WO2019138706A1 - Method for producing conductive film, and conductive film - Google Patents

Method for producing conductive film, and conductive film Download PDF

Info

Publication number
WO2019138706A1
WO2019138706A1 PCT/JP2018/043490 JP2018043490W WO2019138706A1 WO 2019138706 A1 WO2019138706 A1 WO 2019138706A1 JP 2018043490 W JP2018043490 W JP 2018043490W WO 2019138706 A1 WO2019138706 A1 WO 2019138706A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
film
copper
group
peeling
Prior art date
Application number
PCT/JP2018/043490
Other languages
French (fr)
Japanese (ja)
Inventor
和史 小村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019564326A priority Critical patent/JP6905089B2/en
Publication of WO2019138706A1 publication Critical patent/WO2019138706A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a method of manufacturing a conductive film and a conductive film.
  • Copper fine particles are widely used as raw materials for conductive coating agents, for example, because they are excellent in conductivity and inexpensive compared to metals such as silver.
  • Such conductive coating agents are widely used as materials for forming circuits in printed wiring boards and the like using various printing methods, various electric contact members, and the like.
  • Patent Document 1 describes a fibrous copper particulate composition comprising fibrous copper particulates, a dispersion medium, and a reducing compound having no amino group (claim 1). ).
  • the conductive film formed in the air by applying the composition described in Patent Document 1 on a substrate does not reach the level of conductivity, and exhibits excellent conductivity. I could not get
  • the present invention provides a method for producing a conductive film and a conductive film capable of forming a conductive film exhibiting excellent conductivity even when film formation is performed in an oxidizing atmosphere such as the air. To be an issue.
  • the dried film is dried at the following temperature to obtain a dried film comprising an upper layer containing copper oxide and located on the opposite side of the substrate and a lower layer substantially free of copper oxide and located on the side of the substrate
  • the film is excellent even when the film is formed in an oxidizing atmosphere such as the air. It is possible to form a conductive film showing conductivity Become known the door, it has led to the completion of the present invention. That is, the present invention provides the following [1] to [12].
  • a copper particle, at least one reducing agent selected from the group consisting of reductone and hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule, and a dispersion medium Applying a composition for forming a conductive film on the surface of a substrate to form a coating film;
  • the coating film is dried at a temperature of 150 ° C. or less under an oxidative atmosphere to include a lower layer substantially free of copper oxides and an oxide of copper disposed on the lower layers on the substrate.
  • a conductive film comprising copper and at least one reducing agent selected from the group consisting of reductone and a hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule.
  • the electrically conductive film whose content of the said copper is 90 mass% or more with respect to the total mass of the said electrically conductive film.
  • the reducing agent is at least one selected from the group consisting of ascorbic acid, ascorbic acid derivatives and citric acid.
  • a method of manufacturing a conductive film and a conductive film capable of forming a conductive film exhibiting excellent conductivity even when forming a film in an oxidizing atmosphere such as the air. be able to.
  • FIG. 1A is a schematic view showing a substrate before forming a coating film.
  • FIG. 1B is a schematic view showing a state in which a coating film is formed on the surface of a substrate.
  • FIG. 1C is a schematic view showing a state in which a dried film in which the lower layer (conductive film) and the upper layer are in contact at the interface is formed on the surface of the substrate.
  • FIG. 1D is a schematic view showing a state in which the lower layer (conductive film) is formed on the surface of the substrate after removing the upper layer.
  • FIG. 2 is a graph showing the XRD measurement results of Example 2 and Comparative Example 1. In Comparative Example 1 and cuprous oxide (informative), the baseline is indicated by being raised by the count shown in the parenthesis.
  • a range represented by using “to” means a range including both ends described before and after “to” in the range.
  • the method for producing a conductive film of the present invention comprises at least one reducing agent selected from the group consisting of copper particles, reductone and hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule. And applying a composition for forming a conductive film containing a dispersion medium to the surface of a substrate to form a coated film, and drying the coated film at a temperature of 150 ° C.
  • FIGS. 1A to 1D The outline of the method for producing a conductive film of the present invention will be described with reference to FIGS. 1A to 1D.
  • a substrate 11 is prepared (FIG. 1A), and a composition for forming a conductive film is applied to the surface of the substrate 11 to form a coating film 12 (FIG. 1B).
  • the coating film 12 formed on the surface of the substrate 11 is dried at a temperature of 150 ° C. or less in an oxidative atmosphere to form a dry film 13 (FIG. 1C).
  • the dry film 13 has a structure divided at the interface 16 into the lower layer (conductive film) 14 on the surface side of the substrate 11 and the upper layer 15 on the opposite side to the substrate 11 (FIG. 1C).
  • the composition for forming a conductive film is applied to the surface of a substrate to form a coating film.
  • composition for forming conductive film is selected from the group consisting of copper particles, reductone and hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule. And at least one reducing agent, and a dispersing medium.
  • the mass ratio of the copper particles to the reducing agent in the composition for forming a conductive film is not particularly limited, but it is preferably 90 mass% to 99 mass%, as a ratio of mass of copper particles to mass of reducing agent. % To 97% by mass is more preferable, 91% by mass to 95% by mass is more preferable, and 93% by mass to 95% by mass is more preferable. When the mass ratio of the copper particles to the reducing agent is within this range, the conductivity of the obtained conductive film is further improved.
  • the content of the dispersion medium in the composition for forming a conductive film is not particularly limited, but it is preferably 1 part by mass to 10000 parts by mass, and more preferably 10 parts by mass to 500 parts by mass with respect to 100 parts by mass of the copper particles. Preferably, 20 parts by mass to 200 parts by mass is more preferable. When the content of the dispersion medium is in this range, the conductivity of the obtained conductive film becomes better.
  • the copper particles are to be metal conductors in the conductive film. By drying the composition for forming a conductive film applied to the substrate, the copper particles are fused to form a metal conductor in the conductive film.
  • the conventionally well-known copper particle generally used to the composition for electrically conductive film formation can be used.
  • the copper particles may be primary particles or secondary particles.
  • the shape of the said copper particle is not specifically limited, A spherical shape may be sufficient and plate shape may be sufficient.
  • the average particle size of the copper particles is not particularly limited, and in the case of primary particles, it is the average particle size of primary particles, and in the case of secondary particles, it is the average particle size of secondary particles, but 25 nm to 1500 nm.
  • the average particle diameter of copper particle (A) measures the Feret diameter of 100 particle
  • the reducing agent is at least one selected from the group consisting of reductone and hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule.
  • the reductone means an organic compound represented by the following formula (I) or the following formula (II) and having a structure in which a carbonyl group is bonded next to an enediol structure (hereinafter referred to as "reductone structure”) .
  • Reductone is an organic acid having reducibility and high acidity.
  • reductones are glycic acid represented by the following formula (Ia), reductic acid represented by the following formula (Ib), and ascorbic acid and ascorbic acid derivatives described later, but are limited thereto is not.
  • the reducing agent is preferably at least one member selected from the group consisting of ascorbic acid, ascorbic acid derivatives and citric acid, more preferably at least one member selected from the group consisting of ascorbic acid and ascorbic acid derivatives, and ascorbic acid More preferable.
  • the ascorbic acid is a compound represented by (2R) -2-[(1S) -1,2-dihydroxyethyl] -3,4-dihydroxy-2H-furan-5-one (formula (A-1) below)
  • the present compound may be referred to as "in a narrow sense ascorbic acid” or "L-ascorbic acid”), (2S) -2-[(1R) -1,2-dihydroxyethyl] -3,4-dihydroxy- 2H-furan-5-one (compound represented by the following formula (A-2); the present compound may be referred to as “D-ascorbic acid”), (2S) -2-[(1S) -1 2, 2-Dihydroxyethyl] -3,4-dihydroxy-2H-furan-5-one (compound represented by the following formula (A-3); this compound may be referred to as "L-isoascorbic acid”.
  • the ascorbic acid derivative is a compound represented by the following general formula (B-1) (sometimes referred to as “ascorbic acid derivative (B-1)”) or a compound represented by the following general formula (B-2) (It may be referred to as "ascorbic acid derivative (B-1)”) is preferred.
  • B-1 (sometimes referred to as “ascorbic acid derivative (B-1)") or a compound represented by the following general formula (B-2) (It may be referred to as "ascorbic acid derivative (B-1)"
  • the reducing power for copper oxides is due to the enediol structure in the ascorbic acid derivative. Therefore, it is also possible to synthesize a derivative of ascorbic acid in a form that leaves its structure, and use it by appropriately adjusting the solubility and polarity.
  • R 1 and R 2 each independently represent a hydrogen atom or an acyl group which may have a substituent. However, R 1 and R 2 do not simultaneously represent a hydrogen atom.
  • the acyl group for R 1 and R 2 in the above general formula (B-1) is not particularly limited, and a linear, branched, monocyclic or condensed polycyclic aliphatic group having 1 to 18 carbon atoms is bonded Preferred is a carbonyl group or a carbonyl group to which a monocyclic or fused polycyclic aryl group having 6 to 10 carbon atoms is bonded.
  • acyl group examples are formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, cyclopentyl carbonyl group, cyclohexylcarbonyl And any one selected from the group consisting of acryloyl group, methacryloyl group, crotonoyl group, isocrotonoyl group, oleoyl group, benzoyl group, 1-naphthoyl group and 2-naphthoyl group, but is limited thereto It is not a thing.
  • a hydrogen atom in the acyl group may be substituted by a substituent, and it is also possible to further adjust the solubility and the polarity.
  • the specific example of the said substituent is one or more types of substituents selected from the group which consists of a hydroxyl group and a halogen atom, it is not limited to these.
  • a representative example of the ascorbic acid derivative (B-1) is one represented by the following formula (B-1-X).
  • the ascorbic acid derivative (B-1) in the present invention is not limited to these representative examples.
  • X represents any one selected from the group consisting of chemical structures shown below. In each chemical structure, "*" indicates a position at which X binds to the five-membered ring site of ascorbic acid.
  • R 3 and R 4 each independently represent a hydrogen atom or an alkyl group which may have a substituent.
  • the compound represented by the general formula (B-2) is an ascorbic acid derivative in which an acetal structure or a ketal structure is formed by reacting two hydroxyl groups present in the side chain of ascorbic acid with an aldehyde or ketone.
  • the alkyl group for R 3 and R 4 in the general formula (B-2) is not particularly limited, but is preferably a linear, branched, monocyclic or fused polycyclic alkyl group having 1 to 18 carbon atoms.
  • alkyl group examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, octadecyl group, isopropyl group, isobutyl group, Isopentyl group, sec-butyl group, tert-butyl group, sec-pentyl group, tert-pentyl group, tert-octyl group, neopentyl group, cyclopropyl group, cyclobutyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, adamantyl group, norbornyl group and Although it is any one selected from the group consisting of 4-decylcyclohexyl group, it is not limited thereto.
  • a hydrogen atom in the alkyl group may be substituted by a substituent, whereby the solubility and the polarity can be further adjusted.
  • a substituent is one or more types of substituents selected from the group which consists of a hydroxyl group and a halogen atom, it is not limited to these.
  • the R 3 and the R 4 may be integrated to form a ring structure.
  • a representative example of the ascorbic acid derivative (B-2) is one represented by the following formula (B-2-Y).
  • the ascorbic acid derivative (B-2) in the present invention is not limited to these representative examples.
  • Y represents any one selected from the group consisting of chemical structures shown below. Note that "*" in each chemical structure indicates the position at which Y binds to the five-membered ring site of ascorbic acid.
  • the hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule is not particularly limited, but a hydroxycarboxylic acid having three or more carboxy groups and one or more hydroxy group in the molecule Is preferred.
  • Examples of hydroxycarboxylic acids having two or more carboxy groups and one or more hydroxy groups in the above molecule are, but not limited to, citric acid and isocitric acid.
  • the hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule is at least one hydroxycarboxylic acid selected from the group consisting of citric acid and isocitric acid. Is preferred, and citric acid is more preferred.
  • the dispersion medium is not particularly limited as long as it can dissolve or disperse the reducing agent.
  • Specific examples of the dispersion medium include water, methanol, ethanol, propanol, 2-propanol, cyclohexanone, cyclohexanol, terpineol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol At least one member selected from the group consisting of monobutyl ether acetate, diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate, consisting of water, methanol, ethanol, propanol and 2-propanol Little selected from the group Both are preferred one, water, more preferably at least one selected from the group consisting of
  • composition for conductive film formation preparation method of composition for conductive film formation
  • preparation method of the composition for electrically conductive film formation used in the manufacturing method of the electrically conductive film of this invention is not specifically limited, For example, it can be made to describe below.
  • the method of mixing the copper particles, the reducing agent, and the dispersion medium is not particularly limited, and a conventionally known method can be adopted.
  • ultrasonic wave for example, treatment with an ultrasonic homogenizer
  • mixer method three-roll method
  • ball mill method can be used.
  • the composition can be obtained by dispersing the components.
  • the composition for forming a conductive film preferably does not contain a binder.
  • the binder usually has an effect of improving the adhesion of the conductive film to the substrate, but in the conductive film of the present invention, it is not preferable to contain the binder because the conductivity may be reduced.
  • the binder a resin and an organic compound having a molecular weight of 200 or more can be mentioned.
  • thermosetting resin As said resin, a thermosetting resin and a thermoplastic resin are mentioned.
  • the thermosetting resin are phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleide triazine resin, furan resin, urea resin, polyurethane, Examples thereof include melamine resin, silicone resin, acrylic resin, oxetane resin and oxazine resin, and specific examples of the thermoplastic resin include polyamide resin, polyimide resin, acrylic resin, ketone resin, polystyrene resin and thermoplastic polyester resin. It is not limited to these.
  • the organic compound having a molecular weight of 200 or more is not particularly limited, and examples thereof include an organic acid having a molecular weight of 200 or more, a polyalkylene glycol having a molecular weight of 200 or more, a sugar alcohol having a molecular weight of 200 or more, an oligosaccharide and a polysaccharide.
  • substrate A conventionally known substrate can be used as the substrate.
  • specific examples of the material used for the substrate are resin, paper, glass, silicon semiconductor, compound semiconductor, metal, metal oxide, metal nitride, wood, or a composite thereof. It is not limited.
  • the resin are low density polyethylene resin, high density polyethylene resin, ABS (Acrylonitrile Butadiene Styrene) resin, acrylic resin, styrene resin, vinyl chloride resin, polyester resin (polyethylene terephthalate (PET)), polyacetal resin, polysulfone resin And polyether imide resins, polyether ketone resins, polyimide resins, and cellulose derivatives, but are not limited thereto.
  • Specific examples of the above-mentioned paper are coated printing paper, fine coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), non-bleached wrapping paper (both for heavy bags)
  • Other examples include, but are not limited to, kraft paper, double kraft paper), bleached wrapping paper (bleached kraft paper, pure white roll paper), coated balls, chip balls, and corrugated boards.
  • Specific examples of the above-mentioned glass are soda glass, borosilicate glass, silica glass and quartz glass, but are not limited thereto.
  • Specific examples of the silicon-based semiconductor are amorphous silicon and polysilicon, but are not limited thereto.
  • Specific examples of the compound semiconductor are CdS, CdTe and GaAs, but are not limited thereto.
  • Specific examples of the above-mentioned metals are copper, iron and aluminum, but not limited thereto.
  • Specific examples of the above metal oxides are alumina, sapphire, zirconia, titania, yttrium oxide, indium oxide, ITO (indium tin oxide), IZO (indium zinc oxide), nesa (tin oxide), ATO (antimony doped oxide) Tin), fluorine-doped tin oxide, zinc oxide, AZO (aluminum-doped zinc oxide), and gallium-doped zinc oxide, but are not limited thereto.
  • the specific example of the said metal nitride is aluminum nitride, it is not limited to this.
  • specific examples of the above-mentioned composites are paper-phenol resin, paper-epoxy resin, paper-resin composite such as paper-polyester resin, glass cloth-epoxy resin (glass epoxy resin), glass cloth-polyimide resin, And glass cloth-fluoroplastics, but is not limited thereto.
  • the substrate on which the conductive film of the present invention is formed is not particularly limited, but a glass substrate, a polyimide substrate, or a polyethylene terephthalate (PET) substrate is preferable.
  • the method for applying the composition for forming a conductive film on a substrate is not particularly limited, and a known method can be adopted.
  • coating methods such as screen printing method, dip coating method, spray coating method, spin coating method, and inkjet method can be mentioned.
  • the shape of the coating is not particularly limited, and may be a surface covering the entire surface of the substrate or a pattern (for example, a wiring or a dot).
  • the coating amount of the composition for forming a conductive film on a substrate may be appropriately adjusted according to the desired film thickness of the conductive film, but generally, the film thickness (thickness) of the coating film is preferably 2 ⁇ m to 600 ⁇ m. 10 ⁇ m to 300 ⁇ m is more preferable, and 10 ⁇ m to 200 ⁇ m is more preferable.
  • the coating is dried in an oxidative atmosphere at a temperature of 150 ° C. or less to form a lower layer substantially free of copper oxides and a lower layer of copper on the substrate.
  • a dry film comprising an upper layer containing an oxide is obtained.
  • the dry film has a lower layer and an upper layer in this order from the substrate side.
  • the formed coating is dried in an oxidative atmosphere to remove the dispersion medium.
  • the upper layer is formed by removing the dispersion medium remaining in the coating film and forming a metal conductor by fusion of copper particles on the side close to the substrate of the coating film and forming copper oxide on the surface side of the coating film.
  • a dry film separated from the interface is obtained as the lower layer and the lower layer.
  • oxidative atmospheres include, but are not limited to, atmospheres containing oxygen, such as in air or air.
  • a method of drying a method of drying using a hot air dryer or the like can be used.
  • drying temperature The temperature during drying (hereinafter sometimes referred to as “drying temperature”) is not particularly limited as long as it is 150 ° C. or less, but 0 ° C. to 150 ° C. is preferable, 0 ° C. to 125 ° C. is more preferable, and 4 ° C. 100 ° C. is more preferred.
  • drying temperature is higher than 150 ° C., the oxidation of copper exceeds the rate of oxidation of copper oxide by the reducing agent, and a conductive film exhibiting desired conductivity can not be obtained.
  • drying time is not particularly limited, but is preferably 1 second to 96 hours, more preferably 5 seconds to 72 hours, and still more preferably 10 seconds to 48 hours. However, the drying time may be set as appropriate depending on the drying temperature as long as substantially all of the dispersion medium can be removed from the coating film.
  • the upper layer is removed from the dried film to obtain a conductive film.
  • the method of removing the upper layer is not particularly limited, a method of scraping the upper layer with a device such as a scraper or a method of wiping the upper layer with a waste such as Kimwipe may be mentioned.
  • the entire upper layer is removed.
  • the conductive film obtained by the method for producing a conductive film of the present invention is substantially free of an oxide of copper because the reduction agent coexisting with copper suppresses the oxidation of copper.
  • XRD X-ray diffraction
  • X-ray diffractometer RINT Ultima III X-Ray Diffractometer (manufactured by RIGAKU Co., Ltd.) 2 ⁇ / ⁇ 30-45 degree sampling step 0.01 degree scan speed 10 degree / minute attenuator (ATT: Attenuator) Opening divergence slit (DS: Dvergence slit) 1.00 mm Scattering slit (SS: Scattering slit) Open Light receiving slit (RS: Receiving slit) Open Optical system parallel slit PB Incident vertical limited solar slit V5 Vertical restriction slit 10 ⁇ 10 Parallel slit analyzer PSA
  • the ratio Z of the (111) peak intensity of Cu means less than 0.1%
  • “detecting” the (111) peak of copper oxide (I) [Cu 2 O] by X-ray diffraction means that the above-mentioned Z is 0.1% or more.
  • the method for producing a conductive film of the present invention may further include a heating step of heating the obtained conductive film at a temperature of more than 150 ° C. and 190 ° C. or less after the peeling step, as desired. By performing the heating step, the conductivity of the conductive film becomes better.
  • the means for heating is not particularly limited, and known heating means such as an oven and a hot plate can be used.
  • the temperature at the time of heating is preferably 155 ° C. to 190 ° C., more preferably 160 ° C. to 190 ° C., and still more preferably 160 ° C. to 180 ° C. in that a conductive film having better conductivity can be formed.
  • the time for heating is not particularly limited, and is preferably 1 minute to 120 minutes, more preferably 5 minutes to 60 minutes, and 5 minutes to 30 minutes in that a conductive film having excellent conductivity can be formed. More preferable.
  • the atmosphere at the time of heating is not particularly limited, and may be performed in any of non-oxidative atmosphere and oxidative atmosphere.
  • non-oxidative atmosphere inert gas atmospheres, such as nitrogen and argon, and reducing gas atmospheres, such as hydrogen, etc. are mentioned.
  • oxidative atmosphere an air
  • the conductive film of the present invention contains copper and at least one reducing agent selected from the group consisting of reductone and hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule,
  • the content of copper is 90% by mass or more with respect to the total mass of the conductive film.
  • the copper is metal copper.
  • the content of copper in the conductive film is not particularly limited as long as it is 90% by mass or more of the total mass of the conductive film, but 93% by mass or more and less than 100% by mass is preferable, and 95% by mass or more and less than 100% by mass More preferably, 97% by mass or more and less than 100% by mass are more preferable.
  • the copper content in the conductive film is obtained by dissolving the scraped conductive film in nitric acid and analyzing the copper concentration in the solution by X-ray fluorescence (XRF) analysis. It can be measured by X-ray fluorescence
  • the XRF measurement was performed using a fluorescent X-ray analyzer (Axios, manufactured by PANalytical) under the following measurement conditions.
  • the copper contained in the conductive film of the present invention is preferably in the state in which a plurality of copper particles are fused to form a conductor.
  • the said copper particle is the same as that of what was described in the manufacturing method of the electrically conductive film of this invention.
  • the reducing agent contained in the conductive film of the present invention is the same as that described in the method of producing a conductive film of the present invention.
  • the conductive film of the present invention since copper and a reducing agent coexist in the conductive film, the formation of copper oxide by the reaction between metallic copper and oxygen in the air is suppressed, and excellent conductivity over a long period of time Can be maintained.
  • a reducing agent since a reducing agent is present, if copper (I) oxide is not present in the conductive film, no copper oxide other than copper (I) oxide such as copper (II) oxide is also present.
  • the conductive film of the present invention does not contain a copper oxide is measured by X-ray diffraction (XRD: X-ray diffraction) method, in which the conductive film and the air are in contact and the surface of the conductive film is most easily oxidized. It can be judged that the peak derived from copper oxide (I) is not detected. Accordingly, the conductive film of the present invention is preferably one in which the (111) peak of copper oxide (I) [Cu 2 O] is not detected by the X-ray diffraction method.
  • X-ray diffractometer RINT Ultima III X-Ray Diffractometer (manufactured by RIGAKU Co., Ltd.) 2 ⁇ / ⁇ 30-45 degree sampling step 0.01 degree scan speed 10 degree / minute attenuator (ATT: Attenuator) Opening divergence slit (DS: Dvergence slit) 1.00 mm Scattering slit (SS: Scattering slit) Open Light receiving slit (RS: Receiving slit) Open Optical system parallel slit PB Incident vertical limited solar slit V5 Vertical restriction slit 10 ⁇ 10 Parallel slit analyzer PSA
  • the ratio Z of the (111) peak intensity of Cu means less than 0.1%
  • “detecting” the (111) peak of copper oxide (I) [Cu 2 O] by X-ray diffraction means that the above-mentioned Z is 0.1% or more.
  • the conductive film of the present invention preferably contains no binder.
  • the said binder is the same as that described in the manufacturing method of the electrically conductive film of this invention.
  • the thickness of the conductive film of the present invention is not particularly limited, but is preferably 1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and still more preferably 1 ⁇ m to 30 ⁇ m.
  • a conductive film having sufficient film strength is obtained in the step of peeling the lower layer substantially free of copper oxide and the upper layer containing copper oxide be able to.
  • the conductive film of the present invention is preferably formed on a substrate.
  • the substrate is the same as that described in the method for producing a conductive film of the present invention.
  • Example 1 Preparation of composition for conductive film formation> 10 parts by mass of copper particles (average particle size 750 nm; manufactured by Mitsui Metals Co., Ltd.) and 1.8 parts by mass of L-ascorbic acid (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed with 18.2 parts by mass of ion exchanged water The mixture was well stirred at 2000 rpm for 5 minutes to obtain a mixture. After stirring, the mixed solution is transferred to a closed container and kept in a sealed container at 25 ° C. for 48 hours to form a composition for forming a conductive film (hereinafter sometimes referred to as “the composition for forming a conductive film”) Obtained.
  • the composition for forming a conductive film Obtained.
  • a glass substrate (length 76 mm ⁇ width 26 mm ⁇ thickness 0.9 mm; manufactured by Matsunami Glass Co., Ltd.) was prepared. On this glass substrate, the composition 1 for conductive film formation was apply
  • heating The glass substrate on which the conductive film was formed was heated at 150 ° C. in the atmosphere for 1 hour.
  • the film thickness before peeling was determined by measuring the thickness of the dried film obtained in the drying step. Further, the film thickness after peeling was determined by measuring the thickness of the conductive film obtained in the peeling step. The film thickness was measured by scraping a part of the coating film with a metal spatula and using the surface shape measuring device (Dektak 150 Surface Profiler, manufactured by Veeco) to measure the difference between the substrate surface and the coating film surface.
  • the film thickness before peeling and the film thickness after peeling are shown in the column of “before peeling” and “after peeling” of “thickness [ ⁇ m]” in Table 1, respectively.
  • the XRD measurement results were evaluated as follows. A: A (111) peak derived from Cu 2 O was not detected B: a (111) peak derived from Cu 2 O was detected However, a (111) peak derived from Cu 2 O was detected by "not detected", derived from the Cu 2 O by XRD measurement (111) derived from the peak intensity and Cu (111) derived from the ratio Z [Z ⁇ ⁇ Cu 2 O peak intensity (111) peak It means that (111) peak intensity derived from intensity / Cu ⁇ ⁇ 100 (%) is less than 0.1%, and “detected” means that Z is 0.1% or more.
  • the XRD measurement results before peeling and the XRD measurement results after peeling are shown in the “before peeling” and “after peeling” columns of “XRD” in Table 1, respectively.
  • Example 2 A conductive film was formed in the same manner as in Example 1 except that the drying conditions of the coating film formed on the glass substrate were performed under the conditions shown in the "drying conditions” column of Table 1.
  • the thickness before peeling of the dried film and the thickness of the conductive film obtained by peeling the upper layer of the dried film are shown in the "before peeling” column and the “after peeling” column of the "thickness” column in Table 1, respectively.
  • the XRD measurement result before peeling of the dried film and the XRD measurement result of the conductive film obtained by peeling the upper layer of the dried film are shown in the “before peeling” column and the “after peeling” column of “XRD” column of Table 1.
  • the volume resistance value of the conductive film obtained by peeling the upper layer of the dried film and the volume resistance value after heating the conductive film are shown in the “after peeling” column and “heating” in the “volume resistance value” column of Table 1, respectively. It shows in the "after” column.
  • the graph showing the XRD measurement result of the electrically conductive film of Example 2 is shown in FIG.
  • the content of ascorbic acid in the conductive film can be measured by adding a scraped conductive film to ion-exchanged water and performing ultrasonic irradiation for 10 minutes using a high-performance liquid chromatograph (Prominence-comprehensive HPLC series, The following measurement conditions were used using Shimadzu Corporation make).
  • the content of metallic copper in the conductive film was 92.2% by mass, and the content of ascorbic acid as a reducing agent was 7.8% by mass.
  • Example 3 A conductive film was formed in the same manner as in Example 1 except that the drying conditions of the coating film formed on the glass substrate were performed under the conditions shown in the "drying conditions” column of Table 1.
  • the thickness before peeling of the dried film and the thickness of the conductive film obtained by peeling the upper layer of the dried film are shown in the "before peeling” column and the “after peeling” column of the "thickness” column in Table 1, respectively.
  • the XRD measurement result before peeling of the dried film and the XRD measurement result of the conductive film obtained by peeling the upper layer of the dried film are shown in the “before peeling” column and the “after peeling” column of “XRD” column of Table 1.
  • the volume resistance value of the conductive film obtained by peeling the upper layer of the dried film is shown in the "after peeling” column of the "volume resistance value” column of Table 1.
  • Example 4 A conductive film was formed in the same manner as in Example 2 except that citric acid was used instead of L-ascorbic acid.
  • the thickness before peeling of the dried film and the thickness of the conductive film obtained by peeling the upper layer of the dried film are shown in the "before peeling” column and the “after peeling” column of the "thickness” column in Table 1, respectively.
  • the XRD measurement result before peeling of the dried film and the XRD measurement result of the conductive film obtained by peeling the upper layer of the dried film are shown in the “before peeling” column and the “after peeling” column of “XRD” column of Table 1.
  • the volume resistance value of the conductive film obtained by peeling the upper layer of the dried film is shown in the "after peeling” column of the "volume resistance value” column of Table 1.
  • Comparative Example 1 A dried film was formed on a glass substrate in the same manner as in Example 2 except that the composition for forming a conductive film was prepared according to the composition shown in Table 2. When the surface of the dried film formed on the glass substrate was lightly wiped with Kimwipe, all the dried film was wiped off in the form of powder and peeled off completely. The thickness before peeling of the dried film is shown in the "before peeling" column of the "thickness” column of Table 1, and the XRD measurement result before peeling is shown in the "before peeling" column of the "XRD” column of Table 1. The volume resistance value after peeling off the dried film could not be measured. Moreover, the graph showing the XRD measurement result of the dried film before peeling of Comparative Example 1 is shown in FIG.
  • Comparative Example 2 A dry film was formed on a glass substrate in the same manner as in Example 2, but the upper layer was not peeled off.
  • the thickness of the dried film is shown in the "before peeling" column of the "thickness” column of Table 1
  • the XRD measurement result is in the "before peeling” column of the “XRD” column of Table 1
  • the measurement result of the volume resistance is shown in “Table 1". It shows in the "before peeling" column of "volume resistance value” column, respectively.
  • Comparative Example 3 A dry film was formed on a glass substrate in the same manner as in Example 2, but the upper layer was partially peeled off in the thickness direction.
  • the thicknesses before and after peeling of the dried film are shown in the "before peeling” column and the “after peeling” column of the "thickness” column of Table 1, respectively.
  • the XRD measurement result before peeling of a dried film is shown in the "before peeling” column of the "XRD” column of Table 1.
  • the volume resistance values before and after peeling of the dried film are shown in the "before peeling” column and the "after peeling” column in the "volume resistance value” column of Table 1, respectively.
  • Comparative Example 4 A composition for conductive film formation was prepared in the same manner as in Example 4 except that the reducing agent was changed to formic acid, to form a dry film and a conductive film on a glass substrate.
  • the thickness before peeling of the dried film and the thickness of the conductive film obtained by peeling the upper layer of the dried film are shown in the "before peeling” column and the “after peeling” column of the "thickness” column in Table 1, respectively.
  • the XRD measurement result before peeling of the dried film and the XRD measurement result of the conductive film obtained by peeling the upper layer of the dried film are shown in the “before peeling” column and the “after peeling” column of “XRD” column of Table 1.
  • the volume resistance value of the conductive film obtained by peeling the upper layer of the dried film is shown in the "after peeling” column of the "volume resistance value” column of Table 1.
  • Comparative Example 5 A composition for conductive film formation was prepared in the same manner as in Comparative Example 1 except that the reducing agent was changed to oxalic acid, and a dry film was formed on a glass substrate. When the surface of the dried film formed on the glass substrate was lightly wiped with Kimwipe, all the dried film was wiped off in the form of powder and peeled off completely. The thickness before peeling of the dried film is shown in the "before peeling" column of the "thickness” column of Table 1, and the XRD measurement result before peeling is shown in the "before peeling" column of the "XRD” column of Table 1. The volume resistance value after peeling off the dried film could not be measured.
  • Comparative Example 6 A composition for conductive film formation was prepared in the same manner as in Comparative Example 1 except that the reducing agent was changed to acetic acid, and a dried film was formed on a glass substrate. When the surface of the dried film formed on the glass substrate was lightly wiped with Kimwipe, all the dried film was wiped off in the form of powder and peeled off completely. The thickness before peeling of the dried film is shown in the "before peeling" column of the "thickness” column of Table 1, and the XRD measurement result before peeling is shown in the "before peeling" column of the "XRD” column of Table 1. The volume resistance value after peeling off the dried film could not be measured.
  • Comparative Example 7 A composition for conductive film formation was prepared in the same manner as in Example 4 except that the reducing agent was changed to L-cysteine, and a dry film and a conductive film were formed on a glass substrate.
  • the thickness before peeling of the dried film and the thickness of the conductive film obtained by peeling the upper layer of the dried film are shown in the "before peeling” column and the “after peeling” column of the "thickness” column in Table 1, respectively.
  • the XRD measurement result before peeling of the dried film and the XRD measurement result of the conductive film obtained by peeling the upper layer of the dried film are shown in the “before peeling” column and the “after peeling” column of “XRD” column of Table 1.
  • the volume resistance value of the conductive film obtained by peeling the upper layer of the dried film is shown in the "after peeling” column of the "volume resistance value” column of Table 1.
  • Comparative Example 1 is an example in which the composition for forming a conductive film does not contain a reducing agent.
  • the copper oxide is not reduced to metallic copper, and the upper layer containing copper oxide and the lower layer containing metallic copper are not formed even if the coated film is dried, and the dried film is dried when wiped with a kimwipe The entire membrane has been wiped off as a powder. Therefore, a conductive film excellent in conductivity could not be obtained.
  • Comparative Examples 2 and 3 were the same as Example 2 until the dried film was formed on the substrate, but the upper layer of the dried film was not peeled off (Comparative Example 2), or the upper layer of the dried film was in the thickness direction The film was only partially peeled off (Comparative Example 3). In Comparative Examples 2 and 3, since the upper layer was not completely removed, a conductive film having excellent conductivity could not be obtained.
  • Comparative Examples 4 to 7 are examples using formic acid (Comparative Example 4), oxalic acid (Comparative Example 5), acetic acid (Comparative Example 6), or L-cysteine (Comparative Example 7) as a reducing agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Abstract

Provided is a method for producing a conductive film, which comprises: an application step for forming a coating film by applying a composition for forming a conductive film to the surface of a substrate, said composition containing copper particles, at least one reducing agent that is selected from the group consisting of reductones and hydroxycarboxylic acids that have two or more carboxy groups and one or more hydroxy groups in each molecule, and a dispersion medium; a drying step for obtaining a dried film on the substrate by drying the coating film in an oxidizing atmosphere at a temperature of 150°C or less, said dried film being composed of a lower layer that does not substantially contain an oxide of copper and an upper layer that is arranged on the lower layer and contains an oxide of copper; and a separation step for obtaining a conductive film by removing the upper layer from the dried film. Also provided is a conductive film.

Description

導電膜の製造方法および導電膜Method of manufacturing conductive film and conductive film
 本発明は、導電膜の製造方法および導電膜に関する。 The present invention relates to a method of manufacturing a conductive film and a conductive film.
 銅微粒子は導電性に優れ、かつ銀などの金属と比較すると安価な材料であることから、例えば、導電性コーティング剤などの原料として広く用いられている。このような導電性コーティング剤は、プリント配線板などにおいて各種印刷法を用いて回路を形成するための材料、および、各種の電気的接点部材などとして幅広く利用されている。 Copper fine particles are widely used as raw materials for conductive coating agents, for example, because they are excellent in conductivity and inexpensive compared to metals such as silver. Such conductive coating agents are widely used as materials for forming circuits in printed wiring boards and the like using various printing methods, various electric contact members, and the like.
 また、近年では、電子機器の小型化および高機能化の要求に対応するため、プリント配線板などにおいては配線のより一層の微細化および高集積化が進んでいる。それに伴い、基板の上に優れた導電性を示す導電膜を形成できることが要求されている。 Further, in recent years, in order to meet the demand for miniaturization and high functionality of electronic devices, in the printed wiring board etc., further miniaturization and high integration of wiring are progressing. Along with this, it is required to be able to form a conductive film showing excellent conductivity on a substrate.
 例えば、特許文献1には、繊維状銅微粒子と、分散媒と、アミノ基を有しない還元性化合物とを含有することを特徴とする繊維状銅微粒子組成物が記載されている(請求項1)。 For example, Patent Document 1 describes a fibrous copper particulate composition comprising fibrous copper particulates, a dispersion medium, and a reducing compound having no amino group (claim 1). ).
特開2014-118586号公報JP 2014-118586 A
 また、導電膜の製造コスト低減の観点などから、大気中などの酸化的雰囲気下で成膜した場合であっても、優れた導電性を示すことが求められている。 Further, from the viewpoint of reducing the manufacturing cost of the conductive film, etc., it is required to exhibit excellent conductivity even when the film is formed in an oxidizing atmosphere such as the air.
 本発明者が検討したところ、特許文献1に記載の組成物を基板上に付与して大気中で形成した導電膜は、導電性が水準に達しておらず、優れた導電性を示す導電膜を得ることはできなかった。 As a result of investigation by the present inventor, the conductive film formed in the air by applying the composition described in Patent Document 1 on a substrate does not reach the level of conductivity, and exhibits excellent conductivity. I could not get
 そこで、本発明は、大気中などの酸化的雰囲気下で成膜した場合であっても、優れた導電性を示す導電膜を形成することが可能な導電膜の製造方法および導電膜を提供することを課題とする。 Therefore, the present invention provides a method for producing a conductive film and a conductive film capable of forming a conductive film exhibiting excellent conductivity even when film formation is performed in an oxidizing atmosphere such as the air. To be an issue.
 本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、銅粒子と、レダクトンならびに分子内に2つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸からなる群から選択される少なくとも1種の還元剤と、分散媒とを含む導電膜形成用組成物を基材の表面に付与して塗膜を形成する塗布工程と、塗膜を、酸化的雰囲気下、150℃以下の温度で乾燥して、銅の酸化物を含み基板の反対側に位置する上層と、銅の酸化物を実質的に含まず、基板の側に位置する下層とからなる乾燥膜を得る乾燥工程と、乾燥膜から上層を除去して導電膜を得る剥離工程と、を備える導電膜の製造方法によれば、大気中などの酸化的雰囲気下で成膜した場合であっても、優れた導電性を示す導電膜を形成することが可能であることを知得し、本発明を完成させた。
 すなわち、本発明は以下の[1]~[12]を提供する。
As a result of intensive studies to solve the above problems, the inventor selected from the group consisting of copper particles, reductone and hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule. A coating step of applying a composition for forming a conductive film containing at least one reducing agent to be added and a dispersion medium to the surface of a substrate to form a coating, and the coating under an oxidative atmosphere at 150.degree. The dried film is dried at the following temperature to obtain a dried film comprising an upper layer containing copper oxide and located on the opposite side of the substrate and a lower layer substantially free of copper oxide and located on the side of the substrate According to the method for manufacturing a conductive film, including the steps and the peeling step of removing the upper layer from the dried film to obtain the conductive film, the film is excellent even when the film is formed in an oxidizing atmosphere such as the air. It is possible to form a conductive film showing conductivity Become known the door, it has led to the completion of the present invention.
That is, the present invention provides the following [1] to [12].
 [1] 銅粒子と、レダクトンならびに分子内に2つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸からなる群から選択される少なくとも1種の還元剤と、分散媒とを含む導電膜形成用組成物を基材の表面に付与して塗膜を形成する塗布工程と、
 上記塗膜を、酸化的雰囲気下、150℃以下の温度で乾燥して、基板上に、銅の酸化物を実質的に含まない下層と、下層上に配置された、銅の酸化物を含む上層とからなる乾燥膜を得る乾燥工程と、
 上記乾燥膜から上記上層を除去して導電膜を得る剥離工程と
を備える、導電膜の製造方法。
 [2] X線回折法によるCuOの(111)ピークが、上記上層では検出され、上記下層では検出されない、上記[1]に記載の導電膜の製造方法。
 [3] 上記還元剤が、アスコルビン酸、アスコルビン酸誘導体およびクエン酸からなる群から選択される少なくとも1種である、上記[1]または[2]に記載の導電膜の製造方法。
 [4] 上記銅粒子の平均粒子径が25~1500nmの範囲内である、上記[1]~[3]のいずれか1つに記載の導電膜の製造方法。
 [5] 上記剥離工程の後に、さらに、上記導電膜を150℃超190℃以下の温度で加熱する加熱工程を備える、上記[1]~[4]のいずれか1つに記載の導電膜の製造方法。
 [6] 上記乾燥工程の温度が125℃以下である、上記[1]~[5]のいずれか1つに記載の導電膜の製造方法。
 [7] 上記導電膜形成用組成物がバインダーを含まない、上記[1]~[6]のいずれか1つに記載の導電膜の製造方法。
 [8] 上記還元剤の質量に対する上記銅粒子の質量の割合が90~99質量%である、[1]~[7]のいずれかに記載の導電膜の製造方法。
 [9] 銅と、レダクトンならびに分子内に2つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸からなる群から選択される少なくとも1種の還元剤とを含む導電膜であって、
 上記銅の含有量が上記導電膜の全質量に対して90質量%以上である、導電膜。
 [10] 上記還元剤が、アスコルビン酸、アスコルビン酸誘導体およびクエン酸からなる群から選択される少なくとも1種である、上記[9]に記載の導電膜。
 [11] バインダーを含まない、上記[9]または[10]に記載の導電膜。
 [12] X線回折法によるCuOの(111)ピークが検出されない、上記[9]~[11]のいずれか1つに記載の導電膜。
[1] A copper particle, at least one reducing agent selected from the group consisting of reductone and hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule, and a dispersion medium Applying a composition for forming a conductive film on the surface of a substrate to form a coating film;
The coating film is dried at a temperature of 150 ° C. or less under an oxidative atmosphere to include a lower layer substantially free of copper oxides and an oxide of copper disposed on the lower layers on the substrate. Obtaining a dried film comprising an upper layer,
A peeling step of removing the upper layer from the dry film to obtain a conductive film.
[2] The method for producing a conductive film according to the above [1], wherein the (111) peak of Cu 2 O by the X-ray diffraction method is detected in the upper layer and not detected in the lower layer.
[3] The method for producing a conductive film according to the above [1] or [2], wherein the reducing agent is at least one selected from the group consisting of ascorbic acid, ascorbic acid derivatives and citric acid.
[4] The method for producing a conductive film according to any one of the above [1] to [3], wherein the average particle diameter of the copper particles is in the range of 25 to 1500 nm.
[5] The conductive film according to any one of the above [1] to [4], further comprising a heating step of heating the conductive film at a temperature of 150 ° C. or more and 190 ° C. or less after the peeling step. Production method.
[6] The method for producing a conductive film according to any one of the above [1] to [5], wherein the temperature in the drying step is 125 ° C. or less.
[7] The method for producing a conductive film according to any one of the above [1] to [6], wherein the composition for forming a conductive film does not contain a binder.
[8] The method for producing a conductive film according to any one of [1] to [7], wherein the ratio of the mass of the copper particles to the mass of the reducing agent is 90 to 99 mass%.
[9] A conductive film comprising copper and at least one reducing agent selected from the group consisting of reductone and a hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule. ,
The electrically conductive film whose content of the said copper is 90 mass% or more with respect to the total mass of the said electrically conductive film.
[10] The conductive film according to the above [9], wherein the reducing agent is at least one selected from the group consisting of ascorbic acid, ascorbic acid derivatives and citric acid.
[11] The conductive film according to the above [9] or [10] which does not contain a binder.
[12] The conductive film according to any one of the above [9] to [11], wherein the (111) peak of Cu 2 O is not detected by the X-ray diffraction method.
 本発明によれば、大気中などの酸化的雰囲気下で成膜した場合であっても、優れた導電性を示す導電膜を形成することが可能な導電膜の製造方法および導電膜を提供することができる。 According to the present invention, there is provided a method of manufacturing a conductive film and a conductive film capable of forming a conductive film exhibiting excellent conductivity even when forming a film in an oxidizing atmosphere such as the air. be able to.
図1Aは、塗膜を形成する前の基板を表す模式図である。FIG. 1A is a schematic view showing a substrate before forming a coating film. 図1Bは、基板の表面に塗膜が形成された状態を表す模式図である。FIG. 1B is a schematic view showing a state in which a coating film is formed on the surface of a substrate. 図1Cは、基板の表面に下層(導電膜)と上層が界面で接する乾燥膜が形成された状態を表す模式図である。FIG. 1C is a schematic view showing a state in which a dried film in which the lower layer (conductive film) and the upper layer are in contact at the interface is formed on the surface of the substrate. 図1Dは、上層を除去した後、基板の表面に下層(導電膜)が形成された状態を表す模式図である。FIG. 1D is a schematic view showing a state in which the lower layer (conductive film) is formed on the surface of the substrate after removing the upper layer. 図2は、実施例2および比較例1のXRD測定結果を表すグラフである。なお、比較例1および亜酸化銅(参考)は、それぞれ、ベースラインを括弧内に示すカウント分上昇させて表示している。FIG. 2 is a graph showing the XRD measurement results of Example 2 and Comparative Example 1. In Comparative Example 1 and cuprous oxide (informative), the baseline is indicated by being raised by the count shown in the parenthesis.
 以下に、本発明の導電膜および導電膜の製造方法について詳細に説明する。
 なお、本明細書において「~」を用いて表される範囲は、その範囲に「~」の前後に記載された両端を含む範囲を意味する。
The conductive film and the method for producing the conductive film of the present invention will be described in detail below.
In the present specification, a range represented by using “to” means a range including both ends described before and after “to” in the range.
[導電膜の製造方法]
 本発明の導電膜の製造方法は、銅粒子と、レダクトンならびに分子内に2つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸からなる群から選択される少なくとも1種の還元剤と、分散媒とを含む導電膜形成用組成物を基材の表面に付与して塗膜を形成する塗布工程と、塗膜を、酸化的雰囲気下、150℃以下の温度で乾燥して、基板上に、銅の酸化物を実質的に含まない下層と、下層上に配置された、銅の酸化物を含む上層とからなる乾燥膜を得る乾燥工程と、乾燥膜から上層を除去して導電膜を得る剥離工程とを備える。
[Method of manufacturing conductive film]
The method for producing a conductive film of the present invention comprises at least one reducing agent selected from the group consisting of copper particles, reductone and hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule. And applying a composition for forming a conductive film containing a dispersion medium to the surface of a substrate to form a coated film, and drying the coated film at a temperature of 150 ° C. or less under an oxidative atmosphere, A drying step of obtaining a dry film comprising a lower layer substantially free of copper oxide and an upper layer comprising copper oxide disposed on the lower layer on the substrate, and removing the upper layer from the dry film And a peeling step of obtaining a conductive film.
 図1A~図1Dを参照しながら本発明の導電膜の製造方法の概要を説明する。
 基板11を準備し(図1A)、基板11の表面に導電膜形成用組成物を付与して塗膜12を形成する(図1B)。
 次に、基板11の表面に形成した塗膜12を酸化的雰囲気下で150℃以下の温度で乾燥して乾燥膜13を形成する(図1C)。乾燥膜13は、基板11の表面側の下層(導電膜)14と、基板11とは反対側の上層15とに、界面16で分かれた構造となる(図1C)。これは、酸化性雰囲気下で乾燥させることにより、塗膜12の基板11側とは反対側の表面に近い銅粒子が酸化されるとともに、塗膜12の基板11側では銅粒子が融着して金属導体が形成されることによるものである。乾燥中に、塗膜12において厚み方向に還元剤の濃度不均衡が起こり、乾燥膜13の上層15では酸素濃度が高く還元剤濃度が低いため、銅の酸化が進行し、乾燥膜13の下層14では、酸素濃度が低く還元剤濃度が高いため、銅の酸化が抑制される。上層15と下層14との間には、界面16が形成される。上層15を除去することにより、金属導体を含む下層(導電膜)14を導電性に優れた導電膜として得ることができる(図1D)。
 以下、各工程について詳細に説明する。
The outline of the method for producing a conductive film of the present invention will be described with reference to FIGS. 1A to 1D.
A substrate 11 is prepared (FIG. 1A), and a composition for forming a conductive film is applied to the surface of the substrate 11 to form a coating film 12 (FIG. 1B).
Next, the coating film 12 formed on the surface of the substrate 11 is dried at a temperature of 150 ° C. or less in an oxidative atmosphere to form a dry film 13 (FIG. 1C). The dry film 13 has a structure divided at the interface 16 into the lower layer (conductive film) 14 on the surface side of the substrate 11 and the upper layer 15 on the opposite side to the substrate 11 (FIG. 1C). This is because the copper particles near the surface opposite to the substrate 11 side of the coating film 12 are oxidized by drying in an oxidizing atmosphere, and the copper particles are fused on the substrate 11 side of the coating film 12 Metal conductor is formed. During drying, a concentration imbalance of the reducing agent occurs in the thickness direction in the coating film 12, and since the oxygen concentration is high and the reducing agent concentration is low in the upper layer 15 of the dry film 13, copper oxidation progresses and the lower layer of the dry film 13 In 14, since the oxygen concentration is low and the reductant concentration is high, the oxidation of copper is suppressed. An interface 16 is formed between the upper layer 15 and the lower layer 14. By removing the upper layer 15, the lower layer (conductive film) 14 including the metal conductor can be obtained as a conductive film excellent in conductivity (FIG. 1D).
Each step will be described in detail below.
〈塗布工程〉
 塗布工程においては、導電膜形成用組成物を基材の表面に付与して塗膜を形成する。
<Coating process>
In the coating step, the composition for forming a conductive film is applied to the surface of a substrate to form a coating film.
《導電膜形成用組成物》
 本発明の導電膜の製造方法において用いる導電膜形成用組成物は、銅粒子と、レダクトンならびに分子内に2つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸からなる群から選択される少なくとも1種の還元剤と、分散媒とを含む。
<< Composition for forming conductive film >>
The composition for forming a conductive film used in the method for producing a conductive film of the present invention is selected from the group consisting of copper particles, reductone and hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule. And at least one reducing agent, and a dispersing medium.
 上記導電膜形成用組成物における上記銅粒子と上記還元剤の質量割合は、特に限定されないが、還元剤の質量に対する銅粒子の質量の割合として、90質量%~99質量%が好ましく、90質量%~97質量%がより好ましく、91質量%~95質量%がさらに好ましく、93質量%~95質量%がいっそう好ましい。
 上記銅粒子と上記還元剤の質量比がこの範囲内であると、得られる導電膜の導電性がより良好なものとなる。
The mass ratio of the copper particles to the reducing agent in the composition for forming a conductive film is not particularly limited, but it is preferably 90 mass% to 99 mass%, as a ratio of mass of copper particles to mass of reducing agent. % To 97% by mass is more preferable, 91% by mass to 95% by mass is more preferable, and 93% by mass to 95% by mass is more preferable.
When the mass ratio of the copper particles to the reducing agent is within this range, the conductivity of the obtained conductive film is further improved.
 上記導電膜形成用組成物における上記分散媒の含有量は、特に限定されないが、上記銅粒子100質量部に対して、1質量部~10000質量部が好ましく、10質量部~500質量部がより好ましく、20質量部~200質量部がさらに好ましい。
 上記分散媒の含有量がこの範囲内であると、得られる導電膜の導電性がより良好なものとなる。
The content of the dispersion medium in the composition for forming a conductive film is not particularly limited, but it is preferably 1 part by mass to 10000 parts by mass, and more preferably 10 parts by mass to 500 parts by mass with respect to 100 parts by mass of the copper particles. Preferably, 20 parts by mass to 200 parts by mass is more preferable.
When the content of the dispersion medium is in this range, the conductivity of the obtained conductive film becomes better.
(銅粒子)
 上記銅粒子は、導電膜中の金属導体となるものである。基板に付与した導電膜形成用組成物を乾燥することにより、銅粒子どうしが融着し、導電膜中の金属導体を構成する。
 上記銅粒子としては、導電膜形成用組成物に一般的に用いられる従来公知の銅粒子を用いることができる。上記銅粒子は、一次粒子であってもよいし、二次粒子であってもよい。また、上記銅粒子の形状は、特に限定されず、球状であってもよいし、板状であってもよい。
 上記銅粒子の平均粒子径は、特に限定されず、一次粒子の場合には一次粒子の平均粒子径であり、二次粒子の場合には二次粒子の平均粒子径であるが、25nm~1500nmが好ましく、200nm~1500nmがより好ましく、500nm~1500nmの範囲内がさらに好ましい。
 なお、銅粒子(A)の平均粒子径は、走査型電子顕微鏡(以下「SEM」という場合がある。)像の中から無作為に選んだ100個の粒子のフェレ径を測定し、この測定値を算術平均して算出したものである。
(Copper particles)
The copper particles are to be metal conductors in the conductive film. By drying the composition for forming a conductive film applied to the substrate, the copper particles are fused to form a metal conductor in the conductive film.
As said copper particle, the conventionally well-known copper particle generally used to the composition for electrically conductive film formation can be used. The copper particles may be primary particles or secondary particles. Moreover, the shape of the said copper particle is not specifically limited, A spherical shape may be sufficient and plate shape may be sufficient.
The average particle size of the copper particles is not particularly limited, and in the case of primary particles, it is the average particle size of primary particles, and in the case of secondary particles, it is the average particle size of secondary particles, but 25 nm to 1500 nm. Is preferably 200 nm to 1500 nm, and more preferably in the range of 500 nm to 1500 nm.
In addition, the average particle diameter of copper particle (A) measures the Feret diameter of 100 particle | grains randomly selected from the scanning electron microscope (it may be hereafter mentioned "SEM") image, and this measurement. It is calculated by arithmetically averaging the values.
(還元剤)
 上記還元剤は、レダクトンならびに分子内に2つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸からなる群から選択される少なくとも1種である。
(Reductant)
The reducing agent is at least one selected from the group consisting of reductone and hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule.
((レダクトン))
 レダクトンとは、下記式(I)または下記式(II)で表される、エンジオール構造の隣にカルボニル基が結合した形態の構造(以下「レダクトン構造」という。)を有する有機化合物を意味する。レダクトンは還元性および高い酸性を有する有機酸である。
Figure JPOXMLDOC01-appb-C000001
((Reducton))
The reductone means an organic compound represented by the following formula (I) or the following formula (II) and having a structure in which a carbonyl group is bonded next to an enediol structure (hereinafter referred to as "reductone structure") . Reductone is an organic acid having reducibility and high acidity.
Figure JPOXMLDOC01-appb-C000001
 上記レダクトンの代表例は、下記式(Ia)で表されるグルシン酸、下記式(Ib)で表されるレダクチン酸、ならびに後述するアスコルビン酸およびアスコルビン酸誘導体であるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000002
Representative examples of the above reductones are glycic acid represented by the following formula (Ia), reductic acid represented by the following formula (Ib), and ascorbic acid and ascorbic acid derivatives described later, but are limited thereto is not.
Figure JPOXMLDOC01-appb-C000002
 上記還元剤は、アスコルビン酸、アスコルビン酸誘導体およびクエン酸からなる群から選択される少なくとも1種が好ましく、アスコルビン酸およびアスコルビン酸誘導体からなる群から選択される少なくとも1種がより好ましく、アスコルビン酸がさらに好ましい。 The reducing agent is preferably at least one member selected from the group consisting of ascorbic acid, ascorbic acid derivatives and citric acid, more preferably at least one member selected from the group consisting of ascorbic acid and ascorbic acid derivatives, and ascorbic acid More preferable.
(((アスコルビン酸)))
 上記アスコルビン酸は、(2R)-2-[(1S)-1,2-ジヒドロキシエチル]-3,4-ジヒドロキシ-2H-フラン-5-オン(下記式(A-1)で表される化合物;本化合物を「狭義のアスコルビン酸」または「L-アスコルビン酸」と称する場合がある。)、(2S)-2-[(1R)-1,2-ジヒドロキシエチル]-3,4-ジヒドロキシ-2H-フラン-5-オン(下記式(A-2)で表される化合物;本化合物を「D-アスコルビン酸」と称する場合がある。)、(2S)-2-[(1S)-1,2-ジヒドロキシエチル]-3,4-ジヒドロキシ-2H-フラン-5-オン(下記式(A-3)で表される化合物;本化合物を「L-イソアスコルビン酸」と称する場合がある。)および(2R)-2-[(1R)-1,2-ジヒドロキシエチル]-2,3-ジヒドロキシ-2H-フラン-5-オン(下記式(A-4)で表される化合物;本化合物を「エリソルビン酸」または「D-イソアスコルビン酸」と称する場合がある。)からなる群から選択される少なくとも1種類の化合物である。
Figure JPOXMLDOC01-appb-C000003
(((Ascorbic acid)))
The ascorbic acid is a compound represented by (2R) -2-[(1S) -1,2-dihydroxyethyl] -3,4-dihydroxy-2H-furan-5-one (formula (A-1) below) The present compound may be referred to as "in a narrow sense ascorbic acid" or "L-ascorbic acid"), (2S) -2-[(1R) -1,2-dihydroxyethyl] -3,4-dihydroxy- 2H-furan-5-one (compound represented by the following formula (A-2); the present compound may be referred to as “D-ascorbic acid”), (2S) -2-[(1S) -1 2, 2-Dihydroxyethyl] -3,4-dihydroxy-2H-furan-5-one (compound represented by the following formula (A-3); this compound may be referred to as "L-isoascorbic acid". And (2R) -2-[(1R) -1,2-dihydroxyethyl] -2,3-dihydroxy-2H-furan-5-one (compound represented by the following formula (A-4)); “Erythorbic acid” or “D-isoascorbi” It is at least one compound selected from the group consisting of may be referred to as acid ".).
Figure JPOXMLDOC01-appb-C000003
(((アスコルビン酸誘導体)))
 上記アスコルビン酸誘導体は、下記一般式(B-1)で表される化合物(「アスコルビン酸誘導体(B-1)」という場合がある。)または下記一般式(B-2)で表される化合物(「アスコルビン酸誘導体(B-1)」という場合がある。)が好ましい。
 銅酸化物に対する還元力は、アスコルビン酸誘導体中のエンジオール構造に起因する。したがって、その構造を残す形でアスコルビン酸の誘導体を合成し、溶解度および極性を適宜調整して用いることも可能である。
(((Ascorbic acid derivative)))
The ascorbic acid derivative is a compound represented by the following general formula (B-1) (sometimes referred to as "ascorbic acid derivative (B-1)") or a compound represented by the following general formula (B-2) (It may be referred to as "ascorbic acid derivative (B-1)") is preferred.
The reducing power for copper oxides is due to the enediol structure in the ascorbic acid derivative. Therefore, it is also possible to synthesize a derivative of ascorbic acid in a form that leaves its structure, and use it by appropriately adjusting the solubility and polarity.
・一般式(B-1)で表されるアスコルビン酸誘導体
Figure JPOXMLDOC01-appb-C000004

 一般式(B-1)中、RおよびRは、それぞれ独立に、水素原子または置換基を有してよいアシル基を表す。ただし、RおよびRは同時に水素原子を表さない。
・ Ascorbic acid derivative represented by general formula (B-1)
Figure JPOXMLDOC01-appb-C000004

In Formula (B-1), R 1 and R 2 each independently represent a hydrogen atom or an acyl group which may have a substituent. However, R 1 and R 2 do not simultaneously represent a hydrogen atom.
 上記一般式(B-1)中のRおよびRにおけるアシル基は、特に限定されないが、炭素数1から18の直鎖状、分岐鎖状、単環状もしくは縮合多環状の脂肪族が結合したカルボニル基または炭素数6から10の単環状もしくは縮合多環状アリール基が結合したカルボニル基が好ましい。 The acyl group for R 1 and R 2 in the above general formula (B-1) is not particularly limited, and a linear, branched, monocyclic or condensed polycyclic aliphatic group having 1 to 18 carbon atoms is bonded Preferred is a carbonyl group or a carbonyl group to which a monocyclic or fused polycyclic aryl group having 6 to 10 carbon atoms is bonded.
 上記アシル基の具体例は、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、シクロペンチルカルボニル基、シクロヘキシルカルボニル基、アクリロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基、オレオイル基、ベンゾイル基、1-ナフトイル基および2-ナフトイル基からなる群から選択されるいずれか1種類であるが、これらに限定されるものではない。 Specific examples of the above acyl group are formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, cyclopentyl carbonyl group, cyclohexylcarbonyl And any one selected from the group consisting of acryloyl group, methacryloyl group, crotonoyl group, isocrotonoyl group, oleoyl group, benzoyl group, 1-naphthoyl group and 2-naphthoyl group, but is limited thereto It is not a thing.
 上記アシル基は、それぞれ、アシル基内の水素原子が置換基で置換されていてもよく、これにより、さらに溶解性および極性を調節することも可能である。
 上記置換基の具体例は、ヒドロキシル基およびハロゲン原子からなる群から選択される1種類以上の置換基であるが、これらに限定されるものではない。
In each of the acyl groups, a hydrogen atom in the acyl group may be substituted by a substituent, and it is also possible to further adjust the solubility and the polarity.
Although the specific example of the said substituent is one or more types of substituents selected from the group which consists of a hydroxyl group and a halogen atom, it is not limited to these.
 上記アスコルビン酸誘導体(B-1)の代表例は、下記式(B-1-X)で表されるものである。ただし、本発明におけるアスコルビン酸誘導体(B-1)は、これらの代表例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000005

 ただし、上記式(B-1-X)中、Xは以下に示す化学構造からなる群から選択されるいずれか1つを表す。なお、各化学構造中の「*」は、Xがアスコルビン酸の五員環部位に結合する位置を示す。
Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-C000007
A representative example of the ascorbic acid derivative (B-1) is one represented by the following formula (B-1-X). However, the ascorbic acid derivative (B-1) in the present invention is not limited to these representative examples.
Figure JPOXMLDOC01-appb-C000005

However, in the above formula (B-1-X), X represents any one selected from the group consisting of chemical structures shown below. In each chemical structure, "*" indicates a position at which X binds to the five-membered ring site of ascorbic acid.
Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-C000007
・一般式(B-2)
Figure JPOXMLDOC01-appb-C000008

 一般式(B-2)中、RおよびRは、それぞれ独立に、水素原子または置換基を有してよいアルキル基を表す。
・ General formula (B-2)
Figure JPOXMLDOC01-appb-C000008

In Formula (B-2), R 3 and R 4 each independently represent a hydrogen atom or an alkyl group which may have a substituent.
 一般式(B-2)で表される化合物は、アスコルビン酸の側鎖に存在する2つの水酸基をアルデヒドまたはケトンと反応させることで、アセタール構造またはケタール構造が形成されたアスコルビン酸誘導体である。 The compound represented by the general formula (B-2) is an ascorbic acid derivative in which an acetal structure or a ketal structure is formed by reacting two hydroxyl groups present in the side chain of ascorbic acid with an aldehyde or ketone.
 上記一般式(B-2)中のRおよびRにおけるアルキル基は、特に限定されないが、炭素数1から18の直鎖状、分岐鎖状、単環状または縮合多環状アルキル基が好ましい。 The alkyl group for R 3 and R 4 in the general formula (B-2) is not particularly limited, but is preferably a linear, branched, monocyclic or fused polycyclic alkyl group having 1 to 18 carbon atoms.
 上記アルキル基の具体例は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基、イソプロピル基、イソブチル基、イソペンチル基、sec-ブチル基、tert-ブチル基、sec-ペンチル基、tert-ペンチル基、tert-オクチル基、ネオペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基、ノルボルニル基および4-デシルシクロヘキシル基からなる群から選択されるいずれか1種類であるが、これらに限定されるものではない。 Specific examples of the above alkyl group are methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, octadecyl group, isopropyl group, isobutyl group, Isopentyl group, sec-butyl group, tert-butyl group, sec-pentyl group, tert-pentyl group, tert-octyl group, neopentyl group, cyclopropyl group, cyclobutyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, adamantyl group, norbornyl group and Although it is any one selected from the group consisting of 4-decylcyclohexyl group, it is not limited thereto.
 上記アルキル基は、それぞれ、アルキル基内の水素原子が置換基で置換されていてもよく、これにより、さらに溶解性や極性を調節することも可能である。
 上記置換基の具体例は、ヒドロキシル基およびハロゲン原子からなる群から選択される1種類以上の置換基であるが、これらに限定されるものではない。
In each of the above alkyl groups, a hydrogen atom in the alkyl group may be substituted by a substituent, whereby the solubility and the polarity can be further adjusted.
Although the specific example of the said substituent is one or more types of substituents selected from the group which consists of a hydroxyl group and a halogen atom, it is not limited to these.
 上記Rと上記Rとは、一体となって環構造を形成してもよい。 The R 3 and the R 4 may be integrated to form a ring structure.
 上記アスコルビン酸誘導体(B-2)の代表例は、下記式(B-2-Y)で表されるものである。ただし、本発明におけるアスコルビン酸誘導体(B-2)は、これらの代表例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000009

 ただし、上記式(B-2-Y)中、Yは以下に示す化学構造からなる群から選択されるいずれか1つを表す。なお、各化学構造中の「*」は、Yがアスコルビン酸の五員環部位に結合する位置を示す。
A representative example of the ascorbic acid derivative (B-2) is one represented by the following formula (B-2-Y). However, the ascorbic acid derivative (B-2) in the present invention is not limited to these representative examples.
Figure JPOXMLDOC01-appb-C000009

However, in the above formula (B-2-Y), Y represents any one selected from the group consisting of chemical structures shown below. Note that "*" in each chemical structure indicates the position at which Y binds to the five-membered ring site of ascorbic acid.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
((分子内に2つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸))
 上記分子内に2つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸は、特に限定されないが、分子内に3つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸が好ましい。
 上記分子内に2つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸の例は、クエン酸およびイソクエン酸であるが、これらに限定されるものではない。
 本発明の導電膜において、上記分子内に2つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸は、クエン酸およびイソクエン酸からなる群から選択される少なくとも1種のヒドロキシカルボン酸が好ましく、クエン酸がより好ましくい。
((Hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule))
The hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule is not particularly limited, but a hydroxycarboxylic acid having three or more carboxy groups and one or more hydroxy group in the molecule Is preferred.
Examples of hydroxycarboxylic acids having two or more carboxy groups and one or more hydroxy groups in the above molecule are, but not limited to, citric acid and isocitric acid.
In the conductive film of the present invention, the hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule is at least one hydroxycarboxylic acid selected from the group consisting of citric acid and isocitric acid. Is preferred, and citric acid is more preferred.
(分散媒)
 上記分散媒は、上記還元剤を溶解または分散することができるものであれば特に限定されない。
 上記分散媒の具体例は、水、メタノール、エタノール、プロパノール、2-プロパノール、シクロヘキサノン、シクロヘキサノール、テルピネオール、エチレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルアセテートおよびジエチレングリコールモノブチルエーテルアセテートからなる群から選択される少なくとも1種であり、水、メタノール、エタノール、プロパノールおよび2プロパノールからなる群から選択される少なくとも1種が好ましく、水、メタノールおよびエタノールからなる群から選択される少なくとも1種がより好ましく、水がさらに好ましい。上記水としては、イオン交換水、RO(Reverse Osmosis:逆浸透)水もしくは蒸留水その他の純水、またはASTM D 1193-06タイプ1グレードその他の超純水が好ましい。
(Dispersion medium)
The dispersion medium is not particularly limited as long as it can dissolve or disperse the reducing agent.
Specific examples of the dispersion medium include water, methanol, ethanol, propanol, 2-propanol, cyclohexanone, cyclohexanol, terpineol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol At least one member selected from the group consisting of monobutyl ether acetate, diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate, consisting of water, methanol, ethanol, propanol and 2-propanol Little selected from the group Both are preferred one, water, more preferably at least one selected from the group consisting of methanol and ethanol, water is further preferred. As the water, ion exchange water, RO (Reverse Osmosis) water, distilled water or other pure water, or ASTM D 1193-06 type 1 grade other ultra pure water is preferable.
(導電膜形成用組成物の調製方法)
 本発明の導電膜の製造方法において用いる導電膜形成用組成物の調製方法は、特に限定されないが、例えば、以下に記載するようにすることができる。
(Preparation method of composition for conductive film formation)
Although the preparation method of the composition for electrically conductive film formation used in the manufacturing method of the electrically conductive film of this invention is not specifically limited, For example, it can be made to describe below.
((銅粒子、還元剤および分散媒の混合))
 銅粒子、還元剤および分散媒を混合する方法は、特に限定されず、従来公知の方法を採用することができる。
 例えば、分散媒中に、銅粒子と、還元剤とを添加した後、超音波法(例えば、超音波ホモジナイザーによる処理)、ミキサー法、3本ロール法、および、ボールミル法などの公知の手段により成分を分散させることによって、組成物を得ることができる。
((Mixture of copper particles, reducing agent and dispersion medium))
The method of mixing the copper particles, the reducing agent, and the dispersion medium is not particularly limited, and a conventionally known method can be adopted.
For example, after copper particles and a reducing agent are added to the dispersion medium, ultrasonic wave (for example, treatment with an ultrasonic homogenizer), mixer method, three-roll method, and ball mill method can be used. The composition can be obtained by dispersing the components.
((銅酸化物の還元))
 銅粒子と、還元剤と、分散媒とを混合した後、銅酸化物の還元処理をすることが好ましい。
 具体的には、例えば、銅粒子と、還元剤と、分散媒との混合物を、密閉容器に入れ、空気を遮断して、酸素が存在しない状態で48時間以上静置することが好ましい。なお、静置する際の温度は、1℃~30℃が好ましい。
 銅酸化物の還元処理をすることにより、得られる導電膜の導電性がより良好なものとなる。
((Reduction of copper oxide))
After mixing the copper particles, the reducing agent, and the dispersion medium, it is preferable to carry out reduction treatment of the copper oxide.
Specifically, for example, it is preferable to put a mixture of copper particles, a reducing agent, and a dispersion medium in a closed container, shut off air, and leave still for 48 hours or more in the absence of oxygen. The temperature upon standing is preferably 1 ° C. to 30 ° C.
By reducing the copper oxide, the conductivity of the obtained conductive film becomes better.
(バインダー)
 上記導電膜形成用組成物は、バインダーを含まないことが好ましい。バインダーは、通常、導電膜の基板への密着性を向上させる効果があるが、本発明の導電膜においては、バインダーを含有することは導電性を低下させるおそれがあることから好ましくない。
 ここで、バインダーとしては、樹脂および分子量200以上の有機化合物が挙げられる。
(binder)
The composition for forming a conductive film preferably does not contain a binder. The binder usually has an effect of improving the adhesion of the conductive film to the substrate, but in the conductive film of the present invention, it is not preferable to contain the binder because the conductivity may be reduced.
Here, as the binder, a resin and an organic compound having a molecular weight of 200 or more can be mentioned.
 上記樹脂としては、熱硬化性樹脂および熱可塑性樹脂が挙げられる。
 上記熱硬化性樹脂の具体例は、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、オリゴエステルアクリレート樹脂、キシレン樹脂、ビスマレイドトリアジン樹脂、フラン樹脂、尿素樹脂、ポリウレタン、メラミン樹脂、シリコン樹脂、アクリル樹脂、オキセタン樹脂およびオキサジン樹脂等が挙げられ、上記熱可塑性樹脂の具体例は、ポリアミド樹脂、ポリイミド樹脂、アクリル樹脂、ケトン樹脂、ポリスチレン樹脂および熱可塑性ポリエステル樹脂等が挙げられ、これらに限定されるものではない。
As said resin, a thermosetting resin and a thermoplastic resin are mentioned.
Specific examples of the thermosetting resin are phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleide triazine resin, furan resin, urea resin, polyurethane, Examples thereof include melamine resin, silicone resin, acrylic resin, oxetane resin and oxazine resin, and specific examples of the thermoplastic resin include polyamide resin, polyimide resin, acrylic resin, ketone resin, polystyrene resin and thermoplastic polyester resin. It is not limited to these.
 上記分子量200以上の有機化合物は、特に限定されないが、例えば、分子量200以上の有機酸、分子量200以上のポリアルキレングリコール、分子量200以上の糖アルコール、オリゴ糖および多糖が挙げられる。 The organic compound having a molecular weight of 200 or more is not particularly limited, and examples thereof include an organic acid having a molecular weight of 200 or more, a polyalkylene glycol having a molecular weight of 200 or more, a sugar alcohol having a molecular weight of 200 or more, an oligosaccharide and a polysaccharide.
《基板》
 上記基板は、従来公知のものを用いることができる。
 また、上記基板に使用される材料の具体例は、樹脂、紙、ガラス、シリコン系半導体、化合物半導体、金属、金属酸化物、金属窒化物、木材、またはこれらの複合物であるが、これらに限定されるものではない。
"substrate"
A conventionally known substrate can be used as the substrate.
In addition, specific examples of the material used for the substrate are resin, paper, glass, silicon semiconductor, compound semiconductor, metal, metal oxide, metal nitride, wood, or a composite thereof. It is not limited.
 上記樹脂の具体例は、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ABS(Acrylonitrile Butadiene Styrene)樹脂、アクリル樹脂、スチレン樹脂、塩化ビニル樹脂、ポリエステル樹脂(ポリエチレンテレフタレート(PET))、ポリアセタール樹脂、ポリサルフォン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂、およびセルロース誘導体であるが、これらに限定されるものではない。
 上記紙の具体例は、塗工印刷用紙、微塗工印刷用紙、塗工印刷用紙(アート紙、コート紙)、特殊印刷用紙、コピー用紙(PPC用紙)、未晒包装紙(重袋用両更クラフト紙、両更クラフト紙)、晒包装紙(晒クラフト紙、純白ロール紙)、コートボール、チップボール、および段ボールであるが、これらに限定されるものではない。
 上記ガラスの具体例は、ソーダガラス、ホウケイ酸ガラス、シリカガラス、および石英ガラスであるが、これらに限定されるものではない。
 上記シリコン系半導体の具体例は、アモルファスシリコンおよびポリシリコンであるが、これらに限定されるものではない。
 上記化合物半導体の具体例は、CdS、CdTeおよびGaAsであるが、これらに限定されるものではない。
 上記金属の具体例は、銅、鉄、およびアルミであるが、これらに限定されるものではない。
 上記金属酸化物の具体例は、アルミナ、サファイア、ジルコニア、チタニア、酸化イットリウム、酸化インジウム、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)、ネサ(酸化錫)、ATO(アンチモンドープ酸化錫)、フッ素ドープ酸化錫、酸化亜鉛、AZO(アルミドープ酸化亜鉛)、およびガリウムドープ酸化亜鉛であるが、これらに限定されるものではない。
 上記金属窒化物の具体例は、窒化アルミニウムであるが、これに限定されるものではない。
 また、上記複合物の具体例は、紙-フェノール樹脂、紙-エポキシ樹脂、紙-ポリエステル樹脂等の紙-樹脂複合物、ガラス布-エポキシ樹脂(ガラスエポキシ樹脂)、ガラス布-ポリイミド系樹脂、およびガラス布-フッ素樹脂であるが、これらに限定されるものではない。
 本発明の導電膜を形成する基板は、特に限定されないが、ガラス基板、ポリイミド基板、またはポリエチレンテレフタレート(PET)基板が好ましい。
Specific examples of the resin are low density polyethylene resin, high density polyethylene resin, ABS (Acrylonitrile Butadiene Styrene) resin, acrylic resin, styrene resin, vinyl chloride resin, polyester resin (polyethylene terephthalate (PET)), polyacetal resin, polysulfone resin And polyether imide resins, polyether ketone resins, polyimide resins, and cellulose derivatives, but are not limited thereto.
Specific examples of the above-mentioned paper are coated printing paper, fine coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), non-bleached wrapping paper (both for heavy bags) Other examples include, but are not limited to, kraft paper, double kraft paper), bleached wrapping paper (bleached kraft paper, pure white roll paper), coated balls, chip balls, and corrugated boards.
Specific examples of the above-mentioned glass are soda glass, borosilicate glass, silica glass and quartz glass, but are not limited thereto.
Specific examples of the silicon-based semiconductor are amorphous silicon and polysilicon, but are not limited thereto.
Specific examples of the compound semiconductor are CdS, CdTe and GaAs, but are not limited thereto.
Specific examples of the above-mentioned metals are copper, iron and aluminum, but not limited thereto.
Specific examples of the above metal oxides are alumina, sapphire, zirconia, titania, yttrium oxide, indium oxide, ITO (indium tin oxide), IZO (indium zinc oxide), nesa (tin oxide), ATO (antimony doped oxide) Tin), fluorine-doped tin oxide, zinc oxide, AZO (aluminum-doped zinc oxide), and gallium-doped zinc oxide, but are not limited thereto.
Although the specific example of the said metal nitride is aluminum nitride, it is not limited to this.
Further, specific examples of the above-mentioned composites are paper-phenol resin, paper-epoxy resin, paper-resin composite such as paper-polyester resin, glass cloth-epoxy resin (glass epoxy resin), glass cloth-polyimide resin, And glass cloth-fluoroplastics, but is not limited thereto.
The substrate on which the conductive film of the present invention is formed is not particularly limited, but a glass substrate, a polyimide substrate, or a polyethylene terephthalate (PET) substrate is preferable.
《導電膜形成用組成物を基板上に付与する方法》
 上記導電膜形成用組成物を基板上に付与する方法は特に制限されず、公知の方法を採用できる。例えば、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、および、インクジェット法などの塗布法が挙げられる。
 塗布の形状は特に制限されず、基板全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。
<< Method for applying a composition for forming a conductive film on a substrate >>
The method for applying the composition for forming a conductive film on a substrate is not particularly limited, and a known method can be adopted. For example, coating methods such as screen printing method, dip coating method, spray coating method, spin coating method, and inkjet method can be mentioned.
The shape of the coating is not particularly limited, and may be a surface covering the entire surface of the substrate or a pattern (for example, a wiring or a dot).
 基板上への導電膜形成用組成物の塗布量としては、所望する導電膜の膜厚に応じて適宜調整すればよいが、通常、塗膜の膜厚(厚み)は、2μm~600μmが好ましく、10μm~300μmがより好ましく、10μm~200μmがさらに好ましい。 The coating amount of the composition for forming a conductive film on a substrate may be appropriately adjusted according to the desired film thickness of the conductive film, but generally, the film thickness (thickness) of the coating film is preferably 2 μm to 600 μm. 10 μm to 300 μm is more preferable, and 10 μm to 200 μm is more preferable.
〈乾燥工程〉
 乾燥工程においては、塗膜を、酸化的雰囲気下、150℃以下の温度で乾燥して、基板上に、銅の酸化物を実質的に含まない下層と、下層上に配置された、銅の酸化物を含む上層とからなる乾燥膜を得る。なお、上記乾燥膜は、基板側から、下層および上層をこの順で有する。
<Drying process>
In the drying step, the coating is dried in an oxidative atmosphere at a temperature of 150 ° C. or less to form a lower layer substantially free of copper oxides and a lower layer of copper on the substrate. A dry film comprising an upper layer containing an oxide is obtained. The dry film has a lower layer and an upper layer in this order from the substrate side.
 乾燥工程では、形成された塗膜に対して酸化的雰囲気下で乾燥処理を行い、分散媒を除去する。塗膜中に残存する分散媒を除去するとともに、塗膜の基板に近い側での銅粒子の融着による金属導体の形成と、塗膜の表面側での銅酸化物の形成とにより、上層と下層の二層に界面から分かれた乾燥膜が得られる。 In the drying step, the formed coating is dried in an oxidative atmosphere to remove the dispersion medium. The upper layer is formed by removing the dispersion medium remaining in the coating film and forming a metal conductor by fusion of copper particles on the side close to the substrate of the coating film and forming copper oxide on the surface side of the coating film. A dry film separated from the interface is obtained as the lower layer and the lower layer.
 酸化的雰囲気の例は、大気中または空気中などの酸素を含む雰囲気であるが、これらに限定されるものではない。 Examples of oxidative atmospheres include, but are not limited to, atmospheres containing oxygen, such as in air or air.
 乾燥の方法としては、温風乾燥機などを用いて乾燥する方法などを用いることができる。 As a method of drying, a method of drying using a hot air dryer or the like can be used.
 乾燥の際の温度(以下「乾燥温度」という場合がある。)は、150℃以下であれば特に限定されないが、0℃~150℃が好ましく、0℃~125℃がより好ましく、4℃~100℃がさらに好ましい。
 なお、乾燥の際の温度が150℃超の場合、銅の酸化が還元剤により銅酸化物の酸化の速度を上回り、所望の導電性を示す導電膜が得られない。
The temperature during drying (hereinafter sometimes referred to as “drying temperature”) is not particularly limited as long as it is 150 ° C. or less, but 0 ° C. to 150 ° C. is preferable, 0 ° C. to 125 ° C. is more preferable, and 4 ° C. 100 ° C. is more preferred.
When the temperature during drying is higher than 150 ° C., the oxidation of copper exceeds the rate of oxidation of copper oxide by the reducing agent, and a conductive film exhibiting desired conductivity can not be obtained.
 乾燥の際の時間(以下「乾燥時間」という場合がある。)は、特に限定されないが、1秒~96時間が好ましく、5秒~72時間がより好ましく、10秒~48時間がさらに好ましい。ただし、乾燥時間は塗膜から分散媒を実質的に全部除去できればよく、乾燥温度によって適宜設定することができる。 The time for drying (hereinafter sometimes referred to as "drying time") is not particularly limited, but is preferably 1 second to 96 hours, more preferably 5 seconds to 72 hours, and still more preferably 10 seconds to 48 hours. However, the drying time may be set as appropriate depending on the drying temperature as long as substantially all of the dispersion medium can be removed from the coating film.
〈剥離工程〉
 剥離工程においては、乾燥膜から上層を除去して導電膜を得る。
 上層を除去する方法は特に限定されないが、乾燥膜の表面をスクレイパー等の器具で上層をこそげとる方法およびキムワイプ等のウエスで上層を拭き取る方法などが挙げられる。
 なお、本工程では、上層全体が除去される。
 本発明の導電膜の製造方法によって得られる導電膜は、銅と共存する還元剤によって銅の酸化が抑制されるため、銅の酸化物を実質的に含まない。
 ここで、銅の酸化物を実質的に含まないとは、X線回折(XRD: X‐ray diffraction)法により測定し、酸化銅(I)〔CuO〕に由来する(111)ピークが検出されないことをいい、銅の酸化物を含むとは、X線回折法により測定し、酸化銅(I)〔CuO〕に由来する(111)ピークが検出されることをいう。
<Peeling process>
In the peeling step, the upper layer is removed from the dried film to obtain a conductive film.
Although the method of removing the upper layer is not particularly limited, a method of scraping the upper layer with a device such as a scraper or a method of wiping the upper layer with a waste such as Kimwipe may be mentioned.
In the present step, the entire upper layer is removed.
The conductive film obtained by the method for producing a conductive film of the present invention is substantially free of an oxide of copper because the reduction agent coexisting with copper suppresses the oxidation of copper.
Here, it is measured by X-ray diffraction (XRD: X-ray diffraction) method that substantially no copper oxide is contained, and the (111) peak derived from copper oxide (I) [Cu 2 O] is It means that it is not detected, and that the oxide of copper is contained means that a (111) peak derived from copper oxide (I) [Cu 2 O] is detected by X-ray diffraction method.
 なお、ここで、X線回析の測定条件は、以下に記載するものとする。
 X線回折装置       RINT Ultima III X-Ray Diffractometer(リガク社製)
 2Θ/ω                30-45度
 サンプリングステップ          0.01度
 スキャンスピード            10度/分
 減衰器(ATT: Attenuator)        開放
 発散スリット(DS: Dvergence slit)   1.00mm
 散乱スリット(SS: Scattering slit)   開放
 受光スリット(RS: Receiving slit)   開放
 光学系パラレルスリット         PB
 入射縦制限ソーラースリット       V5
 縦制限スリット             10×10
 平行スリットアナライザー        PSA
In addition, the measurement conditions of X-ray diffraction shall be described below here.
X-ray diffractometer RINT Ultima III X-Ray Diffractometer (manufactured by RIGAKU Co., Ltd.)
2Θ / ω 30-45 degree sampling step 0.01 degree scan speed 10 degree / minute attenuator (ATT: Attenuator) Opening divergence slit (DS: Dvergence slit) 1.00 mm
Scattering slit (SS: Scattering slit) Open Light receiving slit (RS: Receiving slit) Open Optical system parallel slit PB
Incident vertical limited solar slit V5
Vertical restriction slit 10 × 10
Parallel slit analyzer PSA
 なお、X線回折法により酸化銅(I)〔CuO〕の(111)ピークが「検出されない」とは、上記X線回析の条件により測定したCuOの(111)ピーク強度とCuの(111)ピーク強度の比率Z〔Z≡{CuOの(111)ピーク強度/Cuの(111)ピーク強度}×100(%)〕が、0.1%未満であることをいうものとし、X線回折法により酸化銅(I)〔CuO〕の(111)ピークが「検出される」とは、上記Zが0.1%以上であることをいうものとする。 Note that “the (111) peak of copper oxide (I) [Cu 2 O] is not detected” by the X-ray diffraction method means the (111) peak intensity of Cu 2 O measured under the conditions of the above X-ray diffraction and The ratio Z of the (111) peak intensity of Cu (Z ≡ {(111) peak intensity of Cu 2 O / (111) peak intensity of Cu} × 100 (%)) means less than 0.1% Here, “detecting” the (111) peak of copper oxide (I) [Cu 2 O] by X-ray diffraction means that the above-mentioned Z is 0.1% or more.
〈加熱工程〉
 本発明の導電膜の製造方法は、所望により、剥離工程の後に、さらに、得られた導電膜を150℃超190℃以下の温度で加熱する加熱工程を備えていてもよい。
 加熱工程を行うことにより、導電膜の導電性がより良好なものとなる。
<Heating process>
The method for producing a conductive film of the present invention may further include a heating step of heating the obtained conductive film at a temperature of more than 150 ° C. and 190 ° C. or less after the peeling step, as desired.
By performing the heating step, the conductivity of the conductive film becomes better.
 加熱の手段は、特に限定されず、オーブンおよびホットプレート等公知の加熱手段を用いることができる。 The means for heating is not particularly limited, and known heating means such as an oven and a hot plate can be used.
 加熱の際の温度は、導電性により優れる導電膜を形成することができる点で、155℃~190℃が好ましく、160℃~190℃がより好ましく、160℃~180℃がさらに好ましい。 The temperature at the time of heating is preferably 155 ° C. to 190 ° C., more preferably 160 ° C. to 190 ° C., and still more preferably 160 ° C. to 180 ° C. in that a conductive film having better conductivity can be formed.
 加熱の際の時間は、特に限定されず、導電性により優れる導電膜を形成することができる点で、1分~120分が好ましく、5分~60分がより好ましく、5分~30分がさらに好ましい。 The time for heating is not particularly limited, and is preferably 1 minute to 120 minutes, more preferably 5 minutes to 60 minutes, and 5 minutes to 30 minutes in that a conductive film having excellent conductivity can be formed. More preferable.
 加熱の際の雰囲気は、特に限定されず、非酸化的雰囲気および酸化的雰囲気のいずれで行われてもよい。
 上記非酸化的雰囲気としては、窒素、アルゴン等の不活性ガス雰囲気、および、水素等の還元性ガス雰囲気などが挙げられる。また、上記酸化的雰囲気としては、大気雰囲気、および、酸素雰囲気などが挙げられる。
The atmosphere at the time of heating is not particularly limited, and may be performed in any of non-oxidative atmosphere and oxidative atmosphere.
As said non-oxidative atmosphere, inert gas atmospheres, such as nitrogen and argon, and reducing gas atmospheres, such as hydrogen, etc. are mentioned. Moreover, as said oxidative atmosphere, an air | atmosphere atmosphere, and oxygen atmosphere etc. are mentioned.
[導電膜]
 本発明の導電膜は、銅と、レダクトンならびに分子内に2つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸からなる群から選択される少なくとも1種の還元剤とを含み、銅の含有量が導電膜の全質量に対して90質量%以上である。
[Conductive film]
The conductive film of the present invention contains copper and at least one reducing agent selected from the group consisting of reductone and hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule, The content of copper is 90% by mass or more with respect to the total mass of the conductive film.
〈銅・還元剤〉
 上記銅は金属銅である。
 上記導電膜中の銅の含有量は、上記導電膜の全質量の90質量%以上であれば特に限定されないが、93質量%以上100質量%未満が好ましく、95質量%以上100質量%未満がより好ましく、97質量%以上100質量%未満がさらに好ましい。
 ここで、導電膜中の銅の含有量は、導電膜を削りとったものを硝酸に溶解し、溶液中の銅濃度を蛍光X線(XRF:X‐ray Fluorescence)分析法にて分析することにより測定することができる。
<Copper / Reductant>
The copper is metal copper.
The content of copper in the conductive film is not particularly limited as long as it is 90% by mass or more of the total mass of the conductive film, but 93% by mass or more and less than 100% by mass is preferable, and 95% by mass or more and less than 100% by mass More preferably, 97% by mass or more and less than 100% by mass are more preferable.
Here, the copper content in the conductive film is obtained by dissolving the scraped conductive film in nitric acid and analyzing the copper concentration in the solution by X-ray fluorescence (XRF) analysis. It can be measured by
 XRF測定は、蛍光X線分析装置(Axios,PANalytical社製)を用いて、以下の測定条件により行った。
 ライン:Kα線
 結晶:LIF200
 コリメーター:150um
 検出器:Duplex
 管球フィルタ:なし
 電圧:60kV
 電流:60mA
 測定時間:40秒
 照射面積:20φ
The XRF measurement was performed using a fluorescent X-ray analyzer (Axios, manufactured by PANalytical) under the following measurement conditions.
Line: K α ray Crystal: LIF 200
Collimator: 150 um
Detector: Duplex
Tube filter: None Voltage: 60kV
Current: 60 mA
Measurement time: 40 seconds Irradiated area: 20φ
 本発明の導電膜に含まれる銅は、複数の銅粒子が融着して導電体を構成した状態のものが好ましい。
 なお、上記銅粒子は、本発明の導電膜の製造方法において記載したものと同様である。
The copper contained in the conductive film of the present invention is preferably in the state in which a plurality of copper particles are fused to form a conductor.
In addition, the said copper particle is the same as that of what was described in the manufacturing method of the electrically conductive film of this invention.
 本発明の導電膜に含まれる還元剤は、本発明の導電膜の製造方法において記載したものと同様である。 The reducing agent contained in the conductive film of the present invention is the same as that described in the method of producing a conductive film of the present invention.
 本発明の導電膜は、導電膜中に銅と還元剤とが共存しているため、金属銅と空気中の酸素との反応による銅酸化物の生成が抑制され、長期にわたり優れた導電性を維持することができる。
 本発明の導電膜においては、還元剤が存在するため、導電膜中に酸化銅(I)が存在しなければ、酸化銅(II)等の酸化銅(I)以外の銅酸化物も存在しないとみなすことができる。
 そのため、本発明の導電膜が銅酸化物を含まないことは、導電膜と空気とが接触し、もっとも酸化され易い導電膜の表面をX線回折(XRD: X‐ray diffraction)法により測定し、酸化銅(I)に由来するピークが検出されないことによって判断することができる。
 したがって、本発明の導電膜はX線回折法により酸化銅(I)〔CuO〕の(111)ピークが検出されないものが好ましい。
In the conductive film of the present invention, since copper and a reducing agent coexist in the conductive film, the formation of copper oxide by the reaction between metallic copper and oxygen in the air is suppressed, and excellent conductivity over a long period of time Can be maintained.
In the conductive film of the present invention, since a reducing agent is present, if copper (I) oxide is not present in the conductive film, no copper oxide other than copper (I) oxide such as copper (II) oxide is also present. It can be regarded as
Therefore, that the conductive film of the present invention does not contain a copper oxide is measured by X-ray diffraction (XRD: X-ray diffraction) method, in which the conductive film and the air are in contact and the surface of the conductive film is most easily oxidized. It can be judged that the peak derived from copper oxide (I) is not detected.
Accordingly, the conductive film of the present invention is preferably one in which the (111) peak of copper oxide (I) [Cu 2 O] is not detected by the X-ray diffraction method.
 ここで、X線回析の測定条件は、以下に記載するものとする。
 X線回折装置       RINT Ultima III X-Ray Diffractometer(リガク社製)
 2Θ/ω                30-45度
 サンプリングステップ          0.01度
 スキャンスピード            10度/分
 減衰器(ATT: Attenuator)        開放
 発散スリット(DS: Dvergence slit)   1.00mm
 散乱スリット(SS: Scattering slit)   開放
 受光スリット(RS: Receiving slit)   開放
 光学系パラレルスリット         PB
 入射縦制限ソーラースリット       V5
 縦制限スリット             10×10
 平行スリットアナライザー        PSA
Here, the measurement conditions of X-ray diffraction shall be described below.
X-ray diffractometer RINT Ultima III X-Ray Diffractometer (manufactured by RIGAKU Co., Ltd.)
2Θ / ω 30-45 degree sampling step 0.01 degree scan speed 10 degree / minute attenuator (ATT: Attenuator) Opening divergence slit (DS: Dvergence slit) 1.00 mm
Scattering slit (SS: Scattering slit) Open Light receiving slit (RS: Receiving slit) Open Optical system parallel slit PB
Incident vertical limited solar slit V5
Vertical restriction slit 10 × 10
Parallel slit analyzer PSA
 なお、X線回折法により酸化銅(I)〔CuO〕の(111)ピークが「検出されない」とは、上記X線回析の条件により測定したCuOの(111)ピーク強度とCuの(111)ピーク強度の比率Z〔Z≡{CuOの(111)ピーク強度/Cuの(111)ピーク強度}×100(%)〕が、0.1%未満であることをいうものとし、X線回折法により酸化銅(I)〔CuO〕の(111)ピークが「検出される」とは、上記Zが0.1%以上であることをいうものとする。 Note that “the (111) peak of copper oxide (I) [Cu 2 O] is not detected” by the X-ray diffraction method means the (111) peak intensity of Cu 2 O measured under the conditions of the above X-ray diffraction and The ratio Z of the (111) peak intensity of Cu (Z ≡ {(111) peak intensity of Cu 2 O / (111) peak intensity of Cu} × 100 (%)) means less than 0.1% Here, “detecting” the (111) peak of copper oxide (I) [Cu 2 O] by X-ray diffraction means that the above-mentioned Z is 0.1% or more.
〈バインダー〉
 本発明の導電膜は、バインダーを含まないことが好ましい。
 なお、上記バインダーは、本発明の導電膜の製造方法において記載したものと同様である。
<binder>
The conductive film of the present invention preferably contains no binder.
In addition, the said binder is the same as that described in the manufacturing method of the electrically conductive film of this invention.
〈導電膜の厚み〉
 本発明の導電膜の厚みは、特に限定されないが、1μm~100μmが好ましく、1μm~50μmがより好ましく、1μm~30μmがさらに好ましい。
 本発明の導電膜の厚みが上記範囲内であると、銅の酸化物を実質的に含まない下層と、銅の酸化物を含む上層を剥離する工程において十分な膜強度を有する導電膜を得ることができる。
<Thickness of conductive film>
The thickness of the conductive film of the present invention is not particularly limited, but is preferably 1 μm to 100 μm, more preferably 1 μm to 50 μm, and still more preferably 1 μm to 30 μm.
When the thickness of the conductive film of the present invention is within the above range, a conductive film having sufficient film strength is obtained in the step of peeling the lower layer substantially free of copper oxide and the upper layer containing copper oxide be able to.
〈基板〉
 本発明の導電膜は、基板上に形成されることが好ましい。
 なお、上記基板は、本発明の導電膜の製造方法において記載したものと同様である。
<substrate>
The conductive film of the present invention is preferably formed on a substrate.
The substrate is the same as that described in the method for producing a conductive film of the present invention.
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
[実施例1]
〈導電膜形成用組成物の調製〉
 銅粒子(平均粒子径750nm;三井金属社製)10質量部およびL-アスコルビン酸(和光純薬社製)1.8質量部を、イオン交換水18.2質量部と混合し、ミキサーを用いて2000rpmで5分間、よく撹拌して混合液を得た。
 撹拌後、混合液を密閉容器に移し、空気を遮断した状態で、25℃で48時間保温して、導電膜形成用組成物(以下「導電膜形成用組成物1」という場合がある)を得た。
Example 1
<Preparation of composition for conductive film formation>
10 parts by mass of copper particles (average particle size 750 nm; manufactured by Mitsui Metals Co., Ltd.) and 1.8 parts by mass of L-ascorbic acid (manufactured by Wako Pure Chemical Industries, Ltd.) are mixed with 18.2 parts by mass of ion exchanged water The mixture was well stirred at 2000 rpm for 5 minutes to obtain a mixture.
After stirring, the mixed solution is transferred to a closed container and kept in a sealed container at 25 ° C. for 48 hours to form a composition for forming a conductive film (hereinafter sometimes referred to as “the composition for forming a conductive film”) Obtained.
〈導電膜の製造〉
《塗布》
 ガラス基板(縦76mm×横26mm×厚み0.9mm;松波硝子社製)を準備した。
 このガラス基板上に、導電膜形成用組成物1をコイルバーによりにより、縦61mm×横26mm×ウェット厚み40μmに塗布して、ガラス基板の表面に塗膜を形成した。
<Production of conductive film>
<< Application >>
A glass substrate (length 76 mm × width 26 mm × thickness 0.9 mm; manufactured by Matsunami Glass Co., Ltd.) was prepared.
On this glass substrate, the composition 1 for conductive film formation was apply | coated by coil bar to length 61 mm * width 26 mm * wet thickness 40 micrometers, and the coating film was formed in the surface of a glass substrate.
《乾燥》
 ガラス基板上に形成した塗膜を、表1に示す乾燥条件で乾燥させて、ガラス基板上に乾燥膜を形成した。
<< Drying >>
The coating film formed on the glass substrate was dried under the drying conditions shown in Table 1 to form a dried film on the glass substrate.
《剥離》
 乾燥膜の表面をキムワイプを用いてこすることで、乾燥膜の上層を剥離して、導電膜を得た。
<< Peeling off >>
The surface of the dried film was rubbed with a Kimwipe to peel off the upper layer of the dried film to obtain a conductive film.
《加熱》
 導電膜を形成したガラス基板を、大気下150℃で1時間加熱した。
"heating"
The glass substrate on which the conductive film was formed was heated at 150 ° C. in the atmosphere for 1 hour.
〈測定〉
(1)膜厚測定
 剥離前の膜厚は、乾燥工程で得られた乾燥膜の厚みを測定して求めた。
 また、剥離後の膜厚は、剥離工程で得られた導電膜の厚みを測定して求めた。
 膜厚は、塗膜の一部を金属へらで削り、基材面と塗膜面との段差を表面形状測定装置(Dektak 150 Surface Profiler,Veeco社製)を用いて測定した。
 剥離前の膜厚および剥離後の膜厚は、それぞれ、表1の「厚み[μm]」の「剥離前」および「剥離後」の欄に示した。
<Measurement>
(1) Film Thickness Measurement The film thickness before peeling was determined by measuring the thickness of the dried film obtained in the drying step.
Further, the film thickness after peeling was determined by measuring the thickness of the conductive film obtained in the peeling step.
The film thickness was measured by scraping a part of the coating film with a metal spatula and using the surface shape measuring device (Dektak 150 Surface Profiler, manufactured by Veeco) to measure the difference between the substrate surface and the coating film surface.
The film thickness before peeling and the film thickness after peeling are shown in the column of “before peeling” and “after peeling” of “thickness [μm]” in Table 1, respectively.
(2)XRD測定
 剥離前のXRD測定は、乾燥工程で得られた乾燥膜の表面について行った。
 また、剥離後のXRD測定は、剥離工程で得られた導電膜の表面について行った。
 XRD測定は、X線回折装置(RINT Ultima III X-Ray Diffractometer,リガク社製)を用いて、以下の測定条件により行った。
 2Θ/ω                30-45度
 サンプリングステップ          0.01度
 スキャンスピード            10度/分
 減衰器(ATT: Attenuator)        開放
 発散スリット(DS: Dvergence slit)   1.00mm
 散乱スリット(SS: Scattering slit)   開放
 受光スリット(RS: Receiving slit)   開放
 光学系パラレルスリット         PB
 入射縦制限ソーラースリット       V5
 縦制限スリット             10×10
 平行スリットアナライザー        PSA
(2) XRD measurement The XRD measurement before peeling was performed on the surface of the dried film obtained in the drying step.
In addition, XRD measurement after peeling was performed on the surface of the conductive film obtained in the peeling step.
The XRD measurement was performed using an X-ray diffractometer (RINT Ultima III X-Ray Diffractometer, manufactured by Rigaku Corporation) under the following measurement conditions.
2Θ / ω 30-45 degree sampling step 0.01 degree scan speed 10 degree / minute attenuator (ATT: Attenuator) Opening divergence slit (DS: Dvergence slit) 1.00 mm
Scattering slit (SS: Scattering slit) Open Light receiving slit (RS: Receiving slit) Open Optical system parallel slit PB
Incident vertical limited solar slit V5
Vertical restriction slit 10 × 10
Parallel slit analyzer PSA
 XRD測定結果を、次のとおり評価した。
 A・・・CuOに由来する(111)ピークが検出されなかった
 B・・・CuOに由来する(111)ピークが検出された
 ただし、CuOに由来する(111)ピークが「検出されなかった」とは、XRD測定によるCuOに由来する(111)ピーク強度とCuに由来する(111)ピーク強度の比率Z[Z≡{CuOに由来する(111)ピーク強度/Cuに由来する(111)ピーク強度}×100(%)〕が0.1%未満であることをいい、「検出された」とは、上記Zが0.1%以上であることをいう。
 剥離前のXRD測定結果および剥離後のXRD測定結果は、それぞれ、表1の「XRD」の「剥離前」および「剥離後」の欄に示した。
The XRD measurement results were evaluated as follows.
A: A (111) peak derived from Cu 2 O was not detected B: a (111) peak derived from Cu 2 O was detected However, a (111) peak derived from Cu 2 O was detected by "not detected", derived from the Cu 2 O by XRD measurement (111) derived from the peak intensity and Cu (111) derived from the ratio Z [Z≡ {Cu 2 O peak intensity (111) peak It means that (111) peak intensity derived from intensity / Cu} × 100 (%) is less than 0.1%, and “detected” means that Z is 0.1% or more. Say.
The XRD measurement results before peeling and the XRD measurement results after peeling are shown in the “before peeling” and “after peeling” columns of “XRD” in Table 1, respectively.
(3)導電性
 剥離後の体積抵抗値の測定は、剥離工程で得られた導電膜について行った。
 また、加熱後の体積抵抗値の測定は、加熱工程で得られた導電膜について行った。
 膜の体積抵抗値は、四端子法により測定した。
 剥離後の体積抵抗値の測定結果および加熱後の体積抵抗値の測定結果は、それぞれ、表1の「体積抵抗値[Ω・m]」の「剥離後」および「加熱後」の欄に示した。
(3) Conductivity The measurement of the volume resistance value after peeling was performed about the conductive film obtained at the peeling process.
Moreover, the measurement of the volume resistance value after heating was performed about the electrically conductive film obtained at the heating process.
The volume resistance of the film was measured by the four probe method.
The measurement result of the volume resistance after peeling and the measurement result of the volume resistance after heating are shown in the “after peeling” and “after heating” columns of “volume resistance [Ω · m]” in Table 1, respectively. The
[実施例2~4]
〈実施例2〉
 ガラス基板に形成した塗膜の乾燥条件を表1の「乾燥条件」欄に示す条件で行った点を除いて、実施例1と同様にして、導電膜を形成した。
 乾燥膜の剥離前の厚みおよび乾燥膜の上層を剥離して得られた導電膜の厚み、それぞれ、表1の「厚み」欄の「剥離前」欄および「剥離後」欄に示す。
 乾燥膜の剥離前のXRD測定結果および乾燥膜の上層を剥離して得られた導電膜のXRD測定結果を表1の「XRD」欄の「剥離前」欄および「剥離後」欄に示す。
 乾燥膜の上層を剥離して得られた導電膜の体積抵抗値および導電膜を加熱した後の体積抵抗値を、それぞれ、表1の「体積抵抗値」欄の「剥離後」欄および「加熱後」欄に示す。
 また、実施例2の導電膜のXRD測定結果を表すグラフを図2に示す。
[Examples 2 to 4]
Example 2
A conductive film was formed in the same manner as in Example 1 except that the drying conditions of the coating film formed on the glass substrate were performed under the conditions shown in the "drying conditions" column of Table 1.
The thickness before peeling of the dried film and the thickness of the conductive film obtained by peeling the upper layer of the dried film are shown in the "before peeling" column and the "after peeling" column of the "thickness" column in Table 1, respectively.
The XRD measurement result before peeling of the dried film and the XRD measurement result of the conductive film obtained by peeling the upper layer of the dried film are shown in the “before peeling” column and the “after peeling” column of “XRD” column of Table 1.
The volume resistance value of the conductive film obtained by peeling the upper layer of the dried film and the volume resistance value after heating the conductive film are shown in the “after peeling” column and “heating” in the “volume resistance value” column of Table 1, respectively. It shows in the "after" column.
Moreover, the graph showing the XRD measurement result of the electrically conductive film of Example 2 is shown in FIG.
(4)導電膜中の金属銅および還元剤の分析
 導電膜中の金属銅のXRF測定は、蛍光X線分析装置(Axios,PANalytical社製)を用いて、以下の測定条件により行った。
 ライン:Kα線
 結晶:LIF200
 コリメーター:150um
 検出器:Duplex
 管球フィルタ:なし
 電圧:60kV
 電流:60mA
 測定時間:40秒
 照射面積:20φ
(4) Analysis of metallic copper and reducing agent in conductive film XRF measurement of metallic copper in the conductive film was performed using a fluorescent X-ray analyzer (Axios, manufactured by PANalytical) under the following measurement conditions.
Line: K α ray Crystal: LIF 200
Collimator: 150 um
Detector: Duplex
Tube filter: None Voltage: 60kV
Current: 60 mA
Measurement time: 40 seconds Irradiated area: 20φ
 また、導電膜中のアスコルビン酸の含有量の測定は、削り取った導電膜をイオン交換水に添加し超音波照射を10分行った溶液を、高速液体クロマトグラフ装置(Prominence-総合的HPLCシリーズ,島津製作所社製)を用いて、以下の測定条件により行った。
カラム:資生堂 CAPCELL PAK C18 AQ 5um
ガードカラム:なし
流速:0.8ml/min
カラム温度:40℃
検出波長:254nm
溶離液:A:25mMリン酸二水素カリウム-リン酸水溶液(pH=2.5)
    B:メタノール(バッファーなし)
リンス液:水:メタノール=1:1(vol%)
タイムプログラム:0~8.0min:B.conc=0%
         8.01~13.0min:B.conc=80%
         13.1~35.0min:B.conc=0%
In addition, the content of ascorbic acid in the conductive film can be measured by adding a scraped conductive film to ion-exchanged water and performing ultrasonic irradiation for 10 minutes using a high-performance liquid chromatograph (Prominence-comprehensive HPLC series, The following measurement conditions were used using Shimadzu Corporation make).
Column: Shiseido CAPCELL PAK C18 AQ 5um
Guard column: None Flow rate: 0.8 ml / min
Column temperature: 40 ° C
Detection wavelength: 254 nm
Eluent: A: 25 mM potassium dihydrogen phosphate-phosphoric acid aqueous solution (pH = 2.5)
B: Methanol (without buffer)
Rinsing solution: water: methanol = 1: 1 (vol%)
Time program: 0 to 8.0 min: B.conc = 0%
8.01 to 13.0 min: B.conc = 80%
13.1 to 35.0 min: B. conc = 0%
 上記のとおり測定した結果、導電膜中の金属銅の含有量は92.2質量%であり、還元剤であるアスコルビン酸の含有量は7.8質量%であった。 As a result of the measurement as described above, the content of metallic copper in the conductive film was 92.2% by mass, and the content of ascorbic acid as a reducing agent was 7.8% by mass.
〈実施例3〉
 ガラス基板に形成した塗膜の乾燥条件を表1の「乾燥条件」欄に示す条件で行った点を除いて、実施例1と同様にして、導電膜を形成した。
 乾燥膜の剥離前の厚みおよび乾燥膜の上層を剥離して得られた導電膜の厚み、それぞれ、表1の「厚み」欄の「剥離前」欄および「剥離後」欄に示す。
 乾燥膜の剥離前のXRD測定結果および乾燥膜の上層を剥離して得られた導電膜のXRD測定結果を表1の「XRD」欄の「剥離前」欄および「剥離後」欄に示す。
 乾燥膜の上層を剥離して得られた導電膜の体積抵抗値を表1の「体積抵抗値」欄の「剥離後」欄に示す。
Example 3
A conductive film was formed in the same manner as in Example 1 except that the drying conditions of the coating film formed on the glass substrate were performed under the conditions shown in the "drying conditions" column of Table 1.
The thickness before peeling of the dried film and the thickness of the conductive film obtained by peeling the upper layer of the dried film are shown in the "before peeling" column and the "after peeling" column of the "thickness" column in Table 1, respectively.
The XRD measurement result before peeling of the dried film and the XRD measurement result of the conductive film obtained by peeling the upper layer of the dried film are shown in the “before peeling” column and the “after peeling” column of “XRD” column of Table 1.
The volume resistance value of the conductive film obtained by peeling the upper layer of the dried film is shown in the "after peeling" column of the "volume resistance value" column of Table 1.
〈実施例4〉
 L-アスコルビン酸に代えてクエン酸を用いた点を除いて、実施例2と同様にして、導電膜を形成した。
 乾燥膜の剥離前の厚みおよび乾燥膜の上層を剥離して得られた導電膜の厚み、それぞれ、表1の「厚み」欄の「剥離前」欄および「剥離後」欄に示す。
 乾燥膜の剥離前のXRD測定結果および乾燥膜の上層を剥離して得られた導電膜のXRD測定結果を表1の「XRD」欄の「剥離前」欄および「剥離後」欄に示す。
 乾燥膜の上層を剥離して得られた導電膜の体積抵抗値を表1の「体積抵抗値」欄の「剥離後」欄に示す。
Example 4
A conductive film was formed in the same manner as in Example 2 except that citric acid was used instead of L-ascorbic acid.
The thickness before peeling of the dried film and the thickness of the conductive film obtained by peeling the upper layer of the dried film are shown in the "before peeling" column and the "after peeling" column of the "thickness" column in Table 1, respectively.
The XRD measurement result before peeling of the dried film and the XRD measurement result of the conductive film obtained by peeling the upper layer of the dried film are shown in the “before peeling” column and the “after peeling” column of “XRD” column of Table 1.
The volume resistance value of the conductive film obtained by peeling the upper layer of the dried film is shown in the "after peeling" column of the "volume resistance value" column of Table 1.
[比較例1~7]
〈比較例1〉
 導電膜形成用組成物を表2に示す配合で調製した点を除いて、実施例2と同様にしてガラス基板上に乾燥膜を形成した。
 ガラス基板上に形成した乾燥膜の表面をキムワイプで軽く拭いたところ、乾燥膜がすべて粉状物として拭き取られてしまい全部剥離した。
 乾燥膜の剥離前の厚みを表1の「厚み」欄の「剥離前」欄に、剥離前のXRD測定結果を表1の「XRD」欄の「剥離前」欄に、それぞれ示す。
 乾燥膜を剥離した後の体積抵抗値は、測定できなかった。
 また、比較例1の剥離前の乾燥膜のXRD測定結果を表すグラフを図2に示す。
[Comparative Examples 1 to 7]
Comparative Example 1
A dried film was formed on a glass substrate in the same manner as in Example 2 except that the composition for forming a conductive film was prepared according to the composition shown in Table 2.
When the surface of the dried film formed on the glass substrate was lightly wiped with Kimwipe, all the dried film was wiped off in the form of powder and peeled off completely.
The thickness before peeling of the dried film is shown in the "before peeling" column of the "thickness" column of Table 1, and the XRD measurement result before peeling is shown in the "before peeling" column of the "XRD" column of Table 1.
The volume resistance value after peeling off the dried film could not be measured.
Moreover, the graph showing the XRD measurement result of the dried film before peeling of Comparative Example 1 is shown in FIG.
〈比較例2〉
 実施例2と同様にして、ガラス基板上に乾燥膜を形成したが、上層の剥離を行わなかった。
 乾燥膜の厚みを表1の「厚み」欄の「剥離前」欄に、XRD測定結果を表1の「XRD」欄の「剥離前」欄に、体積抵抗値の測定結果を表1の「体積抵抗値」欄の「剥離前」欄に、それぞれ示す。
Comparative Example 2
A dry film was formed on a glass substrate in the same manner as in Example 2, but the upper layer was not peeled off.
The thickness of the dried film is shown in the "before peeling" column of the "thickness" column of Table 1, the XRD measurement result is in the "before peeling" column of the "XRD" column of Table 1, and the measurement result of the volume resistance is shown in "Table 1". It shows in the "before peeling" column of "volume resistance value" column, respectively.
〈比較例3〉
 実施例2と同様にして、ガラス基板上に乾燥膜を形成したが、上層を厚み方向に一部剥離するに留めた。
 乾燥膜の剥離前および一部剥離後の厚みを、それぞれ、表1の「厚み」欄の「剥離前」欄および「剥離後」欄に示す。
 乾燥膜の剥離前のXRD測定結果を表1の「XRD」欄の「剥離前」欄に示す。
 乾燥膜の剥離前および一部剥離後の体積抵抗値を、それぞれ、表1の「体積抵抗値」欄の「剥離前」欄および「剥離後」欄に示す。
Comparative Example 3
A dry film was formed on a glass substrate in the same manner as in Example 2, but the upper layer was partially peeled off in the thickness direction.
The thicknesses before and after peeling of the dried film are shown in the "before peeling" column and the "after peeling" column of the "thickness" column of Table 1, respectively.
The XRD measurement result before peeling of a dried film is shown in the "before peeling" column of the "XRD" column of Table 1.
The volume resistance values before and after peeling of the dried film are shown in the "before peeling" column and the "after peeling" column in the "volume resistance value" column of Table 1, respectively.
〈比較例4〉
 還元剤をギ酸に変更した点を除いて、実施例4と同様にして、導電膜形成用組成物を調製し、ガラス基板上に乾燥膜および導電膜を形成した。
 乾燥膜の剥離前の厚みおよび乾燥膜の上層を剥離して得られた導電膜の厚み、それぞれ、表1の「厚み」欄の「剥離前」欄および「剥離後」欄に示す。
 乾燥膜の剥離前のXRD測定結果および乾燥膜の上層を剥離して得られた導電膜のXRD測定結果を表1の「XRD」欄の「剥離前」欄および「剥離後」欄に示す。
 乾燥膜の上層を剥離して得られた導電膜の体積抵抗値を表1の「体積抵抗値」欄の「剥離後」欄に示す。
Comparative Example 4
A composition for conductive film formation was prepared in the same manner as in Example 4 except that the reducing agent was changed to formic acid, to form a dry film and a conductive film on a glass substrate.
The thickness before peeling of the dried film and the thickness of the conductive film obtained by peeling the upper layer of the dried film are shown in the "before peeling" column and the "after peeling" column of the "thickness" column in Table 1, respectively.
The XRD measurement result before peeling of the dried film and the XRD measurement result of the conductive film obtained by peeling the upper layer of the dried film are shown in the “before peeling” column and the “after peeling” column of “XRD” column of Table 1.
The volume resistance value of the conductive film obtained by peeling the upper layer of the dried film is shown in the "after peeling" column of the "volume resistance value" column of Table 1.
〈比較例5〉
 還元剤をシュウ酸に変更した点を除いて、比較例1と同様に導電膜形成用組成物を調製し、ガラス基板上に乾燥膜を形成した。
 ガラス基板上に形成した乾燥膜の表面をキムワイプで軽く拭いたところ、乾燥膜がすべて粉状物として拭き取られてしまい全部剥離した。
 乾燥膜の剥離前の厚みを表1の「厚み」欄の「剥離前」欄に、剥離前のXRD測定結果を表1の「XRD」欄の「剥離前」欄に、それぞれ示す。
 乾燥膜を剥離した後の体積抵抗値は、測定できなかった。
Comparative Example 5
A composition for conductive film formation was prepared in the same manner as in Comparative Example 1 except that the reducing agent was changed to oxalic acid, and a dry film was formed on a glass substrate.
When the surface of the dried film formed on the glass substrate was lightly wiped with Kimwipe, all the dried film was wiped off in the form of powder and peeled off completely.
The thickness before peeling of the dried film is shown in the "before peeling" column of the "thickness" column of Table 1, and the XRD measurement result before peeling is shown in the "before peeling" column of the "XRD" column of Table 1.
The volume resistance value after peeling off the dried film could not be measured.
〈比較例6〉
 還元剤を酢酸に変更した点を除いて、比較例1と同様に導電膜形成用組成物を調製し、ガラス基板上に乾燥膜を形成した。
 ガラス基板上に形成した乾燥膜の表面をキムワイプで軽く拭いたところ、乾燥膜がすべて粉状物として拭き取られてしまい全部剥離した。
 乾燥膜の剥離前の厚みを表1の「厚み」欄の「剥離前」欄に、剥離前のXRD測定結果を表1の「XRD」欄の「剥離前」欄に、それぞれ示す。
 乾燥膜を剥離した後の体積抵抗値は、測定できなかった。
Comparative Example 6
A composition for conductive film formation was prepared in the same manner as in Comparative Example 1 except that the reducing agent was changed to acetic acid, and a dried film was formed on a glass substrate.
When the surface of the dried film formed on the glass substrate was lightly wiped with Kimwipe, all the dried film was wiped off in the form of powder and peeled off completely.
The thickness before peeling of the dried film is shown in the "before peeling" column of the "thickness" column of Table 1, and the XRD measurement result before peeling is shown in the "before peeling" column of the "XRD" column of Table 1.
The volume resistance value after peeling off the dried film could not be measured.
〈比較例7〉
 還元剤をL-システインに変更した点を除いて、実施例4と同様にして、導電膜形成用組成物を調製し、ガラス基板上に乾燥膜および導電膜を形成した。
 乾燥膜の剥離前の厚みおよび乾燥膜の上層を剥離して得られた導電膜の厚み、それぞれ、表1の「厚み」欄の「剥離前」欄および「剥離後」欄に示す。
 乾燥膜の剥離前のXRD測定結果および乾燥膜の上層を剥離して得られた導電膜のXRD測定結果を表1の「XRD」欄の「剥離前」欄および「剥離後」欄に示す。
 乾燥膜の上層を剥離して得られた導電膜の体積抵抗値を表1の「体積抵抗値」欄の「剥離後」欄に示す。
Comparative Example 7
A composition for conductive film formation was prepared in the same manner as in Example 4 except that the reducing agent was changed to L-cysteine, and a dry film and a conductive film were formed on a glass substrate.
The thickness before peeling of the dried film and the thickness of the conductive film obtained by peeling the upper layer of the dried film are shown in the "before peeling" column and the "after peeling" column of the "thickness" column in Table 1, respectively.
The XRD measurement result before peeling of the dried film and the XRD measurement result of the conductive film obtained by peeling the upper layer of the dried film are shown in the “before peeling” column and the “after peeling” column of “XRD” column of Table 1.
The volume resistance value of the conductive film obtained by peeling the upper layer of the dried film is shown in the "after peeling" column of the "volume resistance value" column of Table 1.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2中、「厚み」の欄の「全剥離」は、上層と下層に分離せず、乾燥膜が粉状物として全部ふき取られてしまい、全部剥離したことを表し、「体積抵抗値」の欄の「N.A.」は、乾燥膜が全部剥離した結果、体積抵抗値を測定できなかったことを表す。
 また、表2中、「体積抵抗値」の欄の「O.L.」は、体積抵抗値が高く、測定限界を超えていたことを表す。
 また、比較例3の「剥離後」は、乾燥膜の上層を厚み方向に一部除去した後に測定した体積抵抗値を表す。
In Table 2, "total peeling" in the column of "thickness" indicates that the dried film is not completely separated as the upper layer and the lower layer, but the dried film is completely wiped off as powdery material, and all is peeled off, "volume resistance value" “NA” in the column of indicates that the volume resistance value could not be measured as a result of peeling of all the dried films.
In Table 2, "O.L." in the column of "volume resistance value" indicates that the volume resistance value is high and exceeds the measurement limit.
Further, “after peeling” in Comparative Example 3 represents a volume resistance value measured after partially removing the upper layer of the dried film in the thickness direction.
 実施例1~4では、乾燥膜を剥離後に、導電性に優れた導電膜が得られた。
 これに対して、比較例1~7では、導電性に優れた導電膜を得ることができなかった。
In Examples 1 to 4, after peeling off the dried film, a conductive film having excellent conductivity was obtained.
On the other hand, in Comparative Examples 1 to 7, the conductive film excellent in conductivity could not be obtained.
 比較例1は、導電膜形成用組成物が還元剤を含んでいない例である。
 比較例1では、銅酸化物が金属銅に還元されず、塗膜を乾燥しても酸化銅を含む上層と金属銅を含む下層が形成されず、キムワイプで乾燥膜を拭き取った際に、乾燥膜全体が粉状物としてふき取られてしまった。そのため、導電性に優れた導電膜を得ることができなかった。
Comparative Example 1 is an example in which the composition for forming a conductive film does not contain a reducing agent.
In Comparative Example 1, the copper oxide is not reduced to metallic copper, and the upper layer containing copper oxide and the lower layer containing metallic copper are not formed even if the coated film is dried, and the dried film is dried when wiped with a kimwipe The entire membrane has been wiped off as a powder. Therefore, a conductive film excellent in conductivity could not be obtained.
 比較例2、3は、乾燥膜を基板上に形成するまでは実施例2と同様であったが、乾燥膜の上層を剥離しなかった(比較例2)、または乾燥膜の上層を厚み方向に一部剥離したのみであった(比較例3)。
 比較例2、3では、上層を完全に除去しなかったため、導電性に優れた導電膜を得ることができなかった。
Comparative Examples 2 and 3 were the same as Example 2 until the dried film was formed on the substrate, but the upper layer of the dried film was not peeled off (Comparative Example 2), or the upper layer of the dried film was in the thickness direction The film was only partially peeled off (Comparative Example 3).
In Comparative Examples 2 and 3, since the upper layer was not completely removed, a conductive film having excellent conductivity could not be obtained.
 比較例4~7は、還元剤としてギ酸(比較例4)、シュウ酸(比較例5)、酢酸(比較例6)、またはL-システイン(比較例7)を用いた例である。 Comparative Examples 4 to 7 are examples using formic acid (Comparative Example 4), oxalic acid (Comparative Example 5), acetic acid (Comparative Example 6), or L-cysteine (Comparative Example 7) as a reducing agent.
 比較例4では、還元性は十分であったが導電膜の粒子の融着状態が不十分で導電性に優れた導電膜を得ることができなかった。これはギ酸の沸点が低いために塗膜の乾燥過程で還元剤の不均化が効率的に進行しなかったものと推定される。 In Comparative Example 4, although the reducibility was sufficient, the fused state of the particles of the conductive film was insufficient, and a conductive film having excellent conductivity could not be obtained. It is presumed that disproportionation of the reducing agent did not proceed efficiently during the drying process of the coating film because the boiling point of formic acid is low.
 比較例5および6では、還元力が不足していたためか、導電性に優れた導電膜を得ることができなかった。 In Comparative Examples 5 and 6, the conductive film having excellent conductivity could not be obtained, probably because the reducing power was insufficient.
 比較例7では、還元性は十分であり塗膜内での還元剤の不均化も進行していたが、還元に消費されたL-システインが難溶性の結晶に変化し、塗膜内で析出したため銅粒子が効果的に接触できず、導電膜の融着状態が不十分で導電性に優れた塗膜を得ることができなかった。 In Comparative Example 7, although the reducibility was sufficient and disproportionation of the reducing agent in the coating film was also progressing, L-cysteine consumed in the reduction was changed to a poorly soluble crystal, and in the coating film Since the copper particles were deposited, the copper particles could not contact effectively, and the fused state of the conductive film was insufficient, and a coating film excellent in conductivity could not be obtained.
11 基板
12 塗膜
13 乾燥膜
14 下層(導電膜)
15 上層
16 界面
17 導電膜表面
11 substrate 12 coating film 13 drying film 14 lower layer (conductive film)
15 upper layer 16 interface 17 conductive film surface

Claims (12)

  1.  銅粒子と、レダクトンならびに分子内に2つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸からなる群から選択される少なくとも1種の還元剤と、分散媒とを含む導電膜形成用組成物を基板の表面に付与して塗膜を形成する塗布工程と、
     前記塗膜を、酸化的雰囲気下、150℃以下の温度で乾燥して、前記基板上に、銅の酸化物を実質的に含まない下層と、前記下層上に配置された、銅の酸化物を含む上層とからなる乾燥膜を得る乾燥工程と、
     前記乾燥膜から前記上層を除去して導電膜を得る剥離工程と
    を備える、導電膜の製造方法。
    Conductive film containing copper particles, reductone and at least one reducing agent selected from the group consisting of hydroxycarboxylic acids having two or more carboxy groups and one or more hydroxy groups in the molecule, and a dispersion medium Applying a composition for coating on the surface of a substrate to form a coating film;
    The coating is dried at a temperature of 150 ° C. or less under an oxidative atmosphere to form a lower layer substantially free of copper oxide on the substrate and an oxide of copper disposed on the lower layer Obtaining a dried film comprising an upper layer comprising
    And a peeling step of removing the upper layer from the dry film to obtain a conductive film.
  2.  X線回折法によるCuOの(111)ピークが、前記上層では検出され、前記下層では検出されない、請求項1に記載の導電膜の製造方法。 (111) peak of Cu 2 O by X-ray diffraction method, the detected in the upper layer, the not detected in the lower, the production method of the conductive film of claim 1.
  3.  前記還元剤が、アスコルビン酸、アスコルビン酸誘導体およびクエン酸からなる群から選択される少なくとも1種である、請求項1または2に記載の導電膜の製造方法。 The method for producing a conductive film according to claim 1, wherein the reducing agent is at least one selected from the group consisting of ascorbic acid, an ascorbic acid derivative and citric acid.
  4.  前記銅粒子の平均粒子径が25~1500nmの範囲内である、請求項1~3のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 3, wherein an average particle diameter of the copper particles is in a range of 25 to 1500 nm.
  5.  前記剥離工程の後に、さらに、前記導電膜を150℃超190℃以下の温度で加熱する加熱工程を備える、請求項1~4のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 4, further comprising a heating step of heating the conductive film at a temperature of more than 150 属 C and 190 属 C or less after the peeling step.
  6.  前記乾燥工程の温度が125℃以下である、請求項1~5のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 5, wherein the temperature of the drying step is 125 ° C or less.
  7.  前記導電膜形成用組成物がバインダーを含まない、請求項1~6のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 6, wherein the composition for forming a conductive film does not contain a binder.
  8.  前記還元剤の質量に対する前記銅粒子の質量の割合が90~99質量%である、請求項1~7のいずれか1項に記載の導電膜の製造方法。 The method for producing a conductive film according to any one of claims 1 to 7, wherein the ratio of the mass of the copper particles to the mass of the reducing agent is 90 to 99 mass%.
  9.  銅と、レダクトンならびに分子内に2つ以上のカルボキシ基および1つ以上のヒドロキシ基を有するヒドロキシカルボン酸からなる群から選択される少なくとも1種の還元剤とを含む導電膜であって、
     前記銅の含有量が前記導電膜の全質量に対して90質量%以上である、導電膜。
    A conductive film comprising copper and at least one reducing agent selected from the group consisting of reductone and a hydroxycarboxylic acid having two or more carboxy groups and one or more hydroxy groups in the molecule,
    The electrically conductive film whose content of the said copper is 90 mass% or more with respect to the total mass of the said electrically conductive film.
  10.  前記還元剤が、アスコルビン酸、アスコルビン酸誘導体およびクエン酸からなる群から選択される少なくとも1種である、請求項9に記載の導電膜。 The conductive film according to claim 9, wherein the reducing agent is at least one selected from the group consisting of ascorbic acid, an ascorbic acid derivative and citric acid.
  11.  バインダーを含まない、請求項9または10に記載の導電膜。 The electrically conductive film of Claim 9 or 10 which does not contain a binder.
  12.  X線回折法によるCuOの(111)ピークが検出されない、請求項9~11のいずれか1項に記載の導電膜。
     
     
    The conductive film according to any one of claims 9 to 11, wherein the (111) peak of Cu 2 O by X-ray diffraction method is not detected.

PCT/JP2018/043490 2018-01-15 2018-11-27 Method for producing conductive film, and conductive film WO2019138706A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019564326A JP6905089B2 (en) 2018-01-15 2018-11-27 Method of manufacturing conductive film and conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-004213 2018-01-15
JP2018004213 2018-01-15

Publications (1)

Publication Number Publication Date
WO2019138706A1 true WO2019138706A1 (en) 2019-07-18

Family

ID=67219562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043490 WO2019138706A1 (en) 2018-01-15 2018-11-27 Method for producing conductive film, and conductive film

Country Status (3)

Country Link
JP (1) JP6905089B2 (en)
TW (1) TWI790326B (en)
WO (1) WO2019138706A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227510A (en) * 2013-05-24 2014-12-08 東ソー株式会社 Conductive copper ink composition
WO2018190246A1 (en) * 2017-04-14 2018-10-18 学校法人 関西大学 Copper particle mixture and method for manufacturing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6067515B2 (en) * 2013-08-30 2017-01-25 富士フイルム株式会社 Conductive film forming composition and method for producing conductive film using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227510A (en) * 2013-05-24 2014-12-08 東ソー株式会社 Conductive copper ink composition
WO2018190246A1 (en) * 2017-04-14 2018-10-18 学校法人 関西大学 Copper particle mixture and method for manufacturing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture

Also Published As

Publication number Publication date
JP6905089B2 (en) 2021-07-21
TWI790326B (en) 2023-01-21
TW201932545A (en) 2019-08-16
JPWO2019138706A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
Lu et al. Ultrasonic-assisted electroless deposition of Ag on PET fabric with low silver content for EMI shielding
TW201247810A (en) Electroconductive member, method for manufacturing the same, composition, touch panel and solar cell using the same
JP4759271B2 (en) Composite particle dispersion and method for producing composite particle dispersion
US9803098B2 (en) Conductive ink
US20150004325A1 (en) Ink composition for making a conductive silver structure
TW201117231A (en) Ink for printing, metal nanoparticle utilized in ink, wiring, circuit substrate and semiconductor package
Vaseem et al. Silver-ethanolamine-formate complex based transparent and stable ink: Electrical assessment with microwave plasma vs thermal sintering
WO2015022970A1 (en) Metal powder paste and method for producing same
US9683123B2 (en) Silver ink
WO2013145953A1 (en) Liquid composition, metal film, conductive wiring line, and method for producing metal film
JP6389091B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
KR20130042478A (en) Nanoink composition
CN104185880B (en) Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film
JP6423508B2 (en) Silver powder manufacturing method
TWI703224B (en) Silver-coated copper powder and method for producing same
WO2019138706A1 (en) Method for producing conductive film, and conductive film
WO2014156326A1 (en) Composition for forming conductive film, and conductive film manufacturing method using same
JP2015140418A (en) Conductive ink composition for inkjet
JP2015049988A (en) Composition for forming conductive film and method for producing conductive film using the same
WO2017135138A1 (en) Silver-coated copper powder and method for producing same
WO2017033889A1 (en) Silver powder, manufacturing method therefor, and conductive paste
JP2009228017A (en) Method for producing copper particulate, and copper particulate
JP7482214B2 (en) Copper particles and method for producing same
JP2016050246A (en) Composition for forming conductive film
JP6263630B2 (en) Conductive film forming composition and conductive film forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899664

Country of ref document: EP

Kind code of ref document: A1