WO2019138556A1 - Liquid phase sintering composition, adhesive agent, sintered body, joint structure, joint body, and production method for joint body - Google Patents

Liquid phase sintering composition, adhesive agent, sintered body, joint structure, joint body, and production method for joint body Download PDF

Info

Publication number
WO2019138556A1
WO2019138556A1 PCT/JP2018/000721 JP2018000721W WO2019138556A1 WO 2019138556 A1 WO2019138556 A1 WO 2019138556A1 JP 2018000721 W JP2018000721 W JP 2018000721W WO 2019138556 A1 WO2019138556 A1 WO 2019138556A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
composition
liquid phase
metal particles
particles
Prior art date
Application number
PCT/JP2018/000721
Other languages
French (fr)
Japanese (ja)
Inventor
史貴 上野
斉藤 晃一
雅記 竹内
貴耶 山本
将太 梅崎
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/000721 priority Critical patent/WO2019138556A1/en
Publication of WO2019138556A1 publication Critical patent/WO2019138556A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only

Definitions

  • the present invention relates to a composition for liquid phase sintering, an adhesive, a sintered body, a bonded structure, a bonded body, and a method of manufacturing a bonded body.
  • a method of bonding a semiconductor element and a supporting member a method of dispersing solder powder in thermosetting resin such as epoxy resin to make a paste and using it as a conductive adhesive is known.
  • thermosetting resin such as epoxy resin
  • a paste-like conductive adhesive is applied to a die pad of a support member using a dispenser, a printing machine, a stamping machine or the like, then the semiconductor element is die-bonded and the conductive adhesive is heat-cured to obtain a semiconductor Equipment
  • an adhesive composition in which silver particles are sintered by heating at 100 ° C. to 400 ° C. by using micro-sized or smaller silver particles which have been subjected to a special surface treatment (for example, patent documents 3).
  • a special surface treatment for example, patent documents 3
  • the silver particles form a metal bond, and therefore, it is considered that the connection reliability at high temperature is excellent.
  • transitional liquid phase sintering type metal adhesive As an example using metal particles other than silver, development of a transitional liquid phase sintering type metal adhesive is in progress (see, for example, Patent Document 4).
  • a combination of metal particles for example, copper and tin
  • an interfacial liquid phase is formed by heating. Thereafter, the melting point of the liquid phase gradually rises due to the progress of the reaction diffusion, so that the melting point of the composition of the bonding layer finally exceeds the bonding temperature.
  • an electrically mechanically stable connection is formed by joining copper and a copper-tin alloy.
  • one aspect of the present invention is a composition for liquid phase sintering that provides a sintered body having high die shear strength after repeated heating and cooling treatment and that is less likely to cause whiskers, and the composition for liquid phase sintering It is an object of the present invention to provide an adhesive containing an object and a method for producing a sintered body, a bonded structure, a bonded body, and a bonded body using this composition for liquid phase sintering.
  • a second metal particle which is A composition for liquid phase sintering, wherein the content of the second metal particles per 1 m 2 of surface area of the first metal particles is 3.7 g to 11.0 g.
  • the content of the second metal particle is 20% by volume to 30% by volume with respect to the total volume of the first metal particle, the second metal particle, and the resin.
  • the composition for liquid phase sintering as described.
  • the average BET specific surface area in the whole of the first metal particles is 0.02m 2 /g ⁇ 0.1m 2 / g ⁇ 1 > or liquid phase sintering composition according to ⁇ 2>.
  • ⁇ 7> A sintered body of the composition for liquid phase sintering according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 10> The composition for liquid phase sintering according to any one of ⁇ 1> to ⁇ 5> in at least one of a joining part of the element in the supporting member and a joining part with the element in the element Applying a substance to form a composition layer, Bringing the support member into contact with the element through the composition layer; And heating the composition layer to sinter.
  • a composition for liquid phase sintering which provides a sintered body having high die shear strength after repeated heating and cooling treatment and in which whiskers are not easily generated, and the composition for liquid phase sintering It is possible to provide an adhesive containing a substance and a method for producing a sintered body, a bonded structure, a bonded body, and a bonded body using this composition for liquid phase sintering.
  • the present invention is not limited to the following embodiments.
  • the constituent elements including element steps and the like
  • the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps. .
  • numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
  • each component may contain a plurality of corresponding substances.
  • the content of each component means the total content of the plurality of substances present in the composition unless otherwise specified.
  • particles corresponding to each component may contain a plurality of types.
  • the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term “layer” may mean that when the region in which the layer is present is observed, it is formed in only a part of the region, in addition to the case where the region is entirely formed. included.
  • composition for liquid phase sintering includes a first metal particle containing a first metal and having a melting point of 400 ° C. or more, and the first metal. and the second metal particles melting point and containing a second metal capable of transitional liquid phase sintering is 300 ° C. or less, wherein a resin, wherein the per surface area 1 m 2 of the first metal particles first The content of the metal particles of 2 is 3.7 g to 11.0 g.
  • the composition for liquid phase sintering used for the transitional liquid phase sintering type metal adhesive is, for example, a relatively high melting point first metal as a combination of metals capable of transitional liquid phase sintering, And a second metal having a relatively low melting point.
  • the second metal is melted by heat to form a liquid phase, and the first metal diffuses in the liquid phase, whereby the melting point is higher than the melting point of the second metal. Alloy.
  • the first metal and the separate metal particles are used as a form of the composition for liquid phase sintering.
  • the form etc. which contain each of a 2nd metal are mentioned.
  • the form containing resin other than these metal particles is also mentioned as a form of the said composition for liquid phase sintering.
  • a composition for liquid phase sintering containing a first metal particle containing a first metal and a second metal particle containing a second metal among these forms and a resin.
  • the die shear strength of the sintered body and the easiness of generation of whiskers were changed depending on the content of the second metal particles relative to the total surface area of the first metal particles contained in the composition.
  • the second metal particles are first melted to form a liquid phase, and the periphery of the first metal particles is The surrounding, the first metal contained in the first metal particles react and diffuse into the surrounding liquid phase. Thereby, an alloy containing the first metal and the second metal is formed.
  • the first metal reacted and diffused at the time of sintering hardly reaches, It is believed that the metal of the metal remains unalloyed.
  • whiskers due to a low melting point that is, a phenomenon in which a needle-like or nodule-like metal is naturally grown on the surface of a sintered body may occur. .
  • the content of the second metal particles per surface area 1 m 2 of the first metal particles (hereinafter, also referred to as "second metal particles per unit surface area”) is It is 3.7 g to 11.0 g. Therefore, compared with the case where the amount of the second metal particles per unit surface area is larger than 11.0 g, it is inferred that the first metal does not reach and the second metal which is not alloyed is small and whiskers are hardly generated. Ru.
  • the amount of the second metal particles per unit surface area is in the above range, a sufficient amount of the second metal particles melted at the time of sintering is the first metal, as compared to the case where the amount is smaller than 3.7 g.
  • the surface of the particles is contacted and a sufficient amount of alloy is formed. Therefore, it is inferred that sintering defects are unlikely to occur, and the die shear strength after repeating the heating and cooling treatment is high. As described above, it is presumed that in the composition of the present disclosure, a sintered body having high die shear strength after repeated heating and cooling treatment and in which whiskers are not easily generated can be obtained.
  • the “second metal particle amount per unit surface area” is preferably 3.7 g to 11.0 g, and is 3.8 g from the viewpoint of suppression of remelting in addition to high die shear strength and suppression of whiskers. It is more preferable that it is ⁇ 10.8 g, more preferably 3.9 g to 10.4 g, particularly preferably 4.0 g to 10.0 g, and it is 4.5 g to 9.0 g Very preferred.
  • “the amount of the second metal particles per unit surface area” is the second metal particles in a composition including the first metal particles in an amount such that the surface area of the first metal particles is 1 m 2 in total. Is a value indicating how many g are included.
  • the sum of the surface areas of the first metal particles is the sum of all the surface areas of the first metal particles contained in the composition.
  • the total surface area of the first metal particles may be determined by multiplying the average BET specific surface area of the entire first metal particles by the mass of the first metal particles contained in the composition.
  • the “average BET specific surface area of the entire first metal particles” is a value of specific surface area obtained by measuring the entire first metal particles contained in the composition. That is, when the first metal particle contains a plurality of types of metal particles having different specific surface areas, the “average BET specific surface area” is a value obtained by averaging the specific surface areas of the plurality of types of metal particles. Specifically, for example, a first metal particle composed of 1 gram of metal particles M of specific surface area S 1 , 2 grams of metal particles M of specific surface area S 2 , and 3 grams of metal particles M of specific surface area S 3 The specific surface area S T of the entire M 1 + M 2 + M 3 ) gram is represented by the following formula.
  • the composition of the present disclosure includes a first metal particle containing a first metal and having a melting point higher than 300 ° C., and a second metal having a transitional liquid phase sintering with the first metal. And second metal particles having a temperature of 300 ° C. or less.
  • transitional liquid phase sintering in the present disclosure is also referred to as Transient Liquid Phase Sintering (TLPS), and the transition to the liquid phase by heating at the particle interface of the low melting point metal and the liquid phase of the high melting point metal It refers to a phenomenon that proceeds by reaction diffusion to the surface.
  • the transitional liquid phase sintering allows the melting point of the sintered body to exceed the heating temperature.
  • the combination of metals capable of transient liquid phase sintering is not particularly limited, and the combination of Au and In, Cu and Sn Combinations of Ag and Sn, combinations of Co and Sn, combinations of Ni and Sn, and the like.
  • a combination of Cu and Sn is preferable as a combination of metals capable of transient liquid phase sintering. Since the reaction to form the copper-tin metal compound (Cu 6 Sn 5 ) by sintering proceeds at around 250 ° C., using Cu and Sn in combination allows sintering by general equipment such as a reflow furnace. It is possible.
  • the composition of the present disclosure may also include other metal particles (ie, particles composed of metals other than the first metal and the second metal) in addition to the first metal particles and the second metal particles.
  • other metal particles ie, particles composed of metals other than the first metal and the second metal
  • the ratio of the other metal particles to the whole metal particles is 10% by mass or less Is preferable, 5% by mass or less is more preferable, and 1% by mass or less is more preferable.
  • each of the first metal particle and the second metal particle will be described.
  • the first metal particles contain the first metal and have a melting point of 400 ° C. or higher.
  • the first metal particles may be in the form of containing the first metal as a single metal, or in the form of containing an alloy containing the first metal.
  • the first metal particles are preferably particles containing Cu as a single metal.
  • the first metal particle only needs to contain the first metal in at least a part of the region in the particle, and in view of facilitating the reaction diffusion of the first metal into the liquid phase in the process of sintering, at least It is preferable that the surface of the particle contains a first metal.
  • a first metal particle containing the first metal on the surface of the particle for example, a core particle, and a coating layer which covers the core particle and contains the first metal (for example, a first metal simple substance or a first metal) And a covering layer composed of an alloy containing a metal of The core particle may contain the first metal or may not contain the first metal.
  • Examples of core particles containing a first metal include particles consisting of a first metal single particle, particles consisting of an alloy containing a first metal, and particles in which some of the particles contain the first metal. Moreover, as a particle which does not contain a 1st metal, the particle
  • the first metal is Cu
  • the melting point of the first metal particles is 400 ° C. or higher, preferably 400 ° C. to 2500 ° C., more preferably 400 ° C. to 2000 ° C., and still more preferably 400 ° C. to 1300 ° C.
  • a measuring pan made of platinum is used by DSC (differential scanning calorimetry) and 50 ml It can measure on the conditions heated from 25 degreeC to 1300 degreeC with the temperature increase rate of 10 degree-C / min under nitrogen flow of 1 / minute.
  • the melting point of the first metal-containing region is preferably in the above range.
  • the volume average particle diameter of the first metal particles is not particularly limited, and is preferably 0.5 ⁇ m to 80 ⁇ m, and more preferably 1 ⁇ m to 50 ⁇ m, from the viewpoints of application stability and suppression of sintering unevenness. More preferably, it is 1 ⁇ m to 30 ⁇ m.
  • the volume average particle size of the first metal particles is calculated from the particle size distribution measured by a laser diffraction type particle size distribution analyzer (for example, LS 13 320 type laser scattering / diffraction particle size distribution measuring device manufactured by Beckman Coulter, Inc.) Be done.
  • a volume cumulative distribution curve is drawn from the small diameter side, and D50, which is the particle size at which the cumulative 50% is achieved, is defined as the volume average particle size.
  • the measurement of the particle size distribution is performed as follows. Specifically, a metal particle is added in the range of 0.01% by mass to 0.3% by mass to 125 g of a solvent (terpineol) to prepare a dispersion. About 100 ml of this dispersion is injected into the cell and measured at 25 ° C. The particle size distribution is measured with the refractive index of the solvent being 1.48. The measurement and calculation method of the volume average particle diameter in the following 2nd metal particle are also the same.
  • the average BET specific surface area in the entire first metal particles is preferably from the viewpoint of imparting stability and whisker suppression during continuous grant, a 0.01m 2 /g ⁇ 0.15m 2 / g, 0.02m 2 more preferably /g ⁇ 0.1m is 2 / g, more preferably from 0.04m 2 /g ⁇ 0.08m 2 / g.
  • the content of the first metal particles is 56% by volume to 85% by volume from the viewpoint of application stability at the time of continuous application with respect to the total volume of the first metal particles, the second metal particles, and the resin. It is preferably 70% by volume to 83% by volume, and more preferably 65% by volume to 80% by volume.
  • the content rate of the 1st metal particle with respect to the total volume of a 1st metal particle, a 2nd metal particle, and resin is calculated
  • Content rate of first metal particle (volume%) (Aw / Ad) / ((Aw / Ad) + (Bw / Bd) + (Cw / Cd)) ⁇ 100
  • Ad Specific gravity of first metal particle
  • Bd Specific gravity of second metal particle
  • Cd Specific gravity of resin
  • the second metal particles contain the second metal and have a melting point of 300 ° C. or less.
  • the second metal particles may contain the second metal as a single metal, or may contain an alloy containing the second metal.
  • the second metal particles are preferably particles containing an alloy containing Sn. Examples of the alloy containing Sn include Sn-3.0Ag-0.5Cu alloy and the like.
  • the notation in the alloy indicates that the tin alloy contains A mass% of element X and B mass% of element Y.
  • the second metal particles may contain the second metal in at least a part of the region, and in view of facilitating the second metal particles to be in a liquid phase in the process of sintering, the entire particles are second It is preferable to contain the following metals.
  • the melting point of the second metal particles is 300 ° C. or less, preferably 120 ° C. to 300 ° C., more preferably 130 ° C. to 250 ° C., and still more preferably 135 ° C. to 225 ° C.
  • the melting point of the second metal particles is measured by DSC (Differential scanning calorimetry) using a platinum pan at a heating rate of 10 ° C./min under a nitrogen stream of 50 ml / min.
  • the difference between the melting point of the first metal particle and the melting point of the second metal particle is preferably 500 ° C. or more, more preferably 600 ° C. or more, and still more preferably 800 ° C. or more.
  • the volume average particle diameter of the second metal particles is not particularly limited, and is preferably 0.5 ⁇ m to 80 ⁇ m, and more preferably 1 ⁇ m to 50 ⁇ m from the viewpoint of application stability and high-temperature reliability in the sintered body. More preferably, the thickness is 1 ⁇ m to 30 ⁇ m.
  • the content of the second metal particles is 12% by volume from the viewpoint of the application stability at the time of continuous application and suppression of whiskers with respect to the total volume of the first metal particles, the second metal particles, and the resin.
  • the content is preferably 40% by volume, more preferably 12% by volume to 30% by volume, and still more preferably 20% by volume to 30% by volume.
  • the total content of the first metal particles and the second metal particles is not particularly limited, and is preferably 80% by volume or more and 85% by volume or more with respect to the entire composition. More preferably, it is 88% by volume or more.
  • the total content of the first metal particles and the second metal particles may be 98 volume% or less with respect to the entire composition.
  • the printability i.e., the composition
  • the printability when the composition of the present disclosure is used as a paste
  • the tendency to lose the ability to The ratio of the content of the first metal particles (based on volume) to the content of the second metal (based on volume) (ie, the content of the first metal particles / the content of the second metal particles) From the viewpoint of suppression of at least 1.0, it is preferably at least greater than 1.0, preferably 2.0 to 4.0, and more preferably 2.2 to 3.5.
  • the average BET specific surface area in the whole second metal particles is preferably 0.01m 2 /g ⁇ 0.45m 2 / g, more to be 0.02m 2 /g ⁇ 0.40m 2 / g preferably, it is more preferably 0.03m 2 /g ⁇ 0.35m 2 / g.
  • the average BET specific surface area of the entire second metal particles is determined in the same manner as the average BET specific surface area of the entire first metal particles described above.
  • the resin contained in the composition of the present disclosure is not particularly limited, and may be a thermoplastic resin or a thermosetting resin.
  • the thermoplastic resin include polyamide resin, polyamide imide resin, polyimide resin, polyurethane resin, thermoplastic epoxy resin and the like.
  • the thermosetting resin include epoxy resin, oxazine resin, bismaleimide resin, phenol resin, unsaturated polyester resin, silicone resin and the like.
  • epoxy resins bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, biphenol type epoxy resin, biphenyl novolac type Epoxy resin, cyclic aliphatic epoxy resin and the like can be mentioned.
  • the above resins may be used alone or in combination of two or more.
  • a thermoplastic resin is preferable from the viewpoint of facilitating flow without inhibiting alloy formation of metal particles in the process of sintering.
  • the resin preferably exhibits a softening point lower than the melting point of the second metal particles from the viewpoint of making it difficult to inhibit the alloy formation of the metal particles in the process of sintering.
  • the softening point of the resin refers to the value measured by thermomechanical analysis. Specifically, for example, a resin film with a thickness of 100 ⁇ m is heated at 10 ° C./min using a thermomechanical analyzer (TMA 8320, manufactured by Rigaku Corporation, measurement probe: compression weighted standard type) While compressing with a force of 49 mN, the temperature displaced 80 ⁇ m is taken as the softening point of the resin.
  • TMA 8320 thermomechanical analyzer
  • the softening point of the resin is preferably 5 ° C.
  • the softening point of the resin is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and 60 ° C. or higher, from the viewpoint of shape retention of the layer of the transient liquid phase sintering composition. Is more preferred.
  • the elastic modulus at 25 ° C. of the resin is preferably 0.01 GPa to 1.0 GPa, more preferably 0.01 GPa to 0.5 GPa, and more preferably 0.01 GPa to 0, from the viewpoint of securing connection reliability. More preferably, it is .3 GPa.
  • the elastic modulus at 25 ° C. of the resin is a value measured by the method of JIS K 7161-1: 2014.
  • the thermal decomposition rate of the resin measured under a stream of nitrogen using a thermogravimetry apparatus is preferably 2.0% by mass or less. If the thermal decomposition rate of the resin measured under a nitrogen stream using a thermogravimetry device is 2.0 mass% or less, the elastic modulus of the sintered body before and after the thermal history is given to the sintered body Changes are easily suppressed.
  • the thermal decomposition rate of the resin is more preferably 1.5% by mass or less, and still more preferably 1.0% by mass or less.
  • the thermal decomposition rate of a resin refers to a value measured by the following method.
  • 10 mg of resin placed in a platinum pan is heated from 25 ° C. to 400 ° C. at a heating rate of 10 ° C./min under a nitrogen stream of 50 ml / min using a thermogravimetry apparatus
  • the weight loss rate between 200 ° C. and 300 ° C. is taken as the thermal decomposition rate.
  • thermoplastic resin As the resin, as described above, a thermoplastic resin is preferable, and among them, a thermoplastic resin having a functional group or a structure which easily forms a hydrogen bond with the surface of metal particles is preferable from the viewpoint of the dispersibility of the resin in the composition.
  • functional groups that easily form hydrogen bonds with the surface of metal particles include amino groups and carboxy groups.
  • an amide bond, an imide bond, a urethane bond etc. are mentioned as a structure which is easy to form a hydrogen bond with the surface of metal particle.
  • thermoplastic resin what contains at least 1 sort (s) selected from the group which consists of an amide bond, an imide bond, and a urethane bond is preferable.
  • thermoplastic resin at least one selected from the group consisting of a polyamide resin, a polyamideimide resin, a polyimide resin and a polyurethane resin can be mentioned.
  • the thermoplastic resin is preferably a polyamideimide resin.
  • the thermoplastic resin preferably has a molecular structure exhibiting flexibility.
  • the molecular structure exhibiting flexibility at least one of a polyalkylene oxide structure and a polysiloxane structure can be mentioned.
  • the polyalkylene oxide structure is not particularly limited.
  • the polyalkylene oxide structure preferably includes, for example, a structure represented by the following general formula (1).
  • R 1 represents an alkylene group
  • m represents an integer of 1 to 100
  • “*” represents a bonding position to an adjacent atom.
  • m represents a rational number that is an average value.
  • the alkylene group represented by R 1 is preferably an alkylene group having 1 to 10 carbon atoms, and more preferably an alkylene group having 1 to 4 carbon atoms.
  • the alkylene group may be linear, branched or cyclic.
  • Examples of the alkylene group represented by R 1 include methylene group, ethylene group, propylene group, butylene group, hexylene group, octylene group, decylene group and the like.
  • the alkylene group represented by R 1 one kind may be used alone, or two or more kinds of different alkylene groups may be used in combination.
  • m is preferably 20 to 60, and more preferably 30 to 40.
  • the structure represented by General formula (1) contains the structure represented by following General formula (1A).
  • m represents an integer of 1 to 100, and "*" represents a bonding position to an adjacent atom.
  • the preferred range of m is the same as in the case of the general formula (1).
  • the proportion of the polyalkylene oxide structure represented by the general formula (1) in all the polyalkylene oxide structures is preferably 75% by mass to 100% by mass, The content is more preferably 85% by mass to 100% by mass, and still more preferably 90% by mass to 100% by mass.
  • the polyalkylene oxide represented by the general formula (1A) accounts for all the polyalkylene oxide structures represented by the general formula (1)
  • the proportion of the structure is preferably 50% by mass to 100% by mass, more preferably 75% by mass to 100% by mass, and still more preferably 90% by mass to 100% by mass.
  • the polysiloxane structure is not particularly limited.
  • the polysiloxane structure preferably contains, for example, a structure represented by the following general formula (2).
  • R 2 and R 3 each independently represent a divalent organic group
  • R 4 to R 7 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 18 carbon atoms
  • N represents an integer of 1 to 50
  • “*” represents a bonding position to an adjacent atom.
  • n indicates a rational number that is an average value.
  • the number of carbon atoms contained in the substituent is not included in the number of carbon atoms of the alkyl group or the aryl group.
  • Examples of the divalent organic group represented by R 2 and R 3 in the general formula (2) include a divalent saturated hydrocarbon group, a divalent aliphatic ether group, and a divalent aliphatic ester group. .
  • the divalent saturated hydrocarbon group may be linear, branched or cyclic.
  • the divalent saturated hydrocarbon group may have a substituent such as a fluorine atom or a halogen atom such as a chlorine atom.
  • Examples of the divalent saturated hydrocarbon group represented by R 2 and R 3 include methylene group, ethylene group, propylene group, butylene group, pentylene group, cyclopropylene group, cyclobutylene group and cyclopentylene group.
  • the divalent saturated hydrocarbon groups represented by R 2 and R 3 can be used alone or in combination of two or more. As R 2 and R 3 , a propylene group is preferable.
  • examples of the alkyl group having 1 to 20 carbon atoms represented by R 4 to R 7 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and a t-butyl group, Examples include n-octyl group, 2-ethylhexyl group, n-dodecyl group and the like. Among these, a methyl group is preferable.
  • the aryl group having 6 to 18 carbon atoms represented by R 4 to R 7 may be unsubstituted or substituted by a substituent.
  • the substituent include a halogen atom, an alkoxy group, and a hydroxy group.
  • the aryl group having 6 to 18 carbon atoms include a phenyl group, a naphthyl group and a benzyl group. Among these, a phenyl group is preferable.
  • the alkyl group having 1 to 20 carbon atoms or the aryl group having 6 to 18 carbon atoms represented by R 4 to R 7 can be used singly or in combination of two or more.
  • n is preferably 5 to 25 and more preferably 10 to 25.
  • the polyamideimide resin When a polyamideimide resin is used as the thermoplastic resin, the polyamideimide resin preferably has a structural unit derived from a diimide carboxylic acid or a derivative thereof and a structural unit derived from an aromatic diisocyanate or an aromatic diamine.
  • the polyamideimide resin is a resin having a structural unit derived from diimide carboxylic acid or a derivative thereof and a structural unit derived from aromatic diisocyanate or aromatic diamine
  • the following general formula is occupied in the structural unit derived from diimide carboxylic acid or a derivative thereof
  • the proportion of the structural unit represented by the following general formula (4) in the structural unit derived from the diimide carboxylic acid or its derivative is 30 mol% or more, and the proportion of the structural unit represented by (3) is 25 mol% or more
  • the sum of the ratio of the structural unit represented by the following general formula (3) and the ratio of the structural unit represented by the following general formula (4) is 60 mol% or more, and the following general It is more preferable that the sum of the ratio of the structural unit represented by the formula (3) and the ratio of the structural unit represented by the following general formula (4) is 70 mol% or more
  • 60 mol% or less of the ratio of the structural unit represented by following General formula (3) to the structural unit derived from diimide carboxylic acid or its derivative (s) may be sufficient.
  • 60 mol% or less of the ratio of the structural unit represented by following General formula (4) to the structural unit derived from diimide carboxylic acid or its derivative (s) may be sufficient.
  • the total of the ratio of the structural unit represented by the following general formula (3) to the structural unit derived from the following general formula (4) in the structural units derived from the diimide carboxylic acid or its derivative is 100 mol% or less It may be.
  • R 8 represents a divalent group including a structure represented by the following general formula (1), and “*” represents a bonding position to an adjacent atom.
  • R 1 represents an alkylene group
  • m represents an integer of 1 to 100
  • “*” represents a bonding position to an adjacent atom.
  • R 1 represents an alkylene group
  • m represents an integer of 1 to 100
  • “*” represents a bonding position to an adjacent atom.
  • Specific examples of R 1 , preferable ranges of m, and the like are as described above.
  • the structural unit represented by the general formula (3) is preferably a structural unit represented by the following general formula (3A), and more preferably a structural unit represented by the following general formula (3B).
  • R 1 represents an alkylene group
  • m represents an integer of 1 to 100
  • “*” represents a bonding position to an adjacent atom.
  • m represents an integer of 1 to 100, and "*" represents a bonding position to an adjacent atom.
  • the preferable range etc. of m are the same as that of the case of General formula (1).
  • R 9 is a bivalent group containing the structure represented by the following general formula (2), "*" represents a bonding position between the adjacent atoms.
  • R 2 and R 3 each independently represent a divalent organic group
  • R 4 to R 7 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 18 carbon atoms
  • N represents an integer of 1 to 50
  • “*” represents a bonding position to an adjacent atom.
  • Specific examples of R 2 to R 7 and preferable ranges of n and the like are as described above.
  • the structural unit represented by the general formula (4) is preferably a structural unit represented by the following general formula (4A).
  • R 2 and R 3 each independently represent a divalent organic group
  • R 4 to R 7 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 18 carbon atoms
  • N represents an integer of 1 to 50
  • “*” represents a bonding position to an adjacent atom.
  • the specific examples of R 2 to R 7 and the preferred range of n are the same as in the case of the general formula (2).
  • the method for producing the polyamideimide resin is not particularly limited, and examples thereof include an isocyanate method and an acid chloride method.
  • a polyamideimide resin is synthesized using a diimide carboxylic acid and an aromatic diisocyanate.
  • acid chloride method a polyamideimide resin is synthesized using a diimide carboxylic acid chloride and an aromatic diamine.
  • An isocyanate method synthesized from a diimide carboxylic acid and an aromatic diisocyanate is more preferable because the structure of the polyamideimide resin can be optimized easily.
  • the diimidic carboxylic acids used in the isocyanate method are synthesized, for example, using trimellitic anhydride and diamines.
  • a diamine used for the synthesis combination of a diimide carboxylic acid, a siloxane modified diamine, an alicyclic diamine, an aliphatic diamine etc. are suitable.
  • siloxane modified diamine As a siloxane modified diamine, what has the following structural formula is mentioned, for example.
  • R 2 and R 3 each independently represent a divalent organic group
  • R 4 to R 7 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 18 carbon atoms.
  • n represents an integer of 1 to 50. Specific examples of R 2 to R 7 and preferable ranges of n are the same as in the case of the general formula (2).
  • Examples of commercially available siloxane-modified diamines include KF-8010, KF-8012, X-22-161A, X-22-161B, and X-22-9409 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
  • Alicyclic diamines include 2,2-bis [4- (4-aminocyclohexyloxy) cyclohexyl] propane, bis [4- (3-aminocyclohexyloxy) cyclohexyl] sulfone, bis [4- (4-aminocyclohexyl) Oxy) cyclohexyl] sulfone, 2,2-bis [4- (4-aminocyclohexyloxy) cyclohexyl] hexafluoropropane, bis [4- (4-aminocyclohexyloxy) cyclohexyl] methane, 4,4'-bis (4 -Aminocyclohexyloxy) dicyclohexyl, bis [4- (4-aminocyclohexyloxy) cyclohexyl] ether, bis [4- (4-aminocyclohexyloxy) cyclohexyl] ketone, 1,3-
  • oxypropylene diamine is preferred.
  • Commercially available oxypropylene diamines include Jeffamine D-230 (Mitsui Chemical Fine Co., Ltd., amine equivalent: 115, trade name), Jeffamine D-400 (Mitsui Chemical Fine Co., Ltd., amine equivalent: 200, trade name) ), Jeffamine D-2000 (manufactured by Mitsui Chemicals Fine Inc., amine equivalent: 1,000, trade name), Jeffamine D-4000 (manufactured by Mitsui Chemicals Fine Inc., amine equivalent: 2,000, trade name), etc. Can be mentioned.
  • One of the above diamines may be used alone, or two or more thereof may be used in combination.
  • Polyamideimide resin synthesized by using 60 mol% to 100 mol% of the above diamine with respect to the total amount of diamine is preferable, and among them, in order to simultaneously achieve heat resistance and low elastic modulus, it is synthesized including siloxane modified diamine Siloxane-modified polyamideimide resin is more preferred.
  • aromatic diamine can also be used together as needed.
  • aromatic diamines include p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, diaminodurene, 1 3,5-diaminonaphthalene, 2,6-diaminonaphthalene, benzidine, 4,4'-diaminoterphenyl, 4,4 '' '-diaminoquaterphenyl, 4,4'-diaminodiphenylmethane, 1,2-bis (anilino) ) Ethane, 4,4'-diaminodiphenylether, diaminodiphenylsulfone, 2,2-bis (p-aminophenyl) propane, 2,2-bis (p-aminophenyl) hexafluoroprop
  • the aromatic diisocyanate may, for example, be a diisocyanate obtained by the reaction of an aromatic diamine with phosgene or the like.
  • Specific examples of the aromatic diisocyanate include aromatic diisocyanates such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, naphthalene diisocyanate, diphenyl ether diisocyanate, phenylene-1,3-diisocyanate and the like.
  • aromatic diisocyanates such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, naphthalene diisocyanate, diphenyl ether diisocyanate, phenylene-1,3-diisocyanate and the like.
  • 4,4'-diphenylmethane diisocyanate, diphenylether diisocyanate and the like are preferable.
  • the polymerization reaction of a polyamideimide resin by the isocyanate method is usually N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), dimethylsulfoxide (DMSO), It is carried out in a solvent such as dimethyl sulfate, sulfolane, ⁇ -butyrolactone, cresol, halogenated phenol, cyclohexane, dioxane and the like.
  • the reaction temperature is preferably 0 ° C. to 200 ° C., more preferably 100 ° C. to 180 ° C., and still more preferably 130 ° C. to 160 ° C.
  • the compounding ratio (diimide carboxylic acid / aromatic diisocyanate) on a molar basis of diimide carboxylic acid and aromatic diisocyanate in the polymerization reaction of a polyamideimide resin by the isocyanate method is preferably 1.0 to 1.5, and 1.
  • the ratio is more preferably 05 to 1.3, and still more preferably 1.1 to 1.2.
  • the composition of the present disclosure may contain a solvent from the viewpoint of improving the impartability (for example, the printability of the composition) when the composition of the present disclosure is used as a paste.
  • the solvent is preferably a polar solvent, and from the viewpoint of preventing the composition from being dried in the step of applying the composition, the solvent preferably has a boiling point of 200 ° C. or higher It is more preferable that the solvent has a boiling point of 300 ° C. or less in order to suppress the generation of voids during sintering.
  • solvents examples include terpineol, stearyl alcohol, tripropylene glycol methyl ether, diethylene glycol, diethylene glycol monoethyl ether (ethoxyethoxyethanol), diethylene glycol monohexyl ether, diethylene glycol monomethyl ether, dipropylene glycol-n-propyl ether, Alcohols such as dipropylene glycol n-butyl ether, tripropylene glycol n-butyl ether, 1,3-butanediol, 1,4-butanediol, propylene glycol phenyl ether, tributyl citrate, 4-methyl-1,3 -Dioxolan-2-one, ⁇ -butyrolactone, sulfolane, 2- (2-butoxyethoxy) ethanol, diethylene Esters such as recalled monoethyl ether acetate, dipropylene glycol methyl ether acetate, diethylene glycol monobutyl ether,
  • the content of the solvent is not particularly limited, and the proportion by mass of the solvent in the entire composition of the present disclosure is 0.1% by mass to 10% by mass. Is preferable, 2 to 7% by mass is more preferable, and 3 to 5% by mass is more preferable.
  • composition of the present disclosure may optionally contain other components such as rosin, activators, and thixotropic agents.
  • Rosins that may be used in the compositions of the present disclosure include dehydroabietic acid, dihydroabietic acid, neoabietic acid, dihydropimaric acid, pimaric acid, isopimaric acid, tetrahydroabietic acid, parastronic acid and the like.
  • Activators that may be used in the compositions of the present disclosure include aminodecanoic acid, pentane-1,5-dicarboxylic acid, triethanolamine, diphenylacetic acid, sebacic acid, phthalic acid, benzoic acid, dibromosalicylic acid, anisic acid, iodo Examples thereof include salicylic acid and picolinic acid.
  • Thixo agents that may be used in the compositions of the present disclosure include 12-hydroxystearic acid, 12-hydroxystearic acid triglyceride, ethylenebisstearic acid amide, hexamethylene bisoleic acid amide, N, N'-distearyl adipic acid Amide etc. are mentioned.
  • the proportion of the resin in the solid content excluding metal particles is preferably 5% by mass to 30% by mass, more preferably 6% by mass to 28% by mass, and 8% by mass. More preferably, it is% to 25% by mass. If the proportion of the resin in the solid content excluding metal particles is 5% by mass or more, the composition of the present disclosure is likely to be in the form of a paste. If the proportion of the resin in the solid content excluding metal particles is 30% by mass or less, sintering of the metal particles is less likely to be inhibited.
  • solid content means the remaining component except a volatile component (solvent etc.) from a composition.
  • the method for producing the composition of the present disclosure is not particularly limited. It can be obtained by mixing the metal particles, the resin, the solvent used if necessary, and other components constituting the composition of the present disclosure, and further performing processing such as stirring, melting, dispersion and the like.
  • the apparatus for mixing, stirring, dispersing and the like is not particularly limited, and a three-roll mill, a planetary mixer, a planetary mixer, a rotation and revolution type stirring apparatus, a grinder, a twin screw kneader, A thin layer shear disperser or the like can be used. Also, these devices may be used in combination as appropriate. In the case of the said process, you may heat as needed. After treatment, the maximum particle size of the composition may be adjusted by filtration. The filtration can be performed using a filtration device. As a filter for filtration, a metal mesh, a metal filter, a nylon mesh etc. are mentioned.
  • the adhesive of the present disclosure contains the composition of the present disclosure.
  • the composition of the present disclosure can be used as an adhesive as it is, or may contain other components as an adhesive if necessary.
  • Preferred embodiments of the adhesive of the present disclosure are the same as those of the composition of the present disclosure described above.
  • the sintered body of the present disclosure is a sintered product of the composition of the present disclosure.
  • the method of sintering the composition of the present disclosure is not particularly limited.
  • the electrical resistivity of the sintered body is preferably 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the joint structure of the present disclosure is a structure in which a first object to be joined and a second object to be joined are joined via the sintered body of the present disclosure.
  • the combination of the first object and the second object is not particularly limited, and examples thereof include a combination of an element and a support member in a joined body described later.
  • the structure of the junction part in the joined body mentioned later is mentioned as a joining structure of this indication.
  • the bonded body of the present disclosure is obtained by bonding the element and the support member via the sintered body of the present disclosure. It does not specifically limit as a supporting member, What is a metal of the material of the location where the element is joined is used. Gold, silver, copper, nickel etc. are mentioned as a metal which is a material of the location where the element is joined. Further, the support member may be configured by patterning a plurality of metals among the above on the base material. Specific examples of the support member include a lead frame, a tape carrier with wiring, a rigid wiring board, a flexible wiring board, a glass substrate with wiring, a silicon wafer with wiring, and a wafer level chip size package (CSP). And the like.
  • CSP wafer level chip size package
  • the element is not particularly limited, and may be a semiconductor chip, an active element such as a transistor, a diode, a light emitting diode, or a thyristor, a capacitor, a resistor, a resistor array, a coil, a passive element such as a switch, and the like. Moreover, a semiconductor device, an electronic component, etc. are mentioned as a joined object of this indication.
  • the semiconductor device include a diode, a rectifier, a thyristor, a MOS (Metal Oxide Semiconductor) gate driver, a power switch, a power MOSFET (Metal Oxide Semiconductor Field-Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor), a Schottky diode, Examples include a power module provided with a fast recovery diode and the like, a transmitter, an amplifier, an LED module and the like.
  • MOS Metal Oxide Semiconductor
  • MOSFET Metal Oxide Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • Schottky diode Examples include a power module provided with a fast recovery diode and the like, a transmitter, an amplifier, an LED module and the like.
  • the composition according to the present disclosure is applied to at least one of the joining site of the element in the support member and the joining site with the support member in the element to form a composition layer. And contacting the support member with the element through the composition layer, and sintering the composition layer by heating.
  • the step of applying the composition to form a composition layer may include the step of drying the applied composition.
  • the composition layer is formed by applying the composition of the present disclosure to at least one of the joining portion of the element in the support member and the joining portion with the support member in the element.
  • the method of applying the composition include a coating method and a printing method.
  • a method of applying the composition for example, dipping, spray coating, bar coating, die coating, comma coating, slit coating, and application by an applicator can be used.
  • a printing method for printing the composition for example, a dispenser method, a stencil printing method, an intaglio printing method, a screen printing method, a needle dispenser method, and a jet dispenser method can be used.
  • the composition layer formed by the application of the composition is preferably dried from the viewpoint of suppressing the flow of the composition and the generation of voids during heating.
  • the composition layer may be dried by standing at ordinary temperature (for example, 25 ° C.), drying by heating, or drying under reduced pressure.
  • a hot plate warm air dryer, warm air heater, nitrogen dryer, infrared dryer, infrared heater, far infrared heater, microwave heater, laser heater, electromagnetic heater
  • a heater heating device, a steam heating furnace, a hot plate press device or the like can be used.
  • the temperature and time for drying can be appropriately adjusted in accordance with the type and amount of the solvent used, and for example, drying at 50 ° C. to 180 ° C. for 1 minute to 120 minutes is preferable.
  • the element and the support member are attached to each other through the composition layer by bringing the element and the support member into contact with each other.
  • the step of drying the applied composition may be performed at any stage before or after the step of contacting the support member with the element.
  • the composition layer is heated to form a sintered body.
  • Sintering of the composition layer may be performed by heat treatment or heat and pressure treatment.
  • heat treatment hot plate, warm air dryer, warm air heater, nitrogen dryer, infrared dryer, infrared heater, far infrared heater, microwave heater, laser heater, electromagnetic heater, heater heater An apparatus, a steam heating furnace, etc. can be used.
  • a hot plate press apparatus or the like may be used for the heat and pressure treatment, or the above-described heat treatment may be performed while being pressurized.
  • the heating temperature in sintering of the composition layer is preferably 180 ° C. or higher, more preferably 190 ° C. or higher, and still more preferably 220 ° C.
  • the heating time for sintering the composition layer is preferably 5 seconds to 10 hours, more preferably 1 minute to 30 minutes, and preferably 3 minutes to 10 minutes, depending on the type of metal particles. More preferable.
  • the oxygen concentration is 1000 ppm or less, preferably 500 ppm or less.
  • the composition prepared by the method described later was applied on a copper lead frame using a pointed tweezers to form a composition layer.
  • a Si chip having a size of 2 mm ⁇ 2 mm and gold-plated on the adhesion surface was placed on the composition layer and lightly pressed with tweezers to obtain a sample before sintering of the composition.
  • the sample before sintering is dried on a hot plate at 100 ° C. for 30 minutes, and then set on a conveyor of a nitrogen reflow apparatus (Tamura Seisakusho Co., Ltd .: 1 zone 50 cm, 7 zones configuration, under nitrogen stream), oxygen concentration 200 ppm It transported at a speed of 0.3 m / min.
  • the sintered sample of the composition was treated in an 85 ° C. 85% constant temperature and humidity chamber for 96 hours and then observed with an electron microscope (SEM) JSM-59 to measure the length of the generated whisker.
  • SEM electron microscope
  • a sintered sample of the composition was prepared in the same manner as "(1) whisker".
  • a sintered sample of the composition was set in a thermal shock tester (Lifetech Co., Ltd., model 6015), and cooling and heating cycles were repeated.
  • the thermal cycle is, specifically, first cooling at a rate of room temperature (25 ° C.) to -10 ° C. per minute, maintaining for 30 minutes at -65 ° C., and then heating at a rate of + 10 ° C. per minute at 175 ° C.
  • the operation was maintained for 30 minutes and then cooled to room temperature (25 ° C.) at a rate of ⁇ 10 ° C./minute as one cycle.
  • the die shear strength of the sample after 3000 cycles was measured as follows.
  • the Si chip was pressed horizontally at a measurement speed of 500 ⁇ m / s and a measurement height of 100 ⁇ m, and the die shear strength of the sample after 3000 cycles was measured. . The average of nine measurement results was taken as die shear strength. If the die shear strength is less than 7.0 N / mm 2 , it can be said that the adhesion is defective.
  • Re-melting temperature A sintered sample of the composition was prepared in the same manner as "(1) whisker".
  • the remelting temperature of the sintered sample of the composition is raised by 10 ° C./min under nitrogen flow of 50 ml / min using a platinum pan according to DSC (differential scanning calorimetry). It measured on the conditions heated from 25 degreeC to 400 degreeC by a temperature rate.
  • DSC differential scanning calorimetry
  • m is about 33) 40.0 g, trimellitic anhydride 17.9 g, and N- main Added and stirred-2-pyrrolidone 100 g, was dissolved. To this solution is added 50 g of toluene, and the ring closure reaction of imide ring is carried out by dehydration reflux at a temperature of 150 ° C. or more for 6 hours. After distilling off the toluene, after cooling, 13.4 g of 4,4'-diphenylmethane diisocyanate (MDI) In addition, they were reacted at 150 ° C. for 2 hours to synthesize polyamideimide resin 1. The solid content was 50% by mass. The softening point and the thermal decomposition rate of the obtained polyamideimide resin 1 were measured by the above-mentioned method and found to be 210 ° C. and 0.8% by mass, respectively.
  • MDI 4,4'-diphenylmethane diisocyanate
  • composition In a 100 ml polyethylene bottle, 0.8 parts by mass of polyamideimide resin 1 (1.6 parts by mass as a resin solution), 0.3 parts by mass of 12-hydroxystearic acid (manufactured by Wako Pure Chemical Industries, Ltd.), dehydroabietic acid ( 1.9 parts by weight of Wako Pure Chemical Industries, Ltd., 0.3 parts by weight of triethanolamine (Wako Pure Chemical Industries, Ltd.), and hexyl carbitol (alias: diethylene glycol monohexyl ether, Wako Pure Chemical Industries, Ltd. 4.1 parts by mass was weighed, tightly capped, stirred by a rotor stirrer for 30 minutes, and mixed.
  • the amount of surface area 1 m 2 per tin alloy particles of the copper particles are shown in Table 1. Further, the content (volume based) of tin alloy particles relative to the total volume of the resin, copper particles, and tin alloy particles is shown in Table 1 (“tin alloy particle content” in Table 1). In addition, it was 0.04 m ⁇ 2 > / g when the average BET specific surface area in the tin alloy particle 1 was measured by the above-mentioned method.
  • a composition 3 was obtained in the same manner as the composition 1, except that the addition amount of the copper particles 1 was changed to 70.8 parts by mass.
  • the amount of surface area 1 m 2 per tin alloy particles of the copper particles are shown in Table 1.
  • the content (volume based) of tin alloy particles relative to the total volume of the resin, copper particles, and tin alloy particles is shown in Table 1 (“tin alloy particle content” in Table 1).
  • Composition 4 was obtained.
  • the amount of surface area 1 m 2 per tin alloy particles of the copper particles are shown in Table 1.
  • the content (volume based) of tin alloy particles relative to the total volume of the resin, copper particles, and tin alloy particles is shown in Table 1 (“tin alloy particle content” in Table 1).
  • a composition 5 was obtained in the same manner as the composition 1 except that the addition amount of 27.0 parts by mass of the tin alloy particles 1 was changed to 23.6% by mass.
  • the amount of surface area 1 m 2 per tin alloy particles of the copper particles are shown in Table 1.
  • the content (volume based) of tin alloy particles relative to the total volume of the resin, copper particles, and tin alloy particles is shown in Table 1 (“tin alloy particle content” in Table 1).
  • a composition C1 was obtained in the same manner as the composition 1 except that the addition amount of 27.0 parts by mass of the tin alloy particles 1 was changed to 9.7 parts by mass.
  • the amount of surface area 1 m 2 per tin alloy particles of the copper particles are shown in Table 1.
  • the content (volume based) of tin alloy particles relative to the total volume of the resin, copper particles, and tin alloy particles is shown in Table 1 (“tin alloy particle content” in Table 1).
  • a composition C2 was obtained in the same manner as the composition 1 except that the addition amount of the tin alloy particles 1 was changed to 31.5 parts by mass.
  • the amount of surface area 1 m 2 per tin alloy particles of the copper particles are shown in Table 1.
  • the content (volume based) of tin alloy particles relative to the total volume of the resin, copper particles, and tin alloy particles is shown in Table 1 (“tin alloy particle content” in Table 1).
  • Example 1 to 5 the die shear strength was higher than that in Comparative Example 1. In Examples 1 to 5, generation of whiskers was suppressed as compared with Comparative Example 2. That is, in Examples 1 to 5, coexistence of die shear strength and whisker suppression was realized as compared with Comparative Example 1 and Comparative Example 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

This liquid phase sintering composition comprises: first metal particles containing a first metal and having a melting point of 400°C or higher; second metal particles having a melting point of 300°C or lower and containing a second metal which can be transient-liquid-phase sintered together with the first metal; and a resin, wherein the contained amount of the second metal particles per 1 m2 of the surface area of the first metal particles is 3.7-11.0 g.

Description

液相焼結用組成物、接着剤、焼結体、接合構造、接合体、及び接合体の製造方法Liquid phase sintering composition, adhesive, sintered body, bonded structure, bonded body, and method of manufacturing bonded body
 本発明は、液相焼結用組成物、接着剤、焼結体、接合構造、接合体、及び接合体の製造方法に関する。 The present invention relates to a composition for liquid phase sintering, an adhesive, a sintered body, a bonded structure, a bonded body, and a method of manufacturing a bonded body.
 半導体装置を製造する際、半導体素子と支持部材とを接着させる方法としては、エポキシ樹脂等の熱硬化性樹脂にはんだ粉を分散させてペースト状とし、これを導電性接着剤として使用する方法が挙げられる(例えば、特許文献1参照。)。
 この方法では、ディスペンサー、印刷機、スタンピングマシン等を用いて、ペースト状の導電性接着剤を支持部材のダイパッドに塗布した後、半導体素子をダイボンディングし、導電性接着剤を加熱硬化して半導体装置とする。
When manufacturing a semiconductor device, as a method of bonding a semiconductor element and a supporting member, a method of dispersing solder powder in thermosetting resin such as epoxy resin to make a paste and using it as a conductive adhesive is known. (See, for example, Patent Document 1).
In this method, a paste-like conductive adhesive is applied to a die pad of a support member using a dispenser, a printing machine, a stamping machine or the like, then the semiconductor element is die-bonded and the conductive adhesive is heat-cured to obtain a semiconductor Equipment
 近年、半導体素子の高速化、高集積化等が進むに伴い、半導体装置を高温で作動させるために、導電性接着剤に低温での接合性及び高温での接続信頼性が求められている。 In recent years, with the progress of high speed and high integration of semiconductor devices, in order to operate the semiconductor device at high temperature, bonding property at low temperature and connection reliability at high temperature are required for the conductive adhesive.
 はんだ粉を分散させたはんだペーストの信頼性の向上を図るため、アクリル樹脂に代表される低弾性材料の検討がなされている(例えば、特許文献2参照。)。 In order to improve the reliability of the solder paste in which the solder powder is dispersed, a low elastic material typified by an acrylic resin has been studied (see, for example, Patent Document 2).
 また、特殊な表面処理を施したマイクロサイズ以下の銀粒子を用いることで、100℃~400℃での加熱により銀粒子同士が焼結する接着剤組成物が提案されている(例えば、特許文献3参照。)。特許文献3で提案されている銀粒子同士が焼結する接着剤組成物では、銀粒子が金属結合を形成するため、高温下での接続信頼性が優れるものと考えられることが記載されている。 In addition, an adhesive composition is proposed in which silver particles are sintered by heating at 100 ° C. to 400 ° C. by using micro-sized or smaller silver particles which have been subjected to a special surface treatment (for example, patent documents 3). In the adhesive composition in which silver particles are sintered in Patent Document 3, it is described that the silver particles form a metal bond, and therefore, it is considered that the connection reliability at high temperature is excellent. .
 一方で、銀以外の金属粒子を用いた例として、遷移的液相焼結型金属接着剤の開発が進められている(例えば、特許文献4参照。)。遷移的液相焼結型金属接着剤では、金属成分として接合界面に液相を生じる金属粒子の組み合わせ(例えば銅と錫)が用いられる。接合界面に液相を生じる金属粒子を組み合わせることで、加熱により界面液相が形成される。その後、反応拡散の進行により液相の融点が徐々に上がることで、最終的に接合層の組成の融点が接合温度を上回るようになる。
 特許文献4に記載の遷移的液相焼結型金属接着剤では、銅及び銅錫合金が接合することにより、電気的に機械的に安定した接続が形成されることが記載されている。
On the other hand, as an example using metal particles other than silver, development of a transitional liquid phase sintering type metal adhesive is in progress (see, for example, Patent Document 4). In the transitional liquid phase sintering type metal adhesive, a combination of metal particles (for example, copper and tin) which generates a liquid phase at a bonding interface is used as a metal component. By combining metal particles that generate a liquid phase at the bonding interface, an interfacial liquid phase is formed by heating. Thereafter, the melting point of the liquid phase gradually rises due to the progress of the reaction diffusion, so that the melting point of the composition of the bonding layer finally exceeds the bonding temperature.
In the transitional liquid phase sintering type metal adhesive described in Patent Document 4, it is described that an electrically mechanically stable connection is formed by joining copper and a copper-tin alloy.
特開2005-93996号公報JP 2005-93996 A 国際公開第2009/104693号WO 2009/104693 特開2015-224263号公報JP, 2015-224263, A 特表2013-510240号公報Japanese Patent Application Publication No. 2013-510240
 特許文献4に記載の遷移的液相焼結型金属接着剤では、電気的に機械的に安定した接続が形成されるとされているものの、焼結後におけるウィスカの発生を抑制しつつ、加熱冷却処理を繰り返した後におけるダイシェア強度を得ることは難しく、課題があった。
 そこで、本発明の一態様は、加熱冷却処理を繰り返した後におけるダイシェア強度が高く、かつ、ウィスカが発生しにくい焼結体が得られる液相焼結用組成物及びこの液相焼結用組成物を含有する接着剤並びにこの液相焼結用組成物を用いた焼結体、接合構造、接合体、及び接合体の製造方法を提供することを目的とする。
In the transitional liquid phase sintering type metal adhesive described in Patent Document 4, although it is supposed that an electrically mechanically stable connection is formed, heating is performed while suppressing generation of whiskers after sintering. It is difficult and difficult to obtain die shear strength after repeated cooling process.
Therefore, one aspect of the present invention is a composition for liquid phase sintering that provides a sintered body having high die shear strength after repeated heating and cooling treatment and that is less likely to cause whiskers, and the composition for liquid phase sintering It is an object of the present invention to provide an adhesive containing an object and a method for producing a sintered body, a bonded structure, a bonded body, and a bonded body using this composition for liquid phase sintering.
 前記課題を達成するための具体的手段は以下の通りである。
<1> 第1の金属を含有し融点が400℃以上である第1の金属粒子と、前記第1の金属と遷移的液相焼結が可能な第2の金属を含有し融点が300℃以下である第2の金属粒子と、樹脂と、を含み、
 前記第1の金属粒子の表面積1mあたりの前記第2の金属粒子の含有量が3.7g~11.0gである液相焼結用組成物。
<2> 前記第2の金属粒子の含有率が、前記第1の金属粒子と前記第2の金属粒子と前記樹脂との総体積に対し、20体積%~30体積%である<1>に記載の液相焼結用組成物。
<3> 前記第1の金属粒子全体における平均BET比表面積が0.02m/g~0.1m/gである<1>又は<2>に記載の液相焼結用組成物。
<4> 前記第1の金属がCuを含む<1>~<3>のいずれか1つに記載の液相焼結用組成物。
<5> 前記第2の金属がSnを含む<1>~<4>のいずれか1つに記載の液相焼結用組成物。
<6> <1>~<5>のいずれか1つに記載の液相焼結用組成物を含有する接着剤。
<7> <1>~<5>のいずれか1つに記載の液相焼結用組成物の焼結体。
<8> 第1の被接合物と第2の被接合物とが<7>に記載の焼結体を介して接合されている接合構造。
<9> 素子と支持部材とが<7>に記載の焼結体を介して接合されている接合体。
<10> 支持部材における素子の接合される箇所及び前記素子における前記支持部材と接合される箇所の少なくとも一方に、<1>~<5>のいずれか1つに記載の液相焼結用組成物を付与して組成物層を形成する工程と、
 前記組成物層を介して、前記支持部材と前記素子とを接触させる工程と、
 前記組成物層を加熱して焼結する工程と、を有する接合体の製造方法。
The specific means for achieving the said subject are as follows.
<1> A first metal particle containing a first metal and having a melting point of 400 ° C. or higher, and a second metal containing the first metal and capable of transient liquid phase sintering having a melting point of 300 ° C. Containing a second metal particle, which is
A composition for liquid phase sintering, wherein the content of the second metal particles per 1 m 2 of surface area of the first metal particles is 3.7 g to 11.0 g.
<2> In <1>, the content of the second metal particle is 20% by volume to 30% by volume with respect to the total volume of the first metal particle, the second metal particle, and the resin. The composition for liquid phase sintering as described.
<3> The average BET specific surface area in the whole of the first metal particles is 0.02m 2 /g~0.1m 2 / g <1 > or liquid phase sintering composition according to <2>.
<4> The composition for liquid phase sintering according to any one of <1> to <3>, wherein the first metal contains Cu.
<5> The composition for liquid phase sintering according to any one of <1> to <4>, wherein the second metal contains Sn.
<6> An adhesive containing the composition for liquid phase sintering according to any one of <1> to <5>.
<7> A sintered body of the composition for liquid phase sintering according to any one of <1> to <5>.
The junction structure where the <8> 1st to-be-joined thing and the 2nd to-be-joined thing are joined through the sintered compact as described in <7>.
The joined body by which the <9> element and the supporting member are joined through the sintered compact as described in <7>.
<10> The composition for liquid phase sintering according to any one of <1> to <5> in at least one of a joining part of the element in the supporting member and a joining part with the element in the element Applying a substance to form a composition layer,
Bringing the support member into contact with the element through the composition layer;
And heating the composition layer to sinter.
 本発明の一態様によれば、加熱冷却処理を繰り返した後におけるダイシェア強度が高く、かつ、ウィスカが発生しにくい焼結体が得られる液相焼結用組成物及びこの液相焼結用組成物を含有する接着剤並びにこの液相焼結用組成物を用いた焼結体、接合構造、接合体、及び接合体の製造方法を提供することができる。 According to one aspect of the present invention, a composition for liquid phase sintering which provides a sintered body having high die shear strength after repeated heating and cooling treatment and in which whiskers are not easily generated, and the composition for liquid phase sintering It is possible to provide an adhesive containing a substance and a method for producing a sintered body, a bonded structure, a bonded body, and a bonded body using this composition for liquid phase sintering.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and ranges thereof, and does not limit the present invention.
In the present disclosure, the term “step” includes, in addition to steps independent of other steps, such steps as long as the purpose of the step is achieved even if it can not be clearly distinguished from other steps. .
In the present disclosure, numerical values described before and after “to” are included in the numerical range indicated using “to” as the minimum value and the maximum value, respectively.
The upper limit value or the lower limit value described in one numerical value range may be replaced with the upper limit value or the lower limit value of the other stepwise description numerical value range in the numerical value range described stepwise in the present disclosure. . In addition, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
In the present disclosure, each component may contain a plurality of corresponding substances. When a plurality of substances corresponding to each component are present in the composition, the content of each component means the total content of the plurality of substances present in the composition unless otherwise specified.
In the present disclosure, particles corresponding to each component may contain a plurality of types. When there are a plurality of particles corresponding to each component in the composition, the particle diameter of each component means the value for the mixture of the plurality of particles present in the composition unless otherwise specified.
In the present disclosure, the term “layer” may mean that when the region in which the layer is present is observed, it is formed in only a part of the region, in addition to the case where the region is entirely formed. included.
<液相焼結用組成物>
 本開示の液相焼結用組成物(以下、単に「組成物」ともいう)は、第1の金属を含有し融点が400℃以上である第1の金属粒子と、前記第1の金属と遷移的液相焼結が可能な第2の金属を含有し融点が300℃以下である第2の金属粒子と、樹脂と、を含み、前記第1の金属粒子の表面積1mあたりの前記第2の金属粒子の含有量が3.7g~11.0gである。
 上記組成物を用いれば、加熱冷却処理を繰り返した後におけるダイシェア強度が高く、かつ、ウィスカが発生しにくい焼結体が得られる。その理由は明確ではないが、以下のように推察される。
<Composition for liquid phase sintering>
The composition for liquid phase sintering (hereinafter, also simply referred to as “composition”) of the present disclosure includes a first metal particle containing a first metal and having a melting point of 400 ° C. or more, and the first metal. and the second metal particles melting point and containing a second metal capable of transitional liquid phase sintering is 300 ° C. or less, wherein a resin, wherein the per surface area 1 m 2 of the first metal particles first The content of the metal particles of 2 is 3.7 g to 11.0 g.
When the above composition is used, a sintered body having high die shear strength after repeated heating and cooling treatment and in which whiskers are not easily generated can be obtained. Although the reason is not clear, it is guessed as follows.
 遷移的液相焼結型金属接着剤に用いられる液相焼結用組成物は、例えば、遷移的液相焼結が可能な金属の組み合わせとして、相対的に高融点の第1の金属と、相対的に低融点である第2の金属と、を含む。上記液相焼結用組成物では、熱によって第2の金属が溶融して液相が形成され、その液相に第1の金属が拡散することで、第2の金属の融点よりも高い融点を有する合金となる。
 ここで、上記液相焼結用組成物の形態としては、1つの金属粒子中に第1の金属及び第2の金属の両方を含有する形態のほか、別々の金属粒子に第1の金属及び第2の金属のそれぞれを含有する形態等が挙げられる。また、上記液相焼結用組成物の形態として、これらの金属粒子の他に樹脂を含む形態も挙げられる。
The composition for liquid phase sintering used for the transitional liquid phase sintering type metal adhesive is, for example, a relatively high melting point first metal as a combination of metals capable of transitional liquid phase sintering, And a second metal having a relatively low melting point. In the composition for liquid phase sintering, the second metal is melted by heat to form a liquid phase, and the first metal diffuses in the liquid phase, whereby the melting point is higher than the melting point of the second metal. Alloy.
Here, as a form of the composition for liquid phase sintering, in addition to a form containing both the first metal and the second metal in one metal particle, the first metal and the separate metal particles are used. The form etc. which contain each of a 2nd metal are mentioned. Moreover, the form containing resin other than these metal particles is also mentioned as a form of the said composition for liquid phase sintering.
 本発明者等の検討によると、これらの形態の中でも第1の金属を含有する第1の金属粒子と第2の金属を含有する第2の金属粒子と樹脂とを含む液相焼結用組成物では、組成物に含まれる第1の金属粒子の総表面積に対する第2の金属粒子の含有量によって、焼結体のダイシェア強度及びウィスカの発生のしやすさが変わることがわかった。 According to studies by the present inventors, a composition for liquid phase sintering containing a first metal particle containing a first metal and a second metal particle containing a second metal among these forms and a resin. In the material, it was found that the die shear strength of the sintered body and the easiness of generation of whiskers were changed depending on the content of the second metal particles relative to the total surface area of the first metal particles contained in the composition.
 第1の金属粒子と第2の金属粒子と樹脂とを含む組成物を加熱して焼結させる過程では、まず第2の金属粒子が溶融し液相となって第1の金属粒子の周囲を取り囲み、第1の金属粒子に含有される第1の金属が周囲の液相に反応拡散する。それにより、第1の金属及び第2の金属を含む合金が形成される。
 ここで、第2の金属粒子が溶融して形成された液相のうち、第1の金属粒子の表面から離れた領域では、焼結時に反応拡散した第1の金属が到達しにくく、第2の金属が合金化されないまま残ることが考えられる。また、合金化されずに第2の金属が残ると、低融点に起因するウィスカ(すなわち、焼結体表面に針状又はノジュール状の金属が自然成長により生じる現象)が発生することが考えられる。
In the process of heating and sintering a composition containing the first metal particles, the second metal particles, and the resin, the second metal particles are first melted to form a liquid phase, and the periphery of the first metal particles is The surrounding, the first metal contained in the first metal particles react and diffuse into the surrounding liquid phase. Thereby, an alloy containing the first metal and the second metal is formed.
Here, in the region separated from the surface of the first metal particle in the liquid phase formed by melting the second metal particle, the first metal reacted and diffused at the time of sintering hardly reaches, It is believed that the metal of the metal remains unalloyed. In addition, if the second metal remains without being alloyed, it is conceivable that whiskers due to a low melting point (that is, a phenomenon in which a needle-like or nodule-like metal is naturally grown on the surface of a sintered body) may occur. .
 これに対して、本開示の組成物では、第1の金属粒子の表面積1mあたりの第2の金属粒子の含有量(以下、「単位表面積あたりの第2の金属粒子量」ともいう)が3.7g~11.0gである。そのため、単位表面積あたりの第2の金属粒子量が11.0gよりも多い場合に比べて、第1の金属が到達せず合金化されない第2の金属が少なく、ウィスカが発生しにくくなると推察される。
 また、単位表面積あたりの第2の金属粒子量が上記範囲であることにより、3.7gよりも少ない場合に比べ、焼結時に、溶融した十分な量の第2の金属粒子が第1の金属粒子の表面に接触し、十分な量の合金が形成される。そのため、焼結不良が起こりにくく、加熱冷却処理を繰り返した後におけるダイシェア強度が高くなると推察される。
 以上のようにして、本開示の組成物では、加熱冷却処理を繰り返した後におけるダイシェア強度が高く、かつ、ウィスカが発生しにくい焼結体が得られると推測される。
In contrast, in the compositions of the present disclosure, the content of the second metal particles per surface area 1 m 2 of the first metal particles (hereinafter, also referred to as "second metal particles per unit surface area") is It is 3.7 g to 11.0 g. Therefore, compared with the case where the amount of the second metal particles per unit surface area is larger than 11.0 g, it is inferred that the first metal does not reach and the second metal which is not alloyed is small and whiskers are hardly generated. Ru.
In addition, when the amount of the second metal particles per unit surface area is in the above range, a sufficient amount of the second metal particles melted at the time of sintering is the first metal, as compared to the case where the amount is smaller than 3.7 g. The surface of the particles is contacted and a sufficient amount of alloy is formed. Therefore, it is inferred that sintering defects are unlikely to occur, and the die shear strength after repeating the heating and cooling treatment is high.
As described above, it is presumed that in the composition of the present disclosure, a sintered body having high die shear strength after repeated heating and cooling treatment and in which whiskers are not easily generated can be obtained.
 なお、「単位表面積あたりの第2の金属粒子量」は、3.7g~11.0gであることが好ましく、高いダイシェア強度及びウィスカの抑制に加えて再溶融の抑制の観点から、3.8g~10.8gであることがより好ましく、3.9g~10.4gであることがさらに好ましく、4.0g~10.0gであることが特に好ましく、4.5g~9.0gであることが極めて好ましい。
 ここで、「単位表面積あたりの第2の金属粒子量」は、第1の金属粒子の表面積が合計で1mとなる量の第1の金属粒子が含まれる組成物に、第2の金属粒子が何g含まれているかを示す値である。
 また、第1の金属粒子の表面積の合計は、組成物に含まれる第1の金属粒子それぞれの表面積をすべて足し合わせたものである。なお、第1の金属粒子の表面積の合計は、第1の金属粒子全体における平均BET比表面積に、組成物に含まれる第1の金属粒子の質量を掛け合わせることで求めてもよい。
The “second metal particle amount per unit surface area” is preferably 3.7 g to 11.0 g, and is 3.8 g from the viewpoint of suppression of remelting in addition to high die shear strength and suppression of whiskers. It is more preferable that it is ̃10.8 g, more preferably 3.9 g to 10.4 g, particularly preferably 4.0 g to 10.0 g, and it is 4.5 g to 9.0 g Very preferred.
Here, “the amount of the second metal particles per unit surface area” is the second metal particles in a composition including the first metal particles in an amount such that the surface area of the first metal particles is 1 m 2 in total. Is a value indicating how many g are included.
Also, the sum of the surface areas of the first metal particles is the sum of all the surface areas of the first metal particles contained in the composition. The total surface area of the first metal particles may be determined by multiplying the average BET specific surface area of the entire first metal particles by the mass of the first metal particles contained in the composition.
 上記「第1の金属粒子全体における平均BET比表面積」とは、組成物に含まれる第1の金属粒子全体について測定して得られる比表面積の値である。つまり、上記「平均BET比表面積」は、第1の金属粒子が比表面積の異なる金属粒子を複数種含む場合、当該複数種の金属粒子の各比表面積を平均した値となる。
 具体的には、例えば、比表面積Sの金属粒子Mグラム、比表面積Sの金属粒子Mグラム、及び比表面積Sの金属粒子Mグラムで構成された第1の金属粒子(M+M+M)グラム全体の比表面積Sは、下記式で表される。
 式:S=(S×M+S×M+S×M)/(M+M+M
 また、第1の金属粒子の表面積の合計は、下記式で表される。
 式:第1の金属粒子の表面積の合計=S×(M+M+M
 なお、上記式は、比表面積の異なる3種類の金属粒子で構成されている第1の金属粒子の例であるが、2種以下の金属粒子で構成されている第1の金属粒子及び4種以上の金属粒子で構成されている第1の金属粒子においても同様である。
 第1の金属粒子全体における平均BET比表面積の値は、第1の金属粒子全体について、JIS-Z-8830:2013に準じ、BET法にて測定することで得られる。
The “average BET specific surface area of the entire first metal particles” is a value of specific surface area obtained by measuring the entire first metal particles contained in the composition. That is, when the first metal particle contains a plurality of types of metal particles having different specific surface areas, the “average BET specific surface area” is a value obtained by averaging the specific surface areas of the plurality of types of metal particles.
Specifically, for example, a first metal particle composed of 1 gram of metal particles M of specific surface area S 1 , 2 grams of metal particles M of specific surface area S 2 , and 3 grams of metal particles M of specific surface area S 3 The specific surface area S T of the entire M 1 + M 2 + M 3 ) gram is represented by the following formula.
Formula: S T = (S 1 × M 1 + S 2 × M 2 + S 3 × M 3 ) / (M 1 + M 2 + M 3 )
Moreover, the sum total of the surface area of a 1st metal particle is represented by a following formula.
Formula: Sum of the surface area of the first metal particle = S T × (M 1 + M 2 + M 3 )
The above formula is an example of the first metal particle composed of three kinds of metal particles different in specific surface area, but the first metal particle composed of two or less kinds of metal particles and the four kinds of metal particles The same applies to the first metal particle composed of the above metal particles.
The value of the average BET specific surface area of the entire first metal particles can be obtained by measuring the entire first metal particles by the BET method according to JIS-Z-8830: 2013.
 以下、本開示の組成物を構成する各成分について詳細に説明する。 Hereinafter, each component which comprises the composition of this indication is demonstrated in detail.
(金属粒子)
 本開示の組成物は、第1の金属を含有し融点が300℃より高い第1の金属粒子と、前記第1の金属と遷移的液相焼結が可能な第2の金属を含有し融点が300℃以下である第2の金属粒子と、を含む。
(Metal particles)
The composition of the present disclosure includes a first metal particle containing a first metal and having a melting point higher than 300 ° C., and a second metal having a transitional liquid phase sintering with the first metal. And second metal particles having a temperature of 300 ° C. or less.
 ここで、本開示における「遷移的液相焼結」とは、Transient Liquid Phase Sintering(TLPS)とも称され、低融点金属の粒子界面における加熱による液相への転移と、高融点金属の液相への反応拡散により進行する現象をいう。遷移的液相焼結によれば、焼結体の融点が加熱温度を上回ることができる。
 また、遷移的液相焼結が可能な金属の組み合わせ(すなわち、第1の金属と第2の金属との組み合わせ)は特に限定されるものではなく、AuとInとの組み合わせ、CuとSnとの組み合わせ、AgとSnとの組み合わせ、CoとSnとの組み合わせ、NiとSnとの組み合わせ等が挙げられる。
Here, “transitional liquid phase sintering” in the present disclosure is also referred to as Transient Liquid Phase Sintering (TLPS), and the transition to the liquid phase by heating at the particle interface of the low melting point metal and the liquid phase of the high melting point metal It refers to a phenomenon that proceeds by reaction diffusion to the surface. The transitional liquid phase sintering allows the melting point of the sintered body to exceed the heating temperature.
Further, the combination of metals capable of transient liquid phase sintering (that is, the combination of the first metal and the second metal) is not particularly limited, and the combination of Au and In, Cu and Sn Combinations of Ag and Sn, combinations of Co and Sn, combinations of Ni and Sn, and the like.
 本開示においては、遷移的液相焼結が可能な金属の組み合わせとしては、CuとSnとの組み合わせが好ましい。
 焼結による銅-錫金属化合物(CuSn)を生成する反応は250℃付近で進行するため、CuとSnとを組み合わせて用いることで、リフロー炉等の一般的な設備による焼結が可能である。
In the present disclosure, a combination of Cu and Sn is preferable as a combination of metals capable of transient liquid phase sintering.
Since the reaction to form the copper-tin metal compound (Cu 6 Sn 5 ) by sintering proceeds at around 250 ° C., using Cu and Sn in combination allows sintering by general equipment such as a reflow furnace. It is possible.
 本開示の組成物は、第1の金属粒子及び第2の金属粒子の他に、他の金属粒子(すなわち、第1の金属及び第2の金属以外の金属で構成された粒子)を含んでもよい。ただし、金属粒子全体(すなわち、第1の金属粒子、第2の金属粒子、及び必要に応じて含まれる他の金属粒子の全体)に対する他の金属粒子の割合は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。
 以下、第1の金属粒子及び第2の金属粒子それぞれについて説明する。
The composition of the present disclosure may also include other metal particles (ie, particles composed of metals other than the first metal and the second metal) in addition to the first metal particles and the second metal particles. Good. However, the ratio of the other metal particles to the whole metal particles (that is, the whole of the first metal particles, the second metal particles, and other metal particles optionally contained) is 10% by mass or less Is preferable, 5% by mass or less is more preferable, and 1% by mass or less is more preferable.
Hereinafter, each of the first metal particle and the second metal particle will be described.
-第1の金属粒子-
 第1の金属粒子は、第1の金属を含有し融点が400℃以上である。
 第1の金属粒子は、単体の金属として第1の金属を含有する形態でもよく、第1の金属を含む合金を含有する形態でもよい。なお、第1の金属がCuである場合、第1の金属粒子は単体の金属としてCuを含有する粒子であることが好ましい。
-1st metal particle-
The first metal particles contain the first metal and have a melting point of 400 ° C. or higher.
The first metal particles may be in the form of containing the first metal as a single metal, or in the form of containing an alloy containing the first metal. When the first metal is Cu, the first metal particles are preferably particles containing Cu as a single metal.
 第1の金属粒子は、粒子内の少なくとも一部の領域に第1の金属を含有していればよく、焼結の過程で第1の金属を液相へ反応拡散しやすくする観点から、少なくとも粒子の表面に第1の金属を含有していることが好ましい。
 粒子の表面に第1の金属を含有する第1の金属粒子としては、例えば、コア粒子と、コア粒子を被覆し第1の金属を含有する被覆層(例えば、第1の金属単体又は第1の金属を含む合金で構成された被覆層)と、を有する金属粒子が挙げられる。
 上記コア粒子は、第1の金属を含んでもよく、第1の金属を含まなくてもよい。第1の金属を含むコア粒子としては、第1の金属単体からなる粒子、第1の金属を含む合金からなる粒子、粒子の一部が第1の金属を含む粒子等が挙げられる。また、第1の金属を含まない粒子としては、第1の金属以外の金属からなる粒子、炭素粒子等が挙げられる。
 なお、第1の金属がCuである場合、第1の金属粒子は、少なくとも粒子の表面が単体の銅又は銅合金で構成されていることが好ましく、第1の金属粒子全体が単体の銅又は銅合金で構成されていることが好ましい。
The first metal particle only needs to contain the first metal in at least a part of the region in the particle, and in view of facilitating the reaction diffusion of the first metal into the liquid phase in the process of sintering, at least It is preferable that the surface of the particle contains a first metal.
As the first metal particle containing the first metal on the surface of the particle, for example, a core particle, and a coating layer which covers the core particle and contains the first metal (for example, a first metal simple substance or a first metal) And a covering layer composed of an alloy containing a metal of
The core particle may contain the first metal or may not contain the first metal. Examples of core particles containing a first metal include particles consisting of a first metal single particle, particles consisting of an alloy containing a first metal, and particles in which some of the particles contain the first metal. Moreover, as a particle which does not contain a 1st metal, the particle | grains which consist of metals other than a 1st metal, a carbon particle, etc. are mentioned.
When the first metal is Cu, it is preferable that at least the surface of the first metal particle is composed of copper or a copper alloy, and the entire first metal particle is copper or copper. It is preferable to be made of a copper alloy.
 第1の金属粒子の融点は、400℃以上であり、400℃~2500℃であることが好ましく、400℃~2000℃であることがより好ましく、400℃~1300℃であることがさらに好ましい。
 第1の金属粒子の融点は、例えば融点が1300℃以下である第1の金属粒子について測定する場合、DSC(Differential scanning calorimetry、示差走査熱量測定)により、白金製の測定パンを使用し、50ml/分の窒素気流下にて、10℃/分の昇温速度で25℃から1300℃まで加熱する条件で測定することができる。
 なお、第1の金属粒子が一部のみの領域に第1の金属を含有する場合、第1の金属を含有する領域の融点が上記範囲であることが好ましい。
The melting point of the first metal particles is 400 ° C. or higher, preferably 400 ° C. to 2500 ° C., more preferably 400 ° C. to 2000 ° C., and still more preferably 400 ° C. to 1300 ° C.
When the melting point of the first metal particle is measured, for example, with respect to the first metal particle having a melting point of 1300 ° C. or less, a measuring pan made of platinum is used by DSC (differential scanning calorimetry) and 50 ml It can measure on the conditions heated from 25 degreeC to 1300 degreeC with the temperature increase rate of 10 degree-C / min under nitrogen flow of 1 / minute.
In the case where the first metal particle contains the first metal in a partial region, the melting point of the first metal-containing region is preferably in the above range.
 第1の金属粒子の体積平均粒径は、特に限定されず、付与安定性及び焼結ムラ抑制の観点から、0.5μm~80μmであることが好ましく、1μm~50μmであることがより好ましく、1μm~30μmであることがさらに好ましい。
 第1の金属粒子の体積平均粒径は、レーザー回折式粒度分布計(例えば、ベックマン・コールター株式会社製、LS 13 320型レーザー散乱回折法粒度分布測定装置)によって測定される粒子径分布から算出される。具体的には、得られた粒子径分布において小径側から体積累積分布曲線を描き、累積50%となるときの粒子径であるD50を、体積平均粒径とする。
 上記粒子径分布の測定は以下のようにして行う。具体的には、溶剤(テルピネオール)125gに、金属粒子を0.01質量%~0.3質量%の範囲内で添加し、分散液を調製する。この分散液の約100ml程度をセルに注入して25℃で測定する。粒度分布は溶媒の屈折率を1.48として測定する。
 下記第2の金属粒子における体積平均粒径の測定及び算出方法も同様である。
The volume average particle diameter of the first metal particles is not particularly limited, and is preferably 0.5 μm to 80 μm, and more preferably 1 μm to 50 μm, from the viewpoints of application stability and suppression of sintering unevenness. More preferably, it is 1 μm to 30 μm.
The volume average particle size of the first metal particles is calculated from the particle size distribution measured by a laser diffraction type particle size distribution analyzer (for example, LS 13 320 type laser scattering / diffraction particle size distribution measuring device manufactured by Beckman Coulter, Inc.) Be done. Specifically, in the obtained particle size distribution, a volume cumulative distribution curve is drawn from the small diameter side, and D50, which is the particle size at which the cumulative 50% is achieved, is defined as the volume average particle size.
The measurement of the particle size distribution is performed as follows. Specifically, a metal particle is added in the range of 0.01% by mass to 0.3% by mass to 125 g of a solvent (terpineol) to prepare a dispersion. About 100 ml of this dispersion is injected into the cell and measured at 25 ° C. The particle size distribution is measured with the refractive index of the solvent being 1.48.
The measurement and calculation method of the volume average particle diameter in the following 2nd metal particle are also the same.
 第1の金属粒子全体における平均BET比表面積は、連続付与時における付与安定性及びウィスカ抑制の観点から、0.01m/g~0.15m/gであることが好ましく、0.02m/g~0.1m/gであることがより好ましく、0.04m/g~0.08m/gであることがさらに好ましい。 The average BET specific surface area in the entire first metal particles is preferably from the viewpoint of imparting stability and whisker suppression during continuous grant, a 0.01m 2 /g~0.15m 2 / g, 0.02m 2 more preferably /g~0.1m is 2 / g, more preferably from 0.04m 2 /g~0.08m 2 / g.
 第1の金属粒子の含有率は、第1の金属粒子と第2の金属粒子と樹脂との総体積に対して、連続付与時における付与安定性の観点から、56体積%~85体積%であることが好ましく、70体積%~83体積%であることがより好ましく、65体積%~80体積%であることがさらに好ましい。 The content of the first metal particles is 56% by volume to 85% by volume from the viewpoint of application stability at the time of continuous application with respect to the total volume of the first metal particles, the second metal particles, and the resin. It is preferably 70% by volume to 83% by volume, and more preferably 65% by volume to 80% by volume.
 なお、第1の金属粒子と第2の金属粒子と樹脂との総体積に対する第1の金属粒子の含有率は、次式により求められる。
 第1の金属粒子の含有率(体積%)=(Aw/Ad)/((Aw/Ad)+(Bw/Bd)+(Cw/Cd))×100
Aw:第1の金属粒子の質量組成比(質量%)
Bw:第2の金属粒子の質量組成比(質量%)
Cw:樹脂の質量組成比(質量%)
Ad:第1の金属粒子の比重
Bd:第2の金属粒子の比重
Cd:樹脂の比重
In addition, the content rate of the 1st metal particle with respect to the total volume of a 1st metal particle, a 2nd metal particle, and resin is calculated | required by following Formula.
Content rate of first metal particle (volume%) = (Aw / Ad) / ((Aw / Ad) + (Bw / Bd) + (Cw / Cd)) × 100
Aw: mass composition ratio of the first metal particle (mass%)
Bw: mass composition ratio of second metal particles (mass%)
Cw: mass composition ratio of resin (mass%)
Ad: Specific gravity of first metal particle Bd: Specific gravity of second metal particle Cd: Specific gravity of resin
-第2の金属粒子-
 第2の金属粒子は、第2の金属を含有し融点が300℃以下である。
 第2の金属粒子は、単体の金属として第2の金属を含有する形態でもよく、第2の金属を含む合金を含有する形態でもよい。
 なお、第2の金属がSnである場合、第2の金属粒子はSnを含む合金を含有する粒子であることが好ましい。Snを含む合金の例としては、Sn-3.0Ag-0.5Cu合金等が挙げられる。なお、合金における表記は、例えばSn-AX-BYの場合は、錫合金の中に、元素XがA質量%、元素YがB質量%含まれていることを示す。
-Second metal particle-
The second metal particles contain the second metal and have a melting point of 300 ° C. or less.
The second metal particles may contain the second metal as a single metal, or may contain an alloy containing the second metal.
When the second metal is Sn, the second metal particles are preferably particles containing an alloy containing Sn. Examples of the alloy containing Sn include Sn-3.0Ag-0.5Cu alloy and the like. In the case of Sn-AX-BY, for example, in the case of Sn-AX-BY, the notation in the alloy indicates that the tin alloy contains A mass% of element X and B mass% of element Y.
 第2の金属粒子は、少なくとも一部の領域に第2の金属を含有していればよく、焼結の過程で第2の金属粒子を液相状態にしやすくする観点から、粒子全体が第2の金属を含有していることが好ましい。
 第2の金属粒子の融点は、300℃以下であり、120℃~300℃であることが好ましく、130℃~250℃であることがより好ましく、135℃~225℃であることがさらに好ましい。
 第2の金属粒子の融点は、DSC(Differential scanning calorimetry、示差走査熱量測定)により、白金製のパンを使用し、50ml/分の窒素気流下にて、10℃/分の昇温速度で25℃から300℃まで加熱する条件で測定することができる。
 第1の金属粒子の融点と第2の金属粒子の融点との差は、500℃以上であることが好ましく、600℃以上であることがより好ましく、800℃以上であることがさらに好ましい。
The second metal particles may contain the second metal in at least a part of the region, and in view of facilitating the second metal particles to be in a liquid phase in the process of sintering, the entire particles are second It is preferable to contain the following metals.
The melting point of the second metal particles is 300 ° C. or less, preferably 120 ° C. to 300 ° C., more preferably 130 ° C. to 250 ° C., and still more preferably 135 ° C. to 225 ° C.
The melting point of the second metal particles is measured by DSC (Differential scanning calorimetry) using a platinum pan at a heating rate of 10 ° C./min under a nitrogen stream of 50 ml / min. It can measure on the conditions heated from 300C to 300C.
The difference between the melting point of the first metal particle and the melting point of the second metal particle is preferably 500 ° C. or more, more preferably 600 ° C. or more, and still more preferably 800 ° C. or more.
 第2の金属粒子の体積平均粒径は、特に限定されず、付与安定性及び焼結体における高温信頼性の観点から、0.5μm~80μmであることが好ましく、1μm~50μmであることがより好ましく、1μm~30μmであることがさらに好ましい。 The volume average particle diameter of the second metal particles is not particularly limited, and is preferably 0.5 μm to 80 μm, and more preferably 1 μm to 50 μm from the viewpoint of application stability and high-temperature reliability in the sintered body. More preferably, the thickness is 1 μm to 30 μm.
 第2の金属粒子の含有率は、第1の金属粒子と第2の金属粒子と樹脂との総体積に対して、連続付与時における付与安定性及びウィスカ抑制の観点の観点から、12体積%~40体積%であることが好ましく、12体積%~30体積%であることがより好ましく、20体積%~30体積%であることがさらに好ましい。
 第1の金属粒子及び第2の金属粒子の合計含有率は、特に限定されるものではなく、組成物全体に対して、80体積%以上であることが好ましく、85体積%以上であることがより好ましく、88体積%以上であることがさらに好ましい。また、第1の金属粒子及び第2の金属粒子の合計含有率は、組成物全体に対して、98体積%以下であってもよい。第1の金属粒子及び第2の金属粒子の合計含有率が組成物全体に対して98体積%以下であれば、本開示の組成物をペーストとして使用した場合に、印刷性(すなわち、組成物の付与性)が損なわれにくい傾向にある。
 第1の金属粒子の含有率(体積基準)における第2の金属の含有率(体積基準)に対する比率(すなわち、第1の金属粒子の含有率/第2の金属粒子の含有率)は、ウィスカの抑制等の観点から、少なくとも1.0より大きく、2.0~4.0であることが好ましく、2.2~3.5であることがより好ましい。
The content of the second metal particles is 12% by volume from the viewpoint of the application stability at the time of continuous application and suppression of whiskers with respect to the total volume of the first metal particles, the second metal particles, and the resin. The content is preferably 40% by volume, more preferably 12% by volume to 30% by volume, and still more preferably 20% by volume to 30% by volume.
The total content of the first metal particles and the second metal particles is not particularly limited, and is preferably 80% by volume or more and 85% by volume or more with respect to the entire composition. More preferably, it is 88% by volume or more. In addition, the total content of the first metal particles and the second metal particles may be 98 volume% or less with respect to the entire composition. If the total content of the first metal particles and the second metal particles is 98 volume% or less with respect to the entire composition, the printability (i.e., the composition) when the composition of the present disclosure is used as a paste The tendency to lose the ability to
The ratio of the content of the first metal particles (based on volume) to the content of the second metal (based on volume) (ie, the content of the first metal particles / the content of the second metal particles) From the viewpoint of suppression of at least 1.0, it is preferably at least greater than 1.0, preferably 2.0 to 4.0, and more preferably 2.2 to 3.5.
 第2の金属粒子全体における平均BET比表面積は、0.01m/g~0.45m/gであることが好ましく、0.02m/g~0.40m/gであることがより好ましく、0.03m/g~0.35m/gであることがさらに好ましい。
 第2の金属粒子全体における平均BET比表面積は、前述した第1の金属粒子全体における平均BET比表面積と同様の方法で求められる。
The average BET specific surface area in the whole second metal particles is preferably 0.01m 2 /g~0.45m 2 / g, more to be 0.02m 2 /g~0.40m 2 / g preferably, it is more preferably 0.03m 2 /g~0.35m 2 / g.
The average BET specific surface area of the entire second metal particles is determined in the same manner as the average BET specific surface area of the entire first metal particles described above.
(樹脂)
 本開示の組成物に含まれる樹脂は、特に限定されず、熱可塑性樹脂でもよく、熱硬化性樹脂でもよい。
 熱可塑性樹脂としては、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、熱可塑性エポキシ樹脂等が挙げられる。
 熱硬化性樹脂としては、エポキシ樹脂、オキサジン樹脂、ビスマレイミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。また、エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、環式脂肪族エポキシ樹脂等が挙げられる。
 上記樹脂は、1種のみ用いられてもよく、2種以上併用されていてもよい。
 これらの中でも、組成物に含まれる樹脂としては、焼結の過程において金属粒子の合金形成を阻害せずに流動しやすくする観点から、熱可塑性樹脂が好ましい。
(resin)
The resin contained in the composition of the present disclosure is not particularly limited, and may be a thermoplastic resin or a thermosetting resin.
Examples of the thermoplastic resin include polyamide resin, polyamide imide resin, polyimide resin, polyurethane resin, thermoplastic epoxy resin and the like.
Examples of the thermosetting resin include epoxy resin, oxazine resin, bismaleimide resin, phenol resin, unsaturated polyester resin, silicone resin and the like. Further, as epoxy resins, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, biphenol type epoxy resin, biphenyl novolac type Epoxy resin, cyclic aliphatic epoxy resin and the like can be mentioned.
The above resins may be used alone or in combination of two or more.
Among these, as a resin contained in the composition, a thermoplastic resin is preferable from the viewpoint of facilitating flow without inhibiting alloy formation of metal particles in the process of sintering.
 樹脂は、焼結の過程において金属粒子の合金形成を阻害しにくくする観点から、第2の金属粒子の融点よりも低い軟化点を示すことが好ましい。
 樹脂の軟化点は、熱機械分析法により測定された値をいう。具体的には、例えば、100μmの厚みの樹脂フィルムについて、熱機械的分析装置(TMA8320、株式会社リガク製、測定用プローブ:圧縮加重法標準型)を用いて、10℃/分にて加熱しながら49mNの力で圧縮し、80μm変位した温度を樹脂の軟化点とする。
 樹脂の軟化点は、焼結の過程において合金形成を阻害せずに流動する観点から、第2の金属粒子の融点よりも5℃以上低いことが好ましく、10℃以上低いことがより好ましく、15℃以上低いことがさらに好ましい。
 また、樹脂の軟化点は、遷移的液相焼結用組成物の層の形状保持の観点から、40℃以上であることが好ましく、50℃以上であることがより好ましく、60℃以上であることがさらに好ましい。
The resin preferably exhibits a softening point lower than the melting point of the second metal particles from the viewpoint of making it difficult to inhibit the alloy formation of the metal particles in the process of sintering.
The softening point of the resin refers to the value measured by thermomechanical analysis. Specifically, for example, a resin film with a thickness of 100 μm is heated at 10 ° C./min using a thermomechanical analyzer (TMA 8320, manufactured by Rigaku Corporation, measurement probe: compression weighted standard type) While compressing with a force of 49 mN, the temperature displaced 80 μm is taken as the softening point of the resin.
The softening point of the resin is preferably 5 ° C. or more lower than the melting point of the second metal particles, more preferably 10 ° C. or more lower, from the viewpoint of flowing without inhibiting alloy formation in the process of sintering. It is more preferable that the temperature be lower than ° C.
The softening point of the resin is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and 60 ° C. or higher, from the viewpoint of shape retention of the layer of the transient liquid phase sintering composition. Is more preferred.
 樹脂の25℃における弾性率は、接続信頼性を確保する観点から、0.01GPa~1.0GPaであることが好ましく、0.01GPa~0.5GPaであることがより好ましく、0.01GPa~0.3GPaであることがさらに好ましい。
 樹脂の25℃における弾性率は、JIS K 7161-1:2014の方法により測定された値をいう。
The elastic modulus at 25 ° C. of the resin is preferably 0.01 GPa to 1.0 GPa, more preferably 0.01 GPa to 0.5 GPa, and more preferably 0.01 GPa to 0, from the viewpoint of securing connection reliability. More preferably, it is .3 GPa.
The elastic modulus at 25 ° C. of the resin is a value measured by the method of JIS K 7161-1: 2014.
 樹脂の、熱重量測定装置を用いて窒素気流下にて測定した熱分解率は、2.0質量%以下であることが好ましい。樹脂の、熱重量測定装置を用いて窒素気流下にて測定した熱分解率が2.0質量%以下であれば、焼結体に熱履歴が与えられた前後での焼結体の弾性率の変化が抑制されやすくなる。
 樹脂の熱分解率は、1.5質量%以下であることがより好ましく、1.0質量%以下であることがさらに好ましい。
The thermal decomposition rate of the resin measured under a stream of nitrogen using a thermogravimetry apparatus is preferably 2.0% by mass or less. If the thermal decomposition rate of the resin measured under a nitrogen stream using a thermogravimetry device is 2.0 mass% or less, the elastic modulus of the sintered body before and after the thermal history is given to the sintered body Changes are easily suppressed.
The thermal decomposition rate of the resin is more preferably 1.5% by mass or less, and still more preferably 1.0% by mass or less.
 本開示において、樹脂の熱分解率は、以下の方法により測定された値をいう。
 熱重量測定装置を用いて50ml/分の窒素気流下にて、白金製のパンに配置された樹脂10mgを、10℃/分の昇温速度の条件で25℃から400℃まで加熱した際に、200℃から300℃の間での重量減少率を熱分解率とする。
In the present disclosure, the thermal decomposition rate of a resin refers to a value measured by the following method.
When 10 mg of resin placed in a platinum pan is heated from 25 ° C. to 400 ° C. at a heating rate of 10 ° C./min under a nitrogen stream of 50 ml / min using a thermogravimetry apparatus The weight loss rate between 200 ° C. and 300 ° C. is taken as the thermal decomposition rate.
 樹脂としては、前記の通り熱可塑性樹脂が好ましく、その中でも、金属粒子の表面と水素結合を作りやすい官能基又は構造を有する熱可塑性樹脂が、組成物中における樹脂の分散性の観点から好ましい。金属粒子の表面と水素結合を作りやすい官能基としては、アミノ基、カルボキシ基等が挙げられる。また、金属粒子の表面と水素結合を作りやすい構造としては、アミド結合、イミド結合、ウレタン結合等が挙げられる。
 熱可塑性樹脂としては、アミド結合、イミド結合及びウレタン結合からなる群より選択される少なくとも1種を含むものが好ましい。
 このような熱可塑性樹脂としては、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂及びポリウレタン樹脂からなる群より選択される少なくとも1種が挙げられる。熱可塑性樹脂としては、ポリアミドイミド樹脂であることが好ましい。
As the resin, as described above, a thermoplastic resin is preferable, and among them, a thermoplastic resin having a functional group or a structure which easily forms a hydrogen bond with the surface of metal particles is preferable from the viewpoint of the dispersibility of the resin in the composition. Examples of functional groups that easily form hydrogen bonds with the surface of metal particles include amino groups and carboxy groups. Moreover, an amide bond, an imide bond, a urethane bond etc. are mentioned as a structure which is easy to form a hydrogen bond with the surface of metal particle.
As a thermoplastic resin, what contains at least 1 sort (s) selected from the group which consists of an amide bond, an imide bond, and a urethane bond is preferable.
As such a thermoplastic resin, at least one selected from the group consisting of a polyamide resin, a polyamideimide resin, a polyimide resin and a polyurethane resin can be mentioned. The thermoplastic resin is preferably a polyamideimide resin.
 熱可塑性樹脂の変形による応力の緩和の観点から、熱可塑性樹脂は柔軟性を示す分子構造を有していることが好ましい。柔軟性を示す分子構造として、ポリアルキレンオキサイド構造及びポリシロキサン構造の少なくとも一方が挙げられる。 From the viewpoint of relaxation of stress due to deformation of the thermoplastic resin, the thermoplastic resin preferably has a molecular structure exhibiting flexibility. As the molecular structure exhibiting flexibility, at least one of a polyalkylene oxide structure and a polysiloxane structure can be mentioned.
 熱可塑性樹脂がポリアルキレンオキサイド構造を有する場合、ポリアルキレンオキサイド構造に特に限定はない。ポリアルキレンオキサイド構造としては、例えば、下記一般式(1)で表される構造を含むことが好ましい。 When the thermoplastic resin has a polyalkylene oxide structure, the polyalkylene oxide structure is not particularly limited. The polyalkylene oxide structure preferably includes, for example, a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Rはアルキレン基を示し、mは1~100の整数を示し、「*」は隣接する原子との結合位置を示す。ポリアルキレンオキサイド構造が複数種の集合体である場合、mは平均値である有理数を示す。 In the general formula (1), R 1 represents an alkylene group, m represents an integer of 1 to 100, and “*” represents a bonding position to an adjacent atom. When the polyalkylene oxide structure is an assembly of a plurality of species, m represents a rational number that is an average value.
 一般式(1)において、Rで示されるアルキレン基としては、炭素数1~10のアルキレン基であることが好ましく、炭素数1~4のアルキレン基であることがより好ましい。アルキレン基は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。Rで表されるアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、オクチレン基、デシレン基等が挙げられる。Rで表されるアルキレン基は、1種単独であっても種類の異なる2種以上のアルキレン基が併用されてもよい。 In the general formula (1), the alkylene group represented by R 1 is preferably an alkylene group having 1 to 10 carbon atoms, and more preferably an alkylene group having 1 to 4 carbon atoms. The alkylene group may be linear, branched or cyclic. Examples of the alkylene group represented by R 1 include methylene group, ethylene group, propylene group, butylene group, hexylene group, octylene group, decylene group and the like. As the alkylene group represented by R 1 , one kind may be used alone, or two or more kinds of different alkylene groups may be used in combination.
 一般式(1)において、mは20~60であることが好ましく、30~40であることがより好ましい。 In the general formula (1), m is preferably 20 to 60, and more preferably 30 to 40.
 一般式(1)で表される構造は、下記一般式(1A)で表される構造を含むことが好ましい。 It is preferable that the structure represented by General formula (1) contains the structure represented by following General formula (1A).
Figure JPOXMLDOC01-appb-C000002

 一般式(1A)中、mは1~100の整数を示し、「*」は隣接する原子との結合位置を示す。mの好ましい範囲は、一般式(1)の場合と同様である。
Figure JPOXMLDOC01-appb-C000002

In the general formula (1A), m represents an integer of 1 to 100, and "*" represents a bonding position to an adjacent atom. The preferred range of m is the same as in the case of the general formula (1).
 熱可塑性樹脂がポリアルキレンオキサイド構造を有する場合、全てのポリアルキレンオキサイド構造に占める一般式(1)で表されるポリアルキレンオキサイド構造の割合は、75質量%~100質量%であることが好ましく、85質量%~100質量%であることがより好ましく、90質量%~100質量%であることがさらに好ましい。
 熱可塑性樹脂が一般式(1)で表されるポリアルキレンオキサイド構造を有する場合、一般式(1)で表される全てのポリアルキレンオキサイド構造に占める一般式(1A)で表されるポリアルキレンオキサイド構造の割合は、50質量%~100質量%であることが好ましく、75質量%~100質量%であることがより好ましく、90質量%~100質量%であることがさらに好ましい。
When the thermoplastic resin has a polyalkylene oxide structure, the proportion of the polyalkylene oxide structure represented by the general formula (1) in all the polyalkylene oxide structures is preferably 75% by mass to 100% by mass, The content is more preferably 85% by mass to 100% by mass, and still more preferably 90% by mass to 100% by mass.
When the thermoplastic resin has a polyalkylene oxide structure represented by the general formula (1), the polyalkylene oxide represented by the general formula (1A) accounts for all the polyalkylene oxide structures represented by the general formula (1) The proportion of the structure is preferably 50% by mass to 100% by mass, more preferably 75% by mass to 100% by mass, and still more preferably 90% by mass to 100% by mass.
 熱可塑性樹脂がポリシロキサン構造を有する場合、ポリシロキサン構造に特に限定はない。ポリシロキサン構造としては、例えば、下記一般式(2)で表される構造を含むことが好ましい。 When the thermoplastic resin has a polysiloxane structure, the polysiloxane structure is not particularly limited. The polysiloxane structure preferably contains, for example, a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(2)中、R及びRは各々独立に2価の有機基を示し、R~Rは各々独立に炭素数1~20のアルキル基又は炭素数6~18のアリール基を示し、nは1~50の整数を示し、「*」は隣接する原子との結合位置を示す。ポリシロキサン構造が複数種の集合体である場合、nは平均値である有理数を示す。
 なお、アルキル基又はアリール基の炭素数には、置換基に含まれる炭素原子の数を含めないものとする。
In formula (2), R 2 and R 3 each independently represent a divalent organic group, and R 4 to R 7 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 18 carbon atoms N represents an integer of 1 to 50, and “*” represents a bonding position to an adjacent atom. When the polysiloxane structure is an assembly of a plurality of types, n indicates a rational number that is an average value.
In addition, the number of carbon atoms contained in the substituent is not included in the number of carbon atoms of the alkyl group or the aryl group.
 一般式(2)において、R及びRで示される2価の有機基としては、2価の飽和炭化水素基、2価の脂肪族エーテル基、2価の脂肪族エステル基等が挙げられる。
 R及びRが2価の飽和炭化水素基である場合、2価の飽和炭化水素基は直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。また、2価の飽和炭化水素基はフッ素原子、塩素原子等のハロゲン原子などの置換基を有していてもよい。
 R及びRで示される2価の飽和炭化水素基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基等が挙げられる。R及びRで示される2価の飽和炭化水素基は、1種類を単独で又は2種類以上を組み合わせて用いることができる。
 R及びRとしては、プロピレン基であることが好ましい。
Examples of the divalent organic group represented by R 2 and R 3 in the general formula (2) include a divalent saturated hydrocarbon group, a divalent aliphatic ether group, and a divalent aliphatic ester group. .
When R 2 and R 3 are a divalent saturated hydrocarbon group, the divalent saturated hydrocarbon group may be linear, branched or cyclic. The divalent saturated hydrocarbon group may have a substituent such as a fluorine atom or a halogen atom such as a chlorine atom.
Examples of the divalent saturated hydrocarbon group represented by R 2 and R 3 include methylene group, ethylene group, propylene group, butylene group, pentylene group, cyclopropylene group, cyclobutylene group and cyclopentylene group. The divalent saturated hydrocarbon groups represented by R 2 and R 3 can be used alone or in combination of two or more.
As R 2 and R 3 , a propylene group is preferable.
 一般式(2)において、R~Rで示される炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-オクチル基、2-エチルヘキシル基、n-ドデシル基等が挙げられる。これらの中でも、メチル基であることが好ましい。
 一般式(2)において、R~Rで示される炭素数6~18のアリール基は、無置換でも置換基で置換されていてもよい。アリール基が置換基を有する場合の置換基としては、ハロゲン原子、アルコキシ基、ヒドロキシ基等が挙げられる。
 炭素数6~18のアリール基としては、フェニル基、ナフチル基、ベンジル基等が挙げられる。これらの中でも、フェニル基であることが好ましい。
 R~Rで示される炭素数1~20のアルキル基又は炭素数6~18のアリール基は、1種類を単独で又は2種類以上を組み合わせて用いることができる。
In the general formula (2), examples of the alkyl group having 1 to 20 carbon atoms represented by R 4 to R 7 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and a t-butyl group, Examples include n-octyl group, 2-ethylhexyl group, n-dodecyl group and the like. Among these, a methyl group is preferable.
In the general formula (2), the aryl group having 6 to 18 carbon atoms represented by R 4 to R 7 may be unsubstituted or substituted by a substituent. When the aryl group has a substituent, examples of the substituent include a halogen atom, an alkoxy group, and a hydroxy group.
Examples of the aryl group having 6 to 18 carbon atoms include a phenyl group, a naphthyl group and a benzyl group. Among these, a phenyl group is preferable.
The alkyl group having 1 to 20 carbon atoms or the aryl group having 6 to 18 carbon atoms represented by R 4 to R 7 can be used singly or in combination of two or more.
 一般式(2)において、nは5~25であることが好ましく、10~25であることがより好ましい。 In the general formula (2), n is preferably 5 to 25 and more preferably 10 to 25.
 熱可塑性樹脂としてポリアミドイミド樹脂を用いる場合、ポリアミドイミド樹脂としては、ジイミドカルボン酸又はその誘導体由来の構造単位と芳香族ジイソシアネート又は芳香族ジアミン由来の構造単位とを有するものであることが好ましい。 When a polyamideimide resin is used as the thermoplastic resin, the polyamideimide resin preferably has a structural unit derived from a diimide carboxylic acid or a derivative thereof and a structural unit derived from an aromatic diisocyanate or an aromatic diamine.
 ポリアミドイミド樹脂が、ジイミドカルボン酸又はその誘導体由来の構造単位と芳香族ジイソシアネート又は芳香族ジアミン由来の構造単位とを有する樹脂である場合、ジイミドカルボン酸又はその誘導体由来の構造単位に占める下記一般式(3)で表される構造単位の割合が30モル%以上でありジイミドカルボン酸又はその誘導体由来の構造単位に占める下記一般式(4)で表される構造単位の割合が25モル%以上であることが好ましく、下記一般式(3)で表される構造単位の割合と下記一般式(4)で表される構造単位の割合の合計が60モル%以上であることがより好ましく、下記一般式(3)で表される構造単位の割合と下記一般式(4)で表される構造単位の割合の合計が70モル%以上であることがさらに好ましく、下記一般式(3)で表される構造単位の割合と下記一般式(4)で表される構造単位の割合の合計が85モル%以上であることが特に好ましい。
 ジイミドカルボン酸又はその誘導体由来の構造単位に占める下記一般式(3)で表される構造単位の割合は、60モル%以下であってもよい。
 ジイミドカルボン酸又はその誘導体由来の構造単位に占める下記一般式(4)で表される構造単位の割合は、60モル%以下であってもよい。
 ジイミドカルボン酸又はその誘導体由来の構造単位に占める下記一般式(3)で表される構造単位の割合と下記一般式(4)で表される構造単位の割合の合計は、100モル%以下であってもよい。
When the polyamideimide resin is a resin having a structural unit derived from diimide carboxylic acid or a derivative thereof and a structural unit derived from aromatic diisocyanate or aromatic diamine, the following general formula is occupied in the structural unit derived from diimide carboxylic acid or a derivative thereof The proportion of the structural unit represented by the following general formula (4) in the structural unit derived from the diimide carboxylic acid or its derivative is 30 mol% or more, and the proportion of the structural unit represented by (3) is 25 mol% or more It is preferable that the sum of the ratio of the structural unit represented by the following general formula (3) and the ratio of the structural unit represented by the following general formula (4) is 60 mol% or more, and the following general It is more preferable that the sum of the ratio of the structural unit represented by the formula (3) and the ratio of the structural unit represented by the following general formula (4) is 70 mol% or more, It is particularly preferred that the total proportion of the structural unit represented by the general formula (3) in a proportion and the following formula of the structural unit represented (4) is 85 mol% or more.
60 mol% or less of the ratio of the structural unit represented by following General formula (3) to the structural unit derived from diimide carboxylic acid or its derivative (s) may be sufficient.
60 mol% or less of the ratio of the structural unit represented by following General formula (4) to the structural unit derived from diimide carboxylic acid or its derivative (s) may be sufficient.
The total of the ratio of the structural unit represented by the following general formula (3) to the structural unit derived from the following general formula (4) in the structural units derived from the diimide carboxylic acid or its derivative is 100 mol% or less It may be.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(3)中、Rは下記一般式(1)で表される構造を含む2価の基を示し、「*」は隣接する原子との結合位置を示す。 In the general formula (3), R 8 represents a divalent group including a structure represented by the following general formula (1), and “*” represents a bonding position to an adjacent atom.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、Rはアルキレン基を示し、mは1~100の整数を示し、「*」は隣接する原子との結合位置を示す。Rの具体例、mの好ましい範囲等は上述のとおりである。 In the general formula (1), R 1 represents an alkylene group, m represents an integer of 1 to 100, and “*” represents a bonding position to an adjacent atom. Specific examples of R 1 , preferable ranges of m, and the like are as described above.
 一般式(3)で表される構造単位は、下記一般式(3A)で表される構造単位であることが好ましく、下記一般式(3B)で表される構造単位であることがより好ましい。 The structural unit represented by the general formula (3) is preferably a structural unit represented by the following general formula (3A), and more preferably a structural unit represented by the following general formula (3B).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(3A)中、Rはアルキレン基を示し、mは1~100の整数を示し、「*」は隣接する原子との結合位置を示す。Rの具体例、mの好ましい範囲等は一般式(1)の場合と同様である。 In the general formula (3A), R 1 represents an alkylene group, m represents an integer of 1 to 100, and “*” represents a bonding position to an adjacent atom. Specific examples of R 1 , preferable ranges of m and the like are the same as in the case of the general formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(3B)中、mは1~100の整数を示し、「*」は隣接する原子との結合位置を示す。mの好ましい範囲等は一般式(1)の場合と同様である。 In the general formula (3B), m represents an integer of 1 to 100, and "*" represents a bonding position to an adjacent atom. The preferable range etc. of m are the same as that of the case of General formula (1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(4)中、Rは下記一般式(2)で表される構造を含む2価の基を示し、「*」は隣接する原子との結合位置を示す。 In the general formula (4), R 9 is a bivalent group containing the structure represented by the following general formula (2), "*" represents a bonding position between the adjacent atoms.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(2)中、R及びRは各々独立に2価の有機基を示し、R~Rは各々独立に炭素数1~20のアルキル基又は炭素数6~18のアリール基を示し、nは1~50の整数を示し、「*」は隣接する原子との結合位置を示す。R~Rの具体例、nの好ましい範囲等は上述のとおりである。 In formula (2), R 2 and R 3 each independently represent a divalent organic group, and R 4 to R 7 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 18 carbon atoms N represents an integer of 1 to 50, and “*” represents a bonding position to an adjacent atom. Specific examples of R 2 to R 7 and preferable ranges of n and the like are as described above.
 一般式(4)で表される構造単位は、下記一般式(4A)で表される構造単位であることが好ましい。 The structural unit represented by the general formula (4) is preferably a structural unit represented by the following general formula (4A).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(4A)中、R及びRは各々独立に2価の有機基を示し、R~Rは各々独立に炭素数1~20のアルキル基又は炭素数6~18のアリール基を示し、nは1~50の整数を示し、「*」は隣接する原子との結合位置を示す。R~Rの具体例、nの好ましい範囲等は一般式(2)の場合と同様である。 In formula (4A), R 2 and R 3 each independently represent a divalent organic group, and R 4 to R 7 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 18 carbon atoms N represents an integer of 1 to 50, and “*” represents a bonding position to an adjacent atom. The specific examples of R 2 to R 7 and the preferred range of n are the same as in the case of the general formula (2).
 ポリアミドイミド樹脂の製造方法は特に限定されるものではなく、例えば、イソシアネート法及び酸クロライド法が挙げられる。
 イソシアネート法では、ジイミドカルボン酸と芳香族ジイソシアネートとを用いてポリアミドイミド樹脂を合成する。酸クロライド法では、ジイミドカルボン酸塩化物と芳香族ジアミンとを用いてポリアミドイミド樹脂を合成する。ジイミドカルボン酸と芳香族ジイソシアネートから合成するイソシアネート法が、ポリアミドイミド樹脂の構造の最適化を図りやすく、より好ましい。
The method for producing the polyamideimide resin is not particularly limited, and examples thereof include an isocyanate method and an acid chloride method.
In the isocyanate method, a polyamideimide resin is synthesized using a diimide carboxylic acid and an aromatic diisocyanate. In the acid chloride method, a polyamideimide resin is synthesized using a diimide carboxylic acid chloride and an aromatic diamine. An isocyanate method synthesized from a diimide carboxylic acid and an aromatic diisocyanate is more preferable because the structure of the polyamideimide resin can be optimized easily.
 以下、イソシアネート法によるポリアミドイミド樹脂の合成方法について詳細に説明する。
 イソシアネート法に用いられるジイミドカルボン酸は、例えば、無水トリメリト酸及びジアミンを用いて合成される。ジイミドカルボン酸の合成に用いられるジアミンとしては、シロキサン変性ジアミン、脂環式ジアミン、脂肪族ジアミン等が好適である。
Hereinafter, the synthesis method of the polyamideimide resin by the isocyanate method will be described in detail.
The diimidic carboxylic acids used in the isocyanate method are synthesized, for example, using trimellitic anhydride and diamines. As a diamine used for the synthesis | combination of a diimide carboxylic acid, a siloxane modified diamine, an alicyclic diamine, an aliphatic diamine etc. are suitable.
 シロキサン変性ジアミンとしては、例えば、以下の構造式を有するものが挙げられる。 As a siloxane modified diamine, what has the following structural formula is mentioned, for example.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(5)中、R及びRは各々独立に2価の有機基を示し、R~Rは各々独立に炭素数1~20のアルキル基又は炭素数6~18のアリール基を示し、nは1~50の整数を示す。R~Rの具体例、nの好ましい範囲等は、一般式(2)の場合と同様である。 In general formula (5), R 2 and R 3 each independently represent a divalent organic group, and R 4 to R 7 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 18 carbon atoms. And n represents an integer of 1 to 50. Specific examples of R 2 to R 7 and preferable ranges of n are the same as in the case of the general formula (2).
 市販のシロキサン変性ジアミンとしては、KF-8010、KF-8012、X-22-161A、X-22-161B、X-22-9409(以上、信越化学工業株式会社製)等が挙げられる。 Examples of commercially available siloxane-modified diamines include KF-8010, KF-8012, X-22-161A, X-22-161B, and X-22-9409 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
 脂環式ジアミンとしては、2,2-ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]プロパン、ビス[4-(3-アミノシクロヘキシルオキシ)シクロヘキシル]スルホン、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]スルホン、2,2-ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]ヘキサフルオロプロパン、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]メタン、4,4’-ビス(4-アミノシクロヘキシルオキシ)ジシクロヘキシル、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]エーテル、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]ケトン、1,3-ビス(4-アミノシクロヘキシルオキシ)ベンゼン、1,4-ビス(4-アミノシクロヘキシルオキシ)ベンゼン、2,2’-ジメチルビシクロヘキシル-4,4’-ジアミン、2,2’-ビス(トリフルオロメチル)ジシクロヘキシル-4,4’-ジアミン、2,6,2’,6’-テトラメチルジシクロヘキシル-4,4’-ジアミン、5,5’-ジメチル-2,2’-スルホニル-ジシクロヘキシル-4,4’-ジアミン、3,3’-ジヒドロキシジシクロヘキシル-4,4’-ジアミン、4,4’-ジアミノジシクロヘキシルエーテル、4,4’-ジアミノジシクロヘキシルスルホン、4,4’-ジアミノジシクロヘキシルケトン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジアミノジシクロヘキシルエーテル、2,2-ビス(4-アミノシクロヘキシル)プロパン等が挙げられ、1種類を単独で又は2種類以上を組み合わせて用いることができる。
 これらの中でも、2,2-ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]プロパン、ビス[4-(3-アミノシクロヘキシルオキシ)シクロヘキシル]スルホン、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]スルホン、2,2-ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]ヘキサフルオロプロパン、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]メタン、4,4’-ビス(4-アミノシクロヘキシルオキシ)ジシクロヘキシル、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]エーテル、ビス[4-(4-アミノシクロヘキシルオキシ)シクロヘキシル]ケトン、及び4,4’-ジアミノジシクロヘキシルメタンからなる群より選択される少なくとも1種の脂環式ジアミンが好ましい。
Alicyclic diamines include 2,2-bis [4- (4-aminocyclohexyloxy) cyclohexyl] propane, bis [4- (3-aminocyclohexyloxy) cyclohexyl] sulfone, bis [4- (4-aminocyclohexyl) Oxy) cyclohexyl] sulfone, 2,2-bis [4- (4-aminocyclohexyloxy) cyclohexyl] hexafluoropropane, bis [4- (4-aminocyclohexyloxy) cyclohexyl] methane, 4,4'-bis (4 -Aminocyclohexyloxy) dicyclohexyl, bis [4- (4-aminocyclohexyloxy) cyclohexyl] ether, bis [4- (4-aminocyclohexyloxy) cyclohexyl] ketone, 1,3-bis (4-aminocyclohexyloxy) benzene , 1, 4 -Bis (4-aminocyclohexyloxy) benzene, 2,2'-dimethylbicyclohexyl-4,4'-diamine, 2,2'-bis (trifluoromethyl) dicyclohexyl-4,4'-diamine, 2,6 2,2 ′, 6′-Tetramethyldicyclohexyl-4,4′-diamine, 5,5′-dimethyl-2,2′-sulfonyl-dicyclohexyl-4,4′-diamine, 3,3′-dihydroxydicyclohexyl-4 4,4'-diamine, 4,4'-diaminodicyclohexyl ether, 4,4'-diaminodicyclohexyl sulfone, 4,4'-diaminodicyclohexyl ketone, 4,4'-diaminodicyclohexylmethane, 4,4'-diaminodicyclohexyl ether , 3,3'-Diaminodicyclohexyl ether, 2,2-bis (4-aminocyclohexyl) Propane and the like, can be used alone or in combinations of two or more.
Among these, 2,2-bis [4- (4-aminocyclohexyloxy) cyclohexyl] propane, bis [4- (3-aminocyclohexyloxy) cyclohexyl] sulfone, bis [4- (4-aminocyclohexyloxy) cyclohexyl Sulfone, 2,2-bis [4- (4-aminocyclohexyloxy) cyclohexyl] hexafluoropropane, bis [4- (4-aminocyclohexyloxy) cyclohexyl] methane, 4,4'-bis (4-aminocyclohexyl It is selected from the group consisting of oxy) dicyclohexyl, bis [4- (4-aminocyclohexyloxy) cyclohexyl] ether, bis [4- (4-aminocyclohexyloxy) cyclohexyl] ketone, and 4,4'-diaminodicyclohexylmethane Small Kutomo one cycloaliphatic diamines are preferred.
 脂肪族ジアミンとしては、オキシプロピレンジアミンが好ましい。市販のオキシプロピレンジアミンとしては、ジェファーミンD-230(三井化学ファイン株式会社製、アミン当量:115、商品名)、ジェファーミンD-400(三井化学ファイン株式会社製、アミン当量:200、商品名)、ジェファーミンD-2000(三井化学ファイン株式会社製、アミン当量:1,000、商品名)、ジェファーミンD-4000(三井化学ファイン株式会社製、アミン当量:2,000、商品名)等が挙げられる。 As aliphatic diamine, oxypropylene diamine is preferred. Commercially available oxypropylene diamines include Jeffamine D-230 (Mitsui Chemical Fine Co., Ltd., amine equivalent: 115, trade name), Jeffamine D-400 (Mitsui Chemical Fine Co., Ltd., amine equivalent: 200, trade name) ), Jeffamine D-2000 (manufactured by Mitsui Chemicals Fine Inc., amine equivalent: 1,000, trade name), Jeffamine D-4000 (manufactured by Mitsui Chemicals Fine Inc., amine equivalent: 2,000, trade name), etc. Can be mentioned.
 上記ジアミンの1種類を単独で用いても又は2種類以上を組み合わせて用いてもよい。上記ジアミンをジアミン全量に対して60モル%~100モル%用いて合成されるポリアミドイミド樹脂が好ましく、その中でも耐熱性及び低弾性率を同時に達成するために、シロキサン変性ジアミンを含んで合成されるシロキサン変性ポリアミドイミド樹脂がより好ましい。 One of the above diamines may be used alone, or two or more thereof may be used in combination. Polyamideimide resin synthesized by using 60 mol% to 100 mol% of the above diamine with respect to the total amount of diamine is preferable, and among them, in order to simultaneously achieve heat resistance and low elastic modulus, it is synthesized including siloxane modified diamine Siloxane-modified polyamideimide resin is more preferred.
 ジアミンとしては、必要に応じて芳香族ジアミンを併用することもできる。芳香族ジアミンの具体例としては、p-フェニレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,4-ジアミノキシレン、ジアミノジュレン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、ベンジジン、4,4’-ジアミノターフェニル、4,4’’’-ジアミノクォーターフェニル、4,4’-ジアミノジフェニルメタン、1,2-ビス(アニリノ)エタン、4,4’-ジアミノジフェニルエ-テル、ジアミノジフェニルスルホン、2,2-ビス(p-アミノフェニル)プロパン、2,2-ビス(p-アミノフェニル)ヘキサフルオロプロパン、3,3’-ジメチルベンジジン、3,3’-ジメチル-4,4’-ジアミノジフェニルエ-テル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、ジアミノベンゾトリフルオライド、1,4-ビス(p-アミノフェノキシ)ベンゼン、4,4’-ビス(p-アミノフェノキシ)ビフェニル、2,2-ビス{4-(p-アミノフェノキシ)フェニル}プロパン、ジアミノアントラキノン、4,4’-ビス(3-アミノフェノキシフェニル)ジフェニルスルホン、1,3-ビス(アニリノ)ヘキサフルオロプロパン、1,4-ビス(アニリノ)オクタフルオロブタン、1,5-ビス(アニリノ)デカフルオロペンタン、1,7-ビス(アニリノ)テトラデカフルオロヘプタン、2,2-ビス{4-(p-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス{4-(3-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス{4-(2-アミノフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス{4-(4-アミノフェノキシ)-3,5-ジメチルフェニル}ヘキサフルオロプロパン、2,2-ビス{4-(4-アミノフェノキシ)-3,5-ジトリフルオロメチルフェニル}ヘキサフルオロプロパン、p-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス{4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル}ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン等が挙げられる。芳香族ジアミンはジアミン全量に対して0モル%~40モル%の範囲で任意に用いることができる。 As diamine, aromatic diamine can also be used together as needed. Specific examples of aromatic diamines include p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, diaminodurene, 1 3,5-diaminonaphthalene, 2,6-diaminonaphthalene, benzidine, 4,4'-diaminoterphenyl, 4,4 '' '-diaminoquaterphenyl, 4,4'-diaminodiphenylmethane, 1,2-bis (anilino) ) Ethane, 4,4'-diaminodiphenylether, diaminodiphenylsulfone, 2,2-bis (p-aminophenyl) propane, 2,2-bis (p-aminophenyl) hexafluoropropane, 3,3 ' -Dimethylbenzidine, 3,3'-dimethyl-4,4'-diaminodiphenyl ether, , 3'-dimethyl-4,4'-diaminodiphenylmethane, diaminobenzotrifluoride, 1,4-bis (p-aminophenoxy) benzene, 4,4'-bis (p-aminophenoxy) biphenyl, 2,2- Bis {4- (p-aminophenoxy) phenyl} propane, diaminoanthraquinone, 4,4'-bis (3-aminophenoxyphenyl) diphenyl sulfone, 1,3-bis (anilino) hexafluoropropane, 1,4-bis (Anilino) octafluorobutane, 1,5-bis (anilino) decafluoropentane, 1,7-bis (anilino) tetradecafluoroheptane, 2,2-bis {4- (p-aminophenoxy) phenyl} hexafluoro Propane, 2,2-bis {4- (3-aminophenoxy) phenyl} hexaful Ropropane, 2,2-bis {4- (2-aminophenoxy) phenyl} hexafluoropropane, 2,2-bis {4- (4-aminophenoxy) -3,5-dimethylphenyl} hexafluoropropane, 2, 2-Bis {4- (4-aminophenoxy) -3,5-ditrifluoromethylphenyl} hexafluoropropane, p-bis (4-amino-2-trifluoromethylphenoxy) benzene, 4,4'-bis ( 4-amino-2-trifluoromethylphenoxy) biphenyl, 4,4'-bis (4-amino-3-trifluoromethylphenoxy) biphenyl, 4,4'-bis (4-amino-2-trifluoromethylphenoxy) ) Diphenyl sulfone, 4,4'-bis (3-amino-5-trifluoromethylphenoxy) diphenyl sulfone, Examples thereof include 2,2-bis {4- (4-amino-3-trifluoromethylphenoxy) phenyl} hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane and the like. The aromatic diamine can be optionally used in the range of 0 mol% to 40 mol% with respect to the total amount of diamine.
 芳香族ジイソシアネートとしては、芳香族ジアミンとホスゲン等との反応によって得られるジイソシアネートが挙げられる。芳香族ジイソシアネートの具体例としては、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、ジフェニルエーテルジイソシアネート、フェニレン-1,3-ジイソシアネート等の芳香族ジイソシアネートが挙げられる。これらの中でも、4,4’-ジフェニルメタンジイソシアネート、ジフェニルエーテルジイソシアネート等が好ましい。 The aromatic diisocyanate may, for example, be a diisocyanate obtained by the reaction of an aromatic diamine with phosgene or the like. Specific examples of the aromatic diisocyanate include aromatic diisocyanates such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, naphthalene diisocyanate, diphenyl ether diisocyanate, phenylene-1,3-diisocyanate and the like. Among these, 4,4'-diphenylmethane diisocyanate, diphenylether diisocyanate and the like are preferable.
 イソシアネート法によるポリアミドイミド樹脂の重合反応は、通常、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAC)、ジメチルスルホキシド(DMSO)、硫酸ジメチル、スルホラン、γ-ブチロラクトン、クレゾ-ル、ハロゲン化フェノ-ル、シクロヘキサン、ジオキサン等の溶媒中で行われる。反応温度は、0℃~200℃であることが好ましく、100℃~180℃であることがより好ましく、130℃~160℃であることがさらに好ましい。
 イソシアネート法によるポリアミドイミド樹脂の重合反応におけるジイミドカルボン酸及び芳香族ジイソシアネートのモル基準の配合比(ジイミドカルボン酸/芳香族ジイソシアネート)としては、1.0~1.5であることが好ましく、1.05~1.3であることがより好ましく、1.1~1.2であることがさらに好ましい。
The polymerization reaction of a polyamideimide resin by the isocyanate method is usually N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), dimethylsulfoxide (DMSO), It is carried out in a solvent such as dimethyl sulfate, sulfolane, γ-butyrolactone, cresol, halogenated phenol, cyclohexane, dioxane and the like. The reaction temperature is preferably 0 ° C. to 200 ° C., more preferably 100 ° C. to 180 ° C., and still more preferably 130 ° C. to 160 ° C.
The compounding ratio (diimide carboxylic acid / aromatic diisocyanate) on a molar basis of diimide carboxylic acid and aromatic diisocyanate in the polymerization reaction of a polyamideimide resin by the isocyanate method is preferably 1.0 to 1.5, and 1. The ratio is more preferably 05 to 1.3, and still more preferably 1.1 to 1.2.
(溶剤)
 本開示の組成物は、本開示の組成物をペーストとして使用した場合における付与性(例えば、組成物の印刷性)の向上の観点から、溶剤を含有してもよい。
 樹脂を溶解する観点から、溶剤は極性溶媒であることが好ましく、組成物を付与する工程での組成物の乾燥を防ぐ観点から、200℃以上の沸点を有している溶剤であることが好ましく、焼結時のボイドの発生を抑制するために300℃以下の沸点を有している溶剤であることがより好ましい。
(solvent)
The composition of the present disclosure may contain a solvent from the viewpoint of improving the impartability (for example, the printability of the composition) when the composition of the present disclosure is used as a paste.
From the viewpoint of dissolving the resin, the solvent is preferably a polar solvent, and from the viewpoint of preventing the composition from being dried in the step of applying the composition, the solvent preferably has a boiling point of 200 ° C. or higher It is more preferable that the solvent has a boiling point of 300 ° C. or less in order to suppress the generation of voids during sintering.
 このような溶剤の例としては、テルピネオール、ステアリルアルコール、トリプロピレングリコールメチルエーテル、ジエチレングリコール、ジエチレングリコールモノエチルエーテル(エトキシエトキシエタノール)、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコール-n-プロピルエーテル、ジプロピレングリコール-n-ブチルエーテル、トリプロピレングリコール-n-ブチルエーテル、1,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコールフェニルエーテル等のアルコール類、クエン酸トリブチル、4-メチル-1,3-ジオキソラン-2-オン、γ-ブチロラクトン、スルホラン、2-(2-ブトキシエトキシ)エタノール、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、グリセリントリアセテート等のエステル類;イソホロン等のケトン;N-メチル-2-ピロリドン等のラクタム;フェニルアセトニトリル等のニトリル類などを挙げることができる。溶剤は、1種類を単独で又は2種類以上を組み合わせて使用してもよい。 Examples of such solvents include terpineol, stearyl alcohol, tripropylene glycol methyl ether, diethylene glycol, diethylene glycol monoethyl ether (ethoxyethoxyethanol), diethylene glycol monohexyl ether, diethylene glycol monomethyl ether, dipropylene glycol-n-propyl ether, Alcohols such as dipropylene glycol n-butyl ether, tripropylene glycol n-butyl ether, 1,3-butanediol, 1,4-butanediol, propylene glycol phenyl ether, tributyl citrate, 4-methyl-1,3 -Dioxolan-2-one, γ-butyrolactone, sulfolane, 2- (2-butoxyethoxy) ethanol, diethylene Esters such as recalled monoethyl ether acetate, dipropylene glycol methyl ether acetate, diethylene glycol monobutyl ether acetate, glycerin triacetate; ketones such as isophorone; lactams such as N-methyl-2-pyrrolidone; and nitriles such as phenylacetonitrile be able to. The solvents may be used alone or in combination of two or more.
 本開示の組成物が溶剤を含有する場合、溶剤の含有率は特に限定されるものではなく、本開示の組成物全体に占める溶剤の質量基準の割合は、0.1質量%~10質量%であることが好ましく、2質量%~7質量%であることがより好ましく、3質量%~5質量%であることがさらに好ましい。 When the composition of the present disclosure contains a solvent, the content of the solvent is not particularly limited, and the proportion by mass of the solvent in the entire composition of the present disclosure is 0.1% by mass to 10% by mass. Is preferable, 2 to 7% by mass is more preferable, and 3 to 5% by mass is more preferable.
(その他の成分)
 本開示の組成物は、必要に応じてロジン、活性剤、チキソ剤等のその他の成分を含有してもよい。
 本開示の組成物に用いてもよいロジンとしては、デヒドロアビエチン酸、ジヒドロアビエチン酸、ネオアビエチン酸、ジヒドロピマル酸、ピマル酸、イソピマル酸、テトラヒドロアビエチン酸、パラストリン酸等が挙げられる。
 本開示の組成物に用いてもよい活性剤としては、アミノデカン酸、ペンタン-1,5-ジカルボン酸、トリエタノールアミン、ジフェニル酢酸、セバシン酸、フタル酸、安息香酸、ジブロモサリチル酸、アニス酸、ヨードサリチル酸、ピコリン酸等が挙げられる。
 本開示の組成物に用いてもよいチキソ剤としては、12-ヒドロキシステアリン酸、12-ヒドロキシステアリン酸トリグリセリド、エチレンビスステアリン酸アマイド、ヘキサメチレンビスオレイン酸アマイド、N,N’-ジステアリルアジピン酸アマイド等が挙げられる。
(Other ingredients)
The composition of the present disclosure may optionally contain other components such as rosin, activators, and thixotropic agents.
Rosins that may be used in the compositions of the present disclosure include dehydroabietic acid, dihydroabietic acid, neoabietic acid, dihydropimaric acid, pimaric acid, isopimaric acid, tetrahydroabietic acid, parastronic acid and the like.
Activators that may be used in the compositions of the present disclosure include aminodecanoic acid, pentane-1,5-dicarboxylic acid, triethanolamine, diphenylacetic acid, sebacic acid, phthalic acid, benzoic acid, dibromosalicylic acid, anisic acid, iodo Examples thereof include salicylic acid and picolinic acid.
Thixo agents that may be used in the compositions of the present disclosure include 12-hydroxystearic acid, 12-hydroxystearic acid triglyceride, ethylenebisstearic acid amide, hexamethylene bisoleic acid amide, N, N'-distearyl adipic acid Amide etc. are mentioned.
 本開示の組成物において、金属粒子を除く固形分中における樹脂の占める割合は、5質量%~30質量%であることが好ましく、6質量%~28質量%であることがより好ましく、8質量%~25質量%であることがさらに好ましい。金属粒子を除く固形分中における樹脂の占める割合が5質量%以上であれば、本開示の組成物がペーストの状態になりやすくなる。金属粒子を除く固形分中における樹脂の占める割合が30質量%以下であれば、金属粒子の焼結が阻害されにくくなる。
 なお、「固形分」とは、組成物から揮発性成分(溶剤等)を除いた残りの成分を意味する。
In the composition of the present disclosure, the proportion of the resin in the solid content excluding metal particles is preferably 5% by mass to 30% by mass, more preferably 6% by mass to 28% by mass, and 8% by mass. More preferably, it is% to 25% by mass. If the proportion of the resin in the solid content excluding metal particles is 5% by mass or more, the composition of the present disclosure is likely to be in the form of a paste. If the proportion of the resin in the solid content excluding metal particles is 30% by mass or less, sintering of the metal particles is less likely to be inhibited.
In addition, "solid content" means the remaining component except a volatile component (solvent etc.) from a composition.
(組成物の製造方法)
 本開示の組成物の製造方法は特に限定されるものではない。本開示の組成物を構成する金属粒子、樹脂、必要に応じて用いられる溶剤その他の成分を混合し、さらに撹拌、溶融、分散等の処理をすることにより得ることができる。これらの混合、撹拌、分散等のための装置としては、特に限定されるものではなく、3本ロールミル、プラネタリーミキサ、遊星式ミキサ、自転公転型撹拌装置、らいかい機、二軸混練機、薄層せん断分散機等を使用することができる。また、これらの装置を適宜組み合わせて使用してもよい。上記処理の際、必要に応じて加熱してもよい。
 処理後、ろ過により組成物の最大粒径を調整してもよい。ろ過は、ろ過装置を用いて行うことができる。ろ過用のフィルタとしては、金属メッシュ、メタルフィルター、ナイロンメッシュ等が挙げられる。
(Method of producing composition)
The method for producing the composition of the present disclosure is not particularly limited. It can be obtained by mixing the metal particles, the resin, the solvent used if necessary, and other components constituting the composition of the present disclosure, and further performing processing such as stirring, melting, dispersion and the like. The apparatus for mixing, stirring, dispersing and the like is not particularly limited, and a three-roll mill, a planetary mixer, a planetary mixer, a rotation and revolution type stirring apparatus, a grinder, a twin screw kneader, A thin layer shear disperser or the like can be used. Also, these devices may be used in combination as appropriate. In the case of the said process, you may heat as needed.
After treatment, the maximum particle size of the composition may be adjusted by filtration. The filtration can be performed using a filtration device. As a filter for filtration, a metal mesh, a metal filter, a nylon mesh etc. are mentioned.
<接着剤>
 本開示の接着剤は、本開示の組成物を含有する。本開示の組成物は、そのまま接着剤として用いることができるし、必要に応じてその他の成分を含有させて接着剤としてもよい。本開示の接着剤の好ましい態様は、上述の本開示の組成物の場合と同様である。
<Adhesive>
The adhesive of the present disclosure contains the composition of the present disclosure. The composition of the present disclosure can be used as an adhesive as it is, or may contain other components as an adhesive if necessary. Preferred embodiments of the adhesive of the present disclosure are the same as those of the composition of the present disclosure described above.
<焼結体>
 本開示の焼結体は、本開示の組成物を焼結したものである。本開示の組成物を焼結する方法は特に限定されるものではない。
 焼結体の電気抵抗率は、1×10-4Ω・cm以下であることが好ましい。
<Sintered body>
The sintered body of the present disclosure is a sintered product of the composition of the present disclosure. The method of sintering the composition of the present disclosure is not particularly limited.
The electrical resistivity of the sintered body is preferably 1 × 10 −4 Ω · cm or less.
<接合構造>
 本開示の接合構造は、第1の被接合物と第2の被接合物とが本開示の焼結体を介して接合された構造である。
 第1の被接合物と第2の被接合物との組み合わせは特に限定されるものではなく、後述する接合体における素子と支持部材との組み合わせ等が挙げられる。
 また、本開示の接合構造としては、後述する接合体における接合部の構造が挙げられる。
<Joint structure>
The joint structure of the present disclosure is a structure in which a first object to be joined and a second object to be joined are joined via the sintered body of the present disclosure.
The combination of the first object and the second object is not particularly limited, and examples thereof include a combination of an element and a support member in a joined body described later.
Moreover, the structure of the junction part in the joined body mentioned later is mentioned as a joining structure of this indication.
<接合体及びその製造方法>
 本開示の接合体は、素子と支持部材とが本開示の焼結体を介して接合されたものである。
 支持部材としては特に限定されるものではなく、素子の接合される箇所の材質が金属であるものが用いられる。素子の接合される箇所の材質である金属としては、金、銀、銅、ニッケル等が挙げられる。また、上記のうち複数の金属が基材上にパターニングされて支持部材が構成されていてもよい。
 支持部材の具体例としては、リードフレーム、配線済みのテープキャリア、リジッド配線板、フレキシブル配線板、配線済みのガラス基板、配線済みのシリコンウエハ、ウエハーレベルCSP(Wafer Level Chip Size Package)で採用される再配線層等が挙げられる。
 素子としては特に限定されるものではなく、半導体チップ、トランジスタ、ダイオード、発光ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などが挙げられる。
 また、本開示の接合体としては、半導体装置、電子部品等が挙げられる。半導体装置の具体例としては、ダイオード、整流器、サイリスタ、MOS(Metal Oxide Semiconductor)ゲートドライバ、パワースイッチ、パワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)、ショットキーダイオード、ファーストリカバリダイオード等を備えるパワーモジュール、発信機、増幅器、LEDモジュールなどが挙げられる。
<Joint and Method of Manufacturing the Same>
The bonded body of the present disclosure is obtained by bonding the element and the support member via the sintered body of the present disclosure.
It does not specifically limit as a supporting member, What is a metal of the material of the location where the element is joined is used. Gold, silver, copper, nickel etc. are mentioned as a metal which is a material of the location where the element is joined. Further, the support member may be configured by patterning a plurality of metals among the above on the base material.
Specific examples of the support member include a lead frame, a tape carrier with wiring, a rigid wiring board, a flexible wiring board, a glass substrate with wiring, a silicon wafer with wiring, and a wafer level chip size package (CSP). And the like.
The element is not particularly limited, and may be a semiconductor chip, an active element such as a transistor, a diode, a light emitting diode, or a thyristor, a capacitor, a resistor, a resistor array, a coil, a passive element such as a switch, and the like.
Moreover, a semiconductor device, an electronic component, etc. are mentioned as a joined object of this indication. Specific examples of the semiconductor device include a diode, a rectifier, a thyristor, a MOS (Metal Oxide Semiconductor) gate driver, a power switch, a power MOSFET (Metal Oxide Semiconductor Field-Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor), a Schottky diode, Examples include a power module provided with a fast recovery diode and the like, a transmitter, an amplifier, an LED module and the like.
 本開示の接合体の製造方法は、支持部材における素子の接合される箇所及び前記素子における前記支持部材と接合される箇所の少なくとも一方に、本開示の組成物を付与して組成物層を形成する工程と、前記組成物層を介して、前記支持部材と前記素子とを接触させる工程と、前記組成物層を加熱して焼結する工程と、を有する。
 組成物を付与して組成物層を形成する工程には、付与した組成物を乾燥する工程を含んでいてもよい。
In the method of producing a joined body according to the present disclosure, the composition according to the present disclosure is applied to at least one of the joining site of the element in the support member and the joining site with the support member in the element to form a composition layer. And contacting the support member with the element through the composition layer, and sintering the composition layer by heating.
The step of applying the composition to form a composition layer may include the step of drying the applied composition.
 本開示の組成物を支持部材における素子の接合される箇所及び素子における支持部材と接合される箇所の少なくとも一方に付与することで組成物層が形成される。
 組成物の付与方法としては、例えば、塗布法及び印刷法が挙げられる。
 組成物を塗布する塗布方法としては、例えば、ディッピング、スプレーコート、バーコート、ダイコート、コンマコート、スリットコート、及びアプリケータによる塗布を用いることができる。組成物を印刷する印刷方法としては、例えば、ディスペンサー法、ステンシル印刷法、凹版印刷法、スクリーン印刷法、ニードルディスペンサ法、及びジェットディスペンサ法を用いることができる。
The composition layer is formed by applying the composition of the present disclosure to at least one of the joining portion of the element in the support member and the joining portion with the support member in the element.
Examples of the method of applying the composition include a coating method and a printing method.
As a method of applying the composition, for example, dipping, spray coating, bar coating, die coating, comma coating, slit coating, and application by an applicator can be used. As a printing method for printing the composition, for example, a dispenser method, a stencil printing method, an intaglio printing method, a screen printing method, a needle dispenser method, and a jet dispenser method can be used.
 組成物の付与により形成された組成物層は、加熱時における組成物の流動及びボイドの発生を抑制する観点から乾燥させることが好ましい。
 組成物層の乾燥方法は、常温(例えば、25℃)放置による乾燥、加熱乾燥又は減圧乾燥を用いることができる。加熱乾燥又は減圧乾燥には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。
 乾燥のための温度及び時間は、使用した溶剤の種類及び量に合わせて適宜調整することができ、例えば、50℃~180℃で、1分間~120分間乾燥させることが好ましい。
 組成物層の形成後、素子と支持部材とを接触させることで、素子と支持部材とを組成物層を介して貼り合わせる。付与した組成物を乾燥する工程は、支持部材と素子とを接触させる工程の前及び後のいずれの段階で行ってもよい。
The composition layer formed by the application of the composition is preferably dried from the viewpoint of suppressing the flow of the composition and the generation of voids during heating.
The composition layer may be dried by standing at ordinary temperature (for example, 25 ° C.), drying by heating, or drying under reduced pressure. For heat drying or reduced pressure drying, a hot plate, warm air dryer, warm air heater, nitrogen dryer, infrared dryer, infrared heater, far infrared heater, microwave heater, laser heater, electromagnetic heater A heater heating device, a steam heating furnace, a hot plate press device or the like can be used.
The temperature and time for drying can be appropriately adjusted in accordance with the type and amount of the solvent used, and for example, drying at 50 ° C. to 180 ° C. for 1 minute to 120 minutes is preferable.
After forming the composition layer, the element and the support member are attached to each other through the composition layer by bringing the element and the support member into contact with each other. The step of drying the applied composition may be performed at any stage before or after the step of contacting the support member with the element.
 次いで、組成物層を加熱することにより焼結体を形成する。組成物層の焼結は、加熱処理で行ってもよいし、加熱加圧処理で行ってもよい。
 加熱処理には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉等を用いることができる。
 また、加熱加圧処理には、熱板プレス装置等を用いてもよいし、加圧しながら上述の加熱処理を行ってもよい。
 組成物層の焼結における加熱温度は、金属粒子の種類によるが、180℃以上であることが好ましく、190℃以上であることがより好ましく、220℃以上であることがさらに好ましい。当該加熱温度の上限は、特に制限されないが、例えば300℃以下である。
 組成物層の焼結における加熱時間は、金属粒子の種類によるが、5秒間~10時間であることが好ましく、1分~30分であることがより好ましく、3分~10分であることがさらに好ましい。
 本開示の接合体の製造方法においては、組成物層の焼結は、低酸素濃度の雰囲気下で行うことが好ましい。低酸素濃度雰囲気下とは、酸素濃度が1000ppm以下の状態をいい、好ましくは500ppm以下である。
Next, the composition layer is heated to form a sintered body. Sintering of the composition layer may be performed by heat treatment or heat and pressure treatment.
For heat treatment, hot plate, warm air dryer, warm air heater, nitrogen dryer, infrared dryer, infrared heater, far infrared heater, microwave heater, laser heater, electromagnetic heater, heater heater An apparatus, a steam heating furnace, etc. can be used.
In addition, a hot plate press apparatus or the like may be used for the heat and pressure treatment, or the above-described heat treatment may be performed while being pressurized.
The heating temperature in sintering of the composition layer is preferably 180 ° C. or higher, more preferably 190 ° C. or higher, and still more preferably 220 ° C. or higher, although it depends on the type of metal particles. Although the upper limit in particular of the heating temperature concerned is not restricted, it is 300 ° C or less, for example.
The heating time for sintering the composition layer is preferably 5 seconds to 10 hours, more preferably 1 minute to 30 minutes, and preferably 3 minutes to 10 minutes, depending on the type of metal particles. More preferable.
In the method of producing a joined body of the present disclosure, it is preferable to sinter the composition layer under an atmosphere of low oxygen concentration. Under a low oxygen concentration atmosphere, the oxygen concentration is 1000 ppm or less, preferably 500 ppm or less.
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to the following examples.
 各実施例及び比較例における各特性の測定は、次のようにして実施した。 The measurement of each characteristic in each example and comparative example was carried out as follows.
(1)ウィスカ
 後述する方法で調製した組成物を、銅製のリードフレーム上に先のとがったピンセットを用いて塗布して組成物層を形成した。組成物層上に、2mm×2mmのサイズで被着面が金めっきされているSiチップを載せ、ピンセットで軽く押さえて組成物の焼結前サンプルとした。焼結前サンプルをホットプレート上において100℃で30分乾燥した後、窒素リフロー装置(株式会社タムラ製作所製:1ゾーン50cm、7ゾーン構成、窒素気流下)のコンベア上にセットし、酸素濃度200ppm以下で0.3m/分の速度で搬送した。この際、250℃以上にて1分以上加熱し、組成物の焼結済みサンプルとした。
 組成物の焼結済みサンプルを、85℃85%の恒温恒湿槽で96時間処理した後、電子顕微鏡(SEM)JSM-59で観察することにより、発生したウィスカの長さを測定した。なお、ウィスカが発生していない場合における「ウィスカの長さ」は「0μm」である。
(1) Whisker The composition prepared by the method described later was applied on a copper lead frame using a pointed tweezers to form a composition layer. A Si chip having a size of 2 mm × 2 mm and gold-plated on the adhesion surface was placed on the composition layer and lightly pressed with tweezers to obtain a sample before sintering of the composition. The sample before sintering is dried on a hot plate at 100 ° C. for 30 minutes, and then set on a conveyor of a nitrogen reflow apparatus (Tamura Seisakusho Co., Ltd .: 1 zone 50 cm, 7 zones configuration, under nitrogen stream), oxygen concentration 200 ppm It transported at a speed of 0.3 m / min. Under the present circumstances, it heated at 250 degreeC or more for 1 minute or more, and was set as the sintered sample of the composition.
The sintered sample of the composition was treated in an 85 ° C. 85% constant temperature and humidity chamber for 96 hours and then observed with an electron microscope (SEM) JSM-59 to measure the length of the generated whisker. The “whisker length” when no whisker is generated is “0 μm”.
(2)加熱冷却処理を繰り返した後におけるダイシェア強度
 「(1)ウィスカ」と同様にして組成物の焼結済みサンプルを作製した。組成物の焼結済みサンプルを熱衝撃試験機(ライフテック社製、6015型)にセットし、冷却及び加熱を繰り返す冷熱サイクルを行った。冷熱サイクルは、具体的には、まず室温(25℃)から毎分-10℃の速度で冷却して-65℃で30分間維持し、その後毎分+10℃の速度で加熱して175℃で30分維持し、その後毎分-10℃の速度で室温(25℃)まで冷却する操作を1サイクルとした。3000サイクル後のサンプルのダイシェア強度を以下のようにして測定した。
 1kNのロードセルを装着した万能型ボンドテスタ(4000シリーズ、DAGE社製)を用い、測定スピード500μm/s、測定高さ100μmでSiチップを水平方向に押し、3000サイクル後のサンプルのダイシェア強度を測定した。9回の測定結果の平均をダイシェア強度とした。なお、ダイシェア強度が7.0N/mm未満であると、接着不良であるといえる。
(2) Die shear strength after repeated heating and cooling treatment A sintered sample of the composition was prepared in the same manner as "(1) whisker". A sintered sample of the composition was set in a thermal shock tester (Lifetech Co., Ltd., model 6015), and cooling and heating cycles were repeated. The thermal cycle is, specifically, first cooling at a rate of room temperature (25 ° C.) to -10 ° C. per minute, maintaining for 30 minutes at -65 ° C., and then heating at a rate of + 10 ° C. per minute at 175 ° C. The operation was maintained for 30 minutes and then cooled to room temperature (25 ° C.) at a rate of −10 ° C./minute as one cycle. The die shear strength of the sample after 3000 cycles was measured as follows.
Using a universal bond tester (4000 series, manufactured by DAGE) equipped with a 1 kN load cell, the Si chip was pressed horizontally at a measurement speed of 500 μm / s and a measurement height of 100 μm, and the die shear strength of the sample after 3000 cycles was measured. . The average of nine measurement results was taken as die shear strength. If the die shear strength is less than 7.0 N / mm 2 , it can be said that the adhesion is defective.
(3)再溶融温度
 「(1)ウィスカ」と同様にして組成物の焼結済みサンプルを作製した。組成物の焼結済みサンプルの再溶融温度を、DSC(Differential scanning calorimetry、示差走査熱量測定)により、白金製のパンを使用し、50ml/分の窒素気流下にて、10℃/分の昇温速度で25℃から400℃まで加熱する条件で測定した。
 なお、表1中、「ND」は、400℃まで加熱しても再溶融ピークが観測されなかったことを意味する。
(3) Re-melting temperature A sintered sample of the composition was prepared in the same manner as "(1) whisker". The remelting temperature of the sintered sample of the composition is raised by 10 ° C./min under nitrogen flow of 50 ml / min using a platinum pan according to DSC (differential scanning calorimetry). It measured on the conditions heated from 25 degreeC to 400 degreeC by a temperature rate.
In addition, in Table 1, "ND" means that a remelting peak was not observed even if it heated to 400 degreeC.
[実施例1~5及び比較例1~2]
(熱可塑性樹脂の合成)
 熱電対、撹拌機、及び窒素吹込口を取り付けた300mlのセパラブルフラスコに約250ml/分で窒素ガスを流しながらシロキサン変性ジアミン(商品名:X-22-161A、信越化学工業株式会社製、一般式(5)において、R及びRがエチレン基(-CHCH-)であり、R~Rがいずれもメチル基であり、nが約20であるジアミン)32.0g、4,4’-ジアミノジシクロヘキシルメタン(商品名:ワンダミンHM(WHM)、新日本理化株式会社製)0.935g、オキシプロピレンジアミン(商品名:ジェファーミンD-2000、三井化学ファイン株式会社製、(-OCHCH(CH)-)の構造単位数mが約33であるジアミン)40.0g、トリメリト酸無水物17.9g、及びN-メチル-2-ピロリドン100gを加え撹拌し、溶解した。この溶液にトルエン50gを加え、150℃以上の温度で6時間の脱水還流によるイミド環閉環反応を行った後トルエンを留去し、冷却後に4,4’-ジフェニルメタンジイソシアネート(MDI)13.4gを加え、150℃にて2時間反応させ、ポリアミドイミド樹脂1を合成した。固形分は50質量%であった。
 得られたポリアミドイミド樹脂1の軟化点及び熱分解率を前述の方法で測定したところ、それぞれ210℃及び0.8質量%であった。
[Examples 1 to 5 and Comparative Examples 1 to 2]
(Synthesis of thermoplastic resin)
Siloxane-modified diamine (trade name: X-22-161A, manufactured by Shin-Etsu Chemical Co., Ltd., general, while flowing nitrogen gas at about 250 ml / min through a 300 ml separable flask equipped with a thermocouple, a stirrer, and a nitrogen inlet. In the formula (5), 32.0 g of a diamine in which R 2 and R 3 are ethylene groups (—CH 2 CH 2 —), R 4 to R 7 are all methyl groups, and n is about 20, 0.935 g of 4,4'-diaminodicyclohexylmethane (trade name: Wandamine HM (WHM), manufactured by Shin Nippon Rika Co., Ltd.), oxypropylene diamine (trade name: Jeffamine D-2000, manufactured by Mitsui Chemicals Fine Co., Ltd. -OCH 2 CH (CH 3) - ) diamine number structural units m is about 33) 40.0 g, trimellitic anhydride 17.9 g, and N- main Added and stirred-2-pyrrolidone 100 g, was dissolved. To this solution is added 50 g of toluene, and the ring closure reaction of imide ring is carried out by dehydration reflux at a temperature of 150 ° C. or more for 6 hours. After distilling off the toluene, after cooling, 13.4 g of 4,4'-diphenylmethane diisocyanate (MDI) In addition, they were reacted at 150 ° C. for 2 hours to synthesize polyamideimide resin 1. The solid content was 50% by mass.
The softening point and the thermal decomposition rate of the obtained polyamideimide resin 1 were measured by the above-mentioned method and found to be 210 ° C. and 0.8% by mass, respectively.
(組成物の調製)
 100mlのポリエチレン瓶に0.8質量部のポリアミドイミド樹脂1(樹脂溶液として1.6質量部)、12-ヒドロキシステアリン酸(和光純薬工業株式会社製)0.3質量部、デヒドロアビエチン酸(和光純薬工業株式会社製)1.9質量部、トリエタノールアミン(和光純薬工業株式会社製)0.3質量部、及びヘキシルカルビトール(別名:ジエチレングリコールモノヘキシルエーテル、和光純薬工業株式会社製)4.1質量部を秤量し、密栓してロータ撹拌機により30分間撹拌し、混合した。この混合物に、銅粒子1(三井金属鉱業株式会社製、球状、体積平均粒径:25μm、平均BET比表面積:0.04m/g、融点:1083℃)67.4質量部、錫合金粒子1(SAC305、Sn-3.0Ag-0.5Cu、三井金属鉱業株式会社製、球状、体積平均粒径:3.0μm、融点:220℃)27.0質量部を秤量して混合し、スパチュラで乾燥粉がなくなるまでかき混ぜ、密栓をして自転公転型撹拌装置(Planetary Vacuum Mixer ARV-310、株式会社シンキー製)により、2000回転/分で1分間撹拌し、組成物1とした。
 銅粒子の表面積1mあたりの錫合金粒子の量を表1に示す。
 また、樹脂、銅粒子、及び錫合金粒子の総体積に対する錫合金粒子の含有率(体積基準)を表1(表1中の「錫合金粒子含有率」)に示す。
 なお、錫合金粒子1における平均BET比表面積を前述の方法で測定したところ、0.04m/gであった。
(Preparation of composition)
In a 100 ml polyethylene bottle, 0.8 parts by mass of polyamideimide resin 1 (1.6 parts by mass as a resin solution), 0.3 parts by mass of 12-hydroxystearic acid (manufactured by Wako Pure Chemical Industries, Ltd.), dehydroabietic acid ( 1.9 parts by weight of Wako Pure Chemical Industries, Ltd., 0.3 parts by weight of triethanolamine (Wako Pure Chemical Industries, Ltd.), and hexyl carbitol (alias: diethylene glycol monohexyl ether, Wako Pure Chemical Industries, Ltd. 4.1 parts by mass was weighed, tightly capped, stirred by a rotor stirrer for 30 minutes, and mixed. In this mixture, 67.4 parts by mass of copper particles 1 (made by Mitsui Metal Mining Co., Ltd., spherical, volume average particle diameter: 25 μm, average BET specific surface area: 0.04 m 2 / g, melting point: 1083 ° C.), tin alloy particles 1 (SAC 305, Sn-3.0Ag-0.5Cu, manufactured by Mitsui Mining & Smelting Co., Ltd., spherical, volume average particle diameter: 3.0 μm, melting point: 220 ° C.) 27.0 parts by mass is weighed and mixed, and a spatula The mixture was stirred until no dry powder was found, and the assembly was sealed up and stirred at 2000 rpm for 1 minute using a rotation and rotation type stirring device (Planetary Vacuum Mixer ARV-310, manufactured by Shinky Co., Ltd.) to obtain Composition 1.
The amount of surface area 1 m 2 per tin alloy particles of the copper particles are shown in Table 1.
Further, the content (volume based) of tin alloy particles relative to the total volume of the resin, copper particles, and tin alloy particles is shown in Table 1 (“tin alloy particle content” in Table 1).
In addition, it was 0.04 m < 2 > / g when the average BET specific surface area in the tin alloy particle 1 was measured by the above-mentioned method.
 銅粒子1に代えて、銅粒子2(三井金属鉱業株式会社製、球状、体積平均粒径:20μm、平均BET比表面積:0.1m/g)を67.4質量部用いた以外は、組成物1と同様にして組成物2を得た。銅粒子の表面積1mあたりの錫合金粒子の量を表1に示す。また、樹脂、銅粒子、及び錫合金粒子の総体積に対する錫合金粒子の含有率(体積基準)を表1(表1中の「錫合金粒子含有率」)に示す。
 銅粒子1の添加量を70.8質量部に変更した以外は、組成物1と同様にして組成物3を得た。銅粒子の表面積1mあたりの錫合金粒子の量を表1に示す。また、樹脂、銅粒子、及び錫合金粒子の総体積に対する錫合金粒子の含有率(体積基準)を表1(表1中の「錫合金粒子含有率」)に示す。
 ポリアミドイミド樹脂1の代わりにエポキシ樹脂1(jER828、三菱ケミカル株式会社製、軟化点:室温(25℃)以下、熱分解率:5質量%)を用いた以外は、組成物1と同様にして組成物4を得た。銅粒子の表面積1mあたりの錫合金粒子の量を表1に示す。また、樹脂、銅粒子、及び錫合金粒子の総体積に対する錫合金粒子の含有率(体積基準)を表1(表1中の「錫合金粒子含有率」)に示す。
 錫合金粒子1の添加量27.0質量部を23.6質量%に変更した以外は、組成物1と同様にして組成物5を得た。銅粒子の表面積1mあたりの錫合金粒子の量を表1に示す。また、樹脂、銅粒子、及び錫合金粒子の総体積に対する錫合金粒子の含有率(体積基準)を表1(表1中の「錫合金粒子含有率」)に示す。
In place of copper particle 1, 67.4 parts by mass of copper particle 2 (manufactured by Mitsui Mining & Smelting Co., Ltd., spherical, volume average particle diameter: 20 μm, average BET specific surface area: 0.1 m 2 / g) was used, A composition 2 was obtained in the same manner as the composition 1. The amount of surface area 1 m 2 per tin alloy particles of the copper particles are shown in Table 1. Further, the content (volume based) of tin alloy particles relative to the total volume of the resin, copper particles, and tin alloy particles is shown in Table 1 (“tin alloy particle content” in Table 1).
A composition 3 was obtained in the same manner as the composition 1, except that the addition amount of the copper particles 1 was changed to 70.8 parts by mass. The amount of surface area 1 m 2 per tin alloy particles of the copper particles are shown in Table 1. Further, the content (volume based) of tin alloy particles relative to the total volume of the resin, copper particles, and tin alloy particles is shown in Table 1 (“tin alloy particle content” in Table 1).
The same as composition 1 except using epoxy resin 1 (jER 828, manufactured by Mitsubishi Chemical Corporation, softening point: room temperature (25 ° C. or less, thermal decomposition rate: 5% by mass) instead of polyamideimide resin 1 Composition 4 was obtained. The amount of surface area 1 m 2 per tin alloy particles of the copper particles are shown in Table 1. Further, the content (volume based) of tin alloy particles relative to the total volume of the resin, copper particles, and tin alloy particles is shown in Table 1 (“tin alloy particle content” in Table 1).
A composition 5 was obtained in the same manner as the composition 1 except that the addition amount of 27.0 parts by mass of the tin alloy particles 1 was changed to 23.6% by mass. The amount of surface area 1 m 2 per tin alloy particles of the copper particles are shown in Table 1. Further, the content (volume based) of tin alloy particles relative to the total volume of the resin, copper particles, and tin alloy particles is shown in Table 1 (“tin alloy particle content” in Table 1).
 錫合金粒子1の添加量27.0質量部を9.7質量部に変更した以外は、組成物1と同様にして組成物C1を得た。銅粒子の表面積1mあたりの錫合金粒子の量を表1に示す。また、樹脂、銅粒子、及び錫合金粒子の総体積に対する錫合金粒子の含有率(体積基準)を表1(表1中の「錫合金粒子含有率」)に示す。
 錫合金粒子1の添加量を31.5質量部に変更した以外は、組成物1と同様にして組成物C2を得た。銅粒子の表面積1mあたりの錫合金粒子の量を表1に示す。また、樹脂、銅粒子、及び錫合金粒子の総体積に対する錫合金粒子の含有率(体積基準)を表1(表1中の「錫合金粒子含有率」)に示す。
A composition C1 was obtained in the same manner as the composition 1 except that the addition amount of 27.0 parts by mass of the tin alloy particles 1 was changed to 9.7 parts by mass. The amount of surface area 1 m 2 per tin alloy particles of the copper particles are shown in Table 1. Further, the content (volume based) of tin alloy particles relative to the total volume of the resin, copper particles, and tin alloy particles is shown in Table 1 (“tin alloy particle content” in Table 1).
A composition C2 was obtained in the same manner as the composition 1 except that the addition amount of the tin alloy particles 1 was changed to 31.5 parts by mass. The amount of surface area 1 m 2 per tin alloy particles of the copper particles are shown in Table 1. Further, the content (volume based) of tin alloy particles relative to the total volume of the resin, copper particles, and tin alloy particles is shown in Table 1 (“tin alloy particle content” in Table 1).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例1~5では、比較例1に比べてダイシェア強度が高かった。実施例1~5では、比較例2に比べてウィスカの発生が抑制されていた。つまり、実施例1~5では、比較例1及び比較例2に比べて、ダイシェア強度とウィスカ抑制との両立が実現されていた。 In Examples 1 to 5, the die shear strength was higher than that in Comparative Example 1. In Examples 1 to 5, generation of whiskers was suppressed as compared with Comparative Example 2. That is, in Examples 1 to 5, coexistence of die shear strength and whisker suppression was realized as compared with Comparative Example 1 and Comparative Example 2.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards described herein are as specifically and individually indicated that the individual documents, patent applications, and technical standards are incorporated by reference. Incorporated herein by reference.

Claims (10)

  1.  第1の金属を含有し融点が400℃以上である第1の金属粒子と、前記第1の金属と遷移的液相焼結が可能な第2の金属を含有し融点が300℃以下である第2の金属粒子と、樹脂と、を含み、
     前記第1の金属粒子の表面積1mあたりの前記第2の金属粒子の含有量が3.7g~11.0gである液相焼結用組成物。
    A first metal particle containing a first metal and having a melting point of 400 ° C. or more, and a second metal capable of performing a transient liquid phase sintering with the first metal and having a melting point of 300 ° C. or less Containing a second metal particle and a resin,
    A composition for liquid phase sintering, wherein the content of the second metal particles per 1 m 2 of surface area of the first metal particles is 3.7 g to 11.0 g.
  2.  前記第2の金属粒子の含有率が、前記第1の金属粒子と前記第2の金属粒子と前記樹脂との総体積に対し、20体積%~30体積%である請求項1に記載の液相焼結用組成物。 The liquid according to claim 1, wherein the content of the second metal particles is 20% by volume to 30% by volume with respect to the total volume of the first metal particles, the second metal particles, and the resin. Composition for phase sintering.
  3.  前記第1の金属粒子全体における平均BET比表面積が0.02m/g~0.1m/gである請求項1又は請求項2に記載の液相焼結用組成物。 Claim 1 or the liquid phase sintering composition according to claim 2 first average BET specific surface area in the whole metal particles is 0.02m 2 /g~0.1m 2 / g.
  4.  前記第1の金属がCuを含む請求項1~請求項3のいずれか1項に記載の液相焼結用組成物。 The composition for liquid phase sintering according to any one of claims 1 to 3, wherein the first metal contains Cu.
  5.  前記第2の金属がSnを含む請求項1~請求項4のいずれか1項に記載の液相焼結用組成物。 The composition for liquid phase sintering according to any one of claims 1 to 4, wherein the second metal contains Sn.
  6.  請求項1~請求項5のいずれか1項に記載の液相焼結用組成物を含有する接着剤。 An adhesive containing the composition for liquid phase sintering according to any one of claims 1 to 5.
  7.  請求項1~請求項5のいずれか1項に記載の液相焼結用組成物の焼結体。 A sintered body of the composition for liquid phase sintering according to any one of claims 1 to 5.
  8.  第1の被接合物と第2の被接合物とが請求項7に記載の焼結体を介して接合されている接合構造。 A bonded structure in which the first object and the second object are joined via the sintered body according to claim 7.
  9.  素子と支持部材とが請求項7に記載の焼結体を介して接合されている接合体。 A joined body in which the element and the support member are joined via the sintered body according to claim 7.
  10.  支持部材における素子の接合される箇所及び前記素子における前記支持部材と接合される箇所の少なくとも一方に、請求項1~請求項5のいずれか1項に記載の液相焼結用組成物を付与して組成物層を形成する工程と、
     前記組成物層を介して、前記支持部材と前記素子とを接触させる工程と、
     前記組成物層を加熱して焼結する工程と、を有する接合体の製造方法。
    The composition for liquid phase sintering according to any one of claims 1 to 5 is applied to at least one of a portion of the support member to which the element is bonded and a portion of the element to be bonded to the support member. Forming a composition layer;
    Bringing the support member into contact with the element through the composition layer;
    And heating the composition layer to sinter.
PCT/JP2018/000721 2018-01-12 2018-01-12 Liquid phase sintering composition, adhesive agent, sintered body, joint structure, joint body, and production method for joint body WO2019138556A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000721 WO2019138556A1 (en) 2018-01-12 2018-01-12 Liquid phase sintering composition, adhesive agent, sintered body, joint structure, joint body, and production method for joint body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000721 WO2019138556A1 (en) 2018-01-12 2018-01-12 Liquid phase sintering composition, adhesive agent, sintered body, joint structure, joint body, and production method for joint body

Publications (1)

Publication Number Publication Date
WO2019138556A1 true WO2019138556A1 (en) 2019-07-18

Family

ID=67219518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000721 WO2019138556A1 (en) 2018-01-12 2018-01-12 Liquid phase sintering composition, adhesive agent, sintered body, joint structure, joint body, and production method for joint body

Country Status (1)

Country Link
WO (1) WO2019138556A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199648A (en) * 2012-03-26 2013-10-03 E I Du Pont De Nemours & Co Polymer thick film solder alloy/metal conductor compositions
WO2016039056A1 (en) * 2014-09-09 2016-03-17 株式会社村田製作所 Metal composition and bonding material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199648A (en) * 2012-03-26 2013-10-03 E I Du Pont De Nemours & Co Polymer thick film solder alloy/metal conductor compositions
WO2016039056A1 (en) * 2014-09-09 2016-03-17 株式会社村田製作所 Metal composition and bonding material

Similar Documents

Publication Publication Date Title
JP5373192B2 (en) Adhesive composition, method for manufacturing semiconductor device, and semiconductor device
JP5922060B2 (en) Manufacturing method of semiconductor device
JP2011029392A (en) Adhesive composition and method of manufacturing the same, as well as semiconductor device and method of manufacturing the same
JP5659946B2 (en) Semiconductor sealing adhesive, method for manufacturing the same, and semiconductor device
JPWO2018105126A1 (en) Composition, adhesive, sintered body, joined body and method for producing joined body
JPWO2018105746A1 (en) Manufacturing method of bonded body, composition for transitional liquid phase sintering, sintered body, and bonded body
WO2020003536A1 (en) Sheet for liquid phase sintering, sintered body, joined body, and joined body production method
JP5641067B2 (en) Film adhesive for semiconductor encapsulation
TWI457413B (en) An agent composition, a method for manufacturing a semiconductor device, and a semiconductor device
WO2019138557A1 (en) Composition for liquid-phase sintering, adhesive agent, sintered body, bonded structure, bonded body, and method for producing bonded body
WO2019138556A1 (en) Liquid phase sintering composition, adhesive agent, sintered body, joint structure, joint body, and production method for joint body
JPWO2018105745A1 (en) Composition, adhesive, sintered body, joined body and method for producing joined body
JPWO2018105128A1 (en) Composition, adhesive, sintered body, joined body and method for producing joined body
JP5857462B2 (en) Semiconductor sealing adhesive, semiconductor device manufacturing method, and semiconductor device
WO2019138558A1 (en) Liquid phase sintering composition, adhesive agent, sintered body, joint structure, joint body, and production method for joint body
JP5671778B2 (en) Film-like adhesive for semiconductor sealing, semiconductor device and method for manufacturing the same
JPWO2020017063A1 (en) Composition, bonding material, sintered body, bonding body and method for manufacturing the bonded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP