WO2019135411A1 - Detection device and sensor - Google Patents

Detection device and sensor Download PDF

Info

Publication number
WO2019135411A1
WO2019135411A1 PCT/JP2019/000037 JP2019000037W WO2019135411A1 WO 2019135411 A1 WO2019135411 A1 WO 2019135411A1 JP 2019000037 W JP2019000037 W JP 2019000037W WO 2019135411 A1 WO2019135411 A1 WO 2019135411A1
Authority
WO
WIPO (PCT)
Prior art keywords
event
detection
event detection
luminance
pixels
Prior art date
Application number
PCT/JP2019/000037
Other languages
French (fr)
Japanese (ja)
Inventor
友希 平田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2019135411A1 publication Critical patent/WO2019135411A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present invention relates to a detection device and a sensor.
  • Patent Document 1 Japanese Patent Application Publication No. 2006-157615
  • a pixel block constituted by one or a plurality of pixels each having at least one photoelectric conversion element
  • An event detection unit that detects an event indicating exceeding a threshold and outputs an event detection signal
  • a readout control unit that identifies a region of interest based on the event detection signal, and light generated by the photoelectric conversion element in the region of interest
  • a detection device including: a luminance detection unit that detects a luminance signal in which current is accumulated.
  • a second aspect of the invention provides a sensor comprising one or more pixels and a detection device according to the first aspect of the invention.
  • composition of sensor 300 is shown.
  • An example of composition of sensor 300 is shown.
  • 5 is an example of a flowchart showing a detection operation by the detection device 100.
  • An example of the ROI identification method by detection apparatus 100 concerning an example is shown.
  • An example of the ROI identification method by the detecting device concerning a comparative example is shown.
  • An example of embodiment of the misdetection prevention by the detection apparatus 100 is shown.
  • 5 shows an example of an embodiment of data reduction by the detection device 100.
  • An example of composition of sensor 300 is shown.
  • An example of composition of sensor 300 is shown.
  • An example of composition of sensor 300 is shown.
  • An example of the structure of the first substrate 110 is shown.
  • substrate 110 is shown.
  • substrate 110 is shown.
  • FIG. 1 shows an outline of the configuration of the sensor 300.
  • the sensor 300 includes the pixel unit 10 and the detection device 100.
  • the pixel unit 10 includes one or more pixels 11.
  • the pixel unit 10 of this example includes a plurality of pixels 11 arranged in a two-dimensional manner.
  • the pixel unit 10 in this example has M ⁇ N pixels 11.
  • the pixel 11 has at least one photoelectric conversion element.
  • the pixel unit 10 includes a pixel block 12 configured by one or more pixels 11.
  • the pixel block 12 is an area including m ⁇ n (m and n are natural numbers) pixels 11.
  • the photoelectric conversion element is, for example, a photodiode (PD).
  • the detection device 100 includes an event detection unit 20, an event processing unit 30, a luminance detection unit 40, and a signal processing unit 50.
  • the detection device 100 is electrically connected to the pixel unit 10.
  • the detection apparatus 100 detects an event and acquires an image of a region of interest (ROI) according to the detected event. By specifying the ROI, the detection apparatus 100 can detect the motion of the detection target.
  • ROI region of interest
  • the event detection unit 20 detects an event.
  • an event indicates that the amount of change in photocurrent generated in the photoelectric conversion element exceeds a predetermined threshold (event detection threshold).
  • the event detection threshold value is the amount of change from the photocurrent of the photoelectric conversion element detected at the previous time, and a relative value from the previous time may be defined. A value may be defined.
  • the event detection unit 20 generates an event detection signal S ID based on the photocurrent from the pixel unit 10.
  • the event detection signal S ID is a luminance value corresponding to the pixel 11.
  • the event detection unit 20 outputs the generated event detection signal S ID to the event processing unit 30.
  • the event detection unit 20 may be provided in the pixel unit 10.
  • the event processing unit 30 processes the event detection signal S ID output from the event detection unit 20.
  • the event processing unit 30 specifies an ROI for reading based on the event detection signal S ID .
  • the event processing unit 30 of this example specifies whether or not it is an ROI in units of pixel blocks 12.
  • the event processing unit 30 outputs information on the identified ROI to the luminance detection unit 40.
  • Luminance detector 40 detects the luminance signal S L accumulated light current generated in the photoelectric conversion element. Luminance detector 40 of this example detects the luminance signal S L of the photoelectric conversion elements corresponding to the ROI to the event processing section 30 has identified. Brightness detection unit 40, of the luminance signal S L accumulated photocurrent in all the pixels of one or more pixels 11, and outputs the luminance signal S L detected by the ROI to the signal processing unit 50. In other words, the brightness detection unit 40 does not need to output the luminance signal S L in the region other than the ROI in the signal processing unit 50. However, the luminance detection unit 40 may detect the luminance signal S L from an area other than the ROI for the purpose other than acquisition of an image, for example, measurement of automatic exposure (AE) or autofocus (AF). . Although the luminance detection unit 40 of this example is provided in the detection device 100, it may be provided in the pixel unit 10.
  • the signal processing unit 50 processes the luminance signal S L to the brightness detection unit 40 has detected. Thereby, the signal processing unit 50 acquires an image of the subject. For example, the signal processing unit 50, by processing the luminance signal S L, to acquire an image of ROI.
  • the signal processing unit 50 may function as a data output unit that outputs the acquired image to the outside.
  • the detection apparatus 100 of this example processes only the luminance signal S L detected in the ROI among the luminance signals S L in which the photocurrent is accumulated in all the pixels of one or a plurality of pixels 11. Accordingly, the detection device 100, than the case of outputting the luminance signal S L of all the pixels to the signal processor 50, power consumption can be reduced.
  • the detection apparatus 100 may detect an event at any timing using the event detection unit 20.
  • the event detection unit 20 adjusts an event detection threshold for detecting an event of the pixel block 12 according to the luminance of the ROI. For example, when the amount of change in luminance of the ROI becomes large, the event detection unit 20 reduces the amount of change in photocurrent, which is an event detection threshold. On the other hand, when the amount of change in luminance of the ROI decreases, the event detection unit 20 increases the amount of change in photocurrent, which is an event detection threshold. Specifically, when the change amount per unit time of the luminance of the ROI is equal to or greater than a predetermined threshold, the event detection threshold (the change amount of the photocurrent) is set as a first value, and the event is less than the predetermined threshold.
  • the detection threshold value is set to a second value larger than the first value.
  • the detection device 100 can easily follow the change in the detection target when the change in the luminance of the ROI is large, and it is difficult to detect the event detection signal S ID when the change in the luminance of the ROI does not change so much. As a whole, low power consumption can be realized.
  • the predetermined threshold and the event detection threshold adjusted accordingly may be multistages more than two stages.
  • the size of the pixel block 12 may be any size.
  • the event detection unit 20 adjusts the size of the pixel block 12 according to the luminance of the ROI. For example, the event detection unit 20 reduces the pixel block 12 when the amount of change in luminance of the ROI increases. On the other hand, the event detection unit 20 enlarges the pixel block 12 when the amount of change in luminance of the ROI becomes small.
  • the size of the pixel block 12 is set to a first size, and when smaller than the predetermined threshold, the size of the pixel block 12 To a second magnitude that is greater than the first value.
  • the detection device 100 can easily follow the change in the detection target when the change in the luminance of the ROI is large, and it is difficult to detect the event detection signal S ID when the change in the luminance of the ROI does not change so much. As a whole, low power consumption can be realized.
  • the predetermined threshold value and the size of the pixel block 12 adjusted accordingly may be multistages more than two stages or more.
  • FIG. 2 shows an example of the configuration of the sensor 300.
  • the pixel unit 10 of this example includes an event detection unit 20 and a luminance detection unit 40 in addition to the photoelectric conversion element.
  • the sensor 300 is, for example, a CMOS image sensor.
  • the pixel 11 includes a first photoelectric conversion element PD1, a second photoelectric conversion element PD2, an event detection unit 20, and a luminance detection unit 40. That is, the pixel 11 of this example includes both of the first photoelectric conversion element PD1 for event detection and the second photoelectric conversion element PD2 for luminance detection.
  • the first photoelectric conversion element PD1 and the second photoelectric conversion element PD2 in the pixel 11 are independent of each other. Moreover, when the pixel 11 is provided with two or more, each pixel 11 is independent.
  • the first photoelectric conversion element PD1 is a photoelectric conversion element for event detection.
  • the first photoelectric conversion element PD1 outputs the photocurrent generated in response to light reception to the event detection unit 20.
  • the second photoelectric conversion element PD2 is a photoelectric conversion element for luminance detection.
  • the second photoelectric conversion element PD ⁇ b> 2 accumulates the photocurrent generated in response to the light reception and outputs the accumulated photocurrent to the luminance detection unit 40.
  • the event processing unit 30 includes a space density processing unit 32 and a read control unit 34.
  • the event processing unit 30 of this example is provided outside the pixel unit 10.
  • the spatial density processing unit 32 receives the event detection signal S ID detected from the event detection unit 20.
  • the spatial density processing unit 32 calculates the spatial density of the event detection signal S ID for each pixel block 12.
  • Readout control unit 34 controls the reading of the luminance signal S L detected of the luminance detector 40.
  • the read control unit 34 specifies the ROI based on the spatial density of the event detection signal S ID calculated by the spatial density processing unit 32.
  • the ROI is an image acquisition area where the sensor 300 acquires an image.
  • the read control unit 34 of this example determines whether or not each pixel block 12 is an ROI. Thereby, the read control unit 34 can reduce the required number of data as compared with the case where the ROI is determined for each pixel 11.
  • the read control unit 34 specifies it as the ROI. Further, the read control unit 34 determines that it is not the ROI when the spatial density of the event detection signal S ID is lower than a predetermined threshold. The read control unit 34 causes the brightness signal SL to be read only from the brightness detection unit 40 corresponding to the ROI.
  • the read control unit 34 may drive each pixel of the plurality of pixels 11 asynchronously.
  • the read control unit 34 controls the driving of the event detection unit 20 and the luminance detection unit 40.
  • the read control unit 34 can drive the first photoelectric conversion element PD1 for event detection and the second photoelectric conversion element PD2 for luminance detection independently of each other without synchronizing them. Therefore, the read control unit 34 may drive the first photoelectric conversion element PD1 asynchronously with the imaging frame while driving the second photoelectric conversion element PD2 corresponding to the imaging frame. In this case, in the second photoelectric conversion element PD2, accumulation and reset of photocurrent are repeated for each imaging frame, and the ROI is set to the ROI at the timing when the event is detected in the first photoelectric conversion element PD1.
  • the detection apparatus 100 of the present example can detect a change in an event faster than an imaging frame because there is no concept of an imaging frame with respect to detection of an event.
  • the event detection method of the present example is particularly effective when the change of the event is large or when the event is detected at the time of moving image shooting.
  • the imaging frame indicates a frame rate at the time of imaging, and is, for example, 30 fps or 60 fps.
  • FIG. 3 is an example of a flowchart showing a detection operation by the detection device 100.
  • the detection apparatus 100 detects the luminance signal of the ROI according to the detected event by executing steps S100 to S104.
  • the detection device 100 sets an event detection threshold value in which the amount of change in photocurrent generated by the photoelectric conversion elements is predetermined. An exceeding event is detected (S100).
  • the detection apparatus 100 specifies an ROI for reading based on the detection of an event (S102). Then, in the ROI, the detection apparatus 100 detects a luminance signal in which the photocurrent generated by the photoelectric conversion element is accumulated (S104). Steps S100 to S104 may be performed simultaneously for all pixel blocks 12, or may be performed separately for each pixel block 12.
  • FIG. 4 shows an example of a method of specifying an ROI by the detection apparatus 100 according to the embodiment.
  • the detection apparatus 100 of the present example identifies an ROI corresponding to the event detection target 200, and partially acquires an image of the event detection target 200. For example, when a human being an event detection target 200 is riding a bicycle and is traveling on a road, the detecting device 100 acquires only an image of the human.
  • (A) of FIG. 4 shows the entire screen including a person and a road.
  • the detection device 100 of this example acquires an event detection signal S ID from a part of the pixels 11 among all the pixels 11 corresponding to the entire screen. For example, the detection apparatus 100 acquires an event detection signal S ID from a pixel 11 whose change amount of luminance value is larger than a predetermined threshold value, and plots the pixel 11 in white. On the other hand, the detection device 100 plots, in black, pixels whose luminance variation is smaller than a predetermined threshold, that is, pixels 11 which do not acquire the event detection signal S ID . That is, as shown in (b) of FIG. 4, the detection apparatus 100 acquires binarized data on the entire screen according to whether or not an event is detected. Therefore, the detection apparatus 100 does not have to acquire an image of the entire screen as shown in (a) of FIG. 4 when specifying the ROI.
  • the detection apparatus 100 extracts an ROI from the spatial density of the event detection signal S ID .
  • the spatial density of the event detection signal S ID is a ratio of the pixels 11 in which an event is detected among all the pixels 11 included in a certain pixel block 12.
  • the detection apparatus 100 specifies the pixel block 12 as the ROI when the spatial density of the event detection signal S ID is larger than a predetermined threshold value in a certain pixel block 12.
  • the event detection unit 20 may set the upper limit value and the lower limit value of the spatial density of the event detection signal S ID .
  • the read control unit 34 specifies an area in which the spatial density of the event detection signal S ID is included in the range between the upper limit value and the lower limit value as the ROI.
  • the event detection unit 20 may set the upper limit value and the lower limit value of the spatial density of the event detection signal S ID according to the luminance of the ROI.
  • the spatial density of the event detection signal S ID exceeds the upper limit value.
  • noise is included in the whole pixel block 12 due to an external factor such as disturbance light.
  • the upper limit value of the spatial density of the event detection signal S ID it is possible to prevent the erroneous identification of the ROI when the entire pixel block 12 includes noise.
  • the spatial density of the event detection signal S ID exceeds the lower limit value, specifying as the ROI is the same as the case where the event detection threshold is defined by one value.
  • the detection apparatus 100 does not have to acquire a large volume of image data in the acquisition stage of the event detection signal S ID , and may obtain binarized low volume image data. Thus, the detection device 100 can compress the amount of data needed to identify the ROI.
  • FIG. 5 shows an example of a method of specifying an ROI by a detection device according to a comparative example.
  • the detection device of the comparative example acquires an image of the entire screen including a person and a road, which is an event detection target 200 ((a) in FIG. 5).
  • the detection device of the comparative example specifies an ROI including the event detection target 200 from the image of the entire screen as post processing ((b) in FIG. 5).
  • the detection apparatus of a comparative example extracts only the image of ROI from the image of the full screen acquired by (b) ((c) of FIG. 5). That is, in the detection device of the comparative example, since the image of the entire screen is acquired to specify the ROI, it is necessary to handle a large volume of data. Furthermore, the ROI can only be detected at intervals of imaging frames.
  • the read control unit 34 in this example calculates the event detection signal S ID for each pixel 11 to specify the ROI. However, as described later, the readout control unit 34 determines a representative event detection result for each of the plurality of pixels 11 to specify the ROI based on the event detection signal S ID representative of the plurality of pixels 11. You may
  • a representative event detection result is a plurality of event detection signals corresponding to each of a plurality of pixels 11 constituting a set (a set smaller than the pixel block 12) consisting of a certain pixel 11 and its peripheral pixels 11 of S ID, an event detection signal S ID representative of the set.
  • the read control unit 34 can reduce the data amount of the event detection signal S ID by using a representative event detection result. Further, the readout control unit 34 can prevent erroneous detection when noise is included in some of the pixels 11 of the plurality of pixels 11 by using a representative event detection result.
  • FIG. 6 shows an example of an embodiment of the erroneous detection prevention by the detection device 100.
  • the detection apparatus 100 of this example reduces false detection of an event by applying a filter process to the event detection signal S ID .
  • the peripheral pixel area 15 is an area including a ⁇ b (a and b are natural numbers) pixels 11.
  • the event detection unit 20 outputs “1” when an event is detected, and outputs “0” when an event is not detected.
  • an arbitrary pixel 11 is indicated by (X, Y), with the upper left pixel 11 as the origin (0, 0), the right direction as the positive X direction, and the lower direction as the positive Y direction.
  • the event detection part 20 used AND circuit as a filter circuit applied to the peripheral pixel area 15 the kind of filter circuit is not limited to this.
  • the detection apparatus 100 may calculate a representative event detection result using the peripheral pixel area 15 by using another filter such as a median filter circuit.
  • the filter circuit of the event detection unit 20 only needs to be able to perform filter processing to remove noise.
  • the readout control unit 34 filters a representative event detection result representing the a ⁇ b event detection results from the event detection results of the peripheral pixel area 15, and based on the representative event detection result, the ROI is calculated. Identify.
  • the detection device 100 of the present example reduces false detection of an event by filtering the peripheral pixel region 15.
  • the detection device 100 can improve the image quality of the captured image.
  • the event detection unit 20 of this example compares and outputs the event detection signal S ID input in a predetermined period in the peripheral pixel area 15.
  • the event detection unit 20 may compare the event detection signal S ID input in a different period for each pixel 11 in the peripheral pixel region 15. That is, the event detection signal S ID compared in the peripheral pixel area 15 is not limited to one included in the same image. This is because the plurality of pixels 11 in the peripheral pixel area 15 are not completely identical because the event detection unit 20 detects an event independently. However, it is preferable that the event detection unit 20 detects an event in the peripheral pixel region 15 using a common event detection threshold.
  • the pixel block 12 is a pixel area larger than the peripheral pixel area 15. That is, in other words, the pixel block 12 may be configured by a plurality of peripheral pixel areas 15.
  • the detection apparatus 100 can regard the peripheral pixel area 15 as one pixel by calculating an event detection result representing the peripheral pixel area 15.
  • the data amount of the event detection signal S ID can be reduced.
  • the event detection unit 20 has one or more event detection thresholds in order to determine the presence or absence of an event.
  • the event detection unit 20 has one event detection threshold, and determines the presence or absence of an event with the same event detection threshold for all the pixels 11 included in the peripheral pixel area 15.
  • the event detection unit 20 may have a plurality of event detection thresholds, and may determine the presence or absence of an event with respect to the pixels 11 included in the peripheral pixel area 15 using different event detection thresholds.
  • the event detection unit 20 detects an event of the first pixel 11 included in the peripheral pixel area 15 based on comparison with the first event detection threshold.
  • the event detection unit 20 may detect an event for the second pixel 11 different from the first pixel 11 based on comparison between the first event detection threshold and a second event detection threshold different from the first event detection threshold.
  • FIG. 7 shows another example of an embodiment of data reduction by the detection device 100.
  • the detection device 100 of this example reduces the number of data by filtering the event detection signal S ID .
  • the event detection signal S ID is output for all pixels, the number of data is nine.
  • the detection device 100 of this example can be treated as one piece of data because the filter size is known.
  • the size of the peripheral pixel area 15 may be any size.
  • the event detection unit 20 adjusts the size of the peripheral pixel area 15 according to the luminance of the ROI. For example, the event detection unit 20 sets the peripheral pixel region 15 to the first size when the amount of change in luminance of the ROI per unit time is equal to or greater than a predetermined threshold. On the other hand, when the amount of change in luminance of the ROI falls below a predetermined threshold, the event detection unit 20 sets the peripheral pixel area 15 to a second size larger than the first size.
  • the detection apparatus 100 can increase the data reduction effect when the change in the event is small, and can improve the event detection accuracy when the change in the event is large.
  • the predetermined threshold value and the size of the peripheral pixel area 15 adjusted accordingly may be multistages more than two stages.
  • the detection device 100 of this example reduces the data amount of the peripheral pixel area 15 to specify the ROI. Thereby, the detection apparatus 100 can realize high-speed reading and reduction of power consumption.
  • the detection apparatus 100 may identify the ROI and reduce the data amount based on at least one of the sum of events, the density, and the change.
  • FIG. 8 shows an example of the configuration of the sensor 300.
  • the sensor 300 of this example comprises a first substrate 110 and a second substrate 120.
  • the first substrate 110 has a pixel block array 112.
  • the pixel block array 112 includes a first photoelectric conversion element PD1, a second photoelectric conversion element PD2, an event detection unit 20, and a luminance detection unit 40 for each of the plurality of pixels 11. That is, the pixel 11 of this example includes both the first photoelectric conversion element PD1 for event detection and the second photoelectric conversion element PD2 for luminance detection.
  • the second substrate 120 has a processing block array 122 and an imaging control unit 60.
  • the second substrate 120 includes a space density processing unit 32, a read control unit 34, and a signal processing unit 50.
  • the second substrate 120 is stacked on the first substrate 110.
  • the imaging control unit 60 controls imaging conditions of the detection device 100.
  • the imaging control unit 60 controls the conditions of auto focus (AF) and automatic exposure (AE) according to the ROI detected by the read control unit 34.
  • AF auto focus
  • AE automatic exposure
  • the imaging control unit 60 executes optimum AF and AE in accordance with the luminance and the like in the ROI. Thereby, the detection apparatus 100 can appropriately capture an image of the ROI.
  • FIG. 9 shows an example of the configuration of the sensor 300.
  • the sensor 300 of this example comprises a first substrate 110 and a second substrate 120.
  • the first substrate 110 and the second substrate 120 are provided to be stacked on each other.
  • the sensor 300 is, for example, a stacked CMOS image sensor.
  • the first substrate 110 has M ⁇ N pixels 11. Further, the first substrate 110 has a pixel block 12 composed of m ⁇ n pixels 11. The first substrate 110 may have a plurality of pixel blocks 12.
  • Each pixel 11 includes a first photoelectric conversion element PD1, a second photoelectric conversion element PD2, an event detection unit 20, and a luminance detection unit 40.
  • the event detection unit 20 and the luminance detection unit 40 of the present example are provided corresponding to the first photoelectric conversion element PD1 and the second photoelectric conversion element PD2, respectively.
  • the second substrate 120 has an event processing unit 30 provided corresponding to the pixel block 12.
  • the event processing unit 30 has a space density processing unit 32 and a read control unit 34, respectively.
  • the event processing unit 30 and the corresponding pixel block 12 are electrically connected.
  • the event processing unit 30 of this example executes event processing of the pixel blocks 12 provided correspondingly.
  • the event processing unit 30 is preferably provided immediately below the corresponding pixel block 12. As a result, the wiring connecting the corresponding pixel block 12 and the event processing unit 30 becomes short, so that the processing speed of the detection device 100 is improved.
  • the set of the pixel block 12 and the event processing unit 30 is independent of the set of the adjacent pixel block 12 and the event processing unit 30.
  • the event processing unit 30 is configured on the second substrate 120, whereby the size of the photoelectric conversion element PD can be increased, and a highly sensitive sensor can be realized.
  • FIG. 10 shows an example of the configuration of the sensor 300.
  • the event detection unit 20 and the luminance detection unit 40 are provided on a substrate different from the photoelectric conversion element PD.
  • the sensor 300 comprises a first substrate 110, a second substrate 120 and a third substrate 130.
  • the first substrate 110, the second substrate 120, and the third substrate 130 are provided stacked on one another.
  • the first substrate 110 has a pixel block array 112.
  • the pixel block array 112 in this example has one or more pixels 11.
  • a photoelectric conversion element PD1 and a second photoelectric conversion element PD2 are provided in the pixel 11 of this example.
  • the second substrate 120 has a processing block array 122.
  • the processing block array 122 of this example includes an event detection unit 20 and a luminance detection unit 40. It is preferable that the event detection unit 20 and the luminance detection unit 40 be provided to face the corresponding pixels 11 respectively. As a result, the wiring connecting the pixel block array 112 and the processing block array 122 is shortened.
  • the third substrate 130 has an output block array 132.
  • the output block array 132 of this example includes a space density processing unit 32, a read control unit 34, and a signal processing unit 50. Since the sensor 300 of this example does not have the event detection unit 20 and the luminance detection unit 40 on the first substrate 110, the size of the photoelectric conversion element PD can be increased, and a highly sensitive sensor can be realized. .
  • FIG. 11 shows an example of the configuration of the sensor 300.
  • the basic configuration of the sensor 300 is the same as that of the sensor 300 of FIG. 10, and shows a specific configuration for realizing the function shown in FIG.
  • the first substrate 110 has pixel blocks 12 of m ⁇ n size.
  • the pixel 11 of this example has a first photoelectric conversion element PD1 and a second photoelectric conversion element PD2.
  • the second substrate 120 has an imaging control unit 60 provided corresponding to the pixel block 12.
  • the imaging control unit 60 controls driving of the pixels 11 provided correspondingly.
  • the imaging control unit 60 includes an event detection unit 20 and a luminance detection unit 40.
  • the event detection unit 20 is provided corresponding to the first photoelectric conversion element PD1.
  • the luminance detection unit 40 is provided corresponding to the second photoelectric conversion element PD2.
  • the third substrate 130 has an event processing unit 30 provided corresponding to the imaging control unit 60.
  • the event processing unit 30 receives event information and luminance information.
  • the event processing unit 30 specifies the ROI based on the event information, and outputs the luminance information of the ROI to the signal processing unit 50.
  • FIG. 12 shows an example of the configuration of the first substrate 110.
  • the first substrate 110 in this example includes a first pixel group 13 and a second pixel group 14.
  • the first pixel group 13 includes a third photoelectric conversion element PD3, an event detection unit 20, and a luminance detection unit 40, and is shown in white in the drawing.
  • the third photoelectric conversion element PD3 is connected to the event detection unit 20 and the luminance detection unit 40.
  • the third photoelectric conversion element PD3 doubles as the functions of the first photoelectric conversion element PD1 and the second photoelectric conversion element PD2. That is, the third photoelectric conversion element PD3 functions as a photoelectric conversion element for event detection and a photoelectric conversion element for luminance detection.
  • the event detection unit 20 detects an event according to the signal from the third photoelectric conversion element PD3
  • the luminance detection unit 40 detects luminance according to the signal from the third photoelectric conversion element PD3. it can.
  • the third photoelectric conversion element PD3 switches and executes an event detection function and a luminance detection function.
  • the second pixel group 14 includes the pixels 11 that detect only the luminance without detecting an event.
  • the second pixel group 14 has a second photoelectric conversion element PD2 and a luminance detection unit 40, and is shown by hatching in the figure. Thereby, the second pixel group 14 detects the luminance according to the signal from the second photoelectric conversion element PD2. Since the second pixel group 14 is used as a pixel dedicated to the luminance detection unit 40, the second pixel group 14 is driven at an arbitrary timing not limited to the drive timing of the event detection unit 20.
  • the first pixel group 13 of this example is disposed discontinuously across the second pixel group 14 in a predetermined direction. That is, the event detection unit 20 does not have to be provided in all the pixels 11.
  • the first pixel group 13 may be thinned out so as to have the density necessary to specify the ROI.
  • the circuit configuration of the first substrate 110 can be simplified and power consumption can be reduced.
  • the first pixel group 13 of this example is provided continuously in the column direction in the pixels 11 of M ⁇ N size.
  • the second pixel group 14 of this example is continuously provided in the column direction in the pixels 11 of the M ⁇ N size.
  • the first pixel group 13 and the second pixel group 14 are alternately arranged in the row direction.
  • the first pixel group 13 and the second pixel group 14 are not limited to the arrangement method of this example as long as they are arranged with the distribution necessary for processing the event detection signal S ID .
  • the first pixel group 13 and the second pixel group 14 may be arranged mutually in a staggered manner.
  • FIG. 13 shows an example of the configuration of the first substrate 110.
  • the first substrate 110 in this example includes a first pixel group 13 and a second pixel group 14.
  • the first pixel group 13 includes a first photoelectric conversion element PD1, a second photoelectric conversion element PD2, an event detection unit 20, and a luminance detection unit 40. That is, the first pixel group 13 of this example includes both of the first photoelectric conversion element PD1 for event detection and the second photoelectric conversion element PD2 for luminance detection.
  • the event detection unit 20 is connected to the first photoelectric conversion element PD1. Further, the event processing unit 30 is connected to the second photoelectric conversion element PD2.
  • the second pixel group 14 includes a second photoelectric conversion element PD2 and a luminance detection unit 40.
  • the luminance detection unit 40 is connected to the second photoelectric conversion element PD2.
  • the second pixel group 14 is two-dimensionally arranged with the first pixel group 13.
  • the first pixel group 13 of this example is provided continuously in the column direction in the pixels 11 of M ⁇ N size.
  • the second pixel group 14 of this example is continuously provided in the column direction in the pixels 11 of the M ⁇ N size.
  • the first pixel group 13 and the second pixel group 14 are alternately arranged in the row direction.
  • the arrangement method of the present embodiment is not limited to that shown in FIG. It is the same as the example.
  • FIG. 14 shows an example of the configuration of the first substrate 110.
  • the first substrate 110 of this example is different from the case of FIG. 13 in the method of arranging the first pixel group 13 and the second pixel group 14.
  • the first pixel group 13 in the present example is disposed more around the first substrate 110 than inside the first substrate 110. That is, the first pixel group 13 is densely arranged around the pixels 11 arranged in a two-dimensional manner than the centers of the plurality of pixels 11 arranged in a two-dimensional manner. Therefore, the detection device 100 can acquire more event detection signals S ID than in the pixel unit 10 on the outer periphery of the pixel unit 10. Thus, the detection apparatus 100 can easily detect an event on the outer periphery of the first substrate 110.
  • an event occurs outside the pixel unit 10 when, for example, an imaging target comes in from the outside of the image.
  • the detection device 100 of the present example has high detection sensitivity of an event on the outer periphery of the pixel unit 10, so that it becomes easy to find an imaging target. Therefore, when the imaging target object intrudes into the imaging region, the detection apparatus 100 can promptly detect an event and capture only the imaging target object.
  • the spatial density processing unit 32 determines the ROI based on the spatial density of the event detection signal S ID . Therefore, the detection apparatus 100 does not have to specify the ROI in advance.
  • the sensor 300 can appropriately update the ROI in response to the occurrence of an event.
  • the sensor 300 can also follow unexpected behavior. As a result, when adding or changing a region during ROI operation, the sensor 300 does not require post-processing calculation or additional image acquisition, and can suppress increase in power and deterioration in latency. Furthermore, the sensor 300 can automatically select a target area of auto focus (AF) or auto exposure (AE).
  • AF auto focus
  • AE auto exposure
  • the technical scope of this invention is not limited to the range as described in the said embodiment.
  • the first substrate 110 as shown in FIGS. 12 to 14 can be applied to any of the stacked sensors as shown in FIGS. 7 to 10. It is apparent to those skilled in the art that various changes or modifications can be added to the above embodiment. It is also apparent from the scope of the claims that the embodiments added with such alterations or improvements can be included in the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

Provided is a detection device, comprising: an event detection unit which, in a pixel block composed of one or a plurality of pixels which each have at least one photoelectric conversion element, detects an event indicating that the value of photocurrent generated by the photoelectric conversion element exceeds a predetermined event detection threshold, and which outputs an event detection signal; a read control unit which identifies a region of interest on the basis of the event detection signal; and a brightness detection unit which detects, in the region of interest, a brightness signal in which is stored the photocurrent generated by the photoelectric conversion element.

Description

検出装置およびセンサDetector and sensor
 本発明は、検出装置およびセンサに関する。 The present invention relates to a detection device and a sensor.
 従来、撮影した原画像から関心領域(ROI)を特定する検出装置が知られている(例えば、特許文献1参照)。
 特許文献1 特開2006-157615号公報
Conventionally, a detection device for identifying a region of interest (ROI) from a captured original image is known (see, for example, Patent Document 1).
Patent Document 1: Japanese Patent Application Publication No. 2006-157615
一般的開示General disclosure
 しかしながら、より少ないデータ処理でROIを特定することが望まれている。 However, it is desirable to identify the ROI with less data processing.
 本発明の第1の態様においては、各々が少なくとも1つの光電変換素子を有する1又は複数の画素で構成された画素ブロックにおいて、光電変換素子で発生する光電流の値が予め定められたイベント検出閾値を超えることを示すイベントを検出し、イベント検出信号を出力するイベント検出部と、イベント検出信号に基づいて、関心領域を特定する読み出し制御部と、関心領域において、光電変換素子で発生する光電流を蓄積した輝度信号を検出する輝度検出部とを備える検出装置を提供する。 In the first aspect of the present invention, in a pixel block constituted by one or a plurality of pixels each having at least one photoelectric conversion element, an event detection in which the value of photocurrent generated in the photoelectric conversion element is predetermined An event detection unit that detects an event indicating exceeding a threshold and outputs an event detection signal, a readout control unit that identifies a region of interest based on the event detection signal, and light generated by the photoelectric conversion element in the region of interest Provided is a detection device including: a luminance detection unit that detects a luminance signal in which current is accumulated.
 本発明の第2の態様においては、1又は複数の画素と、本発明の第1の態様に係る検出装置とを備えるセンサを提供する。 A second aspect of the invention provides a sensor comprising one or more pixels and a detection device according to the first aspect of the invention.
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 The above summary of the invention does not enumerate all of the features of the present invention. In addition, a subcombination of these feature groups can also be an invention.
センサ300の構成の概要を示す。The outline of composition of sensor 300 is shown. センサ300の構成の一例を示す。An example of composition of sensor 300 is shown. 検出装置100による検出動作を示すフローチャートの一例である。5 is an example of a flowchart showing a detection operation by the detection device 100. 実施例に係る検出装置100によるROI特定方法の一例を示す。An example of the ROI identification method by detection apparatus 100 concerning an example is shown. 比較例に係る検出装置によるROI特定方法の一例を示す。An example of the ROI identification method by the detecting device concerning a comparative example is shown. 検出装置100による誤検出防止の実施形態の一例を示す。An example of embodiment of the misdetection prevention by the detection apparatus 100 is shown. 検出装置100によるデータ削減の実施形態の一例を示す。5 shows an example of an embodiment of data reduction by the detection device 100. FIG. センサ300の構成の一例を示す。An example of composition of sensor 300 is shown. センサ300の構成の一例を示す。An example of composition of sensor 300 is shown. センサ300の構成の一例を示す。An example of composition of sensor 300 is shown. センサ300の構成の一例を示す。An example of composition of sensor 300 is shown. 第1の基板110の構成の一例を示す。An example of the structure of the first substrate 110 is shown. 第1の基板110の構成の一例を示す。An example of a structure of the 1st board | substrate 110 is shown. 第1の基板110の構成の一例を示す。An example of a structure of the 1st board | substrate 110 is shown.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through the embodiments of the invention, but the following embodiments do not limit the invention according to the claims. Moreover, not all combinations of features described in the embodiments are essential to the solution of the invention.
 図1は、センサ300の構成の概要を示す。センサ300は、画素部10および検出装置100を備える。 FIG. 1 shows an outline of the configuration of the sensor 300. The sensor 300 includes the pixel unit 10 and the detection device 100.
 画素部10は、1又は複数の画素11を備える。本例の画素部10は、2次元状に配列された複数の画素11を備える。本例の画素部10は、M×N個の画素11を有する。画素11は、少なくとも1つの光電変換素子を有する。画素部10は、1又は複数の画素11で構成された画素ブロック12を含む。画素ブロック12は、m×n個(m,nは、自然数)の画素11を含む領域である。光電変換素子は、例えばフォトダイオード(PD)である。 The pixel unit 10 includes one or more pixels 11. The pixel unit 10 of this example includes a plurality of pixels 11 arranged in a two-dimensional manner. The pixel unit 10 in this example has M × N pixels 11. The pixel 11 has at least one photoelectric conversion element. The pixel unit 10 includes a pixel block 12 configured by one or more pixels 11. The pixel block 12 is an area including m × n (m and n are natural numbers) pixels 11. The photoelectric conversion element is, for example, a photodiode (PD).
 検出装置100は、イベント検出部20と、イベント処理部30と、輝度検出部40と、信号処理部50とを備える。検出装置100は、画素部10と電気的に接続されている。検出装置100は、イベントを検出し、検出したイベントに応じた関心領域(ROI)の画像を取得する。ROIを特定することで、検出装置100が検出対象の動きを検出することができる。 The detection device 100 includes an event detection unit 20, an event processing unit 30, a luminance detection unit 40, and a signal processing unit 50. The detection device 100 is electrically connected to the pixel unit 10. The detection apparatus 100 detects an event and acquires an image of a region of interest (ROI) according to the detected event. By specifying the ROI, the detection apparatus 100 can detect the motion of the detection target.
 イベント検出部20は、イベントを検出する。本明細書において、イベントとは、光電変換素子で発生する光電流の変化量が予め定められた閾値(イベント検出閾値)を超えることを指す。ここで、イベント検出閾値は、前回に検出した光電変換素子の光電流からの変化量であり、前回からの相対的な値が定められていてもよいし、絶対値として所定間隔の光電流の値が定められていてもよい。光電流がイベント検出閾値以上に変化する場合、その光電変換素子を含む画素11が撮像する撮像対象に何等かの変化があった可能性が高い。イベント検出部20は、画素部10からの光電流に基づいて、イベント検出信号SIDを生成する。例えば、イベント検出信号SIDは、画素11に応じた輝度値である。イベント検出部20は、生成したイベント検出信号SIDをイベント処理部30に出力する。なお、イベント検出部20は、画素部10に設けられてもよい。 The event detection unit 20 detects an event. In the present specification, an event indicates that the amount of change in photocurrent generated in the photoelectric conversion element exceeds a predetermined threshold (event detection threshold). Here, the event detection threshold value is the amount of change from the photocurrent of the photoelectric conversion element detected at the previous time, and a relative value from the previous time may be defined. A value may be defined. When the photocurrent changes to the event detection threshold value or more, there is a high possibility that there is any change in the imaging target imaged by the pixel 11 including the photoelectric conversion element. The event detection unit 20 generates an event detection signal S ID based on the photocurrent from the pixel unit 10. For example, the event detection signal S ID is a luminance value corresponding to the pixel 11. The event detection unit 20 outputs the generated event detection signal S ID to the event processing unit 30. The event detection unit 20 may be provided in the pixel unit 10.
 イベント処理部30は、イベント検出部20が出力したイベント検出信号SIDを処理する。イベント処理部30は、イベント検出信号SIDに基づいて、読み出し用のROIを特定する。本例のイベント処理部30は、画素ブロック12単位でROIであるか否かを特定する。イベント処理部30は、特定したROIに関する情報を輝度検出部40に出力する。 The event processing unit 30 processes the event detection signal S ID output from the event detection unit 20. The event processing unit 30 specifies an ROI for reading based on the event detection signal S ID . The event processing unit 30 of this example specifies whether or not it is an ROI in units of pixel blocks 12. The event processing unit 30 outputs information on the identified ROI to the luminance detection unit 40.
 輝度検出部40は、光電変換素子で発生する光電流を蓄積した輝度信号Sを検出する。本例の輝度検出部40は、イベント処理部30が特定したROIに対応する光電変換素子の輝度信号Sを検出する。輝度検出部40は、1又は複数の画素11の全画素において光電流を蓄積した輝度信号Sのうち、ROIで検出された輝度信号Sを信号処理部50に出力する。言い換えると、輝度検出部40は、ROI以外の領域の輝度信号Sを信号処理部50に出力する必要がない。ただし、輝度検出部40は、画像の取得以外の目的、例えば、自動露出(AE)やオートフォーカス(AF)等の計測のために、ROI以外の領域から輝度信号Sを検出してもよい。なお、本例の輝度検出部40は、検出装置100に設けられるが、画素部10に設けられてもよい。 Luminance detector 40 detects the luminance signal S L accumulated light current generated in the photoelectric conversion element. Luminance detector 40 of this example detects the luminance signal S L of the photoelectric conversion elements corresponding to the ROI to the event processing section 30 has identified. Brightness detection unit 40, of the luminance signal S L accumulated photocurrent in all the pixels of one or more pixels 11, and outputs the luminance signal S L detected by the ROI to the signal processing unit 50. In other words, the brightness detection unit 40 does not need to output the luminance signal S L in the region other than the ROI in the signal processing unit 50. However, the luminance detection unit 40 may detect the luminance signal S L from an area other than the ROI for the purpose other than acquisition of an image, for example, measurement of automatic exposure (AE) or autofocus (AF). . Although the luminance detection unit 40 of this example is provided in the detection device 100, it may be provided in the pixel unit 10.
 信号処理部50は、輝度検出部40が検出した輝度信号Sを処理する。これにより、信号処理部50は、被写体の画像を取得する。例えば、信号処理部50は、輝度信号Sを処理することにより、ROIの画像を取得する。信号処理部50は、取得した画像を外部に出力するデータ出力部として機能してもよい。 The signal processing unit 50 processes the luminance signal S L to the brightness detection unit 40 has detected. Thereby, the signal processing unit 50 acquires an image of the subject. For example, the signal processing unit 50, by processing the luminance signal S L, to acquire an image of ROI. The signal processing unit 50 may function as a data output unit that outputs the acquired image to the outside.
 本例の検出装置100は、1又は複数の画素11の全画素において光電流を蓄積した輝度信号Sのうち、ROIで検出された輝度信号Sのみを処理する。したがって、検出装置100は、全画素の輝度信号Sを信号処理部50に出力する場合よりも、消費電力を削減できる。 The detection apparatus 100 of this example processes only the luminance signal S L detected in the ROI among the luminance signals S L in which the photocurrent is accumulated in all the pixels of one or a plurality of pixels 11. Accordingly, the detection device 100, than the case of outputting the luminance signal S L of all the pixels to the signal processor 50, power consumption can be reduced.
 なお、検出装置100は、イベント検出部20を用いて任意のタイミングでイベントを検出してよい。イベント検出部20は、ROIの輝度に応じて、画素ブロック12のイベントを検出するためのイベント検出閾値を調整する。例えば、イベント検出部20は、ROIの輝度の変化量が大きくなった場合に、イベント検出閾値である光電流の変化量を小さくする。一方、イベント検出部20は、ROIの輝度の変化量が小さくなった場合に、イベント検出閾値である光電流の変化量を大きくする。具体的には、ROIの輝度の単位時間あたりの変化量が所定の閾値と同じまたは上回る場合、イベント検出閾値(光電流の変化量)を第1の値とし、所定の閾値を下回る場合、イベント検出閾値を第1の値よりも大きい第2の値とする。これにより、検出装置100は、ROIの輝度の変化が大きい場合に検出対象の変化に追従しやすくなるとともに、ROIの輝度の変化がさほど変化しない場合にイベント検出信号SIDを検出しにくくなるので、全体として低消費電力を実現できる。なお、所定の閾値と、それに応じて調整されるイベント検出閾値は、2段階より多い多段階であってもよい。 The detection apparatus 100 may detect an event at any timing using the event detection unit 20. The event detection unit 20 adjusts an event detection threshold for detecting an event of the pixel block 12 according to the luminance of the ROI. For example, when the amount of change in luminance of the ROI becomes large, the event detection unit 20 reduces the amount of change in photocurrent, which is an event detection threshold. On the other hand, when the amount of change in luminance of the ROI decreases, the event detection unit 20 increases the amount of change in photocurrent, which is an event detection threshold. Specifically, when the change amount per unit time of the luminance of the ROI is equal to or greater than a predetermined threshold, the event detection threshold (the change amount of the photocurrent) is set as a first value, and the event is less than the predetermined threshold. The detection threshold value is set to a second value larger than the first value. Thus, the detection device 100 can easily follow the change in the detection target when the change in the luminance of the ROI is large, and it is difficult to detect the event detection signal S ID when the change in the luminance of the ROI does not change so much. As a whole, low power consumption can be realized. Note that the predetermined threshold and the event detection threshold adjusted accordingly may be multistages more than two stages.
 また、画素ブロック12の大きさは、任意の大きさであってよい。イベント検出部20は、ROIの輝度に応じて、画素ブロック12の大きさを調整する。例えば、イベント検出部20は、ROIの輝度の変化量が大きくなった場合に、画素ブロック12を小さくする。一方、イベント検出部20は、ROIの輝度の変化量が小さくなった場合に、画素ブロック12を大きくする。 Also, the size of the pixel block 12 may be any size. The event detection unit 20 adjusts the size of the pixel block 12 according to the luminance of the ROI. For example, the event detection unit 20 reduces the pixel block 12 when the amount of change in luminance of the ROI increases. On the other hand, the event detection unit 20 enlarges the pixel block 12 when the amount of change in luminance of the ROI becomes small.
 具体的には、ROIの輝度の単位時間あたりの変化量が所定の閾値と同じまたは上回る場合、画素ブロック12の大きさを第1の大きさとし、所定の閾値を下回る場合、画素ブロック12の大きさを第1の値よりも大きい第2の大きさとする。これにより、検出装置100は、ROIの輝度の変化が大きい場合に検出対象の変化に追従しやすくなるとともに、ROIの輝度の変化がさほど変化しない場合にイベント検出信号SIDを検出しにくくなるので、全体として低消費電力を実現できる。なお、所定の閾値と、それに応じて調整される画素ブロック12の大きさは、2段階以上より多い多段階であってもよい。 Specifically, when the amount of change in luminance of the ROI per unit time is equal to or larger than a predetermined threshold, the size of the pixel block 12 is set to a first size, and when smaller than the predetermined threshold, the size of the pixel block 12 To a second magnitude that is greater than the first value. Thus, the detection device 100 can easily follow the change in the detection target when the change in the luminance of the ROI is large, and it is difficult to detect the event detection signal S ID when the change in the luminance of the ROI does not change so much. As a whole, low power consumption can be realized. Note that the predetermined threshold value and the size of the pixel block 12 adjusted accordingly may be multistages more than two stages or more.
 図2は、センサ300の構成の一例を示す。本例の画素部10は、光電変換素子に加えて、イベント検出部20および輝度検出部40を備える。センサ300は、例えば、CMOSイメージセンサである。 FIG. 2 shows an example of the configuration of the sensor 300. The pixel unit 10 of this example includes an event detection unit 20 and a luminance detection unit 40 in addition to the photoelectric conversion element. The sensor 300 is, for example, a CMOS image sensor.
 画素11は、第1光電変換素子PD1と、第2光電変換素子PD2と、イベント検出部20と、輝度検出部40とを備える。即ち、本例の画素11は、イベント検出用の第1光電変換素子PD1と、輝度検出用の第2光電変換素子PD2との両方を備える。画素11内の第1光電変換素子PD1と、第2光電変換素子PD2とは、互いに独立している。また、画素11が複数設けられる場合、それぞれの画素11は独立している。 The pixel 11 includes a first photoelectric conversion element PD1, a second photoelectric conversion element PD2, an event detection unit 20, and a luminance detection unit 40. That is, the pixel 11 of this example includes both of the first photoelectric conversion element PD1 for event detection and the second photoelectric conversion element PD2 for luminance detection. The first photoelectric conversion element PD1 and the second photoelectric conversion element PD2 in the pixel 11 are independent of each other. Moreover, when the pixel 11 is provided with two or more, each pixel 11 is independent.
 第1光電変換素子PD1は、イベント検出用の光電変換素子である。第1光電変換素子PD1は、受光に応じて発生した光電流をイベント検出部20に出力する。 The first photoelectric conversion element PD1 is a photoelectric conversion element for event detection. The first photoelectric conversion element PD1 outputs the photocurrent generated in response to light reception to the event detection unit 20.
 第2光電変換素子PD2は、輝度検出用の光電変換素子である。第2光電変換素子PD2は、受光に応じて発生した光電流を蓄積して輝度検出部40に出力する。 The second photoelectric conversion element PD2 is a photoelectric conversion element for luminance detection. The second photoelectric conversion element PD <b> 2 accumulates the photocurrent generated in response to the light reception and outputs the accumulated photocurrent to the luminance detection unit 40.
 イベント処理部30は、空間密度処理部32および読み出し制御部34を備える。本例のイベント処理部30は、画素部10の外部に設けられる。 The event processing unit 30 includes a space density processing unit 32 and a read control unit 34. The event processing unit 30 of this example is provided outside the pixel unit 10.
 空間密度処理部32は、イベント検出部20から検出したイベント検出信号SIDを受信する。空間密度処理部32は、画素ブロック12毎にイベント検出信号SIDの空間密度を算出する。 The spatial density processing unit 32 receives the event detection signal S ID detected from the event detection unit 20. The spatial density processing unit 32 calculates the spatial density of the event detection signal S ID for each pixel block 12.
 読み出し制御部34は、輝度検出部40の検出した輝度信号Sの読み出しを制御する。一例において、読み出し制御部34は、空間密度処理部32が算出したイベント検出信号SIDの空間密度に基づいてROIを特定する。ROIは、センサ300が画像を取得する画像取得領域である。本例の読み出し制御部34は、画素ブロック12ごとにROIであるか否かを判断する。これにより、読み出し制御部34は、画素11ごとにROIを判断する場合と比較して、必要なデータ数を低減することができる。 Readout control unit 34 controls the reading of the luminance signal S L detected of the luminance detector 40. In one example, the read control unit 34 specifies the ROI based on the spatial density of the event detection signal S ID calculated by the spatial density processing unit 32. The ROI is an image acquisition area where the sensor 300 acquires an image. The read control unit 34 of this example determines whether or not each pixel block 12 is an ROI. Thereby, the read control unit 34 can reduce the required number of data as compared with the case where the ROI is determined for each pixel 11.
 例えば、読み出し制御部34は、イベント検出信号SIDの空間密度が予め定められた閾値よりも高い場合にROIとして特定する。また、読み出し制御部34は、イベント検出信号SIDの空間密度が予め定められた閾値よりも低い場合にROIではないと判断する。読み出し制御部34は、ROIに対応する輝度検出部40のみから輝度信号Sを読み出させる。 For example, when the spatial density of the event detection signal S ID is higher than a predetermined threshold, the read control unit 34 specifies it as the ROI. Further, the read control unit 34 determines that it is not the ROI when the spatial density of the event detection signal S ID is lower than a predetermined threshold. The read control unit 34 causes the brightness signal SL to be read only from the brightness detection unit 40 corresponding to the ROI.
 なお、読み出し制御部34は、複数の画素11の各画素を非同期で駆動させてよい。例えば、読み出し制御部34は、イベント検出部20および輝度検出部40の駆動を制御する。読み出し制御部34は、イベント検出用の第1光電変換素子PD1と、輝度検出用の第2光電変換素子PD2とを同期させずに、互いに独立して駆動させることが可能である。よって、読み出し制御部34は、第2光電変換素子PD2に撮像フレームに対応して駆動する一方で、第1光電変換素子PD1は撮像フレームと非同期で駆動させてよい。この場合、第2光電変換素子PD2では、光電流の蓄積及びリセットが撮像フレーム毎に繰り返されており、第1光電変換素子PD1でのイベントの検出によりROIが設定されたタイミングで、ROIに設定された画素11の第2光電変換素子PD2から輝度信号Sが出力される。したがって、本例の検出装置100は、イベントの検出に関して撮像フレームの概念がないので、撮像フレームよりも高速なイベントの変化を検出できる。本例のイベント検出方法は、イベントの変化が大きい場合や、動画撮影時にイベントを検出する場合に特に有効である。なお、撮像フレームは、撮像する際のフレームレートを示しており、例えば30fps、60fps等である。 The read control unit 34 may drive each pixel of the plurality of pixels 11 asynchronously. For example, the read control unit 34 controls the driving of the event detection unit 20 and the luminance detection unit 40. The read control unit 34 can drive the first photoelectric conversion element PD1 for event detection and the second photoelectric conversion element PD2 for luminance detection independently of each other without synchronizing them. Therefore, the read control unit 34 may drive the first photoelectric conversion element PD1 asynchronously with the imaging frame while driving the second photoelectric conversion element PD2 corresponding to the imaging frame. In this case, in the second photoelectric conversion element PD2, accumulation and reset of photocurrent are repeated for each imaging frame, and the ROI is set to the ROI at the timing when the event is detected in the first photoelectric conversion element PD1. luminance signal S L from the second photoelectric conversion element PD2 of the pixel 11 is output. Therefore, the detection apparatus 100 of the present example can detect a change in an event faster than an imaging frame because there is no concept of an imaging frame with respect to detection of an event. The event detection method of the present example is particularly effective when the change of the event is large or when the event is detected at the time of moving image shooting. The imaging frame indicates a frame rate at the time of imaging, and is, for example, 30 fps or 60 fps.
 図3は、検出装置100による検出動作を示すフローチャートの一例である。検出装置100は、ステップS100~ステップS104を実行することにより、検出されたイベントに応じたROIの輝度信号を検出する。検出装置100は、各々が少なくとも1つの光電変換素子を有する1又は複数の画素11で構成された画素ブロック12において、光電変換素子で発生する光電流の変化量が予め定められたイベント検出閾値を超えるイベントを検出する(S100)。検出装置100は、イベントの検出に基づいて、読み出し用のROIを特定する(S102)。そして、検出装置100は、ROIにおいて、光電変換素子で発生する光電流を蓄積した輝度信号を検出する(S104)。なお、ステップS100~ステップS104は、全ての画素ブロック12において同時に実行されてもよいし、画素ブロック12毎に別々に実行されてもよい。 FIG. 3 is an example of a flowchart showing a detection operation by the detection device 100. The detection apparatus 100 detects the luminance signal of the ROI according to the detected event by executing steps S100 to S104. In the pixel block 12 composed of one or a plurality of pixels 11 each having at least one photoelectric conversion element, the detection device 100 sets an event detection threshold value in which the amount of change in photocurrent generated by the photoelectric conversion elements is predetermined. An exceeding event is detected (S100). The detection apparatus 100 specifies an ROI for reading based on the detection of an event (S102). Then, in the ROI, the detection apparatus 100 detects a luminance signal in which the photocurrent generated by the photoelectric conversion element is accumulated (S104). Steps S100 to S104 may be performed simultaneously for all pixel blocks 12, or may be performed separately for each pixel block 12.
 図4は、実施例に係る検出装置100によるROI特定方法の一例を示す。本例の検出装置100は、イベント検出対象200に対応するROIを特定し、イベント検出対象200の画像を部分的に取得する。例えば、検出装置100は、イベント検出対象200であるヒトが自転車に乗って道路を通行している場合に、ヒトの画像のみを取得する。 FIG. 4 shows an example of a method of specifying an ROI by the detection apparatus 100 according to the embodiment. The detection apparatus 100 of the present example identifies an ROI corresponding to the event detection target 200, and partially acquires an image of the event detection target 200. For example, when a human being an event detection target 200 is riding a bicycle and is traveling on a road, the detecting device 100 acquires only an image of the human.
 図4の(a)は、ヒトや道路を含む全画面を示している。本例の検出装置100は、全画面に対応する全画素11のうち、一部の画素11からイベント検出信号SIDを取得する。例えば、検出装置100は、輝度値の変化量が予め定められた閾値よりも大きい画素11からイベント検出信号SIDを取得して、その画素11を白色でプロットする。一方、検出装置100は、輝度値の変化量が予め定められた閾値よりも小さい画素、すなわち、イベント検出信号SIDを取得しない画素11を黒色でプロットする。即ち、図4の(b)に示すように、検出装置100は、イベントが検出された否かに応じて、全画面で2値化したデータを取得する。したがって、検出装置100は、ROIを特定する際に図4の(a)に示すような全画面の画像を取得する必要がない。本例の検出装置100は、全画面を6×7=42個の画素ブロック12に分けている。 (A) of FIG. 4 shows the entire screen including a person and a road. The detection device 100 of this example acquires an event detection signal S ID from a part of the pixels 11 among all the pixels 11 corresponding to the entire screen. For example, the detection apparatus 100 acquires an event detection signal S ID from a pixel 11 whose change amount of luminance value is larger than a predetermined threshold value, and plots the pixel 11 in white. On the other hand, the detection device 100 plots, in black, pixels whose luminance variation is smaller than a predetermined threshold, that is, pixels 11 which do not acquire the event detection signal S ID . That is, as shown in (b) of FIG. 4, the detection apparatus 100 acquires binarized data on the entire screen according to whether or not an event is detected. Therefore, the detection apparatus 100 does not have to acquire an image of the entire screen as shown in (a) of FIG. 4 when specifying the ROI. The detection apparatus 100 of this example divides the entire screen into 6 × 7 = 42 pixel blocks 12.
 次に、図4の(c)に示すように、検出装置100は、イベント検出信号SIDの空間密度からROIを抽出する。イベント検出信号SIDの空間密度とは、ある画素ブロック12に含まれる全ての画素11の内、イベントが検出された画素11の割合である。検出装置100は、ある画素ブロック12において、イベント検出信号SIDの空間密度が予め定められた閾値よりも大きい場合に、当該画素ブロック12をROIであると特定する。 Next, as shown in (c) of FIG. 4, the detection apparatus 100 extracts an ROI from the spatial density of the event detection signal S ID . The spatial density of the event detection signal S ID is a ratio of the pixels 11 in which an event is detected among all the pixels 11 included in a certain pixel block 12. The detection apparatus 100 specifies the pixel block 12 as the ROI when the spatial density of the event detection signal S ID is larger than a predetermined threshold value in a certain pixel block 12.
 なお、イベント検出部20は、イベント検出信号SIDの空間密度の上限値および下限値を設定してもよい。この場合、読み出し制御部34は、イベント検出信号SIDの空間密度が上限値および下限値の範囲に含まれる領域をROIであると特定する。また、イベント検出部20は、ROIの輝度に応じて、イベント検出信号SIDの空間密度の上限値および下限値を設定してもよい。 The event detection unit 20 may set the upper limit value and the lower limit value of the spatial density of the event detection signal S ID . In this case, the read control unit 34 specifies an area in which the spatial density of the event detection signal S ID is included in the range between the upper limit value and the lower limit value as the ROI. Also, the event detection unit 20 may set the upper limit value and the lower limit value of the spatial density of the event detection signal S ID according to the luminance of the ROI.
 例えば、画素ブロック12のサイズが一定以上の大きさ(例えば、全画面の1/2又は1/4等)であるにも関わらず、イベント検出信号SIDの空間密度が上限値を超える場合、外乱光等の外部要因によりその画素ブロック12全体にノイズが含まれている場合がある。イベント検出信号SIDの空間密度の上限値を設定することで、このような画素ブロック12全体にノイズが含まれる場合に誤ってROIを特定することを防ぐことができる。また、イベント検出信号SIDの空間密度が下限値を超える場合にROIとして特定することは、イベント検出閾値を一つの値で定めた場合と同様である。 For example, even though the size of the pixel block 12 is a certain size or more (for example, 1⁄2 or 1⁄4 of the entire screen, etc.), the spatial density of the event detection signal S ID exceeds the upper limit value. There are cases where noise is included in the whole pixel block 12 due to an external factor such as disturbance light. By setting the upper limit value of the spatial density of the event detection signal S ID , it is possible to prevent the erroneous identification of the ROI when the entire pixel block 12 includes noise. In addition, when the spatial density of the event detection signal S ID exceeds the lower limit value, specifying as the ROI is the same as the case where the event detection threshold is defined by one value.
 本例の検出装置100は、イベント検出信号SIDの取得段階において、大容量の画像データを取得する必要がなく、2値化された低容量の画像データを取得すればよい。したがって、検出装置100は、ROIを特定するために必要なデータ量を圧縮できる。 The detection apparatus 100 according to the present embodiment does not have to acquire a large volume of image data in the acquisition stage of the event detection signal S ID , and may obtain binarized low volume image data. Thus, the detection device 100 can compress the amount of data needed to identify the ROI.
 図5は、比較例に係る検出装置によるROI特定方法の一例を示す。比較例の検出装置は、イベント検出対象200であるヒトや道路を含んだ全画面の画像を取得する(図5の(a))。次に、比較例の検出装置は、全画面の画像からポスト処理として、イベント検出対象200を含んだROIを特定する(図5の(b))。そして、比較例の検出装置は、(b)で取得した全画面の画像からROIの画像のみを抽出する(図5の(c))。即ち、比較例の検出装置では、全画面の画像を取得してROIを特定するので、大容量のデータを扱う必要がある。さらに、撮像フレームの間隔でしかROIを検出することができない。 FIG. 5 shows an example of a method of specifying an ROI by a detection device according to a comparative example. The detection device of the comparative example acquires an image of the entire screen including a person and a road, which is an event detection target 200 ((a) in FIG. 5). Next, the detection device of the comparative example specifies an ROI including the event detection target 200 from the image of the entire screen as post processing ((b) in FIG. 5). And the detection apparatus of a comparative example extracts only the image of ROI from the image of the full screen acquired by (b) ((c) of FIG. 5). That is, in the detection device of the comparative example, since the image of the entire screen is acquired to specify the ROI, it is necessary to handle a large volume of data. Furthermore, the ROI can only be detected at intervals of imaging frames.
 なお、本例の読み出し制御部34は、画素11毎にイベント検出信号SIDを算出して、ROIを特定している。但し、読み出し制御部34は、後述の通り、複数の画素11毎に代表的なイベント検出結果を決定することにより、複数の画素11を代表するイベント検出信号SIDに基づいて、ROIを特定してよい。 The read control unit 34 in this example calculates the event detection signal S ID for each pixel 11 to specify the ROI. However, as described later, the readout control unit 34 determines a representative event detection result for each of the plurality of pixels 11 to specify the ROI based on the event detection signal S ID representative of the plurality of pixels 11. You may
 ここで、代表的なイベント検出結果とは、ある画素11とその周辺の画素11からなる集合(画素ブロック12よりも小さい集合)を構成する複数の画素11のそれぞれに対応する複数のイベント検出信号SIDのうち、その集合を代表するイベント検出信号SIDである。読み出し制御部34は、代表的なイベント検出結果を用いることにより、イベント検出信号SIDのデータ量を低減できる。また、読み出し制御部34は、代表的なイベント検出結果を用いることにより、複数の画素11の一部の画素11にノイズが含まれた場合の誤検出を防止できる。 Here, a representative event detection result is a plurality of event detection signals corresponding to each of a plurality of pixels 11 constituting a set (a set smaller than the pixel block 12) consisting of a certain pixel 11 and its peripheral pixels 11 of S ID, an event detection signal S ID representative of the set. The read control unit 34 can reduce the data amount of the event detection signal S ID by using a representative event detection result. Further, the readout control unit 34 can prevent erroneous detection when noise is included in some of the pixels 11 of the plurality of pixels 11 by using a representative event detection result.
 図6は、検出装置100による誤検出防止の実施形態の一例を示す。本例の検出装置100は、イベント検出信号SIDにフィルタ処理を適用することにより、イベントの誤検出を低減する。周辺画素領域15は、a×b個(a,bは、自然数)の画素11を含む領域である。本例の周辺画素領域15は、a×b=3×3=9個の画素11を含む。イベント検出部20は、イベントを検出した場合に"1"を出力し、イベントを検出しなかった場合に"0"を出力する。本例では、イベント検出部20が2値化する場合について説明するが、これに限られない。なお、図6において、左上の画素11を原点(0,0)とし、右方向を正のX方向、下方向を正のY方向として、任意の画素11を(X,Y)で示す。 FIG. 6 shows an example of an embodiment of the erroneous detection prevention by the detection device 100. The detection apparatus 100 of this example reduces false detection of an event by applying a filter process to the event detection signal S ID . The peripheral pixel area 15 is an area including a × b (a and b are natural numbers) pixels 11. The peripheral pixel area 15 of this example includes a × b = 3 × 3 = 9 pixels 11. The event detection unit 20 outputs “1” when an event is detected, and outputs “0” when an event is not detected. In this example, although the case where the event detection unit 20 binarizes is described, it is not limited thereto. In FIG. 6, an arbitrary pixel 11 is indicated by (X, Y), with the upper left pixel 11 as the origin (0, 0), the right direction as the positive X direction, and the lower direction as the positive Y direction.
 図6に示す例では、イベント検出部20は、(a,b)=(2,2)の画素11において、イベントを検出している。一方、イベント検出部20は、残りの8個の画素11でイベントを検出していない。この場合、(a,b)=(2,2)の画素11では、イベントが誤検出された可能性が高い。例えば、イベントの誤検出は、光ショットノイズや光源の揺らぎ等のノイズにより生じる。本例のイベント検出部20は、(a,b)=(2,2)の画素11を、周辺画素とのAND回路を用いたフィルタ処理により"0"に変更する。したがって、本例の周辺画素領域15では、"0"が代表的なイベント検出結果となる。 In the example illustrated in FIG. 6, the event detection unit 20 detects an event in the pixel 11 of (a, b) = (2, 2). On the other hand, the event detection unit 20 does not detect an event in the remaining eight pixels 11. In this case, in the pixel 11 of (a, b) = (2, 2), there is a high possibility that an event is erroneously detected. For example, false detection of an event is caused by noise such as light shot noise or fluctuation of a light source. The event detection unit 20 of this example changes the pixel 11 of (a, b) = (2, 2) to “0” by filter processing using an AND circuit with peripheral pixels. Therefore, in the peripheral pixel area 15 of this example, “0” is a representative event detection result.
 また、イベント検出部20は、周辺画素領域15に適用するフィルタ回路として、AND回路を用いたが、フィルタ回路の種類はこれに限定されない。例えば、検出装置100は、メディアンフィルタ回路等の他のフィルタを用いることにより、周辺画素領域15を用いて代表的なイベント検出結果を算出してよい。このように、イベント検出部20のフィルタ回路は、ノイズを除去するためにフィルタ処理できるものであればよい。 Moreover, although the event detection part 20 used AND circuit as a filter circuit applied to the peripheral pixel area 15, the kind of filter circuit is not limited to this. For example, the detection apparatus 100 may calculate a representative event detection result using the peripheral pixel area 15 by using another filter such as a median filter circuit. As described above, the filter circuit of the event detection unit 20 only needs to be able to perform filter processing to remove noise.
 読み出し制御部34は、周辺画素領域15のイベント検出結果から、a×b個のイベント検出結果を代表する代表的なイベント検出結果をフィルタ処理し、代表的なイベント検出結果に基づいて、ROIを特定する。 The readout control unit 34 filters a representative event detection result representing the a × b event detection results from the event detection results of the peripheral pixel area 15, and based on the representative event detection result, the ROI is calculated. Identify.
 このように、本例の検出装置100は、周辺画素領域15のフィルタ処理により、イベントの誤検出を低減する。これにより、検出装置100は、撮像した画像の画質を向上することができる。 Thus, the detection device 100 of the present example reduces false detection of an event by filtering the peripheral pixel region 15. Thus, the detection device 100 can improve the image quality of the captured image.
 なお、本例のイベント検出部20は、周辺画素領域15において、予め定められた期間に入力されたイベント検出信号SIDを比較して出力する。換言すると、イベント検出部20は、周辺画素領域15において、画素11毎に異なる期間に入力されたイベント検出信号SIDを比較してもよい。即ち、周辺画素領域15において比較されるイベント検出信号SIDは、同一の画像に含まれるものに限られない。周辺画素領域15内の複数の画素11は、それぞれ独立してイベント検出部20がイベントを検出しているので、完全に同一にはならないからである。但し、イベント検出部20は、周辺画素領域15において、共通のイベント検出閾値を用いてイベントを検出することが好ましい。 The event detection unit 20 of this example compares and outputs the event detection signal S ID input in a predetermined period in the peripheral pixel area 15. In other words, the event detection unit 20 may compare the event detection signal S ID input in a different period for each pixel 11 in the peripheral pixel region 15. That is, the event detection signal S ID compared in the peripheral pixel area 15 is not limited to one included in the same image. This is because the plurality of pixels 11 in the peripheral pixel area 15 are not completely identical because the event detection unit 20 detects an event independently. However, it is preferable that the event detection unit 20 detects an event in the peripheral pixel region 15 using a common event detection threshold.
 ここで、画素ブロック12は、周辺画素領域15よりも大きな画素領域である。即ち、即ち、画素ブロック12は、複数の周辺画素領域15により構成されてよい。この場合、検出装置100は、周辺画素領域15を代表するイベント検出結果を算出することにより、周辺画素領域15を1つの画素とみなすことができる。この場合、ROI領域を特定するために全画面で2値化するデータの解像度は低くなるものの、イベント検出信号SIDのデータ量を低減できる。 Here, the pixel block 12 is a pixel area larger than the peripheral pixel area 15. That is, in other words, the pixel block 12 may be configured by a plurality of peripheral pixel areas 15. In this case, the detection apparatus 100 can regard the peripheral pixel area 15 as one pixel by calculating an event detection result representing the peripheral pixel area 15. In this case, although the resolution of data to be binarized on the entire screen in order to specify the ROI region is low, the data amount of the event detection signal S ID can be reduced.
 イベント検出部20は、イベントの有無を判断するため、1又は複数のイベント検出閾値を有する。一例において、イベント検出部20は、1つのイベント検出閾値を有し、周辺画素領域15に含まれる全ての画素11に対して同一のイベント検出閾値で、イベントの有無を判断する。また、イベント検出部20は、複数のイベント検出閾値を有し、周辺画素領域15に含まれる画素11に対して、異なるイベント検出閾値で、イベントの有無を判断してよい。例えば、イベント検出部20は、周辺画素領域15に含まれる第1の画素11について、第1のイベント検出閾値との比較に基づいてイベントを検出する。また、イベント検出部20は、第1の画素11と異なる第2の画素11について、第1のイベント検出閾値と異なる第2のイベント検出閾値との比較に基づいてイベントを検出してよい。 The event detection unit 20 has one or more event detection thresholds in order to determine the presence or absence of an event. In one example, the event detection unit 20 has one event detection threshold, and determines the presence or absence of an event with the same event detection threshold for all the pixels 11 included in the peripheral pixel area 15. Further, the event detection unit 20 may have a plurality of event detection thresholds, and may determine the presence or absence of an event with respect to the pixels 11 included in the peripheral pixel area 15 using different event detection thresholds. For example, the event detection unit 20 detects an event of the first pixel 11 included in the peripheral pixel area 15 based on comparison with the first event detection threshold. In addition, the event detection unit 20 may detect an event for the second pixel 11 different from the first pixel 11 based on comparison between the first event detection threshold and a second event detection threshold different from the first event detection threshold.
 図7は、検出装置100によるデータ削減の実施形態の他の一例を示す。本例の検出装置100は、イベント検出信号SIDをフィルタ処理することにより、データ数を削減する。例えば、a×b=3×3=9個の画素11について考える。全ての画素でイベントを検出した場合、周辺画素とのAND回路を用いたフィルタ処理により、(a,b)=(2,2)の画素11を"1"のまま、代表的なイベント検出結果とする。もし、全ての画素でイベント検出信号SIDを出力した場合、データ数が9となる。一方、a×b=3×3の9画素のイベント検出信号SIDについてフィルタ処理を実行することにより、データ数を1に削減できる。本例の検出装置100は、フィルタのサイズが既知なので、1個のデータとして扱うことができる。 FIG. 7 shows another example of an embodiment of data reduction by the detection device 100. The detection device 100 of this example reduces the number of data by filtering the event detection signal S ID . For example, consider a × b = 3 × 3 = 9 pixels 11. When an event is detected in all pixels, a typical event detection result remains with the pixel 11 of (a, b) = (2, 2) being "1" by filter processing using an AND circuit with peripheral pixels I assume. If the event detection signal S ID is output for all pixels, the number of data is nine. On the other hand, the number of data can be reduced to 1 by executing the filtering process on the event detection signal S ID of nine pixels of a × b = 3 × 3. The detection device 100 of this example can be treated as one piece of data because the filter size is known.
 また、周辺画素領域15の大きさは、任意の大きさであってよい。一例において、イベント検出部20は、ROIの輝度に応じて、周辺画素領域15の大きさを調整する。例えば、イベント検出部20は、ROIの輝度の単位時間あたりの変化量が所定の閾値と同じまたは上回った場合に、周辺画素領域15を第1のサイズとする。一方、イベント検出部20は、ROIの輝度の変化量が所定の閾値を下回った場合に、周辺画素領域15を第1のサイズよりも大きい第2のサイズとする。これにより、検出装置100は、イベントの変化が小さい場合にデータ削減効果を大きくし、イベントの変化が大きい場合にはイベント検出精度を高めることができる。なお、所定の閾値と、それに応じて調整される周辺画素領域15の大きさは、2段階よりも多い多段階であってもよい。 In addition, the size of the peripheral pixel area 15 may be any size. In one example, the event detection unit 20 adjusts the size of the peripheral pixel area 15 according to the luminance of the ROI. For example, the event detection unit 20 sets the peripheral pixel region 15 to the first size when the amount of change in luminance of the ROI per unit time is equal to or greater than a predetermined threshold. On the other hand, when the amount of change in luminance of the ROI falls below a predetermined threshold, the event detection unit 20 sets the peripheral pixel area 15 to a second size larger than the first size. Thus, the detection apparatus 100 can increase the data reduction effect when the change in the event is small, and can improve the event detection accuracy when the change in the event is large. Note that the predetermined threshold value and the size of the peripheral pixel area 15 adjusted accordingly may be multistages more than two stages.
 以上の通り、本例の検出装置100は、周辺画素領域15のデータ量を削減して、ROIを特定する。これにより、検出装置100は、高速読み出しおよび消費電力の低減を実現できる。なお、検出装置100は、イベントの総和、密度および変化の少なくとも1つに基づいて、ROIを特定してデータ量を削減してもよい。 As described above, the detection device 100 of this example reduces the data amount of the peripheral pixel area 15 to specify the ROI. Thereby, the detection apparatus 100 can realize high-speed reading and reduction of power consumption. The detection apparatus 100 may identify the ROI and reduce the data amount based on at least one of the sum of events, the density, and the change.
 図8は、センサ300の構成の一例を示す。本例のセンサ300は、第1の基板110および第2の基板120を備える。 FIG. 8 shows an example of the configuration of the sensor 300. The sensor 300 of this example comprises a first substrate 110 and a second substrate 120.
 第1の基板110は、画素ブロックアレイ112を有する。画素ブロックアレイ112は、複数の画素11のそれぞれに、第1光電変換素子PD1と、第2光電変換素子PD2と、イベント検出部20と、輝度検出部40とを備える。即ち、本例の画素11は、イベント検出用の第1光電変換素子PD1と、輝度検出用の第2光電変換素子PD2との両方を含む。 The first substrate 110 has a pixel block array 112. The pixel block array 112 includes a first photoelectric conversion element PD1, a second photoelectric conversion element PD2, an event detection unit 20, and a luminance detection unit 40 for each of the plurality of pixels 11. That is, the pixel 11 of this example includes both the first photoelectric conversion element PD1 for event detection and the second photoelectric conversion element PD2 for luminance detection.
 第2の基板120は、処理ブロックアレイ122および撮像制御部60を有する。第2の基板120は、空間密度処理部32と、読み出し制御部34と、信号処理部50とを備える。第2の基板120は、第1の基板110に積層されている。 The second substrate 120 has a processing block array 122 and an imaging control unit 60. The second substrate 120 includes a space density processing unit 32, a read control unit 34, and a signal processing unit 50. The second substrate 120 is stacked on the first substrate 110.
 撮像制御部60は、検出装置100の撮像条件を制御する。一例において、撮像制御部60は、読み出し制御部34が検出したROIに応じて、オートフォーカス(AF)や自動露出(AE)の条件を制御する。例えば、撮像制御部60は、ROIにおける輝度等に応じて、最適なAFおよびAEを実行する。これにより、検出装置100は、ROIの画像を適当に撮像することができる。 The imaging control unit 60 controls imaging conditions of the detection device 100. In one example, the imaging control unit 60 controls the conditions of auto focus (AF) and automatic exposure (AE) according to the ROI detected by the read control unit 34. For example, the imaging control unit 60 executes optimum AF and AE in accordance with the luminance and the like in the ROI. Thereby, the detection apparatus 100 can appropriately capture an image of the ROI.
 図9は、センサ300の構成の一例を示す。本例のセンサ300は、第1の基板110および第2の基板120を備える。第1の基板110および第2の基板120は、互いに積層して設けられる。センサ300は、例えば、積層型のCMOSイメージセンサである。 FIG. 9 shows an example of the configuration of the sensor 300. The sensor 300 of this example comprises a first substrate 110 and a second substrate 120. The first substrate 110 and the second substrate 120 are provided to be stacked on each other. The sensor 300 is, for example, a stacked CMOS image sensor.
 第1の基板110は、M×N個の画素11を有する。また、第1の基板110は、m×n個の画素11で構成された画素ブロック12を有する。第1の基板110は、複数の画素ブロック12を有してよい。 The first substrate 110 has M × N pixels 11. Further, the first substrate 110 has a pixel block 12 composed of m × n pixels 11. The first substrate 110 may have a plurality of pixel blocks 12.
 画素11は、それぞれ第1光電変換素子PD1と、第2光電変換素子PD2とイベント検出部20と、輝度検出部40とを備える。このように、本例のイベント検出部20および輝度検出部40は、第1光電変換素子PD1および第2光電変換素子PD2にそれぞれ対応して設けられている。 Each pixel 11 includes a first photoelectric conversion element PD1, a second photoelectric conversion element PD2, an event detection unit 20, and a luminance detection unit 40. As described above, the event detection unit 20 and the luminance detection unit 40 of the present example are provided corresponding to the first photoelectric conversion element PD1 and the second photoelectric conversion element PD2, respectively.
 第2の基板120は、画素ブロック12に対応して設けられたイベント処理部30を有する。イベント処理部30は、それぞれ空間密度処理部32および読み出し制御部34を有する。イベント処理部30と、対応する画素ブロック12は、電気的に接続されている。本例のイベント処理部30は、それぞれ対応して設けられた画素ブロック12のイベント処理を実行する。イベント処理部30は、対応する画素ブロック12の直下に設けられることが好ましい。これにより、対応する画素ブロック12およびイベント処理部30を結ぶ配線が短くなるので、検出装置100の処理速度が向上する。また、画素ブロック12とイベント処理部30との組は、隣接する画素ブロック12とイベント処理部30との組に対して独立している。本例のセンサ300は、イベント処理部30を第2の基板120に構成したことにより、光電変換素子PDのサイズを大きくすることが可能であり、高感度なセンサを実現できる。 The second substrate 120 has an event processing unit 30 provided corresponding to the pixel block 12. The event processing unit 30 has a space density processing unit 32 and a read control unit 34, respectively. The event processing unit 30 and the corresponding pixel block 12 are electrically connected. The event processing unit 30 of this example executes event processing of the pixel blocks 12 provided correspondingly. The event processing unit 30 is preferably provided immediately below the corresponding pixel block 12. As a result, the wiring connecting the corresponding pixel block 12 and the event processing unit 30 becomes short, so that the processing speed of the detection device 100 is improved. Further, the set of the pixel block 12 and the event processing unit 30 is independent of the set of the adjacent pixel block 12 and the event processing unit 30. In the sensor 300 of this example, the event processing unit 30 is configured on the second substrate 120, whereby the size of the photoelectric conversion element PD can be increased, and a highly sensitive sensor can be realized.
 図10は、センサ300の構成の一例を示す。本例のセンサ300は、イベント検出部20および輝度検出部40を、光電変換素子PDと異なる基板に設けている。センサ300は、第1の基板110と、第2の基板120と、第3の基板130とを備える。第1の基板110、第2の基板120および第3の基板130は、互いに積層して設けられる。 FIG. 10 shows an example of the configuration of the sensor 300. In the sensor 300 of this example, the event detection unit 20 and the luminance detection unit 40 are provided on a substrate different from the photoelectric conversion element PD. The sensor 300 comprises a first substrate 110, a second substrate 120 and a third substrate 130. The first substrate 110, the second substrate 120, and the third substrate 130 are provided stacked on one another.
 第1の基板110は、画素ブロックアレイ112を有する。本例の画素ブロックアレイ112は、1又は複数の画素11を有する。本例の画素11には、光電変換素子PD1および第2光電変換素子PD2がそれぞれ設けられている。 The first substrate 110 has a pixel block array 112. The pixel block array 112 in this example has one or more pixels 11. A photoelectric conversion element PD1 and a second photoelectric conversion element PD2 are provided in the pixel 11 of this example.
 第2の基板120は、処理ブロックアレイ122を有する。本例の処理ブロックアレイ122は、イベント検出部20および輝度検出部40を有する。イベント検出部20および輝度検出部40は、それぞれ対応する画素11と対向して設けられることが好ましい。これにより、画素ブロックアレイ112および処理ブロックアレイ122を結ぶ配線が短くなる。 The second substrate 120 has a processing block array 122. The processing block array 122 of this example includes an event detection unit 20 and a luminance detection unit 40. It is preferable that the event detection unit 20 and the luminance detection unit 40 be provided to face the corresponding pixels 11 respectively. As a result, the wiring connecting the pixel block array 112 and the processing block array 122 is shortened.
 第3の基板130は、出力ブロックアレイ132を有する。本例の出力ブロックアレイ132は、空間密度処理部32、読み出し制御部34および信号処理部50を有する。本例のセンサ300は、第1の基板110にイベント検出部20および輝度検出部40を有さないので、光電変換素子PDのサイズを大きくすることが可能であり、高感度なセンサを実現できる。 The third substrate 130 has an output block array 132. The output block array 132 of this example includes a space density processing unit 32, a read control unit 34, and a signal processing unit 50. Since the sensor 300 of this example does not have the event detection unit 20 and the luminance detection unit 40 on the first substrate 110, the size of the photoelectric conversion element PD can be increased, and a highly sensitive sensor can be realized. .
 図11は、センサ300の構成の一例を示す。センサ300の基本的な構成は、図10のセンサ300の構成と同一であり、図10で示す機能を実現するための具体的な構成を示している。 FIG. 11 shows an example of the configuration of the sensor 300. The basic configuration of the sensor 300 is the same as that of the sensor 300 of FIG. 10, and shows a specific configuration for realizing the function shown in FIG.
 第1の基板110は、m×nサイズの画素ブロック12を有する。本例の画素11は、第1光電変換素子PD1および第2光電変換素子PD2をそれぞれ有する。 The first substrate 110 has pixel blocks 12 of m × n size. The pixel 11 of this example has a first photoelectric conversion element PD1 and a second photoelectric conversion element PD2.
 第2の基板120は、画素ブロック12に対応して設けられた撮像制御部60を有する。撮像制御部60は、対応して設けられた画素11の駆動を制御する。撮像制御部60は、イベント検出部20および輝度検出部40を有する。イベント検出部20は、第1光電変換素子PD1に対応して設けられる。輝度検出部40は、第2光電変換素子PD2に対応して設けられる。 The second substrate 120 has an imaging control unit 60 provided corresponding to the pixel block 12. The imaging control unit 60 controls driving of the pixels 11 provided correspondingly. The imaging control unit 60 includes an event detection unit 20 and a luminance detection unit 40. The event detection unit 20 is provided corresponding to the first photoelectric conversion element PD1. The luminance detection unit 40 is provided corresponding to the second photoelectric conversion element PD2.
 第3の基板130は、撮像制御部60に対応して設けられたイベント処理部30を有する。イベント処理部30には、イベント情報および輝度情報が入力される。イベント処理部30は、イベント情報に基づいてROIを特定し、ROIの輝度情報を信号処理部50に出力する。 The third substrate 130 has an event processing unit 30 provided corresponding to the imaging control unit 60. The event processing unit 30 receives event information and luminance information. The event processing unit 30 specifies the ROI based on the event information, and outputs the luminance information of the ROI to the signal processing unit 50.
 図12は、第1の基板110の構成の一例を示す。本例の第1の基板110は、第1の画素群13および第2の画素群14を備える。 FIG. 12 shows an example of the configuration of the first substrate 110. The first substrate 110 in this example includes a first pixel group 13 and a second pixel group 14.
 第1の画素群13は、第3光電変換素子PD3と、イベント検出部20と、輝度検出部40とを有し、図中、白色で示されている。第3光電変換素子PD3は、イベント検出部20および輝度検出部40に接続されている。 The first pixel group 13 includes a third photoelectric conversion element PD3, an event detection unit 20, and a luminance detection unit 40, and is shown in white in the drawing. The third photoelectric conversion element PD3 is connected to the event detection unit 20 and the luminance detection unit 40.
 第3光電変換素子PD3は、第1光電変換素子PD1および第2光電変換素子PD2の機能を兼ねる。即ち、第3光電変換素子PD3は、イベント検出用の光電変換素子および輝度検出用の光電変換素子として機能する。これにより、イベント検出部20は、第3光電変換素子PD3からの信号に応じてイベントを検出し、輝度検出部40は、第3光電変換素子PD3からの信号に応じて輝度を検出することができる。例えば、第3光電変換素子PD3は、イベントの検出機能と輝度検出機能とを切り替えて実行する。 The third photoelectric conversion element PD3 doubles as the functions of the first photoelectric conversion element PD1 and the second photoelectric conversion element PD2. That is, the third photoelectric conversion element PD3 functions as a photoelectric conversion element for event detection and a photoelectric conversion element for luminance detection. Thereby, the event detection unit 20 detects an event according to the signal from the third photoelectric conversion element PD3, and the luminance detection unit 40 detects luminance according to the signal from the third photoelectric conversion element PD3. it can. For example, the third photoelectric conversion element PD3 switches and executes an event detection function and a luminance detection function.
 第2の画素群14は、イベントを検出せずに、輝度のみを検出する画素11を含む。第2の画素群14は、第2光電変換素子PD2および輝度検出部40を有し、図中、網掛けで示されている。これにより、第2の画素群14は、第2光電変換素子PD2からの信号に応じた輝度を検出する。第2の画素群14は、輝度検出部40専用の画素として用いられるので、イベント検出部20の駆動タイミングに制限されない任意のタイミングで駆動される。 The second pixel group 14 includes the pixels 11 that detect only the luminance without detecting an event. The second pixel group 14 has a second photoelectric conversion element PD2 and a luminance detection unit 40, and is shown by hatching in the figure. Thereby, the second pixel group 14 detects the luminance according to the signal from the second photoelectric conversion element PD2. Since the second pixel group 14 is used as a pixel dedicated to the luminance detection unit 40, the second pixel group 14 is driven at an arbitrary timing not limited to the drive timing of the event detection unit 20.
 本例の第1の画素群13は、予め定められた方向において、第2の画素群14を挟んで非連続に配置される。即ち、イベント検出部20は、全ての画素11に設ける必要がない。第1の画素群13は、ROIを特定するために必要な密度となるように間引いて配置されてよい。これにより、第1の基板110の回路構成を簡略化し、消費電力を低減できる。 The first pixel group 13 of this example is disposed discontinuously across the second pixel group 14 in a predetermined direction. That is, the event detection unit 20 does not have to be provided in all the pixels 11. The first pixel group 13 may be thinned out so as to have the density necessary to specify the ROI. Thus, the circuit configuration of the first substrate 110 can be simplified and power consumption can be reduced.
 本例の第1の画素群13は、M×Nサイズの画素11において、列方向に連続して設けられている。また、本例の第2の画素群14は、M×Nサイズの画素11において、列方向に連続して設けられている。第1の画素群13および第2の画素群14は、行方向において、交互に配置されている。但し、第1の画素群13および第2の画素群14は、イベント検出信号SIDの処理に必要な分布で配置されていれば、本例の配列方法に限定されない。例えば、第1の画素群13および第2の画素群14が千鳥格子状に互いに配置されてもよい。 The first pixel group 13 of this example is provided continuously in the column direction in the pixels 11 of M × N size. In addition, the second pixel group 14 of this example is continuously provided in the column direction in the pixels 11 of the M × N size. The first pixel group 13 and the second pixel group 14 are alternately arranged in the row direction. However, the first pixel group 13 and the second pixel group 14 are not limited to the arrangement method of this example as long as they are arranged with the distribution necessary for processing the event detection signal S ID . For example, the first pixel group 13 and the second pixel group 14 may be arranged mutually in a staggered manner.
 図13は、第1の基板110の構成の一例を示す。本例の第1の基板110は、第1の画素群13および第2の画素群14を備える。 FIG. 13 shows an example of the configuration of the first substrate 110. The first substrate 110 in this example includes a first pixel group 13 and a second pixel group 14.
 第1の画素群13は、第1光電変換素子PD1と、第2光電変換素子PD2と、イベント検出部20と、輝度検出部40とを有する。即ち、本例の第1の画素群13は、イベント検出用の第1光電変換素子PD1と、輝度検出用の第2光電変換素子PD2との両方を含む。イベント検出部20は、第1光電変換素子PD1に接続されている。また、イベント処理部30は、第2光電変換素子PD2に接続されている。 The first pixel group 13 includes a first photoelectric conversion element PD1, a second photoelectric conversion element PD2, an event detection unit 20, and a luminance detection unit 40. That is, the first pixel group 13 of this example includes both of the first photoelectric conversion element PD1 for event detection and the second photoelectric conversion element PD2 for luminance detection. The event detection unit 20 is connected to the first photoelectric conversion element PD1. Further, the event processing unit 30 is connected to the second photoelectric conversion element PD2.
 第2の画素群14は、第2光電変換素子PD2および輝度検出部40を備える。輝度検出部40は、第2光電変換素子PD2に接続されている。第2の画素群14は、第1の画素群13と共に2次元状に配列される。 The second pixel group 14 includes a second photoelectric conversion element PD2 and a luminance detection unit 40. The luminance detection unit 40 is connected to the second photoelectric conversion element PD2. The second pixel group 14 is two-dimensionally arranged with the first pixel group 13.
 本例の第1の画素群13は、M×Nサイズの画素11において、列方向に連続して設けられている。また、本例の第2の画素群14は、M×Nサイズの画素11において、列方向に連続して設けられている。第1の画素群13および第2の画素群14は、行方向において、交互に配置されている。但し、第1の画素群13および第2の画素群14は、イベント検出信号SIDの処理に必要な分布で配置されていれば、本例の配列方法に限定されないのは、図12に示す例と同様である。 The first pixel group 13 of this example is provided continuously in the column direction in the pixels 11 of M × N size. In addition, the second pixel group 14 of this example is continuously provided in the column direction in the pixels 11 of the M × N size. The first pixel group 13 and the second pixel group 14 are alternately arranged in the row direction. However, as long as the first pixel group 13 and the second pixel group 14 are arranged in a distribution necessary for processing of the event detection signal S ID , the arrangement method of the present embodiment is not limited to that shown in FIG. It is the same as the example.
 図14は、第1の基板110の構成の一例を示す。本例の第1の基板110は、第1の画素群13および第2の画素群14の配列方法が図13の場合と相違する。 FIG. 14 shows an example of the configuration of the first substrate 110. The first substrate 110 of this example is different from the case of FIG. 13 in the method of arranging the first pixel group 13 and the second pixel group 14.
 本例の第1の画素群13は、第1の基板110の内部よりも、第1の基板110の周辺に多く配置されている。即ち、第1の画素群13は、2次元状に配列された複数の画素11の中央よりも、2次元状に配列された画素11の周辺において密に配置されている。よって、検出装置100は、画素部10の外周において、画素部10の内部よりも多くのイベント検出信号SIDを取得できる。これにより、検出装置100は、第1の基板110の外周においてイベントを検出しやすくなる。 The first pixel group 13 in the present example is disposed more around the first substrate 110 than inside the first substrate 110. That is, the first pixel group 13 is densely arranged around the pixels 11 arranged in a two-dimensional manner than the centers of the plurality of pixels 11 arranged in a two-dimensional manner. Therefore, the detection device 100 can acquire more event detection signals S ID than in the pixel unit 10 on the outer periphery of the pixel unit 10. Thus, the detection apparatus 100 can easily detect an event on the outer periphery of the first substrate 110.
 ここで、画像の外部から撮像対象物が入り込んでくる場合などは、画素部10の外部でイベントが発生する。本例の検出装置100は、画素部10の外周において、イベントの検出感度が高いので、撮像対象物を発見しやすくなる。したがって、検出装置100は、撮像領域に撮像対象物が侵入した場合、速やかにイベントを検出して撮像対象物のみを撮影することができる。 Here, an event occurs outside the pixel unit 10 when, for example, an imaging target comes in from the outside of the image. The detection device 100 of the present example has high detection sensitivity of an event on the outer periphery of the pixel unit 10, so that it becomes easy to find an imaging target. Therefore, when the imaging target object intrudes into the imaging region, the detection apparatus 100 can promptly detect an event and capture only the imaging target object.
 以上の通り、検出装置100は、空間密度処理部32がイベント検出信号SIDの空間密度に基づいてROIを決定する。したがって、検出装置100は、事前にROIを特定する必要がない。また、センサ300は、イベントの発生に応じて、適宜ROIを更新することもできる。センサ300は、想定外の挙動に対しても追随できる。これにより、センサ300は、ROI動作中に領域を追加又は変更する場合において、ポスト処理による演算や追加の画像取得が不要であり、電力の増加やレイテンシーの悪化を抑制できる。さらに、センサ300は、オートフォーカス(AF)や自動露出(AE)の対象領域を自動的に選択することができる。 As described above, in the detection device 100, the spatial density processing unit 32 determines the ROI based on the spatial density of the event detection signal S ID . Therefore, the detection apparatus 100 does not have to specify the ROI in advance. In addition, the sensor 300 can appropriately update the ROI in response to the occurrence of an event. The sensor 300 can also follow unexpected behavior. As a result, when adding or changing a region during ROI operation, the sensor 300 does not require post-processing calculation or additional image acquisition, and can suppress increase in power and deterioration in latency. Furthermore, the sensor 300 can automatically select a target area of auto focus (AF) or auto exposure (AE).
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。例えば、図12から図14に示すような第1の基板110を、図7から図10に示すような積層型のセンサのいずれかに適用させることが可能である。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. For example, the first substrate 110 as shown in FIGS. 12 to 14 can be applied to any of the stacked sensors as shown in FIGS. 7 to 10. It is apparent to those skilled in the art that various changes or modifications can be added to the above embodiment. It is also apparent from the scope of the claims that the embodiments added with such alterations or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The order of execution of each process such as operations, procedures, steps, and steps in the apparatuses, systems, programs, and methods shown in the claims, the specification, and the drawings is particularly "before", "before" It should be noted that it can be realized in any order, unless explicitly stated as etc., and unless the output of the previous process is used in the later process. With regard to the operation flow in the claims, the specification, and the drawings, even if it is described using “first,” “next,” etc. for convenience, it means that it is essential to carry out in this order. is not.
10・・・画素部、11・・・画素、12・・・画素ブロック、13・・・第1の画素群、14・・・第2の画素群、15・・・周辺画素領域、20・・・イベント検出部、30・・・イベント処理部、32・・・空間密度処理部、34・・・読み出し制御部、40・・・輝度検出部、50・・・信号処理部、60・・・撮像制御部、100・・・検出装置、110・・・第1の基板、112・・・画素ブロックアレイ、120・・・第2の基板、122・・・処理ブロックアレイ、130・・・第3の基板、132・・・出力ブロックアレイ、200・・・イベント検出対象、300・・・センサ DESCRIPTION OF SYMBOLS 10 ... pixel part, 11 ... pixel, 12 ... pixel block, 13 ... 1st pixel group, 14 ... 2nd pixel group, 15 ... periphery pixel area, 20 ... · · · Event detection unit, 30 ... Event processing unit, 32 ... Space density processing unit, 34 ... Readout control unit, 40 ... Brightness detection unit, 50 ... Signal processing unit, 60 · · · Imaging control unit 100 Detection device 110 First substrate 112 Pixel block array 120 Second substrate 122 Processing block array 130 Third substrate, 132: Output block array, 200: Event detection target, 300: Sensor

Claims (21)

  1.  各々が少なくとも1つの光電変換素子を有する1又は複数の画素で構成された画素ブロックにおいて、前記光電変換素子で発生する光電流の値が予め定められたイベント検出閾値を超えることを示すイベントを検出し、イベント検出信号を出力するイベント検出部と、
     前記イベント検出信号に基づいて関心領域を特定する読み出し制御部と、
     前記関心領域において、前記光電変換素子で発生する前記光電流を蓄積した輝度信号を検出する輝度検出部と
     を備える検出装置。
    In a pixel block composed of one or more pixels each having at least one photoelectric conversion element, an event indicating that the value of photocurrent generated by the photoelectric conversion element exceeds a predetermined event detection threshold is detected An event detection unit that outputs an event detection signal,
    A readout control unit that identifies a region of interest based on the event detection signal;
    A detection unit that detects a luminance signal in which the photocurrent generated by the photoelectric conversion element is accumulated in the region of interest.
  2.  前記輝度検出部が検出した信号を処理する信号処理部を更に備え、
     前記輝度検出部は、前記1又は複数の画素の全画素において前記光電流を蓄積した前記輝度信号のうち、前記関心領域で検出された前記輝度信号を前記信号処理部に出力する
     請求項1に記載の検出装置。
    The signal processing unit further includes a signal processing unit that processes a signal detected by the luminance detection unit.
    The luminance detection unit outputs, to the signal processing unit, the luminance signal detected in the region of interest among the luminance signals in which the photocurrent is accumulated in all the pixels of the one or a plurality of pixels. Detection device as described.
  3.  前記読み出し制御部は、前記イベント検出部が出力した前記イベント検出信号の空間密度に応じて前記関心領域を特定する
     請求項1又は2に記載の検出装置。
    The detection apparatus according to claim 1, wherein the readout control unit specifies the region of interest according to a spatial density of the event detection signal output from the event detection unit.
  4.  前記イベント検出部は、前記関心領域の輝度に応じて、前記イベント検出信号の空間密度の上限値および下限値を設定し、
     前記読み出し制御部は、前記イベント検出信号の空間密度が前記上限値および前記下限値の範囲に含まれる領域を前記関心領域であると特定する
     請求項2に記載の検出装置。
    The event detection unit sets an upper limit value and a lower limit value of the spatial density of the event detection signal according to the luminance of the region of interest.
    The detection device according to claim 2, wherein the read control unit specifies a region in which a space density of the event detection signal is included in the range of the upper limit value and the lower limit value as the region of interest.
  5.  前記読み出し制御部は、m×n画素(m,nは、自然数)のイベント検出結果から、代表的なイベント検出結果をフィルタ処理し、前記代表的なイベント検出結果に基づいて、前記関心領域を特定する
     請求項1又は2に記載の検出装置。
    The readout control unit filters a representative event detection result from an event detection result of m × n pixels (m and n are natural numbers), and the region of interest is filtered based on the representative event detection result. The detection device according to claim 1 or 2.
  6.  前記イベント検出部は、前記m×n画素において、共通のイベント検出閾値を用いてイベントを検出する
     請求項5に記載の検出装置。
    The detection device according to claim 5, wherein the event detection unit detects an event using the common event detection threshold in the m × n pixels.
  7.  前記画素ブロックは、前記m×n画素よりも大きな画素領域であり、
     前記イベント検出部は、前記画素ブロックに含まれる第1の画素について、第1のイベント検出閾値との比較に基づいてイベントを検出し、前記第1の画素と異なる第2の画素について、前記第1のイベント検出閾値と異なる第2のイベント検出閾値との比較に基づいてイベントを検出する
     請求項5に記載の検出装置。
    The pixel block is a pixel area larger than the m × n pixels,
    The event detection unit detects an event of a first pixel included in the pixel block based on comparison with a first event detection threshold, and the second pixel different from the first pixel detects the event. The detection device according to claim 5, wherein an event is detected based on a comparison between the one event detection threshold and a second event detection threshold different from one another.
  8.  前記イベント検出閾値は、前記光電変換素子で発生する光電流の変化量の範囲として定められている請求項1から7のいずれか一項に記載の検出装置。 The detection apparatus according to any one of claims 1 to 7, wherein the event detection threshold is defined as a range of a change amount of photocurrent generated in the photoelectric conversion element.
  9.  前記イベント検出閾値は、前記光電流の絶対値として定められている請求項1から7のいずれか一項に記載の検出装置。 The detection apparatus according to any one of claims 1 to 7, wherein the event detection threshold is set as an absolute value of the photocurrent.
  10.  前記1又は複数の画素は、それぞれ、イベント検出用の第1光電変換素子と、輝度検出用の第2光電変換素子とを備える
     請求項1から9のいずれか一項に記載の検出装置。
    The detection device according to any one of claims 1 to 9, wherein each of the one or more pixels includes a first photoelectric conversion element for event detection and a second photoelectric conversion element for luminance detection.
  11.  前記1又は複数の画素は、
     イベント検出用の第1光電変換素子と、輝度検出用の第2光電変換素子とを含む第1の画素群と、
     前記第1の画素群と共に2次元状に配列され、輝度検出用の第2光電変換素子を含む第2の画素群と
     を備える請求項1から9のいずれか一項に記載の検出装置。
    The one or more pixels are
    A first pixel group including a first photoelectric conversion element for event detection and a second photoelectric conversion element for luminance detection;
    The detection device according to any one of claims 1 to 9, further comprising: a second pixel group that is two-dimensionally arranged with the first pixel group and includes a second photoelectric conversion element for luminance detection.
  12.  前記第1の画素群は、予め定められた方向において、前記第2の画素群を挟んで非連続に配置される
     請求項11に記載の検出装置。
    The detection device according to claim 11, wherein the first pixel group is disposed discontinuously across the second pixel group in a predetermined direction.
  13.  前記第1の画素群は、2次元状に配列された画素の中央よりも、2次元状に配列された画素の周辺において密に配置される
     請求項11に記載の検出装置。
    The detection device according to claim 11, wherein the first pixel group is densely arranged in the periphery of the two-dimensionally arranged pixels than the center of the two-dimensionally arranged pixels.
  14.  前記1又は複数の画素は、イベント検出用と輝度検出用を兼ねた第3光電変換素子を備える
     請求項1から9のいずれか一項に記載の検出装置。
    The detection device according to any one of claims 1 to 9, wherein the one or more pixels include a third photoelectric conversion element serving also as an event detection and a luminance detection.
  15.  前記イベント検出部は、前記関心領域の輝度に応じて、前記イベント検出閾値を調整する
     請求項1から14のいずれか一項に記載の検出装置。
    The detection device according to any one of claims 1 to 14, wherein the event detection unit adjusts the event detection threshold according to the luminance of the region of interest.
  16.  前記イベント検出部は、前記関心領域の輝度に応じて、前記画素ブロックの大きさを調整する
     請求項1から15のいずれか一項に記載の検出装置。
    The detection device according to any one of claims 1 to 15, wherein the event detection unit adjusts the size of the pixel block in accordance with the luminance of the region of interest.
  17.  前記読み出し制御部は、前記複数の画素の各画素を非同期で駆動させる
     請求項1から16のいずれか一項に記載の検出装置。
    The detection device according to any one of claims 1 to 16, wherein the read control unit asynchronously drives each pixel of the plurality of pixels.
  18.  1又は複数の画素と、
     請求項1から17のいずれか一項に記載の検出装置と
     を備えるセンサ。
    One or more pixels,
    A sensor comprising the detection device according to any one of claims 1 to 17.
  19.  前記1又は複数の画素と、前記イベント検出部と、前記輝度検出部とが設けられた第1の基板と、
     前記第1の基板に積層され、前記読み出し制御部が設けられた第2の基板と
     を備える
     請求項18に記載のセンサ。
    A first substrate provided with the one or more pixels, the event detection unit, and the luminance detection unit;
    The sensor according to claim 18, further comprising: a second substrate stacked on the first substrate and provided with the read control unit.
  20.  前記1又は複数の画素が設けられた第1の基板と、
     前記第1の基板に積層され、前記イベント検出部および前記輝度検出部が設けられた第2の基板と、
     前記第2の基板に積層され、前記読み出し制御部が設けられた第3の基板と
     を備える
     請求項18に記載のセンサ。
    A first substrate provided with the one or more pixels;
    A second substrate stacked on the first substrate and provided with the event detection unit and the luminance detection unit;
    The sensor according to claim 18, further comprising: a third substrate stacked on the second substrate and provided with the read control unit.
  21.  各々が少なくとも1つの光電変換素子を有する1又は複数の画素で構成された画素ブロックにおいて、前記光電変換素子で発生する光電流の値が予め定められたイベント検出閾値を超えることを示すイベントを検出することと、
     前記イベントの検出に基づいて、関心領域を特定することと、
     前記関心領域において、前記光電変換素子で発生する前記光電流を蓄積した輝度信号を検出することと
     を含む検出方法。
    In a pixel block composed of one or more pixels each having at least one photoelectric conversion element, an event indicating that the value of photocurrent generated by the photoelectric conversion element exceeds a predetermined event detection threshold is detected And
    Identifying a region of interest based on the detection of the event;
    Detecting the luminance signal in which the photocurrent generated by the photoelectric conversion element is accumulated in the region of interest.
PCT/JP2019/000037 2018-01-05 2019-01-04 Detection device and sensor WO2019135411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018000856A JP2021044599A (en) 2018-01-05 2018-01-05 Detection device and sensor
JP2018-000856 2018-01-05

Publications (1)

Publication Number Publication Date
WO2019135411A1 true WO2019135411A1 (en) 2019-07-11

Family

ID=67143752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000037 WO2019135411A1 (en) 2018-01-05 2019-01-04 Detection device and sensor

Country Status (3)

Country Link
JP (1) JP2021044599A (en)
TW (1) TW201937917A (en)
WO (1) WO2019135411A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021038749A1 (en) * 2019-08-28 2021-03-04
WO2021038750A1 (en) * 2019-08-28 2021-03-04 株式会社ソニー・インタラクティブエンタテインメント Sensor system, image processing device, image processing method, and program
JPWO2021038751A1 (en) * 2019-08-28 2021-03-04
WO2021070445A1 (en) * 2019-10-09 2021-04-15 ソニーセミコンダクタソリューションズ株式会社 Face authentication system and electronic apparatus
WO2021084833A1 (en) * 2019-10-30 2021-05-06 ソニー株式会社 Object recognition system, signal processing method of object recognition system, and electronic device
WO2021084832A1 (en) * 2019-10-30 2021-05-06 ソニー株式会社 Object recognition system, signal processing method for object recognition system, and electronic device
WO2021096744A1 (en) * 2019-11-12 2021-05-20 Qsinx Management Llc Sensor data encoding with synchronous readout
WO2021241265A1 (en) * 2020-05-27 2021-12-02 ソニーセミコンダクタソリューションズ株式会社 Image-capturing device, method for controlling image-capturing device, and shape measurement device
WO2022059481A1 (en) * 2020-09-15 2022-03-24 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic apparatus
WO2022107557A1 (en) * 2020-11-18 2022-05-27 ソニーグループ株式会社 Biological sample analysis system, information processing device, information processing method, and biological sample analysis method
CN114567725A (en) * 2019-10-17 2022-05-31 电装波动株式会社 Imaging device with event camera
WO2023026880A1 (en) * 2021-08-26 2023-03-02 ソニーグループ株式会社 Measuring device, measuring method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230170651A (en) * 2021-04-09 2023-12-19 소니 세미컨덕터 솔루션즈 가부시키가이샤 Information processing devices and information processing methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140297A (en) * 2012-01-06 2013-07-18 Hitachi Ltd Image signal processor
JP2014165787A (en) * 2013-02-27 2014-09-08 Canon Inc Imaging apparatus, control method of the same, program, and storage medium
WO2017013806A1 (en) * 2015-07-23 2017-01-26 オリンパス株式会社 Solid-state imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140297A (en) * 2012-01-06 2013-07-18 Hitachi Ltd Image signal processor
JP2014165787A (en) * 2013-02-27 2014-09-08 Canon Inc Imaging apparatus, control method of the same, program, and storage medium
WO2017013806A1 (en) * 2015-07-23 2017-01-26 オリンパス株式会社 Solid-state imaging device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7191237B2 (en) 2019-08-28 2022-12-16 株式会社ソニー・インタラクティブエンタテインメント SENSOR SYSTEM, IMAGE PROCESSING DEVICE, IMAGE PROCESSING METHOD AND PROGRAM
WO2021038750A1 (en) * 2019-08-28 2021-03-04 株式会社ソニー・インタラクティブエンタテインメント Sensor system, image processing device, image processing method, and program
WO2021038749A1 (en) * 2019-08-28 2021-03-04 株式会社ソニー・インタラクティブエンタテインメント Sensor system, image processing device, image processing method, and program
JPWO2021038751A1 (en) * 2019-08-28 2021-03-04
JPWO2021038750A1 (en) * 2019-08-28 2021-03-04
WO2021038751A1 (en) * 2019-08-28 2021-03-04 株式会社ソニー・インタラクティブエンタテインメント Sensor system, image processing device, image processing method and program
JPWO2021038749A1 (en) * 2019-08-28 2021-03-04
US11792527B2 (en) 2019-08-28 2023-10-17 Sony Interactive Entertainment Inc. Sensor system, image processing apparatus, image processing method, and program
JP7352637B2 (en) 2019-08-28 2023-09-28 株式会社ソニー・インタラクティブエンタテインメント Sensor module, sensor system, image processing device, image processing method and program
US11653109B2 (en) 2019-08-28 2023-05-16 Sony Interactive Entertainment Inc. Sensor system, image processing apparatus, image processing method, and program
US11653120B2 (en) 2019-08-28 2023-05-16 Sony Interactive Entertainment Inc. Sensor system, image processing apparatus, image processing method, and program
JP7191238B2 (en) 2019-08-28 2022-12-16 株式会社ソニー・インタラクティブエンタテインメント SENSOR SYSTEM, IMAGE PROCESSING DEVICE, IMAGE PROCESSING METHOD AND PROGRAM
WO2021070445A1 (en) * 2019-10-09 2021-04-15 ソニーセミコンダクタソリューションズ株式会社 Face authentication system and electronic apparatus
CN114567725A (en) * 2019-10-17 2022-05-31 电装波动株式会社 Imaging device with event camera
US11812145B2 (en) 2019-10-17 2023-11-07 Denso Wave Incorporated Imaging device provided with event-based camera
CN114567725B (en) * 2019-10-17 2024-03-05 电装波动株式会社 Image pickup apparatus having event camera
EP4053500A4 (en) * 2019-10-30 2022-12-28 Sony Group Corporation Object recognition system, signal processing method of object recognition system, and electronic device
WO2021084832A1 (en) * 2019-10-30 2021-05-06 ソニー株式会社 Object recognition system, signal processing method for object recognition system, and electronic device
WO2021084833A1 (en) * 2019-10-30 2021-05-06 ソニー株式会社 Object recognition system, signal processing method of object recognition system, and electronic device
US11869273B2 (en) 2019-10-30 2024-01-09 Sony Group Corporation Object recognition with removal of event as noise when the event is detected for a group of pixels exceeding a threshold
WO2021096744A1 (en) * 2019-11-12 2021-05-20 Qsinx Management Llc Sensor data encoding with synchronous readout
WO2021241265A1 (en) * 2020-05-27 2021-12-02 ソニーセミコンダクタソリューションズ株式会社 Image-capturing device, method for controlling image-capturing device, and shape measurement device
WO2022059481A1 (en) * 2020-09-15 2022-03-24 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic apparatus
WO2022107557A1 (en) * 2020-11-18 2022-05-27 ソニーグループ株式会社 Biological sample analysis system, information processing device, information processing method, and biological sample analysis method
WO2023026880A1 (en) * 2021-08-26 2023-03-02 ソニーグループ株式会社 Measuring device, measuring method, and program

Also Published As

Publication number Publication date
TW201937917A (en) 2019-09-16
JP2021044599A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
WO2019135411A1 (en) Detection device and sensor
CN108462844B (en) Method and apparatus for pixel binning and readout
US9160934B2 (en) Image capturing apparatus obtaining high-exposure and low-exposure images, and method for controlling the same
US8675116B2 (en) Image sensor and focus detection apparatus
US8395684B2 (en) Noise reduction apparatus, method and program for controlling same, image sensor and digital camera
US8976289B2 (en) Imaging device
CN103238098B (en) Imaging device and focal position detection method
JP2012215785A5 (en)
JP4876065B2 (en) Motion vector detection device, motion vector detection method, imaging device, and program
US10063762B2 (en) Image sensor and driving method thereof, and image capturing apparatus with output signal control according to color
US20100034480A1 (en) Methods and apparatus for flat region image filtering
US9787889B2 (en) Dynamic auto focus zones for auto focus pixel systems
CN107547807B (en) Apparatus and imaging system for reducing spatial flicker artifacts
US9613429B2 (en) Image reading out control apparatus, image reading out control method thereof, and storage medium
US8855479B2 (en) Imaging apparatus and method for controlling same
WO2016185598A1 (en) Image pickup device, image processing apparatus, image processing method, image processing program, and storage medium
JP2014032214A (en) Imaging apparatus and focus position detection method
KR101685730B1 (en) Reduction of noise caused by absorption of x-ray photons in pixelated image sensors
US20230156355A1 (en) Method of operating dynamic vision sensor system
US10001621B2 (en) Focusing control device, focusing control method, focusing control program, lens device, and imaging device
JP6705054B2 (en) Imaging device
JP2018081224A5 (en)
US10341556B2 (en) Image capturing apparatus and control method therefor
JP2015023332A (en) Solid-state imaging device, driving method thereof and electronic apparatus
KR100769561B1 (en) Apparatus and method for setting up threshold used for noise removal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19736162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19736162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP