WO2019138805A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2019138805A1
WO2019138805A1 PCT/JP2018/046617 JP2018046617W WO2019138805A1 WO 2019138805 A1 WO2019138805 A1 WO 2019138805A1 JP 2018046617 W JP2018046617 W JP 2018046617W WO 2019138805 A1 WO2019138805 A1 WO 2019138805A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
charge
vehicle
secondary battery
state
Prior art date
Application number
PCT/JP2018/046617
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 平光
佳紀 水下
力 竹井
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Publication of WO2019138805A1 publication Critical patent/WO2019138805A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a control device of a vehicle provided with a chargeable / dischargeable secondary battery.
  • a secondary battery that supplies electric power to a motor to generate a driving force is mounted.
  • the secondary battery is configured to be capable of charging generated power by a power generation device (generator operated by an engine, a fuel cell, etc.) mounted on a vehicle and externally charging.
  • a power generation device generator operated by an engine, a fuel cell, etc.
  • the motor is brought to rotate, and it is possible to charge electric power regenerated and generated.
  • the control device for a vehicle according to the present invention has been devised in view of such findings, and has an object to suppress deterioration of a chargeable / dischargeable secondary battery.
  • the present invention is not limited to this object, and it is an operation and effect derived from each configuration shown in the “embodiments to be described later”, and it is also possible to exert an operation and effect that can not be obtained by the prior art. It can be positioned as a goal.
  • the control device for a vehicle disclosed herein comprises: a chargeable / dischargeable secondary battery; and a power transfer device capable of at least one of power supply to the secondary battery and power reception from the secondary battery.
  • the estimation unit that estimates the charging rate of the secondary battery
  • the parking determination unit that determines whether the vehicle is in the parking state, and a predetermined charge and discharge condition are satisfied.
  • a controller configured to operate the power transfer device to additionally charge or discharge the secondary battery. For the charge / discharge condition, it is determined that the vehicle is in the parked state by the parking determination unit, and the charge rate estimated by the estimation unit is a predetermined value excluding the full charge range and the idle charge range It is included in the control range corresponding to the degradation progress range of
  • the control unit performs the additional discharge when the charge rate is less than a predetermined charge / discharge determination threshold within the deterioration progress range when the charge / discharge condition is satisfied, and the charge rate is charged Preferably, the additional charging is performed when the discharge determination threshold value or more.
  • the power exchange device preferably includes a chargeable / dischargeable auxiliary battery mounted on the vehicle.
  • the control unit preferably operates the auxiliary battery to perform the additional discharge while charging the auxiliary battery with the power of the secondary battery when the additional discharge is performed.
  • the power transfer device preferably includes a power generation device capable of charging the secondary battery.
  • the control unit determines whether the additional charging by the auxiliary battery is possible when the additional charging is performed, and the auxiliary battery when the additional charging by the auxiliary battery is possible. Is preferably operated to perform the additional charging, and when the additional charging by the auxiliary battery can not be performed, the power generation device is operated to perform the additional charging.
  • the power generation device is preferably a fuel cell.
  • the power transfer device includes a fuel cell mounted on the vehicle.
  • the control unit preferably operates the fuel cell when the additional charge is performed.
  • the control device preferably includes a state determination unit that determines the deterioration state of the fuel cell.
  • the control unit operates the fuel cell to perform the additional charge, and when the state determination unit determines that the fuel cell is in the deteriorated state, the performance of the fuel cell
  • the fuel cell is operated to perform the additional charge in a recovery operation mode for recovering the
  • the control unit operates the fuel cell to perform the additional charge, and the state determination unit determines that the fuel cell is not in the deteriorated state, the fuel cell has the highest efficiency. It is preferable to operate in the operation mode to carry out the additional charge.
  • the state determination unit operates the fuel cell based on an actual voltage value when the fuel cell is operated to a desired voltage. It is preferable to determine whether or not the vehicle is in a deteriorated state.
  • the control unit controls the operating state of the fuel cell such that the voltage of the fuel cell repeatedly rises and falls.
  • the control unit may lower the voltage of the fuel cell to a predetermined lower limit and lower the lower limit as the number of repetitions of increase and decrease of the voltage increases. preferable.
  • the determination that the parking determination unit determines that the vehicle is in the parked state includes that the main power supply of the vehicle is in the off state.
  • the determination condition that the parking determination unit determines that the vehicle is in the parked state includes that an occupant does not board the vehicle.
  • the parking determination unit determines that the vehicle is in the parking state when the determination condition is satisfied continuously for a predetermined time or more.
  • the control device preferably includes time setting means for setting the predetermined time.
  • the power transfer device when the vehicle is in the parked state and the charging rate of the secondary battery is within the predetermined control range corresponding to the predetermined deterioration progress range, the power transfer device is By activating the secondary battery for additional charge or additional discharge, it is possible to suppress the deterioration of the secondary battery and, consequently, to prevent the reduction of the cruising distance.
  • FIG. 1 is a schematic view of a vehicle to which a control device according to a first embodiment is applied. It is a flowchart for demonstrating an example of the charging / discharging control implemented by the control apparatus of FIG. It is the schematic of the vehicle by which the control apparatus which concerns on 2nd Embodiment was applied.
  • FIG. 4 is a schematic view of a fuel cell mounted on the vehicle of FIG. 3;
  • FIG. 6 is a chart illustrating a change in voltage value of the fuel cell when the fuel cell is activated and additional charging is performed while the vehicle in FIG. 3 is stopped, and a change in the charging rate of the secondary cell accordingly.
  • FIG. 2 is a subflowchart of FIG. 2 for demonstrating an example of the charging / discharging control implemented by the control apparatus of FIG.
  • a vehicle 1 to which the control device 2 of the present embodiment is applied is shown in FIG.
  • the vehicle 1 is a hybrid vehicle (car) equipped with a motor 4 and an engine 8 as drive sources, and a secondary battery 3 as a traveling battery for supplying electric power to the motor 4. Further, the vehicle 1 mounts a generator 5 operated by the power of the engine 8 as a power generation device.
  • the motor 4 and the generator 5 are a motor generator (motor generator) which has a function as an electric motor and a function as a generator.
  • An inverter 6 (INV) is interposed on an electric circuit connecting each of the motor 4 and the generator 5 to the secondary battery 3.
  • the inverter 6 is a power converter that converts DC power and AC power.
  • the secondary battery 3 is a chargeable / dischargeable power storage device, and is, for example, a lithium ion secondary battery, a lithium ion polymer secondary battery, or the like.
  • the secondary battery 3 is configured to be chargeable by the power supplied from the power transfer device mounted on the vehicle 1 and configured to be dischargeable by supplying power to the power transfer device. Further, the secondary battery 3 is configured to be chargeable by the power supplied from the external power supply.
  • the above-described power transfer device is a device capable of at least one of power supply to the secondary battery 3 and power reception from the secondary battery 3.
  • the vehicle 1 of the present embodiment is provided with the above-described generator 5 and a chargeable / dischargeable auxiliary battery 9 as a power transfer device.
  • the auxiliary battery 9 is a storage device capable of supplying power to the secondary battery 3 and receiving power from the secondary battery 3, and is, for example, a lithium ion secondary battery, a lithium ion polymer secondary battery, or the like.
  • a changeover switch 9s for switching the connection / disconnection state of this circuit is interposed.
  • the changeover switch 9s When the changeover switch 9s is in the closed state (connected state), power can be exchanged between the auxiliary battery 9 and the secondary battery 3.
  • the changeover switch 9 s switches the connection state and the interruption state of the auxiliary battery 9 and the secondary battery 3 according to the connection signal or the interruption signal from the control device 2.
  • the vehicle 1 is provided with sensors 11 to 14 for detecting or setting the state of the vehicle 1.
  • the vehicle speed sensor 11 detects the vehicle speed V of the vehicle 1, and the shift position sensor 13 detects a shift position.
  • the ignition switch 12 sets the on / off state of the main power supply (ignition key) of the vehicle 1.
  • the load sensor 14 is a strain gauge or the like attached to a seat (not shown) provided in the vehicle 1 and detects the state of load on the seat.
  • the vehicle 1 is provided with a control device 2 (Electronic Control Unit, ECU) that performs integrated control of various devices mounted on the vehicle 1, and information detected by the sensors 11 to 14 is transmitted to the control device 2 .
  • ECU Electronic Control Unit
  • the vehicle 1 of the present embodiment is provided with a time setting unit 10 that allows the user to arbitrarily set a predetermined time described later.
  • the time setting unit 10 is, for example, a touch panel of a navigation system, and is a device to which information is input by a manual operation by a user.
  • the time setting means 10 is one of the elements of the control device 2, and the predetermined time set by the time setting means 10 is transmitted to a parking judgment unit 2B described later.
  • the control device 2 performs charge / discharge control that operates the power transfer device to additionally charge or additionally discharge the secondary battery 3 when a predetermined charge / discharge condition is satisfied while the vehicle 1 is stopped. . Whether or not the vehicle 1 is stopped is determined based on whether or not the vehicle speed V detected by the vehicle speed sensor 11 is zero.
  • Condition 3 is a condition provided in view of the fact that if external charging is in progress, even if condition 1 is satisfied when condition 2 is satisfied, then condition 1 should not be satisfied eventually.
  • the charging gun is inserted into the charging port, communication is started between the vehicle 1 and the external charging device, so the condition 3 is determined based on this information.
  • the charge / discharge control of the present embodiment is performed when the secondary battery 3 is not externally charged even after a while after the vehicle 1 has stopped and the deterioration of the secondary battery 3 is likely to progress. Be done. Note that it is sufficient that at least both of the condition 1 and the condition 2 are included in the implementation condition of the charge and discharge control, the condition 3 may be omitted.
  • the “deterioration progress range” of condition 1 means the range of the charging rate in which the above-mentioned specific degradation progresses.
  • the deterioration progress range is a charging rate range when the secondary battery 3 is almost fully charged (hereinafter referred to as “full charging range”) and a charging rate range when the secondary battery 3 is almost empty ( Hereinafter, it exists in the range of the charge rate except the "empty charge range.”
  • the deterioration progress range is determined by the material of the secondary battery 3. In addition to the material of the secondary battery 3, the range of progress of deterioration also changes depending on, for example, the environmental conditions (temperature, humidity, etc.) in which the secondary battery 3 is stored. For this reason, the deterioration progress range is not limited to a fixed value, and may be a variable value that changes according to the environmental conditions in which the secondary battery 3 is stored.
  • control range of condition 1 means the range of the charging rate including the deterioration progress range.
  • control range is a range of the charging rate wider than the degradation progress range, and the lower limit value thereof is set to a value lower than the lower limit value of the degradation progress range, and the upper limit value thereof is the degradation progress range It is set to a value larger than the upper limit value of.
  • the state in which the occupant is absent continues for a certain time or more. That is, even after stopping the vehicle 1, for example, the temporary stopping state where the stopping time is short, such as when waiting for a signal, waiting for crossing or getting on or off a passenger or loading / unloading luggage into the vehicle 1, is parked.
  • the temporary stopping state where the stopping time is short such as when waiting for a signal, waiting for crossing or getting on or off a passenger or loading / unloading luggage into the vehicle 1, is parked.
  • the "predetermined time" of the condition 8 is set to a time longer than the necessary time assumed when waiting for a signal, waiting for crossing or crossing, getting on or off passengers or loading / unloading of luggage into / from the vehicle after stopping the vehicle 1. .
  • the predetermined time is set to be longer than the time required for the external charge of the secondary battery 3 to start after the occupant of the vehicle 1 gets off.
  • the predetermined time may be a fixed value, or may be a variable that can be arbitrarily set by the user.
  • the predetermined time is set by the time setting unit 10 as a variable value which can be arbitrarily set by the user.
  • control unit 2 is provided with an estimation unit 2A, a parking determination unit 2B, and a control unit 2D as elements for performing the above-described charge and discharge control.
  • Each of these elements may be realized by an electronic circuit (hardware), may be programmed as software, or some of these functions may be provided as hardware and the other as software. It may be one.
  • the control device 2 is provided with a timer for measuring an elapsed time from the time when all the above conditions 4 to 7 are satisfied.
  • the estimation unit 2A estimates the charging rate SOC of the secondary battery 3.
  • the charging rate SOC is calculated (estimated) based on, for example, a measured value or an estimated value of the open circuit voltage of the secondary battery 3.
  • the ratio of the remaining power to the maximum charge capacity of the secondary battery 3 is expressed as a percentage, which is estimated as the charging rate SOC.
  • the charging rate SOC estimated here is transmitted to the control unit 2D.
  • the parking determination unit 2B determines whether the vehicle 1 is in a parked state.
  • the parking determination unit 2B acquires the information from each of the sensors 11 to 14 and the information set by the time setting unit 10, and determines whether or not the parking condition is satisfied based on the acquired information. Thus, it is determined whether the vehicle 1 is in a parked state.
  • parking determination unit 2B determines whether vehicle speed V is 0 or not based on vehicle speed V detected by vehicle speed sensor 11 (condition 4), and turns on / off the main power source set by ignition switch 12 Based on the state, it is determined whether or not IG-OFF (condition 5).
  • the parking determination unit 2B determines whether the shift position is P based on the shift position detected by the shift position sensor 13 (condition 6), and the presence or absence of a load on the seat detected by the load sensor 14 It is determined whether the passenger is on the vehicle 1 based on (Condition 7). In the present embodiment, when the vehicle 1 is at a stop, that is, when the vehicle speed V is 0, it is determined whether the charge / discharge condition is satisfied, so the condition 4 always holds.
  • the parking judgment unit 2B starts measurement by the timer when all of the conditions 4 to 7 are satisfied.
  • the parking determination unit 2B determines whether the condition 8 is met based on whether the timer count value is equal to or more than the predetermined time set by the time setting unit 10.
  • the timer resets the value when at least one of the conditions 4 to 7 is not satisfied.
  • the parking determination unit 2B determines that the vehicle 1 is in the parking state when all of the conditions 4 to 8 are satisfied.
  • the parking judgment unit 2B determines that the condition 8 is satisfied. In other words, it can be determined that the vehicle 1 is in the parked state.
  • the parking judgment unit 2B judges that the vehicle 1 is not in the parking state when at least one of the conditions 4 to 8 is not satisfied.
  • the control unit 2D operates the power transfer device to additionally charge or discharge the secondary battery 3 when the charge / discharge conditions are satisfied while the vehicle 1 is stopped. That is, when the vehicle 1 stops, the control unit 2D determines the success or failure of the charge / discharge condition, and carries out charge / discharge control according to the determination result.
  • Control unit 2D determines the above condition 1 using the charging rate SOC estimated by estimation unit 2A. Further, the above-mentioned condition 2 is determined using the determination result acquired from the parking determination unit 2B, and the above-mentioned condition 3 is determined based on the communication information with the external charging device.
  • control unit 2D determines that the above-mentioned charge / discharge condition is satisfied. On the other hand, when at least one of the conditions 1 to 3 described above is not satisfied, the power transfer device is stopped and the charge and discharge control is ended.
  • control unit 2D of the present embodiment selects whether to perform additional charging or additional discharging based on the charging rate SOC of the secondary battery 3 estimated by the estimating unit 2A. Specifically, when charge ratio SOC estimated by estimation unit 2A is less than predetermined charge / discharge determination threshold SOCth (SOC ⁇ SOCth), control unit 2D selects to perform additional discharge, and estimation unit 2A When the charging rate SOC estimated in the above is greater than or equal to a predetermined charge / discharge determination threshold SOCth (SOCthSOCth), the additional charge is selected.
  • SOCthSOCth predetermined charge / discharge determination threshold SOCth
  • the charge / discharge determination threshold SOCth is a predetermined value within the above-described deterioration progress range.
  • the control unit 2D selects the additional charge or the additional discharge based on the charge ratio SOC of the secondary battery 3 and the charge / discharge determination threshold SOCth to achieve efficient charge / discharge control.
  • the charge / discharge determination threshold SOCth is set to the median value of the deterioration progress range, but the charge / discharge determination threshold SOCth is not limited to this value.
  • the charge / discharge determination threshold SOCth may be set to a value lower than the median value of the deterioration progress range.
  • the charge / discharge determination threshold SOCth may be set to a value higher than the central value of the deterioration progress range.
  • the control unit 2D operates the auxiliary battery 9 to perform the additional discharge while charging the auxiliary battery 9 with the power of the secondary battery 3 when performing the additional discharge. More specifically, when performing additional discharge, the control unit 2D controls the changeover switch 9s to be in the connection state, electrically connects the auxiliary battery 9 and the secondary battery 3, and performs secondary operation. The power stored in the battery 3 is transmitted to the auxiliary battery 9 to perform additional discharge.
  • control part 2D judges whether additional charge by auxiliary battery 9 is possible, when performing additional charge, and when additional charge by auxiliary battery is possible, operates auxiliary battery 9 The additional charge is performed, and when the additional charge by the auxiliary battery 9 can not be performed, the generator 5 which is a power generation device is operated to perform the additional charge.
  • the determination as to whether or not additional charging by the auxiliary battery 9 is possible includes calculating the amount of electric power (charging amount) stored in the auxiliary battery 9 and the amount of electric power required until charge / discharge control is completed (necessary charge The amount is calculated, and the determination is made by comparing the charge amount with the required charge amount.
  • the charge amount of the auxiliary battery 9 is calculated based on, for example, a measured value or an estimated value of the open circuit voltage of the auxiliary battery 9.
  • the required charge amount is calculated from the difference between the state of charge SOC of the secondary battery 3 and the upper limit value of the control range.
  • the control unit 2D determines that the additional charge by the auxiliary battery 9 is possible, operates the auxiliary battery 9 and additionally charges the secondary battery 3 Do. That is, the switch 9 s is controlled to be in the connection state, the auxiliary battery 9 and the secondary battery 3 are electrically connected, and the secondary battery 3 is charged by the power stored in the auxiliary battery 9.
  • the control unit 2D determines that the additional charging by the auxiliary battery 9 can not be performed and operates the generator 5 to additionally charge the secondary battery 3 . More specifically, the control unit 2D operates the generator 5 by driving the engine 8, and charges the secondary battery 3 with the regenerative power of the generator 5.
  • FIG. 2 is an example of a flowchart for explaining the contents of the above-described charge and discharge control.
  • This flowchart is started in the control device 2 when the vehicle 1 is stopped and the external charging is not performed and the conditions 4 to 7 of the above-mentioned parking conditions are satisfied, and the flowchart is started while the vehicle 1 is stopped. It is implemented in a predetermined operation cycle.
  • the flowchart ends at that time. That is, charge and discharge control is completed.
  • step S1 it is determined whether the predetermined time has elapsed. If the predetermined time has not elapsed, the flow is returned. In step S1, if the predetermined time has elapsed, the process proceeds to step S2, and the charging rate SOC of the secondary battery 3 is acquired. In step S3, it is determined whether the acquired charging rate SOC is within the control range. If it is determined that the state of charge SOC of the secondary battery 3 is within the control range, the process proceeds to step S4. On the other hand, when it is determined in step S3 that the state of charge SOC of the secondary battery 3 is not within the control range, it is not necessary to carry out additional charging or discharging, so this flow is returned.
  • step S4 it is determined whether the charging rate SOC of the secondary battery 3 is equal to or higher than the charge / discharge determination threshold SOCth.
  • step S4 when the charging rate SOC of the secondary battery 3 is equal to or higher than the charge / discharge determination threshold SOCth (SOC SOC SOCth), the process proceeds to step S5.
  • step S4 determines whether the charging rate SCO of the secondary battery 3 is less than the charge / discharge determination threshold SOCth in step S4 (SOC ⁇ SOCth).
  • step S12 the auxiliary battery 9 is operated, and the secondary battery 3 is The battery is additionally discharged, and in the subsequent step S13, the charging rate SOC of the secondary battery 3 is obtained.
  • step S14 it is determined whether the acquired charging rate SOC is within the control range. If it is determined in step S14 that the state of charge SOC of the secondary battery 3 is within the control range, the process returns to step S12, the operation of the auxiliary battery 9 is continued, and the secondary battery 3 is additionally discharged.
  • step S14 if it is determined in step S14 that the charging rate SOC of the secondary battery 3 is not within the control range, the secondary battery 3 is out of the charging rate range where deterioration is likely to progress, so the operation of the auxiliary battery 9 is stopped. , Return this flow.
  • step S5 it is determined whether additional charging can be performed by the auxiliary battery 9. Specifically, the charge amount of the auxiliary battery 9 and the required charge amount are calculated, and it is determined whether the charge amount of the auxiliary battery 9 is larger than the required charge amount, whereby the auxiliary battery 9 performs additional charge. It is determined whether or not it is possible.
  • step S5 additional charging can be performed by the auxiliary battery 9, that is, when the charging amount of the auxiliary battery 9 exceeds the necessary charging amount, the process proceeds to step S6, the auxiliary battery 9 is operated and the secondary battery 3 is additionally charged.
  • step S7 the charging rate SOC of the secondary battery 3 is obtained.
  • step S8 it is determined whether the acquired charging rate SOC is within the control range. If it is determined in step S8 that the state of charge SOC of the secondary battery 3 is within the control range, the process returns to step S6, the operation of the auxiliary battery 9 is continued, and the secondary battery 3 is additionally charged. When it is determined in step S8 that the state of charge SOC of the secondary battery 3 is not within the control range, this flow is returned.
  • step S5 the process proceeds to step S9 to operate the generator 5 and add the secondary battery 3
  • step S10 the charging rate SOC of the secondary battery 3
  • step S11 it is determined whether the acquired charging rate SOC is within the control range. If it is determined in step S11 that the state of charge SOC of the secondary battery 3 is within the control range, the process returns to step S9, the operation of the generator 5 is continued, and the secondary battery 3 is additionally charged. When it is determined in step S11 that the state of charge SOC of the secondary battery 3 is not within the control range, this flow is returned.
  • step S3 After the flow is returned, that is, after the charge / discharge control is performed and the charge ratio SOC of the secondary battery 3 is out of the control range, the charge ratio of the secondary battery 3 is again caused by the natural discharge of the secondary battery 3 If the SOC falls within the control range (step S3), additional discharge or additional charge is performed again.
  • control device 2 described above has one of the charge and discharge conditions that the state of charge SOC of the secondary battery 3 is within a control range wider than the degradation progress range. For this reason, the charging rate SOC of the secondary battery 3 after the end of charge / discharge control can be more reliably removed from the deterioration progress range. Furthermore, since the above-mentioned charge / discharge control can be performed even when the charging rate SOC of the secondary battery 3 is out of the deterioration progress range but is near the deterioration progress range, the secondary battery 3 can be more reliably Deterioration can be suppressed.
  • the control device 2 When the charge / discharge condition is satisfied, the control device 2 additionally discharges when the charge ratio SOC is less than the charge / discharge determination threshold SOCth, and when the charge ratio SOC is equal to or greater than the charge / discharge determination threshold SOCth Add to Thus, the charging rate SOC is less than the charging / discharging determination threshold SOCth, that is, additional charging is performed when the control range is relatively close to the lower limit value, and the charging rate SOC is higher than the charging / discharging determination threshold SOCth, ie By carrying out the additional charge when the upper limit value of the control range is relatively close, the charge / discharge control can be made more efficient.
  • the above-described vehicle 1 is provided with the auxiliary battery 9 as a power transfer device, and when the additional discharge is performed, the auxiliary battery 9 is operated to charge the auxiliary battery 9 with the power of the secondary battery 3 to add Discharge. Therefore, the secondary battery 3 can be additionally discharged without wasting the power stored in the secondary battery 3.
  • the vehicle 1 described above is provided with a power generation device (generator 5) capable of charging the secondary battery 3 as a power transfer device. Further, when the auxiliary battery 9 can not perform additional charging, the control device 2 operates the generator 5 to perform additional charging. Therefore, when additional charging can be performed by the auxiliary battery 9, additional charging can be performed without consuming the fuel (such as gasoline) stored in the vehicle 1, while when additional charging can not be performed by the auxiliary battery 9, By operating the generator 5 to perform additional charging, the charging rate SOC of the secondary battery 3 can be reliably made out of the control range.
  • a power generation device generator 5
  • the control device 2 operates the generator 5 to perform additional charging. Therefore, when additional charging can be performed by the auxiliary battery 9, additional charging can be performed without consuming the fuel (such as gasoline) stored in the vehicle 1, while when additional charging can not be performed by the auxiliary battery 9, By operating the generator 5 to perform additional charging, the charging rate SOC of the secondary battery 3 can be reliably made out of the control range.
  • the determination condition that the parking determination unit 2B described above determines that the vehicle 1 is in the parking state includes that the main power supply of the vehicle 1 is in the off state. For this reason, it is possible to make it easy to exclude from the parking state the temporary stop state having a short stop time as described above.
  • the determination condition that the parking determination unit 2B described above determines that the vehicle 1 is in the parked state includes that the passenger is not on the vehicle 1. For this reason, it is possible to more reliably exclude from the parking state the temporary stopping state where the stopping time is short as described above.
  • the parking determination unit 2B determines that the vehicle 1 is in the parking state when the condition (precondition) for determining the parking state is satisfied for a predetermined time or more. As described above, even if the precondition is satisfied, it is not determined that the vehicle is in the parking state until the predetermined time elapses, which makes it difficult for the charge and discharge control to be performed until the external charge is performed. That is, implementation of unnecessary charge / discharge control can be suppressed. As a result, the consumption of the power and fuel stored in the vehicle 1 can be suppressed.
  • the above-described control device 2 includes time setting means 10 for setting a predetermined time. Therefore, the user can set the timing at which the charge and discharge control is performed. For this reason, it can suppress that charge / discharge control is implemented contrary to a user's will, and it becomes possible to suppress the consumption of the electric power and fuel which were stored by the vehicle 1.
  • FIG. 10 for setting a predetermined time. Therefore, the user can set the timing at which the charge and discharge control is performed. For this reason, it can suppress that charge / discharge control is implemented contrary to a user's will, and it becomes possible to suppress the consumption of the electric power and fuel which were stored by the vehicle 1.
  • Second Embodiment A second embodiment of the present invention will be described with reference to FIGS. 3 to 6.
  • the present embodiment differs from the first embodiment in the power transfer device provided in the vehicle 1 '.
  • the addition of the state determination unit 2C to the control device 2 ' causes part of the functions of the control unit 2D' to be different.
  • the other components are the same as those of the first embodiment, and therefore, will be described with the same reference numerals as in the first embodiment.
  • FIG. 1 A vehicle 1 'to which the control device 2' of the present embodiment is applied is shown in FIG.
  • This vehicle 1 ' is a fuel cell vehicle mounted with a motor 4 as a drive source, a secondary battery 3 as a traveling battery for supplying electric power to the motor 4, and a fuel cell 5' as a power generation device.
  • the motor 4 is a motor generator (motor generator) which has a function as an electric motor and a function as a generator.
  • An inverter 6 (INV) is interposed on the electric circuit connecting the secondary battery 3 and the motor 4.
  • the vehicle 1 'of this embodiment is provided with the above-described fuel cell 5' and an auxiliary battery 9 as a power transfer device.
  • a changeover switch 9 s is interposed on an electric circuit connecting the auxiliary battery 9 and the secondary battery 3.
  • the auxiliary battery 9 and the changeover switch 9s are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the secondary battery 3 is a storage device which can be charged by the regenerative power generated by the vehicle 1 ', the external power supply, and the power supplied from the fuel cell 5', for example, a lithium ion secondary battery or a lithium ion polymer secondary battery is there.
  • a converter 7 DC-DC converter for voltage conversion is interposed on the electric circuit connecting the secondary battery 3 and the fuel cell 5 '.
  • the fuel cell 5 ' is a power generation apparatus for extracting electric power by utilizing an electrical reaction between hydrogen in the fuel and oxygen in the air, and is, for example, a polymer electrolyte fuel cell or a phosphoric acid fuel cell.
  • the electric power (electric power) generated by the fuel cell 5 ′ is mainly used to charge the secondary battery 3.
  • the electric power of the fuel cell 5 ′ is directly supplied to the motor 4.
  • the fuel cell 5 ' is described as being a polymer electrolyte fuel cell (PEFC).
  • the inverter 6 is a power converter that converts DC power and AC power.
  • the converter 7 boosts the DC power generated by the fuel cell 5 'and supplies it to the secondary battery 3 and the motor 4 side.
  • the vehicle 1 ' is provided with a vehicle speed sensor 11 for detecting a vehicle speed, and a control device 2' (Electronic Control Unit, ECU) for integrally controlling various devices mounted on the vehicle 1 '.
  • the information detected by the vehicle speed sensor 11 is transmitted to the control device 2 '.
  • the vehicle 1 ' is provided with sensors 12-14 for detecting the state of the vehicle 1'. Further, the vehicle 1 'is provided with time setting means 10 for setting a predetermined time which is a parameter necessary for determining the parking state.
  • the time setting means 10 is one of the elements of the control device 2 ', as in the first embodiment.
  • the sensors 12 to 14 and the time setting unit 10 are the same as in the first embodiment, and thus the description thereof is omitted.
  • FIG. 4 is a schematic view showing an example of a fuel cell 5 'mounted on the vehicle 1' of FIG.
  • the fuel cell 5 'of this embodiment includes a fuel cell stack 50 which is a power generation element, a hydrogen supply device 20 and an air supply device 30 for supplying a gas to the fuel cell stack 50, A cooling device 40 for cooling the fuel cell stack 50 is provided.
  • the electric power generated by the fuel cell 5 ′ (fuel cell stack 50) is supplied to the secondary battery 3 through the electric circuit and is also supplied to the motor 4 through the inverter 6.
  • the fuel cell stack 50 is formed by stacking a plurality of unit cells (all not shown) formed by sandwiching a membrane electrode assembly (Membrane Electrode Assembly, MEA) between conductive separators in the thickness direction. The cells are electrically connected in series.
  • the membrane electrode assembly is one in which an electrolyte membrane (solid polymer membrane) is sandwiched between an anode and a cathode containing a catalyst.
  • the separator is provided with an anode flow channel through which hydrogen gas as fuel flows, a cathode flow channel through which air (oxygen) flows, and a cooling flow channel (not shown) through which cooling water flows.
  • a flow passage 41 is connected to the cooling flow passage, and the cooling water supplied from the cooling device 40 circulates in the fuel cell stack 50.
  • the hydrogen supply device 20 is a device for supplying hydrogen gas to the fuel cell stack 50 through the hydrogen supply passage 21 connected to the anode flow passage of the fuel cell stack 50.
  • the hydrogen supply device 20 includes a pressure reducing valve, a hydrogen supply device, and the like, and also includes a hydrogen gas tank storing hydrogen gas therein.
  • a valve 23 for controlling the flow state of hydrogen gas is interposed on the hydrogen supply passage 21.
  • a hydrogen discharge path 22 through which the discharged hydrogen gas flows is connected to the downstream end of the anode flow path.
  • a valve 24 is interposed in the hydrogen discharge passage 22 and a recirculation passage 26 in which a pump 25 is interposed is connected. That is, the fuel cell 5 ′ of the present embodiment recovers and recycles the hydrogen flowing out of the fuel cell stack 50.
  • the air supply device 30 is a device for supplying air to the fuel cell stack 50 through the air supply passage 31 connected to the cathode flow channel of the fuel cell stack 50.
  • the air supply device 30 includes a compressor, an exhaust flow control valve, a humidifier, and the like, and supplies the air taken in by the compressor to the fuel cell stack 50.
  • the valve 33 which controls the circulation state of air is interposed.
  • an air discharge path 32 through which the discharged air flows is connected to the downstream end of the cathode flow path.
  • a valve 34 is interposed in the air discharge path 32.
  • the fuel cell stack 50 configured in this manner, hydrogen is supplied to the anode via the anode flow channel, and air (oxygen) is supplied to the cathode via the cathode flow channel, and is included in the anode and the cathode. Electricity is generated by the occurrence of an electrical reaction on the catalyst.
  • the operation states of the hydrogen supply device 20 and the air supply device 30, the open / close states of the valves 23, 24, 33, 34, and the operation state of the pump 25 are controlled by the control device 2 '.
  • the fuel cell 5 ′ is provided with a temperature sensor 15 for detecting the temperature of the fuel cell stack 50 and a voltage sensor 16 for detecting the voltage of each cell of the fuel cell stack 50 (hereinafter referred to as “cell voltage”). The information detected by each of the sensors 15, 16 is transmitted to the control device 2 '.
  • the control device 2 'of the present embodiment performs charge / discharge control of activating the power transfer device to additionally charge or additionally discharge the secondary battery 3 when a predetermined charge / discharge condition is satisfied while the vehicle 1' is stopped. carry out. It has become clear that, depending on the material of the secondary battery 3, specific deterioration proceeds even if it is not in the overdischarged state or the overcharged state. Specifically, it has been found that when the secondary battery 3 is stored in a state in which the charging rate of the secondary battery 3 is in a range in which the deterioration tends to progress, the deterioration proceeds in the meantime. The charge / discharge control of the present embodiment is implemented to prevent such deterioration.
  • Condition 3 is a condition provided in view of the fact that if external charging is in progress, even if condition 1 is satisfied when condition 2 is satisfied, then condition 1 should not be satisfied eventually.
  • the charging gun is inserted into the charging port, communication is started between the vehicle 1 'and the external charging device, so the condition 3 is determined based on this information.
  • the secondary battery 3 is not externally charged even after a while after the vehicle 1 'stops, and the deterioration of the secondary battery 3 is likely to progress. To be implemented. Note that it is sufficient that at least both of the condition 1 and the condition 2 are included in the implementation condition of the charge and discharge control, the condition 3 may be omitted.
  • the “deterioration progress range” of condition 1 means the range of the charging rate in which the above-mentioned specific degradation progresses.
  • the deterioration progress range is a charging rate range when the secondary battery 3 is almost fully charged (hereinafter referred to as “full charging range”) and a charging rate range when the secondary battery 3 is almost empty ( Hereinafter, it exists in the range of the charge rate except the "empty charge range.”
  • the deterioration progress range is determined by the material of the secondary battery 3. In addition to the material of the secondary battery 3, the range of progress of deterioration also changes depending on, for example, the environmental conditions (temperature, humidity, etc.) in which the secondary battery 3 is stored. For this reason, the deterioration progress range is not limited to a fixed value, and may be a variable value that changes according to the environmental conditions in which the secondary battery 3 is stored.
  • control range of condition 1 means the range of the charging rate including the deterioration progress range.
  • control range is a range of the charging rate wider than the degradation progress range, and the lower limit value thereof is set to a value lower than the lower limit value of the degradation progress range, and the upper limit value thereof is the degradation progress range It is set to a value larger than the upper limit value of.
  • the state where the occupant is absent continues for a certain time or more. That is, even after stopping the vehicle 1 ', the temporary stopping state where the stopping time is short, such as waiting for a signal, waiting for crossing, passenger getting on and off, loading and unloading of the vehicle 1', etc. Not included in the state.
  • the "predetermined time" of condition 8 is set to a time longer than the necessary time assumed when waiting for a signal, waiting for crossing or crossing, getting on or off passengers or loading / unloading luggage into / from the vehicle after stopping the vehicle 1 ' Ru.
  • the predetermined time is set to be longer than the time required for the external charge of the secondary battery 3 to start after the occupant of the vehicle 1 a gets off.
  • the predetermined time may be a fixed value, or may be a variable that can be arbitrarily set by the user.
  • the predetermined time is set by the time setting unit 10 as a variable value which can be arbitrarily set by the user.
  • control unit 2 is provided with an estimation unit 2A, a parking determination unit 2B, a state determination unit 2C, and a control unit 2D' as elements for performing the above-described charge / discharge control.
  • Each of these elements may be realized by an electronic circuit (hardware), may be programmed as software, or some of these functions may be provided as hardware and the other as software. It may be one.
  • the control device 2 ' is provided with a timer for measuring an elapsed time from the time when all the above conditions 4 to 7 are satisfied.
  • the estimation unit 2A estimates the charging rate SOC of the secondary battery 3.
  • the charging rate SOC is calculated (estimated) based on, for example, a measured value or an estimated value of the open circuit voltage of the secondary battery 3.
  • the ratio of the remaining power to the maximum charge capacity of the secondary battery 3 is expressed as a percentage, which is estimated as the charging rate SOC.
  • the charging rate SOC estimated here is transmitted to the control unit 2D '.
  • the parking determination unit 2B determines whether the vehicle 1 'is in a parking state.
  • the parking judgment part 2B since it is the same as that of a 1st embodiment, explanation is omitted.
  • the state determination unit 2C determines the deterioration state of the fuel cell 5 '. In the charge / discharge control of the present embodiment, if the fuel cell 5 ′ is in a deteriorated state while additionally suppressing the deterioration of the secondary cell 3 by additionally charging the secondary cell 3, the performance recovery of the fuel cell 5 ′ is also performed. Plan. That is, the state determination unit 2C determines the deterioration state to determine the necessity of performance recovery of the fuel cell 5 '.
  • the state determination unit 2C When the fuel cell 5 ′ is operated for additional charging by operating the fuel cell 5 ′, the state determination unit 2C according to the present embodiment operates when the fuel cell 5 ′ is operated to output a desired voltage (hereinafter referred to as “actual It is determined whether or not the fuel cell 5 ′ is in a deteriorated state based on the “voltage value”.
  • the state determination unit 2C of this embodiment uses the cell voltage as the voltage of the fuel cell 5 'and uses the average value or the representative value of the plurality of cell voltage values detected by the voltage sensor 16 as the actual voltage value. .
  • a value detected by the state determination unit 2C by the voltage sensor 16 Is obtained, and the deterioration state of the fuel cell 5 'is determined by comparing the actual voltage value with a judgment value lower by a predetermined voltage than the desired voltage value.
  • the fuel cell 5 ' is gradually deteriorated by continuous operation for a long time, even if the fuel cell 5' is controlled to output a desired voltage, the desired voltage is actually obtained. The value may not be detected. Therefore, in the present embodiment, it is determined whether or not the fuel cell 5 ′ is in the deteriorated state using the actual voltage value and a determination value that is lower than the desired voltage value by a predetermined voltage.
  • the determination value of the present embodiment is a threshold value for determining whether or not the performance of the fuel cell 5 ′ needs to be recovered, and is preset to a value obtained by subtracting a predetermined voltage from a desired voltage value.
  • the method of setting the determination value is not limited to this. For example, the actual voltage value when the fuel cell 5 'is controlled to output a desired voltage when the previous charge / discharge control is performed is stored, and this value (that is, the previous actual voltage value) It may be set as a judgment value.
  • State determination unit 2C determines that fuel cell 5 'is in a deteriorated state when the actual voltage value is lower than the determination value, and when the actual voltage value is equal to or higher than the determination value, fuel cell 5' It determines that it is not in the deteriorated state, and transmits the determination result to the control unit 2D '.
  • the state determination unit 2C of the present embodiment determines the deterioration state of the fuel cell 5 'based on the actual voltage value when the fuel cell 5' is controlled to operate in the highest efficiency operation mode.
  • the highest efficiency operation mode is a mode in which the fuel cell 5 'is operated at the highest cost. That is, the operation mode with the highest output with respect to the consumption of fuel (hydrogen gas) is the highest efficiency operation mode.
  • the hydrogen supply device 20, the air supply device 30, the cooling device 40, and the like are controlled to predetermined operation states.
  • the fuel cell 5 ' In the highest efficiency operation mode, the fuel cell 5 'is controlled to output a desired voltage (e.g., 0.85 [V]).
  • a desired voltage e.g. 0.85 [V]
  • the actual voltage value becomes a value (for example, 0.80 to 0.83 [V]) slightly lower than the desired voltage value.
  • the value does not fall below the above determination value. Therefore, although the fuel cell 5 'is operating in the highest efficiency operation mode, it can be determined that the fuel cell 5' is not deteriorated if the actual voltage value is equal to or higher than the judgment value. If the value is less than the determination value, it can be determined that the fuel cell 5 ′ is degraded.
  • the control unit 2D ′ operates the power transfer device to additionally charge or additionally discharge the secondary battery 3 when the above-mentioned charge / discharge condition is satisfied while the vehicle 1 ′ is stopped. That is, control part 2D 'determines the success or failure of charge / discharge conditions when vehicle 1' stops, and carries out charge / discharge control according to the result of the judgment.
  • the control unit 2D ' determines whether the vehicle 1' has stopped based on, for example, the vehicle speed, the shift position, and the like. As in the first embodiment, the control unit 2D 'of the present embodiment determines whether the vehicle 1' is at a stop based on whether the vehicle speed V is zero.
  • Control part 2D determines said condition 1 using the charging rate SOC estimated by estimation part 2A. Further, the above-mentioned condition 2 is determined using the determination result acquired from the parking determination unit 2B, and the above-mentioned condition 3 is determined based on the communication information with the external charging device.
  • control unit 2D ′ determines that the above-described charge and discharge conditions are satisfied. On the other hand, when at least one of the conditions 1 to 3 described above is not satisfied, the power transfer device is stopped and the charge and discharge control is ended.
  • control unit 2D When performing charge / discharge control, control unit 2D 'selects whether additional charging or additional discharging is performed based on the charging rate SOC of secondary battery 3 estimated by estimation unit 2A.
  • the method of selecting whether to additionally charge or to additionally discharge is the same as in the first embodiment, and thus the description thereof is omitted.
  • the charge / discharge determination threshold SOCth which is the determination threshold for whether additional charging or additional discharging is performed, is set to a value lower than the intermediate value of the deterioration progress range, not the intermediate value of the deterioration progress range. (See the bottom of Figure 5).
  • control unit 2D ′ When the additional discharge is performed, the control unit 2D ′ operates the auxiliary battery 9 to perform additional charging while charging the auxiliary battery 9 with the power of the secondary battery 3. On the other hand, when additional charging is performed, control unit 2D 'determines whether additional charging by auxiliary battery 9 is possible, and when additional charging by the auxiliary battery is possible, auxiliary battery 9 is used. The operation is performed to carry out the additional charge, and when the additional charge by the auxiliary battery 9 is not possible, the fuel cell 5 'which is a power generation device is operated to perform the additional charge.
  • the determination as to whether or not additional charging by the auxiliary battery 9 is possible, and the method of operating the auxiliary battery 9 to perform additional charging are the same as in the first embodiment, and thus the description thereof is omitted.
  • the case where the additional charge is performed and the additional charge by the auxiliary battery 9 can not be performed that is, the case where the fuel cell 5 ′ is operated to perform the additional charge will be described.
  • the control unit 2D' starts the fuel cell 5 'and charges the secondary battery 3 with the generated power of the fuel cell 5'.
  • the fuel cell 5 ' is stopped and the charge / discharge control is ended.
  • the control unit 2D 'of this embodiment selects the operation mode of the fuel cell 5' based on the determination result by the state determination unit 2C when the fuel cell 5 'is operated and additional charging is performed, and the fuel mode is selected in the operation mode The battery 5 'is operated to carry out additional charging. Specifically, when the state determination unit 2C determines that the fuel cell 5 'is not in the deteriorated state, the control unit 2D' selects the above-mentioned highest efficiency operation mode, and the state determination unit 2C selects the fuel cell 5 '.
  • the recovery operation mode is selected when it is determined that the vehicle is in the deteriorated state.
  • the recovery operation mode is an operation mode for charging the secondary battery 3 while performing performance recovery of the fuel cell 5 ′.
  • fuel cells generally deteriorate due to various factors due to long-term continuous operation. For example, oxidation deterioration of the catalyst of the cathode electrode, deterioration due to chemical adsorption or physical adsorption of deterioration decomposition products derived from the membrane electrode assembly, chemical adsorption or physical adsorption of impurities derived from systems such as metal separators, metal piping, resin piping, etc. Degradation due to chemical adsorption of sulfur and salinity in the atmosphere. By performing the above recovery operation mode, recovery of the state (performance) of the fuel cell 5 ′ thus degraded is achieved.
  • Control part 2D 'of this embodiment implements "potential cycle control" as a recovery operation mode.
  • potential cycle control the voltage of the fuel cell 5 ′ (hereinafter referred to as “impurity removing voltage Vmin”) is lower than the voltage (for example, 0.6 to 0.85 [V]) that the fuel cell 5 ′ can normally output.
  • Vmin the voltage of the fuel cell 5 ′
  • Vmin the voltage of the fuel cell 5 ′
  • Vmin the voltage of the fuel cell 5 ′
  • Vmin the voltage of the fuel cell 5 ′
  • Vmin the voltage of the fuel cell 5 ′
  • Vmin the voltage of the fuel cell 5 ′
  • the impurity removal voltage Vmin is a voltage value at which the impurity contained in the fuel cell 5 'is removed, and varies depending on the impurity.
  • the control to lower the voltage of the fuel cell 5 'to the impurity removal voltage Vmin and the control to increase it again are combined into one cycle.
  • the fuel cell 5 ′ is controlled in such a manner that the adsorption of impurities on the catalyst is weakened by controlling the voltage value to the impurity removal voltage Vmin or less, and the impurities are removed from the fuel cell 5 ′ by the flow of gas. Recovery is possible.
  • the control unit 2D ′ of the present embodiment reduces the impurity removal voltage Vmin (lower limit value) as the number of repetitions (cycle number) of the increase and decrease of the voltage increases. That is, the impurity removal voltage Vmin of the present embodiment is not a constant value, but is a variable value that gradually decreases from a preset initial value. Since the voltage value at which the adsorption of the impurities adsorbed in the fuel cell 5 ′ is weakened varies depending on the type of the adsorbed impurities, the fuel cell 5 ′ can be changed by changing the impurity removal voltage Vmin every cycle as described above. The performance of the fuel cell 5 'can be effectively recovered while suppressing the decrease in the power generation efficiency.
  • the control unit 2D 'of the present embodiment implements the above-described potential cycle control in the following flow.
  • the fuel cell 5 ' is controlled to output a desired voltage, and the voltage of the fuel cell 5' is reduced from the actual voltage value at this time to the impurity removal voltage Vmin.
  • the control unit 2D ′ reduces the velocity of the hydrogen gas sent from the hydrogen supply device 20 and the velocity of the air sent from the air supply device 30, and the flow rate of the cooling water sent from the cooling device 40.
  • the cooling is suppressed and the temperature of the fuel cell stack 50 rises without the heat of reaction between hydrogen and oxygen being dissipated in the fuel cell stack 50. Do.
  • the temperature of the fuel cell stack 50 is increased, the anode catalyst layer is dried to suppress the reaction of hydrogen in the anode catalyst layer. Furthermore, since the velocity of the gas circulating in the fuel cell stack 50 is reduced, hydrogen gas and air stagnate in the fuel cell stack 50. This reduces the voltage.
  • control unit 2D ′ maintains the state for a predetermined time, and causes fuel cell 5 to raise the voltage to a desired voltage value again. Control the '. That is, the control unit 2D 'controls the hydrogen supply device 20, the air supply device 30, the cooling device 40, and the like so that the fuel cell 5' outputs a desired voltage (0.85 [V] in the present embodiment).
  • the control unit 2D causes the state determination unit 2C to determine whether the performance of the fuel cell 5' has recovered after the fuel cell 5 'has been operated for one cycle in the recovery operation mode. That is, when fuel cell 5 'is controlled such that fuel cell 5' outputs a desired voltage by control unit 2D 'and the voltage of fuel cell 5' is increased again, state determination unit 2C determines the actual voltage A value is acquired and compared with the determination value to determine the deterioration state. Note that whether or not the voltage of the fuel cell 5 'is raised again can be determined by estimating it from the amount of change in voltage.
  • the state determination unit 2C determines that the fuel cell 5 'is in the deteriorated state (that is, the performance is not recovered), and transmits the result to the control unit 2D'. Do. In this case, the control unit 2D ′ lowers the impurity removal voltage Vmin by a predetermined amount dV to change it to the impurity removal voltage Vmin ′. Then, the voltage of the fuel cell 5 'is lowered and raised again, and the same process as described above is repeated.
  • the state determination unit 2C determines that the fuel cell 5 'is not in the deteriorated state (that is, the performance is recovered), and transmits the result to the control unit 2D'. .
  • the control unit 2D 'switches the operation mode of the fuel cell 5' from the recovery operation mode to the highest efficiency operation mode if the above conditions 1 and 3 are satisfied. Further, the control unit 2D ′ resets the impurity removal voltage Vmin to an initial value.
  • FIG. 5 shows the change in voltage value of the fuel cell 5 'when the fuel cell 5' is operated and additional charging is performed as the charge / discharge control of the present embodiment, and the charge ratio SOC of the secondary cell 3 accompanying it. It is a chart which illustrates the change of.
  • FIG. 5 shows an example in which it is determined that the fuel cell 5 ′ is not in the deteriorated state when the recovery operation mode is performed for three cycles (time t 4 ).
  • the solid line in the figure shows the case where the fuel cell 5 'is operated in the recovery operation mode, and the broken line in the figure shows the case where the fuel cell 5' is operated in the highest efficiency operation mode.
  • the secondary battery 3 When the fuel cell 5 'is operated in the highest efficiency operation mode to additionally charge the secondary battery 3, as shown by the broken line in FIG. 5, the secondary battery 3 continues to be charged at a predetermined voltage.
  • the charging rate SOC of the secondary battery 3 rises in proportion to the charging operation time.
  • the secondary cell 3 mainly comprises the fuel cell 5'. It is charged when the voltage value is constant or falling. Therefore, when the fuel cell 5 'is operated in the recovery operation mode to charge the secondary battery 3, the charging rate SOC of the secondary battery 3 is intermittently increased according to the charging execution time. The rate of increase is lower than in the case of operating the fuel cell 5 ′ in the highest efficiency operation mode to charge the secondary battery 3.
  • the control unit 2D ′ reduces the impurity removal voltage Vmin by a predetermined amount dV each cycle to change it to the impurity removal voltages Vmin ′ and Vmin ′ ′.
  • the voltage value of the fuel cell 5 ′ lower limit, than at time t 1 ⁇ t 2, who at time t 2 ⁇ t 3 is low, 1 lower each time it is cycle control.
  • the power generation efficiency of the fuel cell 5 ' The impurities contained in the fuel cell 5 'are removed while suppressing the decrease, and the performance is recovered. Even if the performance of the fuel cell 5' is recovered, the charging rate SOC of the secondary cell 3 is in the control range In this case, the recovery operation mode is switched to the highest efficiency operation mode, and the operation of the fuel cell 5 'is continued.
  • FIG. 6 is a sub-flow chart example of the flow chart of FIG. 2 for explaining a part of the contents of the above-mentioned charge and discharge control. This sub-flowchart is implemented in place of steps S9 to S11 of FIG.
  • the flowchart is started in the control device 2 'and is performed at a predetermined operation cycle while the vehicle 1' is stopped.
  • the sub-flowchart of FIG. 6 is carried out when it is determined in step S5 of the flow chart of FIG. 2 that the auxiliary battery 9 can not perform additional charging. Note that the above predetermined time is assumed to be input (set) in advance by the user.
  • step S9 ' the fuel cell 5' is activated.
  • step S10 ' it is determined whether the fuel cell 5' is in a deteriorated state. Specifically, the state determination unit 2C acquires an actual voltage value when the fuel cell 5 is controlled to output a desired voltage, and determines whether the actual voltage value is less than the determination value. Be done. If it is determined in step S10 'that the fuel cell 5' is not in the deteriorated state, the process proceeds to step S11 '. If it is determined that the fuel cell 5' is in the deteriorated state, the process proceeds to step S16 '. After step S11 ', the secondary battery 3 is additionally charged while operating the fuel cell 5' in the highest efficiency operation mode.
  • step S11 ' control unit 2D' controls fuel cell 5 'to operate in the highest efficiency operation mode, and secondary battery 3 is additionally charged.
  • step S12' the charging rate of secondary battery 3 is SOC is acquired.
  • step S13 ' it is determined whether the obtained charging rate SOC is within the control range. If it is determined in step S13 'that the state of charge SOC of secondary battery 3 is within the control range, the process returns to step S11', operation in the highest efficiency operation mode is continued, and secondary battery 3 is added Be charged.
  • step S13 determines that the charging rate SOC of secondary battery 3 is not within the control range
  • step S14' determines that the charging rate SOC of secondary battery 3 is not within the control range
  • step S14' determines that the charging rate SOC of secondary battery 3 is not within the control range
  • step S15' the impurity removal voltage is reset to the initial value in step S15', and this flow is returned.
  • step S10 determines whether the fuel cell 5' is in the deteriorated state. If it is determined in step S10 'that the fuel cell 5' is in the deteriorated state, the process proceeds to step S16 'to additionally charge the secondary battery 3 while operating the fuel cell 5' in the recovery operation mode. Do.
  • step S16 ' control unit 2D' controls fuel cell 5 'to operate in the recovery operation mode, and secondary battery 3 is additionally charged.
  • step S17' the charging rate SOC of secondary battery 3 is Is acquired.
  • step S18 ' it is determined whether the obtained charging rate SOC is within the control range. If it is determined in step S18 'that the state of charge SOC of the secondary battery 3 is within the control range, the process proceeds to step S19' to determine whether the fuel cell 5 'is in a deteriorated state.
  • step S19 ' when it is determined that the fuel cell 5' is in a deteriorated state, the process proceeds to step S20 ', and the impurity removal voltage when performing the recovery operation mode is changed.
  • the impurity removal voltage is Vmin
  • the process returns to step S16 ', and the fuel cell 5' is controlled again in the recovery operation mode by the control unit 2D 'to carry out additional charging of the secondary battery 3.
  • step S19 ' If it is determined in step S19 'that the fuel cell 5' is not in the deteriorated state before it is determined in step S18 'that the state of charge SOC of the secondary battery 3 is not within the control range, steps S19' to S11 are performed. And the fuel cell 5 'is controlled to operate in the highest efficiency mode of operation. That is, after the performance recovery of the fuel cell 5 'is completed, the additional charging of the secondary cell 3 is continued while operating the fuel cell 5' in the most efficient operation mode.
  • step S18 determines whether the state of charge SOC of secondary battery 3 is not within the control range, secondary battery 3 is out of the charging range where deterioration easily progresses, so in step S14' the fuel cell The 5 'operation is stopped, the impurity removal voltage is reset to the initial value in step S15', and this flow is returned.
  • the control device 2 'of the vehicle 1' described above when the fuel cell 5 'is operated for additional charging, the actual voltage value when the fuel cell 5' is operated to a desired voltage is used. Based on this, it is determined whether or not the fuel cell 5 'is in a deteriorated state. Thus, the deterioration state of the fuel cell 5 'can be easily determined, and the control configuration can be simplified.
  • the control unit 2D 'described above performs potential cycle control to control the fuel cell 5' so that the voltage of the fuel cell 5 'repeats rising and falling as a recovery operation mode.
  • the adsorption power of the impurities adhering to the catalyst of the fuel cell 5' is weakened, and the impurities are absorbed by the fuel cell 5 '. Removed from That is, the impurities contained in the fuel cell 5 'can be removed, and the performance of the fuel cell 5' can be recovered.
  • the voltage of the fuel cell 5' is lowered to a predetermined lower limit value, and the number of repetitions of the voltage rise and fall of the fuel cell 5 'increases.
  • the voltage value at which the adsorptive power of the impurities adsorbed in the fuel cell stack 50 is weakened varies depending on the type of the adsorbed impurities.
  • forcibly reducing the voltage of the fuel cell 5 ' is not preferable from the viewpoint of the power generation efficiency. Therefore, by reducing the lower limit (impurity removing voltage Vmin) every cycle as described above, impurities can be removed while suppressing a decrease in power generation efficiency, so performance recovery of the fuel cell 5 'can be more effectively performed. Is possible.
  • the condition for determining that the vehicle 1' is in the parking state includes that a predetermined predetermined time has elapsed from the time when the other conditions for determining the parking state are satisfied.
  • this predetermined time is set to be equal to or longer than the time required to start the external charging of the secondary battery 3 after the passenger of the vehicle 1 ′ dismounts. That is, charge and discharge control is performed when secondary battery 3 is not externally charged even after a while for a while after vehicle 1 'stops.
  • the stop time is short, such as waiting for a signal or waiting for a level crossing, charge / discharge control is not performed, and is not performed even when the user has an intention to perform external charging.
  • the control device 2 'does not perform the additional charge of the secondary battery 3, so that the consumption of the expensive fuel (hydrogen gas) can be suppressed.
  • the voltage of the fuel cell 5 ' is used as the cell voltage, and the deterioration state of the fuel cell 5' is determined based on the cell voltage.
  • the voltage of the fuel cell 5 ' is not limited to the cell voltage.
  • the voltage of the power generated by the fuel cell 5 ' is the voltage of the fuel cell 5'
  • a voltage sensor is provided between the wiring of the fuel cell 5 'and the secondary cell 3
  • the deterioration state of the fuel cell 5' is You may determine based on the voltage acquired from the sensor.
  • the parameter for determining the deterioration state is not limited to the voltage.
  • a current sensor that acquires the current of the fuel cell 5 ′ may be provided, and the state determination may be performed by estimating the deterioration state of the fuel cell 5 ′ from the acquired current value.
  • the operation method for recovering the performance of the fuel cell 5' is not limited to the potential cycle control.
  • over-humidification control may be performed to control the fuel cell 5 ′ so as to increase the humidity in the fuel cell 5 ′.
  • high flow rate control may be performed in which the flow rate of the gas flowing through the fuel cell 5 ′ is increased.
  • the fuel cell 5 ' is cooled more than usual by controlling the fuel cell 5' so as to increase the flow rate of the cooling water flowing in the fuel cell 5 ', and the fuel cell 5' is internally cooled. Lower the temperature of As a result, the water produced by reaction in the fuel cell 5 'is condensed, and the impurities are adsorbed in the condensed water, and are carried out of the fuel cell 5' on the gas flow. Thus, the performance of the fuel cell 5 'can be recovered.
  • the control unit 2D ′ may be implemented by combining two or all of the above-described potential cycle control, over humidification control, and alternating current amount control.
  • the fuel cell is described as a polymer electrolyte fuel cell (PEFC) in the above-described embodiment, the type of fuel cell is not limited thereto.
  • PFC polymer electrolyte fuel cell
  • SOFC Solid Oxide Fuel Cell
  • MCFC molten carbonate fuel cell
  • PAFC phosphoric acid fuel cell
  • alkaline electrolyte fuel It is also possible to apply the charge / discharge control described above to a vehicle 1 'equipped with a battery (AFC; Alkaline Fuel Cell).
  • AFC Alkaline Fuel Cell
  • the fuel cell 5 ' is used as the power generation device is illustrated, but instead of or in addition to the fuel cell 5', an engine and a generator may be used as the power generation device.
  • the charge condition for starting the additional charge or the additional discharge may include at least both the condition 1 and the condition 2 described above, and may include conditions other than the condition 1 to the condition 3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A control device (2) for a vehicle (1) equipped with a rechargeable secondary battery (3) and a power supply/reception device (5, 9) capable of at least either supplying power to or receiving power from the secondary battery (3) is provided with: an estimation unit (2A) for estimating the state of charge of the secondary battery (3); a parking determination unit (2B) for determining whether the vehicle (1) is in a parking state or not; and a control unit (2D) for, when a predetermined charge/discharge condition is satisfied, activating the power supply/reception device (5, 9) to perform additional charging or additional discharging on the secondary battery (3). The charge/discharge condition includes that the parking determination unit (2B) has determined that the vehicle (1) is in the parking state and includes that the state of charge estimated by the estimation unit (2A) is within a control range corresponding to a predetermined deterioration progressing range except a fully charged range and a null-charged range.

Description

車両の制御装置Vehicle control device
 本発明は、充放電可能な二次電池を備えた車両の制御装置に関する。 The present invention relates to a control device of a vehicle provided with a chargeable / dischargeable secondary battery.
 近年、環境問題を考慮して、駆動源としての電動機(モータ)を搭載した電気自動車やハイブリッド自動車が実用化されている。このような電動車両には、モータに電力を供給して駆動力を発生させる二次電池が搭載される。二次電池は、車両に搭載された発電装置(エンジンで作動するジェネレータ,燃料電池等)による発電電力の充電や外部充電が可能に構成される。また、下り坂走行時や制動時などにモータが連れ回されて回生発電した電力も充電可能とされる。 In recent years, electric vehicles and hybrid vehicles equipped with a motor as a drive source have been put into practical use in consideration of environmental problems. In such an electric vehicle, a secondary battery that supplies electric power to a motor to generate a driving force is mounted. The secondary battery is configured to be capable of charging generated power by a power generation device (generator operated by an engine, a fuel cell, etc.) mounted on a vehicle and externally charging. In addition, when traveling downhill or during braking, etc., the motor is brought to rotate, and it is possible to charge electric power regenerated and generated.
 車載の二次電池の電池性能(充電能力)は電動車両の航続距離に大きく影響するため、高い状態で維持されることが求められる。二次電池は過放電や過充電によって劣化し、その電池性能が低下することが知られている。このため、二次電池の充電状態(充電率)を推定,検出し、過放電や過充電とならないように二次電池の充電状態を制御する技術が提案されている(例えば特許文献1参照)。 Since the battery performance (charge capacity) of the on-board secondary battery greatly affects the cruising distance of the electric vehicle, it is required to be maintained in a high state. It is known that secondary batteries deteriorate due to overdischarge or overcharge, and the battery performance is degraded. For this reason, a technology has been proposed that estimates and detects the charge state (charge rate) of the secondary battery and controls the charge state of the secondary battery so as not to be overdischarged or overcharged (see, for example, Patent Document 1) .
特開2001-268707号公報JP, 2001-268707, A
 しかしながら、二次電池を構成する材料によっては、二次電池が過放電や過充電となっていない充電状態であっても特異的な劣化が進行し、二次電池の電池性能が低下することが明らかとなった。すなわち、二次電池の充電率が劣化の進行しやすい範囲内にある状態が保存されてしまうと、たとえ二次電池を使用していなくても劣化が進行し、電池性能の低下を招き、ひいては航続距離の低下を招く。 However, depending on the material constituting the secondary battery, specific deterioration may progress even if the secondary battery is in the overdischarged or overcharged state, and the battery performance of the secondary battery may be degraded. It became clear. That is, when the state in which the charging rate of the secondary battery is in the range in which the deterioration is likely to be stored, the deterioration progresses even if the secondary battery is not used, which leads to the deterioration of the battery performance. It causes a decrease in the cruising distance.
 本件の車両の制御装置は、このような知見に鑑み案出されたもので、充放電可能な二次電池の劣化を抑制することを目的の一つとする。なお、この目的に限らず、後述する「発明を実施するための形態」に示す各構成から導き出される作用効果であって、従来の技術では得られない作用効果を奏することも、本件の他の目的として位置付けることができる。 The control device for a vehicle according to the present invention has been devised in view of such findings, and has an object to suppress deterioration of a chargeable / dischargeable secondary battery. The present invention is not limited to this object, and it is an operation and effect derived from each configuration shown in the “embodiments to be described later”, and it is also possible to exert an operation and effect that can not be obtained by the prior art. It can be positioned as a goal.
 (1)ここで開示する車両の制御装置は、充放電可能な二次電池と前記二次電池への電力供給及び前記二次電池からの電力受給の少なくとも一方が可能な電力授受装置とを備えた車両の制御装置において、前記二次電池の充電率を推定する推定部と、前記車両が駐車状態であるか否かを判定する駐車判定部と、所定の充放電条件が成立した場合に、前記電力授受装置を作動させて前記二次電池を追加充電又は追加放電する制御部と、を備える。前記充放電条件には、前記駐車判定部で前記車両が前記駐車状態であると判定されたこと、及び、前記推定部で推定された前記充電率が満充電範囲と空充電範囲とを除く所定の劣化進行範囲に対応した制御範囲内であることが含まれる。 (1) The control device for a vehicle disclosed herein comprises: a chargeable / dischargeable secondary battery; and a power transfer device capable of at least one of power supply to the secondary battery and power reception from the secondary battery. In the control device of the vehicle, the estimation unit that estimates the charging rate of the secondary battery, the parking determination unit that determines whether the vehicle is in the parking state, and a predetermined charge and discharge condition are satisfied. And a controller configured to operate the power transfer device to additionally charge or discharge the secondary battery. For the charge / discharge condition, it is determined that the vehicle is in the parked state by the parking determination unit, and the charge rate estimated by the estimation unit is a predetermined value excluding the full charge range and the idle charge range It is included in the control range corresponding to the degradation progress range of
 (2)前記制御部は、前記充放電条件が成立した場合に、前記充電率が前記劣化進行範囲内の所定の充放電判定閾値未満であるときに前記追加放電し、前記充電率が前記充放電判定閾値以上であるときに前記追加充電することが好ましい。 (2) The control unit performs the additional discharge when the charge rate is less than a predetermined charge / discharge determination threshold within the deterioration progress range when the charge / discharge condition is satisfied, and the charge rate is charged Preferably, the additional charging is performed when the discharge determination threshold value or more.
 (3)前記電力授受装置には、前記車両に搭載された充放電可能な補助バッテリが含まれることが好ましい。この場合、前記制御部は、前記追加放電する場合に、前記補助バッテリを作動させて前記二次電池の電力によって前記補助バッテリを充電しながら前記追加放電することが好ましい。 (3) The power exchange device preferably includes a chargeable / dischargeable auxiliary battery mounted on the vehicle. In this case, the control unit preferably operates the auxiliary battery to perform the additional discharge while charging the auxiliary battery with the power of the secondary battery when the additional discharge is performed.
 (4)前記電力授受装置には、前記二次電池を充電可能な発電装置が含まれることが好ましい。この場合、前記制御部は、前記追加充電する場合に、前記補助バッテリによる前記追加充電が可能であるか否かを判定し、前記補助バッテリによる前記追加充電が可能である場合には前記補助バッテリを作動させて前記追加充電し、前記補助バッテリによる前記追加充電ができない場合には前記発電装置を作動させて前記追加充電することが好ましい。 (4) The power transfer device preferably includes a power generation device capable of charging the secondary battery. In this case, the control unit determines whether the additional charging by the auxiliary battery is possible when the additional charging is performed, and the auxiliary battery when the additional charging by the auxiliary battery is possible. Is preferably operated to perform the additional charging, and when the additional charging by the auxiliary battery can not be performed, the power generation device is operated to perform the additional charging.
 (5)前記発電装置は、燃料電池であることが好ましい。
 (6)前記電力授受装置には、前記車両に搭載された燃料電池が含まれることが好ましい。この場合、前記制御部は、前記追加充電する場合に、前記燃料電池を作動させることが好ましい。
(5) The power generation device is preferably a fuel cell.
(6) Preferably, the power transfer device includes a fuel cell mounted on the vehicle. In this case, the control unit preferably operates the fuel cell when the additional charge is performed.
 (7)前記制御装置は、前記燃料電池の劣化状態を判定する状態判定部を備えることが好ましい。この場合、前記制御部は、前記燃料電池を作動させて前記追加充電する場合であって、前記状態判定部により前記燃料電池が劣化状態であると判定された場合には、前記燃料電池の性能を回復させる回復運転モードで前記燃料電池を作動させて前記追加充電を実施することが好ましい。 (7) The control device preferably includes a state determination unit that determines the deterioration state of the fuel cell. In this case, the control unit operates the fuel cell to perform the additional charge, and when the state determination unit determines that the fuel cell is in the deteriorated state, the performance of the fuel cell Preferably, the fuel cell is operated to perform the additional charge in a recovery operation mode for recovering the
 (8)前記制御部は、前記燃料電池を作動させて前記追加充電する場合であって、前記状態判定部により前記燃料電池が劣化状態でないと判定された場合には、前記燃料電池を最高効率運転モードで作動させて前記追加充電を実施することが好ましい。
 (9)前記状態判定部は、前記燃料電池を作動させて前記追加充電する場合に、前記燃料電池を所望の電圧となるように作動させたときの実際の電圧値に基づいて、前記燃料電池が劣化状態であるか否かを判定することが好ましい。
(8) In the case where the control unit operates the fuel cell to perform the additional charge, and the state determination unit determines that the fuel cell is not in the deteriorated state, the fuel cell has the highest efficiency. It is preferable to operate in the operation mode to carry out the additional charge.
(9) When the fuel cell is operated to perform the additional charge by operating the fuel cell, the state determination unit operates the fuel cell based on an actual voltage value when the fuel cell is operated to a desired voltage. It is preferable to determine whether or not the vehicle is in a deteriorated state.
 (10)前記制御部は、前記回復運転モードにおいて、前記燃料電池の電圧が上昇と下降とを繰り返すように前記燃料電池の作動状態を制御することが好ましい。
 (11)前記制御部は、前記回復運転モードにおいて、前記燃料電池の電圧を所定の下限値まで下降させるとともに、前記電圧の上昇と下降との繰り返し回数が増すほど前記下限値を低下させることが好ましい。
(10) Preferably, in the recovery operation mode, the control unit controls the operating state of the fuel cell such that the voltage of the fuel cell repeatedly rises and falls.
(11) In the recovery operation mode, the control unit may lower the voltage of the fuel cell to a predetermined lower limit and lower the lower limit as the number of repetitions of increase and decrease of the voltage increases. preferable.
 (12)前記駐車判定部で前記車両が前記駐車状態であると判定する判定条件として、前記車両の主電源がオフ状態となっていることを含むことが好ましい。
 (13)前記駐車判定部で前記車両が前記駐車状態であると判定する判定条件として、前記車両に乗員が搭乗していないことを含むことが好ましい。
(12) It is preferable that the determination that the parking determination unit determines that the vehicle is in the parked state includes that the main power supply of the vehicle is in the off state.
(13) It is preferable that the determination condition that the parking determination unit determines that the vehicle is in the parked state includes that an occupant does not board the vehicle.
 (14)前記駐車判定部は、前記判定条件が所定時間以上継続して成立したら、前記車両が前記駐車状態であると判定することが好ましい。
 (15)前記制御装置は、前記所定時間を設定する時間設定手段を備えることが好ましい。
(14) Preferably, the parking determination unit determines that the vehicle is in the parking state when the determination condition is satisfied continuously for a predetermined time or more.
(15) The control device preferably includes time setting means for setting the predetermined time.
 開示の車両の制御装置によれば、車両が駐車状態であって、かつ、二次電池の充電率が所定の劣化進行範囲に対応した所定の制御範囲内である場合には、電力授受装置を作動させて二次電池を追加充電又は追加放電することで、二次電池の劣化を抑制でき、ひいては航続距離の低下を防止できる。 According to the disclosed vehicle control device, when the vehicle is in the parked state and the charging rate of the secondary battery is within the predetermined control range corresponding to the predetermined deterioration progress range, the power transfer device is By activating the secondary battery for additional charge or additional discharge, it is possible to suppress the deterioration of the secondary battery and, consequently, to prevent the reduction of the cruising distance.
第1実施形態に係る制御装置が適用された車両の概略図である。1 is a schematic view of a vehicle to which a control device according to a first embodiment is applied. 図1の制御装置で実施される充放電制御の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the charging / discharging control implemented by the control apparatus of FIG. 第2実施形態に係る制御装置が適用された車両の概略図である。It is the schematic of the vehicle by which the control apparatus which concerns on 2nd Embodiment was applied. 図3の車両に搭載される燃料電池の概略図である。FIG. 4 is a schematic view of a fuel cell mounted on the vehicle of FIG. 3; 図3の車両の停車中に燃料電池が作動されて追加充電が実施されたときの燃料電池の電圧値の変化とそれに伴う二次電池の充電率の変化とを例示するチャートである。FIG. 6 is a chart illustrating a change in voltage value of the fuel cell when the fuel cell is activated and additional charging is performed while the vehicle in FIG. 3 is stopped, and a change in the charging rate of the secondary cell accordingly. 図3の制御装置で実施される充放電制御の一例を説明するための図2のサブフローチャートである。It is a subflowchart of FIG. 2 for demonstrating an example of the charging / discharging control implemented by the control apparatus of FIG.
 図面を参照して、車両の制御装置について説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。 A control device of a vehicle will be described with reference to the drawings. Note that the embodiments described below are merely illustrative, and there is no intention to exclude the application of various modifications and techniques that are not specified in the following embodiments. Each structure of this embodiment can be variously modified and implemented in the range which does not deviate from those meaning. Also, they can be selected as needed or can be combined as appropriate.
[第1実施形態]
[1.装置構成]

 本実施形態の制御装置2が適用された車両1を図1に示す。この車両1は、駆動源としてのモータ4とエンジン8と、モータ4に電力を供給する走行用バッテリとしての二次電池3とを搭載したハイブリッド車両(自動車)である。また、この車両1は、エンジン8の動力で作動するジェネレータ5を発電装置として搭載する。
First Embodiment
[1. Device configuration]

A vehicle 1 to which the control device 2 of the present embodiment is applied is shown in FIG. The vehicle 1 is a hybrid vehicle (car) equipped with a motor 4 and an engine 8 as drive sources, and a secondary battery 3 as a traveling battery for supplying electric power to the motor 4. Further, the vehicle 1 mounts a generator 5 operated by the power of the engine 8 as a power generation device.
 モータ4及びジェネレータ5は、電動機としての機能と発電機としての機能とを兼ね備えた電動発電機(モータ・ジェネレータ)である。モータ4及びジェネレータ5のそれぞれと二次電池3とを接続する電気回路上にはインバータ6(INV)が介装される。インバータ6は、直流電力と交流電力とを変換する電力変換装置である。 The motor 4 and the generator 5 are a motor generator (motor generator) which has a function as an electric motor and a function as a generator. An inverter 6 (INV) is interposed on an electric circuit connecting each of the motor 4 and the generator 5 to the secondary battery 3. The inverter 6 is a power converter that converts DC power and AC power.
 二次電池3は、充放電可能な蓄電装置であり、例えばリチウムイオン二次電池やリチウムイオンポリマー二次電池等である。二次電池3は、車両1に搭載された電力授受装置から供給される電力で充電可能に構成されるとともに、電力授受装置に電力を供給することで放電可能に構成される。また、二次電池3は、外部電源から供給される電力で充電可能に構成される。 The secondary battery 3 is a chargeable / dischargeable power storage device, and is, for example, a lithium ion secondary battery, a lithium ion polymer secondary battery, or the like. The secondary battery 3 is configured to be chargeable by the power supplied from the power transfer device mounted on the vehicle 1 and configured to be dischargeable by supplying power to the power transfer device. Further, the secondary battery 3 is configured to be chargeable by the power supplied from the external power supply.
 上記の電力授受装置は、二次電池3への電力供給及び二次電池3からの電力受給の少なくとも一方が可能な装置である。本実施形態の車両1には、電力授受装置として、上述のジェネレータ5と充放電可能な補助バッテリ9とが設けられている。補助バッテリ9は、二次電池3への電力供給及び二次電池3からの電力受給が可能な蓄電装置であり、例えばリチウムイオン二次電池やリチウムイオンポリマー二次電池等である。 The above-described power transfer device is a device capable of at least one of power supply to the secondary battery 3 and power reception from the secondary battery 3. The vehicle 1 of the present embodiment is provided with the above-described generator 5 and a chargeable / dischargeable auxiliary battery 9 as a power transfer device. The auxiliary battery 9 is a storage device capable of supplying power to the secondary battery 3 and receiving power from the secondary battery 3, and is, for example, a lithium ion secondary battery, a lithium ion polymer secondary battery, or the like.
 補助バッテリ9と二次電池3とを接続する電気回路上には、この回路の断接状態を切り替える切替スイッチ9sが介装される。切替スイッチ9sが閉状態(接続状態)のとき、補助バッテリ9と二次電池3との間の電力授受が可能となる。切替スイッチ9sは、制御装置2からの接続信号または遮断信号に応じて補助バッテリ9と二次電池3との接続状態及び遮断状態を切り替える。 On the electric circuit connecting the auxiliary battery 9 and the secondary battery 3, a changeover switch 9s for switching the connection / disconnection state of this circuit is interposed. When the changeover switch 9s is in the closed state (connected state), power can be exchanged between the auxiliary battery 9 and the secondary battery 3. The changeover switch 9 s switches the connection state and the interruption state of the auxiliary battery 9 and the secondary battery 3 according to the connection signal or the interruption signal from the control device 2.
 車両1には、車両1の状態を検出又は設定するセンサ類11~14が設けられる。車速センサ11は車両1の車速Vを検出し、シフトポジションセンサ13はシフトポジションを検出する。イグニッションスイッチ12では、車両1の主電源(イグニッションキー)のオンオフ状態が設定される。荷重センサ14は、車両1に設けられた図示しない座席に取り付けられた歪ゲージ等であって、座席への荷重の状態を検出する。車両1には、車両1に搭載される各種装置を統合制御する制御装置2(Electronic Control Unit,ECU)が設けられ、センサ類11~14で検出された情報は、制御装置2に伝達される。 The vehicle 1 is provided with sensors 11 to 14 for detecting or setting the state of the vehicle 1. The vehicle speed sensor 11 detects the vehicle speed V of the vehicle 1, and the shift position sensor 13 detects a shift position. The ignition switch 12 sets the on / off state of the main power supply (ignition key) of the vehicle 1. The load sensor 14 is a strain gauge or the like attached to a seat (not shown) provided in the vehicle 1 and detects the state of load on the seat. The vehicle 1 is provided with a control device 2 (Electronic Control Unit, ECU) that performs integrated control of various devices mounted on the vehicle 1, and information detected by the sensors 11 to 14 is transmitted to the control device 2 .
 また、本実施形態の車両1には、後述する所定時間をユーザが任意に設定可能な時間設定手段10が設けられる。時間設定手段10は、例えば、ナビゲーションシステムのタッチパネルであり、ユーザによる手動操作によって情報が入力される装置である。時間設定手段10は、制御装置2の要素の一つであって、時間設定手段10で設定された所定時間は、後述する駐車判定部2Bに伝達される。 Further, the vehicle 1 of the present embodiment is provided with a time setting unit 10 that allows the user to arbitrarily set a predetermined time described later. The time setting unit 10 is, for example, a touch panel of a navigation system, and is a device to which information is input by a manual operation by a user. The time setting means 10 is one of the elements of the control device 2, and the predetermined time set by the time setting means 10 is transmitted to a parking judgment unit 2B described later.
[2.制御概要]

 本実施形態の制御装置2は、車両1の停車中に所定の充放電条件が成立した場合に、電力授受装置を作動させて二次電池3を追加充電又は追加放電する充放電制御を実施する。車両1が停車中か否かは、車速センサ11によって検出された車速Vが0であるか否かに基づき判定される。
[2. Control outline]

The control device 2 according to the present embodiment performs charge / discharge control that operates the power transfer device to additionally charge or additionally discharge the secondary battery 3 when a predetermined charge / discharge condition is satisfied while the vehicle 1 is stopped. . Whether or not the vehicle 1 is stopped is determined based on whether or not the vehicle speed V detected by the vehicle speed sensor 11 is zero.
 二次電池3は、その材質によっては過放電状態や過充電状態でなくても、特異的な劣化が進行してしまうことが明らかとなった。具体的には、二次電池3の充電率が劣化の進行しやすい範囲内にある状態で二次電池3が保存されてしまうと、その間に劣化が進行してしまうことが判明した。本実施形態の充放電制御は、このような劣化を防止するために実施される。 It has become clear that, depending on the material of the secondary battery 3, specific deterioration proceeds even if it is not in the overdischarged state or the overcharged state. Specifically, it has been found that when the secondary battery 3 is stored in a state in which the charging rate of the secondary battery 3 is in a range in which the deterioration tends to progress, the deterioration proceeds in the meantime. The charge / discharge control of the present embodiment is implemented to prevent such deterioration.
 本実施形態では、以下の条件1~条件3が全て成立している場合に、上記の充放電条件が成立していると判定される。すなわち、条件1~条件3が全て成立している場合に充放電制御が実施される。また、充放電制御の実施中に条件1~条件3の少なくとも一つが不成立となると充放電制御が終了する。
 ==充放電条件==
   条件1:二次電池3の充電率SOCが所定の劣化進行範囲内に対応した制御範囲内であること(図5参照)
   条件2:車両1が駐車状態であること
   条件3:外部充電が実施されていないこと
In the present embodiment, when all of the following conditions 1 to 3 are satisfied, it is determined that the above-mentioned charge and discharge conditions are satisfied. That is, charge / discharge control is performed when all of the conditions 1 to 3 are satisfied. In addition, if at least one of the conditions 1 to 3 is not satisfied during the charge / discharge control, the charge / discharge control is ended.
== charge / discharge condition ==
Condition 1: The state of charge SOC of the secondary battery 3 is within a control range corresponding to a predetermined degradation progress range (see FIG. 5)
Condition 2: Vehicle 1 is in a parked condition Condition 3: External charging is not performed
 条件3は、仮に条件2の成立時点で条件1が成立していたとしても、外部充電中であれば、いずれ条件1が不成立となるはずであることに鑑みて設けられた条件である。なお、充電口に充電ガンが差し込まれると、車両1と外部充電装置との間で通信が開始されるため、この情報に基づき条件3が判定される。 Condition 3 is a condition provided in view of the fact that if external charging is in progress, even if condition 1 is satisfied when condition 2 is satisfied, then condition 1 should not be satisfied eventually. When the charging gun is inserted into the charging port, communication is started between the vehicle 1 and the external charging device, so the condition 3 is determined based on this information.
 すなわち、本実施形態の充放電制御は、車両1が停車してからしばらく時間が経っても二次電池3が外部充電されず、二次電池3の劣化が進行しやすい状況にある場合に実施される。なお、充放電制御の実施条件には少なくとも条件1及び条件2の両方が含まれていればよく、条件3を省略してもよい。 That is, the charge / discharge control of the present embodiment is performed when the secondary battery 3 is not externally charged even after a while after the vehicle 1 has stopped and the deterioration of the secondary battery 3 is likely to progress. Be done. Note that it is sufficient that at least both of the condition 1 and the condition 2 are included in the implementation condition of the charge and discharge control, the condition 3 may be omitted.
 条件1の「劣化進行範囲」とは、上記の特異的な劣化が進行してしまう充電率の範囲を意味する。劣化進行範囲は、二次電池3がほぼ満充電の状態であるときの充電率範囲(以下「満充電範囲」という)と、二次電池3がほぼ空の状態であるときの充電率範囲(以下「空充電範囲」という)とを除いた充電率の範囲内に存在する。この劣化進行範囲は、二次電池3の材質によって決定される。なお、劣化進行範囲は、二次電池3の材質以外にも、例えば二次電池3が保存される環境条件(温度や湿度など)に応じても変化する。このため、劣化進行範囲は固定値に限らず、二次電池3の保存される環境条件に応じて変化する可変値としてもよい。 The "deterioration progress range" of condition 1 means the range of the charging rate in which the above-mentioned specific degradation progresses. The deterioration progress range is a charging rate range when the secondary battery 3 is almost fully charged (hereinafter referred to as “full charging range”) and a charging rate range when the secondary battery 3 is almost empty ( Hereinafter, it exists in the range of the charge rate except the "empty charge range." The deterioration progress range is determined by the material of the secondary battery 3. In addition to the material of the secondary battery 3, the range of progress of deterioration also changes depending on, for example, the environmental conditions (temperature, humidity, etc.) in which the secondary battery 3 is stored. For this reason, the deterioration progress range is not limited to a fixed value, and may be a variable value that changes according to the environmental conditions in which the secondary battery 3 is stored.
 また、条件1の「制御範囲」とは、劣化進行範囲を含む充電率の範囲を意味する。詳述すれば、「制御範囲」とは、劣化進行範囲よりも広い充電率の範囲であって、その下限値は劣化進行範囲の下限値以下の値に設定され、その上限値は劣化進行範囲の上限値よりも大きい値に設定される。 Moreover, the "control range" of condition 1 means the range of the charging rate including the deterioration progress range. Specifically, the "control range" is a range of the charging rate wider than the degradation progress range, and the lower limit value thereof is set to a value lower than the lower limit value of the degradation progress range, and the upper limit value thereof is the degradation progress range It is set to a value larger than the upper limit value of.
 また、条件2の「駐車状態」とは、車両1の停車後、乗員が不在になっている状態がある程度の時間以上継続している状態とする。すなわち、車両1の停車後であっても、例えば信号待ちや踏切待ちや、乗員の乗り降りや、車両1への荷物の出し入れを行う際のような停車時間の短い一時停車状態は、駐車状態に含まれない。 In the "parked state" of condition 2, after the vehicle 1 is stopped, the state in which the occupant is absent continues for a certain time or more. That is, even after stopping the vehicle 1, for example, the temporary stopping state where the stopping time is short, such as when waiting for a signal, waiting for crossing or getting on or off a passenger or loading / unloading luggage into the vehicle 1, is parked. Not included
 本実施形態では、以下の条件4~条件8が全て成立している場合に、車両1が駐車状態であると判定される。また、駐車状態であると判定されてから条件4~条件7の少なくとも一つが不成立となると駐車状態ではないと判定される。
 ==駐車条件==
   条件4:車速Vが0であること
   条件5:車両1の主電源がオフ状態(IG-OFF)となっていること
   条件6:シフトポジションがPであること
   条件7:車両1に乗員が搭乗していないこと
   条件8:条件4~条件7が全て成立後、所定時間が経過すること
In the present embodiment, when all of the following conditions 4 to 8 are satisfied, it is determined that the vehicle 1 is in the parking state. If at least one of the conditions 4 to 7 is not satisfied after it is determined that the vehicle is in the parking state, it is determined that the vehicle is not in the parking state.
== Parking condition ==
Condition 4: Vehicle speed V is 0 Condition 5: Main power supply of vehicle 1 is in OFF state (IG-OFF) Condition 6: Shift position is P Condition 7: Passengers board the vehicle 1 Condition 8: A predetermined time elapses after all the conditions 4 to 7 are satisfied.
 条件8の「所定時間」は、車両1を停車させてから、信号待ち,踏切待ち,乗員の乗り降り又は車両への荷物の出し入れを行う際に想定される必要時間よりも長い時間に設定される。特に本実施形態における、所定時間は、車両1の乗員が降車してから二次電池3の外部充電を開始するまでに要する時間よりも長い時間に設定される。なお、所定時間は固定値でもよいし、ユーザが任意に設定可能な可変値としてもよい。本実施形態では、所定時間はユーザが任意に設定可能な可変値とし、時間設定手段10で設定される。 The "predetermined time" of the condition 8 is set to a time longer than the necessary time assumed when waiting for a signal, waiting for crossing or crossing, getting on or off passengers or loading / unloading of luggage into / from the vehicle after stopping the vehicle 1. . In particular, in the present embodiment, the predetermined time is set to be longer than the time required for the external charge of the secondary battery 3 to start after the occupant of the vehicle 1 gets off. The predetermined time may be a fixed value, or may be a variable that can be arbitrarily set by the user. In the present embodiment, the predetermined time is set by the time setting unit 10 as a variable value which can be arbitrarily set by the user.
[3.制御構成]
 図1に示すように、制御装置2には、上記の充放電制御を実施するための要素として、推定部2A,駐車判定部2B,制御部2Dが設けられる。これらの各要素は電子回路(ハードウェア)によって実現してもよく、ソフトウェアとしてプログラミングされたものとしてもよいし、あるいはこれらの機能のうちの一部をハードウェアとして設け、他部をソフトウェアとしたものであってもよい。また、制御装置2には、上記の条件4~条件7が全て成立した時点からの経過時間を計測するタイマが設けられる。
[3. Control configuration]
As shown in FIG. 1, the control unit 2 is provided with an estimation unit 2A, a parking determination unit 2B, and a control unit 2D as elements for performing the above-described charge and discharge control. Each of these elements may be realized by an electronic circuit (hardware), may be programmed as software, or some of these functions may be provided as hardware and the other as software. It may be one. Further, the control device 2 is provided with a timer for measuring an elapsed time from the time when all the above conditions 4 to 7 are satisfied.
[3-1.推定部]

 推定部2Aは、二次電池3の充電率SOCを推定するものである。充電率SOCは、例えば二次電池3の開放電圧の実測値や推定値に基づいて算出(推定)される。あるいは、二次電池3の充放電電流を積算して電力残量の増減変化を追跡することで、充電率SOCを算出(推定)することも可能である。本実施形態では、二次電池3の最大充電容量に対する電力残量の割合を百分率で表したものを充電率SOCとして推定する。ここで推定された充電率SOCは、制御部2Dに伝達される。
3-1. Estimator]

The estimation unit 2A estimates the charging rate SOC of the secondary battery 3. The charging rate SOC is calculated (estimated) based on, for example, a measured value or an estimated value of the open circuit voltage of the secondary battery 3. Alternatively, it is also possible to calculate (estimate) the charging rate SOC by integrating the charge / discharge current of the secondary battery 3 and tracking the increase / decrease change of the remaining power. In the present embodiment, the ratio of the remaining power to the maximum charge capacity of the secondary battery 3 is expressed as a percentage, which is estimated as the charging rate SOC. The charging rate SOC estimated here is transmitted to the control unit 2D.
[3-2.駐車判定部]

 駐車判定部2Bは、車両1が駐車状態であるか否かを判定するものである。駐車判定部2Bは、上記の各センサ類11~14からの情報及び時間設定手段10で設定された情報を取得するとともに、取得した情報に基づき、上記の駐車条件を満たすか否かを判定することで、車両1が駐車状態であるか否かを判定する。
[3-2. Parking judgment section]

The parking determination unit 2B determines whether the vehicle 1 is in a parked state. The parking determination unit 2B acquires the information from each of the sensors 11 to 14 and the information set by the time setting unit 10, and determines whether or not the parking condition is satisfied based on the acquired information. Thus, it is determined whether the vehicle 1 is in a parked state.
 具体的には、駐車判定部2Bは、車速センサ11で検出された車速Vに基づき車速Vが0であるか否か(条件4)を判定し、イグニッションスイッチ12で設定された主電源のオンオフ状態に基づきIG-OFFであるか否か(条件5)を判定する。また、駐車判定部2Bは、シフトポジションセンサ13で検出されたシフトポジションに基づきシフトポジションがPであるか否か(条件6)を判定し、荷重センサ14で検出された座席への荷重の有無に基づき車両1に乗員が搭乗しているか否か(条件7)を判定する。なお、本実施形態では、車両1が停車中であるとき、すなわち、車速Vが0であるときに充放電条件の成否が判定されるため、条件4は常に成立する。 Specifically, parking determination unit 2B determines whether vehicle speed V is 0 or not based on vehicle speed V detected by vehicle speed sensor 11 (condition 4), and turns on / off the main power source set by ignition switch 12 Based on the state, it is determined whether or not IG-OFF (condition 5). The parking determination unit 2B determines whether the shift position is P based on the shift position detected by the shift position sensor 13 (condition 6), and the presence or absence of a load on the seat detected by the load sensor 14 It is determined whether the passenger is on the vehicle 1 based on (Condition 7). In the present embodiment, when the vehicle 1 is at a stop, that is, when the vehicle speed V is 0, it is determined whether the charge / discharge condition is satisfied, so the condition 4 always holds.
 さらに、駐車判定部2Bは、条件4~条件7が全て成立した場合に、タイマによる計測を開始する。駐車判定部2Bは、タイマーカウント値が時間設定手段10で設定された所定時間以上であるか否かに基づき、条件8の成否を判定する。なお、タイマは条件4~条件7の少なくとも一つが不成立となった場合にその値をリセットする。 Furthermore, the parking judgment unit 2B starts measurement by the timer when all of the conditions 4 to 7 are satisfied. The parking determination unit 2B determines whether the condition 8 is met based on whether the timer count value is equal to or more than the predetermined time set by the time setting unit 10. The timer resets the value when at least one of the conditions 4 to 7 is not satisfied.
 駐車判定部2Bは、条件4~条件8が全て成立している場合に、車両1が駐車状態であると判定する。ここで、条件4~条件7が全て成立していることが条件8の成立の一つの条件(前提条件)であることを鑑みると、駐車判定部2Bは、条件8が成立している場合に、車両1が駐車状態であると判定するとも換言できる。一方、駐車判定部2Bは、条件4~条件8の少なくとも一つが不成立の場合に、車両1が駐車状態でないと判定する。 The parking determination unit 2B determines that the vehicle 1 is in the parking state when all of the conditions 4 to 8 are satisfied. Here, in view of the fact that all of the conditions 4 to 7 are satisfied, which is one of the conditions (preconditions) of the condition 8 being satisfied, the parking judgment unit 2B determines that the condition 8 is satisfied. In other words, it can be determined that the vehicle 1 is in the parked state. On the other hand, the parking judgment unit 2B judges that the vehicle 1 is not in the parking state when at least one of the conditions 4 to 8 is not satisfied.
[3-3.制御部]

 制御部2Dは、車両1の停車中に上記の充放電条件が成立した場合に、電力授受装置を作動させて二次電池3を追加充電又は追加放電するものである。すなわち、制御部2Dは、車両1が停車したときに充放電条件の成否を判定し、その判定結果に応じて充放電制御を実施する。
[3-3. Control unit]

The control unit 2D operates the power transfer device to additionally charge or discharge the secondary battery 3 when the charge / discharge conditions are satisfied while the vehicle 1 is stopped. That is, when the vehicle 1 stops, the control unit 2D determines the success or failure of the charge / discharge condition, and carries out charge / discharge control according to the determination result.
 制御部2Dは、推定部2Aで推定された充電率SOCを用いて上記の条件1を判定する。また、駐車判定部2Bから取得した判定結果を用いて上記の条件2を判定し、外部充電装置との通信情報に基づき上記の条件3を判定する。 Control unit 2D determines the above condition 1 using the charging rate SOC estimated by estimation unit 2A. Further, the above-mentioned condition 2 is determined using the determination result acquired from the parking determination unit 2B, and the above-mentioned condition 3 is determined based on the communication information with the external charging device.
 制御部2Dは、条件1~条件3が全て成立している場合に、上記の充放電条件が成立していると判定する。一方、上記の条件1~条件3の少なくとも一つが不成立になった場合には、電力授受装置を停止させて充放電制御を終了する。 When all the conditions 1 to 3 are satisfied, the control unit 2D determines that the above-mentioned charge / discharge condition is satisfied. On the other hand, when at least one of the conditions 1 to 3 described above is not satisfied, the power transfer device is stopped and the charge and discharge control is ended.
 本実施形態の制御部2Dは、充放電制御を行う場合には、推定部2Aで推定された二次電池3の充電率SOCに基づき追加充電するか追加放電するかを選択する。具体的には、制御部2Dは、推定部2Aで推定された充電率SOCが所定の充放電判定閾値SOCth未満である場合(SOC<SOCth)には追加放電することを選択し、推定部2Aで推定された充電率SOCが所定の充放電判定閾値SOCth以上である場合(SOC≧SOCth)には追加充電することを選択する。 When performing charge / discharge control, the control unit 2D of the present embodiment selects whether to perform additional charging or additional discharging based on the charging rate SOC of the secondary battery 3 estimated by the estimating unit 2A. Specifically, when charge ratio SOC estimated by estimation unit 2A is less than predetermined charge / discharge determination threshold SOCth (SOC <SOCth), control unit 2D selects to perform additional discharge, and estimation unit 2A When the charging rate SOC estimated in the above is greater than or equal to a predetermined charge / discharge determination threshold SOCth (SOCthSOCth), the additional charge is selected.
 ここで、充放電判定閾値SOCthとは、上記の劣化進行範囲内の所定の値である。制御部2Dは、二次電池3の充電率SOCと充放電判定閾値SOCthとに基づいて、追加充電するか追加放電するかを選択することで、充放電制御の効率化を図る。本実施形態では、充放電判定閾値SOCthは劣化進行範囲の中央値に設定されるが、充放電判定閾値SOCthはこの値に限らない。例えば、充放電制御時に優先的に追加充電を実施する場合には、充放電判定閾値SOCthを劣化進行範囲の中央値よりも低い値に設定してもよい。逆に、充放電制御時に優先的に追加放電を実施する場合には、充放電判定閾値SOCthを劣化進行範囲の中央値よりも高い値に設定してもよい。 Here, the charge / discharge determination threshold SOCth is a predetermined value within the above-described deterioration progress range. The control unit 2D selects the additional charge or the additional discharge based on the charge ratio SOC of the secondary battery 3 and the charge / discharge determination threshold SOCth to achieve efficient charge / discharge control. In the present embodiment, the charge / discharge determination threshold SOCth is set to the median value of the deterioration progress range, but the charge / discharge determination threshold SOCth is not limited to this value. For example, when additional charging is preferentially performed at the time of charge / discharge control, the charge / discharge determination threshold SOCth may be set to a value lower than the median value of the deterioration progress range. Conversely, when the additional discharge is preferentially performed at the time of charge / discharge control, the charge / discharge determination threshold SOCth may be set to a value higher than the central value of the deterioration progress range.
 制御部2Dは、追加放電を実施する場合には、補助バッテリ9を作動させて二次電池3の電力によって補助バッテリ9を充電しながら追加放電する。より具体的には、制御部2Dは、追加放電を実施する場合、切替スイッチ9sが接続状態となるように制御し、補助バッテリ9と二次電池3とを電気的に接続させて、二次電池3に蓄えられた電力を補助バッテリ9に送電することで追加放電する。 The control unit 2D operates the auxiliary battery 9 to perform the additional discharge while charging the auxiliary battery 9 with the power of the secondary battery 3 when performing the additional discharge. More specifically, when performing additional discharge, the control unit 2D controls the changeover switch 9s to be in the connection state, electrically connects the auxiliary battery 9 and the secondary battery 3, and performs secondary operation. The power stored in the battery 3 is transmitted to the auxiliary battery 9 to perform additional discharge.
 一方、制御部2Dは、追加充電を実施する場合には、補助バッテリ9による追加充電が可能であるか否かを判定し、補助バッテリによる追加充電が可能である場合には補助バッテリ9を作動させて追加充電を実施し、補助バッテリ9による追加充電ができない場合には発電装置であるジェネレータ5を作動させて追加充電する。 On the other hand, control part 2D judges whether additional charge by auxiliary battery 9 is possible, when performing additional charge, and when additional charge by auxiliary battery is possible, operates auxiliary battery 9 The additional charge is performed, and when the additional charge by the auxiliary battery 9 can not be performed, the generator 5 which is a power generation device is operated to perform the additional charge.
 補助バッテリ9による追加充電が可能であるか否かの判定は、補助バッテリ9に蓄えられた電力量(充電量)を算出するとともに、充放電制御が完了するまでに必要な電力量(必要充電量)を算出し、充電量と必要充電量とを比較することで判定する。補助バッテリ9の充電量は、例えば、補助バッテリ9の開放電圧の実測値や推定値に基づいて算出される。必要充電量は、二次電池3の充電率SOCと制御範囲の上限値との差分から算出される。 The determination as to whether or not additional charging by the auxiliary battery 9 is possible includes calculating the amount of electric power (charging amount) stored in the auxiliary battery 9 and the amount of electric power required until charge / discharge control is completed (necessary charge The amount is calculated, and the determination is made by comparing the charge amount with the required charge amount. The charge amount of the auxiliary battery 9 is calculated based on, for example, a measured value or an estimated value of the open circuit voltage of the auxiliary battery 9. The required charge amount is calculated from the difference between the state of charge SOC of the secondary battery 3 and the upper limit value of the control range.
 制御部2Dは、補助バッテリ9の充電量が必要充電量よりも大きい場合には、補助バッテリ9による追加充電が可能であると判定し、補助バッテリ9を作動させて二次電池3を追加充電する。すなわち、切替スイッチ9sが接続状態となるように制御し、補助バッテリ9と二次電池3とを電気的に接続させて、補助バッテリ9に蓄えられた電力によって二次電池3を充電する。 When the charge amount of the auxiliary battery 9 is larger than the required charge amount, the control unit 2D determines that the additional charge by the auxiliary battery 9 is possible, operates the auxiliary battery 9 and additionally charges the secondary battery 3 Do. That is, the switch 9 s is controlled to be in the connection state, the auxiliary battery 9 and the secondary battery 3 are electrically connected, and the secondary battery 3 is charged by the power stored in the auxiliary battery 9.
 一方、制御部2Dは、補助バッテリ9の充電量が必要充電量以下である場合には、補助バッテリ9による追加充電ができないと判定し、ジェネレータ5を作動させて二次電池3を追加充電する。より詳述すれば、制御部2Dはエンジン8を駆動させることでジェネレータ5を作動させて、ジェネレータ5の回生電力により二次電池3を充電する。 On the other hand, when the charging amount of the auxiliary battery 9 is equal to or less than the necessary charging amount, the control unit 2D determines that the additional charging by the auxiliary battery 9 can not be performed and operates the generator 5 to additionally charge the secondary battery 3 . More specifically, the control unit 2D operates the generator 5 by driving the engine 8, and charges the secondary battery 3 with the regenerative power of the generator 5.
[4.フローチャート]

 図2は、上述した充放電制御の内容を説明するためのフローチャート例である。このフローチャートは、車両1が停車した時点で、外部充電がされておらず、上記の駐車条件のうちの条件4~7が成立した場合に、制御装置2において開始され、車両1の停車中に所定の演算周期で実施される。なお、外部充電が開始された場合や、車両1が駐車状態ではなくなった場合には、その時点でこのフローチャートが終了する。すなわち、充放電制御が終了する。
[4. flowchart]

FIG. 2 is an example of a flowchart for explaining the contents of the above-described charge and discharge control. This flowchart is started in the control device 2 when the vehicle 1 is stopped and the external charging is not performed and the conditions 4 to 7 of the above-mentioned parking conditions are satisfied, and the flowchart is started while the vehicle 1 is stopped. It is implemented in a predetermined operation cycle. When external charging is started or when the vehicle 1 is not parked, the flowchart ends at that time. That is, charge and discharge control is completed.
 ステップS1では、上記の所定時間が経過したか否かが判定され、所定時間が経過していなければこのフローをリターンする。ステップS1において、所定時間が経過していれば、ステップS2に進み、二次電池3の充電率SOCを取得する。ステップS3では、取得した充電率SOCが制御範囲内であるか否かが判定される。二次電池3の充電率SOCが制御範囲内であると判定された場合には、ステップS4に進む。一方、ステップS3において、二次電池3の充電率SOCが制御範囲内でないと判定された場合には、追加充電又は追加放電を実施する必要がないため、このフローをリターンする。 In step S1, it is determined whether the predetermined time has elapsed. If the predetermined time has not elapsed, the flow is returned. In step S1, if the predetermined time has elapsed, the process proceeds to step S2, and the charging rate SOC of the secondary battery 3 is acquired. In step S3, it is determined whether the acquired charging rate SOC is within the control range. If it is determined that the state of charge SOC of the secondary battery 3 is within the control range, the process proceeds to step S4. On the other hand, when it is determined in step S3 that the state of charge SOC of the secondary battery 3 is not within the control range, it is not necessary to carry out additional charging or discharging, so this flow is returned.
 ステップS4では、二次電池3の充電率SOCが充放電判定閾値SOCth以上であるか否かが判定される。ステップS4において、二次電池3の充電率SOCが充放電判定閾値SOCth以上である場合(SOC≧SOCth)には、ステップS5に進む。 In step S4, it is determined whether the charging rate SOC of the secondary battery 3 is equal to or higher than the charge / discharge determination threshold SOCth. In step S4, when the charging rate SOC of the secondary battery 3 is equal to or higher than the charge / discharge determination threshold SOCth (SOC SOC SOCth), the process proceeds to step S5.
 一方で、ステップS4において、二次電池3の充電率SCOが充放電判定閾値SOCth未満である場合(SOC<SOCth)には、ステップS12に進み、補助バッテリ9を作動させて二次電池3が追加放電され、続くステップS13では、二次電池3の充電率SOCが取得される。更に、ステップS14では、取得された充電率SOCが制御範囲内であるか否かが判定される。ステップS14において、二次電池3の充電率SOCが制御範囲内であると判定された場合には、ステップS12に戻り、補助バッテリ9の作動が継続されて二次電池3が追加放電される。そして、ステップS14において、二次電池3の充電率SOCが制御範囲内でないと判定されると、二次電池3が劣化の進行しやすい充電率範囲から外れたため、補助バッテリ9の作動が停止され、このフローをリターンする。 On the other hand, if the charging rate SCO of the secondary battery 3 is less than the charge / discharge determination threshold SOCth in step S4 (SOC <SOCth), the process proceeds to step S12, the auxiliary battery 9 is operated, and the secondary battery 3 is The battery is additionally discharged, and in the subsequent step S13, the charging rate SOC of the secondary battery 3 is obtained. Furthermore, in step S14, it is determined whether the acquired charging rate SOC is within the control range. If it is determined in step S14 that the state of charge SOC of the secondary battery 3 is within the control range, the process returns to step S12, the operation of the auxiliary battery 9 is continued, and the secondary battery 3 is additionally discharged. Then, if it is determined in step S14 that the charging rate SOC of the secondary battery 3 is not within the control range, the secondary battery 3 is out of the charging rate range where deterioration is likely to progress, so the operation of the auxiliary battery 9 is stopped. , Return this flow.
 ステップS5では、補助バッテリ9により追加充電できるか否かが判定される。具体的には、補助バッテリ9の充電量と必要充電量とが算出されて、補助バッテリ9の充電量が必要充電量よりも大きいか否かが判定されることで、補助バッテリ9により追加充電できるか否かが判定される。 In step S5, it is determined whether additional charging can be performed by the auxiliary battery 9. Specifically, the charge amount of the auxiliary battery 9 and the required charge amount are calculated, and it is determined whether the charge amount of the auxiliary battery 9 is larger than the required charge amount, whereby the auxiliary battery 9 performs additional charge. It is determined whether or not it is possible.
 ステップS5において、補助バッテリ9により追加充電できる、すなわち、補助バッテリ9の充電量が必要充電量を上回る場合には、ステップS6に進み、補助バッテリ9を作動させて二次電池3が追加充電され、続くステップS7では、二次電池3の充電率SOCが取得される。更に、ステップS8では、取得された充電率SOCが制御範囲内であるか否かが判定される。ステップS8において、二次電池3の充電率SOCが制御範囲内であると判定された場合には、ステップS6に戻り、補助バッテリ9の作動が継続されて二次電池3が追加充電される。そして、ステップS8において、二次電池3の充電率SOCが制御範囲内でないと判定されると、このフローをリターンする。 In step S5, additional charging can be performed by the auxiliary battery 9, that is, when the charging amount of the auxiliary battery 9 exceeds the necessary charging amount, the process proceeds to step S6, the auxiliary battery 9 is operated and the secondary battery 3 is additionally charged. In the subsequent step S7, the charging rate SOC of the secondary battery 3 is obtained. Furthermore, in step S8, it is determined whether the acquired charging rate SOC is within the control range. If it is determined in step S8 that the state of charge SOC of the secondary battery 3 is within the control range, the process returns to step S6, the operation of the auxiliary battery 9 is continued, and the secondary battery 3 is additionally charged. When it is determined in step S8 that the state of charge SOC of the secondary battery 3 is not within the control range, this flow is returned.
 一方、ステップS5において、補助バッテリ9により追加充電できない、すなわち、補助バッテリ9の充電量が必要充電量以下である場合には、ステップS9に進み、ジェネレータ5を作動させて二次電池3が追加充電され、続くステップS10では、二次電池3の充電率SOCが取得される。更に、ステップS11では、取得された充電率SOCが制御範囲内であるか否かが判定される。ステップS11において、二次電池3の充電率SOCが制御範囲内であると判定された場合には、ステップS9に戻り、ジェネレータ5の作動が継続されて二次電池3が追加充電される。そして、ステップS11において、二次電池3の充電率SOCが制御範囲内でないと判定されると、このフローをリターンする。 On the other hand, if the additional charge can not be performed by the auxiliary battery 9 in step S5, that is, the charge amount of the auxiliary battery 9 is equal to or less than the required charge amount, the process proceeds to step S9 to operate the generator 5 and add the secondary battery 3 After being charged, in the subsequent step S10, the charging rate SOC of the secondary battery 3 is obtained. Furthermore, in step S11, it is determined whether the acquired charging rate SOC is within the control range. If it is determined in step S11 that the state of charge SOC of the secondary battery 3 is within the control range, the process returns to step S9, the operation of the generator 5 is continued, and the secondary battery 3 is additionally charged. When it is determined in step S11 that the state of charge SOC of the secondary battery 3 is not within the control range, this flow is returned.
 なお、フローをリターンしたのち、すなわち、充放電制御が実施されて二次電池3の充電率SOCが制御範囲外になったのち、二次電池3の自然放電により再び二次電池3の充電率SOCが制御範囲内になった場合には(ステップS3)、再び追加放電又は追加充電が実施される。 After the flow is returned, that is, after the charge / discharge control is performed and the charge ratio SOC of the secondary battery 3 is out of the control range, the charge ratio of the secondary battery 3 is again caused by the natural discharge of the secondary battery 3 If the SOC falls within the control range (step S3), additional discharge or additional charge is performed again.
[5.作用,効果]

 (1)上述した車両1の制御装置2では、車両1が駐車状態であること、及び、二次電池3の充電率SOCが満充電範囲と空充電範囲とを除く所定の劣化進行範囲に対応した制御範囲内であることを含む充放電条件が成立した場合に、電力授受装置が作動して二次電池3が追加充電又は追加放電される。このため、二次電池3の劣化を抑制でき、ひいては車両1の航続距離の低下を防止できる。
[5. Action, effect]

(1) In the control device 2 of the vehicle 1 described above, the vehicle 1 is in a parked state, and the state of charge SOC of the secondary battery 3 corresponds to a predetermined deterioration progress range excluding the full charge range and the idle charge range. When the charge / discharge condition including the fact that it is within the above control range is satisfied, the power transfer device operates and the secondary battery 3 is additionally charged or additionally discharged. Therefore, the deterioration of the secondary battery 3 can be suppressed, and the decrease of the cruising distance of the vehicle 1 can be prevented.
 また、上述した制御装置2は、二次電池3の充電率SOCが劣化進行範囲よりも広い制御範囲内であることを充放電条件の一つとしている。このため、充放電制御終了後の二次電池3の充電率SOCをより確実に劣化進行範囲から外すことができる。さらに、二次電池3の充電率SOCが劣化進行範囲外であるが劣化進行範囲付近の値である場合にも上記の充放電制御を実施することができるため、より確実に二次電池3の劣化を抑制することができる。 In addition, the control device 2 described above has one of the charge and discharge conditions that the state of charge SOC of the secondary battery 3 is within a control range wider than the degradation progress range. For this reason, the charging rate SOC of the secondary battery 3 after the end of charge / discharge control can be more reliably removed from the deterioration progress range. Furthermore, since the above-mentioned charge / discharge control can be performed even when the charging rate SOC of the secondary battery 3 is out of the deterioration progress range but is near the deterioration progress range, the secondary battery 3 can be more reliably Deterioration can be suppressed.
 (2)上述した制御装置2は、充放電条件が成立した場合に、充電率SOCが充放電判定閾値SOCth未満であるときに追加放電し、充電率SOCが充放電判定閾値SOCth以上であるときに追加充電する。このように、充電率SOCが充放電判定閾値SOCth未満である、すなわち、制御範囲の下限値に比較的近い場合に追加充電を実施し、充電率SOCが充放電判定閾値SOCth以上である、すなわち、制御範囲の上限値に比較的近い場合に追加充電を実施することで、充放電制御の効率化を図ることができる。 (2) When the charge / discharge condition is satisfied, the control device 2 additionally discharges when the charge ratio SOC is less than the charge / discharge determination threshold SOCth, and when the charge ratio SOC is equal to or greater than the charge / discharge determination threshold SOCth Add to Thus, the charging rate SOC is less than the charging / discharging determination threshold SOCth, that is, additional charging is performed when the control range is relatively close to the lower limit value, and the charging rate SOC is higher than the charging / discharging determination threshold SOCth, ie By carrying out the additional charge when the upper limit value of the control range is relatively close, the charge / discharge control can be made more efficient.
 (3)上述した車両1には、電力授受装置としての補助バッテリ9が設けられ、追加放電する場合に、補助バッテリ9を作動させて二次電池3の電力によって補助バッテリ9を充電しながら追加放電する。このため、二次電池3に蓄えられていた電力を無駄にすることなく、二次電池3の追加放電することができる。 (3) The above-described vehicle 1 is provided with the auxiliary battery 9 as a power transfer device, and when the additional discharge is performed, the auxiliary battery 9 is operated to charge the auxiliary battery 9 with the power of the secondary battery 3 to add Discharge. Therefore, the secondary battery 3 can be additionally discharged without wasting the power stored in the secondary battery 3.
 (4)上述した車両1には、電力授受装置として、二次電池3を充電可能な発電装置(ジェネレータ5)が設けられる。また、制御装置2は、補助バッテリ9により追加充電できない場合に、ジェネレータ5を作動させて追加充電する。このため、補助バッテリ9により追加充電できる場合には、車両1に蓄えられた燃料(ガソリンなど)を消費することなく追加充電することができる一方で、補助バッテリ9により追加充電できない場合には、ジェネレータ5を作動させて追加充電することで、二次電池3の充電率SOCを確実に制御範囲外にすることができる。 (4) The vehicle 1 described above is provided with a power generation device (generator 5) capable of charging the secondary battery 3 as a power transfer device. Further, when the auxiliary battery 9 can not perform additional charging, the control device 2 operates the generator 5 to perform additional charging. Therefore, when additional charging can be performed by the auxiliary battery 9, additional charging can be performed without consuming the fuel (such as gasoline) stored in the vehicle 1, while when additional charging can not be performed by the auxiliary battery 9, By operating the generator 5 to perform additional charging, the charging rate SOC of the secondary battery 3 can be reliably made out of the control range.
 (5)上述の駐車判定部2Bで車両1が駐車状態であると判定する判定条件として、車両1の主電源がオフ状態となっていることを含む。このため、上記のような停車時間の短い一時停車状態を、駐車状態から除外しやすくすることができる。 (5) The determination condition that the parking determination unit 2B described above determines that the vehicle 1 is in the parking state includes that the main power supply of the vehicle 1 is in the off state. For this reason, it is possible to make it easy to exclude from the parking state the temporary stop state having a short stop time as described above.
 (6)また、上述の駐車判定部2Bで車両1が駐車状態であると判定する判定条件として、車両1に乗員が搭乗していないことを含む。このため、上記のような停車時間の短い一時停車状態を、より確実に駐車状態から除外することができる。 (6) Further, the determination condition that the parking determination unit 2B described above determines that the vehicle 1 is in the parked state includes that the passenger is not on the vehicle 1. For this reason, it is possible to more reliably exclude from the parking state the temporary stopping state where the stopping time is short as described above.
 (7)上記の駐車判定部2Bは、駐車状態を判定するための条件(前提条件)が所定時間以上継続して成立したら、車両1が駐車状態であると判定する。このように、前提条件が成立しても所定時間が経過するまでは駐車状態と判定されないことで、外部充電するまでの間に充放電制御が実施されにくくなる。すなわち、不要な充放電制御の実施を抑制することができる。延いては、車両1に蓄えられた電力や燃料の消費量を抑制することができる。 (7) The parking determination unit 2B determines that the vehicle 1 is in the parking state when the condition (precondition) for determining the parking state is satisfied for a predetermined time or more. As described above, even if the precondition is satisfied, it is not determined that the vehicle is in the parking state until the predetermined time elapses, which makes it difficult for the charge and discharge control to be performed until the external charge is performed. That is, implementation of unnecessary charge / discharge control can be suppressed. As a result, the consumption of the power and fuel stored in the vehicle 1 can be suppressed.
 (8)上記の制御装置2は、所定時間を設定するための時間設定手段10を備える。従って、充放電制御を実施するタイミングをユーザ自身が設定することができる。このため、ユーザの意に反して充放電制御が実施されることを抑制でき、車両1に蓄えられた電力や燃料の消費量を抑制することが可能となる。 (8) The above-described control device 2 includes time setting means 10 for setting a predetermined time. Therefore, the user can set the timing at which the charge and discharge control is performed. For this reason, it can suppress that charge / discharge control is implemented contrary to a user's will, and it becomes possible to suppress the consumption of the electric power and fuel which were stored by the vehicle 1. FIG.
[第2実施形態]
 図3~図6を参照して、本発明の第2実施形態について説明する。本実施形態は第1実施形態に対して、車両1′に設けられる電力授受装置が異なる。また、制御装置2′に、状態判定部2Cが追加されたことにより、制御部2D′の機能の一部が異なる。なお、その他の構成要素は、第1実施形態と同様であるため、第1実施形態と同一の符号を付して説明する。
Second Embodiment
A second embodiment of the present invention will be described with reference to FIGS. 3 to 6. The present embodiment differs from the first embodiment in the power transfer device provided in the vehicle 1 '. In addition, the addition of the state determination unit 2C to the control device 2 'causes part of the functions of the control unit 2D' to be different. The other components are the same as those of the first embodiment, and therefore, will be described with the same reference numerals as in the first embodiment.
[1.装置構成]
 [1-1.全体構成]

 本実施形態の制御装置2′が適用された車両1′を図3に示す。この車両1′は、駆動源としてのモータ4と、モータ4に電力を供給する走行用バッテリとしての二次電池3と、発電装置としての燃料電池5′とを搭載した燃料電池車両である。モータ4は、電動機としての機能と発電機としての機能とを兼ね備えた電動発電機(モータ・ジェネレータ)である。二次電池3とモータ4とを接続する電気回路上にはインバータ6(INV)が介装される。
[1. Device configuration]
[1-1. overall structure]

A vehicle 1 'to which the control device 2' of the present embodiment is applied is shown in FIG. This vehicle 1 'is a fuel cell vehicle mounted with a motor 4 as a drive source, a secondary battery 3 as a traveling battery for supplying electric power to the motor 4, and a fuel cell 5' as a power generation device. The motor 4 is a motor generator (motor generator) which has a function as an electric motor and a function as a generator. An inverter 6 (INV) is interposed on the electric circuit connecting the secondary battery 3 and the motor 4.
 本実施形態の車両1′には、電力授受装置として、上記の燃料電池5′と補助バッテリ9とが設けられている。車両1′には、補助バッテリ9と二次電池3とを接続する電機回路上に切替スイッチ9sが介装される。補助バッテリ9と切替スイッチ9sについては、第1実施形態と同様であるため説明を省略する。 The vehicle 1 'of this embodiment is provided with the above-described fuel cell 5' and an auxiliary battery 9 as a power transfer device. In the vehicle 1 ′, a changeover switch 9 s is interposed on an electric circuit connecting the auxiliary battery 9 and the secondary battery 3. The auxiliary battery 9 and the changeover switch 9s are the same as those in the first embodiment, and thus the description thereof is omitted.
 二次電池3は、車両1′の回生発電電力や外部電源,燃料電池5′から供給される電力で充電可能な蓄電装置であり、例えばリチウムイオン二次電池やリチウムイオンポリマー二次電池等である。二次電池3と燃料電池5′とを接続する電気回路上には電圧変換用のコンバータ7(DC-DCコンバータ)が介装される。 The secondary battery 3 is a storage device which can be charged by the regenerative power generated by the vehicle 1 ', the external power supply, and the power supplied from the fuel cell 5', for example, a lithium ion secondary battery or a lithium ion polymer secondary battery is there. A converter 7 (DC-DC converter) for voltage conversion is interposed on the electric circuit connecting the secondary battery 3 and the fuel cell 5 '.
 燃料電池5′は、燃料中の水素と空気中の酸素との電気反応を利用して電力を取り出す発電装置であり、例えば固体高分子型燃料電池やリン酸型燃料電池等である。燃料電池5′で発生する電力(電気出力)は、おもに二次電池3の充電に使用される。また、モータ4の負荷が二次電池3の給電能力を超える程度に大きい場合には、燃料電池5′の電力が直接的にモータ4へと供給される。本実施形態では燃料電池5′が固体高分子型燃料電池(Polymer Electrolyte Fuel Cell,PEFC)であるものとして説明する。 The fuel cell 5 'is a power generation apparatus for extracting electric power by utilizing an electrical reaction between hydrogen in the fuel and oxygen in the air, and is, for example, a polymer electrolyte fuel cell or a phosphoric acid fuel cell. The electric power (electric power) generated by the fuel cell 5 ′ is mainly used to charge the secondary battery 3. When the load of the motor 4 is large enough to exceed the power supply capacity of the secondary battery 3, the electric power of the fuel cell 5 ′ is directly supplied to the motor 4. In the present embodiment, the fuel cell 5 'is described as being a polymer electrolyte fuel cell (PEFC).
 インバータ6は、直流電力と交流電力とを変換する電力変換装置である。コンバータ7は、燃料電池5′で発生する直流電力を昇圧して二次電池3,モータ4側へと供給する。また、車両1′には、車速を検出する車速センサ11と、車両1′に搭載される各種装置を統合制御する制御装置2′(Electronic Control Unit,ECU)とが設けられる。なお、車速センサ11で検出された情報は、制御装置2′に伝達される。 The inverter 6 is a power converter that converts DC power and AC power. The converter 7 boosts the DC power generated by the fuel cell 5 'and supplies it to the secondary battery 3 and the motor 4 side. Further, the vehicle 1 'is provided with a vehicle speed sensor 11 for detecting a vehicle speed, and a control device 2' (Electronic Control Unit, ECU) for integrally controlling various devices mounted on the vehicle 1 '. The information detected by the vehicle speed sensor 11 is transmitted to the control device 2 '.
 車両1′には、上記の車速センサ11の他に車両1′の状態を検出するセンサ類12~14が設けられる。また、車両1′には、駐車状態の判定に必要なパラメータである所定時間を設定するための時間設定手段10が設けられる。時間設定手段10は、第1実施形態と同様、制御装置2′の要素の一つである。センサ類12~14及び時間設定手段10については、第1実施形態と同様であるため、説明を省略する。 In addition to the above-described vehicle speed sensor 11, the vehicle 1 'is provided with sensors 12-14 for detecting the state of the vehicle 1'. Further, the vehicle 1 'is provided with time setting means 10 for setting a predetermined time which is a parameter necessary for determining the parking state. The time setting means 10 is one of the elements of the control device 2 ', as in the first embodiment. The sensors 12 to 14 and the time setting unit 10 are the same as in the first embodiment, and thus the description thereof is omitted.
[1-2.燃料電池の構成]

 図4は、図3の車両1′に搭載される燃料電池5′の一例を示す概略図である。図4に示すように、本実施形態の燃料電池5′には、発電要素である燃料電池スタック50と、燃料電池スタック50にガスを供給するための水素供給装置20及び空気供給装置30と、燃料電池スタック50を冷却するための冷却装置40とが設けられる。燃料電池5′(燃料電池スタック50)で発電された電力は、電気回路を通じて二次電池3に供給されるとともに、インバータ6を介してモータ4に供給される。
[1-2. Fuel Cell Configuration]

FIG. 4 is a schematic view showing an example of a fuel cell 5 'mounted on the vehicle 1' of FIG. As shown in FIG. 4, the fuel cell 5 'of this embodiment includes a fuel cell stack 50 which is a power generation element, a hydrogen supply device 20 and an air supply device 30 for supplying a gas to the fuel cell stack 50, A cooling device 40 for cooling the fuel cell stack 50 is provided. The electric power generated by the fuel cell 5 ′ (fuel cell stack 50) is supplied to the secondary battery 3 through the electric circuit and is also supplied to the motor 4 through the inverter 6.
 燃料電池スタック50は、膜電極接合体(Membrane Electrode Assembly,MEA)を導電性のセパレータで挟持してなる単セル(いずれも図示略)が厚み方向に複数積層されたものであり、それぞれの単セルが電気的に直列接続される。膜電極接合体は、触媒を含むアノード及びカソード等で電解質膜(固体高分子膜)を挟持したものである。セパレータには、燃料である水素ガスが流通するアノード流路と、空気(酸素)が流通するカソード流路と、冷却水が流通する冷却流路(いずれも図示略)とが設けられる。なお、冷却流路には流路41が接続されており、冷却装置40から供給された冷却水が燃料電池スタック50内を循環する。 The fuel cell stack 50 is formed by stacking a plurality of unit cells (all not shown) formed by sandwiching a membrane electrode assembly (Membrane Electrode Assembly, MEA) between conductive separators in the thickness direction. The cells are electrically connected in series. The membrane electrode assembly is one in which an electrolyte membrane (solid polymer membrane) is sandwiched between an anode and a cathode containing a catalyst. The separator is provided with an anode flow channel through which hydrogen gas as fuel flows, a cathode flow channel through which air (oxygen) flows, and a cooling flow channel (not shown) through which cooling water flows. A flow passage 41 is connected to the cooling flow passage, and the cooling water supplied from the cooling device 40 circulates in the fuel cell stack 50.
 水素供給装置20は、燃料電池スタック50のアノード流路に接続された水素供給路21を通じて、燃料電池スタック50に水素ガスを供給するための装置である。水素供給装置20は、減圧バルブや水素供給機器などを備えるとともに、内部に水素ガスを貯蔵した水素ガスタンクを備える。なお、水素供給路21上には、水素ガスの流通状態を制御するバルブ23が介装される。また、アノード流路の下流端には、流出した水素ガスが流通する水素排出路22が接続される。水素排出路22にはバルブ24が介装されるとともに、ポンプ25が介装された再循環流路26が接続される。すなわち、本実施形態の燃料電池5′は、燃料電池スタック50から流出した水素を回収して再循環させる。 The hydrogen supply device 20 is a device for supplying hydrogen gas to the fuel cell stack 50 through the hydrogen supply passage 21 connected to the anode flow passage of the fuel cell stack 50. The hydrogen supply device 20 includes a pressure reducing valve, a hydrogen supply device, and the like, and also includes a hydrogen gas tank storing hydrogen gas therein. A valve 23 for controlling the flow state of hydrogen gas is interposed on the hydrogen supply passage 21. Further, a hydrogen discharge path 22 through which the discharged hydrogen gas flows is connected to the downstream end of the anode flow path. A valve 24 is interposed in the hydrogen discharge passage 22 and a recirculation passage 26 in which a pump 25 is interposed is connected. That is, the fuel cell 5 ′ of the present embodiment recovers and recycles the hydrogen flowing out of the fuel cell stack 50.
 空気供給装置30は、燃料電池スタック50のカソード流路に接続された空気供給路31を通じて、燃料電池スタック50に空気を供給するための装置である。空気供給装置30は、コンプレッサー,排出流量調整バルブ,加湿装置などによって構成され、コンプレッサーにより取り込んだ空気を燃料電池スタック50に供給する。なお、空気供給路31上には、空気の流通状態を制御するバルブ33が介装される。また、カソード流路の下流端には、流出した空気が流通する空気排出路32が接続される。空気排出路32にはバルブ34が介装される。 The air supply device 30 is a device for supplying air to the fuel cell stack 50 through the air supply passage 31 connected to the cathode flow channel of the fuel cell stack 50. The air supply device 30 includes a compressor, an exhaust flow control valve, a humidifier, and the like, and supplies the air taken in by the compressor to the fuel cell stack 50. In addition, on the air supply path 31, the valve 33 which controls the circulation state of air is interposed. Further, an air discharge path 32 through which the discharged air flows is connected to the downstream end of the cathode flow path. A valve 34 is interposed in the air discharge path 32.
 このように構成された燃料電池スタック50は、アノード流路を経由してアノードに水素が供給され、カソード流路を経由してカソードに空気(酸素)が供給されて、アノード及びカソードに含まれる触媒上で電気反応が起こることにより発電する。なお、水素供給装置20及び空気供給装置30の各作動状態、各バルブ23,24,33,34の開閉状態、及び、ポンプ25の作動状態は、制御装置2′によって制御される。燃料電池5′には、燃料電池スタック50の温度を検出する温度センサ15と、燃料電池スタック50の各セルの電圧(以下「セル電圧」という)を検出する電圧センサ16とが設けられる。各センサ15,16で検出された情報は、制御装置2′に伝達される。 In the fuel cell stack 50 configured in this manner, hydrogen is supplied to the anode via the anode flow channel, and air (oxygen) is supplied to the cathode via the cathode flow channel, and is included in the anode and the cathode. Electricity is generated by the occurrence of an electrical reaction on the catalyst. The operation states of the hydrogen supply device 20 and the air supply device 30, the open / close states of the valves 23, 24, 33, 34, and the operation state of the pump 25 are controlled by the control device 2 '. The fuel cell 5 ′ is provided with a temperature sensor 15 for detecting the temperature of the fuel cell stack 50 and a voltage sensor 16 for detecting the voltage of each cell of the fuel cell stack 50 (hereinafter referred to as “cell voltage”). The information detected by each of the sensors 15, 16 is transmitted to the control device 2 '.
[2.制御概要]

 本実施形態の制御装置2′は、車両1′の停車中に所定の充放電条件が成立した場合に、電力授受装置を作動させて二次電池3を追加充電又は追加放電する充放電制御を実施する。二次電池3は、その材質によっては過放電状態や過充電状態でなくても、特異的な劣化が進行してしまうことが明らかとなった。具体的には、二次電池3の充電率が劣化の進行しやすい範囲内にある状態で二次電池3が保存されてしまうと、その間に劣化が進行してしまうことが判明した。本実施形態の充放電制御は、このような劣化を防止するために実施される。
[2. Control outline]

The control device 2 'of the present embodiment performs charge / discharge control of activating the power transfer device to additionally charge or additionally discharge the secondary battery 3 when a predetermined charge / discharge condition is satisfied while the vehicle 1' is stopped. carry out. It has become clear that, depending on the material of the secondary battery 3, specific deterioration proceeds even if it is not in the overdischarged state or the overcharged state. Specifically, it has been found that when the secondary battery 3 is stored in a state in which the charging rate of the secondary battery 3 is in a range in which the deterioration tends to progress, the deterioration proceeds in the meantime. The charge / discharge control of the present embodiment is implemented to prevent such deterioration.
 本実施形態では、以下の条件1~条件3が全て成立している場合に、上記の充放電条件が成立していると判定される。すなわち、第1実施形態と同様に、車両1′の停車中に条件1~条件3が全て成立している場合に充放電制御が実施される。また、充放電制御の実施中に条件1~条件3の少なくとも一つが不成立となると充放電制御が終了する。
 ==充放電条件==
   条件1:二次電池3の充電率SOCが所定の劣化進行範囲内に対応した制御範囲内であること(図5参照)
   条件2:車両1′が駐車状態であること
   条件3:外部充電が実施されていないこと
In the present embodiment, when all of the following conditions 1 to 3 are satisfied, it is determined that the above-mentioned charge and discharge conditions are satisfied. That is, as in the first embodiment, charge / discharge control is performed when all of the conditions 1 to 3 are satisfied while the vehicle 1 'is stopped. In addition, if at least one of the conditions 1 to 3 is not satisfied during the charge / discharge control, the charge / discharge control is ended.
== charge / discharge condition ==
Condition 1: The state of charge SOC of the secondary battery 3 is within a control range corresponding to a predetermined degradation progress range (see FIG. 5)
Condition 2: Vehicle 1 'is in a parked condition Condition 3: External charging is not performed
 条件3は、仮に条件2の成立時点で条件1が成立していたとしても、外部充電中であれば、いずれ条件1が不成立となるはずであることに鑑みて設けられた条件である。なお、充電口に充電ガンが差し込まれると、車両1′と外部充電装置との間で通信が開始されるため、この情報に基づき条件3が判定される。 Condition 3 is a condition provided in view of the fact that if external charging is in progress, even if condition 1 is satisfied when condition 2 is satisfied, then condition 1 should not be satisfied eventually. When the charging gun is inserted into the charging port, communication is started between the vehicle 1 'and the external charging device, so the condition 3 is determined based on this information.
 すなわち、本実施形態の充放電制御は、車両1′が停車してからしばらく時間が経っても二次電池3が外部充電されず、二次電池3の劣化が進行しやすい状況にある場合に実施される。なお、充放電制御の実施条件には少なくとも条件1及び条件2の両方が含まれていればよく、条件3を省略してもよい。 That is, in the charge and discharge control of the present embodiment, the secondary battery 3 is not externally charged even after a while after the vehicle 1 'stops, and the deterioration of the secondary battery 3 is likely to progress. To be implemented. Note that it is sufficient that at least both of the condition 1 and the condition 2 are included in the implementation condition of the charge and discharge control, the condition 3 may be omitted.
 条件1の「劣化進行範囲」とは、上記の特異的な劣化が進行してしまう充電率の範囲を意味する。劣化進行範囲は、二次電池3がほぼ満充電の状態であるときの充電率範囲(以下「満充電範囲」という)と、二次電池3がほぼ空の状態であるときの充電率範囲(以下「空充電範囲」という)とを除いた充電率の範囲内に存在する。この劣化進行範囲は、二次電池3の材質によって決定される。なお、劣化進行範囲は、二次電池3の材質以外にも、例えば二次電池3が保存される環境条件(温度や湿度など)に応じても変化する。このため、劣化進行範囲は固定値に限らず、二次電池3の保存される環境条件に応じて変化する可変値としてもよい。 The "deterioration progress range" of condition 1 means the range of the charging rate in which the above-mentioned specific degradation progresses. The deterioration progress range is a charging rate range when the secondary battery 3 is almost fully charged (hereinafter referred to as “full charging range”) and a charging rate range when the secondary battery 3 is almost empty ( Hereinafter, it exists in the range of the charge rate except the "empty charge range." The deterioration progress range is determined by the material of the secondary battery 3. In addition to the material of the secondary battery 3, the range of progress of deterioration also changes depending on, for example, the environmental conditions (temperature, humidity, etc.) in which the secondary battery 3 is stored. For this reason, the deterioration progress range is not limited to a fixed value, and may be a variable value that changes according to the environmental conditions in which the secondary battery 3 is stored.
 また、条件1の「制御範囲」とは、劣化進行範囲を含む充電率の範囲を意味する。詳述すれば、「制御範囲」とは、劣化進行範囲よりも広い充電率の範囲であって、その下限値は劣化進行範囲の下限値以下の値に設定され、その上限値は劣化進行範囲の上限値よりも大きい値に設定される。 Moreover, the "control range" of condition 1 means the range of the charging rate including the deterioration progress range. Specifically, the "control range" is a range of the charging rate wider than the degradation progress range, and the lower limit value thereof is set to a value lower than the lower limit value of the degradation progress range, and the upper limit value thereof is the degradation progress range It is set to a value larger than the upper limit value of.
 また、条件2の「駐車状態」とは、車両1′の停車後、乗員が不在になっている状態がある程度の時間以上継続している状態とする。すなわち、車両1′の停車後であっても、例えば信号待ちや踏切待ちや、乗員の乗り降りや、車両1′への荷物の出し入れを行う際のような停車時間の短い一時停車状態は、駐車状態に含まれない。 In the "parked state" of condition 2, after the vehicle 1 'is stopped, the state where the occupant is absent continues for a certain time or more. That is, even after stopping the vehicle 1 ', the temporary stopping state where the stopping time is short, such as waiting for a signal, waiting for crossing, passenger getting on and off, loading and unloading of the vehicle 1', etc. Not included in the state.
 本実施形態では、第1実施形態と同様に、以下の条件4~条件8が全て成立している場合に、車両1′が駐車状態であると判定される。また、駐車状態であると判定されてから条件4~条件7の少なくとも一つが不成立となると駐車状態ではないと判定される。
 ==駐車条件==
   条件4:車速Vが0であること
   条件5:車両1′の主電源がオフ状態(IG-OFF)となっていること
   条件6:シフトポジションがPであること
   条件7:車両1′に乗員が搭乗していないこと
   条件8:条件4~条件7が全て成立後、所定時間が経過すること
In the present embodiment, as in the first embodiment, when all the following conditions 4 to 8 are satisfied, it is determined that the vehicle 1 'is in the parking state. If at least one of the conditions 4 to 7 is not satisfied after it is determined that the vehicle is in the parking state, it is determined that the vehicle is not in the parking state.
== Parking condition ==
Condition 4: Vehicle speed V is 0 Condition 5: Main power of vehicle 1 'is off (IG-OFF) Condition 6: Shift position is P Condition 7: Passenger to vehicle 1' Is not boarding Condition 8: A predetermined time elapses after Condition 4 to Condition 7 are all satisfied
 条件8の「所定時間」は、車両1′を停車させてから、信号待ち,踏切待ち,乗員の乗り降り又は車両への荷物の出し入れを行う際に想定される必要時間よりも長い時間に設定される。特に本実施形態における、所定時間は、車両1′の乗員が降車してから二次電池3の外部充電を開始するまでに要する時間よりも長い時間に設定される。なお、所定時間は固定値でもよいし、ユーザが任意に設定可能な可変値としてもよい。本実施形態では、所定時間はユーザが任意に設定可能な可変値とし、時間設定手段10で設定される。 The "predetermined time" of condition 8 is set to a time longer than the necessary time assumed when waiting for a signal, waiting for crossing or crossing, getting on or off passengers or loading / unloading luggage into / from the vehicle after stopping the vehicle 1 ' Ru. In particular, in the present embodiment, the predetermined time is set to be longer than the time required for the external charge of the secondary battery 3 to start after the occupant of the vehicle 1 a gets off. The predetermined time may be a fixed value, or may be a variable that can be arbitrarily set by the user. In the present embodiment, the predetermined time is set by the time setting unit 10 as a variable value which can be arbitrarily set by the user.
[3.制御構成]
 図3に示すように、制御装置2′には、上記の充放電制御を実施するための要素として、推定部2A,駐車判定部2B,状態判定部2C,制御部2D′が設けられる。これらの各要素は電子回路(ハードウェア)によって実現してもよく、ソフトウェアとしてプログラミングされたものとしてもよいし、あるいはこれらの機能のうちの一部をハードウェアとして設け、他部をソフトウェアとしたものであってもよい。また、制御装置2′には、上記の条件4~条件7が全て成立した時点からの経過時間を計測するタイマが設けられる。
[3. Control configuration]
As shown in FIG. 3, the control unit 2 'is provided with an estimation unit 2A, a parking determination unit 2B, a state determination unit 2C, and a control unit 2D' as elements for performing the above-described charge / discharge control. Each of these elements may be realized by an electronic circuit (hardware), may be programmed as software, or some of these functions may be provided as hardware and the other as software. It may be one. Further, the control device 2 'is provided with a timer for measuring an elapsed time from the time when all the above conditions 4 to 7 are satisfied.
[3-1.推定部]

 推定部2Aは、二次電池3の充電率SOCを推定するものである。充電率SOCは、例えば二次電池3の開放電圧の実測値や推定値に基づいて算出(推定)される。あるいは、二次電池3の充放電電流を積算して電力残量の増減変化を追跡することで、充電率SOCを算出(推定)することも可能である。本実施形態では、二次電池3の最大充電容量に対する電力残量の割合を百分率で表したものを充電率SOCとして推定する。ここで推定された充電率SOCは、制御部2D′に伝達される。
3-1. Estimator]

The estimation unit 2A estimates the charging rate SOC of the secondary battery 3. The charging rate SOC is calculated (estimated) based on, for example, a measured value or an estimated value of the open circuit voltage of the secondary battery 3. Alternatively, it is also possible to calculate (estimate) the charging rate SOC by integrating the charge / discharge current of the secondary battery 3 and tracking the increase / decrease change of the remaining power. In the present embodiment, the ratio of the remaining power to the maximum charge capacity of the secondary battery 3 is expressed as a percentage, which is estimated as the charging rate SOC. The charging rate SOC estimated here is transmitted to the control unit 2D '.
[3-2.駐車判定部]

 駐車判定部2Bは、車両1′が駐車状態であるか否かを判定するものである。駐車判定部2Bについては、第1実施形態と同様であるため、説明を省略する。
[3-2. Parking judgment section]

The parking determination unit 2B determines whether the vehicle 1 'is in a parking state. About parking judgment part 2B, since it is the same as that of a 1st embodiment, explanation is omitted.
[3-3.状態判定部]

 状態判定部2Cは、燃料電池5′の劣化状態を判定するものである。本実施形態の充放電制御では、二次電池3を追加充電することで二次電池3の劣化を抑制しつつ、燃料電池5′が劣化状態であれば、併せて燃料電池5′の性能回復を図る。つまり、状態判定部2Cは、燃料電池5′の性能回復の必要性を判断するために、その劣化状態を判定する。
[3-3. State determination unit]

The state determination unit 2C determines the deterioration state of the fuel cell 5 '. In the charge / discharge control of the present embodiment, if the fuel cell 5 ′ is in a deteriorated state while additionally suppressing the deterioration of the secondary cell 3 by additionally charging the secondary cell 3, the performance recovery of the fuel cell 5 ′ is also performed. Plan. That is, the state determination unit 2C determines the deterioration state to determine the necessity of performance recovery of the fuel cell 5 '.
 本実施形態の状態判定部2Cは、燃料電池5′を作動させて追加充電する場合に、燃料電池5′が所望の電圧を出力するように作動させたときの実際の電圧値(以下「実電圧値」という)に基づいて、燃料電池5′が劣化状態であるか否かを判定する。なお、本実施形態の状態判定部2Cは、セル電圧を燃料電池5′の電圧として使用し、電圧センサ16で検出された複数のセル電圧値の平均値や代表値を実電圧値として使用する。 When the fuel cell 5 ′ is operated for additional charging by operating the fuel cell 5 ′, the state determination unit 2C according to the present embodiment operates when the fuel cell 5 ′ is operated to output a desired voltage (hereinafter referred to as “actual It is determined whether or not the fuel cell 5 ′ is in a deteriorated state based on the “voltage value”. The state determination unit 2C of this embodiment uses the cell voltage as the voltage of the fuel cell 5 'and uses the average value or the representative value of the plurality of cell voltage values detected by the voltage sensor 16 as the actual voltage value. .
 具体的には、後述する制御部2D′によって燃料電池5′が所望の電圧を出力するように制御されている場合に、状態判定部2Cが電圧センサ16で検出された値(すなわち実電圧値)を取得し、所望の電圧値よりも所定電圧だけ低い判定値と実電圧値とを比較することによって燃料電池5′の劣化状態を判定する。 Specifically, when the fuel cell 5 'is controlled to output a desired voltage by a control unit 2D' described later, a value detected by the state determination unit 2C by the voltage sensor 16 (ie, an actual voltage value) Is obtained, and the deterioration state of the fuel cell 5 'is determined by comparing the actual voltage value with a judgment value lower by a predetermined voltage than the desired voltage value.
 後述するように、燃料電池5′は長時間の連続運転によって徐々に劣化が進行していくため、所望の電圧を出力するように燃料電池5′を制御しても、実際には所望の電圧値が検出されない可能性がある。このため、本実施形態においては、燃料電池5′が劣化状態であるか否かの判定を、実電圧値と、所望の電圧値よりも所定電圧だけ低い判定値とを使って行う。本実施形態の判定値は、燃料電池5′の性能を回復させる必要があるか否かを判定するための閾値であり、所望の電圧値から所定電圧を減算した値に予め設定される。なお、判定値の設定方法はこれに限らない。例えば、前回充放電制御を実施した際に所望の電圧を出力するように燃料電池5′を制御したときの実電圧値を記憶しておき、この値(すなわち前回の実電圧値)を今回の判定値として設定してもよい。 As described later, since the fuel cell 5 'is gradually deteriorated by continuous operation for a long time, even if the fuel cell 5' is controlled to output a desired voltage, the desired voltage is actually obtained. The value may not be detected. Therefore, in the present embodiment, it is determined whether or not the fuel cell 5 ′ is in the deteriorated state using the actual voltage value and a determination value that is lower than the desired voltage value by a predetermined voltage. The determination value of the present embodiment is a threshold value for determining whether or not the performance of the fuel cell 5 ′ needs to be recovered, and is preset to a value obtained by subtracting a predetermined voltage from a desired voltage value. The method of setting the determination value is not limited to this. For example, the actual voltage value when the fuel cell 5 'is controlled to output a desired voltage when the previous charge / discharge control is performed is stored, and this value (that is, the previous actual voltage value) It may be set as a judgment value.
 状態判定部2Cは、実電圧値が判定値よりも低い場合には、燃料電池5′が劣化状態であると判定し、実電圧値が判定値以上である場合には、燃料電池5′が劣化状態でないと判定して、判定結果を制御部2D′に伝達する。 State determination unit 2C determines that fuel cell 5 'is in a deteriorated state when the actual voltage value is lower than the determination value, and when the actual voltage value is equal to or higher than the determination value, fuel cell 5' It determines that it is not in the deteriorated state, and transmits the determination result to the control unit 2D '.
 本実施形態の状態判定部2Cは、燃料電池5′が、最高効率運転モードで作動するように制御されているときの実電圧値に基づき、燃料電池5′の劣化状態を判定する。最高効率運転モードとは、燃料電池5′を最も電費の良い状態で運転させるモードである。すなわち、燃料(水素ガス)の消費量に対する出力が最も高い運転モードが最高効率運転モードである。本実施形態の最高効率運転モードでは、水素供給装置20,空気供給装置30及び冷却装置40等が予め決まった作動状態に制御される。 The state determination unit 2C of the present embodiment determines the deterioration state of the fuel cell 5 'based on the actual voltage value when the fuel cell 5' is controlled to operate in the highest efficiency operation mode. The highest efficiency operation mode is a mode in which the fuel cell 5 'is operated at the highest cost. That is, the operation mode with the highest output with respect to the consumption of fuel (hydrogen gas) is the highest efficiency operation mode. In the highest efficiency operation mode of the present embodiment, the hydrogen supply device 20, the air supply device 30, the cooling device 40, and the like are controlled to predetermined operation states.
 最高効率運転モードでは、燃料電池5′は所望の電圧(例えば0.85[V])を出力するように制御される。ここで、燃料電池5′の性能を回復させる必要がない場合(燃料電池5′がそれほど劣化していない場合)であっても、実際には長時間の連続運転によって徐々に劣化していくため、このように出力制御されたとしても、その実電圧値は所望の電圧値よりもやや低い値(例えば0.80~0.83[V])となる。ただし、この場合には、上記の判定値を下回ることはない。したがって、燃料電池5′が最高効率運転モードで作動しているにもかかわらず実電圧値が判定値以上であれば燃料電池5′は劣化していないと判断でき、反対に、実電圧値が判定値を下回る場合には、燃料電池5′が劣化していると判断できる。 In the highest efficiency operation mode, the fuel cell 5 'is controlled to output a desired voltage (e.g., 0.85 [V]). Here, even if it is not necessary to recover the performance of the fuel cell 5 '(when the fuel cell 5' is not deteriorated so much), actually it gradually deteriorates due to long continuous operation. Even if the output control is performed in this manner, the actual voltage value becomes a value (for example, 0.80 to 0.83 [V]) slightly lower than the desired voltage value. However, in this case, the value does not fall below the above determination value. Therefore, although the fuel cell 5 'is operating in the highest efficiency operation mode, it can be determined that the fuel cell 5' is not deteriorated if the actual voltage value is equal to or higher than the judgment value. If the value is less than the determination value, it can be determined that the fuel cell 5 ′ is degraded.
[3-4.制御部]

 制御部2D′は、車両1′の停車中に上記の充放電条件が成立した場合に、電力授受装置を作動させて二次電池3を追加充電又は追加放電するものである。すなわち、制御部2D′は、車両1′が停車したときに充放電条件の成否を判定し、その判定結果に応じて充放電制御を実施する。なお、制御部2D′は、例えば車速やシフトポジション等に基づいて車両1′が停車したか否かを判定する。本実施形態の制御部2D′は、第1実施形態と同様に、車速Vが0であるか否かに基づき車両1′が停車中か否かを判定する。
[3-4. Control unit]

The control unit 2D ′ operates the power transfer device to additionally charge or additionally discharge the secondary battery 3 when the above-mentioned charge / discharge condition is satisfied while the vehicle 1 ′ is stopped. That is, control part 2D 'determines the success or failure of charge / discharge conditions when vehicle 1' stops, and carries out charge / discharge control according to the result of the judgment. The control unit 2D 'determines whether the vehicle 1' has stopped based on, for example, the vehicle speed, the shift position, and the like. As in the first embodiment, the control unit 2D 'of the present embodiment determines whether the vehicle 1' is at a stop based on whether the vehicle speed V is zero.
 制御部2D′は、推定部2Aで推定された充電率SOCを用いて上記の条件1を判定する。また、駐車判定部2Bから取得した判定結果を用いて上記の条件2を判定し、外部充電装置との通信情報に基づき上記の条件3を判定する。 Control part 2D 'determines said condition 1 using the charging rate SOC estimated by estimation part 2A. Further, the above-mentioned condition 2 is determined using the determination result acquired from the parking determination unit 2B, and the above-mentioned condition 3 is determined based on the communication information with the external charging device.
 制御部2D′は、条件1~条件3が全て成立している場合に、上記の充放電条件が成立していると判定する。一方、上記の条件1~条件3の少なくとも一つが不成立になった場合には、電力授受装置を停止させて充放電制御を終了する。 When all the conditions 1 to 3 are satisfied, the control unit 2D ′ determines that the above-described charge and discharge conditions are satisfied. On the other hand, when at least one of the conditions 1 to 3 described above is not satisfied, the power transfer device is stopped and the charge and discharge control is ended.
 制御部2D′は、充放電制御を行う場合には、推定部2Aで推定された二次電池3の充電率SOCに基づき追加充電するか追加放電するかを選択する。追加充電するか追加放電するかの選択方法は第1実施形態と同様であるため、説明を省略する。なお、本実施形態では、追加充電するか追加放電するかの判定閾値である充放電判定閾値SOCthが劣化進行範囲の中間値ではなく、劣化進行範囲の中間値よりも低い値に設定されている(図5の下図参照)。 When performing charge / discharge control, control unit 2D 'selects whether additional charging or additional discharging is performed based on the charging rate SOC of secondary battery 3 estimated by estimation unit 2A. The method of selecting whether to additionally charge or to additionally discharge is the same as in the first embodiment, and thus the description thereof is omitted. In the present embodiment, the charge / discharge determination threshold SOCth, which is the determination threshold for whether additional charging or additional discharging is performed, is set to a value lower than the intermediate value of the deterioration progress range, not the intermediate value of the deterioration progress range. (See the bottom of Figure 5).
 制御部2D′は、追加放電を実施する場合には、補助バッテリ9を作動させて二次電池3の電力によって補助バッテリ9を充電しながら追加充電する。一方、制御部2D′は、追加充電を実施する場合には、補助バッテリ9による追加充電が可能であるか否かを判定し、補助バッテリによる追加充電が可能である場合には補助バッテリ9を作動させて追加充電を実施し、補助バッテリ9による追加充電ができない場合には発電装置である燃料電池5′を作動させて追加充電する。 When the additional discharge is performed, the control unit 2D ′ operates the auxiliary battery 9 to perform additional charging while charging the auxiliary battery 9 with the power of the secondary battery 3. On the other hand, when additional charging is performed, control unit 2D 'determines whether additional charging by auxiliary battery 9 is possible, and when additional charging by the auxiliary battery is possible, auxiliary battery 9 is used. The operation is performed to carry out the additional charge, and when the additional charge by the auxiliary battery 9 is not possible, the fuel cell 5 'which is a power generation device is operated to perform the additional charge.
 補助バッテリ9による追加充電が可能であるか否かの判定と、補助バッテリ9を作動させて追加充電する方法については第1実施形態を同様であるため説明を省略する。ここでは、追加充電を実施する場合であって補助バッテリ9による追加充電ができない場合、すなわち、燃料電池5′を作動させて追加充電を実施する場合について説明する。制御部2D′は、燃料電池5′を作動させて追加充電を実施する場合には、燃料電池5′を起動させ、燃料電池5′の発電電力を二次電池3に充電する。一方、充放電制御の実施中に上記の条件1~条件3の少なくとも一つが不成立になった場合には、燃料電池5′を停止させて充放電制御を終了する。 The determination as to whether or not additional charging by the auxiliary battery 9 is possible, and the method of operating the auxiliary battery 9 to perform additional charging are the same as in the first embodiment, and thus the description thereof is omitted. Here, the case where the additional charge is performed and the additional charge by the auxiliary battery 9 can not be performed, that is, the case where the fuel cell 5 ′ is operated to perform the additional charge will be described. When the fuel cell 5 'is operated to perform additional charging, the control unit 2D' starts the fuel cell 5 'and charges the secondary battery 3 with the generated power of the fuel cell 5'. On the other hand, when at least one of the above conditions 1 to 3 is not satisfied during the charge / discharge control, the fuel cell 5 'is stopped and the charge / discharge control is ended.
 本実施形態の制御部2D′は、燃料電池5′を作動させて追加充電する場合には、状態判定部2Cによる判定結果に基づき燃料電池5′の運転モードを選択し、その運転モードで燃料電池5′を作動させて追加充電を実施する。具体的には、制御部2D′は、状態判定部2Cにより燃料電池5′が劣化状態でないと判定された場合に上記の最高効率運転モードを選択し、状態判定部2Cにより燃料電池5′が劣化状態であると判定された場合に回復運転モードを選択する。回復運転モードとは、燃料電池5′の性能回復を行いながら二次電池3を充電する運転モードである。 The control unit 2D 'of this embodiment selects the operation mode of the fuel cell 5' based on the determination result by the state determination unit 2C when the fuel cell 5 'is operated and additional charging is performed, and the fuel mode is selected in the operation mode The battery 5 'is operated to carry out additional charging. Specifically, when the state determination unit 2C determines that the fuel cell 5 'is not in the deteriorated state, the control unit 2D' selects the above-mentioned highest efficiency operation mode, and the state determination unit 2C selects the fuel cell 5 '. The recovery operation mode is selected when it is determined that the vehicle is in the deteriorated state. The recovery operation mode is an operation mode for charging the secondary battery 3 while performing performance recovery of the fuel cell 5 ′.
 上述したように、一般的に、燃料電池は長時間の連続運転により様々な要因で劣化する。例えば、カソード極の触媒の酸化劣化、膜電極接合体由来の劣化分解物の化学吸着や物理吸着による劣化、金属セパレータ,金属配管,樹脂配管などのシステム由来の不純物が化学吸着や物理吸着することに起因した劣化、大気中の硫黄分や塩分の化学吸着による劣化が挙げられる。上記の回復運転モードが実施されることで、このように劣化した燃料電池5′の状態(性能)の回復が図られる。なお、回復運転モードの実施により燃料電池5′の回復が図られた結果、燃料電池5′が劣化状態でないと判定された場合に、上記の条件1~条件3の全てが成立中であれば、制御部2D′は、燃料電池5′の運転モードを回復運転モードから最高効率運転モードに切り替える。 As described above, fuel cells generally deteriorate due to various factors due to long-term continuous operation. For example, oxidation deterioration of the catalyst of the cathode electrode, deterioration due to chemical adsorption or physical adsorption of deterioration decomposition products derived from the membrane electrode assembly, chemical adsorption or physical adsorption of impurities derived from systems such as metal separators, metal piping, resin piping, etc. Degradation due to chemical adsorption of sulfur and salinity in the atmosphere. By performing the above recovery operation mode, recovery of the state (performance) of the fuel cell 5 ′ thus degraded is achieved. It should be noted that if it is determined that fuel cell 5 ′ is not deteriorated as a result of recovery of fuel cell 5 ′ as a result of execution of the recovery operation mode, all of the above conditions 1 to 3 are satisfied. The controller 2D 'switches the operation mode of the fuel cell 5' from the recovery operation mode to the highest efficiency operation mode.
 本実施形態の制御部2D′は、回復運転モードとして「電位サイクル制御」を実施する。電位サイクル制御とは、通常時に燃料電池5′が出力しうる電圧値(例えば、0.6~0.85[V])よりも低い電圧値(以下「不純物除去電圧Vmin」という)まで燃料電池5′の電圧を下げる制御と、下げた電圧を再び所望の電圧値近傍まで高める制御とを繰り返す制御である。ここでいう「通常時」とは、車両1′の走行中に燃料電池5′が作動しているときを意味する。
 すなわち、本実施形態の制御部2D′は、回復運転モードにおいて、燃料電池5′の電圧値が上昇と下降とを繰り返すように燃料電池5′の作動状態を制御する。
Control part 2D 'of this embodiment implements "potential cycle control" as a recovery operation mode. In potential cycle control, the voltage of the fuel cell 5 ′ (hereinafter referred to as “impurity removing voltage Vmin”) is lower than the voltage (for example, 0.6 to 0.85 [V]) that the fuel cell 5 ′ can normally output. Control is repeated and control to raise the lowered voltage to near the desired voltage value again. Here, "normal" means that the fuel cell 5 'is operating while the vehicle 1' is traveling.
That is, in the recovery operation mode, the control unit 2D 'of the present embodiment controls the operating state of the fuel cell 5' so that the voltage value of the fuel cell 5 'repeats rising and falling.
 不純物除去電圧Vminは、燃料電池5′に含まれる不純物が取り除かれる電圧値であり、不純物ごとに異なる。ここで、上述のように燃料電池5′の電圧を不純物除去電圧Vminまで下げる制御と再び高める制御とを併せて1サイクルとする。燃料電池5′は、電圧値が不純物除去電圧Vmin以下に制御されることによって、不純物の触媒に対する吸着が弱められるとともに、ガスの流れに乗って不純物が燃料電池5′から取り除かれるため、その性能回復が可能となる。 The impurity removal voltage Vmin is a voltage value at which the impurity contained in the fuel cell 5 'is removed, and varies depending on the impurity. Here, as described above, the control to lower the voltage of the fuel cell 5 'to the impurity removal voltage Vmin and the control to increase it again are combined into one cycle. The fuel cell 5 ′ is controlled in such a manner that the adsorption of impurities on the catalyst is weakened by controlling the voltage value to the impurity removal voltage Vmin or less, and the impurities are removed from the fuel cell 5 ′ by the flow of gas. Recovery is possible.
 本実施形態の制御部2D′は、電圧の上昇と下降との繰り返し回数(サイクル数)が増すほど、不純物除去電圧Vmin(下限値)を低下させる。すなわち、本実施形態の不純物除去電圧Vminは一定値ではなく、予め設定された初期値から徐々に小さくなる可変値とされる。燃料電池5′内に吸着する不純物の吸着が弱められる電圧値は、吸着している不純物の種類によって異なるため、このように1サイクル毎に不純物除去電圧Vminを変更することで、燃料電池5′の発電効率の低下を抑制しつつ、効果的に燃料電池5′の性能回復が可能となる。 The control unit 2D ′ of the present embodiment reduces the impurity removal voltage Vmin (lower limit value) as the number of repetitions (cycle number) of the increase and decrease of the voltage increases. That is, the impurity removal voltage Vmin of the present embodiment is not a constant value, but is a variable value that gradually decreases from a preset initial value. Since the voltage value at which the adsorption of the impurities adsorbed in the fuel cell 5 ′ is weakened varies depending on the type of the adsorbed impurities, the fuel cell 5 ′ can be changed by changing the impurity removal voltage Vmin every cycle as described above. The performance of the fuel cell 5 'can be effectively recovered while suppressing the decrease in the power generation efficiency.
 本実施形態の制御部2D′は、上述した電位サイクル制御を以下のような流れで実施する。まず、所望の電圧を出力するように燃料電池5′を制御し、このときの実電圧値から不純物除去電圧Vminまで燃料電池5′の電圧を低下させる。具体的には、制御部2D′は、水素供給装置20から送られる水素ガスの速度と、空気供給装置30から送られる空気の速度とを低下させるとともに、冷却装置40から送られる冷却水の流量を低下させる。 The control unit 2D 'of the present embodiment implements the above-described potential cycle control in the following flow. First, the fuel cell 5 'is controlled to output a desired voltage, and the voltage of the fuel cell 5' is reduced from the actual voltage value at this time to the impurity removal voltage Vmin. Specifically, the control unit 2D ′ reduces the velocity of the hydrogen gas sent from the hydrogen supply device 20 and the velocity of the air sent from the air supply device 30, and the flow rate of the cooling water sent from the cooling device 40. Reduce
 冷却装置40から燃料電池スタック50に送られる冷却水の流量が低下すると、冷却が抑制され、燃料電池スタック50内では水素と酸素の反応熱が放熱されずに、燃料電池スタック50の温度が上昇する。燃料電池スタック50の温度が高められると、アノード触媒層が乾燥して、このアノード触媒層での水素の反応が抑制される。さらに、燃料電池スタック50内を循環するガスの速度が遅くなるため、燃料電池スタック50内に水素ガス及び空気が滞る。これにより、電圧が低下する。 When the flow rate of the cooling water sent from the cooling device 40 to the fuel cell stack 50 decreases, the cooling is suppressed and the temperature of the fuel cell stack 50 rises without the heat of reaction between hydrogen and oxygen being dissipated in the fuel cell stack 50. Do. When the temperature of the fuel cell stack 50 is increased, the anode catalyst layer is dried to suppress the reaction of hydrogen in the anode catalyst layer. Furthermore, since the velocity of the gas circulating in the fuel cell stack 50 is reduced, hydrogen gas and air stagnate in the fuel cell stack 50. This reduces the voltage.
 次いで、制御部2D′は、電圧センサ16で検出された電圧値が不純物除去電圧Vmin以下になると、その状態を所定時間維持し、電圧を再び所望の電圧値近傍まで上昇させるように燃料電池5′を制御する。すなわち、制御部2D′は、燃料電池5′が所望の電圧(本実施形態では0.85[V])を出力するように、水素供給装置20,空気供給装置30,冷却装置40等を制御する。 Then, when the voltage value detected by voltage sensor 16 becomes lower than impurity removal voltage Vmin, control unit 2D ′ maintains the state for a predetermined time, and causes fuel cell 5 to raise the voltage to a desired voltage value again. Control the '. That is, the control unit 2D 'controls the hydrogen supply device 20, the air supply device 30, the cooling device 40, and the like so that the fuel cell 5' outputs a desired voltage (0.85 [V] in the present embodiment).
 制御部2D′は、回復運転モードで燃料電池5′を1サイクル運転させた後、状態判定部2Cに燃料電池5′の性能が回復したか否かを判定させる。すなわち、制御部2D′により燃料電池5′が所望の電圧を出力するように燃料電池5′が制御され、燃料電池5′の電圧が再び高められたときに、状態判定部2Cは、実電圧値を取得し、判定値と比較して劣化状態を判定する。なお、燃料電池5′の電圧が再び高められたか否かは、電圧の変化量から推定して判定することが可能である。 The control unit 2D 'causes the state determination unit 2C to determine whether the performance of the fuel cell 5' has recovered after the fuel cell 5 'has been operated for one cycle in the recovery operation mode. That is, when fuel cell 5 'is controlled such that fuel cell 5' outputs a desired voltage by control unit 2D 'and the voltage of fuel cell 5' is increased again, state determination unit 2C determines the actual voltage A value is acquired and compared with the determination value to determine the deterioration state. Note that whether or not the voltage of the fuel cell 5 'is raised again can be determined by estimating it from the amount of change in voltage.
 状態判定部2Cは、実電圧値が判定値よりも低い場合には、燃料電池5′が劣化状態である(すなわち性能が回復していない)と判定し、その結果を制御部2D′に伝達する。この場合、制御部2D′は、不純物除去電圧Vminを所定量dVだけ下げ、不純物除去電圧Vmin′に変更する。そして、再び燃料電池5′の電圧を下降及び上昇させ、上記と同様の処理を繰り返す。一方、状態判定部2Cは、実電圧値が判定値以上である場合には、燃料電池5′が劣化状態でない(すなわち性能が回復した)と判定し、その結果を制御部2D′に伝達する。この場合、制御部2D′は、上記の条件1及び条件3が成立中であれば、燃料電池5′の運転モードを回復運転モードから最高効率運転モードに切り替える。更に、制御部2D′は、不純物除去電圧Vminを初期値にリセットする。 When the actual voltage value is lower than the determination value, the state determination unit 2C determines that the fuel cell 5 'is in the deteriorated state (that is, the performance is not recovered), and transmits the result to the control unit 2D'. Do. In this case, the control unit 2D ′ lowers the impurity removal voltage Vmin by a predetermined amount dV to change it to the impurity removal voltage Vmin ′. Then, the voltage of the fuel cell 5 'is lowered and raised again, and the same process as described above is repeated. On the other hand, when the actual voltage value is equal to or higher than the determination value, the state determination unit 2C determines that the fuel cell 5 'is not in the deteriorated state (that is, the performance is recovered), and transmits the result to the control unit 2D'. . In this case, the control unit 2D 'switches the operation mode of the fuel cell 5' from the recovery operation mode to the highest efficiency operation mode if the above conditions 1 and 3 are satisfied. Further, the control unit 2D ′ resets the impurity removal voltage Vmin to an initial value.
 図5は、本実施形態の充放電制御として、燃料電池5′を作動させて追加充電が実施されたときの燃料電池5′の電圧値の変化と、それに伴う二次電池3の充電率SOCの変化とを併せて図示するチャートである。図5では、時刻t0に充放電条件が成立して充放電制御として燃料電池5′を作動させて追加充電が開始され、時刻t1に劣化状態であるか否かの判定が実施された場合を例示する。なお、図5では回復運転モードを3サイクル行ったとき(時刻t4)に燃料電池5′が劣化状態でないと判定された場合を例に示す。図中実線は、燃料電池5′を回復運転モードで作動させた場合を示し、図中破線は、燃料電池5′を最高効率運転モードで作動させた場合を示す。 FIG. 5 shows the change in voltage value of the fuel cell 5 'when the fuel cell 5' is operated and additional charging is performed as the charge / discharge control of the present embodiment, and the charge ratio SOC of the secondary cell 3 accompanying it. It is a chart which illustrates the change of. In Figure 5, the charge and discharge conditions at time t 0 additional charging by operating the fuel cell 5 'is started as the charge and discharge were controlled satisfied, it is determined whether the deteriorated state is performed at time t 1 The case is illustrated. FIG. 5 shows an example in which it is determined that the fuel cell 5 ′ is not in the deteriorated state when the recovery operation mode is performed for three cycles (time t 4 ). The solid line in the figure shows the case where the fuel cell 5 'is operated in the recovery operation mode, and the broken line in the figure shows the case where the fuel cell 5' is operated in the highest efficiency operation mode.
 最高効率運転モードで燃料電池5′を作動させて二次電池3の追加充電を行った場合には、図5中に破線で示すように、二次電池3が所定の電圧で充電され続けるため、二次電池3の充電率SOCは充電実施時間に応じて比例的に上昇する。なお、図5では、充電率SOCが制御範囲から逸脱したあとも燃料電池5′を最高効率運転モードで作動させているが、充電率SOCが制御範囲から逸脱した時点で燃料電池5′を停止させてもよい。 When the fuel cell 5 'is operated in the highest efficiency operation mode to additionally charge the secondary battery 3, as shown by the broken line in FIG. 5, the secondary battery 3 continues to be charged at a predetermined voltage. The charging rate SOC of the secondary battery 3 rises in proportion to the charging operation time. In FIG. 5, the fuel cell 5 'is operated in the highest efficiency operation mode even after the charge rate SOC deviates from the control range, but the fuel cell 5' is stopped when the charge rate SOC deviates from the control range You may
 一方、回復運転モードで燃料電池5′を作動させて二次電池3の追加充電を行った場合には、図5中に実線で示すように、二次電池3は主に燃料電池5′の電圧値が一定のとき又は下降しているときに充電される。このため、回復運転モードで燃料電池5′を作動させて二次電池3の充電を行った場合には、二次電池3の充電率SOCは充電実施時間に応じて断続的に上昇するが、その上昇率は最高効率運転モードで燃料電池5′を作動させて二次電池3の充電を行った場合よりも低くなる。 On the other hand, when the fuel cell 5 'is operated in the recovery operation mode to additionally charge the secondary cell 3, as shown by the solid line in FIG. 5, the secondary cell 3 mainly comprises the fuel cell 5'. It is charged when the voltage value is constant or falling. Therefore, when the fuel cell 5 'is operated in the recovery operation mode to charge the secondary battery 3, the charging rate SOC of the secondary battery 3 is intermittently increased according to the charging execution time. The rate of increase is lower than in the case of operating the fuel cell 5 ′ in the highest efficiency operation mode to charge the secondary battery 3.
 また、上述した通り、制御部2D′は、1サイクル毎に不純物除去電圧Vminを所定量dVずつ低下させ、不純物除去電圧Vmin′,Vmin″に変更する。例えば、燃料電池5′の電圧値の下限値は、時刻t1~t2のときよりも、時刻t2~t3のときの方が低くされ、1サイクル制御される度に低くなる。これにより、燃料電池5′の発電効率の低下を抑制しつつ燃料電池5′に含まれる不純物が除去されてその性能回復が図られる。なお、燃料電池5′の性能が回復しても二次電池3の充電率SOCが制御範囲にある場合には、回復運転モードから最高効率運転モードに切り替えられ、燃料電池5′の作動が継続される。 In addition, as described above, the control unit 2D ′ reduces the impurity removal voltage Vmin by a predetermined amount dV each cycle to change it to the impurity removal voltages Vmin ′ and Vmin ′ ′. For example, the voltage value of the fuel cell 5 ′ lower limit, than at time t 1 ~ t 2, who at time t 2 ~ t 3 is low, 1 lower each time it is cycle control. Thus, the power generation efficiency of the fuel cell 5 ' The impurities contained in the fuel cell 5 'are removed while suppressing the decrease, and the performance is recovered. Even if the performance of the fuel cell 5' is recovered, the charging rate SOC of the secondary cell 3 is in the control range In this case, the recovery operation mode is switched to the highest efficiency operation mode, and the operation of the fuel cell 5 'is continued.
[4.フローチャート]

 図6は、上述した充放電制御の内容の一部を説明するための図2のフローチャートのサブフローチャート例である。このサブフローチャートは、図2のステップS9~ステップS11に代えて実施される。第1実施形態と同様に、本実施形態では、車両1′が停車した時点で、外部充電がされておらず、上記の駐車条件のうちの条件4~7が成立した場合に、図2のフローチャートが制御装置2′において開始され、車両1′の停車中に所定の演算周期で実施される。図6のサブフローチャートは、図2のフローチャートのステップS5において、補助バッテリ9により追加充電できないと判定された場合に実施される。なお、上記の所定時間は、ユーザにより予め入力(設定)されているものとする。
[4. flowchart]

FIG. 6 is a sub-flow chart example of the flow chart of FIG. 2 for explaining a part of the contents of the above-mentioned charge and discharge control. This sub-flowchart is implemented in place of steps S9 to S11 of FIG. As in the first embodiment, in the present embodiment, when the vehicle 1 'stops, external charging is not performed, and conditions 4 to 7 of the above-mentioned parking conditions are satisfied. The flowchart is started in the control device 2 'and is performed at a predetermined operation cycle while the vehicle 1' is stopped. The sub-flowchart of FIG. 6 is carried out when it is determined in step S5 of the flow chart of FIG. 2 that the auxiliary battery 9 can not perform additional charging. Note that the above predetermined time is assumed to be input (set) in advance by the user.
 ステップS9′では、燃料電池5′が起動させられる。ステップS10′では、燃料電池5′が劣化状態であるか否かが判定される。具体的には、状態判定部2Cにより、所望の電圧を出力するように燃料電池5′が制御されたときの実電圧値が取得され、実電圧値が判定値未満であるか否かが判定される。ステップS10′において、燃料電池5′が劣化状態でない判定された場合には、ステップS11′に進み、劣化状態であると判定された場合はステップS16′に進む。ステップS11′以降では、燃料電池5′を最高効率運転モードで作動させながら二次電池3の追加充電が行われる。 In step S9 ', the fuel cell 5' is activated. In step S10 ', it is determined whether the fuel cell 5' is in a deteriorated state. Specifically, the state determination unit 2C acquires an actual voltage value when the fuel cell 5 is controlled to output a desired voltage, and determines whether the actual voltage value is less than the determination value. Be done. If it is determined in step S10 'that the fuel cell 5' is not in the deteriorated state, the process proceeds to step S11 '. If it is determined that the fuel cell 5' is in the deteriorated state, the process proceeds to step S16 '. After step S11 ', the secondary battery 3 is additionally charged while operating the fuel cell 5' in the highest efficiency operation mode.
 すなわち、ステップS11′では、制御部2D′により燃料電池5′が最高効率運転モードで作動するよう制御され、二次電池3が追加充電され、続くステップS12′では、二次電池3の充電率SOCが取得される。更に、ステップS13′では、取得された充電率SOCが制御範囲内であるか否かが判定される。ステップS13′において、二次電池3の充電率SOCが制御範囲内であると判定された場合には、ステップS11′に戻り、最高効率運転モードでの作動が継続されて二次電池3が追加充電される。 That is, in step S11 ', control unit 2D' controls fuel cell 5 'to operate in the highest efficiency operation mode, and secondary battery 3 is additionally charged. In subsequent step S12', the charging rate of secondary battery 3 is SOC is acquired. Furthermore, in step S13 ', it is determined whether the obtained charging rate SOC is within the control range. If it is determined in step S13 'that the state of charge SOC of secondary battery 3 is within the control range, the process returns to step S11', operation in the highest efficiency operation mode is continued, and secondary battery 3 is added Be charged.
 そして、ステップS13′において、二次電池3の充電率SOCが制御範囲内でないと判定されると、二次電池3が劣化の進行しやすい充電率範囲から外れたため、ステップS14′において燃料電池5′の作動が停止され、ステップS15′において不純物除去電圧が初期値にリセットされ、このフローをリターンする。なお、ステップS10′からステップS11′に進んだ場合には、不純物除去電圧は初期値から変更されていないため、ステップS15′の処理は実質的には行われない。 Then, if it is determined in step S13 'that the charging rate SOC of secondary battery 3 is not within the control range, secondary battery 3 is out of the charging rate range in which deterioration readily progresses, so fuel cell 5 in step S14'. The operation of 'is stopped, the impurity removal voltage is reset to the initial value in step S15', and this flow is returned. When the process proceeds from step S10 'to step S11', since the impurity removal voltage is not changed from the initial value, the process of step S15 'is not substantially performed.
 一方、ステップS10′において、燃料電池5′が劣化状態であると判定された場合には、ステップS16′に進み、燃料電池5′を回復運転モードで作動させながら二次電池3の追加充電を行う。 On the other hand, if it is determined in step S10 'that the fuel cell 5' is in the deteriorated state, the process proceeds to step S16 'to additionally charge the secondary battery 3 while operating the fuel cell 5' in the recovery operation mode. Do.
 すなわち、ステップS16′では、制御部2D′により燃料電池5′が回復運転モードで作動するよう制御され、二次電池3が追加充電され、続くステップS17′では、二次電池3の充電率SOCが取得される。更に、ステップS18′では、取得された充電率SOCが制御範囲内であるか否かが判定される。ステップS18′において、二次電池3の充電率SOCが制御範囲内であると判定された場合には、ステップS19′に進み、燃料電池5′が劣化状態であるか否かが判定される。 That is, in step S16 ', control unit 2D' controls fuel cell 5 'to operate in the recovery operation mode, and secondary battery 3 is additionally charged. In subsequent step S17', the charging rate SOC of secondary battery 3 is Is acquired. Furthermore, in step S18 ', it is determined whether the obtained charging rate SOC is within the control range. If it is determined in step S18 'that the state of charge SOC of the secondary battery 3 is within the control range, the process proceeds to step S19' to determine whether the fuel cell 5 'is in a deteriorated state.
 ステップS19′において、燃料電池5′が劣化状態であると判定された場合には、ステップS20′に進み、回復運転モードを実施するときの不純物除去電圧が変更される。例えば、現在の不純物除去電圧がVminであるときは、この値Vminから所定量dVを減算した値Vmin′(=Vmin-dV)を新たな不純物除去電圧とする。その後、ステップS16′に戻り、制御部2D′により、再度、回復運転モードで燃料電池5′が制御されて二次電池3の追加充電が実施される。 In step S19 ', when it is determined that the fuel cell 5' is in a deteriorated state, the process proceeds to step S20 ', and the impurity removal voltage when performing the recovery operation mode is changed. For example, when the current impurity removal voltage is Vmin, a value Vmin '(= Vmin-dV) obtained by subtracting the predetermined amount dV from the value Vmin is set as a new impurity removal voltage. Thereafter, the process returns to step S16 ', and the fuel cell 5' is controlled again in the recovery operation mode by the control unit 2D 'to carry out additional charging of the secondary battery 3.
 ステップS18′において、二次電池3の充電率SOCが制御範囲内でないと判定される前に、ステップS19′において燃料電池5′が劣化状態でない判定された場合には、ステップS19′からステップS11′に進み、燃料電池5′が最高効率運転モードで作動するように制御される。すなわち、燃料電池5′の性能回復が完了したのちは、燃料電池5′を最も効率の良い運転モードで作動させながら二次電池3の追加充電を継続する。 If it is determined in step S19 'that the fuel cell 5' is not in the deteriorated state before it is determined in step S18 'that the state of charge SOC of the secondary battery 3 is not within the control range, steps S19' to S11 are performed. And the fuel cell 5 'is controlled to operate in the highest efficiency mode of operation. That is, after the performance recovery of the fuel cell 5 'is completed, the additional charging of the secondary cell 3 is continued while operating the fuel cell 5' in the most efficient operation mode.
 一方、ステップS18′において、二次電池3の充電率SOCが制御範囲内でないと判定された場合には、二次電池3が劣化の進行しやすい充電範囲から外れたため、ステップS14′において燃料電池5′作動が停止され、ステップS15′において不純物除去電圧が初期値にリセットされて、このフローをリターンする。 On the other hand, if it is determined in step S18 'that the state of charge SOC of secondary battery 3 is not within the control range, secondary battery 3 is out of the charging range where deterioration easily progresses, so in step S14' the fuel cell The 5 'operation is stopped, the impurity removal voltage is reset to the initial value in step S15', and this flow is returned.
[5.作用,効果]

 (1)上述した車両1′の制御装置2′では、車両1′の停車中に車両1′が駐車状態であること、及び、推定部2Aで推定された充電率SOCが満充電範囲と空充電範囲とを除く所定の劣化進行範囲内に対応した制御範囲内であることを含む充放電条件が成立した場合に、電力授受装置が作動して二次電池3が追加充電又は追加放電される。このため、二次電池3の劣化を抑制でき、ひいては車両1′の航続距離の低下を防止できる。
 (2)また、上述した車両1′には、電力授受装置として燃料電池5′が搭載されることから、二次電池3の劣化を抑制しながら、より環境に配慮した車両1′を提供することが可能となる。
[5. Action, effect]

(1) In the control device 2 'of the vehicle 1' described above, the vehicle 1 'is in a parked state while the vehicle 1' is at a stop, and the state of charge SOC estimated by the estimation unit 2A is the full charge range and the empty When charge / discharge conditions are satisfied including a control range corresponding to a predetermined deterioration progress range excluding the charge range, the power transfer device operates to additionally charge or additionally discharge the secondary battery 3 . As a result, the deterioration of the secondary battery 3 can be suppressed, and a decrease in the cruising distance of the vehicle 1 'can be prevented.
(2) Further, since the fuel cell 5 'is mounted on the vehicle 1' described above as a power transfer device, the vehicle 1 'is provided with consideration for the environment while suppressing the deterioration of the secondary battery 3. It becomes possible.
 (3)上述した制御装置2′では、燃料電池5′を作動させて追加充電する場合であって、状態判定部2Cにより燃料電池5′が劣化状態であると判定された場合には、燃料電池5′の性能を回復させる回復運転モードで燃料電池5′が作動して追加充電が実施される。これによって、二次電池3の劣化を抑制できると同時に燃料電池5′の性能を回復させることができる。 (3) In the above-described control device 2 ', when the fuel cell 5' is operated and additional charging is performed and the state determination unit 2C determines that the fuel cell 5 'is in the deteriorated state, the fuel The fuel cell 5 'is operated in the recovery operation mode for recovering the performance of the cell 5' to perform additional charging. As a result, deterioration of the secondary battery 3 can be suppressed, and at the same time, the performance of the fuel cell 5 ′ can be recovered.
 (4)上述した制御装置2′では、燃料電池5′を作動させて追加充電する場合であって、状態判定部2Cにより燃料電池5′が劣化状態でないと判定された場合には、燃料電池5′が最高効率運転モードで作動して追加充電が実施される。このように、燃料(水素ガス)の消費量に対する出力が最も高い運転モードである最高効率運転モードで燃料電池5′を作動させることで、高価な燃料(水素ガス)の消費量を抑えながら二次電池3の追加充電を実施できる。 (4) In the above-described control device 2 ', when the fuel cell 5' is operated to perform additional charging, and the fuel cell 5 'is determined not to be deteriorated by the state determination unit 2C, 5 'operates in the highest efficiency mode of operation and additional charging is performed. As described above, by operating the fuel cell 5 ′ in the highest efficiency operation mode, which is the operation mode in which the output with respect to the consumption of fuel (hydrogen gas) is the highest, the consumption of expensive fuel (hydrogen gas) is suppressed. Additional charging of the secondary battery 3 can be performed.
 (5)上述した車両1′の制御装置2′では、燃料電池5′を作動させて追加充電する場合に、燃料電池5′を所望の電圧となるように作動させたときの実電圧値に基づいて、燃料電池5′が劣化状態であるか否かが判定される。これによって、燃料電池5′の劣化状態を簡単に判定でき、制御構成を簡素化することが可能となる。 (5) In the control device 2 'of the vehicle 1' described above, when the fuel cell 5 'is operated for additional charging, the actual voltage value when the fuel cell 5' is operated to a desired voltage is used. Based on this, it is determined whether or not the fuel cell 5 'is in a deteriorated state. Thus, the deterioration state of the fuel cell 5 'can be easily determined, and the control configuration can be simplified.
 (6)上述した制御部2D′は、回復運転モードとして、燃料電池5′の電圧が上昇と下降とを繰り返すように燃料電池5′を制御する電位サイクル制御を実施する。このように、燃料電池5′の電圧を強制的に低下させることによって、燃料電池5′の触媒に付着している不純物の吸着力が弱められ、ガスの流れに乗って不純物が燃料電池5′から取り除かれる。すなわち、燃料電池5′に含まれる不純物を除去でき、燃料電池5′の性能を回復させることができる。 (6) The control unit 2D 'described above performs potential cycle control to control the fuel cell 5' so that the voltage of the fuel cell 5 'repeats rising and falling as a recovery operation mode. Thus, by forcibly reducing the voltage of the fuel cell 5 ', the adsorption power of the impurities adhering to the catalyst of the fuel cell 5' is weakened, and the impurities are absorbed by the fuel cell 5 '. Removed from That is, the impurities contained in the fuel cell 5 'can be removed, and the performance of the fuel cell 5' can be recovered.
 (7)上述した制御装置2′では、回復運転モードにおいて、燃料電池5′の電圧を所定の下限値まで下降させるとともに、燃料電池5′の電圧の上昇と下降との繰り返し回数が増すほどこの下限値を低下させる。燃料電池スタック50内に吸着する不純物の吸着力が弱められる電圧値は、吸着している不純物の種類によって異なる。一方で、燃料電池5′の電圧を強制的に低下させることは、その発電効率の観点からはあまり好ましいことではない。したがって、このように1サイクル毎に下限値(不純物除去電圧Vmin)を小さくしていくことで、発電効率の低下を抑制しつつ不純物を除去できるため、より効果的に燃料電池5′の性能回復が可能となる。 (7) In the above-described control device 2 ', in the recovery operation mode, the voltage of the fuel cell 5' is lowered to a predetermined lower limit value, and the number of repetitions of the voltage rise and fall of the fuel cell 5 'increases. Lower the lower limit. The voltage value at which the adsorptive power of the impurities adsorbed in the fuel cell stack 50 is weakened varies depending on the type of the adsorbed impurities. On the other hand, forcibly reducing the voltage of the fuel cell 5 'is not preferable from the viewpoint of the power generation efficiency. Therefore, by reducing the lower limit (impurity removing voltage Vmin) every cycle as described above, impurities can be removed while suppressing a decrease in power generation efficiency, so performance recovery of the fuel cell 5 'can be more effectively performed. Is possible.
 また、上述した制御装置2′では、車両1′が駐車状態であると判定するための条件として、駐車状態を判定するための他の条件の成立時から所定の所定時間が経過することが含まれる。さらに、この所定時間は、車両1′の乗員が降車してから二次電池3の外部充電を開始するまでに要する時間以上に設定される。すなわち、充放電制御は、車両1′の停車後、しばらく時間が経っても二次電池3が外部充電されない場合に実施される。これにより、例えば信号待ちや踏切待ちのような停車時間が短い場合には充放電制御は実施されず、さらにユーザに外部充電を実施する意思がある場合にも実施されない。このように、ユーザの意に反して、制御装置2′が二次電池3の追加充電をすることがないため、高価な燃料(水素ガス)の消費量を抑制することが可能となる。 Further, in the control device 2 'described above, the condition for determining that the vehicle 1' is in the parking state includes that a predetermined predetermined time has elapsed from the time when the other conditions for determining the parking state are satisfied. Be Furthermore, this predetermined time is set to be equal to or longer than the time required to start the external charging of the secondary battery 3 after the passenger of the vehicle 1 ′ dismounts. That is, charge and discharge control is performed when secondary battery 3 is not externally charged even after a while for a while after vehicle 1 'stops. Thus, for example, when the stop time is short, such as waiting for a signal or waiting for a level crossing, charge / discharge control is not performed, and is not performed even when the user has an intention to perform external charging. As described above, contrary to the user's intention, the control device 2 'does not perform the additional charge of the secondary battery 3, so that the consumption of the expensive fuel (hydrogen gas) can be suppressed.
[6.変形例]

 上述した実施例では、燃料電池5′の電圧をセル電圧とし、燃料電池5′の劣化状態をセル電圧に基づいて判定しているが、燃料電池5′の電圧はセル電圧に限らない。例えば、燃料電池5′で発生する電力の電圧を燃料電池5′の電圧とし、燃料電池5′と二次電池3との配線間に電圧センサを設け、燃料電池5′の劣化状態をこの電圧センサから取得した電圧に基づいて判定してもよい。また、劣化状態を判定するためのパラメータは電圧に限らない。例えば、燃料電池5′の電流を取得する電流センサを設け、取得した電流値から燃料電池5′の劣化状態を推定することで状態判定を実施してもよい。
[6. Modified example]

In the above-described embodiment, the voltage of the fuel cell 5 'is used as the cell voltage, and the deterioration state of the fuel cell 5' is determined based on the cell voltage. However, the voltage of the fuel cell 5 'is not limited to the cell voltage. For example, the voltage of the power generated by the fuel cell 5 'is the voltage of the fuel cell 5', a voltage sensor is provided between the wiring of the fuel cell 5 'and the secondary cell 3, and the deterioration state of the fuel cell 5' is You may determine based on the voltage acquired from the sensor. Further, the parameter for determining the deterioration state is not limited to the voltage. For example, a current sensor that acquires the current of the fuel cell 5 ′ may be provided, and the state determination may be performed by estimating the deterioration state of the fuel cell 5 ′ from the acquired current value.
 上述した実施例では、制御部2D′が回復運転モードとして電位サイクル制御を実施する場合を説明したが、燃料電池5′の性能を回復するための運転方法は電位サイクル制御に限らない。例えば、電位サイクル制御の代わりに、燃料電池5′内の湿度を上げるように燃料電池5′を制御する過加湿制御を実施してもよい。あるいは、電位サイクル制御の代わりに、燃料電池5′を流れるガスの流量を増加させるように制御する高流量制御を実施してもよい。 In the embodiment described above, the case where the control unit 2D 'performs potential cycle control as the recovery operation mode has been described, but the operation method for recovering the performance of the fuel cell 5' is not limited to the potential cycle control. For example, instead of the potential cycle control, over-humidification control may be performed to control the fuel cell 5 ′ so as to increase the humidity in the fuel cell 5 ′. Alternatively, instead of the potential cycle control, high flow rate control may be performed in which the flow rate of the gas flowing through the fuel cell 5 ′ is increased.
 過加湿制御では、燃料電池5′内を流れる冷却水の流量を増加させるように燃料電池5′を制御することによって、通常時よりも燃料電池5′を過剰に冷却し、燃料電池5′内の温度を低下させる。これによって、燃料電池5′内で反応し生成された水が凝縮し、不純物が凝縮水に吸着して、ガスの流れに乗って燃料電池5′外に排出される。このようにして燃料電池5′の性能を回復させることができる。 In the over-humidifying control, the fuel cell 5 'is cooled more than usual by controlling the fuel cell 5' so as to increase the flow rate of the cooling water flowing in the fuel cell 5 ', and the fuel cell 5' is internally cooled. Lower the temperature of As a result, the water produced by reaction in the fuel cell 5 'is condensed, and the impurities are adsorbed in the condensed water, and are carried out of the fuel cell 5' on the gas flow. Thus, the performance of the fuel cell 5 'can be recovered.
 また、高流量制御では、燃料電池5′内を流れるガス(空気,水素)の流量を上げることによって、燃料電池5′内の不純物が燃料電池5′外に排出されやすくなり、燃料電池5′の性能を回復させることができる。なお、回復運転モードが選択された場合に、制御部2D′は、上述の電位サイクル制御,過加湿制御,交流量制御のうちの二つ又は全部を組み合わせて実施してもよい。 Further, in the high flow rate control, by increasing the flow rate of the gas (air, hydrogen) flowing in the fuel cell 5 ', the impurities in the fuel cell 5' are easily discharged to the outside of the fuel cell 5 '. Performance can be recovered. When the recovery operation mode is selected, the control unit 2D ′ may be implemented by combining two or all of the above-described potential cycle control, over humidification control, and alternating current amount control.
 上述した実施例では、燃料電池が固体高分子型燃料電池(PEFC)であるものとして説明したが、燃料電池の種類はこれに限らない。例えば、固体酸化物型燃料電池(SOFC;Solid Oxide Fuel Cell)や溶融炭酸塩型燃料電池(MCFC;Molten Carbonate Fuel Cell),リン酸型燃料電池(PAFC;Phosphoric Acid Fuel Cell),アルカリ電解質型燃料電池(AFC;Alkaline Fuel Cell)を搭載した車両1′に上述した充放電制御を適用することも可能である。また、上述した実施例では、発電装置として燃料電池5′を用いる場合を例示したが、燃料電池5′に代えてあるいは加えて、エンジン及びジェネレータを発電装置として用いてもよい。 Although the fuel cell is described as a polymer electrolyte fuel cell (PEFC) in the above-described embodiment, the type of fuel cell is not limited thereto. For example, solid oxide fuel cell (SOFC; Solid Oxide Fuel Cell), molten carbonate fuel cell (MCFC; Molten Carbonate Fuel Cell), phosphoric acid fuel cell (PAFC; Phosphoric Acid Fuel Cell), alkaline electrolyte fuel It is also possible to apply the charge / discharge control described above to a vehicle 1 'equipped with a battery (AFC; Alkaline Fuel Cell). Further, in the embodiment described above, the case where the fuel cell 5 'is used as the power generation device is illustrated, but instead of or in addition to the fuel cell 5', an engine and a generator may be used as the power generation device.
[7.その他]

 上述した車両1,1′の構成や制御装置2,2′の構成は一例であって上述した構成に限られない。また、追加充電又は追加放電を開始するための充放電条件や、追加充電時に選択される燃料電池5′の運転モードの内容も一例であって、上述したものに限られない。
[7. Other]

The configurations of the vehicles 1 and 1 'and the configurations of the control devices 2 and 2' described above are merely examples, and are not limited to the configurations described above. The charge / discharge conditions for starting the additional charge or the additional discharge, and the contents of the operation mode of the fuel cell 5 'selected at the time of the additional charge are also examples, and are not limited to those described above.
 例えば、追加充電又は追加放電を開始するための充電条件には、少なくとも上記の条件1及び条件2の両方が含まれていればよく、条件1~条件3以外の条件が含まれていてもよい。 For example, the charge condition for starting the additional charge or the additional discharge may include at least both the condition 1 and the condition 2 described above, and may include conditions other than the condition 1 to the condition 3 .
 1,1′ 車両
 2,2′ 制御装置
 2A 推定部
 2B 駐車判定部
 2C 状態判定部
 2D,2D′ 制御部
 3 二次電池
 4 モータ
 5 ジェネレータ(発電装置,電力授受装置)
 5′ 燃料電池(発電装置,電力授受装置)
 6 インバータ
 7 コンバータ
 8 エンジン
 9 補助バッテリ(電力授受装置)
 9s 切替スイッチ
 10 時間設定手段
 11 車速センサ
 12 イグニッションスイッチ
 13 シフトポジションセンサ
 14 荷重センサ
 50 燃料電池スタック
 20 水素供給装置
 30 空気供給装置 
1, 1 'Vehicle 2, 2' control device 2A estimation unit 2B parking determination unit 2C state determination unit 2D, 2D 'control unit 3 secondary battery 4 motor 5 generator (power generation device, power transfer device)
5 'Fuel cell (power generator, power transfer device)
6 inverter 7 converter 8 engine 9 auxiliary battery (power transfer device)
9s selector switch 10 time setting means 11 vehicle speed sensor 12 ignition switch 13 shift position sensor 14 load sensor 50 fuel cell stack 20 hydrogen supply device 30 air supply device

Claims (15)

  1.  充放電可能な二次電池と前記二次電池への電力供給及び前記二次電池からの電力受給の少なくとも一方が可能な電力授受装置とを備えた車両の制御装置において、
     前記二次電池の充電率を推定する推定部と、
     前記車両が駐車状態であるか否かを判定する駐車判定部と、
     所定の充放電条件が成立した場合に、前記電力授受装置を作動させて前記二次電池を追加充電又は追加放電する制御部と、を備え、
     前記充放電条件には、前記駐車判定部で前記車両が前記駐車状態であると判定されたこと、及び、前記推定部で推定された前記充電率が満充電範囲と空充電範囲とを除く所定の劣化進行範囲に対応した制御範囲内であることが含まれる
    ことを特徴とする、車両の制御装置。
    A control device of a vehicle comprising: a chargeable / dischargeable secondary battery; and a power exchange device capable of at least one of power supply to the secondary battery and power reception from the secondary battery.
    An estimation unit configured to estimate a charging rate of the secondary battery;
    A parking determination unit that determines whether the vehicle is in a parked state;
    A control unit that operates the power transfer device to additionally charge or additionally discharge the secondary battery when a predetermined charge / discharge condition is satisfied;
    For the charge / discharge condition, it is determined that the vehicle is in the parked state by the parking determination unit, and the charge rate estimated by the estimation unit is a predetermined value excluding the full charge range and the idle charge range A control device for a vehicle, including being within a control range corresponding to the degradation progress range of the vehicle.
  2.  前記制御部は、前記充放電条件が成立した場合に、前記充電率が前記劣化進行範囲内の所定の充放電判定閾値未満であるときに前記追加放電し、前記充電率が前記充放電判定閾値以上であるときに前記追加充電する
    ことを特徴とする、請求項1記載の車両の制御装置。
    The control unit performs the additional discharge when the charge rate is less than a predetermined charge / discharge determination threshold within the deterioration progress range when the charge / discharge condition is satisfied, and the charge rate is the charge / discharge determination threshold The control device for a vehicle according to claim 1, wherein the additional charging is performed when it is above.
  3.  前記電力授受装置には、前記車両に搭載された充放電可能な補助バッテリが含まれ、
     前記制御部は、前記追加放電する場合に、前記補助バッテリを作動させて前記二次電池の電力によって前記補助バッテリを充電しながら前記追加放電する
    ことを特徴とする、請求項1又は2記載の車両の制御装置。
    The power transfer device includes a chargeable / dischargeable auxiliary battery mounted on the vehicle,
    The said control part operates the said auxiliary | assistant battery, and performs the said additional discharge, charging the said auxiliary | assistant battery by the electric power of the said secondary battery, when performing the said additional discharge, It is characterized by the above-mentioned. Vehicle control device.
  4.  前記電力授受装置には、前記二次電池を充電可能な発電装置が含まれ、
     前記制御部は、前記追加充電する場合に、前記補助バッテリによる前記追加充電が可能であるか否かを判定し、前記補助バッテリによる前記追加充電が可能である場合には前記補助バッテリを作動させて前記追加充電し、前記補助バッテリによる前記追加充電ができない場合には前記発電装置を作動させて前記追加充電する
    ことを特徴とする、請求項3記載の車両の制御装置。
    The power transfer device includes a power generation device capable of charging the secondary battery,
    The control unit determines whether the additional charging by the auxiliary battery is possible when the additional charging is performed, and operates the auxiliary battery when the additional charging by the auxiliary battery is possible. 4. The control device for a vehicle according to claim 3, wherein the additional charging is performed, and when the additional charging by the auxiliary battery can not be performed, the power generation device is operated to perform the additional charging.
  5.  前記発電装置は、燃料電池である
    ことを特徴とする、請求項4記載の車両の制御装置。
    The control device of a vehicle according to claim 4, wherein the power generation device is a fuel cell.
  6.  前記電力授受装置には、前記車両に搭載された燃料電池が含まれ、
     前記制御部は、前記追加充電する場合に、前記燃料電池を作動させる
    ことを特徴とする、請求項1~3のいずれか1項に記載の車両の制御装置。
    The power transfer device includes a fuel cell mounted on the vehicle,
    The control device for a vehicle according to any one of claims 1 to 3, wherein the control unit operates the fuel cell when the additional charge is performed.
  7.  前記燃料電池の劣化状態を判定する状態判定部を備え、
     前記制御部は、前記燃料電池を作動させて前記追加充電する場合であって、前記状態判定部により前記燃料電池が劣化状態であると判定された場合には、前記燃料電池の性能を回復させる回復運転モードで前記燃料電池を作動させて前記追加充電を実施する
    ことを特徴とする、請求項5又は6記載の車両の制御装置。
    A state determination unit that determines a deterioration state of the fuel cell;
    The control unit restores the performance of the fuel cell when the fuel cell is operated and the additional charge is performed, and the state determination unit determines that the fuel cell is in a deteriorated state. The control device for a vehicle according to claim 5 or 6, wherein the additional charge is performed by operating the fuel cell in a recovery operation mode.
  8.  前記制御部は、前記燃料電池を作動させて前記追加充電する場合であって、前記状態判定部により前記燃料電池が劣化状態でないと判定された場合には、前記燃料電池を最高効率運転モードで作動させて前記追加充電を実施する
    ことを特徴とする、請求項7記載の車両の制御装置。
    The control unit operates the fuel cell to perform the additional charge, and when the state determination unit determines that the fuel cell is not in the deteriorated state, the fuel cell is operated in the highest efficiency operation mode. The control device for a vehicle according to claim 7, characterized in that the additional charge is performed to operate.
  9.  前記状態判定部は、前記燃料電池を作動させて前記追加充電する場合に、前記燃料電池を所望の電圧となるように作動させたときの実際の電圧値に基づいて、前記燃料電池が劣化状態であるか否かを判定する
    ことを特徴とする、請求項7又は8記載の車両の制御装置。
    When the fuel cell is operated and the additional charge is performed, the state determination unit degrades the fuel cell based on an actual voltage value when the fuel cell is operated to a desired voltage. The control device for a vehicle according to claim 7 or 8, characterized in that it is determined whether or not.
  10.  前記制御部は、前記回復運転モードにおいて、前記燃料電池の電圧が上昇と下降とを繰り返すように前記燃料電池の作動状態を制御する
    ことを特徴とする、請求項7~9のいずれか1項に記載の車両の制御装置。
    10. The controller according to any one of claims 7 to 9, wherein the control unit controls the operating state of the fuel cell such that the voltage of the fuel cell repeatedly rises and falls in the recovery operation mode. The control device of a vehicle according to claim 1.
  11.  前記制御部は、前記回復運転モードにおいて、前記燃料電池の電圧を所定の下限値まで下降させるとともに、前記電圧の上昇と下降との繰り返し回数が増すほど前記下限値を低下させる
    ことを特徴とする、請求項10記載の車両の制御装置。 
    In the recovery operation mode, the control unit lowers the voltage of the fuel cell to a predetermined lower limit value, and lowers the lower limit value as the number of repetitions of increase and decrease of the voltage increases. The control device of the vehicle according to claim 10.
  12.  前記駐車判定部で前記車両が前記駐車状態であると判定する判定条件として、前記車両の主電源がオフ状態となっていることを含む
    ことを特徴とする、請求項1~11のいずれか1項に記載の車両の制御装置。
    12. The vehicle-mounted vehicle according to claim 1, wherein the determination condition that the parking determination unit determines that the vehicle is in the parked state includes that a main power supply of the vehicle is in an off state. The control apparatus of the vehicle as described in a term.
  13.  前記駐車判定部で前記車両が前記駐車状態であると判定する判定条件として、前記車両に乗員が搭乗していないことを含む
    ことを特徴とする、請求項12に記載の車両の制御装置。
    The control device for a vehicle according to claim 12, wherein the determination condition that the parking determination unit determines that the vehicle is in the parked state includes that an occupant does not board the vehicle.
  14.  前記駐車判定部は、前記判定条件が所定時間以上継続して成立したら、前記車両が前記駐車状態であると判定する
    ことを特徴とする、請求項12又は13記載の車両の制御装置。
    The control device for a vehicle according to claim 12 or 13, wherein the parking determination unit determines that the vehicle is in the parking state when the determination condition is satisfied continuously for a predetermined time or more.
  15.  前記所定時間を設定する時間設定手段を備える
    ことを特徴とする、請求項14記載の車両の制御装置。 
    15. The control device for a vehicle according to claim 14, further comprising time setting means for setting the predetermined time.
PCT/JP2018/046617 2018-01-12 2018-12-18 Vehicle control device WO2019138805A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-003223 2018-01-12
JP2018003223 2018-01-12

Publications (1)

Publication Number Publication Date
WO2019138805A1 true WO2019138805A1 (en) 2019-07-18

Family

ID=67218326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046617 WO2019138805A1 (en) 2018-01-12 2018-12-18 Vehicle control device

Country Status (1)

Country Link
WO (1) WO2019138805A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202721A (en) * 2008-02-27 2009-09-10 Toyota Motor Corp Notice system for radio wave condition, and notice method for radio wave condition
JP2011091899A (en) * 2009-10-20 2011-05-06 Honda Motor Co Ltd Electric vehicle
WO2013038764A1 (en) * 2011-09-15 2013-03-21 日本電気株式会社 Secondary battery system, and method for operating secondary battery
JP2013066365A (en) * 2011-08-29 2013-04-11 Sharp Corp Vehicle driving device, vehicle charging system, and automobile
JP2013114855A (en) * 2011-11-28 2013-06-10 Toyota Motor Corp Fuel cell system and fuel cell system controlling method
JP2016052869A (en) * 2014-09-04 2016-04-14 トヨタ自動車株式会社 Charge control apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202721A (en) * 2008-02-27 2009-09-10 Toyota Motor Corp Notice system for radio wave condition, and notice method for radio wave condition
JP2011091899A (en) * 2009-10-20 2011-05-06 Honda Motor Co Ltd Electric vehicle
JP2013066365A (en) * 2011-08-29 2013-04-11 Sharp Corp Vehicle driving device, vehicle charging system, and automobile
WO2013038764A1 (en) * 2011-09-15 2013-03-21 日本電気株式会社 Secondary battery system, and method for operating secondary battery
JP2013114855A (en) * 2011-11-28 2013-06-10 Toyota Motor Corp Fuel cell system and fuel cell system controlling method
JP2016052869A (en) * 2014-09-04 2016-04-14 トヨタ自動車株式会社 Charge control apparatus

Similar Documents

Publication Publication Date Title
CN102664278B (en) Fuel cell system
CN101569044B (en) Fuel cell system
JP5101583B2 (en) Fuel cell vehicle
JP4977342B2 (en) Fuel cell system and method for adjusting charge amount of power storage device
JP5051989B2 (en) Voltage control system and moving body
US20150125772A1 (en) Fuel cell system
JPWO2009013891A1 (en) Vehicle power supply
JP2004248432A (en) Driving apparatus and automobile having the same
US7776481B2 (en) Fuel cell system and method of controlling electrical energy discharged in the fuel cell system
CN101842927B (en) Fuel cell output control device
US10122177B2 (en) Power supply method and power supply system
WO2008032497A1 (en) Mobile body
US9849805B2 (en) Fuel cell vehicle
JP4615379B2 (en) Fuel cell system
US9735454B2 (en) Apparatus for controlling lithium-ion battery and method of recovering lithium-ion battery
WO2019138805A1 (en) Vehicle control device
JP7272162B2 (en) fuel cell car
JP2006331775A (en) Fuel cell system, its control method, and vehicle equipped therewith
JP2005302446A (en) Fuel cell power supply device
JP2007151346A (en) Moving body
JP2004040868A (en) Power supply system of electric automobile
JP4056863B2 (en) Fault detection device for voltage detection circuit
JP4053410B2 (en) In-vehicle motor regeneration control device
US11964620B2 (en) Vehicular power supply device
JP4877911B2 (en) FUEL CELL VEHICLE AND METHOD OF CONTROLLING CHARGE TO ELECTRIC STORAGE ELEMENT IN FUEL CELL VEHICLE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP