WO2019135579A1 - Uwb 레이더를 이용하는 부정맥 진단 방법 및 장치 - Google Patents

Uwb 레이더를 이용하는 부정맥 진단 방법 및 장치 Download PDF

Info

Publication number
WO2019135579A1
WO2019135579A1 PCT/KR2018/016977 KR2018016977W WO2019135579A1 WO 2019135579 A1 WO2019135579 A1 WO 2019135579A1 KR 2018016977 W KR2018016977 W KR 2018016977W WO 2019135579 A1 WO2019135579 A1 WO 2019135579A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrhythmia
subject
radar
radar signal
signal
Prior art date
Application number
PCT/KR2018/016977
Other languages
English (en)
French (fr)
Inventor
조성호
이유나
최정우
임영효
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US16/959,813 priority Critical patent/US20200367784A1/en
Publication of WO2019135579A1 publication Critical patent/WO2019135579A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/361Detecting fibrillation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/363Detecting tachycardia or bradycardia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • G01S7/2923Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • G01S7/2923Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
    • G01S7/2927Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods by deriving and controlling a threshold value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target

Definitions

  • the present invention relates to a method and apparatus for diagnosing an arrhythmia, and more particularly, to a method and apparatus for diagnosing an arrhythmia using a UWB radar in a non-contact manner.
  • UWB means radio technology with a frequency band of 500 MHz or higher, or a value defined as a non-bandwidth of 25% or higher.
  • the non-bandwidth means the bandwidth of the signal versus the center frequency.
  • UWB is a radio technology that uses broadband frequencies and has various advantages such as high distance resolution, transparency, strong immunity to narrowband noise, and coexistence with other devices sharing frequency.
  • the UWB (Ultra Wide Band) radar (IR-UWB) radar is a system that combines UWB technology with radar and transmits an impulse signal with a very short duration in the frequency domain Means a radar technology that receives signals coming back from objects and people and recognizes the surrounding situation.
  • the UWB radar system generates an impulse signal having a time width of several nanoseconds to several picoseconds in the signal generator and emits it at a wide angle or a narrow angle through a transmission antenna.
  • the emitted signal is reflected by various objects or people in the environment, and the reflected signal is converted into a digital signal through the receiving antenna and the ADC.
  • an electrocardiogram (ECG) analyzing a heartbeat waveform obtained by attaching an electrode to a skin for a predetermined period of time has been used to diagnose an arrhythmia of the subject.
  • ECG electrocardiogram
  • a specialist such as a doctor must directly check the heartbeat waveform to determine whether the arrhythmia is present, and the patient must be visited at the hospital to be diagnosed, which can be a burden on the patient in terms of time and cost.
  • electrodes are attached to the skin, it is difficult to use for patients with sensitive skin such as newborn babies and burn patients, and it is not easy to judge whether an arrhythmia occurs in daily life.
  • the present invention provides a method and apparatus for diagnosing an arrhythmia of a subject using a UWB radar.
  • a method for diagnosing an arrhythmia using a UWB radar comprising: extracting a radar signal corresponding to a heartbeat component from a radar signal reflected from a subject; Analyzing a frequency component of a radar signal corresponding to the heartbeat component; And determining whether the subject has an arrhythmia according to a magnitude of a ratio value with respect to a maximum peak value included in the frequency component and a second largest peak value.
  • a method of diagnosing an arrhythmia using a UWB radar comprising: extracting a radar signal corresponding to a heartbeat component from a radar signal reflected from a subject; Generating frequency component information according to a reception time of the received radar signal for a radar signal corresponding to the heart rate component; And determining whether the subject is an arrhythmia or not according to a distribution pattern of peak values included in the frequency component.
  • an arrhythmia diagnosis apparatus using a UWB radar comprising: a signal input unit receiving a radar signal reflected from an examinee; A heartbeat component extraction unit for extracting a radar signal corresponding to a heartbeat component from the input radar signal; A frequency analyzer for analyzing a frequency component of a radar signal corresponding to the heartbeat component; An arrhythmia judging unit for judging whether the subject is an arrhythmia according to a magnitude of a ratio between a maximum peak value included in the frequency component and a second largest peak value; And an information output unit outputting the determination result.
  • the arrhythmia of the subject can be diagnosed by analyzing the frequency component of the radar signal corresponding to the heartbeat component.
  • an arrhythmia can be diagnosed in a noncontact manner using a UWB radar, so that it is possible to diagnose an arrhythmia easily in daily life, and to monitor an arrhythmia disease remotely. It can also be used to diagnose arrhythmias in patients whose skin is sensitive and difficult to attach electrodes.
  • FIG. 1 is a view for explaining an arrhythmia diagnosis system using a UWB radar according to an embodiment of the present invention
  • FIG. 2 is a view for explaining an arrhythmia diagnosis apparatus according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of diagnosing an arrhythmia using a UWB radar according to an embodiment of the present invention.
  • the maximum peak value that is, the maximum magnitude
  • the second largest peak value that is, the ratio value to the second largest magnitude
  • the ratio of the maximum peak value to the second largest peak value Is about one small. This is because energy is concentrated at a frequency corresponding to the maximum peak value because the heartbeat is regular in a normal person, whereas in an arrhythmia patient, energy is dispersed at a frequency corresponding to several peak values because the heartbeat is irregular.
  • FIG. 1 is a view for explaining an arrhythmia diagnosis system using a UWB radar according to an embodiment of the present invention
  • FIG. 2 is a view for explaining an arrhythmia diagnosis apparatus according to an embodiment of the present invention.
  • an arrhythmia diagnosis apparatus 220 diagnoses whether a subject 230 is an arrhythmia patient or a normal person using a radar signal reflected and received from a subject 230.
  • the UWB radar 210 emits a radar signal in the direction of the subject at a distance of 1 to 2 m from the subject 230 and receives a radar signal reflected from the subject 230.
  • 2 shows an embodiment in which a UWB radar and an arrhythmia diagnosis apparatus are used as separate apparatuses and a UWB radar provides a radar signal received by an arrhythmia diagnosis apparatus.
  • a UWB radar may be included in an arrhythmia diagnosis apparatus .
  • the arrhythmia diagnosis apparatus 220 includes a signal input unit 310, a heartbeat component extraction unit 320, a frequency analysis unit 330, an arrhythmia determination unit 340, and an information output unit 350 ).
  • the signal input unit 310 receives the received radar signal reflected from the subject 230 and the heartbeat extraction unit 320 extracts a radar signal corresponding to the heartbeat from the input radar signal.
  • the frequency analyzer 330 analyzes the frequency component of the radar signal corresponding to the heartbeat component to generate frequency component information. Since the radar signal is continuously received in accordance with the time flow and thus the radar signal corresponding to the heartbeat component is also a signal which continues in accordance with the time flow, the frequency analyzer 330 determines that the radar signal corresponding to the heartbeat component is received The frequency component information can be generated.
  • the frequency analyzer 330 may analyze the frequency of the radar signal with respect to the radar signal corresponding to the heartbeat component in a preset analysis interval, for example, a 5-second interval, It is possible to generate the frequency component information defined by the axis.
  • the arrhythmia determination unit 340 determines whether the subject 230 is an arrhythmia based on the magnitude of the ratio between the maximum peak value included in the frequency component and the second largest peak value. The arrhythmia determination unit 340 may determine whether the subject 230 is arrhythmically or not according to the distribution pattern of the peak values included in the frequency component.
  • the information output unit 350 may be a display device that outputs an arrhythmia determination result or a communication device that transmits an arrhythmia determination result to a mobile terminal or the like.
  • FIG. 3 is a flowchart illustrating a method of diagnosing an arrhythmia using a UWB radar according to an embodiment of the present invention.
  • the arrhythmia diagnosis method according to the present invention can be performed in an arrhythmia diagnosis apparatus including a processor, and the arrhythmia diagnosis apparatus can be a device as shown in FIG. 1 or a computing apparatus including a processor.
  • the radar signal transmitted through the UWB radar is reflected from the subject and is received by the UWB radar.
  • the arrhythmia diagnosis apparatus extracts a radar signal corresponding to a heartbeat component from the radar signal reflected and received from the subject S410). A method of extracting a radar signal corresponding to a heartbeat component will be described in detail with reference to FIG.
  • the arrhythmia diagnosis apparatus analyzes the frequency component of the radar signal corresponding to the heartbeat component (S420).
  • the arrhythmia diagnosis apparatus determines whether the subject is an arrhythmia according to the maximum peak value included in the frequency component and the magnitude of the ratio value with respect to the second largest peak value (S430). For example, the arrhythmia diagnosis device may determine that the subject is normal when the ratio value is greater than the threshold value, and may determine that the subject is an arrhythmia patient when the ratio value is smaller than the threshold value. In another embodiment, the arrhythmia diagnosis apparatus can determine that the subject is an arrhythmia patient when the ratio value is close to 1 while being smaller than the threshold value, and when the ratio value exists within a predetermined range from 1, can do.
  • the threshold value may be set to 2 as an example, but may vary according to the embodiment.
  • the arrhythmia diagnosis apparatus can further determine the arrhythmia using the distribution pattern of the peak values included in the frequency component in step S420.
  • the arrhythmia diagnosis apparatus can generate frequency component information corresponding to the reception time of the received radar signal, such as a spectrogram, with respect to the radar signal corresponding to the heart rate component.
  • the frequency for the peak values included in the preset time window deviates from the preset frequency range, it can be determined that the subject is an arrhythmia patient. If the frequency for the peak values included in the time window is included in the preset frequency range, the subject can be judged to be normal.
  • the time window may correspond to the Y-axis of the spectrogram, and may be one minute as an example. In this case, it is possible to determine whether the subject is arrhythmia from the frequency component of the radar signal received for one minute. If it is determined in step S430 that the ratio of the peak value included in the time window is equal to or greater than the threshold value, the subject is determined to be normal. If the ratio value is smaller than the threshold value, the subject may be determined to be an arrhythmia patient.
  • the arrhythmia diagnosis apparatus can selectively use or simultaneously use an arrhythmia determination method using a ratio value and an arrhythmia determination method using a distribution pattern of peak values according to an embodiment.
  • an arrhythmia determination method is used at the same time, it is possible to determine the result when the arrhythmia judgment result according to the ratio value matches the arrhythmia judgment result according to the distribution pattern of the peak values as a final result.
  • the present invention it is possible to diagnose an arrhythmia in a noncontact manner using a UWB radar, and thus it is possible to easily diagnose an arrhythmia in daily life, and to monitor an arrhythmia disease remotely. It can also be used to diagnose arrhythmias in patients whose skin is sensitive and difficult to attach electrodes.
  • the frequency component of the received signal is analyzed for a considerable time corresponding to the time window as in the spectrogram of FIG. 1 without analyzing only the frequency component of the received signal received at a specific time and determining the arrhythmia
  • the ratio value of the peak value or the distribution pattern of the peak values is determined, so that the arrhythmia can be diagnosed more accurately.
  • FIG. 4 is a diagram showing an example of a received UWB radar signal.
  • the radar signal reflected and received from the examinee can be represented by a graph as shown in FIG.
  • the X-axis (fast time) represents the distance between the UWB radar and the reflection point
  • the Y-axis (slow time) represents the reception time.
  • the Y axis represents the amplitude of the signal. Since the distance from the UWB radar is different for each part of the subject and the motion of each part is different, the amplitude of the reflected radar signal differs from each part of the subject. For example, the subject's chest develops not only movement due to respiration but also movement according to cardiac movement, while movement to another part is accompanied by breathing, and movement due to cardiac movement does not occur.
  • the received radar signal includes all the signals reflected from all parts of the subject. In order to diagnose the arrhythmia, it is necessary to extract a radar signal corresponding to the heartbeat component.
  • the apparatus for diagnosing an arrhythmia calculates a difference between a first signal for a first point of a subject and a second signal for a second point of a subject in order to extract a radar signal corresponding to a heartbeat component, And is used as a radar signal corresponding to the heartbeat component.
  • the amplitude of the signal is larger than that of the signal of the respiration movement.
  • a signal having a relatively small amplitude is used as a second signal at a second point of the subject that does not include a heartbeat component.
  • the signal for the point A in the X-axis of FIG. 5 may be used as the first signal
  • the signal for the point B may be used as the second signal.
  • the arrhythmia diagnosis apparatus can detect a signal having a relatively large amplitude, Signal, and a signal with a relatively small amplitude is used as a reflected signal at a point far from the subject's heart. Also, since the signal with a very small amplitude is not a signal reflected from the subject, the first and second signals are selected by judging a signal of a predetermined threshold value or more as a signal reflected from an arbitrary point of the subject.
  • the arrhythmia diagnosis apparatus synchronizes the first and second signals to calculate the difference between the first signal and the second signal, and projects the second signal to the first signal. Thereafter, the arrhythmia diagnosis apparatus calculates the difference between the first and second signals.
  • the above-described technical features may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, and the like, alone or in combination.
  • the program instructions recorded on the medium may be those specially designed and constructed for the embodiments or may be available to those skilled in the art of computer software.
  • Examples of computer-readable media include magnetic media such as hard disks, floppy disks and magnetic tape; optical media such as CD-ROMs and DVDs; magnetic media such as floppy disks; Magneto-optical media, and hardware devices specifically configured to store and execute program instructions such as ROM, RAM, flash memory, and the like.
  • program instructions include machine language code such as those produced by a compiler, as well as high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Electromagnetism (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

UWB 레이더를 이용하여 비접촉 방식으로 부정맥을 진단할 수 있는 방법 및 장치가 개시된다. 개시된 UWB 레이더를 이용하는 부정맥 진단 방법은 피검자로부터 반사되어 수신된 레이더 신호에서, 심박 성분에 대응되는 레이더 신호를 추출하는 단계; 상기 심박 성분에 대응되는 레이더 신호의 주파수 성분을 분석하는 단계; 및 상기 주파수 성분에 포함된 최대 피크값 및 두번째로 큰 피크값에 대한 비율값의 크기에 따라, 상기 피검자의 부정맥 여부를 판단하는 단계를 포함한다.

Description

UWB 레이더를 이용하는 부정맥 진단 방법 및 장치
본 발명은 부정맥 진단 방법 및 장치에 관한 것으로서, 더욱 상세하게는 UWB 레이더를 이용하여 비접촉 방식으로 부정맥을 진단할 수 있는 방법 및 장치에 관한 것이다.
UWB란 500MHz이상의 주파수대역을 사용하거나 비대역폭으로 정의되는 수치가 25% 이상인 라디오 기술을 의미한다. 비대역폭이란 중심주파수 대비 신호의 대역폭을 의미한다. 즉, UWB는 광대역의 주파수를 사용하는 라디오 기술로서, 높은 거리 분해능, 투과성, 협대역 잡음에 대한 강한 면역성, 주파수를 공유하는 타 기기와의 공존성과 같은 다양한 장점을 지닌다.
IR-UWB(Impulse-Radio Ultra WideBand) 레이더(이하, UWB 레이더라 한다) 기술은 이러한 UWB 기술을 레이더에 접목한 시스템으로, 주파수 영역에서의 광대역 특성을 갖는 매우 짧은 지속시간의 임펄스 신호를 송신하여 사물 및 사람으로부터 반사되어 돌아오는 신호를 수신해 주변 상황을 인지하는 레이더 기술을 의미한다.
UWB 레이더 시스템은 신호 생성부에서 수 나노-수 피코 초의 시간 폭을 갖는 임펄스 신호를 생성하여 송신 안테나를 통해 광각 또는 협대역의 각도로 방사한다. 방사된 신호는 환경에서의 다양한 사물이나 사람으로 인해 반사되게 되고 반사된 신호는 수신 안테나 및 ADC를 거쳐 디지털 신호로 변환된다.
전술된 UWB 레이더의 장점으로 인해, 많은 분야에서 UWB 레이더를 활용하기 위한 연구가 진행되고 있다. 현재 호흡 및 심박수 등의 측정을 위한 의료용 장치, 재난 현장에서의 인명 구조를 위한 휴대용 레이더 장치, 일정 영역 내의 사람 수를 세는 피플 카운팅 장치 등 다양한 방면에서 기술 개발을 위한 연구가 진행되고 있다. 일 예로 한국공개특허공보 제10-2015-0085689호가 있다.
한편, 종래에는 일정 시간 동안 피부에 전극을 부착하여 얻은 심장 박동 파형을 분석하는 심전도 검사를 통해 피검자의 부정맥을 진단하였다. 이 경우, 의사와 같은 전문가가 직접 심장 박동 파형을 확인하여 부정맥 여부를 판단하여야 하고, 환자가 병원에 내원하여 진단을 받아야 하기 때문에, 시간이나 비용 측면에서 환자에게 부담이 될 수 있다. 또한 전극을 피부에 부착하기 때문에, 신생아나 화상 환자 등 피부가 예민한 환자에게 사용하기 어려우며, 일상 생활 중에 부정맥 여부를 판단하기가 쉽지 않다.
따라서, 일상 생활 동안 간편하게 피검자의 부정맥을 진단할 수 있는, 비접촉식 부정맥 진단 방법에 대한 요구가 있다.
본 발명은 UWB 레이더를 이용하여 피검자의 부정맥을 진단할 수 있는 방법 및 장치를 제공하기 위한 것이다.
상기한 목적을 달성하기 위한 본 발명의 일실시예에 따르면, UWB 레이더를 이용하는 부정맥 진단 방법에 있어서, 피검자로부터 반사되어 수신된 레이더 신호에서, 심박 성분에 대응되는 레이더 신호를 추출하는 단계; 상기 심박 성분에 대응되는 레이더 신호의 주파수 성분을 분석하는 단계; 및 상기 주파수 성분에 포함된 최대 피크값 및 두번째로 큰 피크값에 대한 비율값의 크기에 따라, 상기 피검자의 부정맥 여부를 판단하는 단계를 포함하는 부정맥 진단 방법이 제공된다.
또한 상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따르면, UWB 레이더를 이용하는 부정맥 진단 방법에 있어서, 피검자로부터 반사되어 수신된 레이더 신호에서, 심박 성분에 대응되는 레이더 신호를 추출하는 단계; 상기 심박수 성분에 대응되는 레이더 신호에 대해, 상기 수신된 레이더 신호의 수신 시간에 따른 주파수 성분 정보를 생성하는 단계; 상기 주파수 성분에 포함된 피크 값들의 분포 패턴에 따라, 상기 피검자의 부정맥 여부를 판단하는 단계를 포함하는 부정맥 진단 방법이 제공된다.
또한 상기 목적을 달성하기 위한 본 발명의 또 다른 실시예에 따르면, UWB 레이더를 이용하는 부정맥 진단 장치에 있어서, 피검자로부터 반사되어 수신된 레이더 신호를 입력받는 신호 입력부; 상기 입력된 레이더 신호에서, 심박 성분에 대응되는 레이더 신호를 추출하는 심박 성분 추출부; 상기 심박 성분에 대응되는 레이더 신호의 주파수 성분을 분석하는 주파수 분석부; 상기 주파수 성분에 포함된 최대 피크값 및 두번째로 큰 피크값에 대한 비율값의 크기에 따라, 상기 피검자의 부정맥 여부를 판단하는 부정맥 판단부; 및 상기 판단 결과를 출력하는 정보 출력부를 포함하는 부정맥 진단 장치가 제공된다.
본 발명에 따르면, 심박 성분에 대응되는 레이더 신호의 주파수 성분을 분석함으로써 피검자의 부정맥을 진단할 수 있다.
또한 본 발명에 따르면, UWB 레이더를 이용하여 비접촉 방식으로 부정맥을 진단할 수 있으므로, 일상 생활에서 간편하게 부정맥을 진단할 수 있으며, 원격으로 부정맥 질환을 모니터링할 수 있다. 또한 피부가 예민하여 전극 부착이 어려운 환자의 부정맥을 진단하기 위해 이용될 수 있다.
도 1은 본 발명의 일실시예에 따른 UWB 레이더를 이용하는 부정맥 진단 시스템을 설명하기 위한 도면.
도 2는 본 발명의 일실시예에 따른 부정맥 진단 장치를 설명하기 위한 도면.
도 3은 본 발명의 일실시예에 따른 UWB 레이더를 이용하는 부정맥 진단 방법을 설명하기 위한 흐름도.
도 4는 수신된 UWB 레이더 신호의 일예를 도시하는 도면.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.
정상인과 부정맥 환자는 UWB 레이더 신호에 대해 서로 다른 스펙토그램을 가진다. 스펙토그램을 측정하게 되면, 정상인의 경우 피크값이 주파수 50Hz에서 80Hz 사이에 집중되어 있고, 시간 흐름에 따라 변화폭이 적고 거의 일정하게 분포되어 있게 된다. 그러나, 부정맥 환자의 경우 피크값이 매우 불규칙하고 산발적으로 분포되어 있다.
또한 정상인의 경우, 최대 피크값 즉, 최대 매그니튜드와 두번째로 큰 피크값 즉 두번째로 큰 매그니튜드에 대한 비율값이 2정도로 나타나는데 비해, 부정맥 환자의 경우, 최대 피크값과 두번째로 큰 피크값의 비율값이 1정도로 작게 나타난다. 이는 정상인의 경우, 심장 박동이 규칙적이기 때문에 최대 피크값에 대응되는 주파수에 에너지가 집중되는 반면, 부정맥 환자의 경우 심장 박동이 불규칙적이기 때문에 여러 피크값에 대응되는 주파수로 에너지가 분산되기 때문이다.
이와 같이, 부정맥 환자로부터 반사된 레이더 신호와 정상인으로부터 반사된 레이더 신호를 주파수 영역에서 살펴볼 경우, 서로 다른 특성이 나타나게 되고 결국, 이러한 특성을 이용하여 피검자의 부정맥을 진단할 수 있다. 이하에서, UWB 레이더를 이용하는 부정맥 진단 방법에 대해 보다 자세히 살펴보기로 한다.
도 1은 본 발명의 일실시예에 따른 UWB 레이더를 이용하는 부정맥 진단 시스템을 설명하기 위한 도면이며, 도 2는 본 발명의 일실시예에 따른 부정맥 진단 장치를 설명하기 위한 도면이다.
도 1을 참조하면, 본 발명에 따른 부정맥 진단 장치(220)는 피검자(230)로부터 반사되어 수신되는 레이더 신호를 이용하여 피검자(230)가 부정맥 환자인지 정상인인지 여부를 진단한다. UWB 레이더(210)는 피검자(230)로부터 1~2m 정도 이격된 지점에서 피검자 방향으로 레이더 신호를 방사하며, 피검자(230)로부터 반사되는 레이더 신호를 수신한다. 도 2에서는 UWB 레이더와 부정맥 진단 장치가 별도의 장치로 이용되며, UWB 레이더가 부정맥 진단 장치로 수신된 레이더 신호를 제공하는 경우의 실시예가 도시되나, 실시예에 따라서 UWB 레이더는 부정맥 진단 장치에 포함될 수 있다.
도 2를 참조하면, 본 발명에 따른 부정맥 진단 장치(220)는 신호 입력부(310), 심박 성분 추출부(320), 주파수 분석부(330), 부정맥 판단부(340) 및 정보 출력부(350)를 포함한다.
신호 입력부(310)는 피검자(230)로부터 반사되어 수신된 레이더 신호를 입력받고, 심박 성분 추출부(320)는 입력된 레이더 신호에서, 심박 성분에 대응되는 레이더 신호를 추출한다.
주파수 분석부(330)는 심박 성분에 대응되는 레이더 신호의 주파수 성분을 분석하여 주파수 성분 정보를 생성한다. 레이더 신호는 시간 흐름에 따라 연속되어 수신되고 따라서 심박 성분에 대응되는 레이더 신호 역시 시간 흐름에 따라 연속되는 신호이기 때문에, 주파수 분석부(330)는 심박 성분에 대응되는 레이더 신호가 수신되는 시간 흐름에 따른 주파수 성분 정보를 생성할 수 있다. 주파수 분석부(330)는 심박 성분에 대응되는 레이더 신호에 대해 미리 설정된 분석 구간 예컨대, 5초 구간 단위로 레이더 신호에 대한 주파수를 분석할 수 있으며, 도 1의 스펙트로그램과 같이, 시간 축 및 주파수 축에 의해 정의되는 주파수 성분 정보를 생성할 수 있다.
부정맥 판단부(340)는 주파수 성분에 포함된 최대 피크값 및 두번째로 큰 피크값에 대한 비율값의 크기에 따라, 피검자(230)의 부정맥 여부를 판단한다. 또는 실시예에 따라서 부정맥 판단부(340)는 주파수 성분에 포함된 피크 값들의 분포 패턴에 따라, 피검자(230)의 부정맥 여부를 판단할 수 있다.
정보 출력부(350)는 부정맥 판단 결과를 출력하는 디스플레이 장치이거나 또는 모바일 단말 등으로 부정맥 판단 결과를 전송하는 통신 장치일 수 있다.
구체적인 부정맥 판단 방법은 이하 도면에서 보다 자세히 설명하기로 한다.
도 3은 본 발명의 일실시예에 따른 UWB 레이더를 이용하는 부정맥 진단 방법을 설명하기 위한 흐름도이다.
본 발명에 따른 부정맥 진단 방법은 프로세서를 포함하는 부정맥 진단 장치에서 수행될 수 있으며, 부정맥 진단 장치는 도 1과 같은 장치이거나 또는 프로세서를 포함하는 컴퓨팅 장치일 수 있다.
UWB 레이더를 통해 송신된 레이더 신호는 피검자로부터 반사되어 UWB 레이더로 수신되며, 본 발명에 따른 부정맥 진단 장치는 피검자로부터 반사되어 수신된 레이더 신호에서, 심박(heartbeat) 성분에 대응되는 레이더 신호를 추출(S410)한다. 심박 성분에 대응되는 레이더 신호를 추출하는 방법은 도 4를 참조하여 보다 자세히 설명된다.
그리고 본 발명에 따른 부정맥 진단 장치는 심박 성분에 대응되는 레이더 신호의 주파수 성분을 분석(S420)한다.
그리고 본 발명에 따른 부정맥 진단 장치는 주파수 성분에 포함된 최대 피크값 및 두번째로 큰 피크값에 대한 비율값의 크기에 따라, 피검자의 부정맥 여부를 판단(S430)한다. 예를 들어, 부정맥 진단 장치는 비율값이 임계값 이상인 경우 피검자가 정상인 것으로 판단하고, 비율값이 임계값보다 작은 경우 피검자가 부정맥 환자인 것으로 판단할 수 있다. 또 다른 실시예에서 부정맥 진단 장치는 비율값이 임계값보다 작으면서 1에 근접한 경우 피검자가 부정맥 환자인 것으로 판단할 수 있으며, 1로부터 미리 설정된 범위내에 비율값이 존재하는 경우, 1에 근접한 것으로 판단할 수 있다. 여기서, 임계값은 일예로서 2로 설정될 수 있으나 실시예에 따라 달라질 수 있다.
한편, 실시예에 따라서, 본 발명에 따른 부정맥 진단 장치는 단계 S420에서의 주파수 성분에 포함된 피크 값들의 분포 패턴을 추가로 이용하여 부정맥 여부를 판단할 수 있다. 전술된 바와 같이, 부정맥 진단 장치는 심박수 성분에 대응되는 레이더 신호에 대해, 스펙트로그램과 같이 수신된 레이더 신호의 수신 시간에 따른 주파수 성분 정보를 생성할 수 있는데, 일실시예로서, 부정맥 진단 장치는 미리 설정된 타임 윈도우에 포함된 피크 값들에 대한 주파수가 미리 설정된 주파수 범위를 벗어나는 경우, 피검자가 부정맥 환자인 것으로 판단할 수 있다. 그리고 타임 윈도우에 포함된 피크 값들에 대한 주파수가 미리 설정된 주파수 범위에 포함되는 경우, 피검자가 정상인 것으로 판단할 수 있다.
여기서, 타임 윈도우는 스펙트로그램의 Y축에 대응될 수 있으며, 일실시예로서 1분일 수 있다. 이 경우, 1분 동안 수신된 레이더 신호에 대한 주파수 성분으로부터 피검자의 부정맥 여부가 판단될 수 있다. 단계 S430에서도 타임 윈도우에 포함된 피크값의 비율값이 임계값 이상인 경우 피검자가 정상인 것으로 판단되고, 비율값이 임계값보다 작은 경우 피검자가 부정맥 환자인 것으로 판단될 수 있다.
본 발명에 따른 부정맥 진단 장치는 실시예에 따라서, 비율값을 이용하는 부정맥 판단 방법과 피크 값들의 분포 패턴을 이용하는 부정맥 판단 방법을 선택적으로 이용하거나 동시에 이용할 수 있다. 전술된 부정맥 판단 방법을 동시에 이용하는 경우, 비율값에 따른 부정맥 판단 결과와 피크 값들의 분포 패턴에 따른 부정맥 판단 결과가 일치할 때의 결과를 최종 결과로 판단할 수 있다.
본 발명에 따르면, UWB 레이더를 이용하여 비접촉 방식으로 부정맥을 진단할 수 있으므로, 일상 생활에서 간편하게 부정맥을 진단할 수 있으며, 원격으로 부정맥 질환을 모니터링할 수 있다. 또한 피부가 예민하여 전극 부착이 어려운 환자의 부정맥을 진단하기 위해 이용될 수 있다.
특히, 본 발명에 따르면, 특정 시간에서 수신된 수신 신호의 주파수 성분만을 분석하여 부정맥을 판단하지 않고, 도 1의 스펙트로그램과 같이 타임 윈도우에 대응되는 상당한 시간 동안 수신된 수신 신호의 주파수 성분을 분석하여 피크값의 비율값이나 피크값들의 분포 패턴을 판단하기 때문에, 보다 정확하게 부정맥을 진단할 수 있다.
도 4는 수신된 UWB 레이더 신호의 일예를 도시하는 도면이다.
피검자로부터 반사되어 수신된 레이더 신호는 도 4와 같은 그래프로 표현될 수 있다. 도 4에서 X축(fast time)은 UWB 레이더와 반사 지점 사이의 거리를 나타내며, Y축(slow time)은 수신 시간을 나타낸다. 그리고 Y축은 신호의 진폭을 나타낸다. 피검자의 부위 별로 UWB 레이더와의 거리가 다르고, 부위 별 움직임이 다르기 때문에, 피검자의 부위 각각으로부터 반사된 레이더 신호의 진폭이 다르게 나타난다. 예컨대, 피검자의 가슴 부위는 호흡에 따른 움직임뿐만 아니라 심장 운동에 따른 움직임이 발생하는 반면, 다른 부위는 호흡에 따른 움직임이 발생할 뿐 심장 운동에 따른 움직임이 발생하지 않는다.
수신된 레이더 신호는 피검자의 모든 부위로부터 반사된 신호들이 모두 포함된 형태이며, 부정맥 진단을 위해서는 심박 성분에 대응되는 레이더 신호를 추출할 필요가 있다.
본 발명에 따른 부정맥 진단 장치는 심박 성분에 대응되는 레이더 신호를 추출하기 위해, 피검자의 제1지점에 대한 제1신호와 피검자의 제2지점에 대한 제2신호의 차이를 계산하고, 계산 결과를 심박 성분에 대응되는 레이더 신호로 이용한다. 피검자의 부위별 신호 중에서 호흡 운동뿐만 아니라 심장 운동에 따른 움직임을 반영하는 신호는, 호흡 운동에 따른 움직임만을 반영하는 신호에 비해 진폭이 크다는 점에 착안하여, 본 발명은 상대적으로 진폭이 큰 신호를 심박 성분도 포함하는 피검자의 제1지점에 대한 제1신호로 선택하고, 상대적으로 진폭이 작은 신호를 심박 성분을 포함하지 않는 피검자의 제2지점에 제2신호로 이용한다. 예컨대 도 5의 X축에서 A 지점에 대한 신호가 제1신호, B 지점에 대한 신호가 제2신호로 이용될 수 있다.
수신된 레이더 신호에서 어느 신호가 심박 성분을 포함하는 피검자의 심장 부근에 대한 신호인지 여부를 확인할 수 없기 때문에, 본 발명에 따른 부정맥 진단 장치는 상대적으로 진폭이 큰 신호를 피검자의 심장 부근에서 반사된 신호로 이용하고, 상대적으로 진폭이 작은 신호를 피검자의 심장에서 멀리 떨어진 지점에서 반사된 신호로 이용한다. 또한 진폭이 매우 작은 신호는 피검자로부터 반사된 신호가 아니므로, 미리 설정된 임계값 이상의 신호를 피검자의 임의 지점으로부터 반사된 신호로 판단하여 제1 및 제2신호를 선택한다.
본 발명에 따른 부정맥 진단 장치는 제1신호와 제2신호의 차이를 계산하기 위해 제1 및 제2신호를 동기화시키고, 제2신호를 제1신호에 프로젝션(projection)시킨다. 이후, 부정맥 진단 장치가 제1 및 제2신호의 차이를 계산한다. 이러한 결과는 ECG 센서를 통한 심장 박동 파형과 매우 유사하다.
앞서 설명한 기술적 내용들은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예들을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 하드웨어 장치는 실시예들의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (10)

  1. UWB 레이더를 이용하는 부정맥 진단 방법에 있어서,
    피검자로부터 반사되어 수신된 레이더 신호에서, 심박 성분에 대응되는 레이더 신호를 추출하는 단계;
    상기 심박 성분에 대응되는 레이더 신호의 주파수 성분을 분석하는 단계; 및
    상기 주파수 성분에 포함된 최대 피크값 및 두번째로 큰 피크값에 대한 비율값의 크기에 따라, 상기 피검자의 부정맥 여부를 판단하는 단계
    를 포함하는 부정맥 진단 방법.
  2. 제 1항에 있어서,
    상기 피검자의 부정맥 여부를 판단하는 단계는
    상기 비율값이 임계값 이상인 경우 상기 피검자가 정상인 것으로 판단하고, 상기 비율값이 상기 임계값보다 작은 경우 상기 피검자가 부정맥 환자인 것으로 판단하는 부정맥 진단 방법.
  3. 제 2항에 있어서,상기 임계값은 2인 부정맥 진단 방법.
  4. 제 1항에 있어서, 상기 피검자의 부정맥 여부를 판단하는 단계는 상기 주파수 성분에 포함된 피크 값들의 분포 패턴을 추가로 이용하여 상기 부정맥 여부를 판단하는 부정맥 진단 방법.
  5. 제 4항에 있어서,
    상기 부정맥을 판단하는 단계는
    미리 설정된 타임 윈도우에 포함된 상기 피크값들에 대한 주파수가 미리 설정된 주파수 범위를 벗어나는 경우, 상기 피검자가 부정맥 환자인 것으로 판단하는 부정맥 진단 방법.
  6. 제 1항에 있어서,
    상기 심박 성분에 대응되는 레이더 신호를 추출하는 단계는
    상기 피검자의 제1지점에 대한 제1신호와 상기 피검자의 제2지점에 대한 제2신호를 동기화하는 단계; 및
    상기 제1신호와 상기 제2신호의 차이를 계산하는 단계를 포함하며,
    상기 제1신호는 상기 제2신호의 진폭보다 큰 진폭의 신호인 부정맥 진단 방법.
  7. UWB 레이더를 이용하는 부정맥 진단 방법에 있어서,
    피검자로부터 반사되어 수신된 레이더 신호에서, 심박 성분에 대응되는 레이더 신호를 추출하는 단계;
    상기 심박수 성분에 대응되는 레이더 신호에 대해, 상기 수신된 레이더 신호의 수신 시간에 따른 주파수 성분 정보를 생성하는 단계; 및
    상기 주파수 성분에 포함된 피크 값들의 분포 패턴에 따라, 상기 피검자의 부정맥 여부를 판단하는 단계
    를 포함하는 부정맥 진단 방법.
  8. 제 7항에 있어서,
    상기 피검자의 부정맥 여부를 판단하는 단계는
    미리 설정된 타임 윈도우에 포함된 상기 피크 값들에 대한 주파수가 미리 설정된 주파수 범위를 벗어나는 경우, 상기 피검자가 부정맥 환자인 것으로 판단하는
    부정맥 진단 방법.
  9. UWB 레이더를 이용하는 부정맥 진단 장치에 있어서,
    피검자로부터 반사되어 수신된 레이더 신호를 입력받는 신호 입력부;
    상기 입력된 레이더 신호에서, 심박 성분에 대응되는 레이더 신호를 추출하는 심박 성분 추출부;
    상기 심박 성분에 대응되는 레이더 신호의 주파수 성분을 분석하는 주파수 분석부;
    상기 주파수 성분에 포함된 최대 피크값 및 두번째로 큰 피크값에 대한 비율값의 크기에 따라, 상기 피검자의 부정맥 여부를 판단하는 부정맥 판단부; 및
    상기 판단 결과를 출력하는 정보 출력부
    를 포함하는 부정맥 진단 장치.
  10. 제 9항에 있어서,
    상기 부정맥 판단부는
    미리 설정된 타임 윈도우 내에서 상기 비율값이 임계값 이상인 경우 상기 피검자가 정상인 것으로 판단하고, 상기 비율값이 상기 임계값보다 작은 경우 상기 피검자가 부정맥 환자인 것으로 판단하는 부정맥 진단 장치.
PCT/KR2018/016977 2018-01-02 2018-12-31 Uwb 레이더를 이용하는 부정맥 진단 방법 및 장치 WO2019135579A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/959,813 US20200367784A1 (en) 2018-01-02 2018-12-31 Method and device for diagnosing arrhythmia using uwb radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0000249 2018-01-02
KR1020180000249A KR20190082532A (ko) 2018-01-02 2018-01-02 Uwb 레이더를 이용하는 부정맥 진단 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2019135579A1 true WO2019135579A1 (ko) 2019-07-11

Family

ID=67144491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016977 WO2019135579A1 (ko) 2018-01-02 2018-12-31 Uwb 레이더를 이용하는 부정맥 진단 방법 및 장치

Country Status (3)

Country Link
US (1) US20200367784A1 (ko)
KR (1) KR20190082532A (ko)
WO (1) WO2019135579A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102299029B1 (ko) * 2020-10-06 2021-09-07 주식회사 스카이랩스 생리학적 이상 상태 분석방법
CN113940687A (zh) * 2021-10-26 2022-01-18 庚辰科技(宁波)有限公司 房颤检测装置
WO2024072102A1 (ko) * 2022-09-30 2024-04-04 서울대학교병원 레이더 기반 비접촉식 부정맥 감지 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327778A (ja) * 1990-02-16 1994-11-29 Telectronics Nv 自動的及び血液動力学的に応答する移植可能な心脈変換/細動除去用脈拍調整装置及び方法
KR20130034635A (ko) * 2011-09-28 2013-04-05 삼성전자주식회사 심장 부정맥을 분류하기 위한 방법 및 장치
US20150112220A1 (en) * 2013-10-23 2015-04-23 King Abdullah University Of Science And Technology Apparatus and method for wireless monitoring using ultra-wideband frequencies
KR20160036967A (ko) * 2014-09-26 2016-04-05 한양대학교 산학협력단 Uwb 레이더를 이용한 생체 정보 측정 방법 및 장치
KR20170119162A (ko) * 2016-04-18 2017-10-26 계명대학교 산학협력단 심전도 신호를 이용한 부정맥 진단 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6095984A (en) * 1996-04-17 2000-08-01 Seiko Epson Corporation Arrhythmia detecting apparatus
US8755875B2 (en) * 2008-05-09 2014-06-17 Siemens Medical Solutions Usa, Inc. System for heart performance characterization and abnormality detection
US9706952B2 (en) * 2011-01-06 2017-07-18 Siemens Healthcare Gmbh System for ventricular arrhythmia detection and characterization
US20160089052A1 (en) * 2014-09-26 2016-03-31 Industry-University Cooperation Foundation Hanyang University Method and device for measuring biometric data using uwb radar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327778A (ja) * 1990-02-16 1994-11-29 Telectronics Nv 自動的及び血液動力学的に応答する移植可能な心脈変換/細動除去用脈拍調整装置及び方法
KR20130034635A (ko) * 2011-09-28 2013-04-05 삼성전자주식회사 심장 부정맥을 분류하기 위한 방법 및 장치
US20150112220A1 (en) * 2013-10-23 2015-04-23 King Abdullah University Of Science And Technology Apparatus and method for wireless monitoring using ultra-wideband frequencies
KR20160036967A (ko) * 2014-09-26 2016-04-05 한양대학교 산학협력단 Uwb 레이더를 이용한 생체 정보 측정 방법 및 장치
KR20170119162A (ko) * 2016-04-18 2017-10-26 계명대학교 산학협력단 심전도 신호를 이용한 부정맥 진단 장치

Also Published As

Publication number Publication date
US20200367784A1 (en) 2020-11-26
KR20190082532A (ko) 2019-07-10

Similar Documents

Publication Publication Date Title
EP3310251B1 (en) Electronic system to control the acquisition of an electrocardiogram
KR101836761B1 (ko) 레이더를 이용한 비접촉식 호흡 감지 장치 및 그 방법
JP6503347B2 (ja) 電界脳波を含む脳の電気的活動測定用のセンサアセンブリ
WO2019135579A1 (ko) Uwb 레이더를 이용하는 부정맥 진단 방법 및 장치
JP2016526972A5 (ko)
WO2018110983A1 (ko) 레이더를 이용하여 생체 신호를 측정하는 방법 및 장치
JP2006304963A (ja) 非接触診断装置
US20180296188A1 (en) Patient monitor, physiological information measurement system, program to be used in patient monitor, and non-transitory computer readable medium in which program to be used in patient monitor is stored
WO2017135492A1 (ko) 무구속 생체정보 기반의 산만도 추정 시스템
KR20140060737A (ko) 생체 신호 전송기, 생체 신호 수신기, 및 생체 신호 송수신 방법
De Lucena et al. ECG monitoring using Android mobile phone and Bluetooth
Dong et al. Accurate detection of Doppler cardiograms with a parameterized respiratory filter technique using a K-band radar sensor
Geisheimer et al. A non-contact lie detector using radar vital signs monitor (RVSM) technology
WO2018139881A1 (ko) 레이더를 이용한 생체 신호 측정 방법 및 장치
CN101378699B (zh) 用于测量或检测非正弦周期性血流行为的超声方法和装置
WO2023158033A1 (ko) 비접촉식 생체 신호 측정 시스템 및 방법
KR20160036967A (ko) Uwb 레이더를 이용한 생체 정보 측정 방법 및 장치
EP3020334A1 (en) Measurement system of respiration-related signals and method of operating the same
KR102218414B1 (ko) 생체 신호 검증 장치, 생체 신호 측정 장치 및 이의 생체 신호 검증 방법
KR102254326B1 (ko) Uwb 레이더를 이용하는 부정맥 진단 방법 및 장치
Silvious et al. UHF Measurement of Breathing and Heartbeat at a Distance
JP2004534565A (ja) スペクトラム拡散測定装置
KR20110010442A (ko) 생체신호 검측시스템 및 그 방법
CN105266793A (zh) 具有微机电动作感测功能的心律分析装置及心律分析方法
Darwin et al. A detailed review on embedded based heartbeat monitoring systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898897

Country of ref document: EP

Kind code of ref document: A1