WO2019137169A1 - 数据传输方法、装置、设备及计算机可读存储介质 - Google Patents

数据传输方法、装置、设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2019137169A1
WO2019137169A1 PCT/CN2018/122045 CN2018122045W WO2019137169A1 WO 2019137169 A1 WO2019137169 A1 WO 2019137169A1 CN 2018122045 W CN2018122045 W CN 2018122045W WO 2019137169 A1 WO2019137169 A1 WO 2019137169A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
processor
data packet
smf
assistance information
Prior art date
Application number
PCT/CN2018/122045
Other languages
English (en)
French (fr)
Inventor
李爱华
周欣
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Priority to US16/961,298 priority Critical patent/US11564157B2/en
Priority to EP18899682.1A priority patent/EP3739921A4/en
Publication of WO2019137169A1 publication Critical patent/WO2019137169A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/06Registration at serving network Location Register, VLR or user mobility server
    • H04W8/065Registration at serving network Location Register, VLR or user mobility server involving selection of the user mobility server
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/10Upper layer protocols adapted for application session management, e.g. SIP [Session Initiation Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a data transmission method, apparatus, device, and computer readable storage medium.
  • the user equipment (User Equipment, UE) needs to establish a wireless signaling bearer and a data plane bearer before transmitting data.
  • a protocol data unit (PDU) session is established on the end-to-end path of the UE, the radio side, and the core network. After that, the UE can send data packets through the data plane.
  • PDU protocol data unit
  • the data transmission method in the related art consumes a large amount of resources.
  • an embodiment of the present disclosure provides a data transmission method, which is applied to an Access and Mobility Management Function (AMF), and includes:
  • SMF session management function
  • the selecting a session management function SMF includes:
  • the SMF is selected according to the second selection assistance information.
  • the first selection assistance information includes any one or more of the following information:
  • DNN Data Network Name
  • slice assistance information carrier local configuration or policy, routing indication
  • the second selection assistance information includes any one or more of the following information:
  • PDU session ID DNN
  • slice assistance information carrier local configuration or policy, routing indication.
  • the data packet is carried in a Non-access stratum (NAS) Data PDU.
  • NAS Non-access stratum
  • an embodiment of the present disclosure provides a data transmission method, which is applied to an AMF, and includes:
  • the SMF is selected according to the second selection assistance information.
  • the first selection assistance information includes any one or more of the following information:
  • DNN slice assistance information, carrier local configuration or policy, routing indication
  • the second selection assistance information includes any one or more of the following information:
  • PDU session ID DNN
  • slice assistance information carrier local configuration or policy, routing indication.
  • an embodiment of the present disclosure provides a data transmission method, which is applied to an AMF, and includes:
  • the UPF is selected and the data message is forwarded to the UPF.
  • the selecting a user plane function UPF includes:
  • the third selection assistance information includes any one or more of the following information: DNN, slice assistance information, carrier local configuration or policy, and route indication.
  • an embodiment of the present disclosure provides a data transmission method, which is applied to an SMF, and includes:
  • the forwarding the data packet to the UPF includes:
  • the data message is forwarded to the UPF through the N4 message.
  • an embodiment of the present disclosure provides a data transmission method, which is applied to an UPF, and includes:
  • the receiving the data message forwarded by the SMF includes:
  • an embodiment of the present disclosure provides a data transmission method, which is applied to an UPF, and includes:
  • an embodiment of the present disclosure provides a data transmission method, which is applied to a UE, and includes:
  • the data packet is carried in the NAS Data PDU.
  • an embodiment of the present disclosure provides a data transmission method, which is applied to a base station, and includes:
  • the data message is sent to the AMF.
  • the data packet is carried in the NAS Data PDU.
  • the sending the data packet to the AMF includes:
  • the data message is sent to the AMF through an N2 message.
  • a ninth aspect, an embodiment of the present disclosure provides a data transmission apparatus, including: a processor and a transceiver;
  • the transceiver is configured to receive a data packet sent by the user equipment UE;
  • the processor is configured to select a session management function (SMF) and forward the data packet to the SMF. After receiving the data packet, the SMF forwards the data packet to the user plane function UPF.
  • SMF session management function
  • processor is further configured to:
  • the SMF is selected according to the second selection assistance information.
  • the first selection assistance information includes any one or more of the following information:
  • DNN slice assistance information, carrier local configuration or policy, routing indication
  • the second selection assistance information includes any one or more of the following information:
  • PDU session ID DNN
  • slice assistance information carrier local configuration or policy, routing indication.
  • the data packet is carried in the NAS Data PDU.
  • an embodiment of the present disclosure provides a data transmission apparatus, including: a processor and a transceiver;
  • the processor is configured to: after receiving, by the transceiver, a data message sent by the UE, determining whether the UE is established with a PDU session; and when the UE does not establish a PDU session, selecting the auxiliary information according to the first The SMF is selected; when the UE establishes a PDU session, the SMF is selected according to the second selection assistance information.
  • the first selection assistance information includes any one or more of the following information:
  • DNN slice assistance information, carrier local configuration or policy, routing indication
  • the second selection assistance information includes any one or more of the following information:
  • PDU session ID DNN
  • slice assistance information carrier local configuration or policy, routing indication.
  • an embodiment of the present disclosure provides a data transmission apparatus, including: a processor and a transceiver;
  • the transceiver is configured to receive a data packet sent by the user equipment UE;
  • the processor is configured to select a user plane function UPF, and forward the data packet to the UPF.
  • the processor is further configured to select an UPF according to the third selection auxiliary information
  • the third selection assistance information includes any one or more of the following information: DNN, slice assistance information, carrier local configuration or policy, and route indication.
  • an embodiment of the present disclosure provides a data transmission apparatus, including: a processor and a transceiver;
  • the processor is configured to receive, by the transceiver, a data packet forwarded by the AMF, and forward the data packet to the UPF by using the transceiver.
  • processor is further configured to:
  • the data message is forwarded to the UPF through the N4 message.
  • an embodiment of the present disclosure provides a data transmission apparatus, including: a processor and a transceiver;
  • the processor is configured to receive, by the transceiver, a data packet forwarded by the SMF, and forward the data packet to the network side by using the transceiver according to a forwarding rule.
  • transceiver is further used
  • an embodiment of the present disclosure provides a data transmission apparatus, including: a processor and a transceiver;
  • the processor is configured to receive, by the transceiver, a data packet forwarded by the AMF, and forward the data packet to the network side by using the transceiver according to a forwarding rule.
  • an embodiment of the present disclosure provides a data transmission apparatus, including: a processor and a transceiver;
  • the processor is configured to send a data packet to the base station by using the transceiver, so that the base station sends the data packet to the AMF.
  • the data packet is carried in the NAS Data PDU.
  • an embodiment of the present disclosure provides a data transmission apparatus, including: a processor and a transceiver;
  • the processor is configured to receive, by the transceiver, a data packet sent by the UE, and send the data packet to the AMF.
  • the data packet is carried in the NAS Data PDU.
  • the transceiver is further configured to send the data packet to the AMF by using an N2 message.
  • an embodiment of the present disclosure provides a communication device, including: a transceiver, a memory, a processor, and a computer program stored on the memory and operable on the processor; the computer program is processed
  • a communication device including: a transceiver, a memory, a processor, and a computer program stored on the memory and operable on the processor; the computer program is processed
  • the steps in the method of any of the first to eighth aspects are implemented when executed.
  • the embodiment of the present disclosure provides a computer readable storage medium, for storing a computer program, when the computer program is executed by a processor, implementing the method according to any one of the first aspect to the eighth aspect A step of.
  • FIG. 1 is a flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • 16 is a schematic diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a data transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram of a communication device according to an embodiment of the present disclosure.
  • 21 is a schematic diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic diagram of a communication device according to an embodiment of the present disclosure.
  • 24 is a schematic diagram of a communication device according to an embodiment of the present disclosure.
  • Figure 25 is a schematic diagram of a communication device in accordance with an embodiment of the present disclosure.
  • the data transmission method of the embodiment of the present disclosure is applied to an AMF, including:
  • Step 101 Receive a data packet sent by the UE.
  • the data packet is sent by the UE in a Radio Resource Control (RRC) connection establishment process.
  • RRC Radio Resource Control
  • the data packet may be carried in a NAS Data PDU.
  • the data packet sent by the UE is sent to the AMF through the base station.
  • the UE carries the data packet in the NAS Data PDU and sends it to the base station.
  • the base station After receiving the base station, the base station sends an N2 message to the AMF through the N2 interface between the AMF and the AMF, and includes the NAS Data PDU in the N2 message.
  • the AMF receives the N2 message sent by the base station, and includes the NAS Data PDU in the N2 message.
  • Step 102 Select an SMF, and forward the data packet to the SMF. After receiving the data packet, the SMF forwards the data packet to the UPF.
  • the AMF may determine whether the UE has a PDU session established. Specifically, the AMF may determine, according to the UE-related information stored by the AMF, whether the UE establishes a PSU session. Depending on whether the UE has established a PDU session, the AMF may utilize different selection assistance information for SMF selection.
  • the AMF may select the SMF according to the first selection assistance information.
  • the first selection assistance information includes any one or more of the following information:
  • slice assistance information such as network slice selection assistance information (NSSAI)
  • NSSAI network slice selection assistance information
  • carrier local configuration or policy routing indication, and the like.
  • the AMF may select the SMF according to the second selection assistance information.
  • the second selection assistance information is based on any one or more of the following information:
  • PDU session ID PDU Session ID
  • data network name DNN data network name DNN
  • slice assistance information such as NSSAI
  • carrier local configuration or policy routing indication.
  • how to select the SMF according to the above information it is not limited in the embodiment of the present disclosure. For example, it may be selected based on the correspondence between the above information and the SMF. For example, when the determination result indicates that the UE does not have a PDU session, if it is determined that the SMF is selected according to the NSSAI, the corresponding relationship between the NSSAI and the SMF may be searched according to the NSSAI corresponding to the UE to determine the SMF. .
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the data transmission method of the embodiment of the present disclosure is applied to an AMF, including:
  • Step 201 After receiving the data packet sent by the UE, determine whether the UE establishes a PDU session.
  • the data packet may be carried in a NAS Data PDU.
  • Step 202 When the UE does not establish a PDU session, select an SMF according to the first selection assistance information.
  • Step 203 When the UE establishes a PDU session, select an SMF according to the second selection assistance information.
  • the first selection assistance information includes any one or more of the following information: DNN, slice assistance information (such as NSSAI), carrier local configuration or policy, route indication, and the like.
  • the second selection assistance information is based on any one or more of the following information: a PDU session identifier, a DNN, a slice assistance information (such as NSSAI), an operator local configuration or policy, and a route indication.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the data transmission method of the embodiment of the present disclosure is applied to the AMF, including:
  • Step 301 Receive a data packet sent by the UE.
  • Step 302 Select a UPF, and forward the data packet to the UPF.
  • the third selection assistance information includes any one or more of the following information: DNN, slice assistance information (such as NSSAI), carrier local configuration or policy, and route indication.
  • the data packet may be carried in a NAS Data PDU.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the data transmission method of the embodiment of the present disclosure is applied to a UE, including:
  • Step 401 Send a data packet to the base station, so that the base station sends the data packet to the AMF.
  • the data packet may be carried in a NAS Data PDU.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the data transmission method of the embodiment of the present disclosure is applied to an SMF, including:
  • Step 501 Receive a data packet forwarded by the AMF.
  • Step 502 Forward the data packet to the UPF.
  • the SMF forwards the data packet to the UPF through the N4 message.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the data transmission method of the embodiment of the present disclosure is applied to the UPF, and includes:
  • Step 601 Receive a data packet forwarded by the SMF.
  • the UPF receives the data packet that is forwarded by the SMF by using an N4 message.
  • Step 602 Forward the data packet to the network side according to the forwarding rule.
  • the forwarding rule may be a predefined forwarding rule.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the data transmission method of the embodiment of the present disclosure is applied to the UPF, and includes:
  • Step 701 Receive a data packet forwarded by the AMF.
  • Step 702 Forward the data packet to the network side according to the forwarding rule.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the data transmission method of the embodiment of the present disclosure includes:
  • Step 801 In the RRC connection establishment process, the UE encapsulates the sent data packet in the NAS Data PDU and carries it to the base station.
  • Step 802 After receiving the NAS Data PDU, the base station sends an N2 message (such as an Initial UE message) to the AMF through the N2 interface, and carries the NAS Data PDU sent by the UE side.
  • an N2 message such as an Initial UE message
  • the AMF After receiving the data message, the AMF has the following two different ways of handling the AMF, the SMF, and the UPF:
  • the method 1 includes steps 803 and 804, that is, the AMF first forwards the data packet to the selected SMF, and then the SMF forwards the data packet to the UPF.
  • Step 803 After the AMF parses the N2 interface message sent by the RAN, the AMF identifies the message type of the NAS Data PDU, and obtains the data packet sent by the UE side.
  • the AMF selects a corresponding SMF according to any combination or combination of DNN, slice assistance information (such as NSSAI), carrier local configuration/policy, and routing indication, and sends the data packet to the SMF;
  • slice assistance information such as NSSAI
  • carrier local configuration/policy and routing indication
  • the SMF is selected according to any information or combination of PDU Session ID, DNN, Slice Assistance Information (such as NSSAI), Carrier Local Configuration/Policy, and Route Indication, and the data packet is sent to the SMF.
  • Step 804 The SMF sends the data packet to the UPF through the N4 message.
  • the method 2 includes the step 805, that is, the AMF directly forwards the data packet to the selected UPF.
  • Step 805 The AMF selects the UPF according to any information or combination of the DNN, the slice assistance information, the operator local configuration or the policy, and the route indication, and sends the data packet to the UPF.
  • Step 806 The UPF forwards the data packet according to the forwarding rule.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the solution of the embodiment of the present disclosure optimizes and simplifies the 5G network data transmission mode, and is particularly suitable for the transmission of 5G small data messages.
  • the data transmission method of the embodiment of the present disclosure is applied to a base station, including:
  • Step 901 Receive a data packet sent by the UE.
  • the data packet is carried in the NAS Data PDU.
  • Step 902 Send the data packet to the AMF.
  • the base station sends the data packet to the AMF by using an N2 message.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the data transmission apparatus of the embodiment of the present disclosure includes: a processor 1001 and a transceiver 1002.
  • the transceiver 1002 is configured to receive a data packet sent by the UE.
  • the processor 1001 is configured to select a session management function SMF and forward the data packet to the SMF. After receiving the data packet, the SMF forwards the data packet to the user plane function UPF.
  • the processor 1001 is further configured to: determine whether the UE establishes a protocol data unit PDU session; when the UE does not establish a PDU session, select an SMF according to the first selection assistance information; when the UE is established In the PDU session, the SMF is selected according to the second selection assistance information.
  • the first selection assistance information includes any one or more of the following information:
  • Data network name DNN slice assistance information, carrier local configuration or policy, routing indication;
  • the second selection assistance information includes any one or more of the following information:
  • PDU session ID DNN
  • slice assistance information carrier local configuration or policy, routing indication.
  • the data packet is carried in the NAS Data PDU.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the data transmission apparatus of the embodiment of the present disclosure includes a processor 1101 and a transceiver 1102.
  • the processor 1101 is configured to: after receiving the data packet sent by the UE by using the transceiver 1102, determining whether the UE is established with a PDU session; when the UE does not establish a PDU session, according to the first selection
  • the auxiliary information selects the SMF; when the UE establishes a PDU session, the SMF is selected according to the second selection assistance information.
  • the first selection assistance information includes any one or more of the following information:
  • Data network name DNN slice assistance information, carrier local configuration or policy, routing indication;
  • the second selection assistance information includes any one or more of the following information:
  • PDU session ID DNN
  • slice assistance information carrier local configuration or policy, routing indication.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the data transmission apparatus of the embodiment of the present disclosure includes a processor 1201 and a transceiver 1202.
  • the transceiver 1202 is configured to receive a data packet sent by the user equipment UE.
  • the processor 1201 is configured to select a user plane function UPF, and forward the data packet to the UPF.
  • the processor 1201 is further configured to forward the data packet to the UPF by using an N4 message.
  • the processor 1201 is further configured to select an UPF according to the third selection assistance information, where the third selection assistance information includes any one or more of the following information: DNN, slice assistance information, carrier local configuration, or Policy, routing indication.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the data transmission apparatus of the embodiment of the present disclosure includes: a processor 1301 and a transceiver 1302.
  • the processor 1301 is configured to receive, by the transceiver 1302, a data packet forwarded by the SMF, and forward the data packet to the network side by using the transceiver according to the forwarding rule.
  • the transceiver 1302 is further configured to receive the data packet that is forwarded by the SMF by using an N4 message.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the data transmission apparatus of the embodiment of the present disclosure includes: a processor 1401 and a transceiver 1402.
  • the processor 1401 is configured to receive, by the transceiver 1402, a data packet forwarded by the AMF, and forward the data packet to the network side according to the forwarding rule.
  • the data transmission apparatus of the embodiment of the present disclosure includes: a processor 1501 and a transceiver 1502.
  • the processor 1501 is configured to send, by using the transceiver 1502, a data packet to the base station, so that the base station sends the data packet to the AMF.
  • the data packet is carried in the NAS Data PDU.
  • the data transmission apparatus of the embodiment of the present disclosure includes a processor 1601 and a transceiver 1602.
  • the processor 1601 is configured to receive, by the transceiver 1602, a data message sent by the UE, and send the data message to the AMF.
  • the data packet is carried in the NAS Data PDU.
  • the transceiver 1602 is further configured to send the data packet to the AMF by using an N2 message.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the data transmission apparatus of the embodiment of the present disclosure includes a processor 1701 and a transceiver 1702.
  • the processor 1701 is configured to receive, by the transceiver 1602, a data message forwarded by the AMF, and forward the data message to the UPF.
  • the processor 1701 is further configured to forward the data packet to the UPF by using an N4 message.
  • the UE sends the data packet to the AMF, so that the AMF can forward it to the SMF and then forward it to the UPF by the SMF, or the AMF directly sends the data packet to the UPF, and then forwards the data packet to the network side. . Therefore, the solution of the embodiment of the present disclosure does not need to wait for the PDU session to be established before the data message is sent, thereby reducing the interaction between the UE and other entities, and saving communication resources.
  • the communication device of the embodiment of the present disclosure includes:
  • the processor 1800 is configured to read a program in the memory 1820, and execute the following process: receiving, by the transceiver 1810, a data message sent by the user equipment UE; selecting a session management function SMF, and forwarding the data message to the SMF; After receiving the data packet, the SMF forwards the data packet to the user plane function UPF.
  • the transceiver 1810 is configured to receive and transmit data under the control of the processor 1800.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1800 and various circuits of memory represented by memory 1820.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1810 may be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1800 is responsible for managing the bus architecture and general processing, and the memory 1820 can store data used by the processor 1800 in performing operations.
  • the processor 1800 is responsible for managing the bus architecture and general processing, and the memory 1820 can store data used by the processor 1800 in performing operations.
  • the processor 1800 is further configured to read the computer program, and perform the following steps:
  • the SMF is selected according to the second selection assistance information.
  • the first selection assistance information includes any one or more of the following information:
  • Data network name DNN slice assistance information, carrier local configuration or policy, routing indication;
  • the second selection assistance information includes any one or more of the following information:
  • PDU session ID DNN
  • slice assistance information carrier local configuration or policy, routing indication.
  • the data packet is carried in a non-access stratum data protocol data unit NAS Data PDU.
  • the communication device of the embodiment of the present disclosure includes:
  • the processor 1900 is configured to read a program in the memory 1920 and perform the following processes:
  • the SMF is selected according to the second selection assistance information.
  • the transceiver 1910 is configured to receive and transmit data under the control of the processor 1900.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1900 and various circuits of memory represented by memory 1920.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 1910 may be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1900 is responsible for managing the bus architecture and general processing, and the memory 1920 can store data used by the processor 1900 in performing operations.
  • the processor 1900 is responsible for managing the bus architecture and general processing, and the memory 1920 can store data used by the processor 1900 in performing operations.
  • the first selection assistance information includes any one or more of the following information:
  • Data network name DNN slice assistance information, carrier local configuration or policy, routing indication;
  • the second selection assistance information includes any one or more of the following information:
  • PDU session ID DNN
  • slice assistance information carrier local configuration or policy, routing indication.
  • the communication device of the embodiment of the present disclosure includes:
  • the processor 2000 is configured to read a program in the memory 2020, and execute the following process: receiving, by the transceiver 2010, a data message sent by the user equipment UE; selecting a user plane function UPF, and forwarding the data message to the UPF.
  • the transceiver 2010 is configured to receive and transmit data under the control of the processor 2000.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 2000 and various circuits of memory represented by memory 2020.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 2010 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 2000 is responsible for managing the bus architecture and the usual processing, and the memory 2020 can store data used by the processor 2000 in performing operations.
  • the processor 2000 is responsible for managing the bus architecture and the usual processing, and the memory 2020 can store data used by the processor 2000 in performing operations.
  • the processor 2000 is further configured to read the computer program and perform the following steps:
  • the third selection assistance information includes any one or more of the following information: DNN, slice assistance information, carrier local configuration or policy, and route indication.
  • the communication device of the embodiment of the present disclosure includes:
  • the processor 2100 is configured to read a program in the memory 2120, and execute the following process: receiving, by the transceiver 2110, a data message forwarded by the AMF; and forwarding the data message to the UPF.
  • the transceiver 2110 is configured to receive and transmit data under the control of the processor 2100.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 2100 and various circuits of memory represented by memory 2120.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 2110 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 2100 is responsible for managing the bus architecture and general processing, and the memory 2120 can store data used by the processor 2100 in performing operations.
  • the processor 2100 is responsible for managing the bus architecture and general processing, and the memory 2120 can store data used by the processor 2100 in performing operations.
  • the processor 2100 is further configured to read the computer program, and perform the following steps:
  • the data message is forwarded to the UPF through the N4 message.
  • the communication device of the embodiment of the present disclosure includes:
  • the processor 2200 is configured to read the program in the memory 2220, and execute the following process: receiving, by the transceiver 2210, the data message forwarded by the SMF; and forwarding the data message to the network side according to the forwarding rule.
  • the transceiver 2210 is configured to receive and transmit data under the control of the processor 2200.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 2200 and various circuits of memory represented by memory 2220.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 2210 may be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 2200 is responsible for managing the bus architecture and general processing, and the memory 2220 can store data used by the processor 2200 in performing operations.
  • the processor 2200 is responsible for managing the bus architecture and general processing, and the memory 2220 can store data used by the processor 2200 in performing operations.
  • the processor 2200 is further configured to read the computer program, and perform the following steps:
  • the communication device of the embodiment of the present disclosure includes:
  • the processor 2300 is configured to read the program in the memory 2323, and execute the following process: receiving the data message forwarded by the AMF; and forwarding the data message to the network side according to the forwarding rule.
  • the transceiver 2310 is configured to receive and transmit data under the control of the processor 2300.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 2300 and various circuits of memory represented by memory 2323.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 2310 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 2300 is responsible for managing the bus architecture and general processing, and the memory 2323 can store data used by the processor 2300 in performing operations.
  • the processor 2300 is responsible for managing the bus architecture and general processing, and the memory 2323 can store data used by the processor 2300 in performing operations.
  • the communication device of the embodiment of the present disclosure includes:
  • the processor 2400 is configured to read a program in the memory 2420, and execute the following process: the data packet is sent to the base station by the transceiver 2410, so that the base station sends the data message to the AMF.
  • the transceiver 2410 is configured to receive and transmit data under the control of the processor 2400.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 2400 and various circuits of memory represented by memory 2420.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 2410 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 2430 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 2400 is responsible for managing the bus architecture and general processing, and the memory 2420 can store data used by the processor 2400 in performing operations.
  • the data packet is carried in the NAS Data PDU.
  • the communication device of the embodiment of the present disclosure includes:
  • the processor 2500 is configured to read a program in the memory 2525, and execute the following process: receiving, by the transceiver 2510, a data message sent by the UE; and transmitting the data message to the AMF.
  • the transceiver 2510 is configured to receive and transmit data under the control of the processor 2500.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 2500 and various circuits of memory represented by memory 2525.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 2510 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 2500 is responsible for managing the bus architecture and general processing, and the memory 2525 can store data used by the processor 2500 in performing operations.
  • the processor 2500 is responsible for managing the bus architecture and general processing, and the memory 2525 can store data used by the processor 2500 in performing operations.
  • the data packet is carried in the NAS Data PDU.
  • a computer readable storage medium of an embodiment of the present disclosure is configured to store a computer program executable by a processor to implement the following steps:
  • the session management function SMF is selected, and the data message is forwarded to the SMF. After receiving the data message, the SMF forwards the data message to the user plane function UPF.
  • the selecting a session management function SMF includes:
  • the SMF is selected according to the second selection assistance information.
  • the first selection assistance information includes any one or more of the following information:
  • Data network name DNN slice assistance information, carrier local configuration or policy, routing indication;
  • the second selection assistance information includes any one or more of the following information:
  • PDU session ID DNN
  • slice assistance information carrier local configuration or policy, routing indication.
  • the data packet is carried in a non-access stratum data protocol data unit NAS Data PDU.
  • a computer readable storage medium of an embodiment of the present disclosure is configured to store a computer program executable by a processor to implement the following steps:
  • the SMF is selected according to the second selection assistance information.
  • the first selection assistance information includes any one or more of the following information:
  • Data network name DNN slice assistance information, carrier local configuration or policy, routing indication;
  • the second selection assistance information includes any one or more of the following information:
  • PDU session ID DNN
  • slice assistance information carrier local configuration or policy, routing indication.
  • a computer readable storage medium of an embodiment of the present disclosure is configured to store a computer program executable by a processor to implement the following steps:
  • the user plane function UPF is selected, and the data packet is forwarded to the UPF.
  • the selecting the user plane function UPF includes: selecting the UPF according to the third selection auxiliary information;
  • the third selection assistance information includes any one or more of the following information: DNN, slice assistance information, carrier local configuration or policy, and route indication.
  • a computer readable storage medium of an embodiment of the present disclosure is configured to store a computer program executable by a processor to implement the following steps:
  • the forwarding the data packet to the UPF includes:
  • the data message is forwarded to the UPF through the N4 message.
  • a computer readable storage medium of an embodiment of the present disclosure is configured to store a computer program executable by a processor to implement the following steps:
  • Receiving the data message forwarded by the SMF including:
  • a computer readable storage medium of an embodiment of the present disclosure is configured to store a computer program executable by a processor to implement the following steps:
  • a computer readable storage medium of an embodiment of the present disclosure is configured to store a computer program executable by a processor to implement the following steps:
  • the data packet is carried in the NAS Data PDU.
  • a computer readable storage medium of an embodiment of the present disclosure is configured to store a computer program executable by a processor to implement the following steps:
  • the data message is sent to the AMF.
  • the data packet is carried in the NAS Data PDU.
  • Sending the data packet to the AMF including:
  • the data message is sent to the AMF through an N2 message.
  • the disclosed methods and apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform part of the steps of the transceiving method of the various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种数据传输方法、装置、设备及计算机可读存储介质。本公开的数据传输方法包括:接收用户设备UE发送的数据报文;选择会话管理功能SMF,并向所述SMF转发所述数据报文;SMF在接收到所述数据报文后,将所述数据报文转发给用户面功能UPF。

Description

数据传输方法、装置、设备及计算机可读存储介质
相关申请的交叉引用
本申请主张在2018年1月11日在中国提交的中国专利申请号No.201810027191.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种数据传输方法、装置、设备及计算机可读存储介质。
背景技术
5G技术方案中,用户设备(User Equipment,UE)在发送数据前,需要建立无线信令承载和数据面承载。经过信令面交互和协商后,UE、无线侧和核心网等端到端路径上建立协议数据单元(Protocol Data Unit,PDU)会话,之后,UE才可通过数据面发送数据报文。
在此过程中,UE、无线和核心网之间的信令交互数量多,无线资源消耗大,UE的消耗也比较大。因此,相关技术中的数据传输方法资源消耗较大。
发明内容
第一方面,本公开实施例提供一种数据传输方法,应用于接入和移动性管理功能(Access and Mobility Management Function,AMF),包括:
接收用户设备UE发送的数据报文;
选择会话管理功能(Session Management Function,SMF),并向所述SMF转发所述数据报文;SMF在接收到所述数据报文后,将所述数据报文转发给用户面功能(User Pane Function,UPF)。
其中,所述选择会话管理功能SMF,包括:
确定所述UE是否建立有PDU会话;
当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;
当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
其中,所述第一选择辅助信息包括以下信息中的任意一项或者多项:
数据网络名称(Data Network Name,DNN)、切片辅助信息、运营商本地配置或策略、路由指示;
所述第二选择辅助信息包括以下信息中的任意一项或者多项:
PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
其中,所述数据报文携带在非接入层(Non-access stratum,NAS)Data PDU中。
第二方面,本公开实施例提供一种数据传输方法,应用于AMF,包括:
当接收到UE发送的数据报文后,确定所述UE是否建立有PDU会话;
当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;
当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
其中,所述第一选择辅助信息包括以下信息中的任意一项或者多项:
DNN、切片辅助信息、运营商本地配置或策略、路由指示;
所述第二选择辅助信息包括以下信息中的任意一项或者多项:
PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
第三方面,本公开实施例提供一种数据传输方法,应用于AMF,包括:
接收用户设备UE发送的数据报文;
选择UPF,并向所述UPF转发所述数据报文。
其中,所述选择用户面功能UPF,包括:
根据第三选择辅助信息选择UPF;
其中,所述第三选择辅助信息包括以下信息中的任意一项或者多项:DNN、切片辅助信息、运营商本地配置或策略、路由指示。
第四方面,本公开实施例提供一种数据传输方法,应用于SMF,包括:
接收AMF转发的数据报文;
向UPF转发所述数据报文。
其中,所述向UPF转发所述数据报文包括:
通过N4消息向UPF转发所述数据报文。
第五方面,本公开实施例提供一种数据传输方法,应用于UPF,包括:
接收SMF转发的数据报文;
根据转发规则,向网络侧转发所述数据报文。
其中,所述接收SMF转发的数据报文,包括:
接收所述SMF通过N4消息转发的所述数据报文。
第六方面,本公开实施例提供一种数据传输方法,应用于UPF,包括:
接收AMF转发的数据报文;
根据转发规则,向网络侧转发所述数据报文。
第七方面,本公开实施例提供一种数据传输方法,应用于UE,包括:
向基站发送数据报文,以使所述基站向AMF发送所述数据报文。
其中,所述数据报文携带在NAS Data PDU中。
第八方面,本公开实施例提供一种数据传输方法,应用于基站,包括:
接收UE发送的数据报文;
向AMF发送所述数据报文。
其中,所述数据报文携带在NAS Data PDU中。
其中,所述向AMF发送所述数据报文,包括:
通过N2消息向AMF发送所述数据报文。
第九方面,本公开实施例提供一种数据传输装置,包括:处理器和收发器;
所述收发器,用于接收用户设备UE发送的数据报文;
所述处理器,用于选择会话管理功能SMF,并向所述SMF转发所述数据报文;SMF在接收到所述数据报文后,将所述数据报文转发给用户面功能UPF。
其中,所述处理器还用于,
确定所述UE是否建立有协议数据单元PDU会话;
当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;
当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
其中,所述第一选择辅助信息包括以下信息中的任意一项或者多项:
DNN、切片辅助信息、运营商本地配置或策略、路由指示;
所述第二选择辅助信息包括以下信息中的任意一项或者多项:
PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
其中,所述数据报文携带在NAS Data PDU中。
第十方面,本公开实施例提供一种数据传输装置,包括:处理器和收发器;
所述处理器,用于当通过所述收发器接收到UE发送的数据报文后,确定所述UE是否建立有PDU会话;当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
其中,所述第一选择辅助信息包括以下信息中的任意一项或者多项:
DNN、切片辅助信息、运营商本地配置或策略、路由指示;
所述第二选择辅助信息包括以下信息中的任意一项或者多项:
PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
第十一方面,本公开实施例提供一种数据传输装置,包括:处理器和收发器;
所述收发器,用于接收用户设备UE发送的数据报文;
所述处理器,用于选择用户面功能UPF,并向所述UPF转发所述数据报文。
其中,所述处理器,还用于根据第三选择辅助信息选择UPF;
其中,所述第三选择辅助信息包括以下信息中的任意一项或者多项:DNN、切片辅助信息、运营商本地配置或策略、路由指示。
第十二方面,本公开实施例提供一种数据传输装置,包括:处理器和收发器;
所述处理器,用于通过所述收发器接收AMF转发的数据报文;通过所述收发器向UPF转发所述数据报文。
其中,所述处理器还用于,
通过N4消息向UPF转发所述数据报文。
第十三方面,本公开实施例提供一种数据传输装置,包括:处理器和收发器;
所述处理器,用于通过所述收发器接收SMF转发的数据报文;根据转发规则,通过所述收发器向网络侧转发所述数据报文。
其中,所述收发器还用于,
接收所述SMF通过N4消息转发的所述数据报文。
第十四方面,本公开实施例提供一种数据传输装置,包括:处理器和收发器;
所述处理器,用于通过所述收发器接收AMF转发的数据报文;根据转发规则,通过所述收发器向网络侧转发所述数据报文。
第十五方面,本公开实施例提供一种数据传输装置,包括:处理器和收发器;
所述处理器,用于通过所述收发器向基站发送数据报文,以使所述基站向AMF发送所述数据报文。
其中,所述数据报文携带在NAS Data PDU中。
第十六方面,本公开实施例提供一种数据传输装置,包括:处理器和收发器;
所述处理器,用于通过所述收发器接收UE发送的数据报文;向AMF发送所述数据报文。
其中,所述数据报文携带在NAS Data PDU中。
其中,所述收发器,还用于通过N2消息向AMF发送所述数据报文。
第十七方面,本公开实施例提供一种通信设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述计算机程序被处理器执行时实现如第一方面至第八方面任意一方面所述的方法中的步骤。
第十八方面,本公开实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序被处理器执行时实现如第一方面至第八方面任意一方面所述的方法中的步骤。
附图说明
图1为本公开实施例的数据传输方法的流程图;
图2为本公开实施例的数据传输方法的流程图;
图3为本公开实施例的数据传输方法的流程图;
图4为本公开实施例的数据传输方法的流程图;
图5为本公开实施例的数据传输方法的流程图;
图6为本公开实施例的数据传输方法的流程图;
图7为本公开实施例的数据传输方法的流程图;
图8为本公开实施例的数据传输方法的流程图;
图9为本公开实施例的数据传输方法的流程图;
图10为本公开实施例的数据传输装置的示意图;
图11为本公开实施例的数据传输装置的示意图;
图12为本公开实施例的数据传输装置的示意图;
图13为本公开实施例的数据传输装置的示意图;
图14为本公开实施例的数据传输装置的示意图;
图15为本公开实施例的数据传输装置的示意图;
图16为本公开实施例的数据传输装置的示意图;
图17为本公开实施例的数据传输装置的示意图;
图18为本公开实施例的通信设备的示意图;
图19为本公开实施例的通信设备的示意图;
图20为本公开实施例的通信设备的示意图;
图21为本公开实施例的通信设备的示意图;
图22为本公开实施例的通信设备的示意图;
图23为本公开实施例的通信设备的示意图;
图24为本公开实施例的通信设备的示意图;
图25为本公开实施例的通信设备的示意图。
具体实施方式
下面将结合附图和实施例,对本公开的具体实施方式作进一步详细描述。 以下实施例用于说明本公开,但不用来限制本公开的范围。
如图1所示,本公开实施例的数据传输方法,应用于AMF,包括:
步骤101、接收UE发送的数据报文。
其中,所述数据报文为所述UE在无线资源控制协议(Radio Resource Control,RRC)连接建立过程中发送的。在本公开实施例中,所述数据报文可携带在NAS Data PDU中。
具体的,UE发送的数据报文是通过基站发送给AMF的。UE将数据报文携带在NAS Data PDU中,并发送给基站。基站收到后,通过和AMF之间的N2接口向AMF发送N2消息,在所述N2消息中包括NAS Data PDU。相应的,AMF接收基站发送的N2消息,在所述N2消息中包括NAS Data PDU。
步骤102、选择SMF,并向所述SMF转发所述数据报文;SMF在接收到所述数据报文后,将所述数据报文转发给UPF。
在此,AMF可确定所述UE是否建立有PDU会话。具体的,AMF可根据AMF存储的与UE相关的信息,确定UE是否建立有PSU会话。根据UE是否已经建立好PDU会话,AMF可利用不同的选择辅助信息进行SMF的选择。
当所述UE未建立有PDU会话时,AMF可根据第一选择辅助信息选择SMF。所述第一选择辅助信息包括以下信息中的任意一项或者多项:
DNN、切片辅助信息(如网络切片选择辅助信息(network slice selection assistance information,NSSAI))、运营商本地配置或策略、路由指示等。
当所述UE建立有PDU会话时,AMF可根据第二选择辅助信息选择SMF。所述第二选择辅助信息根据以下信息中的任意一项或者多项:
PDU会话标识(PDU Session ID)、数据网络名称DNN、切片辅助信息(如NSSAI)、运营商本地配置或策略、路由指示。
至于如何根据以上信息选择SMF在本公开实施例中不进行限定。例如,可以是根据上述信息和SMF的对应关系来选择。例如,当所述确定结果表示所述UE未建立有PDU会话时,假设根据NSSAI来选择SMF,那么,在具体选择的时候,可根据UE对应的NSSAI查找NSSAI和SMF的对应关系,以确定SMF。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
如图2所示,本公开实施例的数据传输方法,应用于AMF,包括:
步骤201、当接收到UE发送的数据报文后,确定所述UE是否建立有PDU会话。
在此,可根据AMF存储的与UE相关的信息,确定UE是否建立有PSU会话。在本公开实施例中,所述数据报文可携带在NAS Data PDU中。
步骤202、当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF。
步骤203、当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
其中,所述第一选择辅助信息包括以下信息中的任意一项或者多项:DNN、切片辅助信息(如NSSAI)、运营商本地配置或策略、路由指示等。所述第二选择辅助信息根据以下信息中的任意一项或者多项:PDU会话标识、DNN、切片辅助信息(如NSSAI)、运营商本地配置或策略、路由指示。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
如图3所示,本公开实施例的数据传输方法,应用于AMF,包括:
步骤301、接收UE发送的数据报文。
步骤302、选择UPF,并向所述UPF转发所述数据报文。
具体的,根据第三选择辅助信息选择UPF;
其中,所述第三选择辅助信息包括以下信息中的任意一项或者多项:DNN、切片辅助信息(如NSSAI)、运营商本地配置或策略、路由指示。
在本公开实施例中,所述数据报文可携带在NAS Data PDU中。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
如图4所示,本公开实施例的数据传输方法,应用于UE,包括:
步骤401、向基站发送数据报文,以使所述基站向AMF发送所述数据报文。
其中,所述数据报文可携带在NAS Data PDU中。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
如图5所示,本公开实施例的数据传输方法,应用于SMF,包括:
步骤501、接收AMF转发的数据报文。
步骤502、向UPF转发所述数据报文。
具体的,SMF通过N4消息向UPF转发所述数据报文。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
如图6所示,本公开实施例的数据传输方法,应用于UPF,包括:
步骤601、接收SMF转发的数据报文。
具体的,UPF接收所述SMF通过N4消息转发的所述数据报文。
步骤602、根据转发规则,向网络侧转发所述数据报文。
其中,所述转发规则可为预定义的转发规则。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
如图7所示,本公开实施例的数据传输方法,应用于UPF,包括:
步骤701、接收AMF转发的数据报文。
步骤702、根据转发规则,向网络侧转发所述数据报文。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
如图8所示,本公开实施例的数据传输方法包括:
步骤801、在RRC连接建立过程中,UE将发送的数据报文封装在NAS Data PDU中携带给基站。
步骤802、基站收到NAS Data PDU后,通过N2接口,向AMF发送N2消息(如Initial UE message(初始UE消息)),携带UE侧发送的NAS Data PDU。
AMF在收到数据报文后,AMF与SMF、UPF之间有以下两种不同的处理方式:
其中,方式一包括步骤803和804,即AMF先将数据报文转发给选择SMF,再由SMF将数据报文转发给UPF。
步骤803、AMF解析由RAN侧发来N2接口消息后,识别为NAS Data PDU的消息类型,获得UE侧发送的数据报文。
当UE没有建立PDU会话时,AMF根据DNN、切片辅助信息(如NSSAI)、运营商本地配置/策略、路由指示等任一或组合,选择对应的SMF,将数据报文发给SMF;当UE已经建立PDU会话时,根据PDU Session ID、DNN、切片辅助信息(如NSSAI)、运营商本地配置/策略、路由指示等任一信息或组 合选择SMF,将数据报文发给SMF。
步骤804、SMF通过N4消息,将数据报文发给UPF。
其中,方式二包括步骤805,即AMF直接将数据报文转发给选择的UPF。
步骤805、AMF根据DNN、切片辅助信息、运营商本地配置或策略、路由指示等任一信息或组合选择UPF,并将数据报文发给UPF。
步骤806、UPF根据转发规则转发数据报文。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
同时,本公开实施例的方案优化且简化了5G网络数据传输方式,尤其适用于5G小数据报文的传输。
如图9所示,本公开实施例的数据传输方法,应用于基站,包括:
步骤901、接收UE发送的数据报文。
其中,所述数据报文携带在NAS Data PDU中。
步骤902、向AMF发送所述数据报文。
具体的,基站通过N2消息向AMF发送所述数据报文。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
如图10所示,本公开实施例的数据传输装置,包括:处理器1001和收发器1002。
所述收发器1002,用于接收UE发送的数据报文;
所述处理器1001,用于选择会话管理功能SMF,并向所述SMF转发所述数据报文;SMF在接收到所述数据报文后,将所述数据报文转发给用户面功能UPF。
其中,所述处理器1001还用于,确定所述UE是否建立有协议数据单元PDU会话;当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
其中,所述第一选择辅助信息包括以下信息中的任意一项或者多项:
数据网络名称DNN、切片辅助信息、运营商本地配置或策略、路由指示;
所述第二选择辅助信息包括以下信息中的任意一项或者多项:
PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
其中,所述数据报文携带在NAS Data PDU中。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
如图11所示,本公开实施例的数据传输装置,包括:处理器1101和收发器1102。
所述处理器1101,用于当通过所述收发器1102接收到UE发送的数据报文后,确定所述UE是否建立有PDU会话;当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
其中,所述第一选择辅助信息包括以下信息中的任意一项或者多项:
数据网络名称DNN、切片辅助信息、运营商本地配置或策略、路由指示;
所述第二选择辅助信息包括以下信息中的任意一项或者多项:
PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了 通信资源。
如图12所示,本公开实施例的数据传输装置,包括:处理器1201和收发器1202。
所述收发器1202,用于接收用户设备UE发送的数据报文;
所述处理器1201,用于选择用户面功能UPF,并向所述UPF转发所述数据报文。其中,所述处理器1201还用于,通过N4消息向UPF转发所述数据报文。
所述处理器1201,还用于根据第三选择辅助信息选择UPF;其中,所述第三选择辅助信息包括以下信息中的任意一项或者多项:DNN、切片辅助信息、运营商本地配置或策略、路由指示。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
如图13所示,本公开实施例的数据传输装置,包括:处理器1301和收发器1302。
所述处理器1301,用于通过所述收发器1302接收SMF转发的数据报文;根据转发规则,通过所述收发器向网络侧转发所述数据报文。
其中,所述收发器1302还用于,接收所述SMF通过N4消息转发的所述数据报文。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
如图14所示,本公开实施例的数据传输装置,包括:处理器1401和收发器1402。
所述处理器1401,用于通过所述收发器1402接收AMF转发的数据报文; 根据转发规则,向网络侧转发所述数据报文。
如图15所示,本公开实施例的数据传输装置,包括:处理器1501和收发器1502。
所述处理器1501,用于通过所述收发器1502向基站发送数据报文,以使所述基站向AMF发送所述数据报文。
其中,所述数据报文携带在NAS Data PDU中。
如图16所示,本公开实施例的数据传输装置,包括:处理器1601和收发器1602。
所述处理器1601,用于通过所述收发器1602接收UE发送的数据报文;向AMF发送所述数据报文。
其中,所述数据报文携带在NAS Data PDU中。
所述收发器1602,还用于通过N2消息向AMF发送所述数据报文。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
如图17所示,本公开实施例的数据传输装置,包括:处理器1701和收发器1702。
所述处理器1701,用于通过所述收发器1602接收AMF转发的数据报文;向UPF转发所述数据报文。
其中,所述处理器1701还用于,通过N4消息向UPF转发所述数据报文。
在本公开实施例中,UE将数据报文发送给AMF,从而使得AMF可将其转发给SMF后由SMF将其转发给UPF,或AMF直接将数据报文发送给UPF,继而转发到网络侧。因此,利用本公开实施例的方案无需等到PDU会话建立之后才能发送数据报文,从而减少了UE和其他各实体之间的交互,节约了通信资源。
如图18所示,本公开实施例的通信设备包括:
处理器1800,用于读取存储器1820中的程序,执行下列过程:通过收 发机1810接收用户设备UE发送的数据报文;选择会话管理功能SMF,并向所述SMF转发所述数据报文;SMF在接收到所述数据报文后,将所述数据报文转发给用户面功能UPF。
收发机1810,用于在处理器1800的控制下接收和发送数据。
其中,在图18中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1800代表的一个或多个处理器和存储器1820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1810可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1800负责管理总线架构和通常的处理,存储器1820可以存储处理器1800在执行操作时所使用的数据。
处理器1800负责管理总线架构和通常的处理,存储器1820可以存储处理器1800在执行操作时所使用的数据。
处理器1800还用于读取所述计算机程序,执行如下步骤:
确定所述UE是否建立有协议数据单元PDU会话;
当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;
当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
其中,所述第一选择辅助信息包括以下信息中的任意一项或者多项:
数据网络名称DNN、切片辅助信息、运营商本地配置或策略、路由指示;
所述第二选择辅助信息包括以下信息中的任意一项或者多项:
PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
其中,所述数据报文携带在非接入层数据协议数据单元NAS Data PDU中。
如图19所示,本公开实施例的通信设备包括:
处理器1900,用于读取存储器1920中的程序,执行下列过程:
当接收到UE发送的数据报文后,确定所述UE是否建立有PDU会话;
当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;
当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
收发机1910,用于在处理器1900的控制下接收和发送数据。
其中,在图19中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1900代表的一个或多个处理器和存储器1920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1910可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1900负责管理总线架构和通常的处理,存储器1920可以存储处理器1900在执行操作时所使用的数据。
处理器1900负责管理总线架构和通常的处理,存储器1920可以存储处理器1900在执行操作时所使用的数据。
其中,所述第一选择辅助信息包括以下信息中的任意一项或者多项:
数据网络名称DNN、切片辅助信息、运营商本地配置或策略、路由指示;
所述第二选择辅助信息包括以下信息中的任意一项或者多项:
PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
如图20所示,本公开实施例的通信设备包括:
处理器2000,用于读取存储器2020中的程序,执行下列过程:通过收发机2010接收用户设备UE发送的数据报文;选择用户面功能UPF,并向所述UPF转发所述数据报文。
收发机2010,用于在处理器2000的控制下接收和发送数据。
其中,在图20中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2000代表的一个或多个处理器和存储器2020代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2010可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器2000负责管理总线架构和通常的处理,存储器2020可以存储处理器 2000在执行操作时所使用的数据。
处理器2000负责管理总线架构和通常的处理,存储器2020可以存储处理器2000在执行操作时所使用的数据。
处理器2000还用于读取所述计算机程序,执行如下步骤:
根据第三选择辅助信息选择UPF;
其中,所述第三选择辅助信息包括以下信息中的任意一项或者多项:DNN、切片辅助信息、运营商本地配置或策略、路由指示。
如图21所示,本公开实施例的通信设备包括:
处理器2100,用于读取存储器2120中的程序,执行下列过程:通过收发机2110接收AMF转发的数据报文;向UPF转发所述数据报文。
收发机2110,用于在处理器2100的控制下接收和发送数据。
其中,在图21中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2100代表的一个或多个处理器和存储器2120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2110可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器2100负责管理总线架构和通常的处理,存储器2120可以存储处理器2100在执行操作时所使用的数据。
处理器2100负责管理总线架构和通常的处理,存储器2120可以存储处理器2100在执行操作时所使用的数据。
处理器2100还用于读取所述计算机程序,执行如下步骤:
通过N4消息向UPF转发所述数据报文。
如图22所示,本公开实施例的通信设备包括:
处理器2200,用于读取存储器2220中的程序,执行下列过程:通过收发机2210接收SMF转发的数据报文;根据转发规则,向网络侧转发所述数据报文。
收发机2210,用于在处理器2200的控制下接收和发送数据。
其中,在图22中,总线架构可以包括任意数量的互联的总线和桥,具体 由处理器2200代表的一个或多个处理器和存储器2220代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2210可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器2200负责管理总线架构和通常的处理,存储器2220可以存储处理器2200在执行操作时所使用的数据。
处理器2200负责管理总线架构和通常的处理,存储器2220可以存储处理器2200在执行操作时所使用的数据。
处理器2200还用于读取所述计算机程序,执行如下步骤:
接收所述SMF通过N4消息转发的所述数据报文。
如图23所示,本公开实施例的通信设备包括:
处理器2300,用于读取存储器2323中的程序,执行下列过程:接收AMF转发的数据报文;根据转发规则,向网络侧转发所述数据报文。
收发机2310,用于在处理器2300的控制下接收和发送数据。
其中,在图23中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2300代表的一个或多个处理器和存储器2323代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2310可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器2300负责管理总线架构和通常的处理,存储器2323可以存储处理器2300在执行操作时所使用的数据。
处理器2300负责管理总线架构和通常的处理,存储器2323可以存储处理器2300在执行操作时所使用的数据。
如图24所示,本公开实施例的通信设备,包括:
处理器2400,用于读取存储器2420中的程序,执行下列过程:通过收发机2410向基站发送数据报文,以使所述基站向AMF发送所述数据报文。
收发机2410,用于在处理器2400的控制下接收和发送数据。
其中,在图24中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2400代表的一个或多个处理器和存储器2420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2410可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口2430还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器2400负责管理总线架构和通常的处理,存储器2420可以存储处理器2400在执行操作时所使用的数据。
其中,所述数据报文携带在NAS Data PDU中。
如图25所示,本公开实施例的通信设备包括:
处理器2500,用于读取存储器2525中的程序,执行下列过程:通过收发机2510接收UE发送的数据报文;向AMF发送所述数据报文。
收发机2510,用于在处理器2500的控制下接收和发送数据。
其中,在图25中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2500代表的一个或多个处理器和存储器2525代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器2500负责管理总线架构和通常的处理,存储器2525可以存储处理器2500在执行操作时所使用的数据。
处理器2500负责管理总线架构和通常的处理,存储器2525可以存储处理器2500在执行操作时所使用的数据。
其中,所述数据报文携带在NAS Data PDU中。
此外,本公开实施例的计算机可读存储介质,用于存储计算机程序,所述计算机程序可被处理器执行实现以下步骤:
接收用户设备UE发送的数据报文;
选择会话管理功能SMF,并向所述SMF转发所述数据报文;SMF在接收到所述数据报文后,将所述数据报文转发给用户面功能UPF。
其中,所述选择会话管理功能SMF,包括:
确定所述UE是否建立有协议数据单元PDU会话;
当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;
当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
其中,所述第一选择辅助信息包括以下信息中的任意一项或者多项:
数据网络名称DNN、切片辅助信息、运营商本地配置或策略、路由指示;
所述第二选择辅助信息包括以下信息中的任意一项或者多项:
PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
其中,所述数据报文携带在非接入层数据协议数据单元NAS Data PDU中。
此外,本公开实施例的计算机可读存储介质,用于存储计算机程序,所述计算机程序可被处理器执行实现以下步骤:
当接收到UE发送的数据报文后,确定所述UE是否建立有PDU会话;
当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;
当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
其中,所述第一选择辅助信息包括以下信息中的任意一项或者多项:
数据网络名称DNN、切片辅助信息、运营商本地配置或策略、路由指示;
所述第二选择辅助信息包括以下信息中的任意一项或者多项:
PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
此外,本公开实施例的计算机可读存储介质,用于存储计算机程序,所述计算机程序可被处理器执行实现以下步骤:
接收用户设备UE发送的数据报文;
选择用户面功能UPF,并向所述UPF转发所述数据报文。
其中,所述选择用户面功能UPF,包括:根据第三选择辅助信息选择UPF;
其中,所述第三选择辅助信息包括以下信息中的任意一项或者多项:DNN、 切片辅助信息、运营商本地配置或策略、路由指示。
此外,本公开实施例的计算机可读存储介质,用于存储计算机程序,所述计算机程序可被处理器执行实现以下步骤:
接收AMF转发的数据报文;
向UPF转发所述数据报文。
所述向UPF转发所述数据报文包括:
通过N4消息向UPF转发所述数据报文。
此外,本公开实施例的计算机可读存储介质,用于存储计算机程序,所述计算机程序可被处理器执行实现以下步骤:
接收SMF转发的数据报文;
根据转发规则,向网络侧转发所述数据报文。
所述接收SMF转发的数据报文,包括:
接收所述SMF通过N4消息转发的所述数据报文。
此外,本公开实施例的计算机可读存储介质,用于存储计算机程序,所述计算机程序可被处理器执行实现以下步骤:
接收AMF转发的数据报文;
根据转发规则,向网络侧转发所述数据报文。
此外,本公开实施例的计算机可读存储介质,用于存储计算机程序,所述计算机程序可被处理器执行实现以下步骤:
向基站发送数据报文,以使所述基站向AMF发送所述数据报文。
所述数据报文携带在NAS Data PDU中。
此外,本公开实施例的计算机可读存储介质,用于存储计算机程序,所述计算机程序可被处理器执行实现以下步骤:
接收UE发送的数据报文;
向AMF发送所述数据报文。
所述数据报文携带在NAS Data PDU中。
所述向AMF发送所述数据报文,包括:
通过N2消息向AMF发送所述数据报文。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可 以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (38)

  1. 一种数据传输方法,应用于接入和移动性管理功能AMF,包括:
    接收用户设备UE发送的数据报文;
    选择会话管理功能SMF,并向所述SMF转发所述数据报文;SMF在接收到所述数据报文后,将所述数据报文转发给用户面功能UPF。
  2. 根据权利要求1所述的方法,其中,所述选择会话管理功能SMF,包括:
    确定所述UE是否建立有协议数据单元PDU会话;
    当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;
    当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
  3. 根据权利要求2所述的方法,其中,
    所述第一选择辅助信息包括以下信息中的任意一项或者多项:
    数据网络名称DNN、切片辅助信息、运营商本地配置或策略、路由指示;
    所述第二选择辅助信息包括以下信息中的任意一项或者多项:
    PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
  4. 根据权利要求1所述的方法,其中,所述数据报文携带在非接入层数据协议数据单元NAS Data PDU中。
  5. 一种数据传输方法,应用于AMF,包括:
    当接收到UE发送的数据报文后,确定所述UE是否建立有PDU会话;
    当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;
    当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
  6. 根据权利要求5所述的方法,其中,
    所述第一选择辅助信息包括以下信息中的任意一项或者多项:
    数据网络名称DNN、切片辅助信息、运营商本地配置或策略、路由指示;
    所述第二选择辅助信息包括以下信息中的任意一项或者多项:
    PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
  7. 一种数据传输方法,应用于AMF,包括:
    接收用户设备UE发送的数据报文;
    选择用户面功能UPF,并向所述UPF转发所述数据报文。
  8. 根据权利要求7所述的方法,其中,所述选择用户面功能UPF,包括:
    根据第三选择辅助信息选择UPF;
    其中,所述第三选择辅助信息包括以下信息中的任意一项或者多项:DNN、切片辅助信息、运营商本地配置或策略、路由指示。
  9. 一种数据传输方法,应用于SMF,包括:
    接收AMF转发的数据报文;
    向UPF转发所述数据报文。
  10. 根据权利要求9所述的方法,其中,所述向UPF转发所述数据报文包括:
    通过N4消息向UPF转发所述数据报文。
  11. 一种数据传输方法,应用于UPF,包括:
    接收SMF转发的数据报文;
    根据转发规则,向网络侧转发所述数据报文。
  12. 根据权利要求11所述的方法,其中,所述接收SMF转发的数据报文,包括:
    接收所述SMF通过N4消息转发的所述数据报文。
  13. 一种数据传输方法,应用于UPF,包括:
    接收AMF转发的数据报文;
    根据转发规则,向网络侧转发所述数据报文。
  14. 一种数据传输方法,应用于UE,包括:
    向基站发送数据报文,以使所述基站向AMF发送所述数据报文。
  15. 根据权利要求14所述的方法,其中,所述数据报文携带在NAS Data PDU中。
  16. 一种数据传输方法,应用于基站,包括:
    接收UE发送的数据报文;
    向AMF发送所述数据报文。
  17. 根据权利要求16所述的方法,其中,所述数据报文携带在NAS Data PDU中。
  18. 根据权利要求16所述的方法,其中,所述向AMF发送所述数据报文,包括:
    通过N2消息向AMF发送所述数据报文。
  19. 一种数据传输装置,包括:处理器和收发器;
    所述收发器,用于接收用户设备UE发送的数据报文;
    所述处理器,用于选择会话管理功能SMF,并向所述SMF转发所述数据报文;SMF在接收到所述数据报文后,将所述数据报文转发给用户面功能UPF。
  20. 根据权利要求19所述的装置,其中,所述处理器还用于,
    确定所述UE是否建立有协议数据单元PDU会话;
    当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;
    当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
  21. 根据权利要求20所述的装置,其中,
    所述第一选择辅助信息包括以下信息中的任意一项或者多项:
    数据网络名称DNN、切片辅助信息、运营商本地配置或策略、路由指示;
    所述第二选择辅助信息包括以下信息中的任意一项或者多项:
    PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
  22. 根据权利要求19所述的装置,其中,所述数据报文携带在NAS Data PDU中。
  23. 一种数据传输装置,包括:处理器和收发器;
    所述处理器,用于当通过所述收发器接收到UE发送的数据报文后,确定所述UE是否建立有PDU会话;当所述UE未建立有PDU会话时,根据第一选择辅助信息选择SMF;当所述UE建立有PDU会话时,根据第二选择辅助信息选择SMF。
  24. 根据权利要求23所述的装置,其中,
    所述第一选择辅助信息包括以下信息中的任意一项或者多项:
    数据网络名称DNN、切片辅助信息、运营商本地配置或策略、路由指示;
    所述第二选择辅助信息包括以下信息中的任意一项或者多项:
    PDU会话标识、DNN、切片辅助信息、运营商本地配置或策略、路由指示。
  25. 一种数据传输装置,包括:处理器和收发器;
    所述收发器,用于接收用户设备UE发送的数据报文;
    所述处理器,用于选择用户面功能UPF,并向所述UPF转发所述数据报文。
  26. 根据权利要求25所述的装置,其中,
    所述处理器,还用于根据第三选择辅助信息选择UPF;
    其中,所述第三选择辅助信息包括以下信息中的任意一项或者多项:DNN、切片辅助信息、运营商本地配置或策略、路由指示。
  27. 一种数据传输装置,包括:处理器和收发器;
    所述处理器,用于通过所述收发器接收AMF转发的数据报文;通过所述收发器向UPF转发所述数据报文。
  28. 根据权利要求27所述的装置,其中,所述处理器还用于,
    通过N4消息向UPF转发所述数据报文。
  29. 一种数据传输装置,包括:处理器和收发器;
    所述处理器,用于通过所述收发器接收SMF转发的数据报文;根据转发规则,通过所述收发器向网络侧转发所述数据报文。
  30. 根据权利要求29所述的装置,其特征在于,所述收发器还用于,
    接收所述SMF通过N4消息转发的所述数据报文。
  31. 一种数据传输装置,包括:处理器和收发器;
    所述处理器,用于通过所述收发器接收AMF转发的数据报文;根据转发规则,通过所述收发器向网络侧转发所述数据报文。
  32. 一种数据传输装置,包括:处理器和收发器;
    所述处理器,用于通过所述收发器向基站发送数据报文,以使所述基站向AMF发送所述数据报文。
  33. 根据权利要求32所述的装置,其中,所述数据报文携带在NAS Data  PDU中。
  34. 一种数据传输装置,包括:处理器和收发器;
    所述处理器,用于通过所述收发器接收UE发送的数据报文;向AMF发送所述数据报文。
  35. 根据权利要求34所述的装置,其中,所述数据报文携带在NAS Data PDU中。
  36. 根据权利要求34所述的装置,其中,所述收发器,还用于通过N2消息向AMF发送所述数据报文。
  37. 一种通信设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,
    所述计算机程序被处理器执行时实现如权利要求1至4中任意一项所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求5至6中任意一项所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求7至8中任意一项所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求9至10中任意一项所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求11至12中任意一项所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求13所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求14至15中任意一项所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求16至18中任意一项所述的方法中的步骤。
  38. 一种计算机可读存储介质,用于存储计算机程序,其中,
    所述计算机程序被处理器执行时实现如权利要求1至4中任意一项所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求5至6中任意一项所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求7至8中任意一项所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求9至10中任意一项所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求11至12中任意一项所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求13所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求14 至15中任意一项所述的方法中的步骤;或者所述计算机程序被处理器执行时实现如权利要求16至18中任意一项所述的方法中的步骤。
PCT/CN2018/122045 2018-01-11 2018-12-19 数据传输方法、装置、设备及计算机可读存储介质 WO2019137169A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/961,298 US11564157B2 (en) 2018-01-11 2018-12-19 Data transmission method, apparatus and device and computer-readable storage medium
EP18899682.1A EP3739921A4 (en) 2018-01-11 2018-12-19 DATA TRANSMISSION PROCESS, APPARATUS AND DEVICE, AND COMPUTER READABLE STORAGE MEDIA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810027191.9A CN110035465B (zh) 2018-01-11 2018-01-11 一种数据传输方法、装置、设备及计算机可读存储介质
CN201810027191.9 2018-01-11

Publications (1)

Publication Number Publication Date
WO2019137169A1 true WO2019137169A1 (zh) 2019-07-18

Family

ID=67218491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122045 WO2019137169A1 (zh) 2018-01-11 2018-12-19 数据传输方法、装置、设备及计算机可读存储介质

Country Status (4)

Country Link
US (1) US11564157B2 (zh)
EP (1) EP3739921A4 (zh)
CN (1) CN110035465B (zh)
WO (1) WO2019137169A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234112B (zh) * 2018-03-05 2020-12-04 华为技术有限公司 消息处理方法、系统及用户面功能设备
CN110621032B (zh) * 2019-09-27 2021-06-15 腾讯科技(深圳)有限公司 一种通信的方法、相关装置及设备
WO2021162393A1 (ko) * 2020-02-13 2021-08-19 엘지전자 주식회사 멀티 액세스 pdu 세션과 관련된 통신

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170339609A1 (en) * 2016-05-17 2017-11-23 Lg Electronics Inc. Method and apparatus for determining pdu session identity in wireless communication system
WO2018006017A1 (en) * 2016-07-01 2018-01-04 Idac Holdings, Inc. Methods for supporting session continuity on per-session basis
CN107548127A (zh) * 2016-06-23 2018-01-05 北京三星通信技术研究有限公司 支持数据传输的方法和设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017166148A1 (zh) * 2016-03-31 2017-10-05 华为技术有限公司 一种数据传输的方法和相关设备
US11516881B2 (en) * 2016-08-17 2022-11-29 Ntt Docomo, Inc. Slice management system and slice management method
US10849186B2 (en) * 2017-01-09 2020-11-24 Huawei Technologies Co., Ltd. System and methods for session management
US10375665B2 (en) * 2017-02-06 2019-08-06 Huawei Technologies Co., Ltd. Method and apparatus for supporting access control and mobility management
CN107018542A (zh) * 2017-03-27 2017-08-04 中兴通讯股份有限公司 网络系统中状态信息的处理方法、装置及存储介质
US11083028B2 (en) * 2017-03-31 2021-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Coordinated selection of user plane functions in core and radio access networks
US11425762B2 (en) 2017-06-16 2022-08-23 Ipla Holdings Inc. Small data transfer, data buffering, and data management as a service in a communications network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170339609A1 (en) * 2016-05-17 2017-11-23 Lg Electronics Inc. Method and apparatus for determining pdu session identity in wireless communication system
CN107548127A (zh) * 2016-06-23 2018-01-05 北京三星通信技术研究有限公司 支持数据传输的方法和设备
WO2018006017A1 (en) * 2016-07-01 2018-01-04 Idac Holdings, Inc. Methods for supporting session continuity on per-session basis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "TS23.502 Clarification on UPF Selection in PDU session establishment", SA WG2 MEETING #124 S2-178468, 21 November 2017 (2017-11-21), XP051379481 *
See also references of EP3739921A4 *

Also Published As

Publication number Publication date
EP3739921A4 (en) 2021-11-10
EP3739921A1 (en) 2020-11-18
US20210084579A1 (en) 2021-03-18
US11564157B2 (en) 2023-01-24
CN110035465B (zh) 2022-04-01
CN110035465A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
US10827553B2 (en) Method and apparatus for session reestablishment, access and mobility management function entity, session management function entity and terminal
EP3585095B1 (en) Method and device for controlling qos, smf, upf, ue, pcf and an
US20200383035A1 (en) Communications method and apparatus
WO2014198133A1 (zh) 一种数据无线承载drb的资源分配方法及装置
US11419027B2 (en) User plane link establishment method, base station, and mobility management device
WO2018018621A1 (zh) 建立辅连接的方法和装置
WO2020001562A1 (zh) 一种通信方法及装置
WO2019137169A1 (zh) 数据传输方法、装置、设备及计算机可读存储介质
CN109429366B (zh) 一种pdu会话处理方法及设备
US9155117B2 (en) Directly transferring data between devices
CN109845389B (zh) 一种通信方法及装置
WO2018141266A1 (zh) 一种路由方法和装置
WO2015003590A1 (zh) 一种路径切换的方法、设备和用户设备
EP3562204A1 (en) Method and apparatus for selecting user plane anchor
CN109792599A (zh) 会话管理方法及网元
EP3893535B1 (en) Control plane connection management method and apparatus
WO2019238050A1 (zh) 一种通信方法及装置
EP4277340A1 (en) Data unit processing method and apparatus, and node and storage medium
WO2022156439A1 (zh) 信息传输方法、装置、基站及介质
WO2018127224A1 (zh) 建立连接的方法及装置
WO2018127235A1 (zh) Ue空闲态处理方法、移动性管理mm功能实体及会话管理sm功能实体
WO2015077982A1 (zh) 信息交互装置、基站和通信系统
WO2017185368A1 (zh) 一种信令传输方法和设备
WO2018205945A1 (zh) 一种信息处理方法及装置
CN110324857B (zh) 一种业务质量数据流的处理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018899682

Country of ref document: EP

Effective date: 20200811