WO2019136596A1 - Methods and arrangements for power control - Google Patents

Methods and arrangements for power control Download PDF

Info

Publication number
WO2019136596A1
WO2019136596A1 PCT/CN2018/071928 CN2018071928W WO2019136596A1 WO 2019136596 A1 WO2019136596 A1 WO 2019136596A1 CN 2018071928 W CN2018071928 W CN 2018071928W WO 2019136596 A1 WO2019136596 A1 WO 2019136596A1
Authority
WO
WIPO (PCT)
Prior art keywords
granularity
transmission
transmission duration
upcoming
responsive
Prior art date
Application number
PCT/CN2018/071928
Other languages
French (fr)
Inventor
Anqi HE
Jinhua Liu
Min Wang
Original Assignee
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget Lm Ericsson (Publ) filed Critical Telefonaktiebolaget Lm Ericsson (Publ)
Priority to PCT/CN2018/071928 priority Critical patent/WO2019136596A1/en
Publication of WO2019136596A1 publication Critical patent/WO2019136596A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate

Definitions

  • the present disclosure relates generally to the field of wireless communication. More particularly, it relates to transmit power control for wireless communication.
  • Typical approaches to transmit power control for uplink wireless communication involve generation of a transmit power control (TPC) command by a network node (e.g. a base station) and transmission of the TPC command towards a user equipment (UE) .
  • TPC command may typically be binary and indicate “up” or “down” , corresponding to a desired increase or decrease of the transmit power.
  • the TPC command is typically based on measurements performed in relation to uplink transmissions by the UE, for example measurements of a signal-to-interference-and-noise ratio (SINR) , possibly expressed in relation to a received power spectral density, or similar metric of received signal quality.
  • SINR signal-to-interference-and-noise ratio
  • the TPC command is received and the transmission power of one or more subsequent uplink transmissions is adjusted based on the received TPC command.
  • several received TPC commands may be accumulated or otherwise combined to provide a basis for adjustment of the transmission power.
  • transmit power control may be applied to compensate for channel path loss variations in that, when there is high attenuation between the UE and the base station, the UE increases its transmit power in order to maintain the power received at the base station at a desirable level.
  • the UE transmitter power for different types of channels follows different power control rules. For example, if the UE transmits PUSCH (Physical Uplink Shared CHannel) without a simultaneous PUCCH (Physical Uplink Control CHannel) for the serving cell, then the UE transmit power for PUSCH transmission in subframe i for the serving cell c is given by [dBm] :
  • P CMAX, c (i) denotes the configured UE transmitted power
  • M PUSCH, c (i) denotes the bandwidth of the PUSCH resource assignment (i.e. the number of resource blocks valid for subframe i and serving cell c)
  • P O_PUSCH, c (j) is a parameter composed of the sum of P O_NOMINAL_PUSCH, c (j) and P O_UE_PUSCH, c (j) provided from higher layers for j ⁇ ⁇ 0, 1 ⁇ and serving cell c, ⁇ c (j) ⁇ ⁇ 0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ⁇ is a 3-bit parameter provided by higher layers for serving cell c
  • PL c [dB] denotes the downlink path-loss estimate calculated in the UE for serving cell c
  • ⁇ TF, c (i) is a dynamic offset given by higher layers
  • f c (i) is a transmitter power control (T
  • the TPC command ⁇ PUSCH, c is a correction value.
  • the TPC command is included in PDCCH/EPDCCH with DCI format 0/4 for the serving cell or is jointly coded with other TPC commands in PDCCH with DCI format 3/3A.
  • the cyclic redundancy check (CRC) is scrambled by the Temporary C-RNTI (cell radio network temporary Identifier) for DCI format 0, and by the TPC-PUSCH-RNTI for DCI format 3/3A.
  • this is achieved by a method for a wireless communication node (WCN) configured for closed loop power control of a communication link associated with the WCN, wherein transmissions over the communication link are associated with respective transmission durations.
  • WCN wireless communication node
  • the method comprises dynamically determining, responsive to an upcoming transmission duration, agranularity for transmission power adaptation of the closed loop power control, and causing application of the determined granularity in a transmission power adaptation used for the upcoming transmission.
  • dynamically determining the granularity responsive to the upcoming transmission duration comprises determining the granularity to have a first granularity value responsive to a first transmission duration and determining the granularity to have a second granularity value responsive to a second transmission duration, wherein the first granularity value is indicative of a first minimum absolute value for transmission power adaptation and the second granularity value is indicative of a second minimum absolute value for transmission power adaptation, and wherein the first minimum absolute value is lower than the second minimum absolute when the first transmission duration is shorter than the second transmission duration.
  • the upcoming transmission duration is defined as a length of a slot or a mini slot. In some embodiments, the upcoming transmission duration is defined as proportional to an inverse of a sub-carrier spacing (SCS) . In some embodiments, the upcoming transmission duration is defined via a combination of the length of a slot or a mini slot and a metric proportional to an inverse of the SCS.
  • SCS sub-carrier spacing
  • dynamically determining the granularity responsive to the upcoming transmission duration comprises one or more of:
  • dynamically determining the granularity responsive to the upcoming transmission duration comprises determining a scaling factor responsive to the upcoming transmission duration. Then, causing application of the determined granularity in the closed loop power control may comprise causing multiplication of a granularity reference value by the scaling factor.
  • causing application of the determined granularity in a transmission power adaptation used for the upcoming transmission comprises applying the determined granularity in a transmission power adaptation used for the upcoming transmission.
  • the communication link is an uplink and the upcoming transmission duration is a physical uplink shared channel (PUSCH) transmission duration and/or a physical uplink control channel (PUCCH) transmission duration.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the WCN is a user equipment (UE) and causing application of the determined granularity comprises adapting a transmission power responsive to the determined granularity and executing the upcoming transmission over the communication link using the adapted transmission power.
  • UE user equipment
  • the WCN is a network node (NWN) and causing application of the determined granularity comprises signaling an indication of the determined granularity towards a user equipment (UE) .
  • NWN network node
  • a second aspect is a computer program product comprising a non-transitory computer readable medium, having thereon a computer program comprising program instructions.
  • the computer program is loadable into a data processing unit and configured to cause execution of the method according to the first aspect when the computer program is run by the data processing unit.
  • a third aspect is an arrangement for a wireless communication node (WCN) configured for closed loop power control of a communication link associated with the WCN, wherein transmissions over the communication link are associated with respective transmission durations.
  • WCN wireless communication node
  • the arrangement comprises controlling circuitry configured to cause dynamic determination, responsive to an upcoming transmission duration, of a granularity for transmission power adaptation of the closed loop power control, and application of the determined granularity in a transmission power adaptation used for the upcoming transmission.
  • a fourth aspect is user equipment (UE) comprising the arrangement of the third aspect.
  • UE user equipment
  • a fifth aspect is a network node (NWN) comprising the arrangement of the third aspect.
  • any of the above aspects may additionally have features identical with or corresponding to any of the various features as explained above for any of the other aspects.
  • transmit power control may be adapted to suit a dynamic transmission duration.
  • Another advantage of some embodiments is that the accuracy of the transmit power control may be improved compared to other transmit power control approaches.
  • Figure 1 is a flowchart illustrating example method steps according to some embodiments
  • Figure 2 is a schematic drawing illustrating an example scenario according to some embodiments
  • Figure 3 is a flowchart illustrating example method steps according to some embodiments.
  • Figure 4 is a flowchart illustrating example method steps according to some embodiments.
  • Figure 5 is a schematic block diagram illustrating an example arrangement according to some embodiments.
  • Figure 6 is a schematic drawing illustrating an example computer readable medium according to some embodiments.
  • Figure 7 illustrates a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments
  • Figure 8 illustrates a host computer communicating via a base station with a user equipment over a partially wireless connection in accordance with some embodiments
  • Figure 9 is a flowchart illustrating example method steps implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments;
  • Figure 10 is a flowchart illustrating example method steps implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments;
  • Figure 11 is a flowchart illustrating example method steps implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
  • Figure 12 is a flowchart illustrating example method steps implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
  • uplink communication transmit power control is described herein in association with uplink communication; some embodiments may be equally applicable in downlink or unilink communication.
  • uplink communication transmit power control is only intended as an illustrative example and should not be construed as limiting.
  • the granularity for transmission power adaptation may be defined in terms of the absolute value of the smallest possible adjustment of the transmission power.
  • the granularity may be defined in terms of a granularity value indicative of a minimum absolute value for transmission power adaptation.
  • the granularity value may, for example, be equal to the minimum absolute value for transmission power adaptation, proportional to the minimum absolute value for transmission power adaptation, inversely proportional to the minimum absolute value for transmission power adaptation, or may consist of an index identifying the minimum absolute value for transmission power adaptation.
  • a subframe is 1ms, and a slot according to NR denotes a transmission duration comprising 14 OFDM (Orthogonal Frequency Division Multiplex) symbols.
  • Another –more flexible –time unit is also defined and is denoted a mini slot.
  • a mini slot according to NR denotes a transmission duration comprising 2, 4 or 7 OFDM symbols. The definition of the mini slot provides for adaptation to the configurable transmit duration lengths in NR, which are for fulfilling various transmission delay requirements purpose.
  • the OFDM symbol length is reversely proportional to the subcarrier spacing with normal cyclic prefix length.
  • the duration of a slot or mini slot may vary even when it comprises a fixed number of OFDM symbols.
  • TPC command frequency is either too low for the smallest transmission duration, thereby risking that several transmissions are executed with improper transmission power before a suitable adjustment can be done (i.e. the transmit power control is too slow) , or the TPC command frequency is too high for the largest transmission duration, thereby sending TPC commands more often than it is possible to perform an adjustment which constitutes unnecessary signaling overhead (i.e. the transmit power control signaling is too extensive) . Therefore, embodiments suggest that a granularity for transmission power adaptation is dynamically determined based on an upcoming transmission duration.
  • the minimum absolute value for transmission power adaptation (the granulation) is fixed to 1 dB (as illustrated in Table 1) , which leads to fluctuating transmit power for different PUSCH or PUCCH transmission durations.
  • Table 1 Mapping of TPC command field to absolute ⁇ PUSCH, c and accumulated ⁇ PUSCH, c .
  • the same power control granularity is not suitable for all situations in varying radio quality. This is especially true when the transmission duration changes from time to time, which can be due to change of SCS and/or due to that the number of OFDM symbols included in a grant changes.
  • the granulation when the minimum absolute value for transmission power adaptation (the granulation) is configured for a UE to a large value, the requirements of power adjustment for PUSCH transmissions spanning a long transmission duration can be met.
  • the radio quality e.g. in terms of received power density, SINR, or path loss
  • a low value of the minimum absolute value for transmission power adaptation may be applicable for a short transmission duration, but is typically not suitable for longer transmission durations since the power adjustment may be too small to be able to follow the channel variations during the entire transmission duration.
  • the mismatch between power adjustment (adaptation) and the channel variation typically impacts the outer loop power control, e.g. such that an unnecessarily low effective SINR is applied at selection of modulation and coding scheme (MCS) for the shorter transmission duration, which may impact the data transmission performance negatively.
  • MCS modulation and coding scheme
  • embodiments are proposed in which multiple power control granularities are configured for a closed loop power control process wherein the power control adjustment granularity is adapted according to the scheduled transmission duration.
  • the granularity for transmit power adjustment can be cell specific or UE specific.
  • Figure 1 illustrates an example method 100 according to some embodiments
  • Figure 2 schematically illustrates an example scenario according to some embodiments.
  • the method 100 of Figure 1 may be performed by a UE 200 or by a NWN 210 (collectively denoted as a wireless communication node, WCN) as illustrated in Figure 2 and as will be exemplified later herein.
  • WCN wireless communication node
  • the WCN performing the method 100 is configured for closed loop power control of a communication link 250 associated with it, wherein transmissions over the communication link are associated with respective transmission durations as described and exemplified above.
  • a communication link is associated with a WCD may be construed as the WCD being a party (transmitting party and/or receiving party in communications taking place over the communication link.
  • a communication link is associated with a WCD may be construed as the communication link enabling (or carrying) communication between the WCD (e.g. a UE or a NWN) and another WCD (e.g. a NWN or a UE, correspondingly) .
  • transmissions over the communication link are associated with respective transmission durations may be construed as transmissions over the communication link having respective transmission durations.
  • transmissions over the communication link are associated with respective transmission durations may be construed as each transmission lasting a certain amount of time, which amount of time is defined as the transmission duration.
  • the transmission duration may, for example, be defined in terms of a number of /mini/slots, via an inverse of the subcarrier spacing, or any other suitable metric.
  • the communication link may, for example, be an uplink and the transmission durations may be PUSCH transmission durations and/or PUCCH transmission durations.
  • the transmission durations may be defined as a length of a slot or a mini slot, as proportional to an inverse of a sub-carrier spacing, or as a combination thereof.
  • a granularity for transmission power adaptation of the closed loop power control is dynamically determined responsive to (e.g. based on) an upcoming transmission duration.
  • Step 110 may comprise determining the granularity to have a granularity value responsive to the transmission duration, wherein each granularity value may be indicative of a corresponding minimum absolute value (a minimum step size) for transmission power adaptation.
  • a relatively short transmission duration may result in a granularity value corresponding to a relatively low minimum absolute value.
  • the granularity values as well as the minimum absolute values may belong to a respective finite set of values.
  • step 110 may comprise determining the granularity to have a first granularity value (indicative of a first minimum absolute value for transmission power adaptation) responsive to a first transmission duration and determining the granularity to have a second granularity value (indicative of a second minimum absolute value for transmission power adaptation) responsive to a second transmission duration. Then, the first minimum absolute value is lower than the second minimum absolute value when the first transmission duration is shorter than the second transmission duration. Correspondingly, the first minimum absolute value is higher than the second minimum absolute value when the first transmission duration is longer than the second transmission duration.
  • Step 110 may comprise using the upcoming transmission duration for addressing a look-up table to retrieve a corresponding granularity.
  • step 110 may comprise using the upcoming transmission duration for calculation of a corresponding granularity based on a granularity calculation function.
  • step 110 may comprise comparing the upcoming transmission duration to one or more transmission duration threshold values and determining a corresponding granularity responsive to a result of the comparison.
  • the granularity may be determined directly or via a scaling factor which may then be used for multiplication with a granularity reference value.
  • the network may configure the multiple power control granularities as associated with the same close loop power control process, and a suitable granularity may be selected (determined) based on the transmission duration (/mini/slot length and/or numerology) .
  • the power control granularity determination is performed based on the slot duration.
  • a table comprising the correspondence (mapping) between granularity and /mini/slot lengths (or /mini/slot length range) is defined (exemplified by Table 2) .
  • the correspondence may be reflected with a mapping rule; one-to-one, many-to-one or one-to-many.
  • the UE may determine a suitable power granularity by table look-up.
  • Table 2 Mapping between power control granularity and /mini/slot length.
  • the power control granularity determination is performed based on the numerology.
  • a table comprising the correspondence (mapping) between granularity and numerology is defined (exemplified by Table 3) , wherein a numerology with longer OFDM symbol corresponds to a larger power control granularity.
  • the correspondence may be reflected with a mapping rule; one-to-one, many-to-one or one-to-many. Knowing the SCS, the UE may determine a suitable power granularity by table look-up.
  • Table 3 Mapping between power control granularity and subcarrier spacing.
  • one reference power control granularity may be configured and other granularities can be derived by applying a scaling factor to the reference power control granularity, where the scaling factor is calculated based on transmission duration (e.g. by dividing the upcoming transmission duration by a reference transmission duration) .
  • Use of scaling factors typically gives less signaling overhead than some of the other alternatives presented herein.
  • areference power control granularity, SS pre is preconfigured in RRC (radio resource control) signaling for a specific transmission duration, L T
  • the actual granularity, SS real for power control of a specific transmission duration, L X
  • areference power control granularity, SS pre is preconfigured in RRC (radio resource control) signaling for a specific subcarrier spacing, SCS T , and the actual granularity, SS real , for power control of a specific subcarrier spacing, SCS X (the measured actual subcarrier spacing) , may be derived by scaling the preconfigured granularity in relation to the inverse of the specific subcarrier spacing, i.e.:
  • the power control granularity for PUCCH transmission may be different from that for PUSCH, since their transmission durations may be different.
  • the tables may be also different for PUCCH and PUSCH.
  • the power control granularity of PUCCH can be derived based on the transmission duration or numerology of PUCCH while the power control granularity of PUSCH can be derived based on the transmission duration or numerology of PUCCH.
  • the third example (using a scaling factor) may be combined with the first or second example.
  • the method comprises causing application of the determined granularity in a transmission power adaptation used for the upcoming transmission.
  • causing application of the determined granularity in a transmission power adaptation used for the upcoming transmission may comprise applying the determined granularity in a transmission power adaptation used for the upcoming transmission.
  • applying the determined granularity in a transmission power adaptation used for the upcoming transmission may, for example, comprise adapting a transmission power responsive to the determined granularity and/or signaling (transmitting) an indication of the determined granularity and/or transmitting an instruction to use the determined granularity for adapting a transmission power.
  • step 120 of Figure 1 may typically comprise adapting a transmission power responsive to the determined granularity, and executing the upcoming transmission over the communication link using the adapted transmission power.
  • FIG. 3 illustrates an example method 300 for execution in a UE (e.g. the UE 200 of Figure 2) according to some embodiments.
  • the UE performing the method 300 is configured to apply uplink closed loop power control, wherein transmissions are associated with respective transmission durations as described and exemplified above.
  • the UE is engaged in uplink transmissions and corresponding reception of TPC commands from the NWN as illustrated by steps 301 and 302, respectively.
  • a granularity for transmission power adaptation of the closed loop power control is dynamically determined responsive to (e.g. based on) an upcoming transmission duration (compare with step 110 of Figure 1) .
  • the upcoming transmission duration may, for example, be known from a scheduling grant received form the NWN and/or from an autonomous transmission duration determination.
  • step 320 Application of the determined granularity is caused, in step 320, by adapting a transmission power responsive to the determined granularity (compare with step 120 of Figure 1) . Then, the upcoming transmission is executed, in step 321, using the adapted transmission power.
  • the process is repeated as illustrated by the dashed arrow from step 321 to step 302, thereby contributing further to the dynamic determination of the granularity.
  • the repetition may, for example, be performed per transmission occasion, per scheduling grant, or more seldom.
  • step 320 may be performed as soon as a scheduling grant for the upcoming transmission is received even though the TPC command of step 302 has not yet been received.
  • step 120 of Figure 1 may typically comprise signaling an indication of the determined granularity (e.g. the granularity value, the scaling factor, or a corresponding index) towards a UE, for application in the UE.
  • the determined granularity e.g. the granularity value, the scaling factor, or a corresponding index
  • FIG. 4 illustrates an example method 400 for execution in a NWN (e.g. the NWN 210 of Figure 2) according to some embodiments.
  • the NWN performing the method 400 is configured to apply uplink closed loop power control, wherein transmissions are associated with respective transmission durations as described and exemplified above.
  • the NWN is engaged in uplink reception, corresponding generation and transmission of TPC commands to the UE, and scheduling of upcoming transmissions by the UE as illustrated by steps 401, 402 and 403, respectively.
  • a granularity for transmission power adaptation of the closed loop power control is dynamically determined responsive to (e.g. based on) an upcoming transmission duration (compare with step 110 of Figure 1) .
  • the upcoming transmission duration may, for example, be known from the scheduling in step 403.
  • step 420 Application of the determined granularity is caused, in step 420, by signaling (transmitting) an indication of the determined granularity towards the UE (compare with step 120 of Figure 1) .
  • indication When such indication is received by the UE, it may be used in the UE for adapting a transmission power responsive to the determined granularity and executing the upcoming transmission using the adapted transmission power (compare with steps 320 and 321 of Figure 3) .
  • the granularity may, for example, be signaled by the network via a medium access control (MAC) control element (CE) or via a PDCCH command.
  • the signaling may carry an absolute value of the granularity (or of the scaling factor) or an index indicative thereof.
  • the signaling may be per closed loop power control process according to some embodiments.
  • the process is repeated as illustrated by the dashed arrow from step 420 to either of steps 401, 402, 403, thereby contributing further to the dynamic determination of the granularity.
  • the repetition may, for example, be performed per reception occasion 401, per TPC command transmission 402, per scheduling grant 403, or more seldom.
  • step 403 scheduling of upcoming transmissions in step 403 may be performed in parallel to UL reception in step 401.
  • FIG. 5 schematically illustrates an example arrangement 510 comprising controlling circuitry (CNTR, e.g. a controller) 500.
  • the arrangement is for, and may be comprised in, awireless communication node (WCN) configured for closed loop power control of a communication link, wherein transmissions over the communication link are associated with respective transmission durations.
  • WCN wireless communication node
  • the WCN may be a UE or a NWN.
  • the arrangement may, for example, be configured to perform method steps in accordance with any of the methods described in connection to Figures 1, 3 and 4.
  • the controlling circuitry is configured to cause, responsive to an upcoming transmission duration, dynamic determination of a granularity for transmission power adaptation of the closed loop power control (compare with steps 110, 310 and 410 of Figures 1, 3 and 4, respectively) .
  • the controlling circuitry 500 may comprise, or be otherwise associated with, determination circuitry (DET, e.g. a determiner) 501 configured to dynamically determine the granularity for transmission power adaptation based on the upcoming transmission duration.
  • the determination circuitry may, or may not, be comprised in the arrangement 510.
  • the controlling circuitry is also configured to cause application of the determined granularity in a transmission power adaptation used for the upcoming transmission (compare with steps 120, 320 and 420 of Figures 1, 3 and 4, respectively) .
  • the controlling circuitry 500 may comprise, or be otherwise associated with, circuitry for this purpose.
  • the controlling circuitry is configured to cause application of the determined granularity by causing signaling of an indication of the determined granularity towards the UE.
  • the controlling circuitry 500 may comprise, or be otherwise associated with, transmitting circuitry (e.g. a transmitter) –illustrated in Figure 5 as part of a transceiver (TX/RX) 530 –configured to signal (transmit) the indication of the determined granularity.
  • the transmitting circuitry may, or may not, be comprised in the arrangement 510.
  • the controlling circuitry is configured to cause application of the determined granularity by causing adaptation of a transmission power responsive to the determined granularity.
  • the controlling circuitry 500 may comprise, or be otherwise associated with, power control circuitry (PC, e.g. a power controller) 502 configured to adapt the transmission power responsive to the determined granularity.
  • PC power control circuitry
  • the power control circuitry may, or may not, be comprised in the arrangement 510.
  • the controlling circuitry is also configured to cause application of the determined granularity by causing execution of the upcoming transmission over the communication link using the adapted transmission power.
  • the controlling circuitry 500 may comprise, or be otherwise associated with, transmitting circuitry (e.g. a transmitter) –illustrated in Figure 5 as part of a transceiver (TX/RX) 530–configured to execute the upcoming transmission over the communication link using the adapted transmission power.
  • the transmitting circuitry may, or may not, be comprised in the arrangement 510.
  • the described embodiments and their equivalents may be realized in software or hardware or a combination thereof.
  • the embodiments may be performed by general purpose circuitry. Examples of general purpose circuitry include digital signal processors (DSP) , central processing units (CPU) , co-processor units, field programmable gate arrays (FPGA) and other programmable hardware.
  • DSP digital signal processors
  • CPU central processing units
  • FPGA field programmable gate arrays
  • the embodiments may be performed by specialized circuitry, such as application specific integrated circuits (ASIC) .
  • ASIC application specific integrated circuits
  • the general purpose circuitry and/or the specialized circuitry may, for example, be associated with or comprised in an apparatus such as a wireless communication device (e.g. a UE) or a network node (NWN, e.g. a base station) .
  • a wireless communication device e.g. a UE
  • NWN network node
  • Embodiments may appear within an electronic apparatus (such as a wireless communication node) comprising arrangements, circuitry, and/or logic according to any of the embodiments described herein.
  • an electronic apparatus such as a wireless communication node
  • an electronic apparatus may be configured to perform methods according to any of the embodiments described herein.
  • a computer program product comprises a computer readable medium such as, for example a universal serial bus (USB) memory, a plug-in card, an embedded drive or a read only memory (ROM) .
  • Figure 6 illustrates an example computer readable medium in the form of a compact disc (CD) ROM 600.
  • the computer readable medium has stored thereon a computer program comprising program instructions.
  • the computer program is loadable into a data processor (PROC) 620, which may, for example, be comprised in a wireless communication node 610.
  • PROC data processor
  • the computer program When loaded into the data processing unit, the computer program may be stored in a memory (MEM) 630 associated with or comprised in the data-processing unit.
  • the computer program may, when loaded into and run by the data processing unit, cause execution of method steps according to, for example, any of the methods illustrated in Figures 1, 3 and 4 or otherwise described herein.
  • a communication system includes telecommunication network QQ410, such as a 3GPP-type cellular network, which comprises access network QQ411, such as a radio access network, and core network QQ414.
  • Access network QQ411 comprises a plurality of base stations QQ412a, QQ412b, QQ412c, such as NBs, eNBs, gNBs or other types of wireless access points, each defining a corresponding coverage area QQ413a, QQ413b, QQ413c.
  • Each base station QQ412a, QQ412b, QQ412c is connectable to core network QQ414 over a wired or wireless connection QQ415.
  • a first UE QQ491 located in coverage area QQ413c is configured to wirelessly connect to, or be paged by, the corresponding base station QQ412c.
  • a second UE QQ492 in coverage area QQ413a is wirelessly connectable to the corresponding base station QQ412a. While a plurality of UEs QQ491, QQ492 are illustrated in this example, the disclosed embodiments are equally applicable to a situation where a sole UE is in the coverage area or where a sole UE is connecting to the corresponding base station QQ412.
  • Telecommunication network QQ410 is itself connected to host computer QQ430, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server or as processing resources in a server farm.
  • Host computer QQ430 may be under the ownership or control of a service provider, or may be operated by the service provider or on behalf of the service provider.
  • Connections QQ421 and QQ422 between telecommunication network QQ410 and host computer QQ430 may extend directly from core network QQ414 to host computer QQ430 or may go via an optional intermediate network QQ420.
  • Intermediate network QQ420 may be one of, or a combination of more than one of, a public, private or hosted network; intermediate network QQ420, if any, may be a backbone network or the Internet; in particular, intermediate network QQ420 may comprise two or more sub-networks (not shown) .
  • the communication system of Figure 7 as a whole enables connectivity between the connected UEs QQ491, QQ492 and host computer QQ430.
  • the connectivity may be described as an over-the-top (OTT) connection QQ450.
  • Host computer QQ430 and the connected UEs QQ491, QQ492 are configured to communicate data and/or signaling via OTT connection QQ450, using access network QQ411, core network QQ414, any intermediate network QQ420 and possible further infrastructure (not shown) as intermediaries.
  • OTT connection QQ450 may be transparent in the sense that the participating communication devices through which OTT connection QQ450 passes are unaware of routing of uplink and downlink communications.
  • base station QQ412 may not or need not be informed about the past routing of an incoming downlink communication with data originating from host computer QQ430 to be forwarded (e.g., handed over) to a connected UE QQ491.
  • base station QQ412 need not be aware of the future routing of an outgoing uplink communication originating from the UE QQ491 towards the host computer QQ430.
  • host computer QQ510 comprises hardware QQ515 including communication interface QQ516 configured to set up and maintain a wired or wireless connection with an interface of a different communication device of communication system QQ500.
  • Host computer QQ510 further comprises processing circuitry QQ518, which may have storage and/or processing capabilities.
  • processing circuitry QQ518 may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions.
  • Host computer QQ510 further comprises software QQ511, which is stored in or accessible by host computer QQ510 and executable by processing circuitry QQ518.
  • Software QQ511 includes host application QQ512.
  • Host application QQ512 may be operable to provide a service to a remote user, such as UE QQ530 connecting via OTT connection QQ550 terminating at UE QQ530 and host computer QQ510. In providing the service to the remote user, host application QQ512 may provide user data which is transmitted using OTT connection QQ550.
  • Communication system QQ500 further includes base station QQ520 provided in a telecommunication system and comprising hardware QQ525 enabling it to communicate with host computer QQ510 and with UE QQ530.
  • Hardware QQ525 may include communication interface QQ526 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of communication system QQ500, as well as radio interface QQ527 for setting up and maintaining at least wireless connection QQ570 with UE QQ530 located in a coverage area (not shown in Figure 8) served by base station QQ520.
  • Communication interface QQ526 may be configured to facilitate connection QQ560 to host computer QQ510.
  • Connection QQ560 may be direct or it may pass through a core network (not shown in Figure 8) of the telecommunication system and/or through one or more intermediate networks outside the telecommunication system.
  • hardware QQ525 of base station QQ520 further includes processing circuitry QQ528, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions.
  • Base station QQ520 further has software QQ521 stored internally or accessible via an external connection.
  • Communication system QQ500 further includes UE QQ530 already referred to.
  • Its hardware QQ535 may include radio interface QQ537 configured to set up and maintain wireless connection QQ570 with a base station serving a coverage area in which UE QQ530 is currently located.
  • Hardware QQ535 of UE QQ530 further includes processing circuitry QQ538, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions.
  • UE QQ530 further comprises software QQ531, which is stored in or accessible by UE QQ530 and executable by processing circuitry QQ538.
  • Software QQ531 includes client application QQ532.
  • Client application QQ532 may be operable to provide a service to a human or non-human user via UE QQ530, with the support of host computer QQ510.
  • an executing host application QQ512 may communicate with the executing client application QQ532 via OTT connection QQ550 terminating at UE QQ530 and host computer QQ510.
  • client application QQ532 may receive request data from host application QQ512 and provide user data in response to the request data.
  • OTT connection QQ550 may transfer both the request data and the user data.
  • Client application QQ532 may interact with the user to generate the user data that it provides.
  • host computer QQ510, base station QQ520 and UE QQ530 illustrated in Figure 8 may be similar or identical to host computer QQ430, one of base stations QQ412a, QQ412b, QQ412c and one of UEs QQ491, QQ492 of Figure 7, respectively.
  • the inner workings of these entities may be as shown in Figure 8 and independently, the surrounding network topology may be that of Figure 7.
  • OTT connection QQ550 has been drawn abstractly to illustrate the communication between host computer QQ510 and UE QQ530 via base station QQ520, without explicit reference to any intermediary devices and the precise routing of messages via these devices.
  • Network infrastructure may determine the routing, which it may be configured to hide from UE QQ530 or from the service provider operating host computer QQ510, or both. While OTT connection QQ550 is active, the network infrastructure may further take decisions by which it dynamically changes the routing (e.g., on the basis of load balancing consideration or reconfiguration of the network) .
  • Wireless connection QQ570 between UE QQ530 and base station QQ520 is in accordance with the teachings of the embodiments described throughout this disclosure.
  • One or more of the various embodiments improve the performance of OTT services provided to UE QQ530 using OTT connection QQ550, in which wireless connection QQ570 forms the last segment. More precisely, the teachings of these embodiments may improve the spectrum efficiency of the communication system and/or the accuracy of transmit power control, and thereby provide benefits such as improved throughput and/or other metrics for quality of service.
  • a measurement procedure may be provided for the purpose of monitoring data rate, latency and other factors on which the one or more embodiments improve.
  • the measurement procedure and/or the network functionality for reconfiguring OTT connection QQ550 may be implemented in software QQ511 and hardware QQ515 of host computer QQ510 or in software QQ531 and hardware QQ535 of UE QQ530, or both.
  • sensors may be deployed in or in association with communication devices through which OTT connection QQ550 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which software QQ511, QQ531 may compute or estimate the monitored quantities.
  • the reconfiguring of OTT connection QQ550 may include message format, retransmission settings, preferred routing etc. ; the reconfiguring need not affect base station QQ520, and it may be unknown or imperceptible to base station QQ520. Such procedures and functionalities may be known and practiced in the art.
  • measurements may involve proprietary UE signaling facilitating host computer QQ510’s measurements of throughput, propagation times, latency and the like.
  • the measurements may be implemented in that software QQ511 and QQ531 causes messages to be transmitted, in particular empty or ‘dummy’ messages, using OTT connection QQ550 while it monitors propagation times, errors etc.
  • FIG. 9 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to Figures 7 and 8. For simplicity of the present disclosure, only drawing references to Figure 9 will be included in this section.
  • the host computer provides user data.
  • substep QQ611 (which may be optional) of step QQ610, the host computer provides the user data by executing a host application.
  • step QQ620 the host computer initiates a transmission carrying the user data to the UE.
  • step QQ630 the base station transmits to the UE the user data which was carried in the transmission that the host computer initiated, in accordance with the teachings of the embodiments described throughout this disclosure.
  • step QQ640 the UE executes a client application associated with the host application executed by the host computer.
  • FIG 10 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to Figures 7 and 8. For simplicity of the present disclosure, only drawing references to Figure 10 will be included in this section.
  • the host computer provides user data.
  • the host computer provides the user data by executing a host application.
  • the host computer initiates a transmission carrying the user data to the UE. The transmission may pass via the base station, in accordance with the teachings of the embodiments described throughout this disclosure.
  • step QQ730 (which may be optional) , the UE receives the user data carried in the transmission.
  • FIG 11 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to Figures 7 and 8. For simplicity of the present disclosure, only drawing references to Figure 11 will be included in this section.
  • step QQ810 the UE receives input data provided by the host computer. Additionally or alternatively, in step QQ820, the UE provides user data.
  • substep QQ821 (which may be optional) of step QQ820, the UE provides the user data by executing a client application.
  • substep QQ811 (which may be optional) of step QQ810, the UE executes a client application which provides the user data in reaction to the received input data provided by the host computer.
  • the executed client application may further consider user input received from the user.
  • the UE initiates, in substep QQ830 (which may be optional) , transmission of the user data to the host computer.
  • step QQ840 of the method the host computer receives the user data transmitted from the UE, in accordance with the teachings of the embodiments described throughout this disclosure.
  • FIG 12 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
  • the communication system includes a host computer, a base station and a UE which may be those described with reference to Figures 7 and 8. For simplicity of the present disclosure, only drawing references to Figure 12 will be included in this section.
  • the base station receives user data from the UE.
  • the base station initiates transmission of the received user data to the host computer.
  • step QQ930 (which may be optional) , the host computer receives the user data carried in the transmission initiated by the base station.
  • the method embodiments described herein discloses example methods through steps being performed in a certain order. However, it is recognized that these sequences of events may take place in another order without departing from the scope of the claims. Furthermore, some method steps may be performed in parallel even though they have been described as being performed in sequence. Thus, the steps of any methods disclosed herein do not have to be performed in the exact order disclosed, unless a step is explicitly described as following or preceding another step and/or where it is implicit that a step must follow or precede another step.
  • a method performed by a wireless device for transmit power control comprising:
  • a method performed by a base station for transmit power control comprising:
  • a wireless device for transmit power control comprising:
  • processing circuitry configured to perform any of the steps of any of the Group A embodiments.
  • power supply circuitry configured to supply power to the wireless device.
  • a base station for transmit power control comprising:
  • processing circuitry configured to perform any of the steps of any of the Group B embodiments
  • power supply circuitry configured to supply power to the wireless device.
  • a user equipment (UE) for transmit power control comprising:
  • an antenna configured to send and receive wireless signals
  • radio front-end circuitry connected to the antenna and to processing circuitry, and configured to condition signals communicated between the antenna and the processing circuitry;
  • processing circuitry being configured to perform any of the steps of any of the Group A embodiments
  • an input interface connected to the processing circuitry and configured to allow input of information into the UE to be processed by the processing circuitry
  • an output interface connected to the processing circuitry and configured to output information from the UE that has been processed by the processing circuitry
  • a battery connected to the processing circuitry and configured to supply power to the UE.
  • a communication system including a host computer comprising:
  • processing circuitry configured to provide user data
  • a communication interface configured to forward the user data to a cellular network for transmission to a user equipment (UE) ,
  • UE user equipment
  • the cellular network comprises a base station having a radio interface and processing circuitry, the base station’s processing circuitry configured to perform any of the steps described for the Group B embodiments.
  • invention D1 further including the base station.
  • the processing circuitry of the host computer is configured to execute a host application, thereby providing the user data
  • the UE comprises processing circuitry configured to execute a client application associated with the host application.
  • the host computer initiating a transmission carrying the user data to the UE via a cellular network comprising the base station, wherein the base station performs any of the steps described for the Group B embodiments.
  • a user equipment configured to communicate with a base station, the UE comprising a radio interface and processing circuitry configured to perform the method of any of embodiments D5 through D7.
  • a communication system including a host computer comprising:
  • processing circuitry configured to provide user data
  • a communication interface configured to forward user data to a cellular network for transmission to a user equipment (UE) ,
  • UE user equipment
  • the UE comprises a radio interface and processing circuitry, the UE’s components configured to perform any of the steps described for the Group A embodiments.
  • the processing circuitry of the host computer is configured to execute a host application, thereby providing the user data
  • the UE’s processing circuitry is configured to execute a client application associated with the host application.
  • the host computer initiating a transmission carrying the user data to the UE via a cellular network comprising the base station, wherein the UE performs any of the steps described for the Group A embodiments.
  • a communication system including a host computer comprising:
  • UE user equipment
  • the UE comprises a radio interface and processing circuitry, the UE’s processing circuitry configured to perform any of the steps described for the Group A embodiments.
  • D16 The communication system of any of embodiments D14 through D15, further including the base station, wherein the base station comprises a radio interface configured to communicate with the UE and a communication interface configured to forward to the host computer the user data carried by a transmission from the UE to the base station.
  • the base station comprises a radio interface configured to communicate with the UE and a communication interface configured to forward to the host computer the user data carried by a transmission from the UE to the base station.
  • the processing circuitry of the host computer is configured to execute a host application
  • the UE’s processing circuitry is configured to execute a client application associated with the host application, thereby providing the user data.
  • the processing circuitry of the host computer is configured to execute a host application, thereby providing request data
  • the UE’s processing circuitry is configured to execute a client application associated with the host application, thereby providing the user data in response to the request data.
  • the host computer receiving user data transmitted to the base station from the UE, wherein the UE performs any of the steps described for the Group A embodiments.
  • the user data to be transmitted is provided by the client application in response to the input data.
  • a user equipment configured to communicate with a base station, the UE comprising a radio interface and processing circuitry configured to perform the method of any of embodiments D19 through D22.
  • a communication system including a host computer comprising a communication interface configured to receive user data originating from a transmission from a user equipment (UE) to a base station, wherein the base station comprises a radio interface and processing circuitry, the base station’s processing circuitry configured to perform any of the steps described for the Group B embodiments.
  • UE user equipment
  • D26 The communication system of any of embodiments D24 through D25, further including the UE, wherein the UE is configured to communicate with the base station.
  • the processing circuitry of the host computer is configured to execute a host application
  • the UE is configured to execute a client application associated with the host application, thereby providing the user data to be received by the host computer.
  • the host computer receiving, from the base station, user data originating from a transmission which the base station has received from the UE, wherein the UE performs any of the steps described for the Group A embodiments.
  • the host computer receiving, from the base station, user data originating from a transmission which the base station has received from the UE, wherein the base station performs any of the steps described for the Group B embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method is disclosed for a wireless communication node (WCN), which is configured for closed loop power control of a communication link associated with the WCN. Transmissions over the communication link are associated with respective transmission durations. The method comprises dynamically determining, responsive to an upcoming transmission duration, a granularity for transmission power adaptation of the closed loop power control, and causing application of the determined granularity in a transmission power adaptation used for the upcoming transmission. When the WCN is a user equipment (UE), causing application of the determined granularity may comprise adapting a transmission power responsive to the determined granularity, and executing the upcoming transmission over the communication link using the adapted transmission power. When the WCN is a network node (NWN), causing application of the determined granularity may comprise signaling an indication of the determined granularity towards a user equipment (UE). Corresponding arrangement, user equipment, network node and computer program product are also disclosed.

Description

METHODS AND ARRANGEMENTS FOR POWER CONTROL TECHNICAL FIELD
The present disclosure relates generally to the field of wireless communication. More particularly, it relates to transmit power control for wireless communication.
BACKGROUND
Typical approaches to transmit power control for uplink wireless communication involve generation of a transmit power control (TPC) command by a network node (e.g. a base station) and transmission of the TPC command towards a user equipment (UE) . A TPC command may typically be binary and indicate “up” or “down” , corresponding to a desired increase or decrease of the transmit power. The TPC command is typically based on measurements performed in relation to uplink transmissions by the UE, for example measurements of a signal-to-interference-and-noise ratio (SINR) , possibly expressed in relation to a received power spectral density, or similar metric of received signal quality.
At the UE, the TPC command is received and the transmission power of one or more subsequent uplink transmissions is adjusted based on the received TPC command. In some typical approaches several received TPC commands may be accumulated or otherwise combined to provide a basis for adjustment of the transmission power.
Thus, transmit power control may be applied to compensate for channel path loss variations in that, when there is high attenuation between the UE and the base station, the UE increases its transmit power in order to maintain the power received at the base station at a desirable level.
In wireless communication according to the LTE (Long Term Evolution) standardization, the UE transmitter power for different types of channels follows different power control rules. For example, if the UE transmits PUSCH (Physical Uplink Shared CHannel) without a simultaneous PUCCH (Physical Uplink Control CHannel) for the serving cell, then the UE transmit power for PUSCH transmission in subframe i for the serving cell c is given by [dBm] :
Figure PCTCN2018071928-appb-000001
In this equation, P CMAX,  c (i) denotes the configured UE transmitted power, M PUSCH,  c (i) denotes the bandwidth of the PUSCH resource assignment (i.e. the number of resource blocks valid for subframe i and serving cell c) , P O_PUSCH,  c (j) is a parameter composed of the sum of P O_NOMINAL_PUSCH,  c (j) and P O_UE_PUSCH,  c (j) provided from higher layers for j ∈ {0, 1} and serving cell c, α c (j) ∈ {0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} is a 3-bit parameter provided by higher layers for serving cell c, PL c [dB] denotes the downlink path-loss estimate calculated in the UE for serving cell c, Δ TF,  c (i) is a dynamic offset given by higher layers, and f c (i) is a transmitter power control (TPC) command function.
The index j is related to the scheduling grant as follows: For PUSCH (re) transmissions corresponding to a semi-persistent grant j=0, for PUSCH (re) transmissions corresponding to a dynamic scheduled grant j=1, and for PUSCH (re) transmissions corresponding to the random access response grantj=2.
If TPC command accumulation is enabled (based on a parameter provided by higher layers) and/or if the TPC command δ PUSCH,  cfor serving cell c is included in a PDCCH (Physical Downlink Control CHannel) or EPDCCH (Enhanced Physical Downlink Control CHannel) with DCI (Downlink Control Information) format 0, thenf c (i) =f c (i-1) +δ PUSCH,  c (i-K PUSCH) . If TPC command accumulation is enabled, then f c (i) =δ PUSCH,  c (i-K PUSCH) . Details for the value of K PUSCH may be found in 3GPP (Third Generation Partnership Program) TS (Technical Specification) 36.213, v14.2.0, section 5.1.1.1, page 17.
As explained above, the TPC command δ PUSCH,  c is a correction value. For LTE, the TPC command is included in PDCCH/EPDCCH with DCI format 0/4 for the serving cell or is jointly coded with other TPC commands in PDCCH with DCI format 3/3A. The cyclic redundancy check (CRC) is scrambled by the Temporary C-RNTI (cell radio network temporary Identifier) for DCI format 0, and by the TPC-PUSCH-RNTI for DCI format 3/3A.
There is a need for approaches to transmit power control in relation to ongoing and upcoming wireless communication standardization such as, for example, New Radio (NR) .
SUMMARY
It should be emphasized that the term “comprises/comprising” when used in this specification is taken to specify the presence of stated features, integers, steps, or components, but does not preclude the presence or addition of one or more other features, integers, steps, components, or groups thereof. As used herein, the singular forms "a" , "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise.
It is an object of some embodiments to solve or mitigate, alleviate, or eliminate at least some of the disadvantages described herein and/or other disadvantages.
According to a first aspect, this is achieved by a method for a wireless communication node (WCN) configured for closed loop power control of a communication link associated with the WCN, wherein transmissions over the communication link are associated with respective transmission durations.
The method comprises dynamically determining, responsive to an upcoming transmission duration, agranularity for transmission power adaptation of the closed loop power control, and causing application of the determined granularity in a transmission power adaptation used for the upcoming transmission.
In some embodiments, dynamically determining the granularity responsive to the upcoming transmission duration comprises determining the granularity to have a first granularity value responsive to a first transmission duration and determining the granularity to have a second granularity value responsive to a second transmission duration, wherein the first granularity value is indicative of a first minimum absolute value for transmission power adaptation and the second granularity value is indicative of a second minimum absolute value for transmission power adaptation, and wherein the first minimum absolute value is lower than the second minimum absolute when the first transmission duration is shorter than the second transmission duration.
In some embodiments, the upcoming transmission duration is defined as a length of a slot or a mini slot. In some embodiments, the upcoming transmission duration is defined as proportional to an inverse of a sub-carrier spacing (SCS) . In some embodiments, the upcoming  transmission duration is defined via a combination of the length of a slot or a mini slot and a metric proportional to an inverse of the SCS.
In some embodiments, dynamically determining the granularity responsive to the upcoming transmission duration comprises one or more of:
- using the upcoming transmission duration for addressing of a look-up table to retrieve the granularity,
- using the upcoming transmission duration for calculating the granularity based on a granularity calculation function, and
- comparing the upcoming transmission duration to one or more transmission duration threshold values and determining the granularity responsive to a result of the comparison.
In some embodiments, dynamically determining the granularity responsive to the upcoming transmission duration comprises determining a scaling factor responsive to the upcoming transmission duration. Then, causing application of the determined granularity in the closed loop power control may comprise causing multiplication of a granularity reference value by the scaling factor.
In some embodiments, causing application of the determined granularity in a transmission power adaptation used for the upcoming transmission comprises applying the determined granularity in a transmission power adaptation used for the upcoming transmission.
In some embodiments, the communication link is an uplink and the upcoming transmission duration is a physical uplink shared channel (PUSCH) transmission duration and/or a physical uplink control channel (PUCCH) transmission duration.
In some embodiments, the WCN is a user equipment (UE) and causing application of the determined granularity comprises adapting a transmission power responsive to the determined granularity and executing the upcoming transmission over the communication link using the adapted transmission power.
In some embodiments, the WCN is a network node (NWN) and causing application of the determined granularity comprises signaling an indication of the determined granularity towards a user equipment (UE) .
A second aspect is a computer program product comprising a non-transitory computer readable medium, having thereon a computer program comprising program instructions. The computer program is loadable into a data processing unit and configured to cause execution of the method according to the first aspect when the computer program is run by the data processing unit.
A third aspect is an arrangement for a wireless communication node (WCN) configured for closed loop power control of a communication link associated with the WCN, wherein transmissions over the communication link are associated with respective transmission durations.
The arrangement comprises controlling circuitry configured to cause dynamic determination, responsive to an upcoming transmission duration, of a granularity for transmission power adaptation of the closed loop power control, and application of the determined granularity in a transmission power adaptation used for the upcoming transmission.
A fourth aspect is user equipment (UE) comprising the arrangement of the third aspect.
A fifth aspect is a network node (NWN) comprising the arrangement of the third aspect.
In some embodiments, any of the above aspects may additionally have features identical with or corresponding to any of the various features as explained above for any of the other aspects.
An advantage of some embodiments is that transmit power control may be adapted to suit a dynamic transmission duration.
Another advantage of some embodiments is that the accuracy of the transmit power control may be improved compared to other transmit power control approaches.
Yet an advantage of some embodiments is that the spectrum efficiency of the communication system may be improved compared to when other transmit power control approaches are applied.
BRIEF DESCRIPTION OF THE DRAWINGS
Further objects, features and advantages will appear from the following detailed description of embodiments, with reference being made to the accompanying drawings. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the example embodiments.
Figure 1 is a flowchart illustrating example method steps according to some embodiments;
Figure 2 is a schematic drawing illustrating an example scenario according to some embodiments;
Figure 3 is a flowchart illustrating example method steps according to some embodiments;
Figure 4 is a flowchart illustrating example method steps according to some embodiments;
Figure 5 is a schematic block diagram illustrating an example arrangement according to some embodiments;
Figure 6 is a schematic drawing illustrating an example computer readable medium according to some embodiments;
Figure 7 illustrates a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments;
Figure 8 illustrates a host computer communicating via a base station with a user equipment over a partially wireless connection in accordance with some embodiments;
Figure 9 is a flowchart illustrating example method steps implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments;
Figure 10 is a flowchart illustrating example method steps implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments;
Figure 11 is a flowchart illustrating example method steps implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments; and
Figure 12 is a flowchart illustrating example method steps implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.
DETAILED DESCRIPTION
As already mentioned above, it should be emphasized that the term “comprises/comprising” when used in this specification is taken to specify the presence of stated features, integers, steps, or components, but does not preclude the presence or addition of one or more other features, integers, steps, components, or groups thereof. As used herein, the singular forms "a" , "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise.
Embodiments of the present disclosure will be described and exemplified more fully hereinafter with reference to the accompanying drawings. The solutions disclosed herein can, however, be realized in many different forms and should not be construed as being limited to the embodiments set forth herein.
In the following, embodiments will be described where a granularity for transmission power adaptation in closed loop power control is dynamically determined based on an upcoming transmission duration. Thus, methods and devices for power control granularity adaptation are presented.
Generally, it should be noted than even though the transmit power control is described herein in association with uplink communication; some embodiments may be equally applicable in downlink or unilink communication. Thus, uplink communication transmit power control is only intended as an illustrative example and should not be construed as limiting.
The granularity for transmission power adaptation may be defined in terms of the absolute value of the smallest possible adjustment of the transmission power. For example, the granularity may be defined in terms of a granularity value indicative of a minimum absolute value for transmission power adaptation. In various embodiments, the granularity value may,  for example, be equal to the minimum absolute value for transmission power adaptation, proportional to the minimum absolute value for transmission power adaptation, inversely proportional to the minimum absolute value for transmission power adaptation, or may consist of an index identifying the minimum absolute value for transmission power adaptation.
In wireless communication according to the New Radio (NR) standardization, a subframe is 1ms, and a slot according to NR denotes a transmission duration comprising 14 OFDM (Orthogonal Frequency Division Multiplex) symbols. Another –more flexible –time unit is also defined and is denoted a mini slot. A mini slot according to NR denotes a transmission duration comprising 2, 4 or 7 OFDM symbols. The definition of the mini slot provides for adaptation to the configurable transmit duration lengths in NR, which are for fulfilling various transmission delay requirements purpose.
In NR, multiple numerologies are supported, i.e. the OFDM symbol length is reversely proportional to the subcarrier spacing with normal cyclic prefix length. A consequence of this is that the duration of a slot or mini slot may vary even when it comprises a fixed number of OFDM symbols.
To apply traditional transmit power control approaches with static or semi-stating TPC intervals to NR (and other wireless communication standards with dynamic transmission durations) may be problematic. This is due to that, in traditional approaches, the TPC command frequency is either too low for the smallest transmission duration, thereby risking that several transmissions are executed with improper transmission power before a suitable adjustment can be done (i.e. the transmit power control is too slow) , or the TPC command frequency is too high for the largest transmission duration, thereby sending TPC commands more often than it is possible to perform an adjustment which constitutes unnecessary signaling overhead (i.e. the transmit power control signaling is too extensive) . Therefore, embodiments suggest that a granularity for transmission power adaptation is dynamically determined based on an upcoming transmission duration.
To further exemplify a problem faced when applying a traditional transmit power control approach, it may be noted that when there are different transmission durations scheduled in association with the same closed loop power control process, the minimum absolute value for  transmission power adaptation (the granulation) is fixed to 1 dB (as illustrated in Table 1) , which leads to fluctuating transmit power for different PUSCH or PUCCH transmission durations.
Table 1: Mapping of TPC command field to absolute δ PUSCH,  cand accumulated δ PUSCH,  c.
TPC command field in DCI format Absolute δ PUSCH,  c [dB] Accumulated δ PUSCH,  c [dB]
0 -1 -4
1 0 -1
2 1 1
3 3 4
The same power control granularity is not suitable for all situations in varying radio quality. This is especially true when the transmission duration changes from time to time, which can be due to change of SCS and/or due to that the number of OFDM symbols included in a grant changes.
For example, when the minimum absolute value for transmission power adaptation (the granulation) is configured for a UE to a large value, the requirements of power adjustment for PUSCH transmissions spanning a long transmission duration can be met. However, applying this large granularity for PUSCH transmissions with a shorter transmission duration, whose radio quality (e.g. in terms of received power density, SINR, or path loss) variations is much smaller, may lead to considerable unnecessary power control fluctuation.
Similarly, a low value of the minimum absolute value for transmission power adaptation (the granulation) may be applicable for a short transmission duration, but is typically not suitable for longer transmission durations since the power adjustment may be too small to be able to follow the channel variations during the entire transmission duration.
The mismatch between power adjustment (adaptation) and the channel variation typically impacts the outer loop power control, e.g. such that an unnecessarily low effective SINR is applied at selection of modulation and coding scheme (MCS) for the shorter transmission duration, which may impact the data transmission performance negatively.
Hence, embodiments are proposed in which multiple power control granularities are configured for a closed loop power control process wherein the power control adjustment granularity is adapted according to the scheduled transmission duration. Generally, the granularity for transmit power adjustment can be cell specific or UE specific.
Figure 1 illustrates an example method 100 according to some embodiments, and Figure 2 schematically illustrates an example scenario according to some embodiments. The method 100 of Figure 1 may be performed by a UE 200 or by a NWN 210 (collectively denoted as a wireless communication node, WCN) as illustrated in Figure 2 and as will be exemplified later herein.
The WCN performing the method 100 is configured for closed loop power control of a communication link 250 associated with it, wherein transmissions over the communication link are associated with respective transmission durations as described and exemplified above.
Generally, that a communication link is associated with a WCD (e.g. a UE or a NWN) may be construed as the WCD being a party (transmitting party and/or receiving party in communications taking place over the communication link. Thus, that a communication link is associated with a WCD may be construed as the communication link enabling (or carrying) communication between the WCD (e.g. a UE or a NWN) and another WCD (e.g. a NWN or a UE, correspondingly) .
Also generally, that transmissions over the communication link are associated with respective transmission durations may be construed as transmissions over the communication link having respective transmission durations. Thus, that transmissions over the communication link are associated with respective transmission durations may be construed as each transmission lasting a certain amount of time, which amount of time is defined as the transmission duration. The transmission duration may, for example, be defined in terms of a number of /mini/slots, via an inverse of the subcarrier spacing, or any other suitable metric.
The communication link may, for example, be an uplink and the transmission durations may be PUSCH transmission durations and/or PUCCH transmission durations.
The transmission durations may be defined as a length of a slot or a mini slot, as proportional to an inverse of a sub-carrier spacing, or as a combination thereof.
In step 110, a granularity for transmission power adaptation of the closed loop power control is dynamically determined responsive to (e.g. based on) an upcoming transmission duration.
Step 110 may comprise determining the granularity to have a granularity value responsive to the transmission duration, wherein each granularity value may be indicative of a corresponding minimum absolute value (a minimum step size) for transmission power adaptation. A relatively short transmission duration may result in a granularity value corresponding to a relatively low minimum absolute value. Typically, the granularity values as well as the minimum absolute values may belong to a respective finite set of values.
Thus, step 110 may comprise determining the granularity to have a first granularity value (indicative of a first minimum absolute value for transmission power adaptation) responsive to a first transmission duration and determining the granularity to have a second granularity value (indicative of a second minimum absolute value for transmission power adaptation) responsive to a second transmission duration. Then, the first minimum absolute value is lower than the second minimum absolute value when the first transmission duration is shorter than the second transmission duration. Correspondingly, the first minimum absolute value is higher than the second minimum absolute value when the first transmission duration is longer than the second transmission duration.
Step 110 may comprise using the upcoming transmission duration for addressing a look-up table to retrieve a corresponding granularity.
Alternatively or additionally, step 110 may comprise using the upcoming transmission duration for calculation of a corresponding granularity based on a granularity calculation function.
Yet alternatively or additionally, step 110 may comprise comparing the upcoming transmission duration to one or more transmission duration threshold values and determining a corresponding granularity responsive to a result of the comparison.
The granularity may be determined directly or via a scaling factor which may then be used for multiplication with a granularity reference value.
Typically, the network may configure the multiple power control granularities as associated with the same close loop power control process, and a suitable granularity may be selected (determined) based on the transmission duration (/mini/slot length and/or numerology) .
In a first example, the power control granularity determination is performed based on the slot duration. A table comprising the correspondence (mapping) between granularity and /mini/slot lengths (or /mini/slot length range) is defined (exemplified by Table 2) . In such a table, the correspondence may be reflected with a mapping rule; one-to-one, many-to-one or one-to-many. Upon reception of a UL grant which carries information regarding transmission duration, the UE may determine a suitable power granularity by table look-up.
Table 2: Mapping between power control granularity and /mini/slot length.
Granularity [dB] Slot length (L) [OFDM symbols]
SS 1 L<7
SS 2 (SS 2>SS 1) L=7
SS 3 (SS 3>SS 2) L=14
In a second example, the power control granularity determination is performed based on the numerology. A table comprising the correspondence (mapping) between granularity and numerology is defined (exemplified by Table 3) , wherein a numerology with longer OFDM symbol corresponds to a larger power control granularity. In such a table, the correspondence may be reflected with a mapping rule; one-to-one, many-to-one or one-to-many. Knowing the SCS, the UE may determine a suitable power granularity by table look-up.
Table 3: Mapping between power control granularity and subcarrier spacing.
Granularity [dB] Subcarrier spacing (SCS) [kHz]
SS 1 SCS>60 kHz
SS 2 (SS 2>SS 1) SCS=30 kHz or 60 kHz
SS 3 (SS 3>SS 2) SCS=15 kHz
In a third example, one reference power control granularity (a granularity reference value) may be configured and other granularities can be derived by applying a scaling factor to the reference power control granularity, where the scaling factor is calculated based on  transmission duration (e.g. by dividing the upcoming transmission duration by a reference transmission duration) . Use of scaling factors typically gives less signaling overhead than some of the other alternatives presented herein.
In one approach, areference power control granularity, SS pre, is preconfigured in RRC (radio resource control) signaling for a specific transmission duration, L T, and the actual granularity, SS real, for power control of a specific transmission duration, L X, may be derived by scaling the preconfigured granularity in relation to the specific transmission duration, i.e.:
Figure PCTCN2018071928-appb-000002
In one approach, areference power control granularity, SS pre, is preconfigured in RRC (radio resource control) signaling for a specific subcarrier spacing, SCS T, and the actual granularity, SS real, for power control of a specific subcarrier spacing, SCS X (the measured actual subcarrier spacing) , may be derived by scaling the preconfigured granularity in relation to the inverse of the specific subcarrier spacing, i.e.:
Figure PCTCN2018071928-appb-000003
This approach is in analogy with the previous approach since one resource block is the multiplication of the subcarrier spacing and the slot length, and it is particularly relevant in NR, where –in addition to the commonly used 15 kHz subcarrier spacing –multiple subcarrier spacing proposed includes 30 kHz, 60 kHz, and 120 kHz.
In the case of power control for PUSCH and PUCCH, the power control granularity for PUCCH transmission may be different from that for PUSCH, since their transmission durations may be different. Alternatively or additionally, the tables may be also different for PUCCH and PUSCH. The power control granularity of PUCCH can be derived based on the transmission duration or numerology of PUCCH while the power control granularity of PUSCH can be derived based on the transmission duration or numerology of PUCCH.
Various combinations of the examples given above are, of course, possible. For example, the third example (using a scaling factor) may be combined with the first or second example.
In step 120, the method comprises causing application of the determined granularity in a transmission power adaptation used for the upcoming transmission. Generally, causing application of the determined granularity in a transmission power adaptation used for the upcoming transmission may comprise applying the determined granularity in a transmission power adaptation used for the upcoming transmission. Also generally, applying the determined granularity in a transmission power adaptation used for the upcoming transmission may, for example, comprise adapting a transmission power responsive to the determined granularity and/or signaling (transmitting) an indication of the determined granularity and/or transmitting an instruction to use the determined granularity for adapting a transmission power.
When the WCN is a UE, step 120 of Figure 1 may typically comprise adapting a transmission power responsive to the determined granularity, and executing the upcoming transmission over the communication link using the adapted transmission power.
Such embodiments will be exemplified further in relation to Figure 3, which illustrates an example method 300 for execution in a UE (e.g. the UE 200 of Figure 2) according to some embodiments. The UE performing the method 300 is configured to apply uplink closed loop power control, wherein transmissions are associated with respective transmission durations as described and exemplified above. Thus, the UE is engaged in uplink transmissions and corresponding reception of TPC commands from the NWN as illustrated by  steps  301 and 302, respectively.
In step 310, a granularity for transmission power adaptation of the closed loop power control is dynamically determined responsive to (e.g. based on) an upcoming transmission duration (compare with step 110 of Figure 1) . The upcoming transmission duration may, for example, be known from a scheduling grant received form the NWN and/or from an autonomous transmission duration determination.
Application of the determined granularity is caused, in step 320, by adapting a transmission power responsive to the determined granularity (compare with step 120 of Figure 1) . Then, the upcoming transmission is executed, in step 321, using the adapted transmission power.
Typically, the process is repeated as illustrated by the dashed arrow from step 321 to step 302, thereby contributing further to the dynamic determination of the granularity. The repetition may, for example, be performed per transmission occasion, per scheduling grant, or more seldom.
Although having been illustrated as performed in sequence, it should be noted that one or more of the steps of the method 300 may be performed in parallel and/or in another order than indicated in Figure 3. For example, step 320 may be performed as soon as a scheduling grant for the upcoming transmission is received even though the TPC command of step 302 has not yet been received.
When the WCN is a NWN, step 120 of Figure 1 may typically comprise signaling an indication of the determined granularity (e.g. the granularity value, the scaling factor, or a corresponding index) towards a UE, for application in the UE.
Such embodiments will be exemplified further in relation to Figure 4, which illustrates an example method 400 for execution in a NWN (e.g. the NWN 210 of Figure 2) according to some embodiments. The NWN performing the method 400 is configured to apply uplink closed loop power control, wherein transmissions are associated with respective transmission durations as described and exemplified above. Thus, the NWN is engaged in uplink reception, corresponding generation and transmission of TPC commands to the UE, and scheduling of upcoming transmissions by the UE as illustrated by  steps  401, 402 and 403, respectively.
In step 410, a granularity for transmission power adaptation of the closed loop power control is dynamically determined responsive to (e.g. based on) an upcoming transmission duration (compare with step 110 of Figure 1) . The upcoming transmission duration may, for example, be known from the scheduling in step 403.
Application of the determined granularity is caused, in step 420, by signaling (transmitting) an indication of the determined granularity towards the UE (compare with step 120 of Figure 1) . When such indication is received by the UE, it may be used in the UE for adapting a transmission power responsive to the determined granularity and executing the upcoming transmission using the adapted transmission power (compare with  steps  320 and 321 of Figure 3) .
In step 420, the granularity may, for example, be signaled by the network via a medium access control (MAC) control element (CE) or via a PDCCH command. The signaling may carry an absolute value of the granularity (or of the scaling factor) or an index indicative thereof. The signaling may be per closed loop power control process according to some embodiments.
Typically, the process is repeated as illustrated by the dashed arrow from step 420 to either of  steps  401, 402, 403, thereby contributing further to the dynamic determination of the granularity. The repetition may, for example, be performed per reception occasion 401, per TPC command transmission 402, per scheduling grant 403, or more seldom.
Although having been illustrated as performed in sequence, it should be noted that one or more of the steps of the method 400 may be performed in parallel and/or in another order than indicated in Figure 4. For example, scheduling of upcoming transmissions in step 403 may be performed in parallel to UL reception in step 401.
Figure 5 schematically illustrates an example arrangement 510 comprising controlling circuitry (CNTR, e.g. a controller) 500. The arrangement is for, and may be comprised in, awireless communication node (WCN) configured for closed loop power control of a communication link, wherein transmissions over the communication link are associated with respective transmission durations. In the same manner as described above, the WCN may be a UE or a NWN. The arrangement may, for example, be configured to perform method steps in accordance with any of the methods described in connection to Figures 1, 3 and 4.
The controlling circuitry is configured to cause, responsive to an upcoming transmission duration, dynamic determination of a granularity for transmission power adaptation of the closed loop power control (compare with  steps  110, 310 and 410 of Figures 1, 3 and 4, respectively) . To this end the controlling circuitry 500 may comprise, or be otherwise associated with, determination circuitry (DET, e.g. a determiner) 501 configured to dynamically determine the granularity for transmission power adaptation based on the upcoming transmission duration. The determination circuitry may, or may not, be comprised in the arrangement 510.
The controlling circuitry is also configured to cause application of the determined granularity in a transmission power adaptation used for the upcoming transmission (compare with  steps   120, 320 and 420 of Figures 1, 3 and 4, respectively) . To this end the controlling circuitry 500 may comprise, or be otherwise associated with, circuitry for this purpose.
When the WCN is a NWN, the controlling circuitry is configured to cause application of the determined granularity by causing signaling of an indication of the determined granularity towards the UE. Then, the controlling circuitry 500 may comprise, or be otherwise associated with, transmitting circuitry (e.g. a transmitter) –illustrated in Figure 5 as part of a transceiver (TX/RX) 530 –configured to signal (transmit) the indication of the determined granularity. The transmitting circuitry may, or may not, be comprised in the arrangement 510.
When the WCN is a UE, the controlling circuitry is configured to cause application of the determined granularity by causing adaptation of a transmission power responsive to the determined granularity. Then, the controlling circuitry 500 may comprise, or be otherwise associated with, power control circuitry (PC, e.g. a power controller) 502 configured to adapt the transmission power responsive to the determined granularity. The power control circuitry may, or may not, be comprised in the arrangement 510.
When the WCN is a UE, the controlling circuitry is also configured to cause application of the determined granularity by causing execution of the upcoming transmission over the communication link using the adapted transmission power. Then, the controlling circuitry 500 may comprise, or be otherwise associated with, transmitting circuitry (e.g. a transmitter) –illustrated in Figure 5 as part of a transceiver (TX/RX) 530–configured to execute the upcoming transmission over the communication link using the adapted transmission power. The transmitting circuitry may, or may not, be comprised in the arrangement 510.
The described embodiments and their equivalents may be realized in software or hardware or a combination thereof. The embodiments may be performed by general purpose circuitry. Examples of general purpose circuitry include digital signal processors (DSP) , central processing units (CPU) , co-processor units, field programmable gate arrays (FPGA) and other programmable hardware. Alternatively or additionally, the embodiments may be performed by specialized circuitry, such as application specific integrated circuits (ASIC) . The general purpose circuitry and/or the specialized circuitry may, for example, be associated with or comprised in an apparatus such as a wireless communication device (e.g. a UE) or a network node (NWN, e.g. a base station) .
Embodiments may appear within an electronic apparatus (such as a wireless communication node) comprising arrangements, circuitry, and/or logic according to any of the embodiments described herein. Alternatively or additionally, an electronic apparatus (such as a wireless communication node) may be configured to perform methods according to any of the embodiments described herein.
According to some embodiments, a computer program product comprises a computer readable medium such as, for example a universal serial bus (USB) memory, a plug-in card, an embedded drive or a read only memory (ROM) . Figure 6 illustrates an example computer readable medium in the form of a compact disc (CD) ROM 600. The computer readable medium has stored thereon a computer program comprising program instructions. The computer program is loadable into a data processor (PROC) 620, which may, for example, be comprised in a wireless communication node 610. When loaded into the data processing unit, the computer program may be stored in a memory (MEM) 630 associated with or comprised in the data-processing unit. According to some embodiments, the computer program may, when loaded into and run by the data processing unit, cause execution of method steps according to, for example, any of the methods illustrated in Figures 1, 3 and 4 or otherwise described herein.
With reference to Figure 7, in accordance with an embodiment, a communication system includes telecommunication network QQ410, such as a 3GPP-type cellular network, which comprises access network QQ411, such as a radio access network, and core network QQ414. Access network QQ411 comprises a plurality of base stations QQ412a, QQ412b, QQ412c, such as NBs, eNBs, gNBs or other types of wireless access points, each defining a corresponding coverage area QQ413a, QQ413b, QQ413c. Each base station QQ412a, QQ412b, QQ412c is connectable to core network QQ414 over a wired or wireless connection QQ415. A first UE QQ491 located in coverage area QQ413c is configured to wirelessly connect to, or be paged by, the corresponding base station QQ412c. A second UE QQ492 in coverage area QQ413a is wirelessly connectable to the corresponding base station QQ412a. While a plurality of UEs QQ491, QQ492 are illustrated in this example, the disclosed embodiments are equally applicable to a situation where a sole UE is in the coverage area or where a sole UE is connecting to the corresponding base station QQ412.
Telecommunication network QQ410 is itself connected to host computer QQ430, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server or as processing resources in a server farm. Host computer QQ430 may be under the ownership or control of a service provider, or may be operated by the service provider or on behalf of the service provider. Connections QQ421 and QQ422 between telecommunication network QQ410 and host computer QQ430 may extend directly from core network QQ414 to host computer QQ430 or may go via an optional intermediate network QQ420. Intermediate network QQ420 may be one of, or a combination of more than one of, a public, private or hosted network; intermediate network QQ420, if any, may be a backbone network or the Internet; in particular, intermediate network QQ420 may comprise two or more sub-networks (not shown) .
The communication system of Figure 7 as a whole enables connectivity between the connected UEs QQ491, QQ492 and host computer QQ430. The connectivity may be described as an over-the-top (OTT) connection QQ450. Host computer QQ430 and the connected UEs QQ491, QQ492 are configured to communicate data and/or signaling via OTT connection QQ450, using access network QQ411, core network QQ414, any intermediate network QQ420 and possible further infrastructure (not shown) as intermediaries. OTT connection QQ450 may be transparent in the sense that the participating communication devices through which OTT connection QQ450 passes are unaware of routing of uplink and downlink communications. For example, base station QQ412 may not or need not be informed about the past routing of an incoming downlink communication with data originating from host computer QQ430 to be forwarded (e.g., handed over) to a connected UE QQ491. Similarly, base station QQ412 need not be aware of the future routing of an outgoing uplink communication originating from the UE QQ491 towards the host computer QQ430.
Example implementations, in accordance with an embodiment, of the UE, base station and host computer discussed in the preceding paragraphs will now be described with reference to Figure 8. In communication system QQ500, host computer QQ510 comprises hardware QQ515 including communication interface QQ516 configured to set up and maintain a wired or wireless connection with an interface of a different communication device of communication system QQ500. Host computer QQ510 further comprises processing circuitry QQ518, which may have storage and/or processing capabilities. In particular, processing  circuitry QQ518 may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. Host computer QQ510 further comprises software QQ511, which is stored in or accessible by host computer QQ510 and executable by processing circuitry QQ518. Software QQ511 includes host application QQ512. Host application QQ512 may be operable to provide a service to a remote user, such as UE QQ530 connecting via OTT connection QQ550 terminating at UE QQ530 and host computer QQ510. In providing the service to the remote user, host application QQ512 may provide user data which is transmitted using OTT connection QQ550.
Communication system QQ500 further includes base station QQ520 provided in a telecommunication system and comprising hardware QQ525 enabling it to communicate with host computer QQ510 and with UE QQ530. Hardware QQ525 may include communication interface QQ526 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of communication system QQ500, as well as radio interface QQ527 for setting up and maintaining at least wireless connection QQ570 with UE QQ530 located in a coverage area (not shown in Figure 8) served by base station QQ520. Communication interface QQ526 may be configured to facilitate connection QQ560 to host computer QQ510. Connection QQ560 may be direct or it may pass through a core network (not shown in Figure 8) of the telecommunication system and/or through one or more intermediate networks outside the telecommunication system. In the embodiment shown, hardware QQ525 of base station QQ520 further includes processing circuitry QQ528, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. Base station QQ520 further has software QQ521 stored internally or accessible via an external connection.
Communication system QQ500 further includes UE QQ530 already referred to. Its hardware QQ535 may include radio interface QQ537 configured to set up and maintain wireless connection QQ570 with a base station serving a coverage area in which UE QQ530 is currently located. Hardware QQ535 of UE QQ530 further includes processing circuitry QQ538, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute  instructions. UE QQ530 further comprises software QQ531, which is stored in or accessible by UE QQ530 and executable by processing circuitry QQ538. Software QQ531 includes client application QQ532. Client application QQ532 may be operable to provide a service to a human or non-human user via UE QQ530, with the support of host computer QQ510. In host computer QQ510, an executing host application QQ512 may communicate with the executing client application QQ532 via OTT connection QQ550 terminating at UE QQ530 and host computer QQ510. In providing the service to the user, client application QQ532 may receive request data from host application QQ512 and provide user data in response to the request data. OTT connection QQ550 may transfer both the request data and the user data. Client application QQ532 may interact with the user to generate the user data that it provides.
It is noted that host computer QQ510, base station QQ520 and UE QQ530 illustrated in Figure 8 may be similar or identical to host computer QQ430, one of base stations QQ412a, QQ412b, QQ412c and one of UEs QQ491, QQ492 of Figure 7, respectively. This is to say, the inner workings of these entities may be as shown in Figure 8 and independently, the surrounding network topology may be that of Figure 7.
In Figure 8, OTT connection QQ550 has been drawn abstractly to illustrate the communication between host computer QQ510 and UE QQ530 via base station QQ520, without explicit reference to any intermediary devices and the precise routing of messages via these devices. Network infrastructure may determine the routing, which it may be configured to hide from UE QQ530 or from the service provider operating host computer QQ510, or both. While OTT connection QQ550 is active, the network infrastructure may further take decisions by which it dynamically changes the routing (e.g., on the basis of load balancing consideration or reconfiguration of the network) .
Wireless connection QQ570 between UE QQ530 and base station QQ520 is in accordance with the teachings of the embodiments described throughout this disclosure. One or more of the various embodiments improve the performance of OTT services provided to UE QQ530 using OTT connection QQ550, in which wireless connection QQ570 forms the last segment. More precisely, the teachings of these embodiments may improve the spectrum efficiency of the communication system and/or the accuracy of transmit power control, and thereby provide benefits such as improved throughput and/or other metrics for quality of service.
A measurement procedure may be provided for the purpose of monitoring data rate, latency and other factors on which the one or more embodiments improve. There may further be an optional network functionality for reconfiguring OTT connection QQ550 between host computer QQ510 and UE QQ530, in response to variations in the measurement results. The measurement procedure and/or the network functionality for reconfiguring OTT connection QQ550 may be implemented in software QQ511 and hardware QQ515 of host computer QQ510 or in software QQ531 and hardware QQ535 of UE QQ530, or both. In embodiments, sensors (not shown) may be deployed in or in association with communication devices through which OTT connection QQ550 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which software QQ511, QQ531 may compute or estimate the monitored quantities. The reconfiguring of OTT connection QQ550 may include message format, retransmission settings, preferred routing etc. ; the reconfiguring need not affect base station QQ520, and it may be unknown or imperceptible to base station QQ520. Such procedures and functionalities may be known and practiced in the art. In certain embodiments, measurements may involve proprietary UE signaling facilitating host computer QQ510’s measurements of throughput, propagation times, latency and the like. The measurements may be implemented in that software QQ511 and QQ531 causes messages to be transmitted, in particular empty or ‘dummy’ messages, using OTT connection QQ550 while it monitors propagation times, errors etc.
Figure 9 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to Figures 7 and 8. For simplicity of the present disclosure, only drawing references to Figure 9 will be included in this section. In step QQ610, the host computer provides user data. In substep QQ611 (which may be optional) of step QQ610, the host computer provides the user data by executing a host application. In step QQ620, the host computer initiates a transmission carrying the user data to the UE. In step QQ630 (which may be optional) , the base station transmits to the UE the user data which was carried in the transmission that the host computer initiated, in accordance with the teachings of the embodiments described throughout this disclosure. In  step QQ640 (which may also be optional) , the UE executes a client application associated with the host application executed by the host computer.
Figure 10 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to Figures 7 and 8. For simplicity of the present disclosure, only drawing references to Figure 10 will be included in this section. In step QQ710 of the method, the host computer provides user data. In an optional substep (not shown) the host computer provides the user data by executing a host application. In step QQ720, the host computer initiates a transmission carrying the user data to the UE. The transmission may pass via the base station, in accordance with the teachings of the embodiments described throughout this disclosure. In step QQ730 (which may be optional) , the UE receives the user data carried in the transmission.
Figure 11 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to Figures 7 and 8. For simplicity of the present disclosure, only drawing references to Figure 11 will be included in this section. In step QQ810 (which may be optional) , the UE receives input data provided by the host computer. Additionally or alternatively, in step QQ820, the UE provides user data. In substep QQ821 (which may be optional) of step QQ820, the UE provides the user data by executing a client application. In substep QQ811 (which may be optional) of step QQ810, the UE executes a client application which provides the user data in reaction to the received input data provided by the host computer. In providing the user data, the executed client application may further consider user input received from the user. Regardless of the specific manner in which the user data was provided, the UE initiates, in substep QQ830 (which may be optional) , transmission of the user data to the host computer. In step QQ840 of the method, the host computer receives the user data transmitted from the UE, in accordance with the teachings of the embodiments described throughout this disclosure.
Figure 12 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to Figures 7 and 8. For  simplicity of the present disclosure, only drawing references to Figure 12 will be included in this section. In step QQ910 (which may be optional) , in accordance with the teachings of the embodiments described throughout this disclosure, the base station receives user data from the UE. In step QQ920 (which may be optional) , the base station initiates transmission of the received user data to the host computer. In step QQ930 (which may be optional) , the host computer receives the user data carried in the transmission initiated by the base station.
Generally, all terms used herein are to be interpreted according to their ordinary meaning in the relevant technical field, unless a different meaning is clearly given and/or is implied from the context in which it is used.
Reference has been made herein to various embodiments. However, a person skilled in the art would recognize numerous variations to the described embodiments that would still fall within the scope of the claims.
For example, the method embodiments described herein discloses example methods through steps being performed in a certain order. However, it is recognized that these sequences of events may take place in another order without departing from the scope of the claims. Furthermore, some method steps may be performed in parallel even though they have been described as being performed in sequence. Thus, the steps of any methods disclosed herein do not have to be performed in the exact order disclosed, unless a step is explicitly described as following or preceding another step and/or where it is implicit that a step must follow or precede another step.
In the same manner, it should be noted that in the description of embodiments, the partition of functional blocks into particular units is by no means intended as limiting. Contrarily, these partitions are merely examples. Functional blocks described herein as one unit may be split into two or more units. Furthermore, functional blocks described herein as being implemented as two or more units may be merged into fewer (e.g. a single) unit.
Any feature of any of the embodiments disclosed herein may be applied to any other embodiment, wherever suitable. Likewise, any advantage of any of the embodiments may apply to any other embodiments, and vice versa.
Hence, it should be understood that the details of the described embodiments are merely examples brought forward for illustrative purposes, and that all variations that fall within the scope of the claims are intended to be embraced therein.
EXAMPLE EMBODIMENTS
Group A Embodiments
A1. A method performed by a wireless device for transmit power control, the method comprising:
dynamically determining, responsive to an upcoming transmission duration, a granularity for transmission power adaptation of the closed loop power control; and
causing application of the determined granularity in a transmission power adaptation used for the upcoming transmission.
A2. The method of any of the previous embodiments in Group A, further comprising:
providing user data; and
forwarding the user data to a host computer via the transmission to the base station.
Group B Embodiments
B1. A method performed by a base station for transmit power control, the method comprising:
dynamically determining, responsive to an upcoming transmission duration, a granularity for transmission power adaptation of the closed loop power control; and
causing application of the determined granularity in a transmission power adaptation used for the upcoming transmission.
B2. The method of any of the previous embodiments in Group B, further comprising:
obtaining user data; and
forwarding the user data to a host computer or a wireless device.
Group C Embodiments
C1. A wireless device for transmit power control, the wireless device comprising:
processing circuitry configured to perform any of the steps of any of the Group A embodiments; and
power supply circuitry configured to supply power to the wireless device.
C2. A base station for transmit power control, the base station comprising:
processing circuitry configured to perform any of the steps of any of the Group B embodiments;
power supply circuitry configured to supply power to the wireless device.
C3. A user equipment (UE) for transmit power control, the UE comprising:
an antenna configured to send and receive wireless signals;
radio front-end circuitry connected to the antenna and to processing circuitry, and configured to condition signals communicated between the antenna and the processing circuitry;
the processing circuitry being configured to perform any of the steps of any of the Group A embodiments;
an input interface connected to the processing circuitry and configured to allow input of information into the UE to be processed by the processing circuitry;
an output interface connected to the processing circuitry and configured to output information from the UE that has been processed by the processing circuitry; and
a battery connected to the processing circuitry and configured to supply power to the UE.
Group D Embodiments
D1. A communication system including a host computer comprising:
processing circuitry configured to provide user data; and
a communication interface configured to forward the user data to a cellular network for transmission to a user equipment (UE) ,
wherein the cellular network comprises a base station having a radio interface and processing circuitry, the base station’s processing circuitry configured to perform any of the steps described for the Group B embodiments.
D2. The communication system of embodiment D1 further including the base station.
D3. The communication system of any of embodiments D1 through D2, further including the UE, wherein the UE is configured to communicate with the base station.
D4. The communication system of any of embodiments D1 through D3, wherein:
the processing circuitry of the host computer is configured to execute a host application, thereby providing the user data; and
the UE comprises processing circuitry configured to execute a client application associated with the host application.
D5. A method implemented in a communication system including a host computer, a base station and a user equipment (UE) , the method comprising:
at the host computer, providing user data; and
at the host computer, initiating a transmission carrying the user data to the UE via a cellular network comprising the base station, wherein the base station performs any of the steps described for the Group B embodiments.
D6. The method of embodiment D5, further comprising, at the base station, transmitting the user data.
D7. The method of any of embodiments D5 through D6, wherein the user data is provided at the host computer by executing a host application, the method further comprising, at the UE, executing a client application associated with the host application.
D8. A user equipment (UE) configured to communicate with a base station, the UE comprising a radio interface and processing circuitry configured to perform the method of any of embodiments D5 through D7.
D9. A communication system including a host computer comprising:
processing circuitry configured to provide user data; and
a communication interface configured to forward user data to a cellular network for transmission to a user equipment (UE) ,
wherein the UE comprises a radio interface and processing circuitry, the UE’s components configured to perform any of the steps described for the Group A embodiments.
D10. The communication system of embodiment D9, wherein the cellular network further includes a base station configured to communicate with the UE.
D11. The communication system of any of embodiments D9 through D10, wherein:
the processing circuitry of the host computer is configured to execute a host application, thereby providing the user data; and
the UE’s processing circuitry is configured to execute a client application associated with the host application.
D12. A method implemented in a communication system including a host computer, a base station and a user equipment (UE) , the method comprising:
at the host computer, providing user data; and
at the host computer, initiating a transmission carrying the user data to the UE via a cellular network comprising the base station, wherein the UE performs any of the steps described for the Group A embodiments.
D13. The method of embodiment D12, further comprising at the UE, receiving the user data from the base station.
D14. A communication system including a host computer comprising:
communication interface configured to receive user data originating from a transmission from a user equipment (UE) to a base station,
wherein the UE comprises a radio interface and processing circuitry, the UE’s processing circuitry configured to perform any of the steps described for the Group A embodiments.
D15. The communication system of embodiment D14, further including the UE.
D16. The communication system of any of embodiments D14 through D15, further including the base station, wherein the base station comprises a radio interface configured to communicate with the UE and a communication interface configured to forward to the host computer the user data carried by a transmission from the UE to the base station.
D17. The communication system of any of embodiments D14 through D16, wherein:
the processing circuitry of the host computer is configured to execute a host application; and
the UE’s processing circuitry is configured to execute a client application associated with the host application, thereby providing the user data.
D18. The communication system of any of embodiments D14 through D17, wherein:
the processing circuitry of the host computer is configured to execute a host application, thereby providing request data; and
the UE’s processing circuitry is configured to execute a client application associated with the host application, thereby providing the user data in response to the request data.
D19. A method implemented in a communication system including a host computer, a base station and a user equipment (UE) , the method comprising:
at the host computer, receiving user data transmitted to the base station from the UE, wherein the UE performs any of the steps described for the Group A embodiments.
D20. The method of embodiment D19, further comprising, at the UE, providing the user data to the base station.
D21. The method of any of embodiments D19 through D20, further comprising:
at the UE, executing a client application, thereby providing the user data to be transmitted; and
at the host computer, executing a host application associated with the client application.
D22. The method of any of embodiments D19 through D21, further comprising:
at the UE, executing a client application; and
at the UE, receiving input data to the client application, the input data being provided at the host computer by executing a host application associated with the client application,
wherein the user data to be transmitted is provided by the client application in response to the input data.
D23. A user equipment (UE) configured to communicate with a base station, the UE comprising a radio interface and processing circuitry configured to perform the method of any of embodiments D19 through D22.
D24. A communication system including a host computer comprising a communication interface configured to receive user data originating from a transmission from a user equipment (UE) to a base station, wherein the base station comprises a radio interface and processing circuitry, the base station’s processing circuitry configured to perform any of the steps described for the Group B embodiments.
D25. The communication system of embodiment D24 further including the base station.
D26. The communication system of any of embodiments D24 through D25, further including the UE, wherein the UE is configured to communicate with the base station.
D27. The communication system of any of embodiments D24 through D25, wherein:
the processing circuitry of the host computer is configured to execute a host application;
the UE is configured to execute a client application associated with the host application, thereby providing the user data to be received by the host computer.
D28. A method implemented in a communication system including a host computer, a base station and a user equipment (UE) , the method comprising:
at the host computer, receiving, from the base station, user data originating from a transmission which the base station has received from the UE, wherein the UE performs any of the steps described for the Group A embodiments.
D29. The method of embodiment D28, further comprising at the base station, receiving the user data from the UE.
D30. The method of any of embodiments D28 through D29, further comprising at the base station, initiating a transmission of the received user data to the host computer.
D31. A method implemented in a communication system including a host computer, a base station and a user equipment (UE) , the method comprising:
at the host computer, receiving, from the base station, user data originating from a transmission which the base station has received from the UE, wherein the base station performs any of the steps described for the Group B embodiments.
D32. The method of embodiment D31, further comprising at the base station, receiving the user data from the UE.
D33. The method of any of embodiments D31 through D32, further comprising at the base station, initiating a transmission of the received user data to the host computer.

Claims (19)

  1. A method for a wireless communication node, WCN, configured for closed loop power control of a communication link associated with the WCN, wherein transmissions over the communication link are associated with respective transmission durations, the method comprising:
    dynamically determining (110, 310, 410) , responsive to an upcoming transmission duration, agranularity for transmission power adaptation of the closed loop power control; and
    causing (120, 320, 420) application of the determined granularity in a transmission power adaptation used for the upcoming transmission.
  2. The method of claim 1, wherein dynamically determining the granularity responsive to the upcoming transmission duration comprises determining the granularity to have a first granularity value responsive to a first transmission duration and determining the granularity to have a second granularity value responsive to a second transmission duration, wherein the first granularity value is indicative of a first minimum absolute value for transmission power adaptation and the second granularity value is indicative of a second minimum absolute value for transmission power adaptation, and wherein the first minimum absolute value is lower than the second minimum absolute value when the first transmission duration is shorter than the second transmission duration.
  3. The method of any of claims 1 through 2, wherein the upcoming transmission duration is defined as one or more of:
    - a length of a slot or a mini slot; and
    -proportional to an inverse of a sub-carrier spacing, SCS.
  4. The method of any of claims 1 through 3, wherein dynamically determining the granularity responsive to the upcoming transmission duration comprises one or more of:
    -using the upcoming transmission duration for addressing of a look-up table to retrieve the granularity;
    - using the upcoming transmission duration for calculating the granularity based on a granularity calculation function; and
    - comparing the upcoming transmission duration to one or more transmission duration threshold values and determining the granularity responsive to a result of the comparison.
  5. The method of any of claims 1 through 4,
    wherein dynamically determining the granularity responsive to the upcoming transmission duration comprises determining a scaling factor responsive to the upcoming transmission duration; and
    wherein causing application of the determined granularity in the closed loop power control comprises causing multiplication of a granularity reference value by the scaling factor.
  6. The method of any of claims 1 through 5, wherein causing application of the determined granularity in a transmission power adaptation used for the upcoming transmission comprises applying the determined granularity in a transmission power adaptation used for the upcoming transmission.
  7. The method of any of claims 1 through 6, wherein the communication link is an uplink and wherein the upcoming transmission duration is one or more of:
    - a physical uplink shared channel, PUSCH, transmission duration; and
    - a physical uplink control channel, PUCCH, transmission duration.
  8. The method of claim 7, wherein the WCN is a user equipment, UE, and wherein causing (120, 320) application of the determined granularity comprises adapting (320) a transmission power responsive to the determined granularity, and executing the upcoming transmission (321) over the communication link using the adapted transmission power.
  9. The method of claim 7, wherein the WCN is a network node, NWN, and wherein causing (120, 420) application of the determined granularity comprises signaling (420) an indication of the determined granularity towards a user equipment, UE.
  10. A computer program product comprising a non-transitory computer readable medium (600) , having thereon a computer program comprising program instructions, the computer program being loadable into a data processing unit and configured to cause execution of the method according to any of claims 1 through 9 when the computer program is run by the data processing unit.
  11. An arrangement for a wireless communication node, WCN, configured for closed loop power control of a communication link associated with the WCN, wherein transmissions over the communication link are associated with respective transmission durations, the arrangement comprising controlling circuitry (500) configured to cause:
    dynamic determination, responsive to an upcoming transmission duration, of a granularity for transmission power adaptation of the closed loop power control; and
    application of the determined granularity in a transmission power adaptation used for the upcoming transmission.
  12. The arrangement of claim 11, wherein the controlling circuitry is configured to cause the dynamic determination of the granularity responsive to the upcoming transmission duration by causing determination of the granularity to have a first granularity value responsive to a first transmission duration and determination of the granularity to have a second granularity value responsive to a second transmission duration, wherein the first granularity value is indicative of a first minimum absolute value for transmission power adaptation and the second granularity value is indicative of a second minimum absolute value for transmission power adaptation, and wherein the first minimum absolute value is lower than the second minimum absolute value when the first transmission duration is shorter than the second transmission duration.
  13. The arrangement of any of claims 11 through 12, wherein the controlling circuitry is configured to cause the dynamic determination of the granularity responsive to the upcoming transmission duration by causing one or more of:
    - use of the upcoming transmission duration for addressing of a look-up table to retrieve the granularity;
    - use of the upcoming transmission duration for calculating the granularity based on a granularity calculation function; and
    - comparison of the upcoming transmission duration to one or more transmission duration threshold values and determination of the granularity responsive to a result of the comparison.
  14. The arrangement of any of claims 11 through 13, wherein the controlling circuitry is configured to cause:
    the dynamic determination of the granularity responsive to the upcoming transmission duration by causing determination of a scaling factor responsive to the upcoming transmission duration; and
    the application of the determined granularity in the closed loop power control by causing multiplication of a granularity reference value by the scaling factor.
  15. The arrangement of any of claims 11 through 14, wherein the communication link is an uplink and wherein the upcoming transmission duration is one or more of:
    - a physical uplink shared channel, PUSCH, transmission duration; and
    - a physical uplink control channel, PUCCH, transmission duration.
  16. The arrangement of claim 15, wherein the WCN is a user equipment, UE, and wherein the controlling circuitry is configured to cause the application of the determined granularity by causing adaptation of a transmission power responsive to the determined granularity, and execution of the upcoming transmission over the communication link using the adapted transmission power.
  17. A user equipment, UE, comprising the arrangement of any of claims 11 through 16.
  18. The arrangement of claim 15, wherein the WCN is a network node, NWN, and wherein the controlling circuitry is configured to cause the application of the determined granularity by causing signaling of an indication of the determined granularity towards a user equipment, UE.
  19. A network node, NWN, comprising the arrangement of claim 18 or any of claims 11 through 15.
PCT/CN2018/071928 2018-01-09 2018-01-09 Methods and arrangements for power control WO2019136596A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071928 WO2019136596A1 (en) 2018-01-09 2018-01-09 Methods and arrangements for power control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071928 WO2019136596A1 (en) 2018-01-09 2018-01-09 Methods and arrangements for power control

Publications (1)

Publication Number Publication Date
WO2019136596A1 true WO2019136596A1 (en) 2019-07-18

Family

ID=67218864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071928 WO2019136596A1 (en) 2018-01-09 2018-01-09 Methods and arrangements for power control

Country Status (1)

Country Link
WO (1) WO2019136596A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190149289A1 (en) * 2017-11-10 2019-05-16 Qualcomm Incorporated Autonomous modification of transmission parameters

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896411A (en) * 1997-05-05 1999-04-20 Northern Telecom Limited Enhanced reverse link power control in a wireless communication system
WO2008111809A2 (en) * 2007-03-13 2008-09-18 Lg Electronics Inc. Methods for performing an adaptive modulation and coding scheme in mobile communication system
CN104717738A (en) * 2013-12-17 2015-06-17 华为技术有限公司 Uplink power synchronized method, access network equipment and terminal
CN106255190A (en) * 2015-12-31 2016-12-21 北京智谷睿拓技术服务有限公司 Poewr control method and output control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896411A (en) * 1997-05-05 1999-04-20 Northern Telecom Limited Enhanced reverse link power control in a wireless communication system
WO2008111809A2 (en) * 2007-03-13 2008-09-18 Lg Electronics Inc. Methods for performing an adaptive modulation and coding scheme in mobile communication system
CN104717738A (en) * 2013-12-17 2015-06-17 华为技术有限公司 Uplink power synchronized method, access network equipment and terminal
CN106255190A (en) * 2015-12-31 2016-12-21 北京智谷睿拓技术服务有限公司 Poewr control method and output control device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "RACH power control and power ramping procedure", 3GPP TSG RAN WGI NR AD HOC#2 R1-1710034, 26 June 2017 (2017-06-26), XP051299259 *
SAMSUNG: "Power Control for UL CA", 3GPP TSG RAN WGL#89 R1-1708067, 6 May 2017 (2017-05-06), XP051262234 *
ZTE ET AL.: "Offline summary of UL power control-non- CA aspects", 3GPP TSG RAN WG1 MEETING #91 R1 -1721676, 4 December 2017 (2017-12-04), XP051370756 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190149289A1 (en) * 2017-11-10 2019-05-16 Qualcomm Incorporated Autonomous modification of transmission parameters
US10855422B2 (en) * 2017-11-10 2020-12-01 Qualcomm Incorporated Autonomous modification of transmission parameters

Similar Documents

Publication Publication Date Title
CN110731104B (en) Method and apparatus for controlling transmission power of terminal in wireless communication system
US10959193B2 (en) Terminal device, base station device, and method
JP6494639B2 (en) Uplink transmission for dual connection
US10172121B2 (en) Terminal device, method, and integrated circuit
US9565641B2 (en) Terminal device, method, and integrated circuit
EP3021619B1 (en) Terminal device and method
US20200052861A1 (en) Csi reference resource definition for csi report in nr
US9844005B2 (en) Terminal device, communication method, and integrated circuit
EP2983423B1 (en) Terminal apparatus, communication method, and integrated circuit
JP6656150B2 (en) Terminal device, base station device, and communication method
EP3741063A1 (en) Beta offset management for urllc uci
JP2015104133A (en) Device and method for determining transmission power of ue
JP7069195B2 (en) Terminal, base station, transmission method and reception method
WO2019136596A1 (en) Methods and arrangements for power control
EP4338355A1 (en) Reference signal for fast scell activation
US10432352B2 (en) Fast initialization of downlink adaptation
WO2022077325A1 (en) Blind decoding for reduced capability devices
WO2020029675A1 (en) Method and apparatus for sounding reference signal transmission
CN118118991A (en) Uplink power control for multi-slot transport block transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899554

Country of ref document: EP

Kind code of ref document: A1