WO2019135410A1 - Power simulation device and power simulation method - Google Patents

Power simulation device and power simulation method Download PDF

Info

Publication number
WO2019135410A1
WO2019135410A1 PCT/JP2019/000020 JP2019000020W WO2019135410A1 WO 2019135410 A1 WO2019135410 A1 WO 2019135410A1 JP 2019000020 W JP2019000020 W JP 2019000020W WO 2019135410 A1 WO2019135410 A1 WO 2019135410A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
storage battery
time
setting
Prior art date
Application number
PCT/JP2019/000020
Other languages
French (fr)
Japanese (ja)
Inventor
和寛 山本
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018000571A external-priority patent/JP2019122153A/en
Priority claimed from JP2018000570A external-priority patent/JP2019122152A/en
Priority claimed from JP2018000569A external-priority patent/JP2019122151A/en
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2019135410A1 publication Critical patent/WO2019135410A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power simulation apparatus and a power simulation method.
  • Priority is claimed on Japanese Patent Application Nos. 2018-000569, 2018-000570, and 2018-000571 filed on Jan. 5, 2018, the content of which is incorporated herein by reference. Do.
  • Patent Document 1 discloses a simulator that calculates the amount of power generation of a solar cell power generation system.
  • the present invention has been made in view of the above problems, and it is desirable to properly determine the balance of the energy balance even in an electronic device using an energy harvesting element which is a weak power source as a power generation source. It is an object of the present invention to provide a power simulation apparatus capable of
  • An electric power simulation apparatus is an electric power simulation apparatus that simulates electric power of a sensor system including a solar cell, a power supply circuit, a storage battery, and a load circuit (electronic equipment).
  • a setting unit for acquiring current consumption, operation time, operation interval, and capacity of the storage battery at the time of operation of the load circuit, a storage unit for storing formulas and parameters required for the simulation, and the storage battery for elapsed time
  • a calculation unit for obtaining a change in voltage of the storage battery using the setting information acquired by the setting unit, the equation stored in the storage unit and the parameter, and the voltage of the storage battery with respect to the elapsed time determined by the calculation unit
  • a display unit for graphing and displaying the change.
  • the display unit may graph and display the power consumption set by the setting unit.
  • the operation unit can drive the load circuit and can not drive the load circuit based on a change in voltage of the storage battery with respect to the obtained time change. And at least one of the time period in which the operation unit can drive the load circuit and the time period in which the load circuit can not be driven are graphed at least one of the voltages of the storage battery. It may be displayed in association with the change.
  • the operation unit further obtains a change in voltage of the storage battery with respect to an elapsed time by further using a time during which the illuminance is irradiated to the solar cell per unit time.
  • the display unit graphs the period during which light is irradiated to the solar cell, and displays the graph in association with the graphed voltage change of the storage battery. You may do so.
  • the operation unit is further configured to obtain a change in voltage of the storage battery with respect to an elapsed time by further using consumption current at the time of standby of the operation of the load circuit. It is also good.
  • the calculation unit may further use a self discharge current of the storage battery to obtain a change in voltage of the storage battery with respect to an elapsed time.
  • the operation unit may further use an operating voltage of the load circuit to obtain a change in voltage of the storage battery with respect to an elapsed time.
  • the calculation unit refers to the parameter stored in the storage unit based on the information set by the setting unit, and the upper limit voltage and the lower limit of the storage battery. Reading out at least one of the voltages, and the display unit displays at least one of the upper limit voltage and the lower limit voltage of the storage battery read by the operation unit in association with the graphed voltage change of the storage battery You may
  • the operation unit further includes conversion efficiency and power consumption of a booster circuit included in the power supply circuit, and conversion efficiency and power consumption of a step-down circuit included in the power supply circuit.
  • the change in voltage of the storage battery with respect to the elapsed time may be determined using this.
  • a power simulation method includes a solar battery, a power supply circuit, a storage battery, a load circuit, and a storage unit for storing a formula and parameters necessary for simulation of power of a sensor system.
  • An electric power simulation apparatus is an electric power simulation apparatus that simulates electric power of a sensor system including a solar cell, a power supply circuit, a storage battery, and a load circuit (electronic equipment).
  • a setting unit for acquiring, based on an operation of a pointer image displayed by a display unit, a current consumption, an operation time, an operation interval, and a capacity of the storage battery at the time of operation of the load circuit;
  • a calculation unit that calculates a change in voltage of the storage battery with respect to elapsed time, using setting information acquired by the setting unit, the equation stored in the storage unit, and the parameter; Change the voltage of the storage battery with respect to the elapsed time determined by Comprising a display unit for displaying a pointer image that, the.
  • the display unit may change the graph of the change of the voltage of the storage battery with respect to the elapsed time based on the result of the operation of the pointer image. Good.
  • the display unit graphs and displays the power consumption set by the setting unit, and the setting unit is based on a result of operating the pointer image.
  • the graph of the power consumption may be changed.
  • the setting unit acquires and acquires the irradiation time per unit time irradiated to the solar cell based on the result of the operation of the pointer image.
  • the graph of the power consumption may be changed based on the irradiation time per unit time.
  • the setting unit acquires a standby current of the load circuit based on a result of the operation of the pointer image, and based on the acquired standby current.
  • the graph of the power consumption may be changed.
  • the setting unit acquires an operating current of the load circuit based on a result of the operation of the pointer image, and based on the acquired operating current.
  • the graph of the power consumption may be changed.
  • the setting unit acquires an upper limit voltage or a lower limit voltage of the storage battery based on a result of operation of the pointer image, and acquires the acquired upper limit voltage or the acquired upper limit voltage
  • the graph of the change in voltage of the storage battery with respect to the elapsed time may be changed based on the lower limit voltage.
  • a power simulation method includes a solar battery, a power supply circuit, a storage battery, a load circuit, and a storage unit for storing a formula and parameters necessary for simulation of power of a sensor system.
  • the display change procedure which changes the graph of the change of the voltage of the said storage battery with respect to the said elapsed
  • An electric power simulation apparatus is an electric power simulation apparatus that simulates the electric power of a sensor system including a solar cell, a power supply circuit, a storage battery, and a load circuit (electronic equipment).
  • a setting unit configured to obtain information, information indicating current consumption at the time of operation of the load circuit, information indicating the operation time of the load circuit, and information indicating an operation interval at the time of operation of the load circuit; Per unit time generated by the solar cell using the storage unit storing the equation and parameters necessary for the simulation, the setting information acquired by the setting unit, the equation and the parameter stored by the storage unit
  • the calculation unit uses the updated setting information to generate electric power generated per unit time by the solar cell.
  • the power consumption per unit time of the load circuit is determined again, and the display unit generates the generated power per unit time again determined by the calculation unit, and the power consumption per unit time of the load circuit. , May be updated and displayed in text format.
  • the setting unit acquires information indicating an irradiation time per unit time irradiated to the solar cell, and the calculation unit performs the irradiation per unit time.
  • the time may also be used to determine the generated power per unit time generated by the solar cell and the power consumption per unit time of the load circuit.
  • the setting unit acquires information indicating a standby current of the load circuit, and the operation unit is also generated by the solar cell using the standby current.
  • the generated power per unit time and the power consumption per unit time of the load circuit may be determined.
  • the setting unit acquires information indicating an operating current at the time of operation of the load circuit, and the arithmetic unit also uses the operating current to use the solar cell.
  • the generated power per unit time to be generated and the power consumption per unit time of the load circuit may be determined.
  • the setting unit acquires information indicating a capacity of the storage battery, information indicating an upper limit current of the storage battery, and information indicating a lower limit current of the storage battery
  • the calculation unit is configured to obtain the generated power per unit time generated by the solar cell and the power consumption per unit time of the load circuit also using the capacity, the upper limit current, and the lower limit current. It is also good.
  • the setting unit acquires information indicating conversion efficiency of the power supply circuit, and the operation unit is used to generate power by the solar cell also using the conversion efficiency.
  • the generated power per unit time and the power consumption per unit time of the load circuit may be determined.
  • the setting unit acquires information indicating power consumption of the power supply circuit, and the arithmetic unit also uses power consumption of the power supply circuit and uses the solar cell.
  • the generated power per unit time to be generated and the power consumption per unit time of the load circuit may be determined.
  • the setting unit acquires information on the characteristics of the solar cell, and the calculation unit also uses the information on the characteristics of the solar cell to generate electric power by the solar cell.
  • the generated power per unit time and the power consumption per unit time of the load circuit may be determined.
  • a power simulation method includes a solar battery, a power supply circuit, a storage battery, a load circuit, and a storage unit for storing a formula and parameters necessary for simulation of power of a sensor system.
  • the power simulation method according to claim 1, wherein the setting unit is information indicating illuminance to the solar cell, information indicating current consumption at the time of operation of the load circuit, information indicating operation time of the load circuit, and the load circuit.
  • a setting procedure for acquiring an operation interval at the time of operation, the calculation unit, the setting information acquired by the setting unit, the formula and the parameter stored in the storage unit, the sun The power generation per unit time generated by the battery and the power consumption per unit time of the load circuit are determined.
  • calculation procedures that, the display unit, and the generated power per unit the calculation unit is calculated time, and power consumption per unit of load circuit time, and a display procedure for displaying in text format, including.
  • an energy harvesting element which is a weak power source, as a power source.
  • FIG. 52 is a diagram showing how to determine the generated power per unit time of FIG. 51 and the power consumption per unit time of FIG. 52 and an update procedure.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a power simulation apparatus 1 according to the present embodiment.
  • the power simulation apparatus 1 includes a setting unit 11, an arithmetic unit 12, a storage unit 13, and a display unit 14.
  • the setting unit 11 is, for example, a keyboard, a mouse, a touch panel sensor provided on the display unit 14 or the like.
  • the setting unit 11 detects information set by the user, and outputs the detected setting information to the calculation unit 12.
  • Arithmetic unit 12 acquires setting information output from setting unit 11.
  • the calculation unit 12 simulates the amount of generated power and the amount of consumed power with reference to the information stored in the storage unit 13 according to the acquired setting information.
  • the calculation unit 12 outputs the simulation result to the display unit 14. The simulation of the amount of power generated and the amount of power consumed will be described later.
  • the storage unit 13 stores mathematical expressions used by the calculation unit 12 in simulation.
  • the storage unit 13 stores specifications (model number, cell size, power generation area, maximum operating point power, operating current, open circuit voltage, etc.) of each of the solar cells that can be selected in the simulation.
  • the storage unit 13 stores specifications (charge upper limit voltage, discharge lower limit voltage, etc.) of the storage battery 23 (FIG. 2) selectable in the simulation.
  • the storage unit 13 stores a configuration model 131 of the sensor system 2.
  • the display unit 14 generates a simulation result output from the calculation unit 12 as image information such as a table and a graph, and displays the generated image information.
  • image information such as a table and a graph
  • the display unit 14 includes an image display device.
  • the image display device is, for example, a liquid crystal display device, an organic EL (Electro Luminescence) display device, or the like.
  • FIG. 2 is a view showing an example of a configuration model of the sensor system 2 according to the present embodiment.
  • the sensor system 2 includes a power supply module 20, a primary battery 24, and an electronic device 25 (load circuit).
  • the power supply module 20 includes a solar cell 21, a power supply circuit 22, and a storage battery 23.
  • the power supply circuit 22 includes a booster circuit 221 and a step-down circuit 222.
  • the sensor system 2 may or may not include the primary battery 24.
  • the solar cell 21 has high light intensity under sunlight in the open air from an environment with low light intensity (for example, 10 [lux]) such as under a fluorescent lamp where sufficient power generation efficiency can not be obtained with general solar cells
  • a dye-sensitized solar cell capable of efficiently generating power up to, for example, 100,000 [lux] environment.
  • the solar cell 21 supplies the generated power to the power supply circuit 22.
  • the power supply circuit 22 stores the power generated by the solar cell 21 in the storage battery 23 and supplies the power stored in the storage battery 23 to the electronic device 25.
  • the booster circuit 221 is a DC / DC converter that boosts the voltage value generated by the solar cell 21 to a voltage value according to the storage battery 23.
  • the booster circuit 221 causes the storage battery 23 to store power of the boosted voltage value.
  • the step-down circuit 222 is a DC / DC converter that steps down the power stored in the storage battery 23 to a voltage value supplied to the electronic device 25.
  • the step-down circuit 222 supplies the power of the stepped-down voltage value to the electronic device 25.
  • Storage battery 23 stores the electric power generated by solar cell 21 and boosted by boosting circuit 221.
  • the storage battery 23 supplies the stored power to the step-down circuit 222.
  • the storage battery 23 is, for example, a lithium ion capacitor (LIC).
  • the primary battery 24 is, for example, a battery with a normal voltage value of 3.0V.
  • the electronic device 25 includes, for example, a communication unit, a control unit, a sensor unit, and the like.
  • the power stored in the storage battery 23 is supplied to the electronic device 25.
  • the power stored in the storage battery 23 is supplied to the electronic device 25 or power is supplied from the primary battery 24.
  • the electronic device 25 transmits the measurement value measured by the sensor unit to another device at the timing included in the setting information set by the setting unit 11 (FIG. 1).
  • the sensor system 2 may include, for example, a voltage detection unit, a charge / discharge control unit, a switch for switching between the primary battery 24 and the storage battery 23, and the like.
  • the calculation unit 12 simulates the balance between the amount of power generated by the solar cell 21 and the amount of power consumed by the electronic device 25 using the setting information set by the setting unit 11.
  • the calculation unit 12 uses, for each component of the sensor system 2 shown in FIG. 2, power consumption at the time of standby, power consumption at the time of operation, boosting efficiency, step-down efficiency, time and cycle of operation of the electronic device, etc. Perform a simulation. These items also include items not considered in the conventional design. Therefore, according to the present embodiment, the balance of the energy balance can be appropriately determined even in the electronic apparatus using the energy-generating element, which is a weak power source, more accurately than in the past as the power generation source. .
  • FIG. 3 is a view showing an example of an image displayed on the display unit 14 when the sensor system 2 according to the present embodiment does not include the primary battery 24.
  • the image g100 displayed on the display unit 14 when the sensor system 2 does not include the primary battery 24 has the configuration image g101 of the power supply module and the sensor system 2 installed as setting items.
  • a display image g108 of power consumption is a view showing an example of an image displayed on the display unit 14 when the sensor system 2 according to the present embodiment does not include the primary battery 24.
  • the image g100 displayed on the display unit 14 when the sensor system 2 does not include the primary battery 24 has the configuration image g101 of the power supply module and the sensor system 2 installed as setting items.
  • the image g100 is an image g111 of information indicating the power that can be supplied to the electronic device 25, an image g112 indicating the total consumption energy, an image g113 of a graph showing a change of voltage versus time of the storage battery 23, and power generation
  • the image g114 showing the energy balance of quantity and power consumption is included.
  • FIG. 4 is a view showing an example of an image displayed on the display unit 14 when the sensor system 2 according to the present embodiment includes the primary battery 24.
  • an image g1000 displayed on the display unit 14 when the sensor system 2 includes the primary battery 24 has the configuration image g101 of the power supply module and the sensor system 2 installed as setting items.
  • a display image g108 of power consumption and an image g201 for setting the capacity of the primary battery 24 are provided.
  • the image g1000 is, as a simulation result, an image g111 of information indicating the power that can be supplied to the electronic device 25, an image g112 indicating the total consumption energy, an image g113 of a graph indicating the change of voltage versus time of the storage battery 23, the power generation amount And an image g114 indicating the energy balance of power consumption, and an image g211 indicating the battery life of the primary battery 24.
  • FIG. 5 is a view showing an example of a component image g101 of the power supply module.
  • the configuration image g101 of the power supply module includes an information image g101a related to the amount of light irradiated to the environment where the sensor system 2 is installed, and an information image g101b related to the selected solar cell.
  • the information image g101a regarding the light quantity irradiated to the environment where the sensor system 2 is installed is updated each time the setting of the setting image g102 of the light state of the environment where the sensor system 2 is installed is updated.
  • the information image g101b regarding the selected solar cell is updated each time the setting of the selected image g104 of the solar cell 21 is updated.
  • FIG. 6 is a view showing an example of the setting image g102 of the state of light of the environment in which the sensor system 2 is installed.
  • the illumination time [lux] is the light irradiation time [time when light is irradiated to the sensor system 2 on one day] hr / day] is included.
  • the user operates the setting unit 11 to select each field of the setting image g102 of the light state of the environment in which the sensor system 2 is installed, and selects or inputs the value of each field.
  • FIG. 6 is a view showing an example of the setting image g102 of the state of light of the environment in which the sensor system 2 is installed.
  • the illumination time [lux] is the light irradiation time [time when light is irradiated to the sensor system 2 on one day] hr / day] is included.
  • the user operates the setting unit 11 to select each field of the setting image g102 of the light state of the environment in which the sensor system 2 is installed, and selects or inputs the value
  • the calculation unit 12 updates the illuminance and the light irradiation time in the component image g101 of the power supply module according to the setting.
  • FIG. 7 is a view showing an example of the selected image g103 of the solar cell 21.
  • the selected image g103 of the power supply module includes a solar cell model number, a quantity [pcs (package)], an outer size [mm], and a power generation area [cm 2 ].
  • the user operates the setting unit 11 to select each field of the selection image g103 of the solar cell 21, and selects or inputs the value of each field.
  • the example illustrated in FIG. 7 is an example in which the solar cell model number is set as “solar cell I” and the number is 1 [pcs].
  • the calculation unit 12 reads the information of the solar cell 21 stored in the storage unit 13 according to the setting, and updates the external size to 112 ⁇ 56 [mm] and the power generation area to 32 [cm 2 ]. Furthermore, the operation unit 12 updates the solar cell model number and the number in the configuration image g101 of the power supply module according to the setting.
  • FIG. 8 is a view showing an example of the selected image g104 of the solar cell 21.
  • the selected image g104 of the power supply module an outline view and a dimension view of selectable solar cells are displayed.
  • “solar cell I” is selected by the selected image g104 of the solar cell 21.
  • the user may operate the setting unit 11 to select the image of “solar cell I” of the selection image g104 of the solar cell 21.
  • FIG. 9 is a diagram showing an example of the power management image g105.
  • the power management image g105 includes the boosting efficiency [%], the bucking efficiency [%], the quiescent current [nA], and the output voltage [V].
  • the user operates the setting unit 11 to select each field of the power management image g105, and selects or inputs the value of each field.
  • the example shown in FIG. 9 is an example where the boosting efficiency is set to 75%, the step-down efficiency to 90%, the quiescent current to 3000 nA, and the output voltage to 3.0V.
  • FIG. 10 is a view showing an example of the setting image g106 of the storage battery 23.
  • setting image g106 of storage battery 23 includes capacity [F], initial voltage [V], charge upper limit voltage [V], discharge adjustment voltage [V], and self discharge current [ ⁇ A].
  • the user operates the setting unit 11 to select each field of the setting image g106 of the storage battery 23, and selects or inputs the value of each field.
  • the example shown in FIG. 10 is an example in which the capacity is set to 40 [F], the initial voltage is 3.0 [V], and the self-discharge current is 0.1 [ ⁇ A].
  • Arithmetic unit 12 updates the charge upper limit voltage value and the discharge lower limit voltage stored in storage unit 13 according to the setting.
  • the charge upper limit voltage value and the discharge lower limit voltage may be fixed values regardless of the storage battery 23.
  • FIG. 11 is a view showing an example of a setting image g107 of power consumption of the electronic device 25, and a display image g108 of the operation state of the electronic device 25 and the power consumption.
  • the setting image g107 of the power consumption of the electronic device 25 includes the operating voltage [V], the operating time [msec], the operating interval [sec], the operating current [mA], and the standby current of the electronic device 25. [ ⁇ A] is included.
  • the display image g108 of the operating state and power consumption of the electronic device 25 includes the image g108a of the operating state, the operating voltage [V], the operating time [msec], the operating interval [sec], Operating current [mA] and standby current [ ⁇ A] are included.
  • the operating voltage is 3.0 [V]
  • the operating time is 20 [msec]
  • the operating interval is 2.0 [sec]
  • the operating current is 20 [mA]
  • the standby current is 2.5 [C]. It is an example set as ⁇ A].
  • the image of g108a in FIG. 11 is a result of the display unit 14 displaying the power consumption of the electronic device 25 (load circuit) set by the setting unit 11 as a graph.
  • the user operates the setting unit 11 to select each field of the setting image g107 of the power consumption of the electronic device 25, and selects or inputs the value of each field.
  • the calculation unit 12 updates the display image g108 of the operation state of the electronic device 25 and the power consumption according to the set information.
  • the user operates the setting unit 11 to select the operation state of the electronic device 25 and the width and height of the waveform of the display image g108 of the power consumption.
  • the calculation unit 12 updates the setting image g107 of the power consumption of the electronic device 25 according to the set information.
  • FIG. 12 is a view showing an example of the image g201 for setting the capacity of the primary battery 24.
  • the image g201 for setting the capacity of the primary battery 24 includes the usage state (Hybrid operating) of the primary battery and the capacity [mAh] of the primary battery.
  • the user operates the setting unit 11 to select each field of the image g201 for setting the capacity of the primary battery 24, and selects or inputs the value of each field.
  • the example shown in FIG. 12 is an example in which the usage state of the primary battery 24 is set to the on state (ON), and the capacity of the primary battery 24 is set to 2000 [mAh].
  • FIG. 13 is a diagram illustrating an example of an image g111 of information indicating power that can be supplied to the electronic device 25.
  • the average value of the power that can be supplied per day [ ⁇ Wh / day] (typ) and the power can be supplied per day Power value [ ⁇ Wh / day] (min) is included.
  • the electric power that can be supplied to the electronic device 25 is generated electric power generated per unit time (one day) by the light irradiated to the solar cell 21.
  • the display unit 14 displays, in a text format, the numerical value of the generated power generated per unit time, which is calculated by the calculation unit 12.
  • FIG. 14 is a diagram illustrating an example of the image g112 indicating the total consumption energy.
  • the image g112 indicating the total energy consumption is shown as a pie chart.
  • An area indicated by reference sign g112a is a sum [ ⁇ Wh / day] of power consumption per day during a period in which the electronic device 25 is operating.
  • An area indicated by reference sign g112b is the sum [ ⁇ Wh / day] of the power consumption per day during the standby state of the electronic device 25.
  • An area indicated by reference sign g112c is the sum [ ⁇ Wh / day] of the power consumption of the electronic device 25 per day.
  • FIG. 14 is a diagram illustrating an example of the image g112 indicating the total consumption energy.
  • the image g112 indicating the total energy consumption is shown as a pie chart.
  • An area indicated by reference sign g112a is a sum [ ⁇ Wh / day] of power consumption per day during a period in which the electronic
  • the total of the power consumption per day during the operation of the electronic device 25 is 14400 [ ⁇ Wh / day], and the power consumption per day during the standby state of the electronic device 25. Is 178 [ ⁇ Wh / day], and the sum of both is 14578 [ ⁇ Wh / day].
  • a pie chart is displayed, but the chart may be a bar graph or the like.
  • Arithmetic unit 12 uses the equation stored in storage unit 13 and the set value set by the operation of setting unit 11 to calculate the sum of the power consumption per day during the period in which electronic device 25 is operating.
  • the sum of the power consumption per day in the period of the standby state 25 and the sum of the power consumption per day of the electronic device 25 are calculated.
  • the expression stored in the storage unit 13 will be described later.
  • the display unit 14 is a sum of power consumption per day of the operating period of the electronic device 25 calculated by the computing unit 12, a sum of power consumption per day of the standby state of the electronic device 25, the electronic device Generate a graph using the sum of 25 power consumptions per day, and display the generated graph.
  • the display unit 14 is a sum of power consumption per day of the operating period of the electronic device 25 calculated by the computing unit 12, a sum of power consumption per day of the standby state of the electronic device 25, The total of the power consumption per day of the electronic device 25 is displayed in text format in association with each element of the graph.
  • FIG. 15 is a diagram showing an example of an image g113 of a graph showing a change in voltage of the storage battery 23 versus time.
  • the horizontal axis is time (hour)
  • the left vertical axis is the voltage value (V) of the storage battery 23
  • the vertical axis is illuminance (lux) on the right.
  • the display unit 14 generates and displays a graph based on the result obtained by the calculation unit 12.
  • the image g113 of the graph showing the change of voltage versus time of the storage battery 23, the change of voltage versus time g113a of the storage battery 23 when the amount of power that can be supplied per day is the average value, 1 day A change in voltage vs. time g113h of the storage battery 23 when the amount of power that can be supplied per unit is minimum, and a period g113g in which power generation is performed by the solar cell 21 are included.
  • the dashed line g113b represents the discharge lower limit voltage (lower limit voltage).
  • the dashed-dotted line g113c represents a voltage value for re-outputting the power stored in the storage battery 23.
  • the dashed line g113 d represents the charging upper limit voltage.
  • a region indicated by reference sign g113e represents a period in which power can not be supplied to the electronic device 25.
  • a region indicated by reference sign g113f represents a period in which power can be supplied to the electronic device 25.
  • the period in which power can be supplied to the electronic device 25 is about 20 hours to about A period of 68 hours, a period of about 91 hours to about 140 hours, and a period of about 163 hours.
  • the period when power can not be supplied to the electronic device 25 is approximately 68 hours from 0 o'clock to about 20 hours from the start of operation.
  • the period of time is about 91 hours, and the period of about 140 hours to about 163 hours.
  • the period in which power can be supplied to the electronic device 25 is approximately 29 hours from the start of operation.
  • the period from the start of operation is about 63 hours to about 97 hours, from 0 o'clock to about 29 hours, during the period when power can not be supplied to the electronic device 25 Period of about 127 hours to about 162 hours.
  • the user can not supply power to the electronic device 25 longer and the user can supply a shorter period of time to supply power to the electronic device 25.
  • the image g113 of the graph showing the change of the voltage of the storage battery 23 versus time can be confirmed.
  • the images denoted by g113g and g113h in FIG. 15 are storage batteries based on at least the power consumption of the electronic device 25 (load circuit) of the computing unit 12 and the power generated by irradiating the solar cell 21 with light.
  • the change in voltage of the storage battery is calculated and the display unit 14 graphs the change in voltage of the storage battery with respect to the elapsed time.
  • the display unit 14 graphs the change of the illuminance with respect to the elapsed time based on the illuminance and the irradiation time with which the solar battery 21 set by the setting unit 11 is irradiated. It is the result of displaying the change of the voltage of the storage battery with respect to elapsed time in relation to the graph.
  • symbol g113e of FIG. 15 and g113f is the period which can drive the electronic device 25 (load circuit), and the said load circuit based on the change of the voltage of the said storage battery with respect to the time change which the calculating part 12 calculated
  • a storage battery 23 graphing at least one of the periods in which the driving unit 12 can not drive and the period in which the display unit 14 can not drive the electronic device 25 is obtained. It is the result of displaying in relation to the graph of the change of the voltage of.
  • FIG. 16 is a diagram showing an example of the time change of the illuminance and the voltage of the storage battery 23.
  • the horizontal axis is time
  • the left vertical axis is the voltage of the storage battery 23
  • the right vertical axis is illuminance.
  • the illuminance of L1 (for example, 500 [lux]) is irradiated to the solar cell 21 in the period from 0 o'clock to 20 o'clock, and the voltage of the storage battery 23 becomes V1.
  • the illuminance of L2 (for example, 0 [lux]) is applied to the solar cell 21 in the period from 20 o'clock to 24 o'clock when the light is turned off, and the voltage of the storage battery 23 becomes V2.
  • L2 for example, 0 [lux]
  • the voltage of the storage battery 23 becomes V2.
  • one day (24 hours) is taken as a unit time.
  • FIG. 17 is a diagram illustrating an example of an image g114 representing an energy balance of the power generation amount and the power consumption.
  • the vertical axis is the ratio of the total energy consumption to the generated power generation amount.
  • the code g114a represents the energy balance when the amount of power that can be supplied per unit time is an average value.
  • the code g114b represents the energy balance when the amount of power that can be supplied per unit time is the minimum value.
  • the dashed-dotted line g114c represents 100% of the ratio of the total energy consumption to the generated power generation amount, that is, a balanced line.
  • the display unit 14 generates and displays a graph based on the result obtained by the calculation unit 12.
  • the energy balance when the amount of power that can be supplied per unit time is the average value is 69.5%
  • the energy balance when the amount of power that can be supplied per unit time is the minimum value is 48. 6%.
  • the user confirms such an energy balance for example, increases the number of solar cells 21, reselects the solar cells 21, etc., and reconsiders the setting so as to consider a setting in which the energy balance can be balanced. Can.
  • FIG. 18 is a view showing an example of an image g211 showing the battery life of the primary battery 24.
  • the image g211 showing the battery life of the primary battery 24 shows the battery life [years] (typ) of the primary battery 24 when the amount of power that can be supplied per day is an average value, per unit time
  • the battery life [years] (min) of the primary battery 24 when the amount of power that can be supplied is the minimum value is included.
  • the battery life of the primary battery 24 is 3.7 [years (years)] (typ) when the amount of power that can be supplied per day is an average value, and the power that can be supplied per day is typical.
