WO2019139110A1 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
WO2019139110A1
WO2019139110A1 PCT/JP2019/000639 JP2019000639W WO2019139110A1 WO 2019139110 A1 WO2019139110 A1 WO 2019139110A1 JP 2019000639 W JP2019000639 W JP 2019000639W WO 2019139110 A1 WO2019139110 A1 WO 2019139110A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
layer
gap
magnetosensitive
view
Prior art date
Application number
PCT/JP2019/000639
Other languages
French (fr)
Japanese (ja)
Inventor
秀一 大川
承彬 林
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2019564752A priority Critical patent/JPWO2019139110A1/en
Publication of WO2019139110A1 publication Critical patent/WO2019139110A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Definitions

  • the present invention relates to a magnetic sensor, and more particularly to a magnetic sensor in which a magnetosensitive element is disposed on a magnetic path formed by a gap between two magnetic layers.
  • Magnetic sensors using magnetosensitive elements are widely used in ammeters and magnetic encoders.
  • the substrate on which the magnetic sensor is formed may be provided with a magnetic layer for efficiently collecting the magnetic flux in the magnetosensitive element.
  • it is difficult to enhance the detection sensitivity of the magnetic field because the gap formed by the two magnetic layers is planar.
  • FIG. 30 is a schematic cross-sectional view showing a first layout using planar gaps.
  • magnetic layers 8 and 9 extending in the x direction are provided, and these are all formed in the same layer. That is, the positions of the magnetic layers 8 and 9 in the z direction are the same.
  • the x direction is a plane direction parallel to the element formation surface of the substrate
  • the z direction is a lamination direction perpendicular to the element formation surface of the substrate.
  • the magnetosensitive element R is disposed in the gap G formed by the magnetic layers 8 and 9.
  • the magnetic flux ⁇ flowing from the magnetic layer 9 to the magnetic layer 8 can be applied to the magnetosensitive element R.
  • FIG. 30 magnetic layers 8 and 9 extending in the x direction are provided, and these are all formed in the same layer. That is, the positions of the magnetic layers 8 and 9 in the z direction are the same.
  • the x direction is a plane direction parallel to the element formation surface of the substrate
  • the z direction is a lamination direction perpendicular to the element formation surface of the substrate.
  • the magnetosensitive element R is disposed in the gap G
  • the width W GX in the x direction of the gap G is equal to the width in the x direction of the magnetosensitive element R. It must be larger than W RX (W GX > W RX ). For this reason, the width W GX of the gap G inevitably becomes large, and the leakage of the magnetic flux increases, which causes a problem that the detection sensitivity of the magnetic field is lowered. In order to reduce the width W GX of the gap G, the width W RX of the magnetosensitive element R may be reduced. However, in this case, the sensitivity of the magnetosensitive element R itself is lowered.
  • FIG. 31 is a schematic cross-sectional view showing a second layout using planar gaps.
  • the layout shown in FIG. 31 is different from the first layout shown in FIG. 30 in that the magnetosensitive elements R are disposed in layers different from the magnetic layers 8 and 9.
  • the width W GX of the gap G can be set equal to or less than the width W RX of the magnetosensitive element R.
  • the width W GX of the gap G is substantially the same as the width W RX of the magnetosensitive element R (W GX ⁇ W RX ).
  • FIG. 32 is a schematic cross-sectional view showing a third layout using planar gaps.
  • the layout shown in FIG. 32 is different from the second layout shown in FIG. 31 in that the width W GX of the gap G is set sufficiently narrower than the width W RX of the magnetosensitive element R (W GX ⁇ W RX ). According to such a layout, it is possible to significantly reduce the leakage of the magnetic flux. However, in the layout shown in FIG. 32, most of the magnetic flux ⁇ does not pass through the magnetosensitive element R and directly flows from the magnetic layer 9 to the magnetic layer 8, so the detection sensitivity of the magnetic field is rather lowered.
  • Patent No. 5297539 gazette JP, 2017-133889, A
  • an object of the present invention is to provide a magnetic sensor capable of enhancing the detection sensitivity of a magnetic field as compared with the case where a planar gap is used.
  • a magnetic sensor comprises a first magnetic layer formed in a first layer, a second magnetic layer formed in a second layer different from the first layer, and A magnetosensitive element formed in the third layer located between the first layer and the second layer, the magnetosensitive element being located at a position overlapping the first and second magnetic layers in a plan view It is characterized by being arranged.
  • the three-dimensional gap is formed by the first magnetic layer and the second magnetic layer, and the magnetosensitive element is disposed on the magnetic path formed by the gap. While narrowing, it is possible to suppress the magnetic flux component flowing directly from the first magnetic layer to the second magnetic layer. This makes it possible to enhance the detection sensitivity of the magnetic field as compared to the case where a planar gap is used. In particular, if a magnetosensitive element having sensitivity in the stacking direction of the first to third layers is used, it is possible to obtain extremely high detection sensitivity as compared with the prior art.
  • the first magnetic layer and the second magnetic layer overlap each other in plan view, and the magnetosensitive element is formed, in plan view, with both the first and second magnetic layers. It may have overlapping portions. According to this, it is possible to apply more magnetic flux to the magnetosensitive element.
  • the magnetosensitive element may overlap with both the first and second magnetic layers in plan view. According to this, it is possible to apply even more magnetic flux to the magnetosensitive element.
  • the first magnetic layer and the second magnetic layer have overhang portions overlapping each other without overlapping with the magnetosensitive element in plan view, and the width of the overhang portion is the magnetosensitive element It may be narrower than the width of. According to this, it is possible to further reduce the magnetic flux component flowing directly from the first magnetic layer to the second magnetic layer.
  • a magnetic sensor comprises a first magnetic layer formed in a first layer, and a second magnetic layer formed in a second layer different from the first layer.
  • a magnetosensitive element formed in a third layer located between the first layer and the second layer, wherein the first magnetic layer and the second magnetic layer overlap each other in plan view
  • the gap may be formed in the planar direction, and the magnetic sensing element may be disposed at a position where the width is equal to or greater than the gap and which overlaps the gap in a plan view.
  • the three-dimensional and flat point gap is formed by the first magnetic layer and the second magnetic layer, and the magnetosensitive element is disposed on the magnetic path formed by the gap.
  • the flux component flowing directly from the first magnetic layer to the second magnetic layer can be suppressed while making the width of the magnetosensitive element equal to or larger than the width of the gap in the planar direction. This makes it possible to enhance the detection sensitivity of the magnetic field as compared to the case where a mere planar gap is used.
  • the ratio of the width of the gap to the width of the magnetosensitive element may be more than 0 times and not more than 0.9 times. According to this, it is possible to obtain high sensitivity which can not be obtained by the method of forming the first magnetic layer and the second magnetic layer in the same layer.
  • the magnetic sensor according to the present invention may further include an external magnetic body covering the first magnetic body layer. According to this, it is possible to enhance the selectivity of the magnetic flux in the vertical direction.
  • the first magnetic layer is separated into the first and second regions, and the magnetosensitive device includes the first and second magnetosensitive devices connected in series, and the second magnetic material layer is formed.
  • the body layer is disposed between the first and second regions of the first magnetic layer in plan view, and the first magnetosensitive element is formed of the first region of the first magnetic layer and the second region of the first magnetic layer.
  • the magnetic sensing element is disposed on the magnetic path formed by the gap located between the magnetic layers, and the second magnetosensitive element is located between the second region of the first magnetic layer and the second magnetic layer. It may be disposed on the magnetic path formed by the gap. According to this, it is possible to obtain higher detection accuracy.
  • the magnetosensitive element is preferably a magnetoresistance element.
  • the magnetosensitive element is disposed on the magnetic path formed by the three-dimensional gap, the detection sensitivity of the magnetic field is enhanced compared to the case where the two-dimensional gap is used. It becomes possible.
  • FIG. 1 is a schematic plan view showing the configuration of a magnetic sensor 1 according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view along the line AA of FIG.
  • FIG. 3 is a schematic cross-sectional view showing a first variation of the gap G1.
  • FIG. 4 is a schematic cross-sectional view showing a second variation of the gap G1.
  • FIG. 5 is a schematic cross-sectional view showing a third variation of the gap G1.
  • FIG. 6 is a schematic cross-sectional view showing a fourth variation of the gap G1.
  • FIG. 7 is a schematic cross-sectional view showing a fifth variation of the gap G1.
  • FIG. 8 is a schematic cross-sectional view showing a sixth variation of the gap G1.
  • FIG. 1 is a schematic plan view showing the configuration of a magnetic sensor 1 according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view along the line AA of FIG.
  • FIG. 3 is
  • FIG. 9 is a schematic cross-sectional view showing a seventh variation of the gap G1.
  • FIG. 10 is a schematic cross-sectional view of a magnetic sensor according to a first modification of the first embodiment.
  • FIG. 11 is a schematic cross-sectional view of a magnetic sensor according to a second modification of the first embodiment.
  • FIG. 12 is a schematic cross-sectional view of a magnetic sensor according to a third modification of the first embodiment.
  • FIG. 13 is a graph showing the simulation result of the relationship between the gap width W 0 and the sensitivity.
  • FIG. 14 is a schematic perspective view showing the appearance of the magnetic sensor 100 according to the second embodiment of the present invention.
  • FIG. 15 is a schematic exploded perspective view of the magnetic sensor 100. As shown in FIG. FIG. FIG.
  • FIG. 16 is a schematic cross-sectional view along the line AA shown in FIG.
  • FIG. 17 is a schematic plan view for explaining the structure of the element forming surface 21 of the sensor substrate 20.
  • FIG. 18 is a schematic cross-sectional view taken along the line BB shown in FIG.
  • FIG. 19 is a circuit diagram for explaining the connection between the magnetosensitive elements R1 to R4 and the bonding pads 51 to 54.
  • FIG. 20 is a schematic cross-sectional view for illustrating the configuration of the main part of the magnetic sensor 101 according to the first modification.
  • FIG. 21 is a schematic plan view for illustrating the configuration of the main part of a magnetic sensor 102 according to the second modification.
  • FIG. 22 is a schematic plan view for illustrating the configuration of the main part of a magnetic sensor 103 according to a third modification.
  • FIG. 23 is a schematic plan view for illustrating the configuration of the main part of the magnetic sensor 104 according to the fourth modification.
  • FIG. 24 is a schematic plan view for illustrating the configuration of the main part of a magnetic sensor 105 according to a fifth modification.
  • FIG. 25 is a schematic cross-sectional view along the line DD shown in FIG.
  • FIG. 26 is a schematic plan view for illustrating the configuration of the main part of the magnetic sensor 106 according to the sixth modification.
  • FIG. 27 is a schematic plan view for illustrating the structure of the main part of the magnetic sensor 107 according to the seventh modification.
  • FIG. 28 is a diagram for explaining how magnetic flux ⁇ is evenly distributed.
  • FIG. 29 is a schematic perspective view for illustrating the configuration of the magnetic sensor 108 according to the eighth modification.
  • FIG. 30 is a schematic cross-sectional view showing a first layout using planar gaps.
  • FIG. 31 is a schematic cross-sectional view showing a second layout using planar gaps.
  • FIG. 32 is a schematic cross-sectional view showing a third layout using planar gaps.
  • FIG. 1 is a schematic plan view showing the configuration of a magnetic sensor 1 according to a first embodiment of the present invention.
  • 2 is a schematic cross-sectional view taken along the line AA of FIG.
  • the magnetic sensor 1 includes magnetic layers 2 to 4 and magnetosensitive elements R1 and R2.
  • the magnetic sensing elements R1 and R2 are not particularly limited as long as the physical characteristics change with the magnetic flux density, but it is preferable that the magnetic sensing elements R1 and R2 be magnetic resistance elements whose electric resistance changes according to the direction of the magnetic field.
  • the sensitivity directions of the magnetosensitive elements R1 and R2 are in the directions indicated by the arrows E1 and E2 in FIG. That is, the sensitivity direction of the magnetosensitive element R1 is directed to the positive side in the z direction, and the sensitivity direction of the magnetosensitive element R2 is directed to the negative side in the z direction.
  • the magnetosensitive elements R1 and R2 may have sensitivity in the direction (plus side in the x direction) indicated by the arrow C in FIG.
  • the magnetic layers 2 to 4 are layers constituting a magnetic path in the xy plane.
  • the magnetic layers 2 to 4 may be a film made of a composite magnetic material in which a magnetic filler is dispersed in a resin material, and may be made of a soft magnetic material such as nickel or permalloy. It may be a thin film or a foil, or may be a thin film or a bulk sheet made of ferrite or the like.
  • the magnetic sensor 1 changes the physical characteristics of the magnetosensitive elements R1 and R2 by collecting the magnetic flux ⁇ in the z direction by the magnetic layer 2 and distributing it to the magnetic layers 3 and 4.
  • the sensitivity directions of the magnetosensitive elements R1 and R2 are in the directions indicated by the arrows E1 and E2 in FIG. 2, or they are aligned in the direction indicated by the arrow C.
  • the magnetic flux ⁇ in the z direction is applied, it is possible to obtain differential signals from the magnetosensitive elements R1 and R2. This makes it possible to detect the magnetic flux density of the magnetic flux ⁇ .
  • the magnetic layer 2 and the magnetic layers 3 and 4 are formed in different layers. That is, the magnetic layer 2 is formed in the first layer Z1, and the magnetic layers 3 and 4 are formed in the second layer Z2 different in position in the z direction from the first layer Z1.
  • a third layer Z3 in which the magnetosensitive elements R1 and R2 are formed is provided between the first layer Z1 and the second layer Z2.
  • the second layer Z2 and the third layer Z3 are separated by the insulating layer 5, and the third layer Z3 and the first layer Z1 are separated by the insulating layer 6.
  • Each of these layers can be laminated on the surface of a substrate or the like. In this case, the surface of the substrate constitutes the xy plane, and the stacking direction of the insulating layers 5 and 6 is the z direction.
  • a gap G1 in the z direction is formed between an end of the magnetic layer 2 in the x direction (left side) and an end of the magnetic layer 3 in the x direction (right side),
  • the magnetosensitive element R1 is disposed on the magnetic path formed by the gap G1.
  • a gap G2 in the z direction is formed between the other (right) end of the magnetic layer 2 in the x direction and the one (left) end of the magnetic layer 4 in the x direction.
  • the magnetic sensing element R2 is disposed on the magnetic path formed by
  • the magnetic layer 2 and the magnetic layers 3 and 4 may have an overlap in the z direction or may not have an overlap in the z direction, and the edge positions in the x direction coincide with each other. It does not matter. In any case, since the gaps G1 and G2 formed by the magnetic layer 2 and the magnetic layers 3 and 4 are three-dimensional, the widths of the gaps G1 and G2 are smaller than in the case where a planar gap is used. It can be narrowed. For example, as shown in FIG. 2, when the magnetic layer 2 and the magnetic layers 3 and 4 overlap in the z direction, the widths of the gaps G1 and G2 are defined by the thicknesses of the insulating layers 5 and 6. .
  • the thickness of the insulating layer or the like is considerably smaller than the planar processing accuracy, an extremely narrow gap can be realized by using a three-dimensional gap.
  • the magnetosensitive elements R1 and R2 are disposed in the three-dimensional gaps G1 and G2, the widths of the magnetosensitive elements R1 and R2 in the x direction are determined depending on the heights of the gaps G1 and G2 in the z direction. There is no limit.
  • FIG. 3 is a schematic cross-sectional view showing a first variation of the gap G1.
  • the magnetic layer 2 and the magnetic layer 3 overlap in the z direction, and the whole of the magnetosensitive element R1 is in both the magnetic layers 2 and 3 and in the z direction. It is an example that overlaps with.
  • the width in the x direction of the overlapping portion of the magnetic layer 2 and the magnetic layer 3 is W 23 and the width in the x direction of the magnetosensitive element R 1 is W RX : W 23 > W RX It is.
  • the height in the z direction of the gap G1 is W GZ, regardless of the value of W 23 and W RX, can be controlled by the thickness of the insulating layers 5 and 6. For this reason, the value of W GZ can be made significantly smaller than W 23 and W RX .
  • the magnetic flux ⁇ flowing from the magnetic layer 2 to the magnetic layer 3 is applied to the magnetosensitive element R1 in the gap G1, and the physics of the magnetosensitive element R1 is caused by its z direction component or x direction component. Characteristics change. In particular, since the value of W GZ can be made very small, it is possible to largely change the physical characteristics of the magnetic sensing element R1 when the sensitivity direction of the magnetic sensing element R1 is in the z direction.
  • the sensitivity direction of the magnetosensitive element R1 is the x direction It is possible to change the physical characteristics of the magnetosensitive element R1 sufficiently even in the case of Here, in the configuration shown in FIG. 3, an overhang portion inevitably occurs in which the magnetic layers 2 and 3 overlap each other in plan view and do not overlap the magnetosensitive element R1.
  • the width W OH in the x direction of the overhang portion is not particularly limited, but as shown by the broken line, if the width W OH is too large, bypassing from the magnetic layer 2 to the magnetic layer 3 without passing through the magnetosensitive element R1 Since the magnetic flux ⁇ 0 increases, the width W OH is preferably smaller than the width W RX of the magnetosensitive element R1.
  • FIG. 4 is a schematic cross-sectional view showing a second variation of the gap G1.
  • the width W 23 where the magnetic layer 2 and the magnetic layer 3 overlap and the width W RX of the magnetosensitive element R 1 are almost equal (W 23 ⁇ W RX ), and the overhang portion is It differs from the first variation in that it is almost nonexistent.
  • one end (left side) of the magnetic layer 2 in the x direction substantially coincides with one end (left side) of the magnetic sensing element R1 in the x direction, and the magnetic layer 3 in the x direction
  • the end of one (right side) substantially coincides with the end of the other (right side) in the x direction of the magnetosensitive element R1.
  • FIG. 5 is a schematic cross-sectional view showing a third variation of the gap G1.
  • the third variation shown in FIG. 5 is a second variation in that the width W 23 at which the magnetic layer 2 and the magnetic layer 3 overlap is smaller than the width W RX of the magnetosensitive element R 1 (W 23 ⁇ W RX ). And is different.
  • W 2 R the width in the x direction of the former
  • W 3 R the width in the x direction of the latter
  • one or both of the magnetic layers 2 and 3 may have a portion that does not overlap with the magnetic sensing element R1 in plan view.
  • the widths W 23 , W 2R , W 3R and the like it is possible to increase the x-direction component of the magnetic flux in the gap G1. Therefore, this example is effective when the magnetosensitive element R1 has sensitivity in the x direction.
  • FIG. 6 is a schematic cross-sectional view showing a fourth variation of the gap G1.
  • the fourth variation shown in FIG. 6 is different from the third variation in that the magnetic layer 2 and the magnetic layer 3 do not overlap in plan view, and the positions of the end portions in the x direction substantially coincide with each other. doing.
  • the width W RX of the magnetosensitive element R1 is W RX W W 2 R + W 3 R It becomes.
  • the magnetic layer 2 and the magnetic layer 3 may not have an overlap in plan view. In this case, although the leakage of the magnetic flux in the gap G1 is somewhat increased, it is possible to further enhance the x-direction component of the magnetic flux in the gap G1. Therefore, this example is effective when the magnetosensitive element R1 has sensitivity in the x direction.
  • FIG. 7 is a schematic cross-sectional view showing a fifth variation of the gap G1.
  • the magnetic layer 2 and the magnetic layer 3 do not overlap in a plan view, whereby the magnetosensitive element R1 does not overlap with any of the magnetic layers 2 and 3 in a plan view. It differs from the fourth variation in that it has a portion. However, the magnetosensitive element R1 partially overlaps with the magnetic layer 2 and the magnetic layer 3, and the widths thereof are W 2R and W 3R , respectively. Width in the x-direction of a portion of one not to overlap of the magnetic layers 2 and 3 is W 0, the sensitive element R1 are overlapped by a gap G1 in plan view in part corresponding to the width W 0. As the width W 0 becomes larger, the leakage of the magnetic flux increases accordingly, but in the example shown in FIG.
  • the conventional magnetic sensor As compared with the case where a planar gap is used, it is possible to obtain high detection sensitivity. Further, as compared with the example shown in FIG. 32, it is possible to apply a magnetic flux ⁇ of a stronger z-direction component to the magnetosensitive element R1.
  • FIG. 8 is a schematic cross-sectional view showing a sixth variation of the gap G1.
  • the sixth variation shown in FIG. 8 is that the width W 0 of the gap in the x direction of the magnetic layer 2 and the magnetic layer 3 and the width W RX of the magnetosensitive element R 1 are substantially equal (W 0 WW RX ) It is different from the fifth variation.
  • one end (left side) of the magnetic layer 2 in the x direction substantially coincides with one end (right side) in the x direction of the magnetosensitive element R1
  • x of the magnetic layer 3 One end (right side) in the direction substantially coincides with the other end (left side) in the x direction of the magnetosensitive element R1.
  • the width W 0 is substantially equal to the width W RX in the x direction of the magnetosensitive element R 1. It is possible to obtain high detection sensitivity as compared with the case of using a typical gap. Further, as compared with the example shown in FIG. 31, it is possible to apply a magnetic flux ⁇ of a stronger z-direction component to the magnetosensitive element R1.
  • FIG. 9 is a schematic cross-sectional view showing a seventh variation of the gap G1.
  • the seventh variation shown in FIG. 9 is different from the fifth or sixth variation in that the magnetic layer 2, the magnetic layer 3 and the magnetic sensing element R1 have portions that do not overlap in plan view. doing. Magnetic layer 2, the width in the x direction of a portion where the magnetic layer 3 and the magnetic sensing element R1 do not overlap any is W 1.
  • the magnetic layer 2 and the magnetic layers 3 and 4 form the three-dimensional gaps G1 and G2, and the magnet formed by the gaps G1 and G2 Since the magnetosensitive elements R1 and R2 are disposed on the road, the height W GZ of the gaps G1 and G2 in the z direction is narrowed without reducing the width W RX of the magnetosensitive elements R1 and R2 in the x direction. be able to. This makes it possible to obtain higher detection sensitivity than when using a planar gap.
  • the positional relationship between the magnetic layer 2 and the magnetic layers 3 and 4 is not limited to the positional relationship shown in FIG. 2, and as in the first modification shown in FIG. It may be disposed in the layer Z2, and the magnetic layers 3 and 4 may be disposed in the first layer Z1. Further, the positional relationship between the magnetosensitive elements R1 and R2 is not limited to the positional relationship shown in FIG. 2, and the magnetosensitive element R1 is formed in the fourth layer Z4 as in the second modification shown in FIG. Alternatively, the magnetosensitive element R2 may be formed in the third layer Z3. In the example shown in FIG. 11, the first layer Z1 and the fourth layer Z4 are separated by the insulating layer 15, and the fourth layer Z4 and the fifth layer Z5 are separated by the insulating layer 16.
  • the magnetic layer 3 is formed in the fifth layer Z5 and the sensitivity direction of the magnetosensitive elements R1 and R2 is directed to the direction indicated by the arrows E1 and E2 in FIG. It is possible to obtain a differential signal from R2. According to this, the sensitivity directions of the magnetosensitive elements R1 and R2 can be made the same. Furthermore, as in the third modification shown in FIG. 12, the magnetic layer 2 is transitioned from the first layer Z1 to the second layer Z2 and the magnetic layer 3 is disposed in the first layer Z1. The sensitivity directions of the magnetosensitive elements R1 and R2 may be directed in the direction indicated by the arrows E1 and E2 in FIG. 12 (or the opposite direction).
  • FIG. 13 is a graph showing the simulation result of the relationship between the gap width W 0 and the sensitivity, and the width W RX of the magnetosensitive element R 1 is 5 ⁇ m, and the center position of the gap in the x direction and x of the magnetosensitive element R 1
  • the change of the sensitivity due to the change of the width W 0 of the gap is shown by the plot of ⁇ with the center position in the direction matched.
  • the characteristic of the case where the magnetic layers 2 to 4 are formed in the same layer is shown by a plot of ⁇ .
  • the sensitivity obtained when the magnetic layer 2 to 4 is formed in the same layer and the width W 0 of the gap is 7 ⁇ m is 1.
  • the magnetic layers 2 to 4 are formed in the same layer, the highest sensitivity (2.2 times) is obtained when the width W 0 of the gap is 3 ⁇ m.
  • the magnetic layers 2 to 4 are the same layer. Higher sensitivity is obtained in the whole area than in the case of forming in.
  • the width W 0 of the gap is more than 0 ⁇ m and not more than 4.5 ⁇ m, that is, if the ratio of the width W 0 of the gap to the width W RX of the magnetosensitive element R 1 is more than 0 and 0.9 times or less It is possible to obtain the sensitivity exceeding the highest sensitivity (2.2 times) in the comparative example.
  • FIG. 14 is a schematic perspective view showing the appearance of the magnetic sensor 100 according to the second embodiment of the present invention. Further, FIG. 15 is a schematic exploded perspective view of the magnetic sensor 100, and FIG. 16 is a schematic cross-sectional view along the line AA shown in FIG.
  • the magnetic sensor 100 includes a circuit board 10 having an opening 11, a sensor board 20 disposed in the opening 11, and a first fixed to the sensor board 20.
  • the fourth to fourth external magnetic members 31 to 34 are provided.
  • the sensor substrate 20 is a chip component smaller than the circuit substrate 10, and has a magnetosensitive element described later.
  • the first to fourth external magnetic members 31 to 34 are blocks made of a soft magnetic material having high permeability such as ferrite.
  • the sensor substrate 20 has a substantially rectangular parallelepiped shape, and the first external magnetic body 31 is disposed on the element forming surface 21 constituting the xy plane.
  • a method of manufacturing the sensor substrate 20 a method of simultaneously forming a large number of sensor substrates 20 on a collective substrate and separating a large number of them is generally used, but the present invention is not limited thereto. Alternatively, individual sensor substrates 20 may be separately manufactured.
  • four magnetosensitive elements R1 to R4 and a magnetic layer 40 are formed on the element forming surface 21.
  • four bonding pads 51 to 54 are provided on the element forming surface 21 and are connected to the bonding pads 61 to 64 provided on the circuit substrate 10 via the corresponding bonding wires BW.
  • the second and third external magnetic members 32 and 33 are disposed on both sides of the sensor substrate 20 in the x direction.
  • the second and third external magnetic members 32 and 33 are connected via the fourth external magnetic member 34 located at the bottom of the sensor substrate 20, whereby the second to fourth external magnetic members 32 to 32 are formed.
  • 34 constitute a single magnetic block 35.
  • the magnetic block 35 is disposed to be inserted into the opening 11 of the circuit board 10.
  • the magnetic block 35 is provided with a recess 36 for accommodating the sensor substrate 20. When the sensor substrate 20 is accommodated in the recess 36, the element forming surface 21 of the sensor substrate 20, and the second and third The tips of the external magnetic members 32 and 33 are close to one another, and constitute substantially the same plane.
  • FIG. 17 is a schematic plan view for explaining the structure of the element forming surface 21 of the sensor substrate 20.
  • FIG. 18 is a schematic cross-sectional view along the line BB shown in FIG.
  • the magnetic material layer 40 is formed on the element forming surface 21 of the sensor substrate 20.
  • the magnetic layer 40 may be a film made of a composite magnetic material in which a magnetic filler is dispersed in a resin material, a thin film made of a soft magnetic material such as nickel or permalloy, or It may be a foil, or it may be a thin film or a bulk sheet made of ferrite or the like.
  • the magnetic layer 40 is divided into a first area 41 to a sixth area 46.
  • Each of the first area 41 to the sixth area 46 is rectangular, and two sides thereof extend in the x direction, and the remaining two sides extend in the y direction.
  • the first region 41 and the second region 42 are disposed substantially at the center of the element forming surface 21 in the x direction, and are adjacent to each other in the y direction.
  • the third area 43 and the fifth area 45 are provided on both sides in the x direction of the first area 41 so as to overlap with the end of the first area 41.
  • a fourth area 44 and a sixth area 46 are provided on both sides of the second area 42 in the x direction so as to overlap with the end of the second area 42.
  • the third area 43 and the fourth area 44 are adjacent to each other in the y direction, and similarly, the fifth area 45 and the sixth area 46 are adjacent to each other in the y direction.
  • the width of the first external magnetic body 31 in the y direction is wider than the total width of the first and second regions 41 and 42 of the magnetic layer 40 in the y direction.
  • the entire width in the y direction of the first and second regions 41 and 42 is covered by the first external magnetic body 31. According to this, even if a deviation occurs in the relative positional relationship between the first external magnetic body 31 and the magnetic body layer 40 at the time of manufacture, the detection accuracy does not significantly decrease.
  • rotational deviation is also conceivable.
  • the first region 41 and the second region 42 of the magnetic layer 40 have the same shape and size as each other, and are line symmetrical with an imaginary straight line L1 extending in the x direction as an axis of symmetry. is there. Due to such a symmetrical shape, the magnetic flux taken in via the first external magnetic body 31 is distributed substantially equally to the first region 41 and the second region 42 of the magnetic layer 40.
  • the first and second regions 41 and 42 are arranged so as to be axisymmetrical with the imaginary straight line L2 extending in the y direction as the axis of symmetry.
  • the third region 43 and the fourth region 44 of the magnetic layer 40 have the same shape and size as each other, and are line symmetrical with the virtual straight line L1 extending in the x direction as the axis of symmetry. . Due to such a symmetrical shape, the magnetic flux taken in via the second external magnetic body 32 is distributed substantially equally to the third and fourth regions 43 and 44 of the magnetic body layer 40.
  • the fifth region 45 and the sixth region 46 of the magnetic layer 40 have the same shape and size as each other, and are line symmetrical with respect to a virtual straight line L1 extending in the x direction as an axis of symmetry. is there.
  • the magnetic flux taken in via the third external magnetic body 33 is distributed substantially equally to the fifth and sixth regions 45 and 46 of the magnetic layer 40.
  • the third and fourth regions 43 and 44 and the fifth and sixth regions 45 and 46 are arranged so as to be line symmetrical with respect to a virtual straight line L2 extending in the y direction as a symmetry axis. .
  • One end of the first region 41 in the x direction is opposed to one end of the third region 43 in the x direction via a first gap G1 extending in the z direction.
  • the other end of the first region 41 in the x direction is opposed to one end of the fifth region 45 in the x direction via a fourth gap G4 extending in the z direction.
  • one end of the second region 42 in the x direction is opposed to one end of the fourth region 44 in the x direction via a third gap G3 extending in the z direction.
  • the other end of the second region 42 in the x direction is opposed to one end of the sixth region 46 in the x direction via a second gap G2 extending in the z direction.
  • the length of the end of each of the areas 41 to 46 in the y direction substantially matches the width of the area in the y direction.
  • first to fourth magnetosensitive elements R1 to R4 extending in the y direction are disposed in the first to fourth gaps G1 to G4, respectively.
  • the insulating layers 24, 25 and 26 are stacked in this order on the surface of the sensor substrate 20, and the surface of the insulating layer 25 constitutes the element forming surface 21.
  • the magnetosensitive elements R1 to R4 are provided on the surface of the insulating layer 25 which is the element forming surface 21, and the third to sixth regions 43 to 46 of the magnetic layer 40 are formed on the surface of the insulating layer 24 located in the lower layer.
  • the first and second regions 41 and 42 of the magnetic layer 40 are provided on the surface of the insulating layer 26 which is provided and located in the upper layer.
  • the magnetosensitive elements R1 to R4 are arranged between the gaps G1 to G4.
  • the sensitivity directions of the magnetosensitive elements R1 to R4 are in the directions indicated by the arrows E1 and E2 in FIG. That is, the sensitivity direction of the magnetosensitive elements R1 and R3 is directed to the positive side in the z direction, and the sensitivity direction of the magnetosensitive elements R2 and R4 is directed to the negative side in the z direction.
  • the magnetosensitive elements R1 to R4 may have sensitivity in the direction (plus side in the x direction) indicated by the arrow C in FIG.
  • the first external magnetic body 31 plays the role of collecting the magnetic flux ⁇ in the z direction and discharging it to the first and second regions 41 and 42 of the magnetic layer 40.
  • the height of the first external magnetic body 31 in the z direction is not particularly limited, but the selectivity of the magnetic flux in the z direction can be enhanced by increasing the height in the z direction. However, if the height of the first external magnetic body 31 in the z direction is too high, the support of the first external magnetic body 31 may become unstable, so it is high in the range where stable support can be ensured. It is preferable to do.
  • the magnetic flux ⁇ collected in the first and second regions 41 and 42 of the magnetic layer 40 through the first external magnetic body 31 is substantially equally distributed to the first and second regions 41 and 42. Then, the light is emitted to the third to sixth regions 43 to 46 through the first to fourth magnetosensitive elements R1 to R4, respectively. As a result, magnetic flux in opposite directions is applied to the magnetosensitive elements R1 and R3 and the magnetosensitive elements R2 and R4. As described above, since the sensitivity directions of the magnetosensitive elements R1 to R4 are directed in the directions indicated by the arrows E1 and E2 or in the directions indicated by the arrows C, the components of the magnetic flux in the z direction and / or the x direction It will be sensitive to it.
  • the magnetic flux reaching the third and fourth regions 43 and 44 of the magnetic layer 40 is collected by the second external magnetic body 32.
  • the magnetic flux reaching the fifth and sixth regions 45 and 46 of the magnetic layer 40 is collected by the third external magnetic body 33.
  • FIG. 19 is a circuit diagram for explaining the connection between the magnetosensitive elements R1 to R4 and the bonding pads 51 to 54. As shown in FIG.
  • the ground potential Gnd and the power supply potential Vdd are supplied to the bonding pads 51 and 54, respectively, from the circuit board 10 side.
  • the magnetosensitive elements R1 and R2 are connected in series between the bonding pads 51 and 54, and the magnetosensitive elements R4 and R3 are connected in series.
  • the connection point of the magnetosensitive elements R3 and R4 is connected to the bonding pad 52, and the connection point of the magnetosensitive elements R1 and R2 is connected to the bonding pad 53.
  • the magnetosensitive elements R1 to R4 all have the same sensitivity direction, the amount of change in resistance of the magnetosensitive elements R1 and R3 positioned on one side with respect to the first external magnetic body 31 There is a difference between the amount of change in resistance of the magnetic sensing elements R2 and R4 located on the other side with respect to the first external magnetic body 31. This difference is doubled by the differential bridge circuit shown in FIG. 19 and appears on the bonding pads 52 and 53.
  • the circuit board 10 is provided with a voltage detection circuit (not shown), and by detecting the difference between the potentials Va and Vb appearing on the bonding pads 52 and 53, it becomes possible to measure the magnetic flux density.
  • the magnetic body layer 40 is provided on the element forming surface 21 of the sensor substrate 20, and the magnetosensitive elements R1 are respectively provided in the four gaps G1 to G4 provided in the magnetic body layer 40. Since R4 to R4 are arranged, the magnetic flux generated by the current flowing to a certain magnetic sensing element does not affect the other magnetic sensing elements. This makes it possible to obtain higher detection accuracy than in the prior art. In addition, since all four gaps G1 to G4 are three-dimensional, it is possible to obtain higher detection sensitivity as compared to the case where planar gaps are used.
  • the regions 41 to 46 constituting the magnetic layer 40 are rectangular, it is also possible to suppress Barkhausen noise, which is noticeable when the magnetic layer has a complicated shape.
  • the lengths of the magnetosensitive elements R1 to R4 in the y direction can be sufficiently secured, it is also possible to obtain a high S / N ratio.
  • the magnetic sensor 100 according to the present embodiment includes the first external magnetic body 31, the magnetic flux in the z direction can be selectively detected. Moreover, in the magnetic sensor 100 according to the present embodiment, since the second external magnetic body 32 and the third external magnetic body 33 are integrated, the magnetic resistance of the magnetic flux flowing around behind the sensor substrate 20 is reduced. You can also.
  • FIG. 20 is a schematic cross-sectional view for illustrating the configuration of the main part of the magnetic sensor 101 according to the first modification.
  • the first and second regions 41 and 42 and the third to sixth regions 43 to 46 of the magnetic layer 40 are located in different layers, and overlap each other. Absent.
  • the gaps G1 to G4 in the oblique direction are formed by the first and second regions 41 and 42 and the third to sixth regions 43 to 46, and the magnetosensitive element R1 is located at a position corresponding to these gaps G1 to G4.
  • To R4 are arranged.
  • the magnetosensitive elements R1 to R4 and the magnetic layer 40 may have an overlap or may not have an overlap.
  • FIG. 21 is a schematic plan view for illustrating the configuration of the main part of a magnetic sensor 102 according to the second modification.
  • the first region 41 and the second region 42 of the magnetic layer 40 are integral and rectangular as a whole.
  • FIG. 22 is a schematic plan view for illustrating the configuration of the main part of a magnetic sensor 103 according to a third modification.
  • the third region 43 and the fourth region 44 of the magnetic layer 40 are integral and rectangular as a whole, and the fifth region 45 of the magnetic layer 40 and the Six regions 46 are integral and generally rectangular.
  • the third region 43 and the fourth region 44 of the magnetic layer 40 and the fifth region 45 and the sixth region 46 are mutually different. It is not essential to separate, and both may be integrated.
  • FIG. 23 is a schematic plan view for illustrating the configuration of the main part of the magnetic sensor 104 according to the fourth modification.
  • the first region 41 and the second region 42 of the magnetic layer 40 are integral and rectangular as a whole, and the third region 43 and the fourth region 44 are integral.
  • the fifth region 45 and the sixth region 46 of the magnetic layer 40 are integral and rectangular as a whole. According to such a configuration, since the planar shape of the magnetic layer 40 is simplified, it is possible to further reduce Barkhausen noise.
  • FIG. 24 is a schematic plan view for illustrating the configuration of the main part of a magnetic sensor 105 according to a fifth modification.
  • FIG. 25 is a schematic cross-sectional view taken along the line DD shown in FIG.
  • the first to fourth magnetosensitive elements R1 to R4 are formed of two magnetosensitive elements arranged in the first to fourth gaps G1 to G4, respectively.
  • a first magnetosensitive element R1 is formed by two magnetosensitive elements R11 and R12 connected in series
  • a second magnetosensitive element R2 is formed by two magnetosensitive elements R21 and R22 connected in series
  • a third magnetosensitive element R3 is formed of two magnetosensitive elements R31 and R32 configured and connected in series
  • a fourth magnetosensitive element R4 is formed of two magnetosensitive elements R41 and R42 connected in series ing.
  • a seventh region 47 of the magnetic layer 40 may be added between two magnetosensitive elements (for example, R11 and R12) connected in series.
  • the magnetosensitive elements R1 to R4 may be configured by three or more magnetosensitive elements connected in series.
  • the magnetosensitive element R1 is composed of two magnetosensitive elements R11 and R12, and a part of the magnetosensitive element R11 overlaps the first and seventh regions 41 and 47 of the magnetic layer 40. A part of the magnetosensitive element R12 overlaps the third and seventh regions 43 and 47 of the magnetic layer 40.
  • the seventh region 47 is formed in a layer different from the first and second regions 41 and 43, thereby forming a three-dimensional gap. That is, the seventh region 47 is formed on the surface of the sensor substrate 20, the magnetosensitive elements R11 and R12 are formed on the surface of the insulating layer 22, and the first and third regions 41 and 43 are on the surface of the insulating layer 23. It is formed.
  • the other magnetosensitive elements R2 to R4 also have the same configuration as that of the magnetosensitive element R1. As described above, when the seventh region 47 is provided in the magnetic layer 40 and the magnetic sensing elements R1 to R4 and the magnetic layer 40 are disposed so as to overlap with each other, leakage magnetic flux is reduced. It becomes possible to obtain.
  • FIG. 26 is a schematic plan view for illustrating the configuration of the main part of the magnetic sensor 106 according to the sixth modification.
  • the seventh region 47 of the magnetic layer 40 is divided into a large number in the y direction which is the extending direction of the gap G1.
  • the same configuration is provided on the other gaps G2 to G4 not shown.
  • the seventh region 47 of the magnetic layer 40 is divided in the y direction, the flow of the magnetic flux through the gaps G1 to G4 is restricted in the x direction and hardly flows in the y direction. That is, since the magnetic anisotropy is generated by dividing the seventh region 47 of the magnetic layer 40 in the y direction, it is possible to obtain higher detection accuracy.
  • FIG. 27 is a schematic plan view for illustrating the structure of the main part of the magnetic sensor 107 according to the seventh modification.
  • the first magnetic layer 41 has a first main region M1 located at the center, and a width in the y direction as the first main region M1 separates from the first main region M1 in the x direction. It includes first to fourth convergence regions S1 to S4 which are narrowed.
  • the first main region M1 is a portion covered by the first external magnetic body 31.
  • the first to fourth convergent regions S1 to S4 are tapered portions whose width in the y direction becomes narrower as the first main region M1 moves away from the first main region M1 in the x direction.
  • the third convergence areas S1 and S3 are located on the minus side (left side) in the x direction with respect to the first main area M1, and the second and fourth convergence areas S2 and S4 are relative to the first main area M1. Located on the plus side (right side) in the x direction.
  • the first magnetic layer 41 has a two-fold symmetrical shape. Therefore, with the virtual straight line L1 extending in the y direction as the axis of symmetry, the first convergence region S1 and the fourth convergence region S4 are axisymmetric, and the second convergence region S2 and the third convergence region S2 are symmetrical.
  • the convergence region S3 is axisymmetrical. Furthermore, the first convergent region S1 and the third convergent region S3 are axisymmetric with the virtual straight line L2 extending in the x direction as the axis of symmetry, and the second convergent region S4 and the fourth convergent The region S4 is axisymmetrical.
  • the magnetic flux taken in via the first external magnetic body 31 is incident on the first main region M1, as shown in FIG. It is distributed substantially equally to the four convergence areas S1 to S4.
  • the distributed magnetic flux ⁇ is increased in magnetic flux density by passing through the first to fourth converging regions S1 to S4 having a tapered shape.
  • the fifth main region M2 and the fifth and seventh convergence regions where the width in the y direction becomes narrower as the second main region M2 separates from the second main region M2 in the x direction (plus side) S5 and S7 are included.
  • the third magnetic layer 43 has sixth and eighth convergences in which the width in the y direction becomes narrower as the third main region M3 and the third main region M3 move away from the third main region M3 in the x direction (minus side) Regions S6 and S8 are included.
  • the second main region M2 is located near the end of the sensor substrate 20 on the minus side in the x direction, and thereby approaches the second external magnetic body 32.
  • the third main region M3 is located in the vicinity of the end of the sensor substrate 20 on the plus side in the x direction, and thereby approaches the third external magnetic body 33.
  • the tip of the fifth convergence region S5 faces the tip of the first convergence region S1 via the first gap G1 extending in the z direction. Further, the tip of the seventh convergence area S7 faces the tip of the third convergence area S3 via the third gap G3 extending in the z direction.
  • the fifth convergence region S5 and the seventh convergence region S7 are line symmetric with the virtual straight line L2 extending in the x direction as an axis of symmetry. Because of such a symmetrical shape, when the magnetic flux taken in via the second external magnetic body 32 is incident on the second main area M2, this magnetic flux is transmitted to the fifth and seventh convergence areas S5 and S7. It is distributed almost equally to the people.
  • the tip of the sixth convergence region S6 faces the tip of the second convergence region S2 via the second gap G2 extending in the z direction. Further, the tip end of the eighth convergence area S8 faces the tip end of the fourth convergence area S4 via the fourth gap G4 extending in the z direction.
  • the sixth convergence region S6 and the eighth convergence region S8 are line symmetric with the virtual straight line L2 extending in the x direction as an axis of symmetry. Because of such a symmetrical shape, when the magnetic flux taken in via the third external magnetic body 33 is incident on the third main area M3, this magnetic flux is transmitted to the sixth and eighth convergence areas S6 and S8. It is distributed almost equally to the people.
  • the eight convergent regions S1 to S8 forming the gaps G1 to G4 each have a tapered shape in which the width becomes narrower toward the corresponding magnetosensitive elements R1 to R4.
  • the density of the magnetic flux applied to the magnetosensitive elements R1 to R4 can be increased.
  • the first main region M1 included in the first magnetic layer 41 has a wide area connected to all root portions of the four convergence regions S1 to S4, the first outer region The magnetic flux collection effect of the magnetic flux ⁇ through the magnetic body 31 is high, which also makes it possible to obtain high detection accuracy.
  • FIG. 29 is a schematic perspective view for illustrating the configuration of the magnetic sensor 108 according to the eighth modification.
  • the sensor substrate 20 is mounted sideways on the surface of the circuit substrate 10 having the xy plane. That is, the element forming surface 21 of the sensor substrate 20 constitutes the xz plane, and the first external magnetic body 31 extends in the y direction. According to such a configuration, it is not necessary to provide the opening 11 in the circuit board 10, and it is possible to selectively detect the magnetic flux in the direction parallel to the main surface of the circuit board 10. In addition, even if the height (the length in the y direction) of the first external magnetic body 31 is increased, the support of the first external magnetic body 31 does not become unstable.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

[Problem] To provide a magnetic sensor that makes it possible to improve the sensitivity of magnetic field detection as compared to when a flat gap is used. [Solution] Provided are a magnet layer 2 formed in a first layer Z1, magnet layers 3, 4 formed in a second layer Z2, and magnetosensitive elements R1, R2 formed in a third layer Z3 located between the first layer Z1 and the second layer Z2. The magnetosensitive elements R1, R2 are disposed at positions overlapping with the magnet layer 2 and the magnet layers 3, 4 as seen in plan view. According to the present invention, a three-dimensional gap is formed by the magnet layer 2 and the magnet layers 3, 4, and the magnetosensitive elements R1, R2 are disposed on a magnetic path formed by this gap, therefore making it possible to curb a magnetic flux component flowing from the magnet layer 2 directly to the magnet layers 3, 4, while also narrowing the gap. Due to this configuration, it is possible to improve the sensitivity of magnetic field detection as compared to when a flat gap is used.

Description

磁気センサMagnetic sensor
 本発明は磁気センサに関し、特に、2つの磁性体層間のギャップによって形成される磁路上に感磁素子が配置されてなる磁気センサに関する。 The present invention relates to a magnetic sensor, and more particularly to a magnetic sensor in which a magnetosensitive element is disposed on a magnetic path formed by a gap between two magnetic layers.
 感磁素子を用いた磁気センサは、電流計や磁気エンコーダなどに広く用いられている。特許文献1及び2に記載されているように、磁気センサが形成される基板には、感磁素子に効率よく磁束を集めるための磁性体層が設けられることがある。しかしながら、特許文献1及び2に記載された磁気センサにおいては、2つの磁性体層によって形成されるギャップが平面的であることから、磁界の検出感度を高めることが困難であった。以下、この問題に関し、図面を用いてより具体的に説明する。 Magnetic sensors using magnetosensitive elements are widely used in ammeters and magnetic encoders. As described in Patent Documents 1 and 2, the substrate on which the magnetic sensor is formed may be provided with a magnetic layer for efficiently collecting the magnetic flux in the magnetosensitive element. However, in the magnetic sensors described in Patent Documents 1 and 2, it is difficult to enhance the detection sensitivity of the magnetic field because the gap formed by the two magnetic layers is planar. Hereinafter, this problem will be more specifically described with reference to the drawings.
 図30は、平面的なギャップを用いた第1のレイアウトを示す模式的な断面図である。 FIG. 30 is a schematic cross-sectional view showing a first layout using planar gaps.
 図30に示すレイアウトにおいては、x方向に延在する磁性体層8,9を備え、これらはいずれも同一の層に形成されている。つまり、磁性体層8,9のz方向における位置は互いに同じである。ここで、x方向とは基板の素子形成面と平行な平面方向であり、z方向とは基板の素子形成面に対して垂直な積層方向である。そして、磁性体層8,9によって形成されるギャップGには、感磁素子Rが配置されている。これにより、例えば、磁性体層9から磁性体層8へ流れる磁束φを感磁素子Rに印加することができる。しかしながら、図30に示すレイアウトでは、感磁素子Rが磁性体層8,9と同一層に配置されていることから、ギャップGのx方向における幅WGXを感磁素子Rのx方向における幅WRXよりも大きくしなければならない(WGX>WRX)。このため、必然的にギャップGの幅WGXが大きくなり、磁束の漏れが増大することから、磁界の検出感度が低下するという問題がある。ギャップGの幅WGXを小さくするためには、感磁素子Rの幅WRXを小さくすれば良いが、この場合には、感磁素子R自体の感度が低下してしまう。 In the layout shown in FIG. 30, magnetic layers 8 and 9 extending in the x direction are provided, and these are all formed in the same layer. That is, the positions of the magnetic layers 8 and 9 in the z direction are the same. Here, the x direction is a plane direction parallel to the element formation surface of the substrate, and the z direction is a lamination direction perpendicular to the element formation surface of the substrate. The magnetosensitive element R is disposed in the gap G formed by the magnetic layers 8 and 9. Thus, for example, the magnetic flux φ flowing from the magnetic layer 9 to the magnetic layer 8 can be applied to the magnetosensitive element R. However, in the layout shown in FIG. 30, since the magnetosensitive element R is disposed in the same layer as the magnetic layers 8 and 9, the width W GX in the x direction of the gap G is equal to the width in the x direction of the magnetosensitive element R. It must be larger than W RX (W GX > W RX ). For this reason, the width W GX of the gap G inevitably becomes large, and the leakage of the magnetic flux increases, which causes a problem that the detection sensitivity of the magnetic field is lowered. In order to reduce the width W GX of the gap G, the width W RX of the magnetosensitive element R may be reduced. However, in this case, the sensitivity of the magnetosensitive element R itself is lowered.
 図31は、平面的なギャップを用いた第2のレイアウトを示す模式的な断面図である。 FIG. 31 is a schematic cross-sectional view showing a second layout using planar gaps.
 図31に示すレイアウトは、感磁素子Rが磁性体層8,9とは異なる層に配置されている点において、図30に示した第1のレイアウトと相違している。このように、感磁素子Rを磁性体層8,9とは異なる層に配置すれば、ギャップGの幅WGXを感磁素子Rの幅WRXと同じかそれ以下に設定することが可能となるため、磁束の漏れを低下させることが可能となる。尚、図31に示す第2のレイアウトでは、ギャップGの幅WGXを感磁素子Rの幅WRXとほぼ同じとしている(WGX≒WRX)。しかしながら、この場合であっても、感磁素子R自体の感度を十分に確保するためには、感磁素子Rの幅WRXをある程度確保する必要があるため、ギャップGの幅WGXを感磁素子Rの幅WRXとほぼ同じに設定しても、磁束の漏れを十分に低下させることはできない。 The layout shown in FIG. 31 is different from the first layout shown in FIG. 30 in that the magnetosensitive elements R are disposed in layers different from the magnetic layers 8 and 9. Thus, if the magnetosensitive element R is disposed in a layer different from the magnetic layers 8 and 9, the width W GX of the gap G can be set equal to or less than the width W RX of the magnetosensitive element R. Thus, it is possible to reduce the leakage of the magnetic flux. In the second layout shown in FIG. 31, the width W GX of the gap G is substantially the same as the width W RX of the magnetosensitive element R (W GX ≒ W RX ). However, even in this case, in order to ensure sufficient sensitivity of the magnetosensitive element R itself, it is necessary to secure the width W RX of the magnetosensitive element R to some extent, so the width W GX of the gap G is felt Even if the width W RX of the magnetic element R is set to be substantially the same, the leakage of the magnetic flux can not be sufficiently reduced.
 図32は、平面的なギャップを用いた第3のレイアウトを示す模式的な断面図である。 FIG. 32 is a schematic cross-sectional view showing a third layout using planar gaps.
 図32に示すレイアウトは、ギャップGの幅WGXを感磁素子Rの幅WRXよりも十分に狭く設定した点において、図31に示した第2のレイアウトと相違している(WGX<WRX)。このようなレイアウトによれば、磁束の漏れを大幅に低下させることが可能となる。しかしながら、図32に示すレイアウトでは、ほとんどの磁束φが感磁素子Rを通過することなく、磁性体層9から磁性体層8に直接流れることから、磁界の検出感度はかえって低下してしまう。 The layout shown in FIG. 32 is different from the second layout shown in FIG. 31 in that the width W GX of the gap G is set sufficiently narrower than the width W RX of the magnetosensitive element R (W GX < W RX ). According to such a layout, it is possible to significantly reduce the leakage of the magnetic flux. However, in the layout shown in FIG. 32, most of the magnetic flux φ does not pass through the magnetosensitive element R and directly flows from the magnetic layer 9 to the magnetic layer 8, so the detection sensitivity of the magnetic field is rather lowered.
特許第5297539号公報Patent No. 5297539 gazette 特開2017-133889号公報JP, 2017-133889, A
 このように、平面的なギャップを用いた磁気センサにおいては、磁界の検出感度を高めることは容易ではなかった。 Thus, in a magnetic sensor using a planar gap, it has not been easy to enhance the detection sensitivity of the magnetic field.
 したがって、本発明は、平面的なギャップを用いた場合と比べて、磁界の検出感度を高めることが可能な磁気センサを提供することを目的とする。 Therefore, an object of the present invention is to provide a magnetic sensor capable of enhancing the detection sensitivity of a magnetic field as compared with the case where a planar gap is used.
 本発明の一側面による磁気センサは、第1の層に形成された第1の磁性体層と、第1の層とは異なる第2の層に形成された第2の磁性体層と、第1の層と第2の層の間に位置する第3の層に形成された感磁素子とを備え、感磁素子は、平面視で、第1及び第2の磁性体層と重なる位置に配置されることを特徴とする。 A magnetic sensor according to one aspect of the present invention comprises a first magnetic layer formed in a first layer, a second magnetic layer formed in a second layer different from the first layer, and A magnetosensitive element formed in the third layer located between the first layer and the second layer, the magnetosensitive element being located at a position overlapping the first and second magnetic layers in a plan view It is characterized by being arranged.
 本発明によれば、第1の磁性体層と第2の磁性体層によって立体的なギャップが形成され、このギャップによって形成される磁路上に感磁素子が配置されていることから、ギャップを狭くしつつ、第1の磁性体層から第2の磁性体層に直接流れる磁束成分を抑えることができる。これにより、平面的なギャップを用いた場合と比べて、磁界の検出感度を高めることが可能となる。特に、第1乃至第3の層の積層方向に感度を有する感磁素子を用いれば、従来と比べて極めて高い検出感度を得ることが可能となる。 According to the present invention, the three-dimensional gap is formed by the first magnetic layer and the second magnetic layer, and the magnetosensitive element is disposed on the magnetic path formed by the gap. While narrowing, it is possible to suppress the magnetic flux component flowing directly from the first magnetic layer to the second magnetic layer. This makes it possible to enhance the detection sensitivity of the magnetic field as compared to the case where a planar gap is used. In particular, if a magnetosensitive element having sensitivity in the stacking direction of the first to third layers is used, it is possible to obtain extremely high detection sensitivity as compared with the prior art.
 本発明において、第1の磁性体層と第2の磁性体層は、平面視で重なりを有しており、感磁素子は、平面視で、第1及び第2の磁性体層の両方と重なる部分を有していても構わない。これによれば、より多くの磁束を感磁素子に印加することが可能となる。 In the present invention, the first magnetic layer and the second magnetic layer overlap each other in plan view, and the magnetosensitive element is formed, in plan view, with both the first and second magnetic layers. It may have overlapping portions. According to this, it is possible to apply more magnetic flux to the magnetosensitive element.
 本発明において、感磁素子は、平面視で、全体が第1及び第2の磁性体層の両方と重っていても構わない。これによれば、よりいっそう多くの磁束を感磁素子に印加することが可能となる。 In the present invention, the magnetosensitive element may overlap with both the first and second magnetic layers in plan view. According to this, it is possible to apply even more magnetic flux to the magnetosensitive element.
 本発明において、第1の磁性体層と第2の磁性体層は、平面視で感磁素子と重なることなく互いに重なるオーバーハング部分を有しており、オーバーハング部分の幅は、感磁素子の幅よりも狭いものであっても構わない。これによれば、第1の磁性体層から第2の磁性体層に直接流れる磁束成分をより少なくすることが可能となる。 In the present invention, the first magnetic layer and the second magnetic layer have overhang portions overlapping each other without overlapping with the magnetosensitive element in plan view, and the width of the overhang portion is the magnetosensitive element It may be narrower than the width of. According to this, it is possible to further reduce the magnetic flux component flowing directly from the first magnetic layer to the second magnetic layer.
 本発明の他の側面による磁気センサは、第1の層に形成された第1の磁性体層と、第1の層とは異なる第2の層に形成された第2の磁性体層と、第1の層と第2の層の間に位置する第3の層に形成された感磁素子とを備え、第1の磁性体層と第2の磁性体層は、平面視で互いに重なることなく平面方向にギャップを形成しており、感磁素子は、幅がギャップ以上であり、且つ、平面視でギャップと重なる位置に配置されていても構わない。 A magnetic sensor according to another aspect of the present invention comprises a first magnetic layer formed in a first layer, and a second magnetic layer formed in a second layer different from the first layer. A magnetosensitive element formed in a third layer located between the first layer and the second layer, wherein the first magnetic layer and the second magnetic layer overlap each other in plan view Alternatively, the gap may be formed in the planar direction, and the magnetic sensing element may be disposed at a position where the width is equal to or greater than the gap and which overlaps the gap in a plan view.
 本発明によれば、第1の磁性体層と第2の磁性体層によって立体的且つ平面点なギャップが形成され、このギャップによって形成される磁路上に感磁素子が配置されていることから、感磁素子の幅を平面方向におけるギャップの幅以上としつつ、第1の磁性体層から第2の磁性体層に直接流れる磁束成分を抑えることができる。これにより、単なる平面的なギャップを用いた場合と比べて、磁界の検出感度を高めることが可能となる。 According to the present invention, the three-dimensional and flat point gap is formed by the first magnetic layer and the second magnetic layer, and the magnetosensitive element is disposed on the magnetic path formed by the gap. The flux component flowing directly from the first magnetic layer to the second magnetic layer can be suppressed while making the width of the magnetosensitive element equal to or larger than the width of the gap in the planar direction. This makes it possible to enhance the detection sensitivity of the magnetic field as compared to the case where a mere planar gap is used.
 この場合、感磁素子の幅に対するギャップの幅の比は、0倍超、0.9倍以下であっても構わない。これによれば、第1の磁性体層と第2の磁性体層を同じ層に形成する方法では得られない高い感度を得ることが可能となる。 In this case, the ratio of the width of the gap to the width of the magnetosensitive element may be more than 0 times and not more than 0.9 times. According to this, it is possible to obtain high sensitivity which can not be obtained by the method of forming the first magnetic layer and the second magnetic layer in the same layer.
 本発明による磁気センサは、第1の磁性体層を覆う外部磁性体をさらに備えていても構わない。これによれば、垂直方向の磁束の選択性を高めることができる。 The magnetic sensor according to the present invention may further include an external magnetic body covering the first magnetic body layer. According to this, it is possible to enhance the selectivity of the magnetic flux in the vertical direction.
 本発明において、第1の磁性体層は、第1及び第2の領域に分離されており、感磁素子は、直列接続された第1及び第2の感磁素子を含み、第2の磁性体層は、平面視で、第1の磁性体層の第1及び第2の領域間に配置され、第1の感磁素子は、第1の磁性体層の第1の領域と第2の磁性体層の間に位置するギャップによって形成される磁路上に配置され、第2の感磁素子は、第1の磁性体層の第2の領域と第2の磁性体層の間に位置するギャップによって形成される磁路上に配置されるものであっても構わない。これによれば、より高い検出精度を得ることが可能となる。 In the present invention, the first magnetic layer is separated into the first and second regions, and the magnetosensitive device includes the first and second magnetosensitive devices connected in series, and the second magnetic material layer is formed. The body layer is disposed between the first and second regions of the first magnetic layer in plan view, and the first magnetosensitive element is formed of the first region of the first magnetic layer and the second region of the first magnetic layer. The magnetic sensing element is disposed on the magnetic path formed by the gap located between the magnetic layers, and the second magnetosensitive element is located between the second region of the first magnetic layer and the second magnetic layer. It may be disposed on the magnetic path formed by the gap. According to this, it is possible to obtain higher detection accuracy.
 本発明において、感磁素子は磁気抵抗素子であることが好ましい。 In the present invention, the magnetosensitive element is preferably a magnetoresistance element.
 このように、本発明によれば、立体的なギャップによって形成される磁路上に感磁素子を配置していることから、平面的なギャップを用いた場合と比べて、磁界の検出感度を高めることが可能となる。 As described above, according to the present invention, since the magnetosensitive element is disposed on the magnetic path formed by the three-dimensional gap, the detection sensitivity of the magnetic field is enhanced compared to the case where the two-dimensional gap is used. It becomes possible.
図1は、本発明の第1の実施形態による磁気センサ1の構成を示す略平面図である。FIG. 1 is a schematic plan view showing the configuration of a magnetic sensor 1 according to a first embodiment of the present invention. 図2は、図1のA-A線に沿った略断面図である。FIG. 2 is a schematic cross-sectional view along the line AA of FIG. 図3は、ギャップG1の第1のバリエーションを示す略断面図である。FIG. 3 is a schematic cross-sectional view showing a first variation of the gap G1. 図4は、ギャップG1の第2のバリエーションを示す略断面図である。FIG. 4 is a schematic cross-sectional view showing a second variation of the gap G1. 図5は、ギャップG1の第3のバリエーションを示す略断面図である。FIG. 5 is a schematic cross-sectional view showing a third variation of the gap G1. 図6は、ギャップG1の第4のバリエーションを示す略断面図である。FIG. 6 is a schematic cross-sectional view showing a fourth variation of the gap G1. 図7は、ギャップG1の第5のバリエーションを示す略断面図である。FIG. 7 is a schematic cross-sectional view showing a fifth variation of the gap G1. 図8は、ギャップG1の第6のバリエーションを示す略断面図である。FIG. 8 is a schematic cross-sectional view showing a sixth variation of the gap G1. 図9は、ギャップG1の第7のバリエーションを示す略断面図である。FIG. 9 is a schematic cross-sectional view showing a seventh variation of the gap G1. 図10は、第1の実施形態の第1の変形例によるによる磁気センサの略断面図である。FIG. 10 is a schematic cross-sectional view of a magnetic sensor according to a first modification of the first embodiment. 図11は、第1の実施形態の第2の変形例によるによる磁気センサの略断面図である。FIG. 11 is a schematic cross-sectional view of a magnetic sensor according to a second modification of the first embodiment. 図12は、第1の実施形態の第3の変形例によるによる磁気センサの略断面図である。FIG. 12 is a schematic cross-sectional view of a magnetic sensor according to a third modification of the first embodiment. 図13は、ギャップの幅Wと感度の関係をシミュレーションした結果を示すグラフである。FIG. 13 is a graph showing the simulation result of the relationship between the gap width W 0 and the sensitivity. 図14は、本発明の第2の実施形態による磁気センサ100の外観を示す略斜視図である。FIG. 14 is a schematic perspective view showing the appearance of the magnetic sensor 100 according to the second embodiment of the present invention. 図15は、磁気センサ100の略分解斜視図である。FIG. 15 is a schematic exploded perspective view of the magnetic sensor 100. As shown in FIG. 図16は、図14に示すA-A線に沿った略断面図である。FIG. 16 is a schematic cross-sectional view along the line AA shown in FIG. 図17は、センサ基板20の素子形成面21の構造を説明するための略平面図である。FIG. 17 is a schematic plan view for explaining the structure of the element forming surface 21 of the sensor substrate 20. As shown in FIG. 図18は、図17に示すB-B線に沿った略断面図である。FIG. 18 is a schematic cross-sectional view taken along the line BB shown in FIG. 図19は、感磁素子R1~R4とボンディングパッド51~54の接続関係を説明するための回路図である。FIG. 19 is a circuit diagram for explaining the connection between the magnetosensitive elements R1 to R4 and the bonding pads 51 to 54. As shown in FIG. 図20は、第1の変形例による磁気センサ101の主要部の構成を説明するための略断面図である。FIG. 20 is a schematic cross-sectional view for illustrating the configuration of the main part of the magnetic sensor 101 according to the first modification. 図21は、第2の変形例による磁気センサ102の主要部の構成を説明するための略平面図である。FIG. 21 is a schematic plan view for illustrating the configuration of the main part of a magnetic sensor 102 according to the second modification. 図22は、第3の変形例による磁気センサ103の主要部の構成を説明するための略平面図である。FIG. 22 is a schematic plan view for illustrating the configuration of the main part of a magnetic sensor 103 according to a third modification. 図23は、第4の変形例による磁気センサ104の主要部の構成を説明するための略平面図である。FIG. 23 is a schematic plan view for illustrating the configuration of the main part of the magnetic sensor 104 according to the fourth modification. 図24は、第5の変形例による磁気センサ105の主要部の構成を説明するための略平面図である。FIG. 24 is a schematic plan view for illustrating the configuration of the main part of a magnetic sensor 105 according to a fifth modification. 図25は、図24に示すD-D線に沿った略断面図である。FIG. 25 is a schematic cross-sectional view along the line DD shown in FIG. 図26は、第6の変形例による磁気センサ106の主要部の構成を説明するための略平面図である。FIG. 26 is a schematic plan view for illustrating the configuration of the main part of the magnetic sensor 106 according to the sixth modification. 図27は、第7の変形例による磁気センサ107の主要部の構造を説明するための略平面図である。FIG. 27 is a schematic plan view for illustrating the structure of the main part of the magnetic sensor 107 according to the seventh modification. 図28は、磁束φが均等に分配される様子を説明するための図である。FIG. 28 is a diagram for explaining how magnetic flux φ is evenly distributed. 図29は、第8の変形例による磁気センサ108の構成を説明するための略斜視図である。FIG. 29 is a schematic perspective view for illustrating the configuration of the magnetic sensor 108 according to the eighth modification. 図30は、平面的なギャップを用いた第1のレイアウトを示す模式的な断面図である。FIG. 30 is a schematic cross-sectional view showing a first layout using planar gaps. 図31は、平面的なギャップを用いた第2のレイアウトを示す模式的な断面図である。FIG. 31 is a schematic cross-sectional view showing a second layout using planar gaps. 図32は、平面的なギャップを用いた第3のレイアウトを示す模式的な断面図である。FIG. 32 is a schematic cross-sectional view showing a third layout using planar gaps.
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<第1の実施形態>
 図1は、本発明の第1の実施形態による磁気センサ1の構成を示す略平面図である。また、図2は、図1のA-A線に沿った略断面図である。
First Embodiment
FIG. 1 is a schematic plan view showing the configuration of a magnetic sensor 1 according to a first embodiment of the present invention. 2 is a schematic cross-sectional view taken along the line AA of FIG.
 図1及び図2に示すように、本実施形態による磁気センサ1は、磁性体層2~4と感磁素子R1,R2を備えている。感磁素子R1,R2は、磁束密度によって物理特性の変化する素子であれば特に限定されないが、磁界の向きに応じて電気抵抗が変化する磁気抵抗素子であることが好ましい。本実施形態においては、感磁素子R1,R2の感度方向は、それぞれ図2の矢印E1,E2が示す方向を向いている。つまり、感磁素子R1の感度方向はz方向におけるプラス側に向いており、感磁素子R2の感度方向はz方向におけるマイナス側に向いている。これに加え、或いは、これに代えて、感磁素子R1,R2は、いずれも図2の矢印Cが示す方向(x方向におけるプラス側)に感度を有していても構わない。 As shown in FIGS. 1 and 2, the magnetic sensor 1 according to the present embodiment includes magnetic layers 2 to 4 and magnetosensitive elements R1 and R2. The magnetic sensing elements R1 and R2 are not particularly limited as long as the physical characteristics change with the magnetic flux density, but it is preferable that the magnetic sensing elements R1 and R2 be magnetic resistance elements whose electric resistance changes according to the direction of the magnetic field. In the present embodiment, the sensitivity directions of the magnetosensitive elements R1 and R2 are in the directions indicated by the arrows E1 and E2 in FIG. That is, the sensitivity direction of the magnetosensitive element R1 is directed to the positive side in the z direction, and the sensitivity direction of the magnetosensitive element R2 is directed to the negative side in the z direction. In addition to or in place of this, the magnetosensitive elements R1 and R2 may have sensitivity in the direction (plus side in the x direction) indicated by the arrow C in FIG.
 磁性体層2~4は、xy平面における磁路を構成する層である。特に限定されるものではないが、磁性体層2~4としては、樹脂材料に磁性フィラーが分散された複合磁性材料からなる膜であっても構わないし、ニッケル又はパーマロイなどの軟磁性材料からなる薄膜もしくは箔であっても構わないし、フェライトなどからなる薄膜又はバルクシートであっても構わない。本実施形態による磁気センサ1は、磁性体層2によってz方向の磁束φを集め、これを磁性体層3,4に分配することによって、感磁素子R1,R2の物理特性を変化させる。上述の通り、感磁素子R1,R2の感度方向は、図2の矢印E1,E2が示す方向を向いており、或いは、矢印Cが示す方向に揃えられていることから、磁性体層2にz方向の磁束φが与えられると、感磁素子R1,R2からは差動信号を得ることが可能となる。これにより、磁束φの磁束密度を検出することが可能となる。 The magnetic layers 2 to 4 are layers constituting a magnetic path in the xy plane. Although not particularly limited, the magnetic layers 2 to 4 may be a film made of a composite magnetic material in which a magnetic filler is dispersed in a resin material, and may be made of a soft magnetic material such as nickel or permalloy. It may be a thin film or a foil, or may be a thin film or a bulk sheet made of ferrite or the like. The magnetic sensor 1 according to the present embodiment changes the physical characteristics of the magnetosensitive elements R1 and R2 by collecting the magnetic flux φ in the z direction by the magnetic layer 2 and distributing it to the magnetic layers 3 and 4. As described above, the sensitivity directions of the magnetosensitive elements R1 and R2 are in the directions indicated by the arrows E1 and E2 in FIG. 2, or they are aligned in the direction indicated by the arrow C. When the magnetic flux φ in the z direction is applied, it is possible to obtain differential signals from the magnetosensitive elements R1 and R2. This makes it possible to detect the magnetic flux density of the magnetic flux φ.
 図2に示すように、磁性体層2と磁性体層3,4は、互いに異なる層に形成されている。つまり、磁性体層2は第1の層Z1に形成され、磁性体層3,4は第1の層Z1とはz方向における位置が異なる第2の層Z2に形成されている。第1の層Z1と第2の層Z2の間には、感磁素子R1,R2が形成される第3の層Z3が設けられる。第2の層Z2と第3の層Z3は絶縁層5によって分離され、第3の層Z3と第1の層Z1は絶縁層6によって分離される。これらの各層は、基板などの表面に積層することができる。この場合、基板の表面がxy平面を構成することになり、絶縁層5,6の積層方向がz方向となる。 As shown in FIG. 2, the magnetic layer 2 and the magnetic layers 3 and 4 are formed in different layers. That is, the magnetic layer 2 is formed in the first layer Z1, and the magnetic layers 3 and 4 are formed in the second layer Z2 different in position in the z direction from the first layer Z1. A third layer Z3 in which the magnetosensitive elements R1 and R2 are formed is provided between the first layer Z1 and the second layer Z2. The second layer Z2 and the third layer Z3 are separated by the insulating layer 5, and the third layer Z3 and the first layer Z1 are separated by the insulating layer 6. Each of these layers can be laminated on the surface of a substrate or the like. In this case, the surface of the substrate constitutes the xy plane, and the stacking direction of the insulating layers 5 and 6 is the z direction.
 本実施形態においては、磁性体層2のx方向における一方(左側)の端部と磁性体層3のx方向における一方(右側)の端部との間にz方向のギャップG1が形成され、このギャップG1によって形成される磁路上に感磁素子R1が配置される。同様に、磁性体層2のx方向における他方(右側)の端部と磁性体層4のx方向における一方(左側)の端部との間にz方向のギャップG2が形成され、このギャップG2によって形成される磁路上に感磁素子R2が配置される。 In the present embodiment, a gap G1 in the z direction is formed between an end of the magnetic layer 2 in the x direction (left side) and an end of the magnetic layer 3 in the x direction (right side), The magnetosensitive element R1 is disposed on the magnetic path formed by the gap G1. Similarly, a gap G2 in the z direction is formed between the other (right) end of the magnetic layer 2 in the x direction and the one (left) end of the magnetic layer 4 in the x direction. The magnetic sensing element R2 is disposed on the magnetic path formed by
 磁性体層2と磁性体層3,4は、z方向に重なりを有していても構わないし、z方向に重なりを有していなくても構わないし、x方向におけるエッジの位置が一致していても構わない。いずれにしても、磁性体層2と磁性体層3,4によって形成されるギャップG1,G2は立体的となるため、平面的なギャップを用いた場合と比べて、ギャップG1,G2の幅を狭くすることができる。例えば、図2に示すように磁性体層2と磁性体層3,4がz方向に重なりを有している場合、ギャップG1,G2の幅は、絶縁層5,6の厚みによって定義される。通常、絶縁層等の厚みは、平面的な加工精度と比べてかなり小さいことから、立体的なギャップを用いることにより、極めて狭いギャップを実現することができる。しかも、本実施形態においては、立体的なギャップG1,G2に感磁素子R1,R2が配置されるため、ギャップG1,G2のz方向における高さによって感磁素子R1,R2のx方向における幅が制限されることもない。 The magnetic layer 2 and the magnetic layers 3 and 4 may have an overlap in the z direction or may not have an overlap in the z direction, and the edge positions in the x direction coincide with each other. It does not matter. In any case, since the gaps G1 and G2 formed by the magnetic layer 2 and the magnetic layers 3 and 4 are three-dimensional, the widths of the gaps G1 and G2 are smaller than in the case where a planar gap is used. It can be narrowed. For example, as shown in FIG. 2, when the magnetic layer 2 and the magnetic layers 3 and 4 overlap in the z direction, the widths of the gaps G1 and G2 are defined by the thicknesses of the insulating layers 5 and 6. . Usually, since the thickness of the insulating layer or the like is considerably smaller than the planar processing accuracy, an extremely narrow gap can be realized by using a three-dimensional gap. Moreover, in the present embodiment, since the magnetosensitive elements R1 and R2 are disposed in the three-dimensional gaps G1 and G2, the widths of the magnetosensitive elements R1 and R2 in the x direction are determined depending on the heights of the gaps G1 and G2 in the z direction. There is no limit.
 以下、図2に示す領域B、つまり、ギャップG1のいくつかのバリエーションについて説明する。以下に説明するギャップG1の構成は、ギャップG2についても当てはまるものである。 Hereinafter, the region B shown in FIG. 2, that is, some variations of the gap G1 will be described. The configuration of the gap G1 described below is also applicable to the gap G2.
 図3は、ギャップG1の第1のバリエーションを示す略断面図である。 FIG. 3 is a schematic cross-sectional view showing a first variation of the gap G1.
 図3に示す第1のバリエーションは、磁性体層2と磁性体層3がz方向に重なりを有しており、且つ、感磁素子R1の全体が磁性体層2,3の両方とz方向に重なる例である。ここで、磁性体層2と磁性体層3が重なる部分のx方向における幅をW23とし、感磁素子R1のx方向における幅をWRXとした場合、
  W23>WRX
である。尚、ギャップG1のz方向における高さはWGZであり、W23やWRXの値にかかわらず、絶縁層5,6の厚みによって制御することができる。このため、WGZの値は、W23やWRXよりも大幅に小さくすることが可能である。図3に示す構成によれば、例えば磁性体層2から磁性体層3に流れる磁束φがギャップG1において感磁素子R1に印加され、そのz方向成分又はx方向成分によって感磁素子R1の物理特性が変化する。特に、WGZの値については非常に小さくすることができるため、感磁素子R1の感度方向がz方向を向いている場合、感磁素子R1の物理特性を大きく変化させることが可能となる。但し、ギャップG1を通過する磁束φは全てz方向を向いているわけではなく、z方向成分とx方向成分が混在する斜め方向を向いていることから、感磁素子R1の感度方向がx方向を向いている場合であっても、感磁素子R1の物理特性を十分に変化させることが可能である。ここで、図3に示す構成においては、平面視で磁性体層2,3が互いに重なり、且つ、感磁素子R1と重ならないオーバーハング部分が必然的に生じる。オーバーハング部分のx方向における幅WOHについては特に限定されないが、破線で示すように幅WOHが大きすぎると、感磁素子R1を経由することなく磁性体層2から磁性体層3にバイパスする磁束φが増大するため、幅WOHについては感磁素子R1の幅WRXよりも小さいことが好ましい。
In the first variation shown in FIG. 3, the magnetic layer 2 and the magnetic layer 3 overlap in the z direction, and the whole of the magnetosensitive element R1 is in both the magnetic layers 2 and 3 and in the z direction. It is an example that overlaps with. Here, assuming that the width in the x direction of the overlapping portion of the magnetic layer 2 and the magnetic layer 3 is W 23 and the width in the x direction of the magnetosensitive element R 1 is W RX :
W 23 > W RX
It is. The height in the z direction of the gap G1 is W GZ, regardless of the value of W 23 and W RX, can be controlled by the thickness of the insulating layers 5 and 6. For this reason, the value of W GZ can be made significantly smaller than W 23 and W RX . According to the configuration shown in FIG. 3, for example, the magnetic flux φ flowing from the magnetic layer 2 to the magnetic layer 3 is applied to the magnetosensitive element R1 in the gap G1, and the physics of the magnetosensitive element R1 is caused by its z direction component or x direction component. Characteristics change. In particular, since the value of W GZ can be made very small, it is possible to largely change the physical characteristics of the magnetic sensing element R1 when the sensitivity direction of the magnetic sensing element R1 is in the z direction. However, not all the magnetic flux φ passing through the gap G1 is directed in the z direction, but is directed in an oblique direction in which the z direction component and the x direction component are mixed, so the sensitivity direction of the magnetosensitive element R1 is the x direction It is possible to change the physical characteristics of the magnetosensitive element R1 sufficiently even in the case of Here, in the configuration shown in FIG. 3, an overhang portion inevitably occurs in which the magnetic layers 2 and 3 overlap each other in plan view and do not overlap the magnetosensitive element R1. The width W OH in the x direction of the overhang portion is not particularly limited, but as shown by the broken line, if the width W OH is too large, bypassing from the magnetic layer 2 to the magnetic layer 3 without passing through the magnetosensitive element R1 Since the magnetic flux φ 0 increases, the width W OH is preferably smaller than the width W RX of the magnetosensitive element R1.
 図4は、ギャップG1の第2のバリエーションを示す略断面図である。 FIG. 4 is a schematic cross-sectional view showing a second variation of the gap G1.
 図4に示す第2のバリエーションは、磁性体層2と磁性体層3が重なる幅W23と感磁素子R1の幅WRXがほぼ等しく(W23≒WRX)、且つ、オーバーハング部分がほぼ存在しない点において、第1のバリエーションと相違している。換言すれば、磁性体層2のx方向における一方(左側)の端部が感磁素子R1のx方向における一方(左側)の端部とほぼ一致し、且つ、磁性体層3のx方向における一方(右側)の端部が感磁素子R1のx方向における他方(右側)の端部とほぼ一致している。図4に示す構成によれば、オーバーハング部分を介した磁束のバイパスが少なく、大部分の磁束が感磁素子R1を経由することから、第1のバリエーションに比べて高い感度を得ることが可能となる。 In the second variation shown in FIG. 4, the width W 23 where the magnetic layer 2 and the magnetic layer 3 overlap and the width W RX of the magnetosensitive element R 1 are almost equal (W 23 ≒ W RX ), and the overhang portion is It differs from the first variation in that it is almost nonexistent. In other words, one end (left side) of the magnetic layer 2 in the x direction substantially coincides with one end (left side) of the magnetic sensing element R1 in the x direction, and the magnetic layer 3 in the x direction The end of one (right side) substantially coincides with the end of the other (right side) in the x direction of the magnetosensitive element R1. According to the configuration shown in FIG. 4, since the bypass of the magnetic flux via the overhang portion is small and most of the magnetic flux passes through the magnetosensitive element R1, it is possible to obtain higher sensitivity than the first variation. It becomes.
 図5は、ギャップG1の第3のバリエーションを示す略断面図である。 FIG. 5 is a schematic cross-sectional view showing a third variation of the gap G1.
 図5に示す第3のバリエーションは、磁性体層2と磁性体層3が重なる幅W23が感磁素子R1の幅WRXよりも小さい(W23<WRX)点において、第2のバリエーションと相違している。これにより、平面視で、磁性体層2と感磁素子R1は重なるが磁性体層3が重ならない部分が生じ、且つ、磁性体層3と感磁素子R1は重なるが磁性体層2が重ならない部分が生じる。前者のx方向における幅はW2Rであり、後者のx方向における幅はW3Rである。図5に示す構成が例示するように、磁性体層2,3の一方又は両方は、平面視で感磁素子R1と重ならない部分を有していても構わない。この場合、幅W23,W2R,W3R等を適切に設計することにより、ギャップG1における磁束のx方向成分を高めることが可能となる。このため、本例は、感磁素子R1がx方向に感度を有している場合に効果的である。 The third variation shown in FIG. 5 is a second variation in that the width W 23 at which the magnetic layer 2 and the magnetic layer 3 overlap is smaller than the width W RX of the magnetosensitive element R 1 (W 23 <W RX ). And is different. As a result, in a plan view, a portion occurs where the magnetic layer 2 and the magnetosensitive element R1 overlap but the magnetic layer 3 does not overlap, and the magnetic layer 3 and the magnetosensitive element R1 overlap but the magnetic layer 2 is heavy There will be parts that do not The width in the x direction of the former is W 2 R , and the width in the x direction of the latter is W 3 R. As exemplified by the configuration shown in FIG. 5, one or both of the magnetic layers 2 and 3 may have a portion that does not overlap with the magnetic sensing element R1 in plan view. In this case, by appropriately designing the widths W 23 , W 2R , W 3R and the like, it is possible to increase the x-direction component of the magnetic flux in the gap G1. Therefore, this example is effective when the magnetosensitive element R1 has sensitivity in the x direction.
 図6は、ギャップG1の第4のバリエーションを示す略断面図である。 FIG. 6 is a schematic cross-sectional view showing a fourth variation of the gap G1.
 図6に示す第4のバリエーションは、平面視で磁性体層2と磁性体層3が重なっておらず、x方向における端部の位置がほぼ一致している点において、第3のバリエーションと相違している。この場合、感磁素子R1の幅WRXは、
  WRX≒W2R+W3R
となる。図6に示す構成が例示するように、磁性体層2と磁性体層3は、平面視で重なりを有していなくても構わない。この場合、ギャップG1における磁束の漏れがやや大きくなるものの、ギャップG1における磁束のx方向成分をより高めることが可能となる。このため、本例は、感磁素子R1がx方向に感度を有している場合に効果的である。
The fourth variation shown in FIG. 6 is different from the third variation in that the magnetic layer 2 and the magnetic layer 3 do not overlap in plan view, and the positions of the end portions in the x direction substantially coincide with each other. doing. In this case, the width W RX of the magnetosensitive element R1 is
W RX W W 2 R + W 3 R
It becomes. As the configuration shown in FIG. 6 exemplifies, the magnetic layer 2 and the magnetic layer 3 may not have an overlap in plan view. In this case, although the leakage of the magnetic flux in the gap G1 is somewhat increased, it is possible to further enhance the x-direction component of the magnetic flux in the gap G1. Therefore, this example is effective when the magnetosensitive element R1 has sensitivity in the x direction.
 図7は、ギャップG1の第5のバリエーションを示す略断面図である。 FIG. 7 is a schematic cross-sectional view showing a fifth variation of the gap G1.
 図7に示す第5のバリエーションは、平面視で磁性体層2と磁性体層3が重なっておらず、これにより、感磁素子R1が平面視で磁性体層2,3のいずれとも重ならない部分を有している点において、第4のバリエーションと相違している。但し、感磁素子R1は、一部で磁性体層2及び磁性体層3と重なっており、その幅はそれぞれW2R,W3Rである。磁性体層2,3のいずれとも重ならない部分のx方向における幅はWであり、感磁素子R1はこの幅Wに相当する部分においてギャップG1と平面視で重なっている。幅Wが大きくなると、その分、磁束の漏れが増大するものの、図7に示す例では、幅Wが感磁素子R1のx方向における幅WRXよりも小さいことから、従来の磁気センサのように、平面的なギャップを用いた場合に比べると、高い検出感度を得ることが可能となる。また、図32に示した例と比べると、より強いz方向成分の磁束φを感磁素子R1に与えることが可能となる。 In the fifth variation shown in FIG. 7, the magnetic layer 2 and the magnetic layer 3 do not overlap in a plan view, whereby the magnetosensitive element R1 does not overlap with any of the magnetic layers 2 and 3 in a plan view. It differs from the fourth variation in that it has a portion. However, the magnetosensitive element R1 partially overlaps with the magnetic layer 2 and the magnetic layer 3, and the widths thereof are W 2R and W 3R , respectively. Width in the x-direction of a portion of one not to overlap of the magnetic layers 2 and 3 is W 0, the sensitive element R1 are overlapped by a gap G1 in plan view in part corresponding to the width W 0. As the width W 0 becomes larger, the leakage of the magnetic flux increases accordingly, but in the example shown in FIG. 7, since the width W 0 is smaller than the width W RX in the x direction of the magnetosensitive element R1, the conventional magnetic sensor As compared with the case where a planar gap is used, it is possible to obtain high detection sensitivity. Further, as compared with the example shown in FIG. 32, it is possible to apply a magnetic flux φ of a stronger z-direction component to the magnetosensitive element R1.
 図8は、ギャップG1の第6のバリエーションを示す略断面図である。 FIG. 8 is a schematic cross-sectional view showing a sixth variation of the gap G1.
 図8に示す第6のバリエーションは、磁性体層2と磁性体層3のx方向におけるギャップの幅Wと感磁素子R1の幅WRXがほぼ等しい(W≒WRX)点において、第5のバリエーションと相違している。換言すれば、磁性体層2のx方向における一方(左側)の端部が感磁素子R1のx方向における一方(右側)の端部とほぼ一致しており、且つ、磁性体層3のx方向における一方(右側)の端部が感磁素子R1のx方向における他方(左側)の端部とほぼ一致している。図8に示す構成によれば、磁束の漏れがさらに増大するものの、幅Wが感磁素子R1のx方向における幅WRXとほぼ同等であることから、従来の磁気センサのように、平面的なギャップを用いた場合に比べると、高い検出感度を得ることが可能となる。また、図31に示した例と比べると、より強いz方向成分の磁束φを感磁素子R1に与えることが可能となる。 The sixth variation shown in FIG. 8 is that the width W 0 of the gap in the x direction of the magnetic layer 2 and the magnetic layer 3 and the width W RX of the magnetosensitive element R 1 are substantially equal (W 0 WW RX ) It is different from the fifth variation. In other words, one end (left side) of the magnetic layer 2 in the x direction substantially coincides with one end (right side) in the x direction of the magnetosensitive element R1, and x of the magnetic layer 3 One end (right side) in the direction substantially coincides with the other end (left side) in the x direction of the magnetosensitive element R1. According to the configuration shown in FIG. 8, although the leakage of the magnetic flux is further increased, the width W 0 is substantially equal to the width W RX in the x direction of the magnetosensitive element R 1. It is possible to obtain high detection sensitivity as compared with the case of using a typical gap. Further, as compared with the example shown in FIG. 31, it is possible to apply a magnetic flux φ of a stronger z-direction component to the magnetosensitive element R1.
 図9は、ギャップG1の第7のバリエーションを示す略断面図である。 FIG. 9 is a schematic cross-sectional view showing a seventh variation of the gap G1.
 図9に示す第7のバリエーションは、磁性体層2、磁性体層3及び感磁素子R1が平面視でいずれも重ならない部分を有している点において、第5又は第6のバリエーションと相違している。磁性体層2、磁性体層3及び感磁素子R1がいずれも重ならない部分のx方向における幅はWである。このような構成であっても、磁性体層3と感磁素子R1の重なる幅W3R(又はW2R)の方が上記の幅Wよりも大きければ(W2R又はW3R>W)、磁性体層2と磁性体層3のx方向におけるギャップの幅Wが感磁素子R1の幅WRXよりも小さくなる(W<WRX)ことから、平面的なギャップを用いた場合に比べると、高い検出感度を得ることが可能となる。 The seventh variation shown in FIG. 9 is different from the fifth or sixth variation in that the magnetic layer 2, the magnetic layer 3 and the magnetic sensing element R1 have portions that do not overlap in plan view. doing. Magnetic layer 2, the width in the x direction of a portion where the magnetic layer 3 and the magnetic sensing element R1 do not overlap any is W 1. Even with this configuration, if towards the width W 3R overlapping the magnetic layer 3 and the magnetic sensing element R1 (or W 2R) is larger than the width W 1 of the (W 2R or W 3R> W 1) Since the width W 0 of the gap in the x direction of the magnetic layer 2 and the magnetic layer 3 is smaller than the width W RX of the magnetosensitive element R 1 (W 0 <W RX ), a planar gap is used It is possible to obtain high detection sensitivity as compared with.
 以上説明したように、本実施形態による磁気センサ1は、磁性体層2と磁性体層3,4が立体的なギャップG1,G2を形成しており、このギャップG1,G2によって形成される磁路上に感磁素子R1,R2が配置されていることから、感磁素子R1,R2のx方向における幅WRXを縮小することなく、ギャップG1,G2のz方向における高さWGZを狭くすることができる。これにより、平面的なギャップを用いた場合に比べてより高い検出感度を得ることが可能となる。 As described above, in the magnetic sensor 1 according to the present embodiment, the magnetic layer 2 and the magnetic layers 3 and 4 form the three-dimensional gaps G1 and G2, and the magnet formed by the gaps G1 and G2 Since the magnetosensitive elements R1 and R2 are disposed on the road, the height W GZ of the gaps G1 and G2 in the z direction is narrowed without reducing the width W RX of the magnetosensitive elements R1 and R2 in the x direction. be able to. This makes it possible to obtain higher detection sensitivity than when using a planar gap.
 尚、磁性体層2と磁性体層3,4の位置関係は図2に示した位置関係に限定されず、図10に示す第1の変形例のように、磁性体層2を第2の層Z2に配置し、磁性体層3,4を第1の層Z1に配置しても構わない。また、感磁素子R1,R2の位置関係についても図2に示した位置関係に限定されず、図11に示す第2の変形例のように、感磁素子R1を第4の層Z4に形成し、感磁素子R2を第3の層Z3に形成しても構わない。図11に示す例では、第1の層Z1と第4の層Z4が絶縁層15によって分離され、第4の層Z4と第5の層Z5が絶縁層16によって分離される。そして、磁性体層3を第5の層Z5に形成し、感磁素子R1,R2の感度方向を図11の矢印E1,E2が示す方向(又はその逆)に向ければ、感磁素子R1,R2から差動信号を得ることが可能となる。これによれば、感磁素子R1,R2の感度方向を同方向とすることができる。さらに、図12に示す第3の変形例のように、磁性体層2を第1の層Z1から第2の層Z2に遷移させ、磁性体層3を第1の層Z1に配置するとともに、感磁素子R1,R2の感度方向を図12の矢印E1,E2が示す方向(又はその逆)に向けても構わない。 The positional relationship between the magnetic layer 2 and the magnetic layers 3 and 4 is not limited to the positional relationship shown in FIG. 2, and as in the first modification shown in FIG. It may be disposed in the layer Z2, and the magnetic layers 3 and 4 may be disposed in the first layer Z1. Further, the positional relationship between the magnetosensitive elements R1 and R2 is not limited to the positional relationship shown in FIG. 2, and the magnetosensitive element R1 is formed in the fourth layer Z4 as in the second modification shown in FIG. Alternatively, the magnetosensitive element R2 may be formed in the third layer Z3. In the example shown in FIG. 11, the first layer Z1 and the fourth layer Z4 are separated by the insulating layer 15, and the fourth layer Z4 and the fifth layer Z5 are separated by the insulating layer 16. Then, if the magnetic layer 3 is formed in the fifth layer Z5 and the sensitivity direction of the magnetosensitive elements R1 and R2 is directed to the direction indicated by the arrows E1 and E2 in FIG. It is possible to obtain a differential signal from R2. According to this, the sensitivity directions of the magnetosensitive elements R1 and R2 can be made the same. Furthermore, as in the third modification shown in FIG. 12, the magnetic layer 2 is transitioned from the first layer Z1 to the second layer Z2 and the magnetic layer 3 is disposed in the first layer Z1. The sensitivity directions of the magnetosensitive elements R1 and R2 may be directed in the direction indicated by the arrows E1 and E2 in FIG. 12 (or the opposite direction).
 図13は、ギャップの幅Wと感度の関係をシミュレーションした結果を示すグラフであり、感磁素子R1の幅WRXが5μmであり、ギャップのx方向における中心位置と感磁素子R1のx方向における中心位置を一致させた状態で、ギャップの幅Wを変化させることによる感度の変化を◆印のプロットで示している。図13には、比較のため、磁性体層2~4が同じ層に形成されている場合(図31及び図32参照)の特性を△印のプロットで示している。また、感度の値については、磁性体層2~4が同じ層に形成されている場合であって、ギャップの幅Wが7μmである場合に得られる感度を1としている。 FIG. 13 is a graph showing the simulation result of the relationship between the gap width W 0 and the sensitivity, and the width W RX of the magnetosensitive element R 1 is 5 μm, and the center position of the gap in the x direction and x of the magnetosensitive element R 1 The change of the sensitivity due to the change of the width W 0 of the gap is shown by the plot of ◆ with the center position in the direction matched. In FIG. 13, for comparison, the characteristic of the case where the magnetic layers 2 to 4 are formed in the same layer (see FIGS. 31 and 32) is shown by a plot of Δ. Further, regarding the value of sensitivity, the sensitivity obtained when the magnetic layer 2 to 4 is formed in the same layer and the width W 0 of the gap is 7 μm is 1.
 図13に示すように、磁性体層2~4が同じ層に形成されている場合は、ギャップの幅Wが3μmである場合に最も高い感度(2.2倍)が得られている。これに対し、本実施形態のように磁性体層2と磁性体層3,4を異なる層に配置することによって立体的なギャップG1,G2を形成すれば、磁性体層2~4を同じ層に形成する場合よりも全域で高い感度が得られている。特に、ギャップの幅Wを0μm超、4.5μm以下とすれば、つまり、感磁素子R1の幅WRXに対するギャップの幅Wの比を0倍超、0.9倍以下とすれば、比較例における最高感度(2.2倍)を超える感度を得ることが可能となる。 As shown in FIG. 13, when the magnetic layers 2 to 4 are formed in the same layer, the highest sensitivity (2.2 times) is obtained when the width W 0 of the gap is 3 μm. On the other hand, if the three-dimensional gaps G1 and G2 are formed by arranging the magnetic layer 2 and the magnetic layers 3 and 4 in different layers as in the present embodiment, the magnetic layers 2 to 4 are the same layer. Higher sensitivity is obtained in the whole area than in the case of forming in. In particular, if the width W 0 of the gap is more than 0 μm and not more than 4.5 μm, that is, if the ratio of the width W 0 of the gap to the width W RX of the magnetosensitive element R 1 is more than 0 and 0.9 times or less It is possible to obtain the sensitivity exceeding the highest sensitivity (2.2 times) in the comparative example.
<第2の実施形態>
 図14は、本発明の第2の実施形態による磁気センサ100の外観を示す略斜視図である。また、図15は磁気センサ100の略分解斜視図であり、図16は図14に示すA-A線に沿った略断面図である。
Second Embodiment
FIG. 14 is a schematic perspective view showing the appearance of the magnetic sensor 100 according to the second embodiment of the present invention. Further, FIG. 15 is a schematic exploded perspective view of the magnetic sensor 100, and FIG. 16 is a schematic cross-sectional view along the line AA shown in FIG.
 図14~図16に示すように、本実施形態による磁気センサ100は、開口部11を有する回路基板10と、開口部11に配置されたセンサ基板20と、センサ基板20に固定された第1~第4の外部磁性体31~34とを備えている。センサ基板20は、回路基板10よりも小さいチップ部品であり、後述する感磁素子を有している。また、第1~第4の外部磁性体31~34は、フェライトなど透磁率の高い軟磁性材料からなるブロックである。 As shown in FIGS. 14 to 16, the magnetic sensor 100 according to the present embodiment includes a circuit board 10 having an opening 11, a sensor board 20 disposed in the opening 11, and a first fixed to the sensor board 20. The fourth to fourth external magnetic members 31 to 34 are provided. The sensor substrate 20 is a chip component smaller than the circuit substrate 10, and has a magnetosensitive element described later. The first to fourth external magnetic members 31 to 34 are blocks made of a soft magnetic material having high permeability such as ferrite.
 センサ基板20は略直方体形状を有し、xy平面を構成する素子形成面21には第1の外部磁性体31が配置されている。センサ基板20の作製方法としては、集合基板に多数のセンサ基板20を同時に形成し、これらを分離することによって多数個取りする方法が一般的であるが、本発明がこれに限定されるものではなく、個々のセンサ基板20を別個に作製しても構わない。詳細については後述するが、素子形成面21には4つの感磁素子R1~R4及び磁性体層40が形成されている。また、素子形成面21には4つのボンディングパッド51~54が設けられており、対応するボンディングワイヤBWを介して、回路基板10に設けられたボンディングパッド61~64にそれぞれ接続されている。 The sensor substrate 20 has a substantially rectangular parallelepiped shape, and the first external magnetic body 31 is disposed on the element forming surface 21 constituting the xy plane. As a method of manufacturing the sensor substrate 20, a method of simultaneously forming a large number of sensor substrates 20 on a collective substrate and separating a large number of them is generally used, but the present invention is not limited thereto. Alternatively, individual sensor substrates 20 may be separately manufactured. Although details will be described later, four magnetosensitive elements R1 to R4 and a magnetic layer 40 are formed on the element forming surface 21. Further, four bonding pads 51 to 54 are provided on the element forming surface 21 and are connected to the bonding pads 61 to 64 provided on the circuit substrate 10 via the corresponding bonding wires BW.
 さらに、第2及び第3の外部磁性体32,33は、センサ基板20のx方向における両側にそれぞれ配置されている。第2及び第3の外部磁性体32,33は、センサ基板20の底部に位置する第4の外部磁性体34を介して接続されており、これにより第2~第4の外部磁性体32~34は単一の磁性ブロック35を構成する。そして、この磁性ブロック35が回路基板10の開口部11に挿入されるよう配置されている。磁性ブロック35には、センサ基板20を収容するための凹部36が設けられており、この凹部36にセンサ基板20が収容されると、センサ基板20の素子形成面21と、第2及び第3の外部磁性体32,33の先端が近接し、ほぼ同一平面を構成する。 Furthermore, the second and third external magnetic members 32 and 33 are disposed on both sides of the sensor substrate 20 in the x direction. The second and third external magnetic members 32 and 33 are connected via the fourth external magnetic member 34 located at the bottom of the sensor substrate 20, whereby the second to fourth external magnetic members 32 to 32 are formed. 34 constitute a single magnetic block 35. The magnetic block 35 is disposed to be inserted into the opening 11 of the circuit board 10. The magnetic block 35 is provided with a recess 36 for accommodating the sensor substrate 20. When the sensor substrate 20 is accommodated in the recess 36, the element forming surface 21 of the sensor substrate 20, and the second and third The tips of the external magnetic members 32 and 33 are close to one another, and constitute substantially the same plane.
 次に、センサ基板20の素子形成面21に形成される各構成要素について詳細に説明する。 Next, each component formed on the element forming surface 21 of the sensor substrate 20 will be described in detail.
 図17は、センサ基板20の素子形成面21の構造を説明するための略平面図である。また、図18は、図17に示すB-B線に沿った略断面図である。 FIG. 17 is a schematic plan view for explaining the structure of the element forming surface 21 of the sensor substrate 20. As shown in FIG. FIG. 18 is a schematic cross-sectional view along the line BB shown in FIG.
 図17に示すように、センサ基板20の素子形成面21には、磁性体層40が形成されている。特に限定されるものではないが、磁性体層40としては、樹脂材料に磁性フィラーが分散された複合磁性材料からなる膜であっても構わないし、ニッケル又はパーマロイなどの軟磁性材料からなる薄膜もしくは箔であっても構わないし、フェライトなどからなる薄膜又はバルクシートであっても構わない。 As shown in FIG. 17, the magnetic material layer 40 is formed on the element forming surface 21 of the sensor substrate 20. Although not particularly limited, the magnetic layer 40 may be a film made of a composite magnetic material in which a magnetic filler is dispersed in a resin material, a thin film made of a soft magnetic material such as nickel or permalloy, or It may be a foil, or it may be a thin film or a bulk sheet made of ferrite or the like.
 本実施形態においては、磁性体層40が第1の領域41~第6の領域46に分割されている。第1の領域41~第6の領域46はいずれも矩形状であり、いずれも2辺がx方向に延在し、残りの2辺がy方向に延在する。このうち、第1の領域41と第2の領域42は、素子形成面21のx方向における略中央部に配置されており、互いにy方向に隣接している。また、第1の領域41のx方向における両側には、第1の領域41の端部と重なるように第3の領域43と第5の領域45が設けられている。同様に、第2の領域42のx方向における両側には、第2の領域42の端部と重なるように第4の領域44と第6の領域46が設けられている。また、第3の領域43と第4の領域44は互いにy方向に隣接しており、同様に、第5の領域45と第6の領域46は互いにy方向に隣接している。 In the present embodiment, the magnetic layer 40 is divided into a first area 41 to a sixth area 46. Each of the first area 41 to the sixth area 46 is rectangular, and two sides thereof extend in the x direction, and the remaining two sides extend in the y direction. Among these, the first region 41 and the second region 42 are disposed substantially at the center of the element forming surface 21 in the x direction, and are adjacent to each other in the y direction. In addition, the third area 43 and the fifth area 45 are provided on both sides in the x direction of the first area 41 so as to overlap with the end of the first area 41. Similarly, a fourth area 44 and a sixth area 46 are provided on both sides of the second area 42 in the x direction so as to overlap with the end of the second area 42. The third area 43 and the fourth area 44 are adjacent to each other in the y direction, and similarly, the fifth area 45 and the sixth area 46 are adjacent to each other in the y direction.
 特に限定されるものではないが、第1の外部磁性体31のy方向における幅は、磁性体層40の第1及び第2の領域41,42のy方向における合計幅よりも広く、これにより、第1及び第2の領域41,42のy方向における全幅が第1の外部磁性体31によって覆われていることが好ましい。これによれば、製造時において、第1の外部磁性体31と磁性体層40との相対的な位置関係にずれが生じたとしても、検出精度が大幅に低下することがない。位置ずれとしては、xy方向におけるずれの他、回転ずれも考えられる。 Although not particularly limited, the width of the first external magnetic body 31 in the y direction is wider than the total width of the first and second regions 41 and 42 of the magnetic layer 40 in the y direction. Preferably, the entire width in the y direction of the first and second regions 41 and 42 is covered by the first external magnetic body 31. According to this, even if a deviation occurs in the relative positional relationship between the first external magnetic body 31 and the magnetic body layer 40 at the time of manufacture, the detection accuracy does not significantly decrease. As the positional deviation, in addition to the deviation in the xy direction, rotational deviation is also conceivable.
 ここで、磁性体層40の第1の領域41と第2の領域42は、互いに同じ形状及びサイズを有しており、x方向に延在する仮想的な直線L1を対称軸として線対称である。このような対称形状のため、第1の外部磁性体31を介して取り込まれた磁束は、磁性体層40の第1の領域41と第2の領域42に対してほぼ均等に分配される。また、第1及び第2の領域41,42は、いずれもy方向に延在する仮想的な直線L2を対称軸として線対称となるよう配置されている。 Here, the first region 41 and the second region 42 of the magnetic layer 40 have the same shape and size as each other, and are line symmetrical with an imaginary straight line L1 extending in the x direction as an axis of symmetry. is there. Due to such a symmetrical shape, the magnetic flux taken in via the first external magnetic body 31 is distributed substantially equally to the first region 41 and the second region 42 of the magnetic layer 40. In addition, the first and second regions 41 and 42 are arranged so as to be axisymmetrical with the imaginary straight line L2 extending in the y direction as the axis of symmetry.
 また、磁性体層40の第3の領域43と第4の領域44は、互いに同じ形状及びサイズを有しており、x方向に延在する仮想的な直線L1を対称軸として線対称である。このような対称形状のため、第2の外部磁性体32を介して取り込まれた磁束は、磁性体層40の第3及び第4の領域43,44に対してほぼ均等に分配される。同様に、磁性体層40の第5の領域45と第6の領域46は、互いに同じ形状及びサイズを有しており、x方向に延在する仮想的な直線L1を対称軸として線対称である。このような対称形状のため、第3の外部磁性体33を介して取り込まれた磁束は、磁性体層40の第5及び第6の領域45,46に対してほぼ均等に分配される。また、第3及び第4の領域43,44と第5及び第6の領域45,46は、y方向に延在する仮想的な直線L2を対称軸として互いに線対称となるよう配置されている。 In addition, the third region 43 and the fourth region 44 of the magnetic layer 40 have the same shape and size as each other, and are line symmetrical with the virtual straight line L1 extending in the x direction as the axis of symmetry. . Due to such a symmetrical shape, the magnetic flux taken in via the second external magnetic body 32 is distributed substantially equally to the third and fourth regions 43 and 44 of the magnetic body layer 40. Similarly, the fifth region 45 and the sixth region 46 of the magnetic layer 40 have the same shape and size as each other, and are line symmetrical with respect to a virtual straight line L1 extending in the x direction as an axis of symmetry. is there. Due to such a symmetrical shape, the magnetic flux taken in via the third external magnetic body 33 is distributed substantially equally to the fifth and sixth regions 45 and 46 of the magnetic layer 40. In addition, the third and fourth regions 43 and 44 and the fifth and sixth regions 45 and 46 are arranged so as to be line symmetrical with respect to a virtual straight line L2 extending in the y direction as a symmetry axis. .
 第1の領域41のx方向における一方の端部は、z方向に延在する第1のギャップG1を介して、第3の領域43のx方向における一方の端部と対向している。また、第1の領域41のx方向における他方の端部は、z方向に延在する第4のギャップG4を介して、第5の領域45のx方向における一方の端部と対向している。同様に、第2の領域42のx方向における一方の端部は、z方向に延在する第3のギャップG3を介して、第4の領域44のx方向における一方の端部と対向している。また、第2の領域42のx方向における他方の端部は、z方向に延在する第2のギャップG2を介して、第6の領域46のx方向における一方の端部と対向している。上述の通り、各領域41~46はいずれも矩形であるため、各領域41~46の上記端部のy方向における長さは、当該領域のy方向における幅とほぼ一致している。 One end of the first region 41 in the x direction is opposed to one end of the third region 43 in the x direction via a first gap G1 extending in the z direction. In addition, the other end of the first region 41 in the x direction is opposed to one end of the fifth region 45 in the x direction via a fourth gap G4 extending in the z direction. . Similarly, one end of the second region 42 in the x direction is opposed to one end of the fourth region 44 in the x direction via a third gap G3 extending in the z direction. There is. Further, the other end of the second region 42 in the x direction is opposed to one end of the sixth region 46 in the x direction via a second gap G2 extending in the z direction. . As described above, since each of the areas 41 to 46 is rectangular, the length of the end of each of the areas 41 to 46 in the y direction substantially matches the width of the area in the y direction.
 図17及び図18に示すように、第1~第4のギャップG1~G4には、それぞれy方向に延在する第1~第4の感磁素子R1~R4が配置されている。図18に示す例では、センサ基板20の表面に絶縁層24,25,26がこの順に積層されており、絶縁層25の表面が素子形成面21を構成している。そして、素子形成面21である絶縁層25の表面に感磁素子R1~R4が設けられ、下層に位置する絶縁層24の表面に磁性体層40の第3~第6の領域43~46が設けられ、上層に位置する絶縁層26の表面に磁性体層40の第1及び第2の領域41,42が設けられている。これにより、立体的なギャップG1~G4が形成され、これらギャップG1~G4間に感磁素子R1~R4が配置されている。本実施形態においては、感磁素子R1~R4の感度方向は、図17の矢印E1,E2が示す方向を向いている。つまり、感磁素子R1,R3の感度方向はz方向におけるプラス側に向いており、感磁素子R2,R4の感度方向はz方向におけるマイナス側に向いている。これに加え、或いは、これに代えて、感磁素子R1~R4は、図17の矢印Cが示す方向(x方向におけるプラス側)に感度を有していても構わない。 As shown in FIGS. 17 and 18, first to fourth magnetosensitive elements R1 to R4 extending in the y direction are disposed in the first to fourth gaps G1 to G4, respectively. In the example shown in FIG. 18, the insulating layers 24, 25 and 26 are stacked in this order on the surface of the sensor substrate 20, and the surface of the insulating layer 25 constitutes the element forming surface 21. The magnetosensitive elements R1 to R4 are provided on the surface of the insulating layer 25 which is the element forming surface 21, and the third to sixth regions 43 to 46 of the magnetic layer 40 are formed on the surface of the insulating layer 24 located in the lower layer. The first and second regions 41 and 42 of the magnetic layer 40 are provided on the surface of the insulating layer 26 which is provided and located in the upper layer. Thereby, three-dimensional gaps G1 to G4 are formed, and the magnetosensitive elements R1 to R4 are arranged between the gaps G1 to G4. In the present embodiment, the sensitivity directions of the magnetosensitive elements R1 to R4 are in the directions indicated by the arrows E1 and E2 in FIG. That is, the sensitivity direction of the magnetosensitive elements R1 and R3 is directed to the positive side in the z direction, and the sensitivity direction of the magnetosensitive elements R2 and R4 is directed to the negative side in the z direction. In addition to or instead of this, the magnetosensitive elements R1 to R4 may have sensitivity in the direction (plus side in the x direction) indicated by the arrow C in FIG.
 図18に示すように、第1の外部磁性体31はz方向の磁束φを集め、これを磁性体層40の第1及び第2の領域41,42に放出する役割を果たす。第1の外部磁性体31のz方向における高さについては特に限定されないが、z方向における高さをより高くすることによって、z方向の磁束の選択性を高めることができる。但し、第1の外部磁性体31のz方向における高さが高すぎると、第1の外部磁性体31の支持が不安定となるおそれがあることから、安定的な支持を確保できる範囲において高くすることが好ましい。 As shown in FIG. 18, the first external magnetic body 31 plays the role of collecting the magnetic flux φ in the z direction and discharging it to the first and second regions 41 and 42 of the magnetic layer 40. The height of the first external magnetic body 31 in the z direction is not particularly limited, but the selectivity of the magnetic flux in the z direction can be enhanced by increasing the height in the z direction. However, if the height of the first external magnetic body 31 in the z direction is too high, the support of the first external magnetic body 31 may become unstable, so it is high in the range where stable support can be ensured. It is preferable to do.
 第1の外部磁性体31を介して磁性体層40の第1及び第2の領域41,42に集められた磁束φは、第1及び第2の領域41,42に対してほぼ均等に分配された後、第1~第4の感磁素子R1~R4を介してそれぞれ第3~第6の領域43~46へと放出される。これにより、感磁素子R1,R3と感磁素子R2,R4には、互いに逆方向の磁束が与えられることになる。上述の通り、感磁素子R1~R4の感度方向は、矢印E1,E2が示す方向、或いは、矢印Cが示す方向に向けられていることから、磁束のz方向及び/又はx方向における成分に対して感度を持つことになる。 The magnetic flux φ collected in the first and second regions 41 and 42 of the magnetic layer 40 through the first external magnetic body 31 is substantially equally distributed to the first and second regions 41 and 42. Then, the light is emitted to the third to sixth regions 43 to 46 through the first to fourth magnetosensitive elements R1 to R4, respectively. As a result, magnetic flux in opposite directions is applied to the magnetosensitive elements R1 and R3 and the magnetosensitive elements R2 and R4. As described above, since the sensitivity directions of the magnetosensitive elements R1 to R4 are directed in the directions indicated by the arrows E1 and E2 or in the directions indicated by the arrows C, the components of the magnetic flux in the z direction and / or the x direction It will be sensitive to it.
 磁性体層40の第3及び第4の領域43,44に到達した磁束は、第2の外部磁性体32に回収される。同様に、磁性体層40の第5及び第6の領域45,46に到達した磁束は、第3の外部磁性体33に回収される。 The magnetic flux reaching the third and fourth regions 43 and 44 of the magnetic layer 40 is collected by the second external magnetic body 32. Similarly, the magnetic flux reaching the fifth and sixth regions 45 and 46 of the magnetic layer 40 is collected by the third external magnetic body 33.
 図19は、感磁素子R1~R4とボンディングパッド51~54の接続関係を説明するための回路図である。 FIG. 19 is a circuit diagram for explaining the connection between the magnetosensitive elements R1 to R4 and the bonding pads 51 to 54. As shown in FIG.
 図19に示すように、ボンディングパッド51,54には、回路基板10側からそれぞれグランド電位Gnd及び電源電位Vddが供給される。また、ボンディングパッド51,54間には、感磁素子R1,R2が直列に接続されるとともに、感磁素子R4,R3が直列に接続される。そして、感磁素子R3,R4の接続点はボンディングパッド52に接続され、感磁素子R1,R2の接続点はボンディングパッド53に接続される。このようなブリッジ接続により、ボンディングパッド53に現れる電位Vaとボンディングパッド52に現れる電位Vbを参照することにより、磁束密度に応じた感磁素子R1~R4の電気抵抗の変化を高感度に検出することが可能となる。 As shown in FIG. 19, the ground potential Gnd and the power supply potential Vdd are supplied to the bonding pads 51 and 54, respectively, from the circuit board 10 side. The magnetosensitive elements R1 and R2 are connected in series between the bonding pads 51 and 54, and the magnetosensitive elements R4 and R3 are connected in series. The connection point of the magnetosensitive elements R3 and R4 is connected to the bonding pad 52, and the connection point of the magnetosensitive elements R1 and R2 is connected to the bonding pad 53. By referring to the potential Va appearing on the bonding pad 53 and the potential Vb appearing on the bonding pad 52 by such a bridge connection, the change of the electrical resistance of the magnetosensitive elements R1 to R4 according to the magnetic flux density is detected with high sensitivity. It becomes possible.
 具体的には、感磁素子R1~R4が全て同一の感度方向を有していることから、第1の外部磁性体31からみて一方側に位置する感磁素子R1,R3の抵抗変化量と、第1の外部磁性体31からみて他方側に位置する感磁素子R2,R4の抵抗変化量との間には差が生じる。この差は、図19に示した差動ブリッジ回路によって2倍に増幅され、ボンディングパッド52,53に現れる。回路基板10には、図示しない電圧検出回路が設けられており、ボンディングパッド52,53に現れる電位Va,Vbの差を検出することによって、磁束密度を測定することが可能となる。 Specifically, since the magnetosensitive elements R1 to R4 all have the same sensitivity direction, the amount of change in resistance of the magnetosensitive elements R1 and R3 positioned on one side with respect to the first external magnetic body 31 There is a difference between the amount of change in resistance of the magnetic sensing elements R2 and R4 located on the other side with respect to the first external magnetic body 31. This difference is doubled by the differential bridge circuit shown in FIG. 19 and appears on the bonding pads 52 and 53. The circuit board 10 is provided with a voltage detection circuit (not shown), and by detecting the difference between the potentials Va and Vb appearing on the bonding pads 52 and 53, it becomes possible to measure the magnetic flux density.
 そして、本実施形態による磁気センサ100は、センサ基板20の素子形成面21に磁性体層40が設けられており、磁性体層40に設けられた4つのギャップG1~G4にそれぞれ感磁素子R1~R4が配置されていることから、ある感磁素子に流れる電流によって生じる磁束が他の感磁素子に影響を与えることがない。これにより、従来よりも高い検出精度を得ることが可能となる。しかも、4つのギャップG1~G4はいずれも立体的であることから、平面的なギャップを用いた場合に比べてより高い検出感度を得ることが可能となる。 Further, in the magnetic sensor 100 according to the present embodiment, the magnetic body layer 40 is provided on the element forming surface 21 of the sensor substrate 20, and the magnetosensitive elements R1 are respectively provided in the four gaps G1 to G4 provided in the magnetic body layer 40. Since R4 to R4 are arranged, the magnetic flux generated by the current flowing to a certain magnetic sensing element does not affect the other magnetic sensing elements. This makes it possible to obtain higher detection accuracy than in the prior art. In addition, since all four gaps G1 to G4 are three-dimensional, it is possible to obtain higher detection sensitivity as compared to the case where planar gaps are used.
 また、磁性体層40を構成する各領域41~46が矩形であることから、磁性体層を複雑な形状とした場合に顕著となるバルクハウゼンノイズを抑制することも可能となる。また、感磁素子R1~R4のy方向における長さを十分に確保することができるため、高いS/N比を得ることも可能となる。 Further, since the regions 41 to 46 constituting the magnetic layer 40 are rectangular, it is also possible to suppress Barkhausen noise, which is noticeable when the magnetic layer has a complicated shape. In addition, since the lengths of the magnetosensitive elements R1 to R4 in the y direction can be sufficiently secured, it is also possible to obtain a high S / N ratio.
 さらに、本実施形態による磁気センサ100は、第1の外部磁性体31を備えていることから、z方向の磁束を選択的に検出することができる。しかも、本実施形態による磁気センサ100は、第2の外部磁性体32と第3の外部磁性体33が一体化されていることから、センサ基板20の背後に回り込む磁束の磁気抵抗を低減することもできる。 Furthermore, since the magnetic sensor 100 according to the present embodiment includes the first external magnetic body 31, the magnetic flux in the z direction can be selectively detected. Moreover, in the magnetic sensor 100 according to the present embodiment, since the second external magnetic body 32 and the third external magnetic body 33 are integrated, the magnetic resistance of the magnetic flux flowing around behind the sensor substrate 20 is reduced. You can also.
 以下、本実施形態による磁気センサ100のいくつかの変形例について説明する。 Hereinafter, some modifications of the magnetic sensor 100 according to the present embodiment will be described.
 図20は、第1の変形例による磁気センサ101の主要部の構成を説明するための略断面図である。図20に示す例では、磁性体層40の第1及び第2の領域41,42と第3~第6の領域43~46が異なる層に位置しており、且つ、互いに重なりを有していない。このため、第1及び第2の領域41,42と第3~第6の領域43~46によって斜め方向のギャップG1~G4が形成され、これらギャップG1~G4に相当する位置に感磁素子R1~R4が配置されている。この場合、感磁素子R1~R4と磁性体層40は、重なりを有していても構わないし、重なりを有していなくても構わない。 FIG. 20 is a schematic cross-sectional view for illustrating the configuration of the main part of the magnetic sensor 101 according to the first modification. In the example shown in FIG. 20, the first and second regions 41 and 42 and the third to sixth regions 43 to 46 of the magnetic layer 40 are located in different layers, and overlap each other. Absent. For this reason, the gaps G1 to G4 in the oblique direction are formed by the first and second regions 41 and 42 and the third to sixth regions 43 to 46, and the magnetosensitive element R1 is located at a position corresponding to these gaps G1 to G4. To R4 are arranged. In this case, the magnetosensitive elements R1 to R4 and the magnetic layer 40 may have an overlap or may not have an overlap.
 図21は、第2の変形例による磁気センサ102の主要部の構成を説明するための略平面図である。図21に示す例では、磁性体層40の第1の領域41と第2の領域42が一体的であり、且つ、全体として矩形である。第2の変形例による磁気センサ102が例示するように、本発明において、磁性体層40の第1の領域41と第2の領域42が互いに分離していることは必須でなく、両者が一体化していても構わない。 FIG. 21 is a schematic plan view for illustrating the configuration of the main part of a magnetic sensor 102 according to the second modification. In the example shown in FIG. 21, the first region 41 and the second region 42 of the magnetic layer 40 are integral and rectangular as a whole. As exemplified by the magnetic sensor 102 according to the second modification, in the present invention, it is not essential that the first region 41 and the second region 42 of the magnetic layer 40 be separated from each other, but both are integrated. It does not matter.
 図22は、第3の変形例による磁気センサ103の主要部の構成を説明するための略平面図である。図22に示す例では、磁性体層40の第3の領域43と第4の領域44が一体的であり、且つ、全体として矩形であるとともに、磁性体層40の第5の領域45と第6の領域46が一体的であり、且つ、全体として矩形である。第3の変形例による磁気センサ103が例示するように、本発明において、磁性体層40の第3の領域43と第4の領域44や、第5の領域45と第6の領域46が互いに分離していることは必須でなく、両者が一体化していても構わない。 FIG. 22 is a schematic plan view for illustrating the configuration of the main part of a magnetic sensor 103 according to a third modification. In the example shown in FIG. 22, the third region 43 and the fourth region 44 of the magnetic layer 40 are integral and rectangular as a whole, and the fifth region 45 of the magnetic layer 40 and the Six regions 46 are integral and generally rectangular. As exemplified by the magnetic sensor 103 according to the third modification, in the present invention, the third region 43 and the fourth region 44 of the magnetic layer 40 and the fifth region 45 and the sixth region 46 are mutually different. It is not essential to separate, and both may be integrated.
 図23は、第4の変形例による磁気センサ104の主要部の構成を説明するための略平面図である。図23に示す例では、磁性体層40の第1の領域41と第2の領域42が一体的であり、且つ、全体として矩形であり、第3の領域43と第4の領域44が一体的であり、且つ、全体として矩形であり、磁性体層40の第5の領域45と第6の領域46が一体的であり、且つ、全体として矩形である。このような構成によれば、磁性体層40の平面形状がより単純化することから、バルクハウゼンノイズをより低減することが可能となる。 FIG. 23 is a schematic plan view for illustrating the configuration of the main part of the magnetic sensor 104 according to the fourth modification. In the example shown in FIG. 23, the first region 41 and the second region 42 of the magnetic layer 40 are integral and rectangular as a whole, and the third region 43 and the fourth region 44 are integral. The fifth region 45 and the sixth region 46 of the magnetic layer 40 are integral and rectangular as a whole. According to such a configuration, since the planar shape of the magnetic layer 40 is simplified, it is possible to further reduce Barkhausen noise.
 図24は、第5の変形例による磁気センサ105の主要部の構成を説明するための略平面図である。また、図25は、図24に示すD-D線に沿った略断面図である。 FIG. 24 is a schematic plan view for illustrating the configuration of the main part of a magnetic sensor 105 according to a fifth modification. FIG. 25 is a schematic cross-sectional view taken along the line DD shown in FIG.
 図24及び図25に示す例では、第1~第4の感磁素子R1~R4がそれぞれ第1~第4のギャップG1~G4に配置された2つの感磁素子によって構成されている。具体的には、直列接続された2つの感磁素子R11,R12によって第1の感磁素子R1が構成され、直列接続された2つの感磁素子R21,R22によって第2の感磁素子R2が構成され、直列接続された2つの感磁素子R31,R32によって第3の感磁素子R3が構成され、直列接続された2つの感磁素子R41,R42によって第4の感磁素子R4が構成されている。これによれば、より大きな磁気抵抗効果を得ることができるため、センサ基板20のサイズをほとんど大型化することなく、高い検出精度を得ることが可能となる。尚、直列接続される2つの感磁素子(例えばR11とR12)の間には、磁性体層40の第7の領域47を追加しても構わない。また、各感磁素子R1~R4を直列接続された3以上の感磁素子によって構成しても構わない。 In the example shown in FIG. 24 and FIG. 25, the first to fourth magnetosensitive elements R1 to R4 are formed of two magnetosensitive elements arranged in the first to fourth gaps G1 to G4, respectively. Specifically, a first magnetosensitive element R1 is formed by two magnetosensitive elements R11 and R12 connected in series, and a second magnetosensitive element R2 is formed by two magnetosensitive elements R21 and R22 connected in series. A third magnetosensitive element R3 is formed of two magnetosensitive elements R31 and R32 configured and connected in series, and a fourth magnetosensitive element R4 is formed of two magnetosensitive elements R41 and R42 connected in series ing. According to this, since a larger magnetoresistive effect can be obtained, it is possible to obtain high detection accuracy without increasing the size of the sensor substrate 20 almost at all. A seventh region 47 of the magnetic layer 40 may be added between two magnetosensitive elements (for example, R11 and R12) connected in series. In addition, the magnetosensitive elements R1 to R4 may be configured by three or more magnetosensitive elements connected in series.
 図25に示す例では、感磁素子R1が2つの感磁素子R11,R12によっているとともに、感磁素子R11の一部が磁性体層40の第1及び第7の領域41,47と重なりを有し、感磁素子R12の一部が磁性体層40の第3及び第7の領域43,47と重なりを有している。ここで、第7の領域47は、第1及び第2の領域41,43とは異なる層に形成されており、これにより立体的なギャップが形成されている。つまり、第7の領域47がセンサ基板20の表面に形成され、感磁素子R11,R12が絶縁層22の表面に形成され、第1及び第3の領域41,43が絶縁層23の表面に形成されている。図示しない他の感磁素子R2~R4についても、感磁素子R1と同様の構成を有している。このように、磁性体層40に第7の領域47を設けるとともに、各感磁素子R1~R4と磁性体層40が重なるよう配置すれば、漏れ磁束が低減されるため、より高い検出精度を得ることが可能となる。 In the example shown in FIG. 25, the magnetosensitive element R1 is composed of two magnetosensitive elements R11 and R12, and a part of the magnetosensitive element R11 overlaps the first and seventh regions 41 and 47 of the magnetic layer 40. A part of the magnetosensitive element R12 overlaps the third and seventh regions 43 and 47 of the magnetic layer 40. Here, the seventh region 47 is formed in a layer different from the first and second regions 41 and 43, thereby forming a three-dimensional gap. That is, the seventh region 47 is formed on the surface of the sensor substrate 20, the magnetosensitive elements R11 and R12 are formed on the surface of the insulating layer 22, and the first and third regions 41 and 43 are on the surface of the insulating layer 23. It is formed. The other magnetosensitive elements R2 to R4 (not shown) also have the same configuration as that of the magnetosensitive element R1. As described above, when the seventh region 47 is provided in the magnetic layer 40 and the magnetic sensing elements R1 to R4 and the magnetic layer 40 are disposed so as to overlap with each other, leakage magnetic flux is reduced. It becomes possible to obtain.
 図26は、第6の変形例による磁気センサ106の主要部の構成を説明するための略平面図である。図26に示す例では、磁性体層40の第7の領域47がギャップG1の延在方向であるy方向に多数分割されている。図示しない他のギャップG2~G4上においても同様の構成を有している。このように、磁性体層40の第7の領域47をy方向に分割すれば、ギャップG1~G4を介した磁束の流れがx方向に制限され、y方向にはほとんど流れなくなる。つまり、磁性体層40の第7の領域47をy方向に分割することによって磁気的な異方性が生じることから、より高い検出精度を得ることが可能となる。 FIG. 26 is a schematic plan view for illustrating the configuration of the main part of the magnetic sensor 106 according to the sixth modification. In the example shown in FIG. 26, the seventh region 47 of the magnetic layer 40 is divided into a large number in the y direction which is the extending direction of the gap G1. The same configuration is provided on the other gaps G2 to G4 not shown. As described above, when the seventh region 47 of the magnetic layer 40 is divided in the y direction, the flow of the magnetic flux through the gaps G1 to G4 is restricted in the x direction and hardly flows in the y direction. That is, since the magnetic anisotropy is generated by dividing the seventh region 47 of the magnetic layer 40 in the y direction, it is possible to obtain higher detection accuracy.
 図27は、第7の変形例による磁気センサ107の主要部の構造を説明するための略平面図である。 FIG. 27 is a schematic plan view for illustrating the structure of the main part of the magnetic sensor 107 according to the seventh modification.
 図27に示す第7の変形例においては、第1の磁性体層41は、中央に位置する第1の主領域M1と、第1の主領域M1からx方向に離れるに従ってy方向における幅が狭くなる第1~第4の収束領域S1~S4を含む。第1の主領域M1は、第1の外部磁性体31によって覆われる部分である。上述の通り、第1~第4の収束領域S1~S4は、第1の主領域M1からx方向に離れるに従ってy方向における幅が狭くなるテーパー形状部分であり、本実施形態では、第1及び第3の収束領域S1,S3が第1の主領域M1に対してx方向マイナス側(左側)に位置し、第2及び第4の収束領域S2,S4が第1の主領域M1に対してx方向プラス側(右側)に位置する。 In the seventh modification shown in FIG. 27, the first magnetic layer 41 has a first main region M1 located at the center, and a width in the y direction as the first main region M1 separates from the first main region M1 in the x direction. It includes first to fourth convergence regions S1 to S4 which are narrowed. The first main region M1 is a portion covered by the first external magnetic body 31. As described above, the first to fourth convergent regions S1 to S4 are tapered portions whose width in the y direction becomes narrower as the first main region M1 moves away from the first main region M1 in the x direction. The third convergence areas S1 and S3 are located on the minus side (left side) in the x direction with respect to the first main area M1, and the second and fourth convergence areas S2 and S4 are relative to the first main area M1. Located on the plus side (right side) in the x direction.
 ここで、第1の磁性体層41は二回対称形状を有している。このため、y方向に延在する仮想的な直線L1を対称軸として、第1の収束領域S1と第4の収束領域S4は線対称であり、且つ、第2の収束領域S2と第3の収束領域S3は線対称である。さらに、x方向に延在する仮想的な直線L2を対称軸として、第1の収束領域S1と第3の収束領域S3は線対称であり、且つ、第2の収束領域S4と第4の収束領域S4は線対称である。このような対称形状のため、第1の外部磁性体31を介して取り込まれた磁束が第1の主領域M1に入射されると、図28に示すように、この磁束φが第1~第4の収束領域S1~S4に対してほぼ均等に分配される。そして、分配された磁束φは、テーパー形状を有する第1~第4の収束領域S1~S4を通過することにより、磁束密度が高められる。 Here, the first magnetic layer 41 has a two-fold symmetrical shape. Therefore, with the virtual straight line L1 extending in the y direction as the axis of symmetry, the first convergence region S1 and the fourth convergence region S4 are axisymmetric, and the second convergence region S2 and the third convergence region S2 are symmetrical. The convergence region S3 is axisymmetrical. Furthermore, the first convergent region S1 and the third convergent region S3 are axisymmetric with the virtual straight line L2 extending in the x direction as the axis of symmetry, and the second convergent region S4 and the fourth convergent The region S4 is axisymmetrical. Due to such a symmetrical shape, when the magnetic flux taken in via the first external magnetic body 31 is incident on the first main region M1, as shown in FIG. It is distributed substantially equally to the four convergence areas S1 to S4. The distributed magnetic flux φ is increased in magnetic flux density by passing through the first to fourth converging regions S1 to S4 having a tapered shape.
 一方、第2の磁性体層42は、第2の主領域M2と、第2の主領域M2からx方向(プラス側)に離れるに従ってy方向における幅が狭くなる第5及び第7の収束領域S5,S7を含む。同様に、第3の磁性体層43は、第3の主領域M3と、第3の主領域M3からx方向(マイナス側)に離れるに従ってy方向における幅が狭くなる第6及び第8の収束領域S6,S8を含む。第2の主領域M2は、センサ基板20のx方向マイナス側における端部近傍に位置し、これにより、第2の外部磁性体32と近接する。一方、第3の主領域M3は、センサ基板20のx方向プラス側における端部近傍に位置し、これにより、第3の外部磁性体33と近接する。 On the other hand, in the second magnetic region 42, the fifth main region M2 and the fifth and seventh convergence regions where the width in the y direction becomes narrower as the second main region M2 separates from the second main region M2 in the x direction (plus side) S5 and S7 are included. Similarly, the third magnetic layer 43 has sixth and eighth convergences in which the width in the y direction becomes narrower as the third main region M3 and the third main region M3 move away from the third main region M3 in the x direction (minus side) Regions S6 and S8 are included. The second main region M2 is located near the end of the sensor substrate 20 on the minus side in the x direction, and thereby approaches the second external magnetic body 32. On the other hand, the third main region M3 is located in the vicinity of the end of the sensor substrate 20 on the plus side in the x direction, and thereby approaches the third external magnetic body 33.
 第5の収束領域S5の先端部は、z方向に延在する第1のギャップG1を介して第1の収束領域S1の先端部と対向している。また、第7の収束領域S7の先端部は、z方向に延在する第3のギャップG3を介して第3の収束領域S3の先端部と対向している。ここで、第5の収束領域S5と第7の収束領域S7は、x方向に延在する仮想的な直線L2を対称軸として線対称である。このような対称形状のため、第2の外部磁性体32を介して取り込まれた磁束が第2の主領域M2に入射されると、この磁束が第5及び第7の収束領域S5,S7に対してほぼ均等に分配される。 The tip of the fifth convergence region S5 faces the tip of the first convergence region S1 via the first gap G1 extending in the z direction. Further, the tip of the seventh convergence area S7 faces the tip of the third convergence area S3 via the third gap G3 extending in the z direction. Here, the fifth convergence region S5 and the seventh convergence region S7 are line symmetric with the virtual straight line L2 extending in the x direction as an axis of symmetry. Because of such a symmetrical shape, when the magnetic flux taken in via the second external magnetic body 32 is incident on the second main area M2, this magnetic flux is transmitted to the fifth and seventh convergence areas S5 and S7. It is distributed almost equally to the people.
 第6の収束領域S6の先端部は、z方向に延在する第2のギャップG2を介して第2の収束領域S2の先端部と対向している。また、第8の収束領域S8の先端部は、z方向に延在する第4のギャップG4を介して第4の収束領域S4の先端部と対向している。ここで、第6の収束領域S6と第8の収束領域S8は、x方向に延在する仮想的な直線L2を対称軸として線対称である。このような対称形状のため、第3の外部磁性体33を介して取り込まれた磁束が第3の主領域M3に入射されると、この磁束が第6及び第8の収束領域S6,S8に対してほぼ均等に分配される。 The tip of the sixth convergence region S6 faces the tip of the second convergence region S2 via the second gap G2 extending in the z direction. Further, the tip end of the eighth convergence area S8 faces the tip end of the fourth convergence area S4 via the fourth gap G4 extending in the z direction. Here, the sixth convergence region S6 and the eighth convergence region S8 are line symmetric with the virtual straight line L2 extending in the x direction as an axis of symmetry. Because of such a symmetrical shape, when the magnetic flux taken in via the third external magnetic body 33 is incident on the third main area M3, this magnetic flux is transmitted to the sixth and eighth convergence areas S6 and S8. It is distributed almost equally to the people.
 このように、第7の変形例においては、ギャップG1~G4を構成する8つの収束領域S1~S8は、いずれも対応する感磁素子R1~R4に向かって幅が狭くなるテーパー形状を有していることから、感磁素子R1~R4に与えられる磁束の密度が高められる。さらに、第1の磁性体層41に含まれる第1の主領域M1は、4つの収束領域S1~S4の全ての根元部分に接続される広い面積を有していることから、第1の外部磁性体31を介した磁束φの集磁効果が高く、これにより高い検出精度を得ることも可能となる。 As described above, in the seventh modification, the eight convergent regions S1 to S8 forming the gaps G1 to G4 each have a tapered shape in which the width becomes narrower toward the corresponding magnetosensitive elements R1 to R4. Thus, the density of the magnetic flux applied to the magnetosensitive elements R1 to R4 can be increased. Furthermore, since the first main region M1 included in the first magnetic layer 41 has a wide area connected to all root portions of the four convergence regions S1 to S4, the first outer region The magnetic flux collection effect of the magnetic flux φ through the magnetic body 31 is high, which also makes it possible to obtain high detection accuracy.
 図29は、第8の変形例による磁気センサ108の構成を説明するための略斜視図である。図29に示す例では、xy平面を有する回路基板10の表面にセンサ基板20が横倒しで搭載されている。つまり、センサ基板20の素子形成面21がxz面を構成しており、第1の外部磁性体31がy方向に延在している。このような構成によれば、回路基板10に開口部11を設ける必要がなくなるとともに、回路基板10の主面と平行な方向の磁束を選択的に検出することが可能となる。また、第1の外部磁性体31の高さ(y方向における長さ)を長くしても、第1の外部磁性体31の支持が不安定となることがない。 FIG. 29 is a schematic perspective view for illustrating the configuration of the magnetic sensor 108 according to the eighth modification. In the example shown in FIG. 29, the sensor substrate 20 is mounted sideways on the surface of the circuit substrate 10 having the xy plane. That is, the element forming surface 21 of the sensor substrate 20 constitutes the xz plane, and the first external magnetic body 31 extends in the y direction. According to such a configuration, it is not necessary to provide the opening 11 in the circuit board 10, and it is possible to selectively detect the magnetic flux in the direction parallel to the main surface of the circuit board 10. In addition, even if the height (the length in the y direction) of the first external magnetic body 31 is increased, the support of the first external magnetic body 31 does not become unstable.
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. It is needless to say that they are included in the scope.
1  磁気センサ
2~4,8,9  磁性体層
5,6,15,16  絶縁層
10  回路基板
11  開口部
20  センサ基板
21  素子形成面
22~26  絶縁層
31~34  外部磁性体
35  磁性ブロック
36  凹部
40~47  磁性体層(領域)
51~54,61~64  ボンディングパッド
100~108  磁気センサ
BW  ボンディングワイヤ
G,G1~G4  ギャップ
M1~M3  主領域
R,R1~R4,R11,R12,R21,R22,R31,R32,R41,R42  感磁素子
S1~S8  収束領域
Z1  第1の層
Z2  第2の層
Z3  第3の層
DESCRIPTION OF SYMBOLS 1 magnetic sensor 2-4, 8, 9 magnetic material layer 5, 6, 15, 16 insulating layer 10 circuit board 11 opening 20 sensor substrate 21 element forming surface 22 to 26 insulating layer 31 to 34 external magnetic material 35 magnetic block 36 Recesses 40 to 47 Magnetic layer (area)
51 to 54, 61 to 64 Bonding pad 100 to 108 Magnetic sensor BW Bonding wire G, G1 to G4 Gap M1 to M3 Main area R, R1 to R4, R11, R12, R21, R22, R31, R32, R41, R42 Magnetic elements S1 to S8 Convergent region Z1 First layer Z2 Second layer Z3 Third layer

Claims (10)

  1.  第1の層に形成された第1の磁性体層と、
     前記第1の層とは異なる第2の層に形成された第2の磁性体層と、
     前記第1の層と前記第2の層の間に位置する第3の層に形成された感磁素子と、を備え、
     前記感磁素子は、平面視で、前記第1及び第2の磁性体層と重なる位置に配置されることを特徴とする磁気センサ。
    A first magnetic layer formed in the first layer;
    A second magnetic layer formed on a second layer different from the first layer;
    A magnetosensitive element formed in a third layer located between the first layer and the second layer;
    The magnetic sensor according to claim 1, wherein the magnetic sensing element is disposed at a position overlapping the first and second magnetic layers in plan view.
  2.  前記第1の磁性体層と前記第2の磁性体層は、平面視で重なりを有しており、
     前記感磁素子は、平面視で、前記第1及び第2の磁性体層の両方と重なる部分を有していることを特徴とする請求項1に記載の磁気センサ。
    The first magnetic layer and the second magnetic layer overlap in a plan view,
    The magnetic sensor according to claim 1, wherein the magnetic sensing element has a portion overlapping with both of the first and second magnetic layers in a plan view.
  3.  前記感磁素子は、平面視で、全体が前記第1及び第2の磁性体層の両方と重なることを特徴とする請求項2に記載の磁気センサ。 The magnetic sensor according to claim 2, wherein the magnetosensitive element entirely overlaps with both of the first and second magnetic layers in plan view.
  4.  前記第1の磁性体層と前記第2の磁性体層は、平面視で前記感磁素子と重なることなく互いに重なるオーバーハング部分を有しており、
     前記オーバーハング部分の幅は、前記感磁素子の幅よりも狭いことを特徴とする請求項1乃至3のいずれか一項に記載の磁気センサ。
    The first magnetic layer and the second magnetic layer have overhang portions overlapping each other without overlapping with the magnetic sensing element in plan view,
    The magnetic sensor according to any one of claims 1 to 3, wherein a width of the overhang portion is narrower than a width of the magnetosensitive element.
  5.  第1の層に形成された第1の磁性体層と、
     前記第1の層とは異なる第2の層に形成された第2の磁性体層と、
     前記第1の層と前記第2の層の間に位置する第3の層に形成された感磁素子と、を備え、
     前記第1の磁性体層と前記第2の磁性体層は、平面視で互いに重なることなく平面方向にギャップを形成しており、
     前記感磁素子は、幅が前記ギャップ以上であり、且つ、平面視で前記ギャップと重なる位置に配置されることを特徴とする磁気センサ。
    A first magnetic layer formed in the first layer;
    A second magnetic layer formed on a second layer different from the first layer;
    A magnetosensitive element formed in a third layer located between the first layer and the second layer;
    The first magnetic layer and the second magnetic layer form a gap in the planar direction without overlapping each other in plan view,
    The magnetic sensor according to claim 1, wherein the magnetic sensing element has a width equal to or larger than the gap, and is disposed at a position overlapping the gap in a plan view.
  6.  前記感磁素子の幅に対する前記ギャップの幅の比が0倍超、0.9倍以下であることを特徴とする請求項5に記載の磁気センサ。 The magnetic sensor according to claim 5, wherein the ratio of the width of the gap to the width of the magnetic sensing element is more than 0 times and not more than 0.9 times.
  7.  前記第1の磁性体層を覆う外部磁性体をさらに備えることを特徴とする請求項1乃至6のいずれか一項に記載の磁気センサ。 The magnetic sensor according to any one of claims 1 to 6, further comprising an external magnetic body covering the first magnetic body layer.
  8.  前記第1の磁性体層は、第1及び第2の領域に分離されており、
     前記感磁素子は、直列接続された第1及び第2の感磁素子を含み、
     前記第2の磁性体層は、平面視で、前記第1の磁性体層の前記第1及び第2の領域間に配置され、
     前記第1の感磁素子は、前記第1の磁性体層の前記第1の領域と前記第2の磁性体層の間に位置するギャップによって形成される磁路上に配置され、
     前記第2の感磁素子は、前記第1の磁性体層の前記第2の領域と前記第2の磁性体層の間に位置するギャップによって形成される磁路上に配置されることを特徴とする請求項1乃至7のいずれか一項に記載の磁気センサ。
    The first magnetic layer is separated into first and second regions,
    The magnetosensitive device includes first and second magnetosensitive devices connected in series,
    The second magnetic layer is disposed between the first and second regions of the first magnetic layer in plan view.
    The first magnetic sensing element is disposed on a magnetic path formed by a gap located between the first region of the first magnetic layer and the second magnetic layer.
    The second magnetic sensing element is disposed on a magnetic path formed by a gap located between the second region of the first magnetic layer and the second magnetic layer. The magnetic sensor according to any one of claims 1 to 7.
  9.  前記感磁素子が磁気抵抗素子であることを特徴とする請求項1乃至8のいずれか一項に記載の磁気センサ。 The magnetic sensor according to any one of claims 1 to 8, wherein the magnetosensitive element is a magnetoresistive element.
  10.  前記感磁素子は、前記第1乃至第3の層の積層方向に感度を有していることを特徴とする請求項1乃至9のいずれか一項に記載の磁気センサ。 The magnetic sensor according to any one of claims 1 to 9, wherein the magnetic sensing element has sensitivity in the stacking direction of the first to third layers.
PCT/JP2019/000639 2018-01-11 2019-01-11 Magnetic sensor WO2019139110A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019564752A JPWO2019139110A1 (en) 2018-01-11 2019-01-11 Magnetic sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018002500 2018-01-11
JP2018-002500 2018-01-11

Publications (1)

Publication Number Publication Date
WO2019139110A1 true WO2019139110A1 (en) 2019-07-18

Family

ID=67219671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000639 WO2019139110A1 (en) 2018-01-11 2019-01-11 Magnetic sensor

Country Status (2)

Country Link
JP (1) JPWO2019139110A1 (en)
WO (1) WO2019139110A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710974A (en) * 2019-10-24 2021-04-27 Tdk株式会社 Magnetic sensor
WO2022190853A1 (en) * 2021-03-11 2022-09-15 Tdk株式会社 Magnetic sensor
EP4084102A4 (en) * 2019-12-25 2024-01-24 Tdk Corp Magnetic sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064357A2 (en) * 2003-12-23 2005-07-14 Koninklijke Philips Electronics N.V. Flux guides for magnetic field sensors and memories
WO2011089978A1 (en) * 2010-01-20 2011-07-28 アルプス電気株式会社 Magnetic sensor
WO2012096132A1 (en) * 2011-01-13 2012-07-19 アルプス電気株式会社 Magnetic sensor
WO2015170509A1 (en) * 2014-05-09 2015-11-12 愛知製鋼株式会社 Magnetic detection device and method for producing same
US20160306015A1 (en) * 2015-04-17 2016-10-20 Apple Inc. Yoke Configuration to Reduce High Offset in X-, Y-, and Z-Magnetic Sensors
WO2017204151A1 (en) * 2016-05-24 2017-11-30 Tdk株式会社 Magnetic sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4323220B2 (en) * 2003-05-28 2009-09-02 財団法人電気磁気材料研究所 Thin film magnetic sensor and manufacturing method thereof
JP6972900B2 (en) * 2017-10-19 2021-11-24 Tdk株式会社 Magnetic sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064357A2 (en) * 2003-12-23 2005-07-14 Koninklijke Philips Electronics N.V. Flux guides for magnetic field sensors and memories
WO2011089978A1 (en) * 2010-01-20 2011-07-28 アルプス電気株式会社 Magnetic sensor
WO2012096132A1 (en) * 2011-01-13 2012-07-19 アルプス電気株式会社 Magnetic sensor
WO2015170509A1 (en) * 2014-05-09 2015-11-12 愛知製鋼株式会社 Magnetic detection device and method for producing same
US20160306015A1 (en) * 2015-04-17 2016-10-20 Apple Inc. Yoke Configuration to Reduce High Offset in X-, Y-, and Z-Magnetic Sensors
WO2017204151A1 (en) * 2016-05-24 2017-11-30 Tdk株式会社 Magnetic sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710974A (en) * 2019-10-24 2021-04-27 Tdk株式会社 Magnetic sensor
JP2021067568A (en) * 2019-10-24 2021-04-30 Tdk株式会社 Magnetic sensor
JP7006670B2 (en) 2019-10-24 2022-01-24 Tdk株式会社 Magnetic sensor
US11408950B2 (en) 2019-10-24 2022-08-09 Tdk Corporation Magnetic sensor
US11762044B2 (en) 2019-10-24 2023-09-19 Tdk Corporation Magnetic sensor
US20230384401A1 (en) * 2019-10-24 2023-11-30 Tdk Corporation Magnetic sensor
CN112710974B (en) * 2019-10-24 2024-03-08 Tdk株式会社 Magnetic sensor
EP4084102A4 (en) * 2019-12-25 2024-01-24 Tdk Corp Magnetic sensor
WO2022190853A1 (en) * 2021-03-11 2022-09-15 Tdk株式会社 Magnetic sensor

Also Published As

Publication number Publication date
JPWO2019139110A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP7014159B2 (en) Magnetic sensor
CN110709720B (en) Magnetic sensor
WO2019139110A1 (en) Magnetic sensor
JP7069960B2 (en) Magnetic sensor
JP2018004618A (en) Magnetic sensor
WO2019239933A1 (en) Magnetic sensor
JP2011047929A (en) Magnetic sensor
WO2016047782A1 (en) Magnetic sensor
WO2019167598A1 (en) Magnetic sensor
JP6972900B2 (en) Magnetic sensor
JP6267613B2 (en) Magnetic sensor and current sensor including the magnetic sensor
US8395383B2 (en) Current sensor including magnetic detecting element
JP6185298B2 (en) Magnetic sensor
JP6981299B2 (en) Magnetic sensor
JP2019158508A (en) Magnetic sensor
JP7119351B2 (en) magnetic sensor
JP7070020B2 (en) Magnetic circuit forming member and magnetic sensor using this
JP7172178B2 (en) magnetic sensor
KR20230089608A (en) 3-axis magnetoresistance sensor
JP2022143682A (en) magnetic sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19738160

Country of ref document: EP

Kind code of ref document: A1