WO2019137165A1 - 一种传输方法、终端及基站 - Google Patents
一种传输方法、终端及基站 Download PDFInfo
- Publication number
- WO2019137165A1 WO2019137165A1 PCT/CN2018/121853 CN2018121853W WO2019137165A1 WO 2019137165 A1 WO2019137165 A1 WO 2019137165A1 CN 2018121853 W CN2018121853 W CN 2018121853W WO 2019137165 A1 WO2019137165 A1 WO 2019137165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bit
- information
- configurations
- terminal
- state
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 167
- 238000000034 method Methods 0.000 title claims abstract description 75
- 230000011664 signaling Effects 0.000 claims description 34
- 230000000737 periodic effect Effects 0.000 claims description 17
- 238000010586 diagram Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000004590 computer program Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0009—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0072—Error control for data other than payload data, e.g. control data
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a transmission method, a terminal, and a base station.
- SR Scheduling Request
- Each SR configuration has different parameters, such as SR resources, periods, etc., when multiple SR configurations exist at the same time.
- the media access control (MAC) layer of the terminal may only notify the terminal that one of the SR configurations is transmitted at the physical layer, that is, the positive SR is transmitted, and the SR and other uplink control information (Uplink Control) Information, UCI)
- UCI Uplink Control Information
- the embodiments of the present invention provide a transmission method, a terminal, and a base station, which are used to solve the problem in the prior art that it is not clear whether the SR of the multiple SR configurations is simultaneously transmitted with other UCIs.
- the technical problem of the SR of the terminal performing correct uplink scheduling.
- an embodiment of the present invention provides a transmission method, including:
- the terminal determines an M-bit scheduling request SR information, where M is an integer greater than one;
- the terminal simultaneously sends the M-bit SR information and the first uplink control information UCI to the base station.
- the M-bit SR information corresponds to the multiple SR configurations, where one bit of the M-bit SR information corresponds to one SR configuration, and a value of each bit is used for Indicates that the corresponding SR is configured as a positive positive SR state or a negative negative SR state.
- the M is a maximum number of configurations of multiple SRs configured in the system to the terminal;
- the M is the number of configurations of multiple SRs configured to the terminal.
- the M is the number of SR configurations in which the transmission opportunities in the multiple SR configurations configured to the terminal overlap;
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the M-bit SR information corresponds to the multiple SR configurations, including:
- the M-bit SR information is corresponding to the plurality of SR configurations based on a preset arrangement order of the plurality of SR configurations;
- the M-bit SR information is associated with the plurality of SR configuration information based on a correspondence relationship of the network layer notification.
- only one bit in the M-bit SR information indicates the positive SR state.
- a first bit state of the multiple bit states corresponding to the M-bit SR information is used to indicate that each of the multiple SR configurations is configured as a negative SR state, where the multiple The bit states of the bit states other than the first bit state in the bit state correspond to the SR states of the A SR configurations, wherein one bit state of the A bit states is used to indicate the A bit states
- One SR in the SR configuration is configured as a positive SR state
- the first bit state is any one of the plurality of bit states.
- the multiple bit states further include a reserved state.
- the M is determined according to a maximum number A1 of multiple SR configurations of the terminal according to a configuration supported in the system;
- the M is determined according to the number A2 of multiple SR configurations configured to the terminal; or
- the M is determined according to the number A3 of the SR configurations in which the transmission opportunities overlap in the multiple SR configurations configured to the terminal; or
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the determination of the M is performed by the following formula:
- ceil is rounded up, and Ai is the A1 or the A2 or the A3.
- the terminal sends the M-bit SR information to the base station simultaneously with the first uplink control information UCI, including:
- the terminal concatenates the M-bit SR information with the first uplink control information UCI, and after channel coding, sends the information to the base station.
- the first UCI includes at least one of a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI.
- the CSI includes at least one of a periodic CSI, an aperiodic CSI, and a semi-persistent scheduling CSI.
- the terminal sends the M-bit SR information to the first uplink.
- the control information UCI is simultaneously sent to the base station, including:
- the terminal concatenates the M-bit SR information with the first part CSI
- the terminal performs channel coding on the M-bit SR information after the concatenation, the first partial CSI, and the second partial CSI, and sends the channel-coded information to the base station.
- the terminal sends the M-bit SR information to the base station simultaneously with the first uplink control information UCI, including:
- the first PUCCH format is PUCCH format 2 or PUCCH format 3 or PUCCH format 4 or a PUCCH format carrying more than 2 bits of the first UCI.
- the method before the terminal determines the M-bit scheduling request SR information, the method further includes:
- the terminal determines the M-bit scheduling request SR information.
- the preset condition is:
- the current transmission time is the transmission opportunity of the SR; or,
- the current transmission time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity of the SR.
- an embodiment of the present invention provides a transmission method, including:
- the base station receives the information sequence sent by the terminal on the transmission resource of the first PUCCH format, where the information sequence includes the M-bit SR information and the first UCI, where M is an integer greater than one;
- the base station obtains the M-bit SR information based on the information sequence, and determines an SR state of a plurality of SR configurations configured to the terminal according to the M-bit SR information.
- the M-bit SR information corresponds to the multiple SR configurations, where one bit of the M-bit SR information corresponds to one SR configuration, and a value of each bit is used for Indicates that the corresponding SR is configured as a positive positive SR state or a negative negative SR state.
- the M is a maximum number of configurations of multiple SRs configured in the system to the terminal;
- the M is the number of configurations of multiple SRs configured to the terminal.
- the M is the number of SR configurations in which the transmission opportunities in the multiple SR configurations configured to the terminal overlap;
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the M-bit SR information corresponds to the multiple SR configurations, including:
- the M-bit SR information is corresponding to the plurality of SR configurations based on a preset arrangement order of the plurality of SR configurations;
- the M-bit SR information is associated with the plurality of SR configuration information based on a correspondence relationship of the network layer notification.
- only one bit in the M-bit SR information indicates the positive SR state.
- a first bit state of the multiple bit states corresponding to the M-bit SR information is used to indicate that each of the multiple SR configurations is configured as a negative SR state, where the multiple The bit states of the bit states other than the first bit state in the bit state correspond to the SR states of the A SR configurations, wherein one bit state of the A bit states is used to indicate the A bit states
- One SR in the SR configuration is configured as a positive SR state
- the first bit state is any one of the plurality of bit states.
- the multiple bit states further include a reserved state.
- the M is determined according to a maximum number A1 of multiple SR configurations of the terminal according to a configuration supported in the system;
- the M is determined according to the number A2 of multiple SR configurations configured to the terminal; or
- the M is determined according to the number A3 of the SR configurations in which the transmission opportunities overlap in the multiple SR configurations configured to the terminal; or
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the determination of the M is performed by the following formula:
- ceil is rounded up, and Ai is the A1 or the A2 or the A3.
- the first UCI includes at least one of a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI.
- the CSI includes at least one of a periodic CSI, an aperiodic CSI, and a semi-persistent scheduling CSI.
- the method further includes:
- the base station performs channel coding on the M-bit SR information after the concatenation with the first partial CSI and the second partial CSI, respectively.
- the first PUCCH format is PUCCH format 2 or PUCCH format 3 or PUCCH format 4 or a PUCCH format carrying more than 2 bits of the first UCI.
- an embodiment of the present invention provides a terminal, including:
- a memory for storing instructions
- the transceiver is configured to simultaneously send the M-bit SR information and the first uplink control information UCI to the base station.
- the M-bit SR information corresponds to the multiple SR configurations, where one bit of the M-bit SR information corresponds to one SR configuration, and a value of each bit is used for Indicates that the corresponding SR is configured as a positive positive SR state or a negative negative SR state.
- the M is a maximum number of configurations of multiple SRs configured in the system to the terminal;
- the M is the number of configurations of multiple SRs configured to the terminal.
- the M is the number of SR configurations in which the transmission opportunities in the multiple SR configurations configured to the terminal overlap;
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the M-bit SR information corresponds to the multiple SR configurations, including:
- the M-bit SR information is corresponding to the plurality of SR configurations based on a preset arrangement order of the plurality of SR configurations;
- the M-bit SR information is associated with the plurality of SR configuration information based on a correspondence relationship of the network layer notification.
- only one bit in the M-bit SR information indicates the positive SR state.
- a first bit state of the multiple bit states corresponding to the M-bit SR information is used to indicate that each of the multiple SR configurations is configured as a negative SR state, where the multiple The bit states of the bit states other than the first bit state in the bit state correspond to the SR states of the A SR configurations, wherein one bit state of the A bit states is used to indicate the A bit states
- One SR in the SR configuration is configured as a positive SR state
- the first bit state is any one of the plurality of bit states.
- the multiple bit states further include a reserved state.
- the M is determined according to a maximum number A1 of multiple SR configurations of the terminal according to a configuration supported in the system;
- the M is determined according to the number A2 of multiple SR configurations configured to the terminal; or
- the M is determined according to the number A3 of the SR configurations in which the transmission opportunities overlap in the multiple SR configurations configured to the terminal; or
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the determination of the M is performed by the following formula:
- ceil is rounded up, and Ai is the A1 or the A2 or the A3.
- the transceiver is used to:
- the M-bit SR information is concatenated with the first uplink control information UCI, and after channel coding, is sent to the base station.
- the first UCI includes at least one of a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI.
- the CSI includes at least one of a periodic CSI, an aperiodic CSI, and a semi-persistent scheduling CSI.
- the transceiver is configured to:
- the M-bit SR information after the concatenation is channel-coded with the first partial CSI and the second partial CSI, and the channel-encoded information is sent to the base station.
- the transceiver is used to:
- the first PUCCH format is PUCCH format 2 or PUCCH format 3 or PUCCH format 4 or a PUCCH format carrying more than 2 bits of the first UCI.
- the processor is configured to:
- the M-bit scheduling request SR information is determined.
- the preset condition is:
- the current transmission time is the transmission opportunity of the SR; or,
- the current transmission time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity of the SR.
- an embodiment of the present invention provides a base station, including:
- a memory for storing instructions
- the transceiver Receiving, by the transceiver, a sequence of information sent by the terminal on a transmission resource of the first PUCCH format, where the information sequence includes M-bit SR information and a first UCI, where M is an integer greater than one;
- the M-bit SR information corresponds to the multiple SR configurations, where one bit of the M-bit SR information corresponds to one SR configuration, and a value of each bit is used for Indicates that the corresponding SR is configured as a positive positive SR state or a negative negative SR state.
- the M is a maximum number of configurations of multiple SRs configured in the system to the terminal;
- the M is the number of configurations of multiple SRs configured to the terminal.
- the M is the number of SR configurations in which the transmission opportunities in the multiple SR configurations configured to the terminal overlap;
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the M-bit SR information corresponds to the multiple SR configurations, including:
- the M-bit SR information is corresponding to the plurality of SR configurations based on a preset arrangement order of the plurality of SR configurations;
- the M-bit SR information is associated with the plurality of SR configuration information based on a correspondence relationship of the network layer notification.
- only one bit in the M-bit SR information indicates the positive SR state.
- a first bit state of the multiple bit states corresponding to the M-bit SR information is used to indicate that each of the multiple SR configurations is configured as a negative SR state, where the multiple The bit states of the bit states other than the first bit state in the bit state correspond to the SR states of the A SR configurations, wherein one bit state of the A bit states is used to indicate the A bit states
- One SR in the SR configuration is configured as a positive SR state
- the first bit state is any one of the plurality of bit states.
- the multiple bit states further include a reserved state.
- the M is determined according to a maximum number A1 of multiple SR configurations of the terminal according to a configuration supported in the system;
- the M is determined according to the number A2 of multiple SR configurations configured to the terminal; or
- the M is determined according to the number A3 of the SR configurations in which the transmission opportunities overlap in the multiple SR configurations configured to the terminal; or
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the determination of the M is performed by the following formula:
- ceil is rounded up, and Ai is the A1 or the A2 or the A3.
- the first UCI includes at least one of a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI.
- the CSI includes at least one of a periodic CSI, an aperiodic CSI, and a semi-persistent scheduling CSI.
- the processor is configured to:
- the M-bit SR information after the concatenation is separately channel-coded with the first partial CSI and the second partial CSI.
- the first PUCCH format is PUCCH format 2 or PUCCH format 3 or PUCCH format 4 or a PUCCH format carrying more than 2 bits of the first UCI.
- an embodiment of the present invention provides a terminal, including:
- a determining module configured to determine an M-bit scheduling request SR information, where M is an integer greater than one
- a sending module configured to send the M-bit SR information to the base station simultaneously with the first uplink control information UCI.
- the M-bit SR information corresponds to the multiple SR configurations, where one bit of the M-bit SR information corresponds to one SR configuration, and a value of each bit is used for Indicates that the corresponding SR is configured as a positive positive SR state or a negative negative SR state.
- the M is a maximum number of configurations of multiple SRs configured in the system to the terminal;
- the M is the number of configurations of multiple SRs configured to the terminal.
- the M is the number of SR configurations in which the transmission opportunities in the multiple SR configurations configured to the terminal overlap;
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the M-bit SR information corresponds to the multiple SR configurations, including:
- the M-bit SR information is corresponding to the plurality of SR configurations based on a preset arrangement order of the plurality of SR configurations;
- the M-bit SR information is associated with the plurality of SR configuration information based on a correspondence relationship of the network layer notification.
- only one bit in the M-bit SR information indicates the positive SR state.
- a first bit state of the multiple bit states corresponding to the M-bit SR information is used to indicate that each of the multiple SR configurations is configured as a negative SR state, where the multiple The bit states of the bit states other than the first bit state in the bit state correspond to the SR states of the A SR configurations, wherein one bit state of the A bit states is used to indicate the A bit states
- One SR in the SR configuration is configured as a positive SR state
- the first bit state is any one of the plurality of bit states.
- the multiple bit states further include a reserved state.
- the M is determined according to a maximum number A1 of multiple SR configurations of the terminal according to a configuration supported in the system;
- the M is determined according to the number A2 of multiple SR configurations configured to the terminal; or
- the M is determined according to the number A3 of the SR configurations in which the transmission opportunities overlap in the multiple SR configurations configured to the terminal; or
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the determination of the M is performed by the following formula:
- ceil is rounded up, and Ai is the A1 or the A2 or the A3.
- the sending module is configured to:
- the M-bit SR information is concatenated with the first uplink control information UCI, and after channel coding, is sent to the base station.
- the first UCI includes at least one of a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI.
- the CSI includes at least one of a periodic CSI, an aperiodic CSI, and a semi-persistent scheduling CSI.
- the sending module is configured to:
- the M-bit SR information after the concatenation is channel-coded with the first partial CSI and the second partial CSI, and the channel-encoded information is sent to the base station.
- the sending module is configured to:
- the first PUCCH format is PUCCH format 2 or PUCCH format 3 or PUCCH format 4 or a PUCCH format carrying more than 2 bits of the first UCI.
- the determining module is configured to:
- the M-bit scheduling request SR information is determined.
- the preset condition is:
- the current transmission time is the transmission opportunity of the SR; or,
- the current transmission time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity of the SR.
- an embodiment of the present invention provides a base station, including:
- a receiving module configured to receive, by using a transmission resource of the first PUCCH format, a sequence of information sent by the terminal, where the information sequence includes M-bit SR information and a first UCI, where M is an integer greater than one;
- a determining module configured to obtain the M-bit SR information based on the information sequence, and determine an SR state of a plurality of SR configurations configured to the terminal according to the M-bit SR information.
- the M-bit SR information corresponds to the multiple SR configurations, where one bit of the M-bit SR information corresponds to one SR configuration, and a value of each bit is used for Indicates that the corresponding SR is configured as a positive positive SR state or a negative negative SR state.
- the M is a maximum number of configurations of multiple SRs configured in the system to the terminal;
- the M is the number of configurations of multiple SRs configured to the terminal.
- the M is the number of SR configurations in which the transmission opportunities in the multiple SR configurations configured to the terminal overlap;
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the M-bit SR information corresponds to the multiple SR configurations, including:
- the M-bit SR information is corresponding to the plurality of SR configurations based on a preset arrangement order of the plurality of SR configurations;
- the M-bit SR information is associated with the plurality of SR configuration information based on a correspondence relationship of the network layer notification.
- only one bit in the M-bit SR information indicates the positive SR state.
- a first bit state of the multiple bit states corresponding to the M-bit SR information is used to indicate that each of the multiple SR configurations is configured as a negative SR state, where the multiple The bit states of the bit states other than the first bit state in the bit state correspond to the SR states of the A SR configurations, wherein one bit state of the A bit states is used to indicate the A bit states
- One SR in the SR configuration is configured as a positive SR state
- the first bit state is any one of the plurality of bit states.
- the multiple bit states further include a reserved state.
- the M is determined according to a maximum number A1 of multiple SR configurations of the terminal according to a configuration supported in the system;
- the M is determined according to the number A2 of multiple SR configurations configured to the terminal; or
- the M is determined according to the number A3 of the SR configurations in which the transmission opportunities overlap in the multiple SR configurations configured to the terminal; or
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the determination of the M is performed by the following formula:
- ceil is rounded up, and Ai is the A1 or the A2 or the A3.
- the first UCI includes at least one of a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI.
- the CSI includes at least one of a periodic CSI, an aperiodic CSI, and a semi-persistent scheduling CSI.
- the determining module is configured to:
- the M-bit SR information after the concatenation is separately channel-coded with the first partial CSI and the second partial CSI.
- the first PUCCH format is PUCCH format 2 or PUCCH format 3 or PUCCH format 4 or a PUCCH format carrying more than 2 bits of the first UCI.
- an embodiment of the present invention provides a computer readable storage medium.
- the computer readable storage medium stores computer instructions that, when executed on a computer, cause the computer to perform the method of the first or second aspect.
- the terminal cascades the M-bit scheduling request SR with the first UCI and transmits the same, and the M-bit SR information indicates that the SRs of the terminal are configured with the SR state. To ensure that the base station performs correct uplink scheduling on the terminal.
- FIG. 1 is a schematic flowchart of a transmission method according to an embodiment of the present disclosure
- FIG. 2 is a schematic flowchart of a transmission method according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of a terminal according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram of a base station according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram of a module of a terminal according to an embodiment of the present disclosure.
- FIG. 6 is a schematic diagram of a module of a base station according to an embodiment of the present invention.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- LTE-A Advanced Long Term Evolution
- UMTS Universal Mobile Telecommunication System
- NR New Radio
- the user equipment includes but is not limited to a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset). And portable devices, etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
- RAN Radio Access Network
- the user equipment can be a mobile phone (or "cellular"
- the telephone device, the computer with wireless communication function, etc., the user equipment can also be a mobile device that is portable, pocket-sized, handheld, built-in, or in-vehicle.
- a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
- the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
- IP Internet Protocol
- the base station can also coordinate attribute management of the air interface.
- the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in TD-SCDMA or WCDMA, or may be an evolved base station (eNodeB or eNB or e- in LTE).
- NodeB, evolutional Node B), or a base station (gNB) in 5G NR the present invention is not limited.
- PUCCH Physical Uplink Control CHannel
- the PUCCH is used to transmit the UCI.
- the UCI may include Hybrid Automatic Repeat reQuest-ACKnowledgement (HARQ-ACK), Channel State Information (CSI), and SR.
- HARQ-ACK Hybrid Automatic Repeat reQuest-ACKnowledgement
- CSI Channel State Information
- SR SR
- the PUCCH format 0 or the PUCCH format 1 may be used to carry UCI transmissions of no more than 2 bits, and the PUCCH format 2 or the PUCCH format 3 or the PUCCH format 4 may be used to carry UCI transmissions of 2 bits or more.
- the HARQ-ACK can be configured to transmit using any of the above five PUCCH formats.
- the CSI can be configured to transmit using at least PUCCH format 2 or PUCCH format 3 or PUCCH format 4, and the SR can be configured to transmit using at least PUCCH format 0 or PUCCH format 1.
- the PUCCH format 2 or the PUCCH format 3 or the PUCCH format 4 may be transmitted by using an encoding and rate matching method, that is, after the channel coding and rate matching of the UCI to be transmitted, mapping to the configured PUCCH format resource, except for the demodulation reference signal (Demodulation Reference Signal) , on resources other than DMRS).
- an encoding and rate matching method that is, after the channel coding and rate matching of the UCI to be transmitted, mapping to the configured PUCCH format resource, except for the demodulation reference signal (Demodulation Reference Signal) , on resources other than DMRS).
- the different SR configurations correspond to different service types and/or transmission requirements, and different SR configurations correspond to different SR resources, as the 5G NR system can support multiple SR configurations for the terminal.
- the transmission opportunities of multiple SR configurations may overlap.
- the SR is transmitted on the SR resource corresponding to the SR that needs to be transmitted in the transmission opportunity.
- the base station performs blind monitoring on the SR resources corresponding to the multiple SR configurations configured to the terminal to determine which SR the terminal transmits, thereby performing reasonable uplink scheduling.
- the terminal concatenates the M-bit scheduling request SR and the first UCI in a simultaneous transmission, and instructs the multiple SRs of the terminal to configure the SR by using the M-bit SR information. Status to ensure that the base station performs correct uplink scheduling for the terminal.
- association relationship describing an association object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B, there are three cases of B alone.
- character "/" in this article generally indicates that the contextual object is an "or" relationship.
- an embodiment of the present invention provides a transmission method, which can be performed by a terminal, and the terminal can be implemented, for example, by a device capable of communicating with a base station, such as a personal computer, a mobile phone, or a tablet computer.
- a base station such as a personal computer, a mobile phone, or a tablet computer.
- the flow of the method is described below, wherein in the following flow, a description of the method on the base station side is also involved.
- the terminal determines an M-bit scheduling request SR information, where M is an integer greater than 1.
- S102 The terminal sends the M-bit SR information to the base station simultaneously with the first uplink control information UCI.
- the base station may configure at least one SR configuration for the terminal, and different SR configurations include one or more parameters.
- the terminal may select which SR configuration to send, and then send an SR corresponding to the transmitted SR configuration to the base station.
- the transmission opportunities of multiple SR configurations may overlap in the time domain. When the overlap occurs, the terminal will only send one of the SR configurations. If the terminal selects the SR corresponding to the SR configuration to be transmitted and the transmission to be transmitted.
- the terminal may carry the M-bit SR information in the first UCI, so that the base station can perform the M-bit SR information according to the information.
- the M-bit SR information may be used to indicate the SR status of the multiple SR configurations of the terminal, and the terminal determines that the M-bit SR information may be performed by, but not limited to, the following two manners.
- the M-bit SR information corresponds to multiple SR configurations, where one bit of the M-bit SR information corresponds to one SR configuration, and the value of each bit can be used to indicate that the corresponding SR is configured as a positive SR state or a negative SR. status.
- each bit of the M-bit SR information may correspond to one SR configuration.
- the 1-bit information of one SR configuration is “0”, it indicates that the corresponding SR is configured as a negative SR state, and corresponds to one-bit information of one SR configuration.
- it indicates that the corresponding SR is configured as the positive SR state; or, when the 1-bit information of the corresponding SR configuration is "1”, it indicates that the corresponding SR is configured as the negative SR state, when the corresponding SR configuration is 1
- the bit information is "0" it indicates that the corresponding SR is configured as a positive SR state.
- the 1-bit information of the corresponding SR configuration is “0”, it indicates that the corresponding SR is configured as the negative SR state.
- the 1-bit information of the corresponding SR configuration is “1”, it indicates that the corresponding SR is configured as a positive SR.
- M is 3, that is, the terminal determines 3-bit SR information, and each bit of the 3-bit SR information may correspond to one SR configuration. Therefore, if the terminal has three SR configurations, the 3-bit SR information corresponds to The 3 bits can indicate the positive SR state or the negative SR state of the 3 SR configurations, respectively.
- “100” may indicate that the first SR configuration transmission positive SR, the second SR configuration, and the third SR configuration of the three SR configurations of the terminal are not transmitting the SR, that is, the first SR configuration is in the positive SR state.
- the second SR configuration and the third SR configuration are both in the negative SR state; for example, "010" may indicate that the second SR configuration of the terminal's three SR configurations transmits the positive SR, the first SR configuration, and the third
- the SR configuration does not transmit the SR, that is, the second SR configuration is in the positive SR state, and the first SR configuration and the third SR configuration are in the negative SR state.
- only one bit in the M-bit SR information is used to indicate the positive SR state.
- the value of M in the M-bit SR information determined by the terminal may be determined by, but not limited to, the following manner:
- M is the maximum number of configurations of multiple SRs configured in the system to the terminal.
- the actual number of SR configurations configured by the system to the terminal may be less than or equal to the maximum number of SR configurations configured in the system to the terminal, and M is the maximum number of values, such as the configuration of the SR supported by the system.
- the maximum number of SR configurations that the system configures for the terminal can be 1 or 2 or 3 or 4, etc. (in this case, some bits in the M bits do not correspond to any SR configuration, and these bits can be set to A fixed value agreed with the base station, such as a fixed setting of "0" or "1".
- the terminal can Determining 5-bit SR information, indicating whether each of the four SR configurations of the terminal is in a positive SR state or a negative SR state, for example, the first 4 bits correspond to each of the four SR configurations, and the last one The bit reservation is not used, and the fixed setting is "0".
- the terminal can determine the 3-bit SR information, and indicate whether each of the two SR configurations of the terminal is in the positive SR state or in the negative SR state, for example, the first two bits correspond to two.
- the last bit is reserved, fixed to "0", and so on.
- M is the number of configurations of multiple SRs configured for the terminal.
- the value of M can be the actual number of SR configurations configured by the system to the terminal. If the system is configured with four SRs configured for the terminal, the value of M is 4; for example, if the system is configured for 3 SR configurations of the terminal, The value of M is 3.
- M is the number of overlapping SR configurations in the transmission opportunities in the multiple SR configurations configured for the terminal.
- the system configures five SR configurations for the terminal.
- the periodic configuration there may be overlaps between the transmission opportunities of the three SR configurations at the same time.
- the value of M may be each of the 3, 3 bits.
- the M-bit SR information corresponds to multiple SR configurations, including but not limited to the following cases:
- the multiple SR configurations of the terminal may have a predefined arrangement order, for example, each of the multiple SR configurations has a corresponding index, such as “1, 2, 3”, etc., and the terminal may be configured according to the SR.
- the ascending or descending order of the index corresponds to the first bit, the second bit, ..., the last bit in the M-bit SR information.
- Case 2 The M-bit SR information is associated with a plurality of SR configurations based on the correspondence relationship of the network side notifications.
- the correspondence between the M-bit SR information and the multiple SR configurations may be notified to the terminal by the network side by means of configuration signaling, etc., for example, the network side notifies the first bit in the M-bit SR information to the last one.
- the index of the SR configuration corresponding to the bit, and the terminal can further associate the M-bit SR information with the plurality of SR configurations according to the correspondence.
- the first bit state of the multiple bit states corresponding to the M-bit SR information is used to indicate that each of the multiple SR configurations is configured as a negative SR state, and the bits of the multiple bit states except the first bit state
- the A bit states in the state correspond to the SR states of the A SR configurations, wherein one bit state of the A bit states is used to indicate that one of the A SR configurations is configured as a positive SR state, and the first bit state is multiple Any bit state in the bit state.
- the value of A may be less than or equal to the number of states of the remaining bit states except the first bit state among the plurality of bit states.
- a bit state may be used in a plurality of different bit states corresponding to the M-bit SR information to indicate that each of the plurality of SR configurations is in a negative SR state, as shown in the case of “00” in Table 1. Or refer to the case of "000” in Table 2; and the remaining bit states in the plurality of different bit states corresponding to the M-bit SR information may be used to indicate that one of the plurality of SR configurations is configured as a positive SR state, respectively. status.
- the first SR is configured as a positive SR 10
- the second SR is configured as a positive SR 11
- the third SR is configured as a positive SR or reserved
- the first SR is configured as a positive SR 010
- the second SR is configured as a positive SR 011
- the third SR is configured as a positive SR 100
- the fourth SR is configured as a positive SR 101
- the fifth SR is configured as a positive SR or reserved 110
- the sixth SR is configured as a positive SR or reserved 111
- the seventh SR is configured as a positive SR or reserved
- the multiple bit states further include a reserved state. For example, in Table 1, if there are 3 SR configurations, 4 states are used. If there are only 2 SR configurations, the last state can be a reserved state.
- the value of M in the M-bit SR information determined by the terminal may be determined by, but not limited to, the following manner:
- M is determined according to the maximum number A1 of multiple SR configurations of the terminal according to the configuration supported in the system.
- M is determined according to the number A2 of multiple SR configurations configured to the terminal.
- M is determined according to the number A3 of SR configurations in which the transmission opportunities overlap in the plurality of SR configurations configured to the terminal.
- the determination of M can be specifically performed by the following formula:
- ceil is rounded up, and Ai may be A1 in mode 1), or A2 in mode 2), or A3 in mode 3). Of course, in practical applications, Ai may take other values, The embodiment of the invention is not limited.
- the terminal may proceed to S102, that is, the terminal simultaneously sends the M-bit SR information and the first uplink control information UCI to the base station.
- the terminal may cascade the M-bit SR information with the first UCI, and after jointly coding, may send the data to the base station by using the transmission resource of the first PUCCH format.
- the first UCI may include at least one of a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI, that is, the M-bit SR information may be cascaded with the HARQ-ACK, or the M-bit.
- the SR information may be concatenated with the CSI, or the M-bit SR information may be concatenated with the HARQ-ACK and the CSI.
- the M-bit SR information may be cascaded with other UCIs in the actual application, which is not limited in the embodiment of the present invention.
- the CSI may include at least one of periodic CSI, aperiodic CSI, and semi-persistent scheduling CSI.
- the terminal may cascade the M-bit SR information with the first partial CSI, and then, the terminal respectively
- the cascading M-bit SR information is channel-coded with the first partial CSI and the second partial CSI, that is, the M-bit SR information is independently channel-coded with the first partial CSI and the second partial CSI, and then the terminal encodes the channel.
- Information is sent to the base station,
- the terminal may also concatenate the M-bit SR information with the second partial CSI, and then the terminal separately performs channel coding on the concatenated M-bit SR information, the second partial CSI, and the second partial CSI, that is, the M-bit SR.
- the information is channel-encoded independently with the second part of the CSI and the first part of the CSI, and the terminal transmits the channel-encoded information to the base station.
- the M-bit SR information may be concatenated with the first partial CSI, or the M-bit SR information may also be combined with the second partial CSI. cascade.
- the HARQ-ACK may also be cascaded with the first partial CSI or the second partial CSI.
- the terminal may send the M-bit SR information and the first uplink control information UCI to the base station by using the transmission resource of the first physical uplink control channel format PUCCH format, where the first PUCCH format may be PUCCH format 2 or PUCCH format 3 or PUCCH format 4 or a PUCCH format carrying more than 2 bits of the first UCI.
- PUCCH format may be PUCCH format 2 or PUCCH format 3 or PUCCH format 4 or a PUCCH format carrying more than 2 bits of the first UCI.
- the terminal may further determine whether the preset condition is met; if yes, the terminal determines the M-bit scheduling request SR information, where the preset condition may be set.
- the current transmission time is the transmission opportunity of the SR; or the current transmission time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity of the SR, and the transmission opportunity of the SR may indicate that the transmission of the SR is performed at a certain transmission moment. .
- the above method may further determine whether the following conditions are met, and when the following conditions are met, the above operation is performed:
- the operations corresponding to the steps S101 and the like are performed;
- the operations corresponding to the steps S101 and the like are performed.
- the steps corresponding to the steps S101 and the like are performed. Operation; or,
- the above S101 is performed.
- SR 1 and SR 2 there are two terminals arranged SR: SR 1 and SR 2, SR 1 and SR in accordance with the offset value and the configuration cycles and 2, SR 1 and SR transmission opportunity at time 1 2 overlap.
- the M bit may be determined according to the number of configured SR configurations, or the number of overlapping SR configurations at the same time, or the configuration information sent by the base station.
- M 2 in the SR information, that is, 2-bit SR information is required to be cascaded with the HARQ-ACK and transmitted together.
- the first bit of the 2-bit SR information corresponds to SR 1
- the second bit corresponds to SR 2 . It is assumed that “1” represents the positive SR state and “0” represents the negative SR state, then:
- the terminal side determines that the 2-bit SR information is "10", is cascaded with the HARQ-ACK, for example, concatenated after the HARQ-ACK information, and then transmits the resource according to the determined PUCCH format 3 for HARQ-ACK transmission,
- the information after the cascading is channel coded and rate matched, and mapped to corresponding resources for transmission.
- the base station side on the determined PUCCH format 3 transmission resource for HARQ-ACK transmission, according to the method of joint coding and rate matching by assuming 2-bit SR and HARQ-ACK, receiving the information sequence transmitted by the terminal, in the information sequence
- the last two bits of information are extracted as 2-bit SR information.
- the terminal sends the positive SR 1 and performs corresponding uplink scheduling on the terminal according to the service requirement corresponding to the SR 1 .
- Mode 2 Determine 2-bit SR information according to the SR to be transmitted and a predefined mapping table.
- Terminal side According to the foregoing Table 1, it is determined that the 2-bit SR information is "01", and is cascaded with the HARQ-ACK, for example, concatenated after the HARQ-ACK information, and then the resources are transmitted according to the determined PUCCH format 3, and the pair is cascaded.
- the subsequent information is channel coded and rate matched, and mapped to corresponding resources for transmission.
- the base station side on the determined PUCCH format 3 transmission resource for the HARQ-ACK transmission, the information sequence transmitted by the terminal is received in the information sequence according to the joint coding and rate matching of the assumed 2-bit SR information and the HARQ-ACK.
- the last two bits of information are extracted as 2-bit SR information.
- the terminal According to the state of the 2-bit SR information and Table 1, it is determined that the terminal has transmitted the positive SR 1 and performs corresponding uplink scheduling on the terminal according to the service demand corresponding to the SR 1 .
- an embodiment may perform SR transmission in the foregoing manner in any of the transmission opportunities of SR 1 and SR 2 overlapping with other UCIs, that is, if only one SR configuration exists in one SR transmission opportunity,
- the above process can also be performed by overlapping with other UCIs.
- any one of the SR transmission opportunities assumes that the M-bit SR information is transmitted simultaneously with other UCIs, and the method can implement a unified transmission scheme for any SR transmission opportunity. .
- the foregoing process of performing M-bit SR transmission when there are multiple transmission opportunities in which the SR configurations overlap and there are other UCIs in the transmission opportunity if only one of the SR transmission opportunities exists
- the SR is configured, and other UCIs are still present in the transmission opportunity, and may not be transmitted in the above manner, but transmitted in other agreed manners.
- the positive SR is implicitly expressed by transmitting other UCIs on the SR resources corresponding to the SRs that need to be transmitted, or only the 1-bit SRs are cascaded with other UCIs and simultaneously transmitted on resources corresponding to other UCIs.
- SR 1 For example, in time 2, only the transmission opportunity of SR 1 is: then, in time 2, there may only be one SR 1 to be transmitted, and the above M bit may not be used, and when SR 1 needs to be transmitted (ie, positive SR) 1 ) implicitly expressing the positive SR 1 by transmitting another UCI on the SR resource corresponding to the SR 1 to be transmitted, or whether the positive SR 1 is used, and the 1-bit SR is cascaded with other UCIs at time 2, The other UCI resources are simultaneously transmitted. Because there is only one SR configuration in time 2, the base station can always judge that the 1-bit SR corresponds to SR 1 .
- SR 2 For another example, in time 3, only the transmission opportunity of SR 2 is: in time 3, only one SR 2 may need to be transmitted, and the above M bit may not be used, and when SR 2 needs to be sent (ie, positive) SR 2), by transmitting on the corresponding SR 2 SR resources may be implicitly expressed other UCI positive SR 2, or whether positive SR 2, using 1-bit SR cascaded together with other UCI 3 in time, in other UCI The corresponding resources are transmitted simultaneously. Because there is only one SR configuration in time 3, the base station can always judge that the 1-bit SR corresponds to SR 2 ; at this time, the SR reporting overhead is saved relative to always using M bits, but different. In the SR transmission opportunity, the transmission scheme used may be different.
- the base station and the terminal know in advance the specific configuration information of multiple SR configurations, such as the period, the SR configuration overlap in each SR transmission opportunity may be known in advance, thereby determining The corresponding transmission scheme is selected for transmission, and there is no ambiguity in understanding the transmission scheme between the base station and the terminal.
- the PUCCH format 2 or PUCCH format 3 or PUCCH format 4 may be used for transmission only for the CSI configuration, and the PUCCH format 0 or 1 transmission may be used for the HARQ-ACK configuration, or
- the PUCCH format 2 or PUCCH format 3 or PUCCH format 4 transmission may also be configured for both HARQ-ACK and CSI; the PUCCH format 3 is replaced with PUCCH format 2 or PUCCH format 4 or other PUCCH format carrying more than 2 bits of UCI, and the same applies.
- the terminal cascades the M-bit scheduling request SR with the first UCI and simultaneously transmits the M-bit SR information to indicate the SR state of the multiple SRs of the terminal, thereby It ensures that the base station performs correct uplink scheduling on the terminal.
- an embodiment of the present invention provides a transmission method, and the process of the method may be described as follows:
- the base station receives, on a transmission resource of the first PUCCH format, a sequence of information sent by the terminal, where the information sequence includes M-bit SR information and a first UCI, where M is an integer greater than 1.
- the base station obtains the M-bit SR information based on the information sequence, and determines an SR state of multiple SR configurations configured to the terminal according to the M-bit SR information.
- the M-bit SR information corresponds to the multiple SR configurations, where one bit of the M-bit SR information corresponds to one SR configuration, and a value of each bit is used for Indicates that the corresponding SR is configured as a positive positive SR state or a negative negative SR state.
- the M is a maximum number of configurations of multiple SRs configured in the system to the terminal;
- the M is the number of configurations of multiple SRs configured to the terminal.
- the M is the number of SR configurations in which the transmission opportunities in the multiple SR configurations configured to the terminal overlap;
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the M-bit SR information corresponds to the multiple SR configurations, including:
- the M-bit SR information is corresponding to the plurality of SR configurations based on a preset arrangement order of the plurality of SR configurations;
- the M-bit SR information is associated with the plurality of SR configuration information based on a correspondence relationship of the network layer notification.
- only one bit in the M-bit SR information indicates the positive SR state.
- a first bit state of the multiple bit states corresponding to the M-bit SR information is used to indicate that each of the multiple SR configurations is configured as a negative SR state, where the multiple The bit states of the bit states other than the first bit state in the bit state correspond to the SR states of the A SR configurations, wherein one bit state of the A bit states is used to indicate the A bit states
- One SR in the SR configuration is configured as a positive SR state
- the first bit state is any one of the plurality of bit states.
- the multiple bit states further include a reserved state.
- the M is determined according to a maximum number A1 of multiple SR configurations of the terminal according to a configuration supported in the system;
- the M is determined according to the number A2 of multiple SR configurations configured to the terminal; or
- the M is determined according to the number A3 of the SR configurations in which the transmission opportunities overlap in the multiple SR configurations configured to the terminal; or
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the determination of the M is performed by the following formula:
- ceil is rounded up, and Ai is the A1 or the A2 or the A3.
- the first UCI includes at least one of a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI.
- the CSI includes at least one of a periodic CSI, an aperiodic CSI, and a semi-persistent scheduling CSI.
- the method further includes:
- the base station performs channel coding on the M-bit SR information after the concatenation with the first partial CSI and the second partial CSI, respectively.
- the first PUCCH format is PUCCH format 2 or PUCCH format 3 or PUCCH format 4 or a PUCCH format carrying more than 2 bits of the first UCI.
- an embodiment of the present invention further provides a terminal, where the terminal includes a memory 301, a processor 302, and a transceiver 303.
- the memory 301 and the transceiver 303 can be connected to the processor 302 through a bus interface (as shown in FIG. 3), or can be connected to the processor 302 through a dedicated connection line.
- the memory 301 can be used to store programs.
- the processor 302 can be used to read a program in the memory 301 and perform the following process:
- the transceiver is configured to simultaneously send the M-bit SR information and the first uplink control information UCI to the base station.
- the M-bit SR information corresponds to the multiple SR configurations, where one bit of the M-bit SR information corresponds to one SR configuration, and a value of each bit is used for Indicates that the corresponding SR is configured as a positive positive SR state or a negative negative SR state.
- the M is a maximum number of configurations of multiple SRs configured in the system to the terminal;
- the M is the number of configurations of multiple SRs configured to the terminal.
- the M is the number of SR configurations in which the transmission opportunities in the multiple SR configurations configured to the terminal overlap;
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the M-bit SR information corresponds to the multiple SR configurations, including:
- the M-bit SR information is corresponding to the plurality of SR configurations based on a preset arrangement order of the plurality of SR configurations;
- the M-bit SR information is associated with the plurality of SR configuration information based on a correspondence relationship of the network layer notification.
- only one bit in the M-bit SR information indicates the positive SR state.
- a first bit state of the multiple bit states corresponding to the M-bit SR information is used to indicate that each of the multiple SR configurations is configured as a negative SR state, where the multiple The bit states of the bit states other than the first bit state in the bit state correspond to the SR states of the A SR configurations, wherein one bit state of the A bit states is used to indicate the A bit states
- One SR in the SR configuration is configured as a positive SR state
- the first bit state is any one of the plurality of bit states.
- the multiple bit states further include a reserved state.
- the M is determined according to a maximum number A1 of multiple SR configurations of the terminal according to a configuration supported in the system;
- the M is determined according to the number A2 of multiple SR configurations configured to the terminal; or
- the M is determined according to the number A3 of the SR configurations in which the transmission opportunities overlap in the multiple SR configurations configured to the terminal; or
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the determination of the M is performed by the following formula:
- ceil is rounded up, and Ai is the A1 or the A2 or the A3.
- the transceiver 303 is configured to:
- the M-bit SR information is concatenated with the first uplink control information UCI, and after channel coding, is sent to the base station.
- the first UCI includes at least one of a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI.
- the CSI includes at least one of a periodic CSI, an aperiodic CSI, and a semi-persistent scheduling CSI.
- the transceiver 303 is configured to:
- the M-bit SR information after the concatenation is channel-coded with the first partial CSI and the second partial CSI, and the channel-encoded information is sent to the base station.
- the transceiver 303 is configured to:
- the first PUCCH format is PUCCH format 2 or PUCCH format 3 or PUCCH format 4 or a PUCCH format carrying more than 2 bits of the first UCI.
- the processor 302 is configured to:
- the M-bit scheduling request SR information is determined.
- the preset condition is:
- the current transmission time is the transmission opportunity of the SR; or,
- the current transmission time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity of the SR.
- the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 302 and various circuits of memory represented by memory 301.
- the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
- the bus interface provides an interface.
- Transceiver 303 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
- the processor 302 is responsible for managing the bus architecture and general processing, and the memory 301 can store data used by the processor 302 in performing operations.
- an embodiment of the present invention provides a base station, where the base station includes: a memory 401, a processor 402, and a transceiver 403.
- the memory 401 and the transceiver 403 may be connected to the processor 402 through a bus interface (as shown in FIG. 4), or may be connected to the processor 402 through a dedicated connection line.
- the memory 401 can be used to store programs.
- the transceiver 403 can receive the inter-node signaling message sent by the primary base station.
- the processor 402 is configured to read the instructions in the memory 401 and perform the following processes:
- the transceiver Receiving, by the transceiver, a sequence of information sent by the terminal on a transmission resource of the first PUCCH format, where the information sequence includes M-bit SR information and a first UCI, where M is an integer greater than one;
- the M-bit SR information corresponds to the multiple SR configurations, where one bit of the M-bit SR information corresponds to one SR configuration, and a value of each bit is used for Indicates that the corresponding SR is configured as a positive positive SR state or a negative negative SR state.
- the M is a maximum number of configurations of multiple SRs configured in the system to the terminal;
- the M is the number of configurations of multiple SRs configured to the terminal.
- the M is the number of SR configurations in which the transmission opportunities in the multiple SR configurations configured to the terminal overlap;
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the M-bit SR information corresponds to the multiple SR configurations, including:
- the M-bit SR information is corresponding to the plurality of SR configurations based on a preset arrangement order of the plurality of SR configurations;
- the M-bit SR information is associated with the plurality of SR configuration information based on a correspondence relationship of the network layer notification.
- only one bit in the M-bit SR information indicates the positive SR state.
- a first bit state of the multiple bit states corresponding to the M-bit SR information is used to indicate that each of the multiple SR configurations is configured as a negative SR state, where the multiple The bit states of the bit states other than the first bit state in the bit state correspond to the SR states of the A SR configurations, wherein one bit state of the A bit states is used to indicate the A bit states
- One SR in the SR configuration is configured as a positive SR state
- the first bit state is any one of the plurality of bit states.
- the multiple bit states further include a reserved state.
- the M is determined according to a maximum number A1 of multiple SR configurations of the terminal according to a configuration supported in the system;
- the M is determined according to the number A2 of multiple SR configurations configured to the terminal; or
- the M is determined according to the number A3 of the SR configurations in which the transmission opportunities overlap in the multiple SR configurations configured to the terminal; or
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the determination of the M is performed by the following formula:
- ceil is rounded up, and Ai is the A1 or the A2 or the A3.
- the first UCI includes at least one of a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI.
- the CSI includes at least one of a periodic CSI, an aperiodic CSI, and a semi-persistent scheduling CSI.
- the processor 402 is configured to:
- the M-bit SR information after the concatenation is separately channel-coded with the first partial CSI and the second partial CSI.
- the first PUCCH format is PUCCH format 2 or PUCCH format 3 or PUCCH format 4 or a PUCCH format carrying more than 2 bits of the first UCI.
- the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 402 and various circuits of memory represented by memory 401.
- the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
- the bus interface provides an interface.
- Transceiver 403 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
- the processor 402 is responsible for managing the bus architecture and general processing, and the memory 401 can store data used by the processor 402 in performing operations.
- an embodiment of the present invention provides a terminal, including:
- a determining module 51 configured to determine an M-bit scheduling request SR information, where M is an integer greater than one;
- the sending module 52 is configured to send the M-bit SR information to the base station simultaneously with the first uplink control information UCI.
- the M-bit SR information corresponds to the multiple SR configurations, where one bit of the M-bit SR information corresponds to one SR configuration, and a value of each bit is used for Indicates that the corresponding SR is configured as a positive positive SR state or a negative negative SR state.
- the M is a maximum number of configurations of multiple SRs configured in the system to the terminal;
- the M is the number of configurations of multiple SRs configured to the terminal.
- the M is the number of SR configurations in which the transmission opportunities in the multiple SR configurations configured to the terminal overlap;
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the M-bit SR information corresponds to the multiple SR configurations, including:
- the M-bit SR information is corresponding to the plurality of SR configurations based on a preset arrangement order of the plurality of SR configurations;
- the M-bit SR information is associated with the plurality of SR configuration information based on a correspondence relationship of the network layer notification.
- only one bit in the M-bit SR information indicates the positive SR state.
- a first bit state of the multiple bit states corresponding to the M-bit SR information is used to indicate that each of the multiple SR configurations is configured as a negative SR state, where the multiple The bit states of the bit states other than the first bit state in the bit state correspond to the SR states of the A SR configurations, wherein one bit state of the A bit states is used to indicate the A bit states
- One SR in the SR configuration is configured as a positive SR state
- the first bit state is any one of the plurality of bit states.
- the multiple bit states further include a reserved state.
- the M is determined according to a maximum number A1 of multiple SR configurations of the terminal according to a configuration supported in the system;
- the M is determined according to the number A2 of multiple SR configurations configured to the terminal; or
- the M is determined according to the number A3 of the SR configurations in which the transmission opportunities overlap in the multiple SR configurations configured to the terminal; or
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the determination of the M is performed by the following formula:
- ceil is rounded up, and Ai is the A1 or the A2 or the A3.
- the sending module 52 is configured to:
- the M-bit SR information is concatenated with the first uplink control information UCI, and after channel coding, is sent to the base station.
- the first UCI includes at least one of a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI.
- the CSI includes at least one of a periodic CSI, an aperiodic CSI, and a semi-persistent scheduling CSI.
- the sending module 52 is configured to:
- the M-bit SR information after the concatenation is channel-coded with the first partial CSI and the second partial CSI, and the channel-encoded information is sent to the base station.
- the sending module 52 is configured to:
- the first PUCCH format is PUCCH format 2 or PUCCH format 3 or PUCCH format 4 or a PUCCH format carrying more than 2 bits of the first UCI.
- the determining module is configured to:
- the M-bit scheduling request SR information is determined.
- the preset condition is:
- the current transmission time is the transmission opportunity of the SR; or,
- the current transmission time is the transmission opportunity of the SR, and there are multiple SR configurations in the transmission opportunity of the SR.
- an embodiment of the present invention provides a base station, including:
- the receiving module 61 is configured to receive, on a transmission resource of the first PUCCH format, a sequence of information sent by the terminal, where the information sequence includes M-bit SR information and a first UCI, where M is an integer greater than one;
- the determining module 62 is configured to obtain the M-bit SR information based on the information sequence, and determine an SR state of multiple SR configurations configured to the terminal according to the M-bit SR information.
- the M-bit SR information corresponds to the multiple SR configurations, where one bit of the M-bit SR information corresponds to one SR configuration, and a value of each bit is used for Indicates that the corresponding SR is configured as a positive positive SR state or a negative negative SR state.
- the M is a maximum number of configurations of multiple SRs configured in the system to the terminal;
- the M is the number of configurations of multiple SRs configured to the terminal.
- the M is the number of SR configurations in which the transmission opportunities in the multiple SR configurations configured to the terminal overlap;
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the M-bit SR information corresponds to the multiple SR configurations, including:
- the M-bit SR information is corresponding to the plurality of SR configurations based on a preset arrangement order of the plurality of SR configurations;
- the M-bit SR information is associated with the plurality of SR configuration information based on a correspondence relationship of the network layer notification.
- only one bit in the M-bit SR information indicates the positive SR state.
- a first bit state of the multiple bit states corresponding to the M-bit SR information is used to indicate that each of the multiple SR configurations is configured as a negative SR state, where the multiple The bit states of the bit states other than the first bit state in the bit state correspond to the SR states of the A SR configurations, wherein one bit state of the A bit states is used to indicate the A bit states
- One SR in the SR configuration is configured as a positive SR state
- the first bit state is any one of the plurality of bit states.
- the multiple bit states further include a reserved state.
- the M is determined according to a maximum number A1 of multiple SR configurations of the terminal according to a configuration supported in the system;
- the M is determined according to the number A2 of multiple SR configurations configured to the terminal; or
- the M is determined according to the number A3 of the SR configurations in which the transmission opportunities overlap in the multiple SR configurations configured to the terminal; or
- the value of the M is notified to the terminal by the network side through configuration signaling.
- the determination of the M is performed by the following formula:
- ceil is rounded up, and Ai is the A1 or the A2 or the A3.
- the first UCI includes at least one of a hybrid automatic repeat request acknowledgement HARQ-ACK and channel state information CSI.
- the CSI includes at least one of a periodic CSI, an aperiodic CSI, and a semi-persistent scheduling CSI.
- the determining module 62 is configured to:
- the M-bit SR information after the concatenation is separately channel-coded with the first partial CSI and the second partial CSI.
- the first PUCCH format is PUCCH format 2 or PUCCH format 3 or PUCCH format 4 or a PUCCH format carrying more than 2 bits of the first UCI.
- an embodiment of the present invention provides a computer readable storage medium.
- the computer readable storage medium stores computer instructions that, when executed on a computer, cause the computer to perform the method described in FIG. 1 or 2.
- the computer readable storage medium includes: a Universal Serial Bus flash drive (USB), a mobile hard disk, a Read-Only Memory (ROM), a random access memory ( Random Access Memory (RAM), disk or optical disc, and other storage media that can store program code.
- USB Universal Serial Bus flash drive
- ROM Read-Only Memory
- RAM Random Access Memory
- embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
公开了一种传输方法、终端及基站,用以解决现有技术中的如何区分是多个SR配置中的哪个SR与其他UCI同时传输还没有明确的解决方案,从而导致基站无法针对终端的SR进行正确的上行调度的技术问题。本发明实施例提供的区分多个SR配置的传输方法中,终端将M比特调度请求SR与第一UCI级联在一起同时传输,通过M比特SR信息指示终端的多个SR配置SR状态,从而确保了基站对终端进行正确的上行调度。
Description
本申请要求在2018年1月12日提交中国专利局、申请号为201810032483.1、发明名称为“一种传输方法、终端及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及通信技术领域,尤其涉及一种传输方法、终端及基站。
随着移动通信业务需求的发展变化,国际电信联盟(International Telecommunication Union,ITU)等多个组织对未来移动通信系统都开始研究新的无线通信系统(5Generation New RAT,5G NR)。
在5G NR系统中,终端可能会存在有多个调度请求(Scheduling Request,SR)配置,每一个SR配置的参数不同,比如SR资源,周期等等,当存在有多个SR配置在同一时刻发生重叠时,终端的媒体访问控制(Media Access Control,MAC)层可能只会通知终端其中一个SR配置在物理层进行传输,即传输正(positive)SR,当SR与其他的上行控制信息(Uplink Control Information,UCI)同时传输时,如何区分是多个SR配置中的哪个SR与其他UCI同时传输还没有明确的解决方案,从而导致基站无法针对终端的SR进行正确的上行调度。
发明内容
本发明实施例提供一种传输方法、终端及基站,用以解决现有技术中的如何区分是多个SR配置中的哪个SR与其他UCI同时传输还没有明确的解决方案,从而导致基站无法针对终端的SR进行正确的上行调度的技术问题。
第一方面,本发明实施例提供一种传输方法,包括:
终端确定M比特调度请求SR信息,其中,M为大于1的整数;
所述终端将所述M比特SR信息与第一上行控制信息UCI同时发送给基站。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
在一种可能的实现方式中,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,
所述M为配置给所述终端的多个SR配置的个数;或,
所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,包括:
所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,
所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
在一种可能的实现方式中,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
在一种可能的实现方式中,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
在一种可能的实现方式中,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
在一种可能的实现方式中,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,
所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,
所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M的确定通过以下公式进行:
M=ceil(log2(Ai+1));
其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
在一种可能的实现方式中,所述终端将所述M比特SR信息与第一上行控制信息UCI同时发送给所述基站,包括:
所述终端将所述M比特SR信息与第一上行控制信息UCI进行级联,经过信道编码后,发送给所述基站。
在一种可能的实现方式中,所述第一UCI包括混合自动重传请求确认HARQ-ACK和 信道状态信息CSI中的至少一项。
在一种可能的实现方式中,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
在一种可能的实现方式中,若所述第一UCI包括所述CSI,且所述CSI由第一部分CSI和第二部分CSI构成时,所述终端将所述M比特SR信息与第一上行控制信息UCI同时发送给所述基站,包括:
所述终端将所述M比特SR信息与所述第一部分CSI级联;
所述终端分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码,将信道编码后的信息发送给所述基站。
在一种可能的实现方式中,所述终端将所述M比特SR信息与第一上行控制信息UCI同时发送给所述基站,包括:
所述终端通过第一物理上行控制信道格式PUCCH format的传输资源,将所述M比特SR信息与第一上行控制信息UCI同时发送给所述基站;
其中,所述第一PUCCH format为PUCCH format 2或PUCCH format 3或PUCCH format4或承载大于2比特所述第一UCI的PUCCH format。
在一种可能的实现方式中,在所述终端确定M比特调度请求SR信息之前,还包括:
所述终端判断是否满足预设条件;
若是,则所述终端确定M比特调度请求SR信息。
在一种可能的实现方式中,所述预设条件为:
当前传输时刻为SR的传输机会;或者,
当前传输时刻为SR的传输机会,且在所述SR的传输机会中存在多个SR配置。
第二方面,本发明实施例提供一种传输方法,包括:
基站在第一PUCCH format的传输资源上接收终端发送的信息序列,其中,所述信息序列包括M比特SR信息与第一UCI,M为大于1的整数;
所述基站基于所述信息序列获得所述M比特SR信息,根据所述M比特SR信息,确定配置给所述终端的多个SR配置的SR状态。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
在一种可能的实现方式中,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,
所述M为配置给所述终端的多个SR配置的个数;或,
所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数; 或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,包括:
所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,
所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
在一种可能的实现方式中,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
在一种可能的实现方式中,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
在一种可能的实现方式中,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
在一种可能的实现方式中,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,
所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,
所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M的确定通过以下公式进行:
M=ceil(log2(Ai+1));
其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
在一种可能的实现方式中,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
在一种可能的实现方式中,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
在一种可能的实现方式中,若所述第一UCI包括CSI、且所述CSI由第一部分CSI和第二部分CSI构成,则所述方法还包括:
所述基站确定所述M比特SR信息与所述第一部分CSI级联;
所述基站分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码。
在一种可能的实现方式中,所述第一PUCCH format为PUCCH format 2或PUCCH format 3或PUCCH format 4或承载大于2比特所述第一UCI的PUCCH format。
第三方面,本发明实施例提供一种终端,包括:
存储器,用于存储指令;
处理器,用于读取所述存储器中的指令,执行下列过程:
确定M比特调度请求SR信息,其中,M为大于1的整数;
收发机,用于将所述M比特SR信息与第一上行控制信息UCI同时发送给基站。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
在一种可能的实现方式中,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,
所述M为配置给所述终端的多个SR配置的个数;或,
所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,包括:
所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,
所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
在一种可能的实现方式中,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
在一种可能的实现方式中,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
在一种可能的实现方式中,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
在一种可能的实现方式中,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,
所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,
所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数 A3确定的;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M的确定通过以下公式进行:
M=ceil(log2(Ai+1));
其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
在一种可能的实现方式中,所述收发机用于:
将所述M比特SR信息与第一上行控制信息UCI进行级联,经过信道编码后,发送给所述基站。
在一种可能的实现方式中,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
在一种可能的实现方式中,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
在一种可能的实现方式中,若所述第一UCI包括所述CSI,且所述CSI由第一部分CSI和第二部分CSI构成时,所述收发机用于:
将所述M比特SR信息与所述第一部分CSI级联;
分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码,将信道编码后的信息发送给所述基站。
在一种可能的实现方式中,所述收发机用于:
通过第一物理上行控制信道格式PUCCH format的传输资源,将所述M比特SR信息与第一上行控制信息UCI同时发送给所述基站;
其中,所述第一PUCCH format为PUCCH format 2或PUCCH format 3或PUCCH format4或承载大于2比特所述第一UCI的PUCCH format。
在一种可能的实现方式中,所述处理器用于:
在确定M比特调度请求SR信息之前,判断是否满足预设条件;
若是,则确定M比特调度请求SR信息。
在一种可能的实现方式中,所述预设条件为:
当前传输时刻为SR的传输机会;或者,
当前传输时刻为SR的传输机会,且在所述SR的传输机会中存在多个SR配置。
第四方面,本发明实施例提供一种基站,包括:
存储器,用于存储指令;
处理器,用于读取所述存储器中的指令,执行下列过程:
通过收发机在第一PUCCH format的传输资源上接收终端发送的信息序列,其中,所述信息序列包括M比特SR信息与第一UCI,M为大于1的整数;
基于所述信息序列获得所述M比特SR信息,根据所述M比特SR信息,确定配置给所述终端的多个SR配置的SR状态。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
在一种可能的实现方式中,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,
所述M为配置给所述终端的多个SR配置的个数;或,
所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,包括:
所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,
所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
在一种可能的实现方式中,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
在一种可能的实现方式中,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
在一种可能的实现方式中,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
在一种可能的实现方式中,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,
所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,
所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M的确定通过以下公式进行:
M=ceil(log2(Ai+1));
其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
在一种可能的实现方式中,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
在一种可能的实现方式中,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
在一种可能的实现方式中,若所述第一UCI包括CSI、且所述CSI由第一部分CSI和第二部分CSI构成,则所述处理器用于:
确定所述M比特SR信息与所述第一部分CSI级联;
分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码。
在一种可能的实现方式中,所述第一PUCCH format为PUCCH format 2或PUCCH format 3或PUCCH format 4或承载大于2比特所述第一UCI的PUCCH format。
第五方面,本发明实施例提供一种终端,包括:
确定模块,用于确定M比特调度请求SR信息,其中,M为大于1的整数;
发送模块,用于将所述M比特SR信息与第一上行控制信息UCI同时发送给基站。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
在一种可能的实现方式中,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,
所述M为配置给所述终端的多个SR配置的个数;或,
所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,包括:
所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,
所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
在一种可能的实现方式中,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
在一种可能的实现方式中,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为 positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
在一种可能的实现方式中,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
在一种可能的实现方式中,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,
所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,
所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M的确定通过以下公式进行:
M=ceil(log2(Ai+1));
其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
在一种可能的实现方式中,所述发送模块用于:
将所述M比特SR信息与第一上行控制信息UCI进行级联,经过信道编码后,发送给所述基站。
在一种可能的实现方式中,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
在一种可能的实现方式中,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
在一种可能的实现方式中,若所述第一UCI包括所述CSI,且所述CSI由第一部分CSI和第二部分CSI构成时,所述发送模块用于:
将所述M比特SR信息与所述第一部分CSI级联;
分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码,将信道编码后的信息发送给所述基站。
在一种可能的实现方式中,所述发送模块用于:
通过第一物理上行控制信道格式PUCCH format的传输资源,将所述M比特SR信息与第一上行控制信息UCI同时发送给所述基站;
其中,所述第一PUCCH format为PUCCH format 2或PUCCH format 3或PUCCH format4或承载大于2比特所述第一UCI的PUCCH format。
在一种可能的实现方式中,所述确定模块用于:
在确定M比特调度请求SR信息之前,判断是否满足预设条件;
若是,则确定M比特调度请求SR信息。
在一种可能的实现方式中,所述预设条件为:
当前传输时刻为SR的传输机会;或者,
当前传输时刻为SR的传输机会,且在所述SR的传输机会中存在多个SR配置。
第六方面,本发明实施例提供一种基站,包括:
接收模块,用于在第一PUCCH format的传输资源上接收终端发送的信息序列,其中,所述信息序列包括M比特SR信息与第一UCI,M为大于1的整数;
确定模块,用于基于所述信息序列获得所述M比特SR信息,根据所述M比特SR信息,确定配置给所述终端的多个SR配置的SR状态。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
在一种可能的实现方式中,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,
所述M为配置给所述终端的多个SR配置的个数;或,
所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,包括:
所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,
所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
在一种可能的实现方式中,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
在一种可能的实现方式中,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
在一种可能的实现方式中,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
在一种可能的实现方式中,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,
所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,
所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数 A3确定的;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M的确定通过以下公式进行:
M=ceil(log2(Ai+1));
其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
在一种可能的实现方式中,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
在一种可能的实现方式中,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
在一种可能的实现方式中,若所述第一UCI包括CSI、且所述CSI由第一部分CSI和第二部分CSI构成,则所述确定模块用于:
确定所述M比特SR信息与所述第一部分CSI级联;
分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码。
在一种可能的实现方式中,所述第一PUCCH format为PUCCH format 2或PUCCH format 3或PUCCH format 4或承载大于2比特所述第一UCI的PUCCH format。
第七方面,本发明实施例提供一种计算机可读存储介质,
所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如第一方面或第二方面所述的方法。
由于本发明实施例提供的区分多个SR配置的传输方法中,终端将M比特调度请求SR与第一UCI级联在一起同时传输,通过M比特SR信息指示终端的多个SR配置SR状态,以确保基站对终端进行正确的上行调度。
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中提供的一种传输方法的流程示意图;
图2为本发明实施例中提供的一种传输方法的流程示意图;
图3为本发明实施例中提供一种终端的示意图;
图4为本发明实施例中提供的一种基站的示意图;
图5为本发明实施例中提供的一种终端的模块示意图;
图6为本发明实施例中提供的一种基站的模块示意图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、新空口(New Radio,NR)等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是TD-SCDMA或WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNodeB或eNB或e-NodeB,evolutional Node B),或者是5G NR中的基站(gNB),本发明并不限定。
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
首先,对本发明实施例中的部分用语进行简单的介绍,以便本领域技术人员的理解。
5G NR系统中定义了5种物理上行控制信道(Physical Uplink Control CHannel,PUCCH) 格式(format),即PUCCH format 0、PUCCH format 1、PUCCH format 2、PUCCH format 3和PUCCH format 4,而不同的PUCCH format具有不同的传输方案。
PUCCH用于传输UCI,UCI可以包括混合自动重传请求确认(Hybrid Automatic Repeat reQuest-ACKnowledgement,HARQ-ACK)、信道状态信息(Channel State Information,CSI)和SR等。
其中,PUCCH format 0或PUCCH format 1可以用于承载不超过2比特的UCI传输,PUCCH format 2或PUCCH format 3或PUCCH format 4可以用于承载2比特以上的UCI传输。HARQ-ACK可配置使用上述5种PUCCH format中的任何一种传输,CSI至少可配置使用PUCCH format 2或PUCCH format 3或PUCCH format 4传输,SR至少可以配置使用PUCCH format 0或PUCCH format 1传输。
PUCCH format 2或PUCCH format 3或PUCCH format 4可以使用编码和速率匹配方式传输,即将待传输的UCI经过信道编码和速率匹配之后,映射到配置的PUCCH format资源上除了解调参考信号(Demodulation Reference Signal,DMRS)以外的资源上传输。
由于在5G NR系统中可以支持对终端配置多个SR配置,不同的SR配置对应不同的业务类型和/或传输需求,不同的SR配置对应不同的SR资源。多个SR配置的传输机会可能存在重叠,当重叠在,在一个SR的传输机会中存在多个SR配置,终端需要传输哪个SR,可能只会传输其中一个SR,因此,终端只会在该SR传输机会中在需要传输的SR所对应的SR资源上传输该SR。基站则通过在配置给终端的多个SR配置所分别对应的SR资源上盲检,确定终端传输的是哪个SR,从而进行合理的上行调度。
当终端存在有多个SR配置,且多个SR的传输机会存在重叠时,在重叠的SR传输机会中,只有一个SR需要被传输,基站无法区分需要被传输的是哪一个SR,从而导致基站无法针对终端的SR进行正确的上行调度。
鉴于此,本发明实施例提供的区分多个SR配置的传输方法中,终端将M比特调度请求SR与第一UCI级联在一起同时传输,通过M比特SR信息指示终端的多个SR配置SR状态,以确保基站对终端进行正确的上行调度。
需要理解的是,在本发明实施例的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。在本发明实施例的描述中“多个”,是指两个或两个以上。
本发明实施例中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图对本发明优选的实施例作详细的介绍。
实施例一
请参见图1,本发明实施例提供一种传输方法,该方法可以通过终端来执行,终端例如可以通过个人计算机(Personal Computer)、手机或者平板电脑等能够与基站进行通信的设备来实现。该方法的流程描述如下,其中,在下面的流程中,还会涉及到对于基站侧的方法的描述。
S101:终端确定M比特调度请求SR信息,其中,M为大于1的整数;
S102:终端将M比特SR信息与第一上行控制信息UCI同时发送给基站。
本发明实施例中,基站可以为终端配置至少一个SR配置,不同的SR配置包括的一个或者多个参数不同。其中,终端可以选择发送哪一种SR配置,则会向基站发送与被发送的SR配置对应的SR。在实际应用中,多个SR配置的传输机会在时域上可能会发生重叠,发生重叠时,终端只会发送其中一种SR配置,若是终端选择将需要发送的SR配置对应的SR和待传输的第一UCI级联在一起进行传输时,为了使得基站能够判断终端发送的具体为哪种SR配置,终端可以在第一UCI中携带M比特SR信息,以便基站能够根据该M比特SR信息进行判断。
在S101中,M比特SR信息可以用于指示终端的多个SR配置的SR状态,而终端确定M比特SR信息可以通过但不仅限于以下两种方式进行。
方式一、M比特SR信息与多个SR配置对应,其中,M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值可以用于指示相应SR配置为positive SR状态或negative SR状态。
即M比特SR信息中的每一比特可以对应一个SR配置,当对应一个SR配置的1比特信息为“0”时,表示对应的SR配置为negative SR状态,当对应一个SR配置的1比特信息为“1”时,表示对应的SR配置为positive SR状态;或者,当对应一个SR配置的1比特信息为“1”时,表示对应的SR配置为negative SR状态,当对应一个SR配置的1比特信息为“0”时,表示对应的SR配置为positive SR状态。
比如,当对应一个SR配置的1比特信息为“0”时,表示对应的SR配置为negative SR状态,当对应一个SR配置的1比特信息为“1”时,表示对应的SR配置为positive SR状态,这时若M取3,即终端确定3比特SR信息,这3比特SR信息中的每一个比特位可以对应一个SR配置,因此,假设终端有3个SR配置,则3比特SR信息对应的3个比特位可以分别指示3个SR配置的positive SR状态或negative SR状态。
如“100”可以指示终端的3个SR配置中的第一个SR配置传输positive SR、第二个SR配置和第三个SR配置均未传输SR,即第一个SR配置处于positive SR状态,第二个SR配置和第三个SR配置均处于negative SR状态;又如,“010”可以指示终端的3个SR配置中的第二个SR配置传输positive SR、第一个SR配置和第三个SR配置均未传输SR,即第二个SR配置处于positive SR状态,第一个SR配置和第三个SR配置均处于negative SR状态等。
在一种可能的实现方式中,M比特SR信息中仅存在一个比特位用于指示positive SR状态。
在一种可能的实现方式中,终端确定的M比特SR信息中M的取值可以通过但不仅限于以下方式确定:
1)、M为系统中支持的配置给终端的多个SR配置的最大个数。
即系统配置给终端的SR配置的实际个数可能小于等于系统中支持的配置给终端的SR配置的最大个数,而M取最大个数的值,如系统中支持的配置给终端的SR配置的最大个数为5,则系统配置给终端的SR配置的实际个数可以为1或2或3或4等(此时,M比特中存在一些比特不对应任何SR配置,这些比特可以设置为固定的与基站约定好的值,例如固定设置为“0”或“1”)。
举例来说,若5G NR系统中支持配置给终端的SR配置的最大个数为5,而实际配置给终端的SR配置个数为4个,则相应地,M取值为5,即终端可以确定5比特SR信息、用于指示终端的4个SR配置中的每个SR配置是处于positive SR状态还是处于negative SR状态,例如前4比特对应4个SR配置中的每个SR配置,最后一比特预留不用,固定设置为“0”;又如,若5G NR系统中支持配置给终端的SR配置的最大个数为3,而实际配置给终端的SR配置个数为2个,则相应地,M取值为3,即终端可以确定3比特SR信息、用于指示终端的2个SR配置中的每个SR配置是处于positive SR状态还是处于negative SR状态,例如前2比特对应2个SR配置中的每个SR配置,最后一比特预留不用,固定设置为“0”;等等。
2)、M为配置给终端的多个SR配置的个数。
即M的取值可以为系统配置给终端的SR配置的实际个数,如系统配置给终端4个SR配置,则M的取值为4;又如,系统配置给终端3个SR配置,则M的取值为3。
3)、M为配置给终端的多个SR配置中的传输机会存在重叠的SR配置的个数。
比如,系统配置给终端5个SR配置,其中,根据周期配置,可能有3个SR配置在同一时刻的传输机会存在重叠,这时,M的取值可以为3,3比特中的每个比特分别对应重叠的3个SR配置中的每个SR配置,对于不同重叠的SR配置,不需要这样的指示。
4)、M的取值由网络侧通过配置信令通知给终端。
在一种可能的实现方式中,M比特SR信息与多个SR配置对应,具体包括但不仅限于以下几种情况:
情况1、M比特SR信息与多个SR配置基于多个SR配置的预设排列顺序进行对应。
在情况1中,终端的多个SR配置可能具有预先定义的排列顺序,如多个SR配置中的每个SR配置具有相应的索引,如“1、2、3”等,终端可以按照SR配置的索引的升序或降序等方式与M比特SR信息中的第一比特位、第二比特位、……、最后一个比特位进行对应。
情况2、M比特SR信息与多个SR配置基于网络侧通知的对应关系进行对应。
在情况2中,M比特SR信息与多个SR配置之间的对应关系可以由网络侧通过配置信令等方式通知给终端,如网络侧通知M比特SR信息中的第一比特位到最后一比特位分别对应的SR配置的索引,进而终端可以根据该对应关系将M比特SR信息与多个SR配置进行对应。
方式二、M比特SR信息对应的多种比特状态中的第一比特状态用于指示多个SR配置中每个SR配置为negative SR状态,多种比特状态中除了第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,A个比特状态中的一个比特状态用于指示A个SR配置中一个SR配置为positive SR状态,第一比特状态为多种比特状态中的任一比特状态。
其中,A的取值可以小于等于多种比特状态中除第一比特状态外的剩余比特状态的状态数。
即M比特SR信息对应的多种不同的比特状态中可以有一个比特状态用于表示多个SR配置中每个SR配置均为negative SR状态,可以参见表1中的“00”对应的情况,或者参见表2中的“000”对应的情况;而M比特SR信息对应的多种不同的比特状态中的其余的比特状态可以分别用于指示多个SR配置中某个SR配置为positive SR状态状态。
例如,假设M=2,如表1所示的对应关系;假设M=3,如表2所示的对应关系。
表1
2比特SR信息 | 所指示的SR反馈状态 |
00 | negative SR |
01 | 第一SR配置为positive SR |
10 | 第二SR配置为positive SR |
11 | 第三SR配置为positive SR或预留 |
表2
3比特SR信息 | 所指示的SR反馈状态 |
000 | negative SR |
001 | 第一SR配置为positive SR |
010 | 第二SR配置为positive SR |
011 | 第三SR配置为positive SR |
100 | 第四SR配置为positive SR |
101 | 第五SR配置为positive SR或预留 |
110 | 第六SR配置为positive SR或预留 |
111 | 第七SR配置为positive SR或预留 |
在一种可能的实现方式中,若多种比特状态的状态数大于等于多个SR配置的个数加1,则多种比特状态还包括预留状态。例如表1中,如果存在3个SR配置,则4个状态都使用,如果仅存在2个SR配置,则最后一个状态可以是预留状态。
在一种可能的实现方式中,终端确定的M比特SR信息中M的取值可以通过但不仅限于以下方式确定:
1)、M为根据系统中支持的配置给终端的多个SR配置的最大个数A1确定的。
2)、M为根据配置给终端的多个SR配置的个数A2确定的。
3)、M为根据配置给终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的。
4)、M的取值由网络侧通过配置信令通知给终端。
上述4种方式中的前3种方式中,M的确定具体可以通过以下公式进行:
M=ceil(log
2(Ai+1));
其中,ceil为向上取整,Ai可以为方式1)中的A1,或方式2)中的A2,或方式3)中的A3,当然,在实际应用中,Ai还可以取其他的值,本发明实施例不作限制。
在终端确定M比特调度请求SR信息之后,可以进入S102,即终端将M比特SR信息与第一上行控制信息UCI同时发送给基站。
在一种可能的实现方式中,终端可以将M比特SR信息与第一UCI级联在一起,经过联合编码后,可以通过第一PUCCH format的传输资源发送给基站。
在一种可能的实现方式中,第一UCI可以包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项,即M比特SR信息可以与HARQ-ACK级联,或者M比特SR信息可以与CSI级联,或者M比特SR信息可以与HARQ-ACK和CSI级联,当然,在实际应用中M比特SR信息也可以与其他UCI进行级联,本发明实施例不作限制。
其中,CSI可以包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
在一种可能的实现方式中,若第一UCI包括CSI,且CSI由第一部分CSI和第二部分CSI构成时,则终端可以将M比特SR信息与第一部分CSI级联,然后,终端分别对级联后的M比特SR信息与第一部分CSI、以及第二部分CSI进行信道编码,即M比特SR信息与第一部分CSI、以及第二部分CSI是独立进行信道编码的,进而终端将信道编码后的信息发送给基站,
或者,终端也可以将M比特SR信息与第二部分CSI级联,然后,终端分别对级联后的M比特SR信息与第二部分CSI、以及第二部分CSI进行信道编码,即M比特SR信息与第二部分CSI、以及第一部分CSI是独立进行信道编码,进而终端将信道编码后的信息发送给基站。
也就是说,若第一UCI包括的CSI可以分为第一部分CSI和第二部分CSI,则,M比特SR信息可以与第一部分CSI级联,或者,M比特SR信息也可以与第二部分CSI级联。上述级联过程中,如果还存在HARQ-ACK,则HARQ-ACK同样可以与第一部分CSI或第二部分CSI 级联。
在一种可能的实现方式中,终端可以通过第一物理上行控制信道格式PUCCH format的传输资源,将M比特SR信息与第一上行控制信息UCI同时发送给基站,其中,第一PUCCH format可以为PUCCH format 2或PUCCH format 3或PUCCH format 4或承载大于2比特所述第一UCI的PUCCH format。
在一种可能的实现方式中,在终端确定M比特调度请求SR信息之前,终端还可以判断是否满足预设条件;若满足,则终端确定M比特调度请求SR信息,其中,预设条件可以设置为:当前传输时刻为SR的传输机会;或者,当前传输时刻为SR的传输机会,且在SR的传输机会中存在多个SR配置,SR的传输机会可以表示某一传输时刻会进行SR的传输。
例如,在上述方法执行之前,还可以进一步判断是否满足如下条件,当满足如下条件时,执行上述操作:
在SR的传输机会中,即不论该SR传输机会中是否包含至少2个SR配置,都执行上述S101等步骤对应的操作;或者,
在包含至少2个SR配置的SR传输机会中,即仅在包含至少2个SR配置的SR传输机会时,才执行上述S101等步骤对应的操作。
又如,在SR的传输机会中,即不论该SR传输机会中是否包含至少2个SR配置,且存在第一UCI时(即第一UCI与SR同时存在),都执行上述S101等步骤对应的操作;或者,
在包含至少2个SR配置的SR传输机会中,即仅在包含至少2个SR配置的SR传输机会中,且存在第一UCI时(即第一UCI与SR同时存在),才执行上述S101等步骤对应的操作。
为使得本领域技术人员从整体上对上述描述的方案进行理解,下面通过几个本发明在实际应用中的例子对本发明实施例中描述的方案进一步介绍如下。
假设终端有两个SR配置:SR
1和SR
2,且按照SR
1和SR
2的配置周期和偏移值,SR
1与SR
2的传输机会在时刻1重叠,假设在时刻1上还存在HARQ-ACK传输,且HARQ-ACK被配置使用PUCCH format 3进行传输,则可以根据配置的SR配置的个数,或者在同一时刻重叠的SR配置的个数,或者基站发送的配置信息,确定M比特SR信息中的M=2,即需要2比特SR信息与HARQ-ACK级联,一起传输。
假设在时刻1,终端侧需要反馈SR
1,即SR
1为positive SR,则:
方式1、2比特SR信息中的第一比特对应SR
1,第二比特对应SR
2,假设“1”表示positive SR状态,“0”表示negative SR状态,则:
终端侧:确定2比特SR信息为“10”,与HARQ-ACK级联在一起,例如级联在HARQ-ACK信息之后,然后根据确定的用于HARQ-ACK传输的PUCCH format 3传输资源,对级联之后的信息进行信道编码和速率匹配,映射到对应的资源上进行传输。
基站侧:在确定的用于HARQ-ACK传输的PUCCH format 3传输资源上,按照假设2比 特SR与HARQ-ACK进行联合编码和速率匹配的方式,接收终端传输的信息序列,将信息序列中的后2比特信息提取作为2比特SR信息,根据2比特SR信息中每个比特的指示状态,确定终端发送了positive SR
1,按照SR
1所对应的业务需求,对终端进行相应的上行调度。
方式2、根据需要传输的SR以及预定义的映射表格,确定2比特SR信息。
终端侧:根据上述表1,确定2比特SR信息为“01”,与HARQ-ACK级联在一起,例如级联在HARQ-ACK信息之后,然后根据确定的PUCCH format 3传输资源,对级联之后的信息进行信道编码和速率匹配,映射到对应的资源上进行传输。
基站侧:在确定的用于HARQ-ACK传输的PUCCH format 3传输资源上,按照假设2比特SR信息与HARQ-ACK进行联合编码和速率匹配的方式,接收终端传输的信息序列,将信息序列中的后2比特信息提取作为2比特SR信息,根据2比特SR信息的状态以及表1,确定终端发送了positive SR
1,按照SR
1所对应的业务需求,对终端进行相应的上行调度。
在上述实施例中,一种实施方式,可以在任何一个与其他UCI重叠的SR
1和SR
2的传输机会中都按照上述方式执行SR传输,即如果一个SR传输机会中仅存在一个SR配置,且与其他UCI重叠,也可以执行上述过程,此时,相当于任何一个SR传输机会中,都假设M比特SR信息与其他UCI同时传输,该方式可以对任一SR传输机会实现统一的传输方案。
在上述实施例中,另一种实施方式,在存在多个SR配置重叠的传输机会且该传输机会中还存在其他UCI时执行M比特SR传输的上述过程,如果一个SR传输机会中仅存在一个SR配置,且该传输机会中还存在其他UCI,也可以不按照上述方式传输,而使用其他约定的方式传输。例如,通过在需要发送的SR对应的SR资源上传输其他UCI来隐式表达positive SR,或者仅1比特SR与其他UCI级联在一起在其他UCI对应的资源上同时传输等。
例如,在时刻2中仅为SR
1的传输机会,则:在时刻2中,仅可能存在一个SR
1需要发送,可以不采用上述M比特的方式,而当SR
1需要发送时(即positive SR
1),通过在需要发送的SR
1对应的SR资源上传输其他UCI来隐式表达positive SR
1,或者不论是否positive SR
1,在时刻2中采用1比特SR与其他UCI级联在一起,在其他UCI对应的资源上同时传输,因为时刻2中仅存在一个SR配置,基站总是可以判断该1比特SR对应SR
1。
又例如,在时刻3中仅为SR
2的传输机会,则:在时刻3中,仅可能存在一个SR
2需要发送,可以不采用上述M比特的方式,而当SR
2需要发送时(即positive SR
2),通过在SR
2对应的SR资源上传输其他UCI来隐式表达positive SR
2,或者不论是否positive SR
2,在时刻3中采用1比特SR与其他UCI级联在一起,在其他UCI对应的资源上同时传输,因为时刻3中仅存在一个SR配置,基站总是可以判断该1比特SR对应SR
2;此时,相对于总是使用M比特,节省了SR上报开销,但不同的SR传输机会中,所使用的传输方案可能不同;但由于基站和终端预先知道多个SR配置的具体配置信息,如周期,则可以预先知道每个SR传输机会中的SR配置重叠情况,从而确定选择对应的传输方案进行传输,也不会存在基站和终端对传输 方案的理解歧义。
上述实施例中仅以SR与HARQ-ACK重叠传输为例,将HARQ-ACK替换为CSI,或HARQ-ACK与CSI同时存在时,同样适用。
其中,CSI与HARQ-ACK同时存在时,可以仅对CSI配置使用PUCCH format 2或PUCCH format 3或PUCCH format 4中的一种进行传输,而对HARQ-ACK配置使用PUCCH format 0或1传输,或者也可以对HARQ-ACK和CSI都配置使用PUCCH format 2或PUCCH format 3或PUCCH format 4传输;将PUCCH format3替换为PUCCH format2或PUCCH format 4或其他承载超过2比特UCI的PUCCH format,同样适用。
综上所述,本发明实施例的一个或者多个技术方案,至少具有如下技术效果或者优点:
本发明实施例提供的区分多个SR配置的传输方法中,终端将M比特调度请求SR与第一UCI级联在一起同时传输,通过M比特SR信息指示终端的多个SR配置SR状态,从而确保了基站对终端进行正确的上行调度。
实施例二
请参见图2,基于同一发明构思,本发明实施例提供一种传输方法,该方法的过程可以描述如下:
S201:基站在第一PUCCH format的传输资源上接收终端发送的信息序列,其中,所述信息序列包括M比特SR信息与第一UCI,M为大于1的整数;
S202:所述基站基于所述信息序列获得所述M比特SR信息,根据所述M比特SR信息,确定配置给所述终端的多个SR配置的SR状态。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
在一种可能的实现方式中,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,
所述M为配置给所述终端的多个SR配置的个数;或,
所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,包括:
所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,
所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
在一种可能的实现方式中,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
在一种可能的实现方式中,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
在一种可能的实现方式中,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
在一种可能的实现方式中,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,
所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,
所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M的确定通过以下公式进行:
M=ceil(log
2(Ai+1))
其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
在一种可能的实现方式中,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
在一种可能的实现方式中,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
在一种可能的实现方式中,若所述第一UCI包括CSI、且所述CSI由第一部分CSI和第二部分CSI构成,则所述方法还包括:
所述基站确定所述M比特SR信息与所述第一部分CSI级联;
所述基站分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码。
在一种可能的实现方式中,所述第一PUCCH format为PUCCH format 2或PUCCH format 3或PUCCH format 4或承载大于2比特所述第一UCI的PUCCH format。
实施例三
请参见图3,本发明实施例还提供一种终端,该终端包括存储器301、处理器302和收发机303。其中,存储器301和收发机303可以通过总线接口与处理器302相连接(图3以此为例),或者也可以通过专门的连接线与处理器302连接。
其中,存储器301可以用于存储程序。处理器302可以用于读取存储器301中的程序,执行下列过程:
确定M比特调度请求SR信息,其中,M为大于1的整数;
收发机,用于将所述M比特SR信息与第一上行控制信息UCI同时发送给基站。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
在一种可能的实现方式中,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,
所述M为配置给所述终端的多个SR配置的个数;或,
所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,包括:
所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,
所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
在一种可能的实现方式中,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
在一种可能的实现方式中,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
在一种可能的实现方式中,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
在一种可能的实现方式中,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,
所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,
所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M的确定通过以下公式进行:
M=ceil(log
2(Ai+1))
其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
在一种可能的实现方式中,所述收发机303用于:
将所述M比特SR信息与第一上行控制信息UCI进行级联,经过信道编码后,发送给所述基站。
在一种可能的实现方式中,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
在一种可能的实现方式中,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
在一种可能的实现方式中,若所述第一UCI包括所述CSI,且所述CSI由第一部分CSI和第二部分CSI构成时,所述收发机303用于:
将所述M比特SR信息与所述第一部分CSI级联;
分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码,将信道编码后的信息发送给所述基站。
在一种可能的实现方式中,所述收发机303用于:
通过第一物理上行控制信道格式PUCCH format的传输资源,将所述M比特SR信息与第一上行控制信息UCI同时发送给所述基站;
其中,所述第一PUCCH format为PUCCH format 2或PUCCH format 3或PUCCH format 4或承载大于2比特所述第一UCI的PUCCH format。
在一种可能的实现方式中,所述处理器302用于:
在确定M比特调度请求SR信息之前,判断是否满足预设条件;
若是,则确定M比特调度请求SR信息。
在一种可能的实现方式中,所述预设条件为:
当前传输时刻为SR的传输机会;或者,
当前传输时刻为SR的传输机会,且在所述SR的传输机会中存在多个SR配置。
其中,在图3中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器302代表的一个或多个处理器和存储器301代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机303可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器302负责管理总线架构和通常的处理,存储器301可以存储处理器302在执行操作时所使用的数据。
实施例四
请参见图4,基于同一发明构思,本发明实施例提供一种基站,该基站包括:存储器401、处理器402和收发机403。其中,存储器401和收发机403可以通过总线接口与处理器402相连接(图4以此为例),或者也可以通过专门的连接线与处理器402连接。
其中,存储器401可以用于存储程序。收发机403可以接收主基站发送的节点间信令消息。处理器402,用于读取存储器401中的指令,执行下列过程:
通过收发机在第一PUCCH format的传输资源上接收终端发送的信息序列,其中,所述信息序列包括M比特SR信息与第一UCI,M为大于1的整数;
基于所述信息序列获得所述M比特SR信息,根据所述M比特SR信息,确定配置给所述终端的多个SR配置的SR状态。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
在一种可能的实现方式中,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,
所述M为配置给所述终端的多个SR配置的个数;或,
所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,包括:
所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,
所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
在一种可能的实现方式中,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
在一种可能的实现方式中,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
在一种可能的实现方式中,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
在一种可能的实现方式中,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,
所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,
所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M的确定通过以下公式进行:
M=ceil(log
2(Ai+1));
其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
在一种可能的实现方式中,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
在一种可能的实现方式中,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
在一种可能的实现方式中,若所述第一UCI包括CSI、且所述CSI由第一部分CSI和第二部分CSI构成,则所述处理器402用于:
确定所述M比特SR信息与所述第一部分CSI级联;
分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码。
在一种可能的实现方式中,所述第一PUCCH format为PUCCH format 2或PUCCH format 3或PUCCH format 4或承载大于2比特所述第一UCI的PUCCH format。
其中,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器402代表的一个或多个处理器和存储器401代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机403可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器402负责管理总线架构和通常的处理,存储器401可以存储处理器402在执行操作时所使用的数据。
实施例五
请参见图5,基于同一发明构思,本发明实施例提供一种终端,包括:
确定模块51,用于确定M比特调度请求SR信息,其中,M为大于1的整数;
发送模块52,用于将所述M比特SR信息与第一上行控制信息UCI同时发送给基站。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
在一种可能的实现方式中,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,
所述M为配置给所述终端的多个SR配置的个数;或,
所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,包括:
所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,
所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
在一种可能的实现方式中,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
在一种可能的实现方式中,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
在一种可能的实现方式中,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
在一种可能的实现方式中,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,
所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,
所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M的确定通过以下公式进行:
M=ceil(log
2(Ai+1));
其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
在一种可能的实现方式中,所述发送模块52用于:
将所述M比特SR信息与第一上行控制信息UCI进行级联,经过信道编码后,发送给所述基站。
在一种可能的实现方式中,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
在一种可能的实现方式中,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
在一种可能的实现方式中,若所述第一UCI包括所述CSI,且所述CSI由第一部分CSI和第二部分CSI构成时,所述发送模块52用于:
将所述M比特SR信息与所述第一部分CSI级联;
分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信 道编码,将信道编码后的信息发送给所述基站。
在一种可能的实现方式中,所述发送模块52用于:
通过第一物理上行控制信道格式PUCCH format的传输资源,将所述M比特SR信息与第一上行控制信息UCI同时发送给所述基站;
其中,所述第一PUCCH format为PUCCH format 2或PUCCH format 3或PUCCH format 4或承载大于2比特所述第一UCI的PUCCH format。
在一种可能的实现方式中,所述确定模块用于:
在确定M比特调度请求SR信息之前,判断是否满足预设条件;
若是,则确定M比特调度请求SR信息。
在一种可能的实现方式中,所述预设条件为:
当前传输时刻为SR的传输机会;或者,
当前传输时刻为SR的传输机会,且在所述SR的传输机会中存在多个SR配置。
实施例六
请参见图6,基于同一发明构思,本发明实施例提供一种基站,包括:
接收模块61,用于在第一PUCCH format的传输资源上接收终端发送的信息序列,其中,所述信息序列包括M比特SR信息与第一UCI,M为大于1的整数;
确定模块62,用于基于所述信息序列获得所述M比特SR信息,根据所述M比特SR信息,确定配置给所述终端的多个SR配置的SR状态。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
在一种可能的实现方式中,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,
所述M为配置给所述终端的多个SR配置的个数;或,
所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M比特SR信息与所述多个SR配置对应,包括:
所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,
所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
在一种可能的实现方式中,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
在一种可能的实现方式中,所述M比特SR信息对应的多种比特状态中的第一比特状态 用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
在一种可能的实现方式中,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
在一种可能的实现方式中,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,
所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,
所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的;或,
所述M的取值由网络侧通过配置信令通知给所述终端。
在一种可能的实现方式中,所述M的确定通过以下公式进行:
M=ceil(log
2(Ai+1));
其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
在一种可能的实现方式中,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
在一种可能的实现方式中,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
在一种可能的实现方式中,若所述第一UCI包括CSI、且所述CSI由第一部分CSI和第二部分CSI构成,则所述确定模块62用于:
确定所述M比特SR信息与所述第一部分CSI级联;
分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码。
在一种可能的实现方式中,所述第一PUCCH format为PUCCH format 2或PUCCH format 3或PUCCH format 4或承载大于2比特所述第一UCI的PUCCH format。
实施例七
基于同一发明构思,本发明实施例提供一种计算机可读存储介质,
所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行图1或图2所述的方法。
在具体的实施过程中,计算机可读存储介质包括:通用串行总线闪存盘(Universal Serial Bus flash drive,USB)、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的存储介 质。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (61)
- 一种传输方法,其特征在于,包括:终端确定M比特调度请求SR信息,其中,M为大于1的整数;所述终端将所述M比特SR信息与第一上行控制信息UCI同时发送给基站。
- 如权利要求1所述的方法,其特征在于,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
- 如权利要求2所述的方法,其特征在于,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,所述M为配置给所述终端的多个SR配置的个数;或,所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,所述M的取值由网络侧通过配置信令通知给所述终端。
- 如权利要求2所述的方法,其特征在于,所述M比特SR信息与所述多个SR配置对应,包括:所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
- 如权利要求2所述的方法,其特征在于,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
- 如权利要求1所述的方法,其特征在于,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
- 如权利要求6所述的方法,其特征在于,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
- 如权利要求6所述的方法,其特征在于,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的;或,所述M的取值由网络侧通过配置信令通知给所述终端。
- 如权利要求8所述的方法,其特征在于,所述M的确定通过以下公式进行:M=ceil(log2(Ai+1));其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
- 如权利要求1所述的方法,其特征在于,所述终端将所述M比特SR信息与第一上行控制信息UCI同时发送给所述基站,包括:所述终端将所述M比特SR信息与第一上行控制信息UCI进行级联,经过信道编码后,发送给所述基站。
- 如权利要求1-10中任一项所述的方法,其特征在于,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
- 如权利要求11所述的方法,其特征在于,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
- 如权利要求11所述的方法,其特征在于,若所述第一UCI包括所述CSI,且所述CSI由第一部分CSI和第二部分CSI构成时,所述终端将所述M比特SR信息与第一上行控制信息UCI同时发送给所述基站,包括:所述终端将所述M比特SR信息与所述第一部分CSI级联;所述终端分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码,将信道编码后的信息发送给所述基站。
- 如权利要求1所述的方法,其特征在于,所述终端将所述M比特SR信息与第一上行控制信息UCI同时发送给所述基站,包括:所述终端通过第一物理上行控制信道格式PUCCH format的传输资源,将所述M比特SR信息与第一上行控制信息UCI同时发送给所述基站;其中,所述第一PUCCH format为PUCCH format 2或PUCCH format 3或PUCCH format4或承载大于2比特所述第一UCI的PUCCH format。
- 如权利要求1所述的方法,其特征在于,在所述终端确定M比特调度请求SR信息之前,还包括:所述终端判断是否满足预设条件;若是,则所述终端确定M比特调度请求SR信息。
- 如权利要求15所述的方法,其特征在于,所述预设条件为:当前传输时刻为SR的传输机会;或者,当前传输时刻为SR的传输机会,且在所述SR的传输机会中存在多个SR配置。
- 一种传输方法,其特征在于,包括:基站在第一PUCCH format的传输资源上接收终端发送的信息序列,其中,所述信息序列包括M比特SR信息与第一UCI,M为大于1的整数;所述基站基于所述信息序列获得所述M比特SR信息,根据所述M比特SR信息,确定配置给所述终端的多个SR配置的SR状态。
- 如权利要求17所述的方法,其特征在于,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
- 如权利要求18所述的方法,其特征在于,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,所述M为配置给所述终端的多个SR配置的个数;或,所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,所述M的取值由网络侧通过配置信令通知给所述终端。
- 如权利要求18所述的方法,其特征在于,所述M比特SR信息与所述多个SR配置对应,包括:所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
- 如权利要求18所述的方法,其特征在于,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
- 如权利要求17所述的方法,其特征在于,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
- 如权利要求22所述的方法,其特征在于,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
- 如权利要求22所述的方法,其特征在于,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的;或,所述M的取值由网络侧通过配置信令通知给所述终端。
- 如权利要求24所述的方法,其特征在于,所述M的确定通过以下公式进行:M=ceil(log 2(Ai+1));其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
- 如权利要求17-25中任一项所述的方法,其特征在于,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
- 如权利要求26所述的方法,其特征在于,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
- 如权利要求17所述的方法,其特征在于,若所述第一UCI包括CSI、且所述CSI由第一部分CSI和第二部分CSI构成,则所述方法还包括:所述基站确定所述M比特SR信息与所述第一部分CSI级联;所述基站分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码。
- 如权利要求17所述的方法,其特征在于,所述第一PUCCH format为PUCCH format2或PUCCH format 3或PUCCH format 4或承载大于2比特所述第一UCI的PUCCH format。
- 一种终端,其特征在于,包括:存储器,用于存储指令;处理器,用于读取所述存储器中的指令,执行下列过程:确定M比特调度请求SR信息,其中,M为大于1的整数;收发机,用于将所述M比特SR信息与第一上行控制信息UCI同时发送给基站。
- 如权利要求30所述的终端,其特征在于,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
- 如权利要求31所述的终端,其特征在于,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,所述M为配置给所述终端的多个SR配置的个数;或,所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,所述M的取值由网络侧通过配置信令通知给所述终端。
- 如权利要求31所述的终端,其特征在于,所述M比特SR信息与所述多个SR配置对应,包括:所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
- 如权利要求31所述的终端,其特征在于,所述M比特SR信息中仅存在一个比 特位指示所述positive SR状态。
- 如权利要求30所述的终端,其特征在于,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
- 如权利要求35所述的终端,其特征在于,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
- 如权利要求35所述的终端,其特征在于,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的;或,所述M的取值由网络侧通过配置信令通知给所述终端。
- 如权利要求37所述的终端,其特征在于,所述M的确定通过以下公式进行:M=ceil(log 2(Ai+1));其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
- 如权利要求30所述的终端,其特征在于,所述收发机用于:将所述M比特SR信息与第一上行控制信息UCI进行级联,经过信道编码后,发送给所述基站。
- 如权利要求30-39中任一项所述的终端,其特征在于,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
- 如权利要求40所述的终端,其特征在于,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
- 如权利要求40所述的终端,其特征在于,若所述第一UCI包括所述CSI,且所述CSI由第一部分CSI和第二部分CSI构成时,所述收发机用于:将所述M比特SR信息与所述第一部分CSI级联;分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码,将信道编码后的信息发送给所述基站。
- 如权利要求30所述的终端,其特征在于,所述收发机用于:通过第一物理上行控制信道格式PUCCH format的传输资源,将所述M比特SR信息与第一上行控制信息UCI同时发送给所述基站;其中,所述第一PUCCH format为PUCCH format 2或PUCCH format 3或PUCCH format4或承载大于2比特所述第一UCI的PUCCH format。
- 如权利要求30所述的终端,其特征在于,所述处理器用于:在确定M比特调度请求SR信息之前,判断是否满足预设条件;若是,则确定M比特调度请求SR信息。
- 如权利要求44所述的终端,其特征在于,所述预设条件为:当前传输时刻为SR的传输机会;或者,当前传输时刻为SR的传输机会,且在所述SR的传输机会中存在多个SR配置。
- 一种基站,其特征在于,包括:存储器,用于存储指令;处理器,用于读取所述存储器中的指令,执行下列过程:通过收发机在第一PUCCH format的传输资源上接收终端发送的信息序列,其中,所述信息序列包括M比特SR信息与第一UCI,M为大于1的整数;基于所述信息序列获得所述M比特SR信息,根据所述M比特SR信息,确定配置给所述终端的多个SR配置的SR状态。
- 如权利要求46所述的基站,其特征在于,所述M比特SR信息与所述多个SR配置对应,其中,所述M比特SR信息中的一个比特位对应一个SR配置,每个比特位的值用于指示相应SR配置为正positive SR状态或负negative SR状态。
- 如权利要求47所述的基站,其特征在于,所述M为系统中支持的配置给所述终端的多个SR配置的最大个数;或,所述M为配置给所述终端的多个SR配置的个数;或,所述M为配置给所述终端的多个SR配置中的传输机会存在重叠的SR配置的个数;或,所述M的取值由网络侧通过配置信令通知给所述终端。
- 如权利要求47所述的基站,其特征在于,所述M比特SR信息与所述多个SR配置对应,包括:所述M比特SR信息与所述多个SR配置基于所述多个SR配置的预设排列顺序进行对应;或,所述M比特SR信息与所述多个SR配置信息基于网络层通知的对应关系进行对应。
- 如权利要求47所述的基站,其特征在于,所述M比特SR信息中仅存在一个比特位指示所述positive SR状态。
- 如权利要求46所述的基站,其特征在于,所述M比特SR信息对应的多种比特状态中的第一比特状态用于指示所述多个SR配置中每个SR配置为negative SR状态,所 述多种比特状态中除了所述第一比特状态之外的比特状态中的A个比特状态对应A个SR配置的SR状态,其中,所述A个比特状态中的一个比特状态用于指示所述A个SR配置中一个SR配置为positive SR状态,所述第一比特状态为所述多种比特状态中的任一比特状态。
- 如权利要求51所述的基站,其特征在于,若所述多种比特状态的状态数大于等于所述多个SR配置的个数加1,则所述多种比特状态还包括预留状态。
- 如权利要求51所述的基站,其特征在于,所述M为根据系统中支持的配置给所述终端的多个SR配置的最大个数A1确定的;或,所述M为根据配置给所述终端的多个SR配置的个数A2确定的;或,所述M为根据配置给所述终端的多个SR配置中传输机会存在重叠的SR配置的个数A3确定的;或,所述M的取值由网络侧通过配置信令通知给所述终端。
- 如权利要求53所述的基站,其特征在于,所述M的确定通过以下公式进行:M=ceil(log 2(Ai+1));其中,ceil为向上取整,Ai为所述A1或所述A2或所述A3。
- 如权利要求46-54中任一项所述的基站,其特征在于,所述第一UCI包括混合自动重传请求确认HARQ-ACK和信道状态信息CSI中的至少一项。
- 如权利要求55所述的基站,其特征在于,所述CSI包括周期CSI、非周期CSI和半持续调度CSI中的至少一项。
- 如权利要求46所述的基站,其特征在于,若所述第一UCI包括CSI、且所述CSI由第一部分CSI和第二部分CSI构成,则所述处理器用于:确定所述M比特SR信息与所述第一部分CSI级联;分别对级联后的所述M比特SR信息与所述第一部分CSI、以及所述第二部分CSI进行信道编码。
- 如权利要求46所述的基站,其特征在于,所述第一PUCCH format为PUCCH format2或PUCCH format 3或PUCCH format 4或承载大于2比特所述第一UCI的PUCCH format。
- 一种终端,其特征在于,包括:确定模块,用于确定M比特调度请求SR信息,其中,M为大于1的整数;发送模块,用于将所述M比特SR信息与第一上行控制信息UCI同时发送给基站。
- 一种基站,其特征在于,包括:接收模块,用于在第一PUCCH format的传输资源上接收终端发送的信息序列,其中,所述信息序列包括M比特SR信息与第一UCI,M为大于1的整数;确定模块,用于基于所述信息序列获得所述M比特SR信息,根据所述M比特SR信 息,确定配置给所述终端的多个SR配置的SR状态。
- 一种计算机可读存储介质,其特征在于:所述计算机可读存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-29中任一项所述的方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/961,685 US11997680B2 (en) | 2018-01-12 | 2018-12-18 | Transmission method, terminal, and base station |
EP18899538.5A EP3740018B1 (en) | 2018-01-12 | 2018-12-18 | Multi-bit scheduling request |
EP22201403.7A EP4142411A1 (en) | 2018-01-12 | 2018-12-18 | Multi-bit scheduling request |
KR1020207023178A KR102445281B1 (ko) | 2018-01-12 | 2018-12-18 | 전송 방법, 단말 및 기지국 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810032483.1A CN110035549B (zh) | 2018-01-12 | 2018-01-12 | 一种传输方法、终端及基站 |
CN201810032483.1 | 2018-01-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019137165A1 true WO2019137165A1 (zh) | 2019-07-18 |
Family
ID=67218740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/121853 WO2019137165A1 (zh) | 2018-01-12 | 2018-12-18 | 一种传输方法、终端及基站 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11997680B2 (zh) |
EP (2) | EP3740018B1 (zh) |
KR (1) | KR102445281B1 (zh) |
CN (1) | CN110035549B (zh) |
TW (1) | TWI717671B (zh) |
WO (1) | WO2019137165A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102689307B1 (ko) * | 2019-06-28 | 2024-07-30 | 엘지전자 주식회사 | 무선 통신 시스템에서 스케줄링 요청의 송수신 방법 및 그 장치 |
US11540258B2 (en) * | 2019-07-31 | 2022-12-27 | Qualcomm Incorporated | Construction and mapping of compact uplink control information (UCI) over physical uplink shared channel (PUSCH) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5329526A (en) * | 1991-03-18 | 1994-07-12 | Fujitsu Limited | Trunk line identification system |
CN102077499A (zh) * | 2009-05-22 | 2011-05-25 | 华为技术有限公司 | 一种sr信息与ack/nack信息反馈或多个sr信息反馈的方法和设备 |
CN102820953A (zh) * | 2012-07-13 | 2012-12-12 | 华为技术有限公司 | E-tfc选择的控制信令的发送、接收方法和相关装置 |
CN104170493A (zh) * | 2012-03-23 | 2014-11-26 | 联发科技股份有限公司 | 移动通信网络中分配调度请求资源的方法以及装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9215050B2 (en) * | 2011-09-23 | 2015-12-15 | Lg Electronics Inc. | Method and apparatus for transmitting uplink control information in wireless communication system |
WO2013067677A1 (en) * | 2011-11-07 | 2013-05-16 | Renesas Mobile Corporation | Methods, devices and computer program products for enhanced scheduling request transmission to improve resource efficiency |
HUE051240T2 (hu) | 2012-01-27 | 2021-03-01 | Blackberry Ltd | Eljárás és berendezés feltöltés irányú kapcsolati vezérlési információ átvitelére vezeték nélküli kommunikációs rendszerben |
KR102694117B1 (ko) * | 2014-12-08 | 2024-08-12 | 엘지전자 주식회사 | 상향링크 제어 정보를 전송하기 위한 방법 및 이를 위한 장치 |
US10499384B2 (en) | 2015-09-17 | 2019-12-03 | Intel IP Corporation | Transmission of uplink control information in wireless systems |
CN106954277B (zh) * | 2017-03-17 | 2020-01-21 | 电信科学技术研究院 | 一种调度请求处理方法和装置 |
CN109067512B (zh) * | 2017-09-08 | 2019-09-13 | 华为技术有限公司 | 信号传输方法、相关装置及系统 |
JP6937202B2 (ja) * | 2017-09-14 | 2021-09-22 | シャープ株式会社 | 端末装置、基地局装置、および、通信方法 |
-
2018
- 2018-01-12 CN CN201810032483.1A patent/CN110035549B/zh active Active
- 2018-12-18 EP EP18899538.5A patent/EP3740018B1/en active Active
- 2018-12-18 US US16/961,685 patent/US11997680B2/en active Active
- 2018-12-18 WO PCT/CN2018/121853 patent/WO2019137165A1/zh unknown
- 2018-12-18 EP EP22201403.7A patent/EP4142411A1/en active Pending
- 2018-12-18 KR KR1020207023178A patent/KR102445281B1/ko active IP Right Grant
- 2018-12-25 TW TW107146912A patent/TWI717671B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5329526A (en) * | 1991-03-18 | 1994-07-12 | Fujitsu Limited | Trunk line identification system |
CN102077499A (zh) * | 2009-05-22 | 2011-05-25 | 华为技术有限公司 | 一种sr信息与ack/nack信息反馈或多个sr信息反馈的方法和设备 |
CN104170493A (zh) * | 2012-03-23 | 2014-11-26 | 联发科技股份有限公司 | 移动通信网络中分配调度请求资源的方法以及装置 |
CN102820953A (zh) * | 2012-07-13 | 2012-12-12 | 华为技术有限公司 | E-tfc选择的控制信令的发送、接收方法和相关装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3740018A4 |
Also Published As
Publication number | Publication date |
---|---|
KR20200108043A (ko) | 2020-09-16 |
EP3740018A1 (en) | 2020-11-18 |
US20210084643A1 (en) | 2021-03-18 |
TW201931942A (zh) | 2019-08-01 |
EP3740018A4 (en) | 2021-02-24 |
CN110035549B (zh) | 2021-03-09 |
EP3740018B1 (en) | 2022-11-23 |
EP4142411A1 (en) | 2023-03-01 |
US11997680B2 (en) | 2024-05-28 |
CN110035549A (zh) | 2019-07-19 |
TWI717671B (zh) | 2021-02-01 |
KR102445281B1 (ko) | 2022-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220272717A1 (en) | Signal sending method and device, signal receiving method and device, information feedback method and device, communication node, and medium | |
WO2019096060A1 (zh) | 上行控制信息传输方法和设备 | |
WO2020057566A1 (zh) | 一种harq-ack的传输方法、终端设备及网络设备 | |
TWI713402B (zh) | 業務傳輸的方法和裝置 | |
WO2020143059A1 (zh) | 侧行通信的方法和终端设备 | |
WO2021023011A1 (zh) | Harq-ack反馈方法、终端及网络侧设备 | |
WO2021013022A1 (zh) | 信息传输方法及装置 | |
US10834635B2 (en) | Information transmission method and apparatus | |
WO2019095739A1 (zh) | 一种带宽指示方法、网络设备及终端设备 | |
WO2019029287A1 (zh) | Pucch传输方法、用户设备和装置 | |
WO2021227624A1 (zh) | 一种确定反馈信息传输位置的方法及设备 | |
WO2019192283A1 (zh) | 一种资源确定、资源指示方法及装置 | |
WO2021159857A1 (zh) | 码本传输方法及装置 | |
WO2019080071A1 (zh) | 上行控制信道传输方法、终端设备和网络设备 | |
CN110022190B (zh) | 一种上行控制信息的传输方法及装置 | |
JP2022551552A (ja) | 上りリンク制御情報の伝送方法及び装置 | |
WO2019137165A1 (zh) | 一种传输方法、终端及基站 | |
US20230300840A1 (en) | Transmission method for physical uplink control channel, terminal, and base station | |
WO2017193306A1 (zh) | 设备对设备d2d通信的方法和d2d设备 | |
WO2023011095A1 (zh) | 一种信息处理方法、终端及可读存储介质 | |
US20220256581A1 (en) | Uplink transmission method, uplink transmission indication method, and device | |
WO2022236641A1 (zh) | 信息处理方法、装置、终端设备及存储介质 | |
WO2022067529A1 (zh) | 一种通信方法及相关设备 | |
WO2019137249A1 (zh) | 一种传输和sr状态确定方法及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18899538 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207023178 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018899538 Country of ref document: EP Effective date: 20200812 |