WO2019138463A1 - Method for manufacturing optical unit, optical unit, and endoscope - Google Patents

Method for manufacturing optical unit, optical unit, and endoscope Download PDF

Info

Publication number
WO2019138463A1
WO2019138463A1 PCT/JP2018/000286 JP2018000286W WO2019138463A1 WO 2019138463 A1 WO2019138463 A1 WO 2019138463A1 JP 2018000286 W JP2018000286 W JP 2018000286W WO 2019138463 A1 WO2019138463 A1 WO 2019138463A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical unit
lens
lens frame
manufacturing
Prior art date
Application number
PCT/JP2018/000286
Other languages
French (fr)
Japanese (ja)
Inventor
健介 須賀
紀幸 藤森
和也 前江田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2018/000286 priority Critical patent/WO2019138463A1/en
Publication of WO2019138463A1 publication Critical patent/WO2019138463A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to a method of manufacturing an optical unit in which a plurality of optical elements are stacked, an optical unit in which a plurality of optical elements are stacked, and an endoscope having an optical unit in which a plurality of optical elements are stacked.
  • Japanese Patent Laid-Open Publication No. 2012-18993 discloses an optical unit made of a wafer level laminate as a method of efficiently manufacturing a small-sized optical unit.
  • a wafer level laminate is manufactured by cutting and singulating a bonded wafer in which a plurality of element wafers each including a plurality of elements are stacked and adhered.
  • the wafer level laminate has a risk of breakage particularly when the aspect ratio (dimension in the optical axis direction / dimension in the optical axis orthogonal direction) is high because mechanical strength is not high.
  • WO 2017/73440 discloses an imaging unit in which a wafer level optical unit is accommodated in a housing and a gap is filled with a sealing resin. In order to prevent the wafer level optical unit from protruding from the front surface of the housing, there is a step portion on the outer peripheral portion of the forefront optical member, and the step portion is filled with the sealing resin.
  • step dicing two-step dicing (step dicing) is performed in the bonded wafer cutting process. For example, a groove is first formed on the top wafer along the cutting line using a first dicing plate. Next, the bonded wafer is cut along the cutting lines using a second dicing plate that is narrower than the first dicing plate, and separated into optical units.
  • step dicing using two types of dicing plates is a complicated process.
  • An embodiment of the present invention is an endoscope having a method of manufacturing an optical unit which is easy to manufacture and good in optical characteristics, an optical unit which is easy to manufacture and good in optical characteristics, and an optical unit which is easy to manufacture and good in optical characteristics. Intended to be provided.
  • a method of manufacturing an optical unit is a method of manufacturing an optical unit disposed at a tip end portion of an endoscope, which includes the steps of: manufacturing a plurality of element wafers including the respective optical elements; A step of laminating the wafer and manufacturing a bonded wafer, cutting the bonded wafer, and having a front surface and a back surface opposite to the front surface, the first main surface being the front surface and the first main surface Manufacturing a laminated lens in which a plurality of optical elements including a first optical element having an opposing second main surface are laminated, and manufacturing a lens frame having a through hole with a front opening and a rear opening Manufacturing the element wafer, comprising the steps of: assembling and inserting the laminated lens into the through hole from the rear opening and fixing the laminated lens to the lens frame; The first element wafer containing Produced by law, the there is a step portion around the first main surface of the first optical element, in the assembly process, the front opening of the lens frame, wherein the stepped portion is
  • the optical unit according to the embodiment is an optical unit disposed at the tip of an endoscope, and the method of manufacturing the optical unit includes the steps of: producing a plurality of element wafers including the respective optical elements; And laminating a front surface and a rear surface facing the front surface, wherein the first main surface which is the front surface and the first main surface are stacked.
  • Manufacturing the element wafer comprising the steps of: manufacturing; assembling the laminated lens inserted into the through hole from the rear opening; and fixing the lens to the lens frame;
  • the first element wafer including the optical element is Produced by Rudo molding, wherein there is a step portion around the first main surface of the first optical element, in the assembly process, the front opening of the lens frame, wherein the stepped portion is fitted.
  • the endoscope according to the embodiment includes an optical unit disposed at the tip, and a method of manufacturing the optical unit includes the steps of producing a plurality of element wafers including the respective optical elements, and the plurality of element wafers And laminating the bonded wafer, cutting the bonded wafer, and having a front surface and a back surface facing the front surface, the first main surface being the front surface facing the first main surface.
  • a laminated lens in which a plurality of optical elements including a first optical element having a second main surface to be laminated are laminated, and manufacturing a lens frame having a through hole with a front opening and a rear opening And an assembling step of inserting the laminated lens into the through hole from the rear opening and fixing it to the lens frame, and the first optical element manufactured in the step of manufacturing the element wafer
  • the first element wafer containing is molded by a molding method More the produced, the there is a step portion around the first main surface of the first optical element, in the assembly process, the front opening of the lens frame, wherein the stepped portion is fitted.
  • FIG. 3 is a cross-sectional view of the optical unit of the embodiment taken along the line III-III of FIG. 2; It is a flowchart for demonstrating the manufacturing method of the optical unit of embodiment. It is sectional drawing for demonstrating the manufacturing method of the optical unit of embodiment. It is sectional drawing for demonstrating the manufacturing method of the optical unit of embodiment. It is a cross-sectional perspective view for demonstrating the manufacturing method of the optical unit of embodiment. It is sectional drawing for demonstrating the manufacturing method of the optical unit of embodiment. It is sectional drawing for demonstrating the manufacturing method of the optical unit of embodiment. It is sectional drawing for demonstrating the manufacturing method of the optical unit of embodiment. It is sectional drawing for demonstrating the manufacturing method of the optical unit of embodiment.
  • FIG. 11 is a cross-sectional view of the optical unit of the modified example 2 of the embodiment along the line XI-XI in FIG. 10;
  • the endoscope 9 of the embodiment constitutes an endoscope system 6 with a processor 5A and a monitor 5B.
  • the endoscope 9 has an optical unit 1 at the distal end 3A of the insertion portion 3.
  • the light collected by the optical unit 1 of the embodiment is, for example, incident on an imaging unit and converted into an imaging signal.
  • the endoscope 9 includes an elongated insertion portion 3, a grip portion 4 disposed at a proximal end of the insertion portion 3, a universal cord 4B extended from the grip portion 4, and a proximal end portion of the universal cord 4B. And a connector 4C disposed.
  • the insertion portion 3 includes a distal end portion 3A in which the optical unit 1 is disposed, a bendable portion 3B extending at the proximal end of the distal end portion 3A, and a bendable portion 3B for changing the direction of the distal end portion 3A And a flexible portion 3C extended to the proximal end of 3B.
  • the grip portion 4 is provided with a pivoting angle knob 4A which is an operation portion for a surgeon to operate the bending portion 3B.
  • a connector 4C disposed at the proximal end of the universal cord 4B is connected to the processor 5A.
  • the processor 5A controls the entire endoscope system 6, performs signal processing on an imaging signal output from the imaging unit, and outputs an image signal.
  • the monitor 5B displays the image signal output by the processor 5A as an endoscopic image.
  • the endoscope 9 is a flexible endoscope, the endoscope of the present invention may be a rigid endoscope, and its use may be medical or industrial.
  • the compact optical unit 1 is easy to manufacture and has good optical characteristics.
  • the endoscope 9 is easy to manufacture and the endoscope image which can be displayed is excellent.
  • the optical unit 1 of the present embodiment includes a laminated lens 10 and a lens frame 40 in which the laminated lens 10 is inserted.
  • the laminated lens 10 having the optical axis O in which the plurality of optical elements 11 to 14 and 31 to 33 are laminated, is a wafer level laminated body manufactured by cutting the bonded wafer 10W (see FIG. 6).
  • the laminated lens 10 of the present embodiment is a substantially rectangular parallelepiped having the front surface 10SA and the rear surface 10SB facing the front surface 10SA, and the four side surfaces 10SS are cut surfaces.
  • the optical elements 11 to 14 and the like each have a rectangular cross-sectional shape in the direction orthogonal to the optical axis and the same outer size.
  • the optical elements 11 to 14 each having an optical axis O are stacked such that the optical axes O coincide with each other.
  • the outer dimension of the multilayer lens 10 in the direction orthogonal to the optical axis is extremely thin, for example, 5 mm or less.
  • the multilayer lens 10 has a high aspect ratio structure in which the outer dimension in the optical axis direction is twice or more the outer dimension in the optical axis orthogonal direction.
  • the optical element 11 which is the first optical element disposed at the front of the multilayer lens 10, has a second main surface 11SA constituting the front surface 10SA and a second main surface 11SA facing the first main surface 11SA.
  • the principal surface 11SB is a plano-concave lens element having a concave surface.
  • the optical element 12 is an infrared cut filter element
  • the optical element 13 is a biconvex lens element
  • the optical element 14 is a protective glass element.
  • the optical elements 31 and 32 are optical stop elements
  • the optical element 33 is a spacer element. That is, the optical element of the multilayer lens 10 includes not only the lens element but also the spacer element and the like.
  • the laminated lens 10 may further have an optical member. That is, the configuration of the multilayer lens is not limited to the configuration of the multilayer lens 10, and the configurations of the optical element, the spacer element, the optical diaphragm element, and the like are set in accordance with the specifications.
  • the optical stop may be a film coated on one side of another optical element.
  • the adhesive layer 20 is disposed between the plurality of optical elements.
  • the lens frame 40 is made of, for example, a metal such as stainless steel.
  • the laminated lens 10 is accommodated in the through hole H ⁇ b> 40 of the lens frame 40.
  • an adhesive is disposed in the gap between the multilayer lens 10 and the through hole H40, and the multilayer lens 10 is fixed to the lens frame 40.
  • the optical unit 1 there is a frame-like step S10 on the outer periphery of the rectangular first main surface 11SA of the first optical element (optical element 11).
  • the step portion S10 of the first main surface 11SA is produced by a molding method together with the concave surface of the second main surface 11SB.
  • the front opening 40SA is smaller than the rear opening 40SB.
  • the front opening 40SA of the lens frame 40 has substantially the same shape as the front surface 10SA (the first major surface 11SA of the multilayer lens 10), and the outer size is slightly larger than the front surface 10SA.
  • the rear opening 40SB has substantially the same shape as the rear surface 10SB, and the outer size is slightly larger than the rear surface 10SB.
  • the length in the optical axis direction of the extended portion C40 of the lens frame 40 that is, the length of the side surface is substantially the same as the length of the side surface of the step portion S10.
  • the length in the optical axis orthogonal direction of the extended portion C40 is substantially the same as the length of the bottom surface of the step portion S10.
  • the multilayer lens 10 inserted into the through hole H40 from the rear opening 40SB is fitted with the through hole H40. If at least the step portion S10 of the laminated lens 10 is engaged with the front opening 40SA of the lens frame 40, alignment of the lens frame 40 with the laminated lens 10 in the optical axis direction and positioning in the optical axis direction is easy. And the laminated lens 10 does not protrude from the front opening 40SA. Further, since the laminated lens 10 is accommodated in the lens frame 40, there is no risk of breakage during handling.
  • step part S10 is produced by the molding method so that it may mention later, unlike the step part produced by dicing method, there is no possibility that the optical characteristic by chipping may deteriorate. Further, the step portion S10 has higher dimensional accuracy than the step portion manufactured by the dicing method. For this reason, the precision of the optical axis alignment of the lens frame 40 and the multilayer lens 10 and the positioning in the optical axis direction are high.
  • the optical unit 1 disposed at the distal end portion 3A of the endoscope 9 has the front surface 10SA and the rear surface 10SB facing the front surface 10SA, and the first main surface 11SA which is the front surface 10SA
  • the laminated lens 10 is inserted in the through hole H40 having the front opening 40SA and the rear opening 40SB, and the laminated lens 10 in which the plurality of optical elements 11 to 14 and 31 to 33 including the first optical element 11 are laminated
  • the side surface and the bottom surface of the step portion S10 manufactured by the molding method are smooth unlike the side surface 10SS which is a cut surface.
  • the endoscope 9 having the laminated lens 10 has a small diameter, is easy to manufacture, and is excellent in optical characteristics.
  • the method of manufacturing the optical unit will be described according to the flowchart shown in FIG. As described above, the laminated lens 10 is manufactured by a wafer level method in which the bonded wafer 10W (see FIG. 6) is cut and separated into pieces.
  • optical diaphragm wafers 31W and 32W also have the function of a spacer.
  • a first element wafer 11W including a plurality of optical elements 11 is manufactured by a molding method.
  • Each of the plurality of optical elements 11 has an optical axis.
  • the resin sheet 11S is disposed between the two molds 11K1 and 11K2. Then, as shown in FIGS. 5B and 5C, the first element wafer 11W including the plurality of optical elements 11 is manufactured by the press molding method.
  • the first element wafer 11W may be manufactured by an injection molding method or the like as long as it is a molding method in which the shape of a mold is transferred to a resin.
  • an element wafer 12 W or the like including the optical element 12 is manufactured.
  • the element wafers other than the first element wafer 11W may be manufactured by a method other than the molding method.
  • the first element wafer 11 W and the like are made of an optical resin such as polycarbonate which is transparent in the wavelength band of light of the specification.
  • the first element wafer 11W or the like may be a hybrid element wafer or the like in which an optical path portion or the like made of resin is disposed on a parallel flat plate glass.
  • the element wafer 12W (see FIG. 6), which is a filter wafer, is a flat plate made of an infrared cut material that removes infrared rays (for example, light having a wavelength of 700 nm or more).
  • the filter wafer may be a flat glass wafer or the like on which a band pass filter that transmits only light of a predetermined wavelength and cuts light of an unnecessary wavelength is disposed on the surface.
  • the parallel flat element wafer 14W (see FIG. 6) is a glass wafer or a transparent resin wafer.
  • a plurality of element wafers 11W to 14W and 31W to 33W are stacked with the adhesive layer 20 interposed therebetween so that the optical axes O of the respective optical elements coincide.
  • a bonded wafer 10W is produced.
  • an adhesive material made of photosensitive epoxy resin, photosensitive polyimide or the like is applied to the element wafer, then solidified by hot plate drying at 120 ° C., and the adhesive layer 20 is provided by patterning by photolithography. Ru.
  • a film resist which is a photosensitive resin sheet may be used, or a liquid resin may be used. In the case of using a liquid resin, if a recess for containing an excess resin is formed around the optical path region, the liquid resin does not intrude into the optical path region.
  • the configuration of the plurality of element wafers that is, the material, the shape, the number, the arrangement, the outer shape, and the like of the arranged optical elements are designed according to the specifications. However, it is preferable that the number of elements and the arrangement of elements included in a plurality of element wafers be the same.
  • the bonded wafer 10W is cut by the dicing blade 50 whose cutting allowance is smaller than the width of the groove L10, and is separated into a plurality of laminated lenses 10 shown in FIG. It may cut using laser dicing or plasma dicing.
  • a laminated lens 10 in which a plurality of optical elements 11 to 14 and 31 to 33 are laminated has a front surface 10SA and a rear surface 10SB facing the front surface 10SA.
  • the multilayer lens 10 includes a first optical element 11 having a first major surface 11SA which is a front surface 10SA. Then, there is a step portion S10 surrounding the optical path around the first main surface 11SA.
  • the laminated lens 10 is a substantially rectangular parallelepiped, it is good also as a polygonal pillar or a cylinder by the process after separating into pieces. That is, the shape of the multilayer lens 10 is not limited to a substantially rectangular parallelepiped. Similarly, the "rectangle" in the present specification includes “a substantially rectangular shape” in which the corner is chamfered or curved.
  • a lens frame 40 having a through hole H40 is manufactured.
  • the lens frame 40 is made of metal such as ceramic, Si, glass or stainless steel.
  • the front opening 40SA of the lens frame 40 has an extending portion C40 which is a convex portion extended toward the optical axis, and the front opening 40SA is smaller than the rear opening 40S.
  • the inner dimension of the rectangular rear opening 40SB in the direction orthogonal to the optical axis is slightly larger than the outer dimension of the rectangular rear surface 10SB of the multilayer lens 10.
  • the inner dimension of the rectangular front opening 40SA in the direction orthogonal to the optical axis is slightly larger than the outer dimension of the rectangular front surface 10SA (11SA) of the multilayer lens 10.
  • the lens frame production process of step S14 may be performed before the optical unit production process of steps S11 to S13.
  • Step S15 Assembling Step As shown in FIG. 8, the multilayer lens 10 is inserted into the through hole H40 from the rear opening 40SB of the lens frame 40 and fixed by an adhesive (not shown).
  • the multilayer lens 10 can not be inserted into the lens frame 40 from the front opening 40SA.
  • the step portion S10 fits in the front opening 40SA of the lens frame 40. Therefore, the central axis of the lens frame 40 and the optical axis of the multilayer lens 10 are positioned, and at the same time, the position of the multilayer lens 10 in the optical axis direction with respect to the lens frame 40 is also positioned.
  • the groove L10 to be the step portion S10 transfers the shape of the mold 11K1, it is accurately formed at a predetermined position with an accurate shape. For this reason, the multilayer lens 10 is accurately positioned. Further, since no defect due to chipping occurs when forming the step portion S10, the optical unit 1 having the multilayer lens 10 has excellent optical characteristics. Further, since the step portion S10 is formed when the element wafer 11W is manufactured, the optical unit 1 is easy to manufacture.
  • the optical units 1A and 1B, the manufacturing method of the optical units 1A and 1B, and the endoscopes 9A and 9B of the modification examples 1 and 2 of the embodiment are similar to the optical unit 1, the manufacturing method of the optical unit 1, and the endoscope 9 Since the same effect is obtained, the same reference numerals are given to the components having the same functions, and the description is omitted.
  • the front opening 40SA of the through hole H40A of the lens frame 40A is circular.
  • the first main surface 11SA (front surface 10SA) of the first optical element 11A surrounded by the step portion S10A is also circular.
  • the first major surface 11SA is limited to a rectangular shape.
  • the light path is circular, an unnecessary area is generated around the light path.
  • the first main surface 11SA of the first optical element 11A manufactured by the molding method is circular, there is no unnecessary area around the optical path, and the outer side in the optical axis orthogonal direction Small size and small diameter.
  • the shape of the first main surface 11SA of the optical unit manufactured by the molding method can be freely designed according to the shape of the front opening of the lens frame.
  • the shape of the first major surface 11SA may be hexagonal.
  • the endoscope 9A having the optical unit 1A has the effect of the endoscope 9 and further has the effect of the optical unit 1A so that the tip 3A has a small diameter.
  • the imaging unit 60 includes a cover glass 72, an imaging element 71, and a stacked element 70 in which a plurality of semiconductor elements 73, 74, and 75 are stacked.
  • the laminated element 70 is a wafer level laminated body manufactured by cutting a bonded wafer in which a plurality of semiconductor wafers are laminated.
  • the imaging device 71 has a light receiving unit formed of a CCD or a CMOS imaging unit.
  • the imaging device 71 may be any of a front side illumination type image sensor and a rear side illumination type image sensor.
  • the stacked element 70 performs primary processing of an imaging signal output from the imaging element 71, and processes a control signal for controlling the imaging element 71.
  • the semiconductor elements 73, 74, and 75 include an AD conversion circuit, a memory, a transmission output circuit, a filter circuit, a thin film capacitor, a thin film inductor, and the like.
  • the number of elements included in the stacked element 70 is, for example, 3 or more and 10 or less, including the imaging element 71.
  • the outer dimension in the optical axis orthogonal direction of the laminated element 70 is smaller than the outer dimension of the optical unit 1.
  • a sealing resin 79 is filled between the laminated element 70 and the lens frame 40B.
  • the sealing resin 79 may be the same resin as the adhesive fixing the optical unit 1 to the lens frame 40B.
  • the optical unit 1 and the laminated element 70 may be manufactured by a wafer level method by cutting a bonded wafer of the optical element wafer and the semiconductor element wafer.
  • the wiring board 61 is joined to the laminated element 70, and the signal cable 62 is joined to the wiring board 61.
  • the laminated element 70 manufactured by the wafer level method does not have high mechanical strength. However, the entire imaging unit 60 including the laminated element 70 is inserted into the lens frame 40 and protected.
  • the signal cable 62 may be joined to the imaging unit 60.
  • the imaging unit 60 joins the wiring board 61 or the signal cable 62 to the laminated element 70, there is no possibility that the laminated element 70 is damaged.
  • the lens frame 40B is cylindrical. That is, the outer shape of the lens frame is not limited to a rectangular parallelepiped, and may be a cylinder or a polygonal prism.
  • the front opening 40SA of the lens frame 40B has the same circular shape as the optical unit 1A, but may have the same rectangular shape as the optical unit 1.
  • the endoscope 9B has the optical unit 1B as an imaging optical system.
  • the optical unit may constitute an illumination optical system.
  • the endoscope may have an illumination optical unit such as the optical unit 1 and an imaging optical unit.
  • Lens frame 40SA front opening 40SB: rear opening 50: dicing blade 60: imaging unit 61: wiring board 62: signal cable 70: lamination element 71: imaging element 72 ⁇ ⁇ ⁇ cover glass 73, 74, 5 ... semiconductor element 79 ... sealing resin

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)

Abstract

This method for manufacturing an optical unit 1 is provided with: a step for preparing a plurality of element wafers 11W to 14W; a step for stacking the plurality of element wafers 11W to 14W to prepare a joint wafer 10W; a step for cutting the joint wafer 10W to prepare a laminate lens 10 in which a plurality of optical elements 11 to 14 that include a first optical element 11 having a first primary surface 11SA, are laminated; a step for preparing a lens frame 40 having a through-hole H40; and an assembly step for inserting the laminate lens 10 into the through-hole H40. The first element wafer 11W including the first optical element 11 prepared in the element wafer step is prepared through a molding method, a stepped part S10 is present around the first primary surface 11SA of the first optical element 11, and a front opening 40SA of the lens frame 40 is fitted to the stepped part S10 in the assembly step.

Description

光学ユニットの製造方法、光学ユニット、および内視鏡Optical unit manufacturing method, optical unit, and endoscope
 本発明は、複数の光学素子が積層された光学ユニットの製造方法、複数の光学素子が積層された光学ユニット、および複数の光学素子が積層された光学ユニットを有する内視鏡に関する。 The present invention relates to a method of manufacturing an optical unit in which a plurality of optical elements are stacked, an optical unit in which a plurality of optical elements are stacked, and an endoscope having an optical unit in which a plurality of optical elements are stacked.
 内視鏡の先端部に配設される光学ユニットは、低侵襲化のため小型化、特に細径化が重要である。 It is important to miniaturize the optical unit disposed at the tip of the endoscope for reducing the invasiveness, in particular, to reduce the diameter.
 日本国特開2012-18993号公報には、小型の光学ユニットを効率良く製造する方法として、ウエハレベル積層体からなる光学ユニットが開示されている。それぞれが複数の素子を含む複数の素子ウエハを積層し接着した接合ウエハを切断し個片化することで、ウエハレベル積層体は、作製される。 Japanese Patent Laid-Open Publication No. 2012-18993 discloses an optical unit made of a wafer level laminate as a method of efficiently manufacturing a small-sized optical unit. A wafer level laminate is manufactured by cutting and singulating a bonded wafer in which a plurality of element wafers each including a plurality of elements are stacked and adhered.
 ウエハレベル積層体は、機械的強度が高くはないため、特にアスペクト比(光軸方向寸法/光軸直交方向寸法)が高い場合には、破損するおそれがあった。 The wafer level laminate has a risk of breakage particularly when the aspect ratio (dimension in the optical axis direction / dimension in the optical axis orthogonal direction) is high because mechanical strength is not high.
 国際公開第2017/73440号には、筐体の内部にウエハレベル光学ユニットを収容し隙間を、封止樹脂で充填した撮像ユニットが開示されている。ウエハレベル光学ユニットが、筐体の前面から突出するのを防止するため、最前面の光学部材の外周部に段差部があり、段差部に封止樹脂が充填されている。 WO 2017/73440 discloses an imaging unit in which a wafer level optical unit is accommodated in a housing and a gap is filled with a sealing resin. In order to prevent the wafer level optical unit from protruding from the front surface of the housing, there is a step portion on the outer peripheral portion of the forefront optical member, and the step portion is filled with the sealing resin.
 段差部を形成するために、接合ウエハの切断工程において、2段階のダイシング加工(ステップダイシング)が行われる。例えば、最初に第1のダイシングブレートを用いて切断線に沿って最上面のウエハに溝が形成される。ついで、第1のダイシングブレートよりも幅の狭い第2のダイシングブレートを用いて切断線に沿って接合ウエハが切断され、光学ユニットに個片化される。 In order to form the stepped portion, two-step dicing (step dicing) is performed in the bonded wafer cutting process. For example, a groove is first formed on the top wafer along the cutting line using a first dicing plate. Next, the bonded wafer is cut along the cutting lines using a second dicing plate that is narrower than the first dicing plate, and separated into optical units.
 しかし、ダイシング加工による段差部の形成は、チッピングが発生し、光学特性が劣化するおそれがある。また、2種類のダイシングブレートを用いるステップダイシングは繁雑な工程である。 However, in the formation of the step portion by dicing, chipping may occur and the optical characteristics may be degraded. Also, step dicing using two types of dicing plates is a complicated process.
国際公開第2017/73440号International Publication No. 2017/73440
 本発明の実施形態は、製造が容易で光学特性の良い光学ユニットの製造方法、製造が容易で光学特性の良い光学ユニット、および製造が容易で光学特性の良い光学ユニットを具備する内視鏡を提供することを目的とする。 An embodiment of the present invention is an endoscope having a method of manufacturing an optical unit which is easy to manufacture and good in optical characteristics, an optical unit which is easy to manufacture and good in optical characteristics, and an optical unit which is easy to manufacture and good in optical characteristics. Intended to be provided.
 実施形態の光学ユニットの製造方法は、内視鏡の先端部に配設される光学ユニットの製造方法であって、それぞれの光学素子を含む複数の素子ウエハを作製する工程と、前記複数の素子ウエハを積層し、接合ウエハを作製する工程と、前記接合ウエハを切断し、前面と前記前面と対向する後面とを有し、前記前面である第1の主面と前記第1の主面と対向する第2の主面とを有する第1光学素子を含む複数の光学素子が積層された、積層レンズを作製する工程と、前開口と後開口とのある貫通孔があるレンズ枠を作製する工程と、前記積層レンズを、前記後開口から前記貫通孔に挿入し、前記レンズ枠に固定する組立工程と、を具備し、前記素子ウエハを作製する工程で作製される、前記第1光学素子を含む第1素子ウエハは、モールド成型法により作製され、前記第1光学素子の前記第1の主面の周囲に段差部があり、前記組立工程において、前記レンズ枠の前記前開口に、前記段差部が嵌合する。 A method of manufacturing an optical unit according to an embodiment is a method of manufacturing an optical unit disposed at a tip end portion of an endoscope, which includes the steps of: manufacturing a plurality of element wafers including the respective optical elements; A step of laminating the wafer and manufacturing a bonded wafer, cutting the bonded wafer, and having a front surface and a back surface opposite to the front surface, the first main surface being the front surface and the first main surface Manufacturing a laminated lens in which a plurality of optical elements including a first optical element having an opposing second main surface are laminated, and manufacturing a lens frame having a through hole with a front opening and a rear opening Manufacturing the element wafer, comprising the steps of: assembling and inserting the laminated lens into the through hole from the rear opening and fixing the laminated lens to the lens frame; The first element wafer containing Produced by law, the there is a step portion around the first main surface of the first optical element, in the assembly process, the front opening of the lens frame, wherein the stepped portion is fitted.
 実施形態の光学ユニットは、内視鏡の先端部に配設される光学ユニットであって、前記光学ユニットの製造方法は、それぞれの光学素子を含む複数の素子ウエハを作製する工程と、前記複数の素子ウエハを積層し、接合ウエハを作製する工程と、前記接合ウエハを切断し、前面と前記前面と対向する後面とを有し、前記前面である第1の主面と前記第1の主面と対向する第2の主面とを有する第1光学素子を含む複数の光学素子が積層された、積層レンズを作製する工程と、前開口と後開口とのある貫通孔があるレンズ枠を作製する工程と、前記積層レンズを、前記後開口から前記貫通孔に挿入し、前記レンズ枠に固定する組立工程と、を具備し、前記素子ウエハを作製する工程で作製される、前記第1光学素子を含む第1素子ウエハは、モールド成型法により作製され、前記第1光学素子の前記第1の主面の周囲に段差部があり、前記組立工程において、前記レンズ枠の前記前開口に、前記段差部が嵌合する。 The optical unit according to the embodiment is an optical unit disposed at the tip of an endoscope, and the method of manufacturing the optical unit includes the steps of: producing a plurality of element wafers including the respective optical elements; And laminating a front surface and a rear surface facing the front surface, wherein the first main surface which is the front surface and the first main surface are stacked. Manufacturing a laminated lens in which a plurality of optical elements including a first optical element having a surface and a second principal surface facing each other are laminated, and a lens frame having a through hole with a front opening and a rear opening Manufacturing the element wafer, comprising the steps of: manufacturing; assembling the laminated lens inserted into the through hole from the rear opening; and fixing the lens to the lens frame; The first element wafer including the optical element is Produced by Rudo molding, wherein there is a step portion around the first main surface of the first optical element, in the assembly process, the front opening of the lens frame, wherein the stepped portion is fitted.
 実施形態の内視鏡は、先端部に配設された光学ユニットを具備し、前記光学ユニットの製造方法は、それぞれの光学素子を含む複数の素子ウエハを作製する工程と、前記複数の素子ウエハを積層し、接合ウエハを作製する工程と、前記接合ウエハを切断し、前面と前記前面と対向する後面とを有し、前記前面である第1の主面と前記第1の主面と対向する第2の主面とを有する第1光学素子を含む複数の光学素子が積層された、積層レンズを作製する工程と、前開口と後開口とのある貫通孔があるレンズ枠を作製する工程と、前記積層レンズを、前記後開口から前記貫通孔に挿入し、前記レンズ枠に固定する組立工程と、を具備し、前記素子ウエハを作製する工程で作製される、前記第1光学素子を含む第1素子ウエハは、モールド成型法により作製され、前記第1光学素子の前記第1の主面の周囲に段差部があり、前記組立工程において、前記レンズ枠の前記前開口に、前記段差部が嵌合する。 The endoscope according to the embodiment includes an optical unit disposed at the tip, and a method of manufacturing the optical unit includes the steps of producing a plurality of element wafers including the respective optical elements, and the plurality of element wafers And laminating the bonded wafer, cutting the bonded wafer, and having a front surface and a back surface facing the front surface, the first main surface being the front surface facing the first main surface. Manufacturing a laminated lens in which a plurality of optical elements including a first optical element having a second main surface to be laminated are laminated, and manufacturing a lens frame having a through hole with a front opening and a rear opening And an assembling step of inserting the laminated lens into the through hole from the rear opening and fixing it to the lens frame, and the first optical element manufactured in the step of manufacturing the element wafer The first element wafer containing is molded by a molding method More the produced, the there is a step portion around the first main surface of the first optical element, in the assembly process, the front opening of the lens frame, wherein the stepped portion is fitted.
実施形態の内視鏡の斜視図である。It is a perspective view of the endoscope of an embodiment. 実施形態の光学ユニットの正面図である。It is a front view of the optical unit of an embodiment. 実施形態の光学ユニットの図2のIII-III線に沿った断面図である。FIG. 3 is a cross-sectional view of the optical unit of the embodiment taken along the line III-III of FIG. 2; 実施形態の光学ユニットの製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the optical unit of embodiment. 実施形態の光学ユニットの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the optical unit of embodiment. 実施形態の光学ユニットの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the optical unit of embodiment. 実施形態の光学ユニットの製造方法を説明するための断面斜視図である。It is a cross-sectional perspective view for demonstrating the manufacturing method of the optical unit of embodiment. 実施形態の光学ユニットの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the optical unit of embodiment. 実施形態の光学ユニットの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the optical unit of embodiment. 実施形態の光学ユニットの製造方法を説明するための斜視図である。It is a perspective view for demonstrating the manufacturing method of the optical unit of embodiment. 実施形態の変形例1の光学ユニットの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the optical unit of the modification 1 of embodiment. 実施形態の変形例2の光学ユニットの正面図である。It is a front view of the optical unit of the modification 2 of embodiment. 実施形態の変形例2の光学ユニットの図10のXI-XI線に沿った断面図である。FIG. 11 is a cross-sectional view of the optical unit of the modified example 2 of the embodiment along the line XI-XI in FIG. 10;
 図1に示すように、実施形態の内視鏡9は、プロセッサ5Aおよびモニタ5Bと、内視鏡システム6を構成している。内視鏡9は、挿入部3の先端部3Aに光学ユニット1を有する。実施形態の光学ユニット1が集光した光は、例えば、撮像ユニットに入射し撮像信号に変換される。 As shown in FIG. 1, the endoscope 9 of the embodiment constitutes an endoscope system 6 with a processor 5A and a monitor 5B. The endoscope 9 has an optical unit 1 at the distal end 3A of the insertion portion 3. The light collected by the optical unit 1 of the embodiment is, for example, incident on an imaging unit and converted into an imaging signal.
 内視鏡9は、細長い挿入部3と、挿入部3の基端部に配設された把持部4と、把持部4から延設されたユニバーサルコード4Bと、ユニバーサルコード4Bの基端部に配設されたコネクタ4Cと、を具備する。挿入部3は、光学ユニット1が配設されている先端部3Aと、先端部3Aの基端部に延設された湾曲自在で先端部3Aの方向を変えるための湾曲部3Bと、湾曲部3Bの基端部に延設された軟性部3Cとを含む。把持部4には術者が湾曲部3Bを操作するための操作部である回動するアングルノブ4Aが配設されている。 The endoscope 9 includes an elongated insertion portion 3, a grip portion 4 disposed at a proximal end of the insertion portion 3, a universal cord 4B extended from the grip portion 4, and a proximal end portion of the universal cord 4B. And a connector 4C disposed. The insertion portion 3 includes a distal end portion 3A in which the optical unit 1 is disposed, a bendable portion 3B extending at the proximal end of the distal end portion 3A, and a bendable portion 3B for changing the direction of the distal end portion 3A And a flexible portion 3C extended to the proximal end of 3B. The grip portion 4 is provided with a pivoting angle knob 4A which is an operation portion for a surgeon to operate the bending portion 3B.
 ユニバーサルコード4Bの基端部に配設されたコネクタ4Cはプロセッサ5Aに接続される。プロセッサ5Aは内視鏡システム6の全体を制御するとともに、撮像ユニットが出力する撮像信号に信号処理を行い画像信号として出力する。モニタ5Bは、プロセッサ5Aが出力する画像信号を内視鏡画像として表示する。なお、内視鏡9は軟性内視鏡であるが、本発明の内視鏡は硬性内視鏡でもよいし、その用途は医療用でも工業用でもよい。 A connector 4C disposed at the proximal end of the universal cord 4B is connected to the processor 5A. The processor 5A controls the entire endoscope system 6, performs signal processing on an imaging signal output from the imaging unit, and outputs an image signal. The monitor 5B displays the image signal output by the processor 5A as an endoscopic image. Although the endoscope 9 is a flexible endoscope, the endoscope of the present invention may be a rigid endoscope, and its use may be medical or industrial.
 後述するように、小型の光学ユニット1は、製造が容易で光学特性が良い。このため、内視鏡9は製造が容易で表示できる内視鏡画像が優れている。 As described later, the compact optical unit 1 is easy to manufacture and has good optical characteristics. For this reason, the endoscope 9 is easy to manufacture and the endoscope image which can be displayed is excellent.
<光学ユニットの構成>
 図2および図3に示す様に、本実施形態の光学ユニット1は、積層レンズ10と、積層レンズ10が挿入されているレンズ枠40と、を含む。
<Configuration of Optical Unit>
As shown in FIGS. 2 and 3, the optical unit 1 of the present embodiment includes a laminated lens 10 and a lens frame 40 in which the laminated lens 10 is inserted.
 なお、各実施の形態に基づく図面は、模式的なものであり、各部分の厚さと幅との関係、夫々の部分の厚さの比率および相対角度などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、一部の構成要素の図示および符号の付与を省略する場合がある。 Note that the drawings based on each embodiment are schematic, and it is noted that the relationship between the thickness and width of each part, the thickness ratio of each part, the relative angle, etc. are different from the actual ones. There should be cases where parts of the drawings may differ in their dimensional relationships and proportions. In addition, illustration of some components and assignment of symbols may be omitted.
 複数の光学素子11~14、31~33が積層された、光軸Oを有する積層レンズ10は、接合ウエハ10W(図6参照)の切断により作製されるウエハレベル積層体である。このため、本実施形態の積層レンズ10は、前面10SAと前面10SAと対向する後面10SBとを有する略直方体で4つの側面10SSは切断面である。光学素子11~14等は、いずれも光軸直交方向の断面形状が矩形で外寸が同じである。それぞれが光軸Oを有する光学素子11~14等は、それぞれの光軸Oが一致するように積層されている。なお、積層レンズ10は、内視鏡9の低侵襲化のために、光軸直交方向の外寸が、例えば、5mm以下と極めて細い。一方、積層レンズ10は、光軸方向の外寸が光軸直交方向の外寸の2倍以上と高アスペクト比構造である。 The laminated lens 10 having the optical axis O, in which the plurality of optical elements 11 to 14 and 31 to 33 are laminated, is a wafer level laminated body manufactured by cutting the bonded wafer 10W (see FIG. 6). For this reason, the laminated lens 10 of the present embodiment is a substantially rectangular parallelepiped having the front surface 10SA and the rear surface 10SB facing the front surface 10SA, and the four side surfaces 10SS are cut surfaces. The optical elements 11 to 14 and the like each have a rectangular cross-sectional shape in the direction orthogonal to the optical axis and the same outer size. The optical elements 11 to 14 each having an optical axis O are stacked such that the optical axes O coincide with each other. In addition, in order to reduce the invasiveness of the endoscope 9, the outer dimension of the multilayer lens 10 in the direction orthogonal to the optical axis is extremely thin, for example, 5 mm or less. On the other hand, the multilayer lens 10 has a high aspect ratio structure in which the outer dimension in the optical axis direction is twice or more the outer dimension in the optical axis orthogonal direction.
 積層レンズ10の最前に配置されている第1光学素子である光学素子11は、前面10SAを構成している第1の主面11SAが平面で、第1の主面11SAと対向する第2の主面11SBが凹面の平凹レンズ素子である。光学素子12は赤外線カットフィルタ素子であり、光学素子13は両凸レンズ素子であり、光学素子14は保護ガラス素子である。また、光学素子31、32は光学絞り素子であり、光学素子33はスペーサ素子である。すなわち、積層レンズ10の光学素子には、レンズ素子だけでなく、スペーサ素子等も含まれている。 The optical element 11, which is the first optical element disposed at the front of the multilayer lens 10, has a second main surface 11SA constituting the front surface 10SA and a second main surface 11SA facing the first main surface 11SA. The principal surface 11SB is a plano-concave lens element having a concave surface. The optical element 12 is an infrared cut filter element, the optical element 13 is a biconvex lens element, and the optical element 14 is a protective glass element. The optical elements 31 and 32 are optical stop elements, and the optical element 33 is a spacer element. That is, the optical element of the multilayer lens 10 includes not only the lens element but also the spacer element and the like.
 積層レンズ10は更に光学部材を有していてもよい。すなわち、積層レンズの構成は、積層レンズ10の構成に限定されるものではなく、光学素子、スペーサ素子および光学絞り素子等の構成は、仕様に応じて設定される。光学絞りは他の光学素子の一面にコーティングされた膜であってもよい。そして、複数の光学素子の間には接着層20が配設されている。 The laminated lens 10 may further have an optical member. That is, the configuration of the multilayer lens is not limited to the configuration of the multilayer lens 10, and the configurations of the optical element, the spacer element, the optical diaphragm element, and the like are set in accordance with the specifications. The optical stop may be a film coated on one side of another optical element. The adhesive layer 20 is disposed between the plurality of optical elements.
 レンズ枠40は、例えば、ステンレス鋼等の金属からなる。レンズ枠40の貫通孔H40に積層レンズ10が収容されている。図示しないが、積層レンズ10と貫通孔H40との隙間には接着剤が配設され、積層レンズ10はレンズ枠40に固定されている。 The lens frame 40 is made of, for example, a metal such as stainless steel. The laminated lens 10 is accommodated in the through hole H <b> 40 of the lens frame 40. Although not shown, an adhesive is disposed in the gap between the multilayer lens 10 and the through hole H40, and the multilayer lens 10 is fixed to the lens frame 40.
 光学ユニット1では、第1光学素子(光学素子11)の矩形の第1の主面11SAの外周には額縁状の段差部S10がある。後述するように、第1の主面11SAの段差部S10は、第2の主面11SBの凹面とともに、モールド成型法により作製される。 In the optical unit 1, there is a frame-like step S10 on the outer periphery of the rectangular first main surface 11SA of the first optical element (optical element 11). As will be described later, the step portion S10 of the first main surface 11SA is produced by a molding method together with the concave surface of the second main surface 11SB.
 一方、レンズ枠40の貫通孔H40は、前開口40SAが後開口40SBより小さい。言い替えれば、貫通孔H40の前部には内面から光軸に向かって延設されている延設部(凸部)C40がある。 On the other hand, in the through hole H40 of the lens frame 40, the front opening 40SA is smaller than the rear opening 40SB. In other words, at the front of the through hole H40, there is an extending portion (convex portion) C40 extending from the inner surface toward the optical axis.
 レンズ枠40の前開口40SAは、前面10SA(積層レンズ10の第1の主面11SA)と略同形で、かつ、外寸が前面10SAよりも僅かに大きい。後開口40SBは後面10SBと略同形で、かつ、後面10SBよりも外寸が僅かに大きい。また、レンズ枠40の延設部C40の光軸方向の長さ、すなわち側面の長さは、段差部S10の側面の長さと略同じである。さらに、延設部C40の光軸直交方向の長さは、段差部S10の底面の長さと略同じである。 The front opening 40SA of the lens frame 40 has substantially the same shape as the front surface 10SA (the first major surface 11SA of the multilayer lens 10), and the outer size is slightly larger than the front surface 10SA. The rear opening 40SB has substantially the same shape as the rear surface 10SB, and the outer size is slightly larger than the rear surface 10SB. Further, the length in the optical axis direction of the extended portion C40 of the lens frame 40, that is, the length of the side surface is substantially the same as the length of the side surface of the step portion S10. Furthermore, the length in the optical axis orthogonal direction of the extended portion C40 is substantially the same as the length of the bottom surface of the step portion S10.
 このため、光学ユニット1では、後開口40SBから貫通孔H40に挿入された積層レンズ10は、貫通孔H40と嵌合している。なお、少なくとも、積層レンズ10の段差部S10が、レンズ枠40の前開口40SAと嵌合していれば、レンズ枠40と積層レンズ10との光軸合わせ、および、光軸方向に位置決めが容易で、かつ、積層レンズ10が前開口40SAから突出することはない。また、積層レンズ10は、レンズ枠40に収容されているため、取り扱い時に破損するおそれはない。 For this reason, in the optical unit 1, the multilayer lens 10 inserted into the through hole H40 from the rear opening 40SB is fitted with the through hole H40. If at least the step portion S10 of the laminated lens 10 is engaged with the front opening 40SA of the lens frame 40, alignment of the lens frame 40 with the laminated lens 10 in the optical axis direction and positioning in the optical axis direction is easy. And the laminated lens 10 does not protrude from the front opening 40SA. Further, since the laminated lens 10 is accommodated in the lens frame 40, there is no risk of breakage during handling.
 なお、レンズ枠40の延設部C40の側面の長さは、段差部S10の側面の長さよりも、僅かに短い場合は問題ないが、長い場合は前面10SAの外周部に異物が付着しやすいため、好ましくない。 There is no problem if the length of the side of the extended portion C40 of the lens frame 40 is slightly shorter than the length of the side of the step S10, but if it is longer, foreign matter is likely to adhere to the outer periphery of the front surface 10SA. Unfavorable.
 そして、後述するように段差部S10は、モールド成型法により作製されるため、ダイシング法で作製される段差部と異なりチッピングによる光学特性が劣化するおそれはない。また、段差部S10は、ダイシング法で作製される段差部よりも、寸法精度が高い。このため、レンズ枠40と積層レンズ10との光軸合わせ、および、光軸方向の位置決めの精度が高い。 And since step part S10 is produced by the molding method so that it may mention later, unlike the step part produced by dicing method, there is no possibility that the optical characteristic by chipping may deteriorate. Further, the step portion S10 has higher dimensional accuracy than the step portion manufactured by the dicing method. For this reason, the precision of the optical axis alignment of the lens frame 40 and the multilayer lens 10 and the positioning in the optical axis direction are high.
以上の説明のように、内視鏡9の先端部3Aに配設される光学ユニット1は前面10SAと前面10SAと対向する後面10SBとを有し、前面10SAである第1の主面11SAを有する第1光学素子11、を含む複数の光学素子11~14、31~33が積層された積層レンズ10と、前開口40SAと後開口40SBとのある貫通孔H40に積層レンズ10が挿入されているレンズ枠40と、を具備し、モールド成型法により作製された第1光学素子11の第1の主面11SAの周囲に段差部S10があり、レンズ枠40の前開口40SAに、段差部S10が嵌合している。 As described above, the optical unit 1 disposed at the distal end portion 3A of the endoscope 9 has the front surface 10SA and the rear surface 10SB facing the front surface 10SA, and the first main surface 11SA which is the front surface 10SA The laminated lens 10 is inserted in the through hole H40 having the front opening 40SA and the rear opening 40SB, and the laminated lens 10 in which the plurality of optical elements 11 to 14 and 31 to 33 including the first optical element 11 are laminated There is a step S10 around the first main surface 11SA of the first optical element 11 manufactured by a molding method, and the front opening 40SA of the lens frame 40 has a step S10. Is fitted.
 なお、モールド成型法により作製される段差部S10の側面および底面は、切断面である側面10SSと異なり、滑らかである。ただし、段差部S10がモールド成型法により作製されたことを完成品の構造または特性から特定する文言を見いだすことができず、かつ、かかる構造又は特性を、表面粗さ等測定に基づき解析しても、製造方法を特定することはできない。 The side surface and the bottom surface of the step portion S10 manufactured by the molding method are smooth unlike the side surface 10SS which is a cut surface. However, it is not possible to find out from the structure or characteristics of the finished product that the step portion S10 has been produced by a molding method, and the structure or characteristics are analyzed based on measurement of surface roughness etc. Even, it is not possible to specify the manufacturing method.
 そして、積層レンズ10を具備する内視鏡9は細径で、製造が容易で光学特性に優れている。 The endoscope 9 having the laminated lens 10 has a small diameter, is easy to manufacture, and is excellent in optical characteristics.
<光学ユニットの製造方法>
 次に図4に示すフローチャートに沿って、光学ユニットの製造方法を説明する。すでに説明したように、積層レンズ10は、接合ウエハ10W(図6参照)を切断し個片化するウエハレベル法により作製される。
<Method of Manufacturing Optical Unit>
Next, the method of manufacturing the optical unit will be described according to the flowchart shown in FIG. As described above, the laminated lens 10 is manufactured by a wafer level method in which the bonded wafer 10W (see FIG. 6) is cut and separated into pieces.
 なお、光学絞りウエハ31W、32W(光学絞り素子31、32)は、スペーサの機能も有している。 The optical diaphragm wafers 31W and 32W (optical diaphragm elements 31 and 32) also have the function of a spacer.
<ステップS11>素子ウエハ作製工程
 複数の光学素子11を含む第1素子ウエハ11Wが、モールド成型法により作製される。複数の光学素子11は、それぞれが光軸を有する。
<Step S11> Element Wafer Manufacturing Step A first element wafer 11W including a plurality of optical elements 11 is manufactured by a molding method. Each of the plurality of optical elements 11 has an optical axis.
 例えば、図5Aに示すように、2枚の金型11K1、11K2の間に、樹脂シート11Sが配置される。そして、図5Bおよび図5Cに示すように、プレス成形法により、複数の光学素子11を含む第1素子ウエハ11Wが作製される。第1素子ウエハ11Wは、金型の形状を樹脂に転写するモールド成型法であれば、射出成形法等で作製されてもよい。 For example, as shown in FIG. 5A, the resin sheet 11S is disposed between the two molds 11K1 and 11K2. Then, as shown in FIGS. 5B and 5C, the first element wafer 11W including the plurality of optical elements 11 is manufactured by the press molding method. The first element wafer 11W may be manufactured by an injection molding method or the like as long as it is a molding method in which the shape of a mold is transferred to a resin.
 そして、複数の光学素子11を含む第1素子ウエハ11Wの第1の主面11SAの光路領域の外周には、切断切り代よりも幅の広い溝L10が形成されている。 Then, on the outer periphery of the optical path region of the first main surface 11SA of the first element wafer 11W including the plurality of optical elements 11, a groove L10 wider than the cutting margin is formed.
 また、光学素子12を含む素子ウエハ12W等が作製される。なお、第1素子ウエハ11W以外の素子ウエハは、モールド成型法以外の方法で作製されていてもよい。 In addition, an element wafer 12 W or the like including the optical element 12 is manufactured. The element wafers other than the first element wafer 11W may be manufactured by a method other than the molding method.
 第1素子ウエハ11W等は、仕様の光の波長帯域において透明な、ポリカーボネート等の光学樹脂からなる。第1素子ウエハ11W等は、平行平板ガラスに樹脂からなる光路部等を配設したハイブリッド素子ウエハ等でもよい。 The first element wafer 11 W and the like are made of an optical resin such as polycarbonate which is transparent in the wavelength band of light of the specification. The first element wafer 11W or the like may be a hybrid element wafer or the like in which an optical path portion or the like made of resin is disposed on a parallel flat plate glass.
 また、フィルタウエハである素子ウエハ12W(図6参照)は、赤外線(例えば波長700nm以上の光)を除去する赤外線カット材料からなる平板である。フィルタウエハとしては、所定波長の光だけを透過し、不要波長の光をカットするバンドパスフィルタが表面に配設されている平板ガラスウエハ等でもよい。 The element wafer 12W (see FIG. 6), which is a filter wafer, is a flat plate made of an infrared cut material that removes infrared rays (for example, light having a wavelength of 700 nm or more). The filter wafer may be a flat glass wafer or the like on which a band pass filter that transmits only light of a predetermined wavelength and cuts light of an unnecessary wavelength is disposed on the surface.
 平行平板の素子ウエハ14W(図6参照)は、ガラスウエハまたは透明樹脂ウエハである。 The parallel flat element wafer 14W (see FIG. 6) is a glass wafer or a transparent resin wafer.
<ステップS12>接合ウエハ作製工程
 図6に示すように、複数の素子ウエハ11W~14W、31W~33Wが、それぞれの光学素子の光軸Oが一致するように接着層20を間に挾んで積層されて接合ウエハ10Wが作製される。
<Step S12> Bonding Wafer Preparation Step As shown in FIG. 6, a plurality of element wafers 11W to 14W and 31W to 33W are stacked with the adhesive layer 20 interposed therebetween so that the optical axes O of the respective optical elements coincide. Thus, a bonded wafer 10W is produced.
 例えば、感光性エポキシ樹脂、感光性ポリイミド等からなる接着材料を素子ウエハに塗布してから、120℃のホットプレート乾燥により固体化し、フォトリソグラフィ法によりパターニングすることにより、接着層20は配設される。接着層20として、感光性樹脂シートであるフィルムレジストを用いてもよいし、液状樹脂を用いてもよい。液状樹脂を用いる場合には、過剰の樹脂が収容される凹部を光路領域の周囲に形成しておけば、光路領域に液状樹脂が侵入しない。 For example, an adhesive material made of photosensitive epoxy resin, photosensitive polyimide or the like is applied to the element wafer, then solidified by hot plate drying at 120 ° C., and the adhesive layer 20 is provided by patterning by photolithography. Ru. As the adhesive layer 20, a film resist which is a photosensitive resin sheet may be used, or a liquid resin may be used. In the case of using a liquid resin, if a recess for containing an excess resin is formed around the optical path region, the liquid resin does not intrude into the optical path region.
 なお、複数の素子ウエハの構成、すなわち、材料、配置されている光学素子の形状、数、配置、および外形形状等は仕様に応じて設計される。ただし、複数の素子ウエハが含む、素子の数および素子の配置は同じであることが好ましい。 The configuration of the plurality of element wafers, that is, the material, the shape, the number, the arrangement, the outer shape, and the like of the arranged optical elements are designed according to the specifications. However, it is preferable that the number of elements and the arrangement of elements included in a plurality of element wafers be the same.
<ステップS13>切断工程
 光学ユニット作製工程では、接合ウエハ10Wが切断され、複数の積層レンズ10が作製される。
<Step S13> Cutting Process In the optical unit manufacturing process, the bonded wafer 10W is cut, and a plurality of laminated lenses 10 are manufactured.
 すなわち、図6に示す様に、接合ウエハ10Wが、溝L10の幅よりも切り代が小さいダイシングブレード50により切断され、図7に示す複数の積層レンズ10に個片化される。レーザーダイシングまたはプラズマダイシングを用いて切断してもよい。 That is, as shown in FIG. 6, the bonded wafer 10W is cut by the dicing blade 50 whose cutting allowance is smaller than the width of the groove L10, and is separated into a plurality of laminated lenses 10 shown in FIG. It may cut using laser dicing or plasma dicing.
 複数の光学素子11~14、31~33が積層された積層レンズ10は、前面10SAと前面10SAと対向する後面10SBとを有する。積層レンズ10は、前面10SAである第1の主面11SAを有する第1光学素子11を含む。そして、第1の主面11SAの周囲には光路を囲む段差部S10がある。 A laminated lens 10 in which a plurality of optical elements 11 to 14 and 31 to 33 are laminated has a front surface 10SA and a rear surface 10SB facing the front surface 10SA. The multilayer lens 10 includes a first optical element 11 having a first major surface 11SA which is a front surface 10SA. Then, there is a step portion S10 surrounding the optical path around the first main surface 11SA.
 なお、積層レンズ10は略直方体であるが、個片化後の加工により、多角柱または円柱としてもよい。すなわち、積層レンズ10の形状は略直方体に限られるものではない。同様に、本明細書における「矩形」は、角部が面取りされていたり、曲線化されていたりする「略矩形」も含まれる。 In addition, although the laminated lens 10 is a substantially rectangular parallelepiped, it is good also as a polygonal pillar or a cylinder by the process after separating into pieces. That is, the shape of the multilayer lens 10 is not limited to a substantially rectangular parallelepiped. Similarly, the "rectangle" in the present specification includes "a substantially rectangular shape" in which the corner is chamfered or curved.
<ステップS14>レンズ枠作製工程
 貫通孔H40があるレンズ枠40が作製される。レンズ枠40は、セラミック、Si、ガラス、またはステンレススチール等の金属からなる。レンズ枠40の前開口40SAには光軸に向かって延設された凸部である延設部C40があり、前開口40SAは後開口40Sよりも小さい。
<Step S14> Lens Frame Manufacturing Step A lens frame 40 having a through hole H40 is manufactured. The lens frame 40 is made of metal such as ceramic, Si, glass or stainless steel. The front opening 40SA of the lens frame 40 has an extending portion C40 which is a convex portion extended toward the optical axis, and the front opening 40SA is smaller than the rear opening 40S.
 また、矩形の後開口40SBの光軸直交方向の内寸は、積層レンズ10の矩形の後面10SBの外寸よりも僅かに大きい。一方、矩形の前開口40SAの光軸直交方向の内寸は、積層レンズ10の矩形の前面10SA(11SA)の外寸よりも僅かに大きい。 Further, the inner dimension of the rectangular rear opening 40SB in the direction orthogonal to the optical axis is slightly larger than the outer dimension of the rectangular rear surface 10SB of the multilayer lens 10. On the other hand, the inner dimension of the rectangular front opening 40SA in the direction orthogonal to the optical axis is slightly larger than the outer dimension of the rectangular front surface 10SA (11SA) of the multilayer lens 10.
 なお、ステップS14のレンズ枠作製工程が、ステップS11~ステップS13の光学ユニット作製工程の前に行われてもよい。 The lens frame production process of step S14 may be performed before the optical unit production process of steps S11 to S13.
<ステップS15>組立工程
 図8に示すように、積層レンズ10が、レンズ枠40の後開口40SBから貫通孔H40に挿入され、接着剤(不図示)で固定される。
<Step S15> Assembling Step As shown in FIG. 8, the multilayer lens 10 is inserted into the through hole H40 from the rear opening 40SB of the lens frame 40 and fixed by an adhesive (not shown).
 なお、積層レンズ10の後面10SBは、レンズ枠40の前開口40SAよりも大きいため、積層レンズ10を前開口40SAからレンズ枠40に挿入することはできない。 In addition, since the rear surface 10SB of the multilayer lens 10 is larger than the front opening 40SA of the lens frame 40, the multilayer lens 10 can not be inserted into the lens frame 40 from the front opening 40SA.
 レンズ枠40の後開口40SBから貫通孔H40に挿入された積層レンズ10は、段差部S10が、レンズ枠40の前開口40SAに嵌合する。このため、レンズ枠40の中心軸と積層レンズ10の光軸とが位置決めされ、同時にレンズ枠40に対する積層レンズ10の光軸方向の位置も、位置決めされる。 In the multilayer lens 10 inserted into the through hole H40 from the rear opening 40SB of the lens frame 40, the step portion S10 fits in the front opening 40SA of the lens frame 40. Therefore, the central axis of the lens frame 40 and the optical axis of the multilayer lens 10 are positioned, and at the same time, the position of the multilayer lens 10 in the optical axis direction with respect to the lens frame 40 is also positioned.
 段差部S10となる溝L10は金型11K1の形状を転写しているため、正確な形状で所定位置に正確に形成されている。このため、積層レンズ10は正確に位置決めされる。また、段差部S10の形成時に、チッピングによる欠陥が生じることがないため、積層レンズ10を有する光学ユニット1は光学特性が優れている。さらに、段差部S10は、素子ウエハ11Wの作製時に形成されるため、光学ユニット1は製造が容易である。 Since the groove L10 to be the step portion S10 transfers the shape of the mold 11K1, it is accurately formed at a predetermined position with an accurate shape. For this reason, the multilayer lens 10 is accurately positioned. Further, since no defect due to chipping occurs when forming the step portion S10, the optical unit 1 having the multilayer lens 10 has excellent optical characteristics. Further, since the step portion S10 is formed when the element wafer 11W is manufactured, the optical unit 1 is easy to manufacture.
<実施形態の変形例>
 実施形態の変形例1、2の光学ユニット1A、1B、光学ユニット1A、1Bの製造方法および内視鏡9A、9Bは、光学ユニット1、光学ユニット1の製造方法とおよび内視鏡9と類似し、同じ効果を有しているので、同じ機能の構成要素には同じ符号を付し説明は省略する。
<Modification of Embodiment>
The optical units 1A and 1B, the manufacturing method of the optical units 1A and 1B, and the endoscopes 9A and 9B of the modification examples 1 and 2 of the embodiment are similar to the optical unit 1, the manufacturing method of the optical unit 1, and the endoscope 9 Since the same effect is obtained, the same reference numerals are given to the components having the same functions, and the description is omitted.
<実施形態の変形例1>
 図9に示すように、変形例1の光学ユニット1Aでは、レンズ枠40Aの貫通孔H40Aの前開口40SAが円形である。また、第1光学素子11Aの、段差部S10Aに囲まれた第1の主面11SA(前面10SA)も円形である。
<Modification 1 of Embodiment>
As shown in FIG. 9, in the optical unit 1A of the first modification, the front opening 40SA of the through hole H40A of the lens frame 40A is circular. In addition, the first main surface 11SA (front surface 10SA) of the first optical element 11A surrounded by the step portion S10A is also circular.
 2段ダイシング法により、第1光学素子の第1の主面11SAに段差部(切り欠き)を形成する場合には、第1の主面11SAは矩形に限定される。しかし、光路は円形であるため、光路の周囲に不要な領域が生じてしまう。 When the stepped portion (notch) is formed in the first major surface 11SA of the first optical element by the two-step dicing method, the first major surface 11SA is limited to a rectangular shape. However, since the light path is circular, an unnecessary area is generated around the light path.
 これに対して、光学ユニット1Aでは、モールド成型法により作製される第1光学素子11Aの第1の主面11SAは円形であり、光路の周囲に不要な領域がなく、光軸直交方向の外寸が小さい細径である。 On the other hand, in the optical unit 1A, the first main surface 11SA of the first optical element 11A manufactured by the molding method is circular, there is no unnecessary area around the optical path, and the outer side in the optical axis orthogonal direction Small size and small diameter.
 なお、モールド成型法により作製される光学ユニットの第1の主面11SAの形状は、レンズ枠の前開口の形状に合わせて自由に設計できる。例えば、第1の主面11SAの形状は、六角形であってもよい。 The shape of the first main surface 11SA of the optical unit manufactured by the molding method can be freely designed according to the shape of the front opening of the lens frame. For example, the shape of the first major surface 11SA may be hexagonal.
 光学ユニット1Aを具備する内視鏡9Aは、内視鏡9の効果を有し、さらに、光学ユニット1Aの効果を有するため先端部3Aが細径である。 The endoscope 9A having the optical unit 1A has the effect of the endoscope 9 and further has the effect of the optical unit 1A so that the tip 3A has a small diameter.
<実施形態の変形例2>
 図10および図11に示すように、変形例2の内視鏡9Bの光学ユニット1Bが集光した撮像光は、光学ユニット1Bの後面10SBに配設された撮像ユニット60により受光される。
<Modification 2 of Embodiment>
As shown in FIGS. 10 and 11, the imaging light collected by the optical unit 1B of the endoscope 9B of the modification 2 is received by the imaging unit 60 disposed on the rear surface 10SB of the optical unit 1B.
 撮像ユニット60は、カバーガラス72と、撮像素子71と、複数の半導体素子73、74、75が積層された積層素子70と、を含む。積層素子70は複数の半導体ウエハが積層された接合ウエハの切断により作製されるウエハレベル積層体である。 The imaging unit 60 includes a cover glass 72, an imaging element 71, and a stacked element 70 in which a plurality of semiconductor elements 73, 74, and 75 are stacked. The laminated element 70 is a wafer level laminated body manufactured by cutting a bonded wafer in which a plurality of semiconductor wafers are laminated.
 撮像素子71は、CCDまたはCMOS撮像部からなる受光部を有する。撮像素子71は、表面照射型イメージセンサおよび裏面照射型イメージセンサのいずれでもよい。積層素子70は、撮像素子71が出力する撮像信号を1次処理したり、撮像素子71を制御する制御信号を処理したりする。例えば、半導体素子73、74、75は、AD変換回路、メモリ、伝送出力回路、フィルター回路、薄膜コンデンサ、および、薄膜インダクタ等を含んでいる。積層素子70が含む素子の数は、撮像素子71を含めて、例えば、3以上10以下である。 The imaging device 71 has a light receiving unit formed of a CCD or a CMOS imaging unit. The imaging device 71 may be any of a front side illumination type image sensor and a rear side illumination type image sensor. The stacked element 70 performs primary processing of an imaging signal output from the imaging element 71, and processes a control signal for controlling the imaging element 71. For example, the semiconductor elements 73, 74, and 75 include an AD conversion circuit, a memory, a transmission output circuit, a filter circuit, a thin film capacitor, a thin film inductor, and the like. The number of elements included in the stacked element 70 is, for example, 3 or more and 10 or less, including the imaging element 71.
 なお、積層素子70の光軸直交方向の外寸は、光学ユニット1の外寸よりも小さい。積層素子70とレンズ枠40Bとの間には、封止樹脂79が充填されている。封止樹脂79は、レンズ枠40Bに光学ユニット1を固定している接着剤と同じ樹脂でもよい。また、光学ユニット1および積層素子70が、光学素子ウエハおよび半導体素子ウエハの接合ウエハの切断によるウエハレベル法で作製されてもよい。 Note that the outer dimension in the optical axis orthogonal direction of the laminated element 70 is smaller than the outer dimension of the optical unit 1. A sealing resin 79 is filled between the laminated element 70 and the lens frame 40B. The sealing resin 79 may be the same resin as the adhesive fixing the optical unit 1 to the lens frame 40B. Further, the optical unit 1 and the laminated element 70 may be manufactured by a wafer level method by cutting a bonded wafer of the optical element wafer and the semiconductor element wafer.
 撮像ユニット60では、積層素子70に配線板61が接合され、配線板61に信号ケーブル62が接合されている。 In the imaging unit 60, the wiring board 61 is joined to the laminated element 70, and the signal cable 62 is joined to the wiring board 61.
 光学ユニット1と同じように、ウエハレベル法で作製される積層素子70は、機械的強度が高くはない。しかし、積層素子70を含む撮像ユニット60は全体が、レンズ枠40に挿入され保護されている。 Like the optical unit 1, the laminated element 70 manufactured by the wafer level method does not have high mechanical strength. However, the entire imaging unit 60 including the laminated element 70 is inserted into the lens frame 40 and protected.
 撮像ユニット60に信号ケーブル62が接合されていてもよい。撮像ユニット60は、積層素子70に配線板61または信号ケーブル62を接合するときに、積層素子70が破損するおそれがない。 The signal cable 62 may be joined to the imaging unit 60. When the imaging unit 60 joins the wiring board 61 or the signal cable 62 to the laminated element 70, there is no possibility that the laminated element 70 is damaged.
 なお、図10に示すように、レンズ枠40Bは、円筒形である。すなわち、レンズ枠の外形形状は直方体に限られるものではなく、円柱または多角柱でもよい。また、レンズ枠40Bの前開口40SAは光学ユニット1Aと同じ円形であるが、光学ユニット1と同じ矩形でもよい。 As shown in FIG. 10, the lens frame 40B is cylindrical. That is, the outer shape of the lens frame is not limited to a rectangular parallelepiped, and may be a cylinder or a polygonal prism. The front opening 40SA of the lens frame 40B has the same circular shape as the optical unit 1A, but may have the same rectangular shape as the optical unit 1.
 以上の説明のように内視鏡9Bは、撮像光学系として光学ユニット1Bを有していた。照明光を出射する内視鏡では、光学ユニットが照明光学系を構成していてもよい。また、内視鏡が、光学ユニット1等の照明用光学ユニットおよび撮像用光学ユニットを有していてもよい。 As described above, the endoscope 9B has the optical unit 1B as an imaging optical system. In the endoscope which emits illumination light, the optical unit may constitute an illumination optical system. Further, the endoscope may have an illumination optical unit such as the optical unit 1 and an imaging optical unit.
 本発明は上述した実施形態等に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等ができる。 The present invention is not limited to the above-described embodiment and the like, and various changes, modifications, and the like can be made without departing from the scope of the present invention.
1、1A、1B・・・光学ユニット
3・・・挿入部
3A・・・先端部
9、9A、9B・・・内視鏡
10・・・積層レンズ
10SA・・・前面
10SB・・・後面
10SS・・・側面
10W・・・接合ウエハ
11・・・第1光学素子
11、12、13、14・・・光学素子
11K1、11K2・・・金型
11S・・・樹脂シート
11SA・・・第1の主面
11SB・・・第2の主面
11W、12W、13W、14W・・・素子ウエハ
12、13、14、31、32、33・・・光学素子
20・・・接着層
40・・・レンズ枠
40SA・・・前開口
40SB・・・後開口
50・・・ダイシングブレード
60・・・撮像ユニット
61・・・配線板
62・・・信号ケーブル
70・・・積層素子
71・・・撮像素子
72・・・カバーガラス
73、74、75・・・半導体素子
79・・・封止樹脂
DESCRIPTION OF SYMBOLS 1, 1A, 1B ... Optical unit 3 ... Insertion part 3A ... Tip part 9, 9A, 9B ... Endoscope 10 ... Laminated lens 10SA ... Front surface 10SB ... Rear surface 10SS ... Side surface 10W ... Bonded wafer 11 ... First optical element 11, 12, 13, 14 ... Optical element 11K1, 11K2 ... Mold 11S ... Resin sheet 11SA ... First Second main surfaces 11W, 12W, 13W, 14W ... element wafers 12, 13, 14, 31, 32, 33 ... optical elements 20 ... adhesive layers 40 ... Lens frame 40SA: front opening 40SB: rear opening 50: dicing blade 60: imaging unit 61: wiring board 62: signal cable 70: lamination element 71: imaging element 72 · · · cover glass 73, 74, 5 ... semiconductor element 79 ... sealing resin

Claims (7)

  1.  内視鏡の先端部に配設される光学ユニットの製造方法であって、
     それぞれの光学素子を含む複数の素子ウエハを作製する工程と、
     前記複数の素子ウエハを積層し、接合ウエハを作製する工程と、
     前記接合ウエハを切断し、前面と前記前面と対向する後面とを有し、前記前面である第1の主面と前記第1の主面と対向する第2の主面とを有する第1光学素子を含む複数の光学素子が積層された、積層レンズを作製する工程と、
     前開口と後開口とのある貫通孔があるレンズ枠を作製する工程と、
     前記積層レンズを、前記後開口から前記貫通孔に挿入し、前記レンズ枠に固定する組立工程と、を具備し、
     前記素子ウエハを作製する工程で作製される、前記第1光学素子を含む第1素子ウエハは、モールド成型法により作製され、
     前記第1光学素子の前記第1の主面の周囲に段差部があり、
     前記組立工程において、前記レンズ枠の前記前開口に、前記段差部が嵌合することを特徴とする光学ユニットの製造方法。
    A method of manufacturing an optical unit disposed at a distal end portion of an endoscope, comprising:
    Producing a plurality of element wafers including the respective optical elements;
    Laminating the plurality of element wafers to produce a bonded wafer;
    First optical system having a front surface and a rear surface facing the front surface, and having a first main surface which is the front surface and a second main surface facing the first main surface. Producing a laminated lens in which a plurality of optical elements including the element are laminated;
    Manufacturing a lens frame having a through hole with a front opening and a rear opening;
    Assembling the laminated lens from the rear opening into the through hole and fixing the laminated lens to the lens frame;
    The first element wafer including the first optical element, which is produced in the step of producing the element wafer, is produced by a molding method.
    There is a stepped portion around the first main surface of the first optical element,
    A method of manufacturing an optical unit, wherein the step portion is fitted in the front opening of the lens frame in the assembling step.
  2.  前記レンズ枠の前記前開口および前記後開口が矩形であり、
     前記第1光学素子の前記第1の主面および前記第2の主面が矩形であることを特徴とする請求項1に記載の光学ユニットの製造方法。
    The front opening and the rear opening of the lens frame are rectangular;
    The method of manufacturing an optical unit according to claim 1, wherein the first main surface and the second main surface of the first optical element are rectangular.
  3.  前記レンズ枠の前記前開口が円形で、前記後開口が矩形であり、
     前記第1光学素子の前記第1の主面が円形で、前記第2の主面が矩形であることを特徴とする請求項1に記載の光学ユニットの製造方法。
    The front opening of the lens frame is circular and the rear opening is rectangular;
    The method of manufacturing an optical unit according to claim 1, wherein the first main surface of the first optical element is circular, and the second main surface is rectangular.
  4.  請求項1から請求項3のいずれか1項に記載の光学ユニットの製造方法で製造されたことを特徴とする光学ユニット。 An optical unit manufactured by the method of manufacturing an optical unit according to any one of claims 1 to 3.
  5.  内視鏡の先端部に配設される光学ユニットであって、
     前面と前記前面と対向する後面とを有し、前記前面である第1の主面を有する第1光学素子、を含む複数の光学素子が積層された積層レンズと、
     前開口と後開口とのある貫通孔に前記積層レンズが挿入されているレンズ枠と、を具備し、
     モールド成型法により作製された前記第1光学素子の前記第1の主面の周囲に段差部があり、
     前記レンズ枠の前記前開口に、前記段差部が嵌合していることを特徴とする光学ユニット。
    An optical unit disposed at a distal end portion of an endoscope, the optical unit comprising:
    A laminated lens in which a plurality of optical elements including a front surface and a first optical element having a front surface and a rear surface facing the front surface and having a first main surface which is the front surface;
    And a lens frame in which the laminated lens is inserted in a through hole having a front opening and a rear opening,
    There is a stepped portion around the first main surface of the first optical element manufactured by a molding method,
    An optical unit characterized in that the stepped portion is fitted to the front opening of the lens frame.
  6.  請求項4または請求項5に記載の光学ユニットを具備することを特徴とする内視鏡。 An endoscope comprising the optical unit according to claim 4 or 5.
  7.  前記光学ユニットが集光した撮像光を受光する撮像ユニットを更に具備し、
     前記撮像ユニットが前記レンズ枠に挿入されていることを特徴とする請求項6に記載の内視鏡。
    It further comprises an imaging unit for receiving imaging light collected by the optical unit,
    The endoscope according to claim 6, wherein the imaging unit is inserted into the lens frame.
PCT/JP2018/000286 2018-01-10 2018-01-10 Method for manufacturing optical unit, optical unit, and endoscope WO2019138463A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000286 WO2019138463A1 (en) 2018-01-10 2018-01-10 Method for manufacturing optical unit, optical unit, and endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000286 WO2019138463A1 (en) 2018-01-10 2018-01-10 Method for manufacturing optical unit, optical unit, and endoscope

Publications (1)

Publication Number Publication Date
WO2019138463A1 true WO2019138463A1 (en) 2019-07-18

Family

ID=67218459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000286 WO2019138463A1 (en) 2018-01-10 2018-01-10 Method for manufacturing optical unit, optical unit, and endoscope

Country Status (1)

Country Link
WO (1) WO2019138463A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088713A (en) * 2002-06-27 2004-03-18 Olympus Corp Image pickup lens unit and image pickup device
JP2005250283A (en) * 2004-03-05 2005-09-15 Pentax Corp Objective lens system for endoscope and housing structure of objective lens system for endoscope
WO2012073634A1 (en) * 2010-11-29 2012-06-07 オリンパスメディカルシステムズ株式会社 Capsule medical device and method for manufacturing same
WO2017073440A1 (en) * 2015-10-27 2017-05-04 オリンパス株式会社 Endoscope
WO2017212520A1 (en) * 2016-06-06 2017-12-14 オリンパス株式会社 Method for manufacturing endoscope optical unit, endoscope optical unit, and endoscope
WO2017216898A1 (en) * 2016-06-15 2017-12-21 オリンパス株式会社 Method for manufacturing endoscope optical unit, endoscope optical unit, and endoscope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088713A (en) * 2002-06-27 2004-03-18 Olympus Corp Image pickup lens unit and image pickup device
JP2005250283A (en) * 2004-03-05 2005-09-15 Pentax Corp Objective lens system for endoscope and housing structure of objective lens system for endoscope
WO2012073634A1 (en) * 2010-11-29 2012-06-07 オリンパスメディカルシステムズ株式会社 Capsule medical device and method for manufacturing same
WO2017073440A1 (en) * 2015-10-27 2017-05-04 オリンパス株式会社 Endoscope
WO2017212520A1 (en) * 2016-06-06 2017-12-14 オリンパス株式会社 Method for manufacturing endoscope optical unit, endoscope optical unit, and endoscope
WO2017216898A1 (en) * 2016-06-15 2017-12-21 オリンパス株式会社 Method for manufacturing endoscope optical unit, endoscope optical unit, and endoscope

Similar Documents

Publication Publication Date Title
US10624527B2 (en) Manufacturing method of optical unit for endoscope, optical unit for endoscope, and endoscope
US8823859B2 (en) Image pickup unit, optical unit, and manufacturing method for the image pickup unit
CN109310268B (en) Method for manufacturing optical unit for endoscope, and endoscope
WO2014188788A1 (en) Image pickup apparatus, image pickup apparatus manufacturing method, and endoscope system
WO2020152782A1 (en) Method for manufacturing endoscope imaging device, endoscope imaging device, and endoscope
JP2018050769A (en) Optical element, optical unit for endoscope, endoscope, and manufacturing method of optical unit for endoscope
WO2019138440A1 (en) Imaging device, endoscope, and manufacturing method for imaging device
WO2018198266A1 (en) Endoscope, imaging module, and method for manufacturing imaging module
CN113228610B (en) Method for manufacturing image pickup device for endoscope, and endoscope
JP2009080282A (en) Camera module
WO2018087872A1 (en) Imaging module and endoscope
WO2019138463A1 (en) Method for manufacturing optical unit, optical unit, and endoscope
WO2021176512A1 (en) Endoscope, optical laiminate, and method for manufacturing optical laminate
JP2009066223A (en) Prism unit for imaging apparatus and imaging unit
JP2007279134A (en) Prism, composite optical element with the prism, and optical device with the composite optical element
US20210099620A1 (en) Image pickup apparatus, endoscope, and manufacturing method of image pickup apparatus
US20210396975A1 (en) Manufacturing method of image pickup apparatus for endoscope, image pickup apparatus for endoscope, and endoscope
JP2019191415A (en) Optical element
WO2019171460A1 (en) Endoscope imaging device, endoscope, and method of manufacturing endoscope imaging device
US20210137372A1 (en) Image pickup apparatus for endoscope and endoscope
WO2021176704A1 (en) Optical unit, optical-unit manufacturing method, and endoscope
WO2020183600A1 (en) Endoscopic imaging device and endoscope
WO2022224301A1 (en) Image-capturing unit, endoscope, and method for manufacturing image-capturing unit
WO2023218633A1 (en) Imaging unit, endoscope, and method for manufacturing imaging unit
WO2023002540A1 (en) Lens unit, imaging device, and endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP