확인하였다. n-BuLi과리간드디메틸 (테트라메틸시클로펜타디에닐) t-부틸아민실란 (Dimethyl ( t e t r ame t hy 1 eye 1 opent ad i eny 1 )t-Butyl aminosi l ane)로부터 It was confirmed that the compound. from n-BuLi and ligand dimethyl (tetramethylcyclopentadienyl) t-butylaminesilane (Dimethyl (t e t r ame t hy 1 eye 1 opent ad i eny 1) t-Butyl aminosi l ane)
THF용액에서 합성한 -78 °C의 리간드의 디리튬염에 TiCl3(THF)3( 10 mmol )을 빠르게 가하였다. 반응용액을 천천히 -78 °C에서 상온으로 올리면서 12 시간 교반하였다. 12 시간 교반 후, 상온에서 당량의 PbCl2( 10mmol )를 반응용액에 가한후 12시간교반하였다. 12시간교반후, 푸른색을 띠는 짙은 검은색의 용액을 얻었다. 생성된 반응용액에서 THF를 제거한 후 핵산을가하여 생성물을필터하였다. 얻을 필터용액에서 핵산을 제거한후, 1H-NMR로부터 원하는 ( [methyl (6-t-buthoxyhexyl )s i lyl ( ri 5- tetramethyl cyclopentadienyl )(t-Butyl ami do)]TiCl2)인 CBu-O- 2019/139355 1»(:1^1{2019/000354 TiCl 3 ( THF) 3 (10 mmol) was rapidly added to the dilithium salt of -78 ° C ligand synthesized in THF solution. The reaction solution was stirred for 12 hours while slowly raising the temperature to -78 ° C. After stirring for 12 hours, an equivalent amount of PbCl 2 (10 mmol) was added to the reaction solution at room temperature, followed by stirring for 12 hours. After stirring for 12 hours, a dark black solution was obtained. After removing THF from the reaction solution, nucleic acid was added to filter the product. After removing the nucleic acid from the resulting filter solution, the desired CBu-O- ([methyl (6-t-buthoxyhexyl) si lyl (ri 5- tetramethyl cyclopentadienyl) (t-Butyl ami do)] TiCl2) was removed from 1H-NMR. 2019/139355 1 »(: 1 ^ 1 {2019/000354
(抑 2)6) (0¾) ((:5 (3)4) 611- (:12임을확인하였다. (抑2) 6) ( 0¾) ((: 5 (3) 4) 611- (: 1 2 )
¾-■ (CDCls): 3.3 (s, 4H) , 2.2 (s, 抑) , 2.1 (s , 抑), 1.8 - 0.8 (m) , 1.4 (s, 9H), 1.2(s, 9H) , 0.7 (s, 3H) 합성예 5: 제 2메탈로센화합물
Figure imgf000041_0001
¾- (CDCls): 3.3 (s, 4H), 2.2 (s, 抑), 2.1 (s, 抑), 1.8-0.8 (m), 1.4 (s, 9H), 1.2 (s, 9H), 0.7 (s, 3H) Synthesis Example 5 Second Metallocene Compound
Figure imgf000041_0001
THF 용매 하에서 tert-Bu-0-(C¾)6Cl 화합물과 Mg(0) 간의 반응으로부터 그리냐드 (Gr ignard) 시약인 tert-Bu-0-(C¾)6MgCl 용액 1.0 mole을 얻었다. 상기 제조된 그리냐드 화합물을 -30 °C의 상태의 MeSiCls 화합물 (176.1 mL, 1.5 mol)과 THF(2.0 mL)가 담겨있는 플라스크에 가하고, 상온에서 8시간 이상 교반시킨 후, 걸러낸 용액을 진공 건조하여 tert-Bu- 0-(C¾)6SiMeCl2의 화합물을얻었다 (수율 92%) . 1.0 mole of a solution of tert-Bu-0- (C¾) 6 MgCl, a Grignard reagent, was obtained from the reaction between the tert-Bu-0- (C¾) 6 Cl compound and Mg (0) in THF solvent. The Grignard compound prepared above was added to a flask containing MeSiCls compound (176.1 mL, 1.5 mol) and THF (2.0 mL) at -30 ° C. The mixture was stirred at room temperature for 8 hours or more, and the filtered solution was vacuumed. Drying afforded a compound of tert-Bu-0- (C¾) 6 SiMeCl 2 (yield 92%).
-20 °C에서 반응기에 플루오렌 (3.33 g, 20 mmol )과 핵산 (100 mL)과 MTBE( methyl tert-butyl ether , 1.2 mL, 10 mmol )를 넣고, 8 mL의 n-Fluorene (3.33 g, 20 mmol), nucleic acid (100 mL) and MTBE (methyl tert-butyl ether, 1.2 mL, 10 mmol) were added to the reactor at -20 ° C, and 8 mL of n-
BuLi (2.5M in Hexane)을 천천히 가하고, 상온에서 6 시간 교반시켰다. 교반이 종결된 후, 반응기 온도를 -30 V로 냉각시키고, -30 °C에서 핵산 (100 mL)에 녹아있는 tert-Bu-0-(CH2)6SiMeCl2 (2.7 g, 10 mmol ) 용액에 상기 제조된 플루오레닐 리튬 용액을 1 시간에 걸쳐 천천히 가하였다. 상온에서 8 시간 이상 교반한 후, 물을 첨가하여 추출하고, 건조 (evaporat ion)하여 (tert-Bu-C卜 (C¾)6)MeSi (9_〔:13¾())2 화합물을 얻었다 (5.3 g, 수율 100%) . 리간드의 구조는
Figure imgf000041_0002
확인하였다.
BuLi (2.5M in Hexane) was slowly added and stirred at room temperature for 6 hours. After stirring was complete, the reactor temperature was cooled to -30 V and a solution of tert-Bu-0- (CH 2) 6 SiMeCl 2 (2.7 g, 10 mmol) dissolved in nucleic acid (100 mL) at -30 ° C. To the above prepared fluorenyl lithium solution was slowly added over 1 hour. After stirring for 8 hours or more at room temperature, water was added, followed by extraction and drying (evaporat ion) to give (tert-Bu-C 卜 (C¾) 6 ) MeSi (9_ [: 13 ¾ ()) 2 compound (5.3) g, yield 100%). The structure of the ligand
Figure imgf000041_0002
Confirmed.
¾ NMR(500 MHz, CDC13) : 一 0.35 (3H, s) , 0.26 (2H, m) , 0.58 (2H, m) , 0.95 (4H, m) , 1.17 (抑, s) , 1.29 (2H, m) , 3.21 (2H, t) , 4.10 (2H, s) , 7.25 (4H, m) , 7.35 (4H, m) , 7.40 (4H, m) , 7.85 (4H, d) ¾ NMR (500 MHz, CDC1 3): 1 0.35 (3H, s), 0.26 (2H, m), 0.58 (2H, m), 0.95 (4H, m), 1.17 (抑, s), 1.29 (2H, m), 3.21 (2H, t), 4.10 (2H, s), 7.25 (4H, m), 7.35 (4H, m), 7.40 (4H, m), 7.85 (4H, d)
-20 °C에서 (tert-Bu-0-(CH2)6)MeSi (9-C13H10)2 (3.18 g, 6 mmol) / MTBE(20 mL) 용액에 4.8 mL의 n-BuLi (2.5 M in Hexane)을 천천히 가하고 상온으로 올리면서 8 시간 이상 반응시킨 후, -20 °C에서 상기 제조된 2019/139355 1»(:1^1{2019/000354 4.8 mL of n-BuLi (20 mL) in (tert-Bu-0- (CH 2) 6) MeSi (9-C 13 H 10) 2 (3.18 g, 6 mmol) / MTBE (20 mL) at -20 ° C 2.5 M in Hexane) was slowly added and reacted for at least 8 hours while raising to room temperature, and prepared at -20 ° C. 2019/139355 1 »(: 1 ^ 1 {2019/000354
디리튬염 (di 1 i thium sal t s) 슬러리 용액을 ZrCl4(THF)2 (2.26 g, 6 mmol ) / 핵산 (20 mL)의 슬러리 용액으로 천천히 가하고 상온에서 8 시간 동안 더 반응시켰다. 침전물을 여과하고 여러 번 핵산으로 씻어내어 붉은색 고체 형태의 (tert-Bu-0-(CH2)6)MeSi (9-C13H9)2ZrCl2 화합물을 얻었다 (4.3 g, 수율 94.5%) .
Figure imgf000042_0001
0606) : 1.15(911, £) , 1.26 (3比 £) , 1.58 (2 «0,
Dilithium salt (di 1 i thium sal ts) slurry solution was slowly added to a slurry solution of ZrCl 4 ( THF) 2 (2.26 g, 6 mmol) / nucleic acid (20 mL) and further reacted at room temperature for 8 hours. The precipitate was filtered and washed several times with nucleic acid to give (tert-Bu-0- (CH 2) 6) MeSi (9-C 13 H 9) 2 ZrCl 2 compound as a red solid (4.3 g, yield 94.5%). .
Figure imgf000042_0001
0 606): 1.15 (911, £), 1.26 (3 比 £), 1.58 (2 «0 ,
1.66 (샌, 111) , 1.91(4比 미), 3.32(2比 0, 6.86 (2 0, 6.90 (래, , 7.15 (4比 111) , 7.60 , dd) , 7.64(2比 1) , 7.77(211, 1) 1.66 (San, 111), 1.91 (4), 3.32 (2 比 0, 6.86 (2 0, 6.90 (Original,, 7.15 (4 比 111), 7.60, dd), 7.64 (2 比 1), 7.77 (211, 1)
<혼성 담지 메탈로센촉매의 제조예> <Production Example of Hybrid Supported Metallocene Catalyst>
제조예 1: 혼성 담지 메탈로센촉매  Preparation Example 1 Hybrid Supported Metallocene Catalyst
(1)담체준비  (1) Carrier Preparation
실리카 952,
Figure imgf000042_0002
제조)를 600 °0 온도에서 12시간 동안진공을가한상태에서 탈수및 건조하였다.
Silica 952,
Figure imgf000042_0002
(Prepared) was dehydrated and dried under vacuum at 12O &lt; 0 &gt; C for 12 hours.
(2)혼성 담지 메탈로센촉매의 제조 (2) Preparation of Mixed Supported Metallocene Catalysts
건조된 실리카 10당를실온의 유리 반응기에 넣고, 톨루엔 100此을 추가로 넣고 교반하였다. 실리카를 충분히 분산시킨 후, 10 % 메틸알루미녹산 ( ())/톨루엔 용액을 60.6 를가하여 80 °(1!로온도를올린 후 200 페으로 16 시간 교반하며 천천히 반응시켰다. 이후 온도를 다시 40 10로 낮춘 후, 충분한 양의 톨루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거하고, 감압하여 남아 있는 톨루엔을 제거하였다. 다시 톨루엔 100 1 를 투입한 후, 상기 합성예 1에 따른 제 1 메탈로센 화합물 0.25 빼이을 톨루엔에 녹여 같이 투입하여 1 시간 동안 반응을 시켰다. 반응이 끝난후, 상기 합성예 3에 따른 제 2 메탈로센 화합물 0.25 때이을 톨루엔에 녹여 투입한 후 반응을 2 시간 동안 추가로 교반하며 반응시켰다. 반응이 끝난 후, 교반을 멈추고 톨루엔층을 분리 제거한 후, 40 °(:에서 감압하여 남아 있는톨루엔을 제거하여, 혼성 담지 담지 촉매를 제조하였다. 2019/139355 1»(:1^1{2019/000354 제조예 2: 혼성 담지 메탈로센촉매 The dried silica 10 sugar was put in a glass reactor at room temperature, and 100 kPa of toluene was further added and stirred. After sufficiently dispersing the silica, 100.6% methylaluminoxane (()) / toluene solution was added to 60.6 and the temperature was increased to 80 ° (1! After lowering to, toluene was washed with a sufficient amount of toluene to remove the unreacted aluminum compound, and the remaining toluene was removed by depressurizing.Toluene 100 1 was added again, the first metallocene compound according to Synthesis Example 1 0.25 was the reaction for 1 hour by introducing, as by dissolving in the out fall of toluene. after the reaction was over, the then added and dissolved in the above synthesis example 3, the second metallocene compound 0.25 to the metal when fall toluene according to the reaction for a further 2 hours After completion of the reaction, the stirring was stopped, the toluene layer was separated and then removed, and the remaining toluene was removed by reducing the pressure at 40 ° (:) to prepare a mixed supported catalyst. It was. 2019/139355 1 »(: 1 ^ 1 {2019/000354 Manufacturing example 2: mixed supported metallocene catalyst
(1)담체준비  (1) Carrier Preparation
실리카 952, 근加 크比!!사제조)를 600 °0 온도에서 12시간 동안진공을가한상태에서 탈수및 건조하였다.  Silica 952, manufactured by Co., Ltd.) was dehydrated and dried under vacuum at a temperature of 600 ° C. for 12 hours.
(2)혼성 담지 메탈로센촉매의 제조 (2) Preparation of Mixed Supported Metallocene Catalysts
건조된 실리카 10요를실온의 유리 반응기에 넣고, 톨루엔 100此을 추가로 넣고 교반하였다. 실리카를 충분히 분산시킨 후, 10 % 메틸알루미녹산 ( ⑴ /톨루엔용액을 60.6 를가하여 80 °(:로온도를올린 후 200 께으로 16 시간 교반하며 천천히 반응시켰다. 이후 온도를 다시 40 로 낮춘 후, 충분한 양의 톨루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거하고, 감압하여 남아 있는 톨루엔을 제거하였다. 다시 톨루엔 100 此를 투입한 후, 상기 합성예 2에 따른 제 1 메탈로센 화합물 0.25 _ 을 톨루엔에 녹여 같이 투입하여 1 시간 동안 반응을 시켰다. 반응이 끝난후, 상기 합성예 4에 따른 제 2 메탈로센 화합물 0.25 빼 을 톨루엔에 녹여 투입한 후 반응을 2 시간 동안 추가로 교반하며 반응시켰다. 반응이 끝난 후, 교반을 멈추고 톨루엔층을 분리 제거한 후, 40 °(:에서 감압하여 남아 있는톨루엔을 제거하여, 혼성 담지 담지 촉매를 제조하였다. 제조예 3: 혼성 담지 메탈로센촉매  The dried silica 10 urine was put into a glass reactor at room temperature, and 100 kPa of toluene was further added and stirred. After sufficiently dispersing the silica, 60.6 was added to 10% methylaluminoxane (용 / toluene solution) and the reaction mixture was slowly reacted by raising the temperature to 80 ° (: lowering the temperature to 200 ° C for 16 hours. The temperature was lowered to 40 again, After washing with a sufficient amount of toluene to remove the unreacted aluminum compound, and to remove the remaining toluene by depressurization.Toluene 100 다시 was added again, 0.25 to the first metallocene compound according to Synthesis Example 2 After dissolution, the reaction was carried out for 1 hour, after which the second metallocene compound 0.25 according to Synthesis Example 4 was dissolved in toluene, followed by further stirring for 2 hours. After the reaction was completed, stirring was stopped, the toluene layer was separated and removed, and the remaining toluene was removed by reducing the pressure at 40 ° (:) to prepare a hybrid supported catalyst. 3 regulations: hybrid supported metallocene catalyst
(1)담체 준비  (1) carrier preparation
실리카比 952, 근加 아!사 제조)를 600
Figure imgf000043_0001
온도에서 12시간 동안진공을가한상태에서 탈수및 건조하였다.
Silica ratio 952 , Made by the company) 600
Figure imgf000043_0001
Dehydration and drying were performed under vacuum at temperature for 12 hours.
(2)혼성 담지 메탈로센촉매의 제조 (2) Preparation of Mixed Supported Metallocene Catalysts
건조된 실리카 10 §를실온의 유리 반응기에 넣고, 톨루엔 100此을 추가로 넣고 교반하였다. 실리카를 충분히 분산시킨 후, 10 % 메틸알루미녹산 ( ⑴/톨루엔 용액을 60.6此를가하여 80 °(:로온도를올린 2019/139355 1»(:1^1{2019/000354 10 § of dried silica was put in a glass reactor at room temperature, and 100 kPa of toluene was further added and stirred. After sufficiently dispersing the silica, 60.6 此 of 10% methylaluminoxane (⑴ / toluene solution was added to raise the temperature to 80 ° (: 2019/139355 1 »(: 1 ^ 1 {2019/000354
후 200 패으로 16 시간 교반하며 천천히 반응시켰다. 이후 온도를 다시 40 X:로 낮춘 후, 충분한 양의 톨루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거하고, 감압하여 남아 있는 톨루엔을 제거하였다. 다시 톨루엔 100 吐를 투입한 후, 상기 합성예 2에 따른 제 1 메탈로센 화합물 0.25 빼이을 톨루엔에 녹여 같이 투입하여 1 시간 동안 반응을 시켰다. 반응이 끝난후, 상기 합성예 3에 따른 제 2 메탈로센 화합물 0.25 빼이을 톨루엔에 녹여 투입한 후 반응을 2 시간 동안 추가로 교반하며 반응시켰다. 반응이 끝난 후, 교반을 멈추고 톨루엔층을 분리 제거한 후, 40 I:에서 감압하여 남아 있는톨루엔을 제거하여, 혼성 담지 담지 촉매를 제조하였다. 제조예 4: 혼성 담지 메탈로센촉매 After stirring for 16 hours with 200 L slowly reacted. Thereafter, the temperature was lowered to 40 X :, and then washed with a sufficient amount of toluene to remove the unreacted aluminum compound, and the remaining toluene was removed under reduced pressure. Then, 100 kPa of toluene was added thereto, and then, 0.25 mL of the first metallocene compound according to Synthesis Example 2 was dissolved in toluene, and reacted for 1 hour. After the reaction was completed, 0.25 mm of the second metallocene compound according to Synthesis Example 3 was dissolved in toluene, and then the reaction was further stirred for 2 hours. After the reaction was completed, stirring was stopped, the toluene layer was separated and removed, and the remaining toluene was removed under reduced pressure at 40 I: to prepare a mixed supported catalyst. Production Example 4 Hybrid Supported Metallocene Catalyst
(1)담체준비 (1) Carrier Preparation
Figure imgf000044_0001
Figure imgf000044_0001
동안진공을가한상태에서 탈수및 건조하였다. It was dehydrated and dried under vacuum.
(2)혼성 담지 메탈로센촉매의 제조 (2) Preparation of Mixed Supported Metallocene Catalysts
건조된 실리카 10 §를실온의 유리 반응기에 넣고, 톨루엔 100此을 추가로 넣고 교반하였다. 실리카를 충분히 분산시킨 후, 10 % 메틸알루미녹산 ( ⑴ /톨루엔 용액을 60.6此를가하여 80 ᅤ로온도를올린 후 200 께으로 16 시간 교반하며 천천히 반응시켰다. 이후 온도를 다시 40 °(:로 낮춘 후, 충분한 양의 톨루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거하고, 감압하여 남아 있는 톨루엔을 제거하였다. 다시 톨루엔 100 를 투입한 후, 상기 합성예 1에 따른 제 1 메탈로센 화합물 0.25 빼 을 톨루엔에 녹여 같이 투입하여 1 시간 동안 반응을 시켰다. 반응이 끝난후, 상기 합성예 5에 따른 제 2 메탈로센 화합물 0.25 111111 을 톨루엔에 녹여 투입한 후 반응을 2 시간 동안 추가로 교반하며 반응시켰다. 반응이 끝난 후, 교반을 멈추고 톨루엔층을 분리 제거한 후, 40 I:에서 감압하여 남아 있는톨루엔을 제거하여, 혼성 담지 담지 촉매를 제조하였다. 2019/139355 1»(:1^1{2019/000354 10 § of dried silica was put in a glass reactor at room temperature, and 100 kPa of toluene was further added and stirred. After sufficiently dispersing the silica, 60.6 10 of 10% methylaluminoxane (⑴ / toluene solution was added to raise the temperature to 80 후, followed by stirring for 16 hours at 200 C. Then, the temperature was lowered to 40 ° (:). After washing with a sufficient amount of toluene, the unreacted aluminum compound was removed, and the remaining toluene was removed by depressurizing.Toluene 100 was added again, followed by subtracting 0.25 of the first metallocene compound according to Synthesis Example 1. After dissolving in toluene, the mixture was added together and reacted for 1 hour.After the reaction, the second metallocene compound 0.25 111111 according to Synthesis Example 5 was dissolved in toluene, and then the reaction was further stirred for 2 hours. After the reaction was completed, stirring was stopped, the toluene layer was separated and removed, and the remaining toluene was removed under reduced pressure at 40 I: to prepare a hybrid supported catalyst. . 2019/139355 1 »(: 1 ^ 1 {2019/000354
<올레핀계 단량체의중합실시예> <Polymerization Example of Olefin Monomer>
실시예 1: 폴리올레핀의 제조  Example 1 Preparation of Polyolefin
하기 표 1에 나타낸 바와 같은 조건 하에서, 제조예 1의 혼성 담지 메탈로센 촉매 (합성예 1 및 3의 전구체)를 사용하여 에틸렌 호모 중합 반응을수행하였다. 먼저, 0.2 m3용량의 단일- CSTR반응기 (s ing le-CSTR reactor)에 핵산 23 kg/hr , 에틸렌 7 kg/hr , 수소 2.0 g/hr , 트리에틸알루미늄 (TEAL) 130 cc/hr의 유량으로 각각 주입되고, 또한 제조예 1에 따른 혼성 담지 메탈로센촉매가 2 g/hr (170 n mol /hr)로주입되었다. 이때 상기 반응기는 82 °C로 유지되고, 압력은 7.0 kg/cm2 내지 7.5 kg/cm2으로 유지되었으며, 약 4 시간 동안 중합 반응을 수행하였다. 이후 중합 생성물은 용매 제거 설비 및 건조기를거쳐 최종폴리에틸렌으로제조되었다. 제조된 폴리에틸렌은 칼슘스테아레이트 (두본산업 제조) 1000 ppm 및 열안정제 21B (송원산업 제조) 2000 ppm과 혼합된 다음, 펠렛으로 만들어졌다. 실시예 2: 폴리올레핀의 제조 Under the conditions as shown in Table 1, an ethylene homopolymerization reaction was carried out using the hybrid supported metallocene catalyst of Preparation Example 1 (precursors of Synthesis Examples 1 and 3). First, a flow rate of 23 kg / hr of nucleic acid, 7 kg / hr of ethylene, 2.0 g / hr of hydrogen, and 130 cc / hr of triethylaluminum (TEAL) in a 0.2 m 3 single-CSTR reactor Were injected respectively, and the mixed supported metallocene catalyst according to Preparation Example 1 was injected at 2 g / hr (170 n mol / hr). At this time, the reactor was maintained at 82 ° C, pressure was maintained at 7.0 kg / cm 2 to 7.5 kg / cm 2 , and the polymerization was carried out for about 4 hours. The polymerization product was then made into final polyethylene via a solvent removal plant and a dryer. The polyethylene produced was mixed with 1000 ppm of calcium stearate (manufactured by Dubon Industries) and 2000 ppm of heat stabilizer 21B (manufactured by Songwon Industries) and then made into pellets. Example 2 Preparation of Polyolefin
하기 표 1에 나타낸 바와같이, 반응기 압력이 8.0 kg/ cm2내지 8.5 kg八: 로 유지되도록 조절한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리에틸렌을제조하였다. 실시예 3및 4: 폴리올레핀의 제조 As shown in Table 1 below, polyethylene was manufactured in the same manner as in Example 1, except that the reactor pressure was adjusted to be maintained at 8.0 kg / cm 2 to 8.5 kg8 :. Examples 3 and 4: Preparation of Polyolefins
하기 표 1에 나타낸 바와 같이, 트리에틸알루미늄 (TEAL)을각각 110 cc/hr 및 90 cc/hr의 유량으로 조절한 것을 제외하고, 실시예 1과 동일한 방법으로폴리에틸렌을제조하였다. 비교예 1: 폴리올레핀의 제조 2019/139355 1»(:1^1{2019/000354 As shown in Table 1 below, polyethylene was prepared in the same manner as in Example 1, except that triethylaluminum (TEAL) was adjusted at a flow rate of 110 cc / hr and 90 cc / hr, respectively. Comparative Example 1: Preparation of Polyolefin 2019/139355 1 »(: 1 ^ 1 {2019/000354
하기 표 1에 나타낸 바와 같이, 상기 제조예 2에 따른 혼성 담지 메탈로센 촉매(합성예 2 및 4의 전구체)를 사용하여 중합 공정을 수행한 것을제외하고, 실시예 1과동일한방법으로폴리에틸렌을제조하였다. 비교예 2: 폴리올레핀의 제조As shown in Table 1, except that the polymerization process was carried out using the hybrid supported metallocene catalysts (precursors of Synthesis Examples 2 and 4) according to Preparation Example 2, the polyethylene in the same manner as in Example 1 Prepared. Comparative Example 2: Preparation of Polyolefin
Figure imgf000046_0001
Figure imgf000046_0001
« 의 유량으로 조절한 것을 제외하고, 비교예 2과 동일한 방법으로 폴리에틸렌을제조하였다. 비교예 3: 폴리올레핀의 제조 Polyethylene was produced in the same manner as in Comparative Example 2, except that the flow rate was adjusted to «. Comparative Example 3: Preparation of Polyolefin
하기 표 1에 나타낸 바와 같이, 상기 제조예 3에 따른 혼성 담지 메탈로센 촉매(합성예 2 및 2의 전구체)를 사용하여 중합 공정을 수행한 것을제외하고, 실시예 1과동일한방법으로폴리에틸렌을제조하였다. 비교예 4: 폴리올레핀의 제조  As shown in Table 1 below, polyethylene was prepared in the same manner as in Example 1, except that the polymerization process was performed using the hybrid supported metallocene catalyst according to Preparation Example 3 (precursors of Synthesis Examples 2 and 2). Prepared. Comparative Example 4: Preparation of Polyolefin
하기 표 1에 나타낸 바와 같이, 상기 제조예 4에 따른 혼성 담자 메탈로센 촉매(합성예 1 및 5의 전구체)를 사용하여 중합 공정을 수행한 것을제외하고, 실시예 1과동일한방법으로폴리에틸렌을제조하였다. 비교예 5: 폴리올레핀의 제조  As shown in Table 1 below, except that the polymerization process was carried out using the hybrid spectrometallocene catalysts according to Preparation Example 4 (precursors of Synthesis Examples 1 and 5), polyethylene was prepared in the same manner as in Example 1. Prepared. Comparative Example 5: Preparation of Polyolefin
하기 표 1에 나타낸 바와 같이, 트리에틸알루미늄 0^1)을 170 ( / 의 유량으로 조절한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리에틸렌을제조하였다. 비교예 6: 폴리올레핀의 제조  As shown in Table 1 below, polyethylene was manufactured in the same manner as in Example 1, except that triethylaluminum 0 ^ 1 was adjusted to a flow rate of 170 (/). Comparative Example 6: Preparation of Polyolefin
하기 표 1에 나타낸 바와 같이, 트리에틸알루미늄 0^1)을 60 ( / 의 유량으로 조절한 것을 제외하고, 실시예 1과 동일한 방법으로 폴리에틸렌 중합 공정을 수행하였다. 그러나, 비교예 6의 경우에 공정 불안정에 의하여 정상적인 중합이 이뤄지지 않아 폴리에틸렌 제조가 불가하였다. 2019/139355 1»(:1^1{2019/000354 As shown in Table 1 below, polyethylene polymerization was carried out in the same manner as in Example 1 except that triethylaluminum 0 ^ 1) was adjusted to a flow rate of 60 (/). However, in the case of Comparative Example 6, due to process instability, normal polymerization was not achieved, and thus polyethylene production was not possible. 2019/139355 1 »(: 1 ^ 1 {2019/000354
실시예 1내지 4 및 비교예 1 내지 6에서 적용한중합조건을 하기 표 1에 정리하여 나타내었다. The polymerization conditions applied in Examples 1 to 4 and Comparative Examples 1 to 6 are summarized in Table 1 below.
【표 1]  [Table 1]
Figure imgf000047_0001
Figure imgf000047_0001
<폴리올레핀및 염소화폴리올레핀, ^0조성물의 물성 평가> 2019/139355 1»(:1^1{2019/000354 <Evaluation of physical properties of polyolefin and chlorinated polyolefin, ^ 0 composition> 2019/139355 1 »(: 1 ^ 1 {2019/000354
실시예 1 내지 4 및 비교예 1 내지 5의 중합 공정을 통해 제조된 폴리에틸렌과 이를 이용하여 제조된 염소화 폴리에틸렌, 및 이를 포함하는 PVC조성물의 물성을하기 표 2에 나타내었다. 먼저 , 실시예 1 내지 4 및 비교예 1 내지 5의 중합 공정을 통해 제조된 폴리에틸렌을 사용하여 염소화 반응을 수행하여, 염소화 폴리에틸렌 (CPE)을 제조하였다. 또한, 이렇게 제조된 염소화 폴리에틸렌과 염화비닐중합체 (PVC)와컴파운딩하여 PVC조성물을제조하였다. 염소화폴리에틸렌의 제조 The physical properties of the polyethylene produced by the polymerization process of Examples 1 to 4 and Comparative Examples 1 to 5 and the chlorinated polyethylene prepared using the same, and the PVC composition containing the same are shown in Table 2 below. First, chlorination reaction was performed using polyethylene prepared through the polymerization process of Examples 1 to 4 and Comparative Examples 1 to 5 to prepare chlorinated polyethylene (CPE). In addition, the PVC composition was prepared by compounding the chlorinated polyethylene and vinyl chloride polymer (PVC) thus prepared. Preparation of Chlorinated Polyethylene
반응기에 물 5,000L와 고밀도 폴리에틸렌 550 kg을 투입한 다음, 분산제로 소듐 폴리메타드릴레이트 (sodi· polymethacrylate) , 유화제로 옥시프로필렌 및 옥시에틸렌 코폴리이써 (oxypropylene and oxyethylene copolyether) , 촉매로 벤조일 퍼옥사이트(benzoyl peroxide)를 넣고, 최종온도 132 °C로, 3 시간동안 기체상의 클로린을주입하여 염소화였다. 상기 염소화된 반응물을 NaOH또는 Na2C03을투입하여 4시간동안중화하고, 이를 다시 흐르는 물에 의해 4 시간 동안 세정한 다음, 마지막으로 120 C에서 건조하여 분말형태의 염소화폴리에틸렌을제조하였다. PVC컴파운드의 제조 5,000 liters of water and 550 kg of high density polyethylene were added to the reactor, then sodium polymethacrylate as a dispersant, oxypropylene and oxyethylene copolyether as an emulsifier, and benzoyl peroxite as a catalyst. (benzoyl peroxide) was added and chlorination was carried out by injecting gaseous chlorine for 3 hours at a final temperature of 132 ° C. The chlorinated reactant was neutralized for 4 hours by introducing NaOH or Na 2 CO 3 , washed again with running water for 4 hours, and finally dried at 120 ° C. to prepare a chlorinated polyethylene powder. Manufacture of PVC Compound
상기 염소화 폴리에틸렌 6.5 중량%, 염화비닐 중합체에) 81.6 중량%, Ti023.2중량%, CaC034.1중량%및 복합스테아레이트 (Ca, Zn) 4.5 중량%를배합한다음가공하여 PVC컴파운드시편을제조하였다. 물성 평가 6.5 wt% of the chlorinated polyethylene, 81.6 wt% of Ti0 2, 3.2 wt% of Ti0 2 , 4.1 wt% of CaC0 3 , and 4.5 wt% of composite stearate (Ca, Zn) were mixed to process a PVC compound specimen. It was. Property evaluation
(1) MIs.o및 MFRRC21.6/5): 폴리에틸렌에 대한 Melt Index (MI5.o)는 ASTM D1238 (조건 E, 190 °C, 5.0 kg하중) 규격에 따라측정하였다. 또한, 폴리에틸렌에 대한용융흐름지수(Melt Flow Rate Ratio, MFRR, 21.6/5)는 MFR21.6을 MFR5으로 나누어 계산하였으며, MFR21.6은 ISO 1133에 따라 190 °C의 온도및 21.6 kg의 하중하에서 측정하고, MFR5은 ISO 1133에 따라 2019/139355 1»(:1^1{2019/000354 (1) MIs . o and MFRRC 21.6 / 5): Melt Index (MI 5. o) for polyethylene was measured according to ASTM D1238 (Condition E, 190 ° C, 5.0 kg load) specification. In addition, the melt flow rate ratio (MFRR, 21.6 / 5) for polyethylene was calculated by dividing MFR 21.6 by MFR 5 and MFR 21.6 measured under a temperature of 190 ° C and a load of 21.6 kg according to ISO 1133. And MFR 5 according to ISO 1133 2019/139355 1 »(: 1 ^ 1 {2019/000354
190 °C의 온도 및 5 kg의 하중 하에서 측정하였다. It was measured under a temperature of 190 ° C and a load of 5 kg.
(2) 밀도 (g/cm3) : ASTM D-792에 의거한 방법으로 폴리에틸렌의 밀도 (g/cm3)를 측정하였다. (2) Density (g / cm 3): as a method based on ASTM D-792 to measure the density (g / cm 3) of the polyethylene.
(3) CPE의 신율 (%) : ASTM D-2240에 의거한 방법으로 염소화 폴리에틸렌의 신율 (%)를 측정하였다. (3) Elongation (%) of CPE: The elongation (%) of chlorinated polyethylene was measured by the method according to ASTM D-2240.
(4) PVC 컴파운드의 Sharpy충격 강도 (-10 C kJ/m! ): ASTM D-256에 의거한 방법으로 Sharpy충격 강도 (-10 °C , kJ/m2)를 측정하였다. (4) Sharpy impact strength (-10 C kJ / m ! ) Of PVC compound: Sharpy impact strength (-10 ° C, kJ / m 2 ) was measured by the method according to ASTM D-256.
【표 2] [Table 2]
Figure imgf000049_0001
상기 표 2의 결과로부터, 실시예 1 내지 4는 고밀도 폴리에틸렌의 좁은 분자량 분포를 바탕으로 염소화 이후 높은 신율을 구현하여 死 2019/139355 1»(:1^1{2019/000354
Figure imgf000049_0001
From the results of Table 2, Examples 1 to 4 implement a high elongation after chlorination based on the narrow molecular weight distribution of high density polyethylene 2019/139355 1 »(: 1 ^ 1 {2019/000354
컴파운드의 충격강도가 우수한 효과를 얻을 수 있음을 확인하였다. 특히, 실시예 3 및 4는 중합공정상의 TEAL투입량 감소를 통해 10 이하의 용융 흐름지수 (MFRR)을나타내며, 좁은분자량분포를구현하였을뿐만아니라, 1200%이상의 우수한신율특성을나타내었으며, 이에 따라각각 13.8 kJ/m2 및 16 kJ/m2으로충격 강도가향상되었음을알수 있다. 이에 반해, 비교예 1 내지 5는 고밀도 폴리에틸렌의 분자량 분포가 넓어짐으로 인해 염소화 폴리에틸렌의 신율 저하 및 PVC 컴파운드의 충격강도가 떨어지는 문제가 나타났다. 구체적으로, 비교예 1 내지 5는 용융 흐름 지수 (MFRR)가 13.8 내지 14.5로 높게 나타나며, 실시예 대비 넓은분자량분포에 따른신율 및 충격강도 열세가나타났다. 특히, 비교예 2는 공정상의 TEAL 투입량 조절에도 불구하고 분자량 분포 감소 효과가 없어 최종 PVC컴파운드의 충격강도가오히려 저하되는것으로나타났다. It was confirmed that the impact strength of the compound can be obtained an excellent effect. In particular, Examples 3 and 4 exhibited a melt flow index (MFRR) of 10 or less through the reduction of TEAL input in the polymerization process, not only a narrow molecular weight distribution, but also excellent elongation characteristics of more than 1200%, respectively. It can be seen that the impact strength is improved to 13.8 kJ / m 2 and 16 kJ / m 2 . On the other hand, Comparative Examples 1 to 5 have shown a problem that the elongation of the chlorinated polyethylene is lowered and the impact strength of the PVC compound is lowered due to the wider molecular weight distribution of the high density polyethylene. Specifically, Comparative Examples 1 to 5 show a high melt flow index (MFRR) of 13.8 to 14.5, and the elongation and impact strength inferior to the wider molecular weight distribution were shown. In particular, Comparative Example 2 was found to have a lower molecular weight distribution effect in spite of the TEAL input control in the process, thereby lowering the impact strength of the final PVC compound.

Claims

2019/139355 1»(:1^1{2019/000354 【청구의 범위】 【청구항 1】 하기 화학식 1로표시되는 1종 이상의 제 1 메탈로센 화합물 및 하기 화학식 2로 표시되는 1종 이상의 제 2 메탈로센 화합물이 담체에 담지된 메탈로센담지 촉매, 및 조촉매의 존재 하에, 상기 조촉매를 70 00/^ 내지 140 ( /111·로 투입하면서 올레핀계 단량체를중합하는단계를포함하는, 폴리올레핀의 제조방법 : 2019/139355 1 »(: 1 ^ 1 {2019/000354 【claims】 【claim 1】 At least one first metallocene compound represented by the following formula 1 and at least one second represented by the following formula 2 And a step of polymerizing the olefinic monomer while introducing the cocatalyst at 70 00 / ^ to 140 (/ 111... Production method of polyolefin:
[화학식 1] 고; [Formula 1] go;
Figure imgf000051_0001
일하거나상이하고, 각각독립적으로 인데닐 및 4, 5,6, 7 -테트라하이드로 -1 -인데닐 라디칼로 이루어진 군으로부터 선택된 어느하나이고, 이들은 01내지 020의 탄화수소로치환될수있으며;
Figure imgf000051_0001
Working or different, each independently selected from the group consisting of indenyl and 4, 5,6, 7-tetrahydro-1 -indenyl radicals, which may be substituted with 01 to 020 hydrocarbons;
Figure imgf000051_0002
서로 동일하거나 상이하고, 각각 독립적으로 수소, 치환되거나 치환되지 않은 01 내지 020의 알킬, 치환되거나 치환되지 않은 01 내지 (:10의 알콕시, 치환되거나 치환되지 않은 02 내지 020의 알콕시알킬, 치환되거나 치환되지 않은 06 내지 02◦의 아릴, 치환되거나 치환되지 않은 06내지 (:10의 아릴옥시, 치환되거나치환되지 않은 0,2내지 020의 알케닐, 치환되거나 치환되지 않은 07 내지 040의 알킬아릴, 치환되거나 치환되지 않은 07 내지 40의 아릴알킬, 치환되거나 치환되지 않은 08 내지 040의 아릴알케닐, 또는 치환되거나 치환되지 않은 02 내지 (:10의 알키닐이고;
And
Figure imgf000051_0002
Hydrogen, substituted or unsubstituted 01-020 alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted 02-020 alkoxyalkyl, substituted or substituted Unsubstituted 06 to 02o aryl, substituted or unsubstituted 06 to (: 10 aryloxy, substituted or unsubstituted 0,2 to 020 alkenyl, substituted or unsubstituted alkylaryl to 07 to 040, substitution Substituted or unsubstituted arylalkyl of 07 to 40, substituted or unsubstituted arylalkenyl of 08 to 040, or substituted or unsubstituted alkynyl of 02 to (: 10);
은 각각서로 독립적으로 할로겐 원자, 치환되거나 치환되지 않은 Are each independently a halogen atom, substituted or unsubstituted
01 내지 020의 알킬, 치환되거나 치환되지 않은 02 내지 020의 알케닐, 치환되거나 치환되지 않은 07 내지 040의 알킬아릴, 치환되거나 치환되지 않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 01 내지 020의 알킬리덴, 치환되거나 치환되지 않은 아미노기, 치환되거나 치환되지 않은 02 내지 020의 2019/139355 1»(:1^1{2019/000354 01 to 020 alkyl, substituted or unsubstituted 02 to 020 alkenyl, substituted or unsubstituted alkylaryl of 07 to 040, substituted or unsubstituted arylalkyl of 07 to 040, substituted or unsubstituted 06 to 020 Of aryl, substituted or unsubstituted alkylidene of 01 to 020, substituted or unsubstituted amino group, substituted or unsubstituted 02 to 020 2019/139355 1 »(: 1 ^ 1 {2019/000354
알킬알콕시, 또는 치환되거나 치환되지 않은 07 내지 040의 아릴알콕시이고; Alkylalkoxy or substituted or unsubstituted arylalkoxy of 07 to 040;
II은 1또는 0이고;  II is 1 or 0;
[화학식 2]  [Formula 2]
Figure imgf000052_0001
Figure imgf000052_0001
상기 화학삭 2에서,  In the chemical cutting 2,
, ^는 각각 서로 독립적으로 치환되거나 치환되지 않은 01 내지 020의 알킬, 치환되거나 치환되지 않은 Cl 내지 (:10의 알콕시, 치환되거나 치환되지 않은 02내지 020의 알콕시알킬, 또는 치환되거나 치환되지 않은 06내지 020의 아릴이고;  And ^ are each independently substituted or unsubstituted alkyl of 01 to 020, substituted or unsubstituted Cl to (10: alkoxy, substituted or unsubstituted 02 to 020 alkoxyalkyl, or substituted or unsubstituted 06 To 020 aryl;
쇼는탄소, 게르마늄, 또는규소원자함유라디칼중하나이상또는 이들의 조합이고;  The show is one or more of carbon, germanium, or silicon atom-containing radicals or a combination thereof;
4족전이금속이며 ; Is a group 4 transition metal;
X1및 X2는서로동일하거나상이하고, 각각독립적으로할로겐 원자, 치환되거나 치환되지 않은 01 내지 020의 알킬, 치환되거나 치환되지 않은 02내지 (:10의 알케닐, 치환되거나치환되지 않은 07내지 040의 알킬아릴, 치환되거나 치환되지 않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 01 내지 020의 알킬리덴, 치환되거나치환되지 않은아미노기, 02내지 020의 알킬알콕시, 또는치환되거나치환되지 않은 07내지 040의 아릴알콕시이고; X 1 and X 2 are the same or different and each independently represent a halogen atom, substituted or unsubstituted alkyl of 01 to 020, substituted or unsubstituted 02 to (alkenyl of 10; substituted or unsubstituted 07 to 07). 040 alkylaryl, substituted or unsubstituted arylalkyl of 07 to 040, substituted or unsubstituted aryl of 06 to 020, substituted or unsubstituted alkylidene of 01 to 020, substituted or unsubstituted amino group, 02 to 020 Alkylalkoxy, or substituted or unsubstituted 07 to 040 arylalkoxy;
내지 7은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐 원자, 치환되거나 치환되지 않은 01 내지 020의 알킬, 치환되거나 치환되지 않은 02 내지 020의 알케닐, 치환되거나 치환되지 않은 01 내지 2019/139355 1»(:1^1{2019/000354 To 7 are the same or different from each other, and each independently hydrogen, a halogen atom, substituted or unsubstituted alkyl of 01 to 020, substituted or unsubstituted alkenyl of 02 to 020, substituted or unsubstituted 01 to 2019/139355 1 »(: 1 ^ 1 {2019/000354
020의 알킬실릴, 치환되거나 치환되지 않은 01 내지 020의 실릴알킬, 치환되거나치환되지 않은 01내지 020의 알콕시실릴, 치환되거나치환되지 않은 01 내지 (:10의 알콕시, 치환되거나 치환되지 않은 C2 내지 020의 알콕시알킬, 치환되거나 치환되지 않은 06 내지 020의 아릴, 치환되거나 치환되지 않은 C6내지 (:10의 아릴옥시, 치환되거나치환되지 않은 07내지 040의 알킬아릴, 치환되거나 치환되지 않은 07 내지 040의 아릴알킬, 치환되거나 치환되지 않은 08 내지 040의 아릴알케닐, 또는 치환되거나 치환되지 않은 02 내지 (:10의 알키닐이며, ¾ 내지 ¾7 중 서로 인접하는 2개 이상이 서로 연결되어 치환또는 비치환된 지방족또는 방향족 고리를 형성할수 있고, 020 alkylsilyl, substituted or unsubstituted 01 to 020 silylalkyl, substituted or unsubstituted 01 to 020 alkoxysilyl, substituted or unsubstituted 01 to (10: alkoxy, substituted or unsubstituted C2 to 020 Alkoxyalkyl, substituted or unsubstituted 06 to 020 aryl, substituted or unsubstituted C6 to (10: aryloxy, substituted or unsubstituted 07 to 040 alkylaryl, substituted or unsubstituted 07 to 040 Arylalkyl, substituted or unsubstituted arylalkenyl of 08 to 040, or substituted or unsubstituted alkynyl of 02 to (: 10), and two or more adjacent groups of ¾ to ¾ 7 are connected to each other to be substituted or unsubstituted Can form a ringed aliphatic or aromatic ring,
내지 중적어도하나는하기 화학식 3으로표시되는것이고, 내지묘17중적어도하나는하기 화학식 3으로표시되는것이고, To at least one is represented by the following formula (3), to Figure 17 at least one is represented by the formula (3),
[화학식 3]  [Formula 3]
-1入뱐1 -1 入 뱐 1
상기 화학식 3에서,  In Chemical Formula 3,
은 01내지(:10의 알킬렌이며,  Is 01 to (: 10 alkylene,
131은 06내지 020의 아릴, C4내지 020의 시클로알킬, 또는 02내지 ◦20의 알콕시알킬이다. 【청구항 2] 13 1 is 06 to 020 aryl, C 4 to 020 cycloalkyl, or 02 to 20 alkoxyalkyl. [Claim 2]
제 1항에 있어서, The method of claim 1,
1은 ,分또는 이고;  1 is or minute;
및 ^는 각각 독립적으로 수소, 01 내지 020의 알킬, 02 내지 ◦20의 알콕시알킬, 또는 내지 040의 아릴알킬이고;  And ^ are each independently hydrogen, alkyl of 01-020, alkoxyalkyl of 02-20, or arylalkyl of 040;
은할로겐원자인,  The halogen atom,
폴리올레핀의 제조방법 .  Method for producing polyolefin.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 화학식 1로표시되는 제 1 메탈로센 화합물은화합물은 비스(3- 2019/139355 1»(:1^1{2019/000354 The first metallocene compound represented by Formula 1 is a compound of bis (3- 2019/139355 1 »(: 1 ^ 1 {2019/000354
( 라!; -부톡시)핵실)- 1 인덴- 1 -일)지르코늄(IV) 클로라이드, 또는 비스 - - 라!-부톡시)핵실)- 4, 5, 6, 7 -테트라하이드로 -1 인덴- 1- 일)지르코늄(IV)클로라이드인, (La !; -Butoxy) Nucil)-1 Inden-1 -yl) zirconium (IV) chloride or bis- -la! -Butoxy) Nuclear) -4,5,6,7 -tetrahydro -1 Inden-1 -yl ) Zirconium (IV) chloride
폴리올레핀의 제조방법 .  Method for producing polyolefin.
【청구항 4] [Claim 4]
제 1항에 있어서, The method of claim 1,
2은 , 또는 이고;  2 is or;
쇼는탄소, 게르마늄, 또는규소이고; The show is carbon, germanium, or silicon;
, 요2는각각독립적으로 01내지 020의 알킬, 또는 C2 내지 020의 알콕시알킬이고; , 2 is independently 01 to 020 alkyl, or C2 to 020 alkoxyalkyl;
또는 은하기 화학식 33로표시되는것이고, 0또는요16은하기 화학식 3크로표시되는것이고, 내지 요17중나머지는수소, 할로겐, 또는 01내지 020의 알킬이고; Or the following is represented by the formula (3 3 ), 0 or Yo 16 is represented by the formula (3), and the rest of the 17 are hydrogen, halogen, or alkyl of 01 to 020;
X1및 X2는각각독립적으로할로겐원자인, X 1 and X 2 are each independently halogen atoms,
폴리올레핀의 제조방법 .  Method for producing polyolefin.
[화학식 Sa] [Formula Sa]
Figure imgf000054_0001
Figure imgf000054_0001
상기 화학식 33에서, In Chemical Formula 3 3 ,
는 01내지(:10의 알킬렌이며,  Is 01 to (: 10 alkylene,
I)2는 06내지 020의 아릴또는 04내지 020의 시클로알킬이다. I) 2 is 06 to 020 aryl or 04 to 020 cycloalkyl.
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 화학식 2로 표시되는 제 2 메탈로센 화합물은 디클로로[[[6- ( !;-부톡시)핵실]메틸실릴렌]비스[(43,413, 88,9,93- II)-2 - (시클로펜틸메틸)- 9片플루오렌 -9 -일리덴]]지르코늄, 디클로로[[[6-0;6 - 부톡시)핵실]메틸실릴텐]비스[(43,413, 8 9,9 II)-2-(페닐메틸)- 9 The second metallocene compound represented by the formula (2) is dichloro [[[6-(!;-Butoxy) nuclear] methylsilylene] bis [(4 3, 41 3, 88,9,93-I I) -2-(Cyclopentylmethyl) -9-fluorine-9-ylidene]] zirconium, dichloro [[[6-0; 6 -butoxy] nucleosil] methylsilylten] bis [(4 3, 41 3, 8 9,9 II) -2- (phenylmethyl) -9
플루오렌 -9 -일리덴]]지르코늄, 또는 디클로로[[[6-0;6 - 부톡시)핵실]메틸실릴텐]비스[(4 413,83,9,93-11)-2-(시클로핵실메틸)-9 2019/139355 1»(:1^1{2019/000354 Fluorene-9 - ylidene] - zirconium, or dichloro [[[6-0; 6-butoxy) haeksil] methyl silyl X] bis [(4 41 3, 83, 11, 9,93-) -2- (Cyclonuclear methyl) -9 2019/139355 1 »(: 1 ^ 1 {2019/000354
플루오렌 -9 -일리덴] ]지르코늄인, Fluorene-9-ylidene]] zirconium phosphorus,
폴리올레핀의 제조방법.  Method for producing polyolefin.
【청구항 6】 [Claim 6]
상기 담체는 실리카, 알루미나 및 마그네시아로 이루어진 군에서 선택되는어느하나또는둘이상의 혼합물을포함하는것인,  Wherein the carrier comprises any one or two or more mixtures selected from the group consisting of silica, alumina and magnesia,
폴리올레핀의 제조방법 .  Method for producing polyolefin.
【청구항 7] [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 조촉매는 하기 화학식 4 및 화학식 5로 표시되는 화합물로 이루어진군에서 선택되는 1종이상인,  The promoter is at least one member selected from the group consisting of compounds represented by the following formula (4) and (5),
폴리올레핀의 제조방법 :  Production method of polyolefin:
[화학식 4] [Formula 4]
-[시( )-01 ]„1 -[Hour () -0 1] „1
상기 화학식 4에서,  In Chemical Formula 4,
, , 및 는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, Cl 내지 020의 하이드로카빌기, 또는 할로겐으로 치환된 01 내지 020의 하이드로카빌기이고;  ,,, And are the same as or different from each other, and are each independently hydrogen, halogen, a hydrocarbyl group of Cl to 020, or a hydrocarbyl group of 01 to 020 substituted with halogen;
1은 0또는 1이며;  1 is 0 or 1;
01은 2이상의 정수이고; 01 is an integer of 2 or more;
[화학식 5]  [Formula 5]
甘 - 화학식 5에서,  甘-in Formula 5,
은 +1가의 다원자이온이고, 8는 +3산화상태의 붕소이고, Is a +1 polyvalent ion, 8 is +3 boron,
0는 각각 서로 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기 , 알콕사이드기, 아릴옥사이드기 , 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 는 20개 이하의 탄소를가지나, 단하나이하의 위치에서 는할라이드기이다. 2019/139355 1»(:1^1{2019/000354 0 is each independently selected from the group consisting of a hydride group, a dialkyl amido group, a halide group, an alkoxide group, an aryl oxide group, a hydrocarbyl group, a halocarbyl group, and a halo-substituted hydrocarbyl group, wherein 20 It has up to 5 carbons, but at only one position it is a halide group. 2019/139355 1 »(: 1 ^ 1 {2019/000354
【청구항 8] [Claim 8]
제 7항에 있어서,  The method of claim 7,
상기 화학식 4로 표시되는 조촉매 화합물은 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 및 부틸알루미녹산으로 이루어진 군에서 선택된 알킬알루미녹산계 화합물 ; 또는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리핵실알루미늄 트리옥틸알루미늄 및 이소프레닐알루미늄으로 이루어진 군에서 선택된 트리알킬알루미늄인,  The cocatalyst compound represented by Chemical Formula 4 may be an alkylaluminoxane compound selected from the group consisting of methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane and butyl aluminoxane; Or trialkylaluminum selected from the group consisting of trimethylaluminum, triethylaluminum, triisobutylaluminum, trinuxylaluminum trioctylaluminum and isoprenylaluminum,
폴리올레핀의 제조방법 .  Method for producing polyolefin.
【청구항 9】 [Claim 9]
제 7항에 있어서,  The method of claim 7, wherein
상기 화학식 5로 표시되는 조촉매 화합물은 트리메탈암모늄 테트라페닐보레이트 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리(11-부틸)암모늄 테트라페닐보레이트 , 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, The cocatalyst compound represented by the formula (5) is trimetalammonium tetraphenylborate methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri ( 11 -butyl) ammonium tetraphenylborate, Methyltetracyclocyclodecylammonium tetraphenylborate
디메틸아닐늄 테트라페닐보레이트, -디에틸아닐늄 테트라페닐보레이트, 比 -디메틸(2 , 4, 6 -트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스(펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스(펜타페닐)보레이트 메틸디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스(펜타플루오로페닐)보레이트, Dimethylaniline tetraphenylborate, -diethylaninium tetraphenylborate, specific -dimethyl (2,4,6-trimethylaninynium) tetraphenylborate, trimethylammonium tetrakis (pentafluorophenyl) borate, methylditetedecyl Ammonium tetrakis (pentaphenyl) borate methyldioctadecylammonium tetrakis (pentafluorophenyl) borate, triethylammonium, tetrakis (pentafluorophenyl) borate,
트리프로필암모늄테트라키스(펜타프루오로페닐)보레이트, 트리(11- 부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(2급- 부틸)암모늄테트라키스(펜타플루오로페닐)보레이트, N , -디메틸아닐늄 테트라키스(펜타플루오로페닐)보레이트,
Figure imgf000056_0001
디에틸아닐늄테트라키스(펜타플루오로페닐)보레이트 , N, -디메틸(2 , 4, 6- 트리메틸아닐늄)테트라키스(펜타플루오로페닐)보레이트,
Tripropyl ammonium tetrakis (pentafluorophenyl) borate, tri ( 11- butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (secondary-butyl) ammonium tetrakis (pentafluorophenyl) borate, N Dimethylaninium tetrakis (pentafluorophenyl) borate
Figure imgf000056_0001
Diethylaninium tetrakis (pentafluorophenyl) borate, N, -dimethyl (2, 4, 6-trimethylaninynium) tetrakis (pentafluorophenyl) borate,
트리메틸암모늄테트라키스(2 , 3 , 4 , 6 -테트라플루오로페닐)보레이트 2019/139355 1»(:1^1{2019/000354 Trimethylammonium Tetrakis (2, 3, 4, 6-tetrafluorophenyl) borate 2019/139355 1 »(: 1 ^ 1 {2019/000354
트리에틸암모늄 테트라키스(2 , 3 , 4, 6 -테트라플루오로페닐)보레이트 , 트리프로필암모늄 테트라키스(2, 3 , 4 , 6 -테트라플루오로페닐)보레이트, 트리 -부틸)암모늄 테트라키스(2,3,4,6 -,테트라플루오로페닐)보레이트, 디메틸( 부틸)암모늄 테트라키스(2, 3,4, 6 -테트라플루오로페닐)보레이트, 메틸아닐늄 테트라키스(2,3, 4,6 -테트라플루오로페닐)보레이트,
Figure imgf000057_0001
디에틸아닐늄 테트라키스(2,3,4,6 -테트라플루오로페닐)보레이트 및 - 디메틸-(2, 4,6 -트리메틸아닐늄)테트라키스-(2,3, 4,6- 테트라플루오로페닐)보레이트로 이루어진 군에서 선택된 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트 , 디테트라데실암모늄 테트라키스(펜타플루오로페닐)보레이트 , 및 디사이클로핵실암모늄 테트라키스(펜타플루오로페닐)보레이트로 이루어진 군에서 선택된 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스(펜타플루오로페닐)보레이트, 및 트리(2 , 6 -, 디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트로 이루어진 군에서 선택된삼치환된포스포늄염 형태의 보레이트계 화합물인,
Triethylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, tripropylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, tri-butyl) ammonium tetrakis ( 2,3,4,6--, tetrafluorophenyl) borate, dimethyl (butyl) ammonium tetrakis (2, 3,4, 6-tetrafluorophenyl) borate, methylaninil tetrakis (2,3, 4 , 6-tetrafluorophenyl) borate ,
Figure imgf000057_0001
Diethylaninium tetrakis (2,3,4,6-tetrafluorophenyl) borate and -dimethyl- (2,4,6-trimethylaninium) tetrakis- (2,3,4,6-tetrafluoro Bophenyl compounds in the form of trisubstituted ammonium salts selected from the group consisting of rophenyl) borate; Dialkylammonium salt selected from the group consisting of dioctadecyl ammonium tetrakis (pentafluorophenyl) borate, ditetradecyl ammonium tetrakis (pentafluorophenyl) borate, and dicyclonucleammonium tetrakis (pentafluorophenyl) borate Borate compounds in the form; Or triphenylphosphonium tetrakis (pentafluorophenyl) borate, methyldioctadecylphosphonium tetrakis (pentafluorophenyl) borate, and tri (2,6- dimethylphenyl) phosphonium tetrakis (pentafluoro Phenyl) borate is a borate compound in the form of a trisubstituted phosphonium salt selected from the group consisting of
폴리올레핀의 제조방법 :  Production method of polyolefin:
【청구항 10】 [Claim 10]
제 1항에 있어서,  The method of claim 1,
상기 올레핀단량체는에틸렌, 프로필렌, 1 -부텐, 1 -펜텐, 4 -메틸- 1- 펜텐, 1 -핵센, 1 -헵텐, 1 -옥텐, 1 -데센, 1 -운데센, 1 -도데센, 1 -테트라데센, 1 -핵사데센, 1 -아이토센, 노보넨, 노보나디엔, 에틸리덴노보덴, 페닐노보덴, 비닐노보덴, 디사이클로펜타디엔, 1,4 -부타디엔, 1,5 -펜타디엔, 1,6- 핵사디엔, 스티렌 , 알파-메틸스티텐 , 디비닐벤젠 및 3 - 클로로메틸스티렌으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것인,  The olefin monomer is ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1 -tetradecene, 1 -nuxadecene, 1 -atocene, norbornene, norbornadiene, ethylidene nobodene, phenyl nobodene, vinyl nobodene, dicyclopentadiene, 1,4 -butadiene, 1,5- Pentadiene, 1,6-nuxadiene, styrene, alpha-methylstyrene, divinylbenzene, and one containing one or more selected from the group consisting of 3-chloromethyl styrene,
폴리올레핀의 제조방법 . 2019/139355 1»(:1^1{2019/000354 Method for producing polyolefin. 2019/139355 1 »(: 1 ^ 1 {2019/000354
【청구항 11】 [Claim 11]
제 1 항 내지 제 10 항 중 어느 한 항의 방법에 따라 제조되는 폴리올레핀을클로린((±10:· )으로 처리하여 염소화하는 단계를포함하는, 염소화폴리올레핀의 제조방법 . Any one of claims 1 to 10 chlorin a polyolefin prepared according to the method of any one of wherein ((± 1 0: ·) , method for producing a chlorinated polyolefin comprises a chlorinated by treatment with.
【청구항 12】 [Claim 12]
제 11항에 있어서,  The method of claim 11,
상기 염소화 반응은 상기 폴리올레핀 100 중량부, 유화제 0.01 중량부 내지 1.0 중량부, 및 분산제 0.1 중량부 내지 10 중량부를 물에 분산시킨 후, 촉매 0.01중량부 내지 1.0중량부와클로린 80 중량부 내지 200중량부를투입하여 수행하는,  In the chlorination reaction, 100 parts by weight of the polyolefin, 0.01 parts by weight to 1.0 parts by weight of an emulsifier, and 0.1 parts by weight to 10 parts by weight of a dispersant are dispersed in water, and then 0.01 parts by weight to 1.0 parts by weight of catalyst and 80 parts by weight to 200 parts by weight of chlorine. By putting in wealth,
염소화폴리올레핀의 제조방법 .  Method for producing chlorinated polyolefin.
【청구항 13】 [Claim 13]
제 11 항의 방법에 따라 제조되는 염소화 폴리올레핀 및 염화비닐 중합체에)를포함하는,
Figure imgf000058_0001
To chlorinated polyolefins and vinyl chloride polymers prepared according to the method of claim 11,
Figure imgf000058_0001
【청구항 14】 [Claim 14]
제 13항에 있어서,  The method of claim 13,
상기 염소화폴리올레핀은신율이 900%이상인, The chlorinated polyolefin has an elongation of 900% or more,
Figure imgf000058_0002
Figure imgf000058_0002
【청구항 15】 [Claim 15]
제 13항에 있어서,  The method of claim 13,
-10 X:에서 측정한샤르피(¾3대 충격 강도가 10.9 1산細2이상인,
Figure imgf000058_0003
Charpy measured at -10 X : (¾ 3 vs. impact strength of 10.9 1 mountain 細2 or more ,
Figure imgf000058_0003
PCT/KR2019/000354 2018-01-11 2019-01-09 Method for preparing polyolefin by using supported hybrid metallocene catalyst WO2019139355A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980006507.9A CN111491952B (en) 2018-01-11 2019-01-09 Process for preparing polyolefins using supported hybrid metallocene catalysts
US16/957,925 US11560441B2 (en) 2018-01-11 2019-01-09 Method for preparing polyolefin using supported hybrid metallocene catalyst
EP19738286.4A EP3715384A4 (en) 2018-01-11 2019-01-09 Method for preparing polyolefin by using supported hybrid metallocene catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0004040 2018-01-11
KR20180004040 2018-01-11
KR1020190002462A KR102363189B1 (en) 2018-01-11 2019-01-08 Preparation method of polyolefin using a supported hybrid metallocene catalyst
KR10-2019-0002462 2019-01-08

Publications (1)

Publication Number Publication Date
WO2019139355A1 true WO2019139355A1 (en) 2019-07-18

Family

ID=67219687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000354 WO2019139355A1 (en) 2018-01-11 2019-01-09 Method for preparing polyolefin by using supported hybrid metallocene catalyst

Country Status (1)

Country Link
WO (1) WO2019139355A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210230323A1 (en) * 2018-12-10 2021-07-29 Lg Chem, Ltd. Polyethylene and Chlorinated Polyethylene Thereof
CN115260365A (en) * 2021-04-29 2022-11-01 中国石油化工股份有限公司 Branched olefin polymers, process for their preparation and their use

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032562A (en) 1989-12-27 1991-07-16 Mobil Oil Corporation Catalyst composition and process for polymerizing polymers having multimodal molecular weight distribution
JPH06256369A (en) * 1992-12-30 1994-09-13 Spherilene Srl Metallocene compound with ligand of fluorene type
EP0632066A1 (en) * 1993-06-30 1995-01-04 Montell Technology Company bv Elastomeric copolymers of ethylene with propylene and process for their preparation
US5525678A (en) 1994-09-22 1996-06-11 Mobil Oil Corporation Process for controlling the MWD of a broad/bimodal resin produced in a single reactor
EP0729984A1 (en) * 1995-03-03 1996-09-04 Montell Technology Company bv Atactic copolymers of propylene with ethylene
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
JPH11279221A (en) * 1998-03-31 1999-10-12 Daiso Co Ltd Chlorinated polyolefin
KR20160067508A (en) * 2014-12-04 2016-06-14 주식회사 엘지화학 Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032562A (en) 1989-12-27 1991-07-16 Mobil Oil Corporation Catalyst composition and process for polymerizing polymers having multimodal molecular weight distribution
JPH06256369A (en) * 1992-12-30 1994-09-13 Spherilene Srl Metallocene compound with ligand of fluorene type
EP0632066A1 (en) * 1993-06-30 1995-01-04 Montell Technology Company bv Elastomeric copolymers of ethylene with propylene and process for their preparation
US5525678A (en) 1994-09-22 1996-06-11 Mobil Oil Corporation Process for controlling the MWD of a broad/bimodal resin produced in a single reactor
EP0729984A1 (en) * 1995-03-03 1996-09-04 Montell Technology Company bv Atactic copolymers of propylene with ethylene
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
JPH11279221A (en) * 1998-03-31 1999-10-12 Daiso Co Ltd Chlorinated polyolefin
KR20160067508A (en) * 2014-12-04 2016-06-14 주식회사 엘지화학 Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3715384A4 *
TETRAHEDRON LETT., vol. 2951, 1988

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210230323A1 (en) * 2018-12-10 2021-07-29 Lg Chem, Ltd. Polyethylene and Chlorinated Polyethylene Thereof
US11905345B2 (en) * 2018-12-10 2024-02-20 Lg Chem, Ltd. Polyethylene and chlorinated polyethylene thereof
CN115260365A (en) * 2021-04-29 2022-11-01 中国石油化工股份有限公司 Branched olefin polymers, process for their preparation and their use
CN115260365B (en) * 2021-04-29 2023-07-21 中国石油化工股份有限公司 Branched olefin polymer, preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP6487924B2 (en) Ethylene / 1-hexene or ethylene / 1-butene copolymer excellent in processability and environmental stress crack resistance
EP3168243B1 (en) Olefin-based polymer with excellent processability
JP6458050B2 (en) Polyolefin production method and polyolefin produced therefrom
JP6282341B2 (en) Hybrid supported metallocene catalyst
US9902789B2 (en) Method for preparing hybrid supported metallocene catalyst
KR101709688B1 (en) Method for preparing polyolfin and polyolefin prepared therefrom
KR102427755B1 (en) Polyethylene and its chlorinated polyethylene
US11767377B2 (en) Metallocene-supported catalyst and method of preparing polyolefin using the same
KR102431339B1 (en) Polyethylene and its chlorinated polyethylene
KR102252430B1 (en) Polyethylene and its chlorinated polyethylene
CN110869399B (en) Polyethylene copolymer and preparation method thereof
WO2019139355A1 (en) Method for preparing polyolefin by using supported hybrid metallocene catalyst
CN108884184B (en) Hybrid supported catalysts
CN113195552A (en) Polyethylene having high pressure resistance and crosslinked polyethylene pipe comprising the same
US11560441B2 (en) Method for preparing polyolefin using supported hybrid metallocene catalyst
WO2016060445A1 (en) Ethylene/1-hexene or ethylene/1-butene copolymer having outstanding working properties and environmental stress cracking resistance
KR102589954B1 (en) Polyethylene and its chlorinated polyethylene
US20220017663A1 (en) Polyethylene and Its Chlorinated Polyethylene
CN112020522B (en) Hybrid supported metallocene catalyst and method for preparing olefin polymer using the same
KR102568406B1 (en) Supported hybrid catalyst and method for preparing polyolefin using the same
WO2015056974A1 (en) Method for producing hybrid-supported metallocene catalyst
KR20210056830A (en) Hybride supported metallocene catalyst and process for preparing polyethylene copolymer using the same
KR20200101750A (en) Polyethylene and its chlorinated polyethylene
KR20200090041A (en) Method for preparing supported hybrid metallocene catalyst and method for preparing olefin polymer using the same
WO2017155211A1 (en) Supported hybrid catalyst system for slurry polymerization of ethylene, and method for preparing ethylene polymer by using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019738286

Country of ref document: EP

Effective date: 20200624