  • the battery life of the primary battery 24 is 2.2 [years] (min) when the quantity is the minimum value.
  • Operating energy side of the electronic device 25 Operating voltage (Operating Voltage); V ope (V) ⁇ Operating time (Operating Time); T ope (msec) ⁇ Operating interval (Operating Interval); T int (sec) ⁇ Operating current (Operating Current); A ope (mA) ⁇ Standby current (Standby Current); Asb ( ⁇ A)
  • Supply energy supply energy to the electronic device 25; E chg (J / day) ⁇ Self-discharge energy consumed by storage battery 23; E sd (J / day) ⁇ Self-discharge energy consumed by the power supply circuit 22; E ic (J / day) ⁇ Generated energy; E in (J / day) And power generation power (Generating Power); W in ( ⁇ W) -Irradiation time; T light (hr / day) ⁇ Conversion efficiency of the power supply circuit 22 (boosting efficiency of the boosting circuit 221); in in (%) ⁇ Conversion efficiency of power supply circuit 22 (step-down efficiency of step-down circuit 222); ⁇ out (%) ⁇ Self-power consumption of the power supply circuit 22 (self-power consumption of the booster circuit 221); A in (nA) ⁇ Self power consumption of the power supply circuit 22 (self power consumption of the step-down circuit 222); A out (nA) ⁇ Capacity of storage battery 23 (Capacity); C (F) -
  • the calculation unit 12 performs an operation of comparing the energy of supply and consumption with respect to the amount of power per day using the consumption energy of the electronic device 25 and the supply energy of the electronic device 25 as follows.
  • the calculation unit 12 obtains the consumed energy E ope at the time of driving the electronic device 25 using the following equation (1).
  • the calculation unit 12 obtains the consumed energy E sb at the time of standby of the electronic device 25 using the following equation (2).
  • the calculation unit 12 obtains the total consumption energy E out of the electronic device 25 using the following equation (3).
  • the calculation unit 12 obtains the generated energy E in using the following equation (4).
  • operation unit 12 obtains self-discharge energy E ic consumed by power supply circuit 22 using the following equation (5).
  • operation unit 12 obtains self-discharge energy E sd consumed by storage battery 23 using the following equation (6).
  • the calculation unit 12 obtains the energy Echg supplied to the electronic device 25 using the following equation (7).
  • the computing unit 12 may determine that the energy harvesting can be continuously driven when the following equation (8) holds.
  • FIG. 19 is a flowchart illustrating an example of processing procedures performed by the calculation unit 12 and the display unit 14 according to the present embodiment.
  • Step S1 The operation unit 12 acquires setting information selected and set by the user operating the setting unit 11.
  • Step S2 The operation unit 12 reads from the storage unit 13 a parameter corresponding to the acquired setting information. Subsequently, the calculation unit 12 reads the mathematical expression to be used for the simulation from the storage unit 13.
  • the calculation unit 12 and the display unit 14 perform at least one of the processes of steps S3 to S4, the processes of steps S5 to S7, the process of step S8, and the processes of steps S10 to S11.
  • Step S3 Arithmetic unit 12 obtains a change in voltage of storage battery 23 with respect to elapsed time using setting information, parameters, and mathematical expressions. After the processing, operation unit 12 advances the processing to step S4. (Step S4) The display unit 14 graphs the change of the voltage of the storage battery 23 with respect to the elapsed time to generate image information. After the processing, the display unit 14 proceeds with the process to step S9.
  • Step S5 The calculation unit 12 obtains a period in which the electronic device 25 can be driven using the setting information, the parameters, and the mathematical expression. After the processing, the calculation unit 12 proceeds the processing to step S6.
  • Step S6 The calculation unit 12 obtains a period in which the electronic device 25 can not be driven using the setting information, the parameters, and the mathematical expression.
  • operation unit 12 advances the processing to step S7.
  • Step S7 The display unit 14 generates image information by graphing a period in which the electronic device 25 can not be driven and a period in which the electronic device 25 can not be driven. After the processing, the display unit 14 proceeds with the process to step S9.
  • Step S8 The calculation unit 12 outputs the information on the illuminance included in the acquired setting information to the display unit 14.
  • the information on the illuminance includes at least the illuminance, and includes the light irradiation time.
  • the display unit 14 graphs the information of the illuminance output from the calculation unit 12. After the processing, the display unit 14 proceeds with the process to step S9.
  • Step S9 The display unit 14 synthesizes the graph graphed in step S4, step S7, and step S8. After the processing, the display unit 14 proceeds with the process to step S12.
  • Step S10 The computing unit 12 obtains at least the power consumption of the electronic device 25 using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12 advances the processing to step S11.
  • Step S11 The display unit 14 graphs change of power consumption with respect to elapsed time to generate image information. After the processing, the display unit 14 proceeds with the process to step S12.
  • Step S12 The display unit 14 updates and displays the image synthesized at step S9 and the image such as the graph generated at step S11. After the processing, the display unit 14 returns the processing to step S1.
  • Arithmetic unit 12 and display unit 14 all use the setting information set by setting unit 11 to create a graph of change in voltage of storage battery 23 with respect to elapsed time, and graph of drivable period and drivable period It is possible to create and create a graph of the change of the illuminance with respect to the elapsed time.
  • the arithmetic unit 12 and the display unit 14 are configured as shown in FIG. 19 when the electric energy that can be supplied per unit time is an average value and when the electric energy that can be supplied per unit time is a minimum value. Processing may be performed.
  • calculation unit 12 and the display unit 14 have described an example in which at least one of the processing of steps S3 to S4, the processing of steps S5 to S7, the processing of step S8, and the processing of steps S10 to S11 is performed. All processing may be performed.
  • FIG. 20 is a diagram showing an example of a schematic configuration of a power simulation apparatus 1A according to the present embodiment.
  • the power simulation apparatus 1A includes a setting unit 11A, an operation unit 12A, a storage unit 13A, and a display unit 14A.
  • the setting unit 11A is, for example, a keyboard, a mouse, a touch panel sensor provided on the display unit 14A, or the like.
  • the setting unit 11A detects the information set by the user, and outputs the detected setting information to the calculation unit 12A.
  • Arithmetic unit 12A acquires setting information output from setting unit 11A.
  • the operation unit 12A simulates the amount of generated power and the amount of consumed power with reference to the information stored in the storage unit 13A according to the acquired setting information.
  • Arithmetic unit 12A outputs the simulation result to display unit 14A. The simulation of the amount of power generated and the amount of power consumed will be described later.
  • the storage unit 13A stores mathematical expressions used by the calculation unit 12A in simulation.
  • the storage unit 13A stores the specifications (model number, cell size, power generation area, maximum operating point power, operating current, open circuit voltage, and the like) of each of the solar cells that can be selected in simulation.
  • Storage unit 13A stores the specifications (charge upper limit voltage, discharge lower limit voltage, etc.) of storage battery 23A (FIG. 21) selectable during simulation.
  • the storage unit 13A stores a configuration model 131A of the sensor system 2A.
  • the display unit 14A generates a simulation result output from the calculation unit 12A as a table, image information such as a graph, and displays the generated image information. In addition, the display unit 14A displays a pointer image used when changing the image information. An example of image information and an example of a pointer image will be described later.
  • the display unit 14A includes an image display device.
  • the image display device is, for example, a liquid crystal display device, an organic EL (Electro Luminescence) display device, or the like.
  • FIG. 21 is a view showing an example of a configuration model of a sensor system 2A according to the present embodiment.
  • the sensor system 2A includes a power supply module 20A, a primary battery 24A, and an electronic device 25A (load circuit).
  • the power supply module 20A includes a solar cell 21A, a power supply circuit 22A, and a storage battery 23A.
  • the power supply circuit 22A further includes a booster circuit 221A and a step-down circuit 222A.
  • the sensor system 2A may or may not be provided with the primary battery 24A.
  • the solar cell 21A has a high light intensity under sunlight in the open air from an environment with a low light intensity (for example, 10 [lux]) such as under a fluorescent lamp where sufficient power generation efficiency can not be obtained with a general solar cell
  • a dye-sensitized solar cell capable of efficiently generating power up to, for example, 100,000 [lux] environment.
  • the solar cell 21A supplies the generated power to the power supply circuit 22A.
  • the power supply circuit 22A stores the power generated by the solar cell 21A in the storage battery 23A, and supplies the power stored in the storage battery 23A to the electronic device 25A.
  • the booster circuit 221A is a DC / DC converter that boosts a voltage value generated by the solar cell 21A to a voltage value according to the storage battery 23A.
  • the booster circuit 221A stores the power of the boosted voltage value in the storage battery 23A.
  • the step-down circuit 222A is a DC / DC converter that steps down the power stored in the storage battery 23A to a voltage value supplied to the electronic device 25A.
  • the step-down circuit 222A supplies the power of the reduced voltage value to the electronic device 25A.
  • Storage battery 23A stores the power generated by solar cell 21A and boosted by boosting circuit 221A.
  • the storage battery 23A supplies the stored power to the step-down circuit 222A.
  • the storage battery 23A is, for example, a lithium ion capacitor (LIC).
  • the primary battery 24A is, for example, a battery having a normal voltage value of 3.0V.
  • the electronic device 25A includes, for example, a communication unit, a control unit, a sensor unit, and the like.
  • the power stored in the storage battery 23A is supplied to the electronic device 25A.
  • the power stored in the storage battery 23A is supplied to the electronic device 25A, or power is supplied from the primary battery 24A.
  • the electronic device 25A includes the sensor unit, the electronic device 25A transmits the measurement value measured by the sensor unit to another device at the timing included in the setting information set by the setting unit 11A (FIG. 20).
  • the configuration of the sensor system 2A described above is an example, and the present invention is not limited to this.
  • the sensor system 2A may include, for example, a voltage detection unit, a charge / discharge control unit, and a switch for switching between the primary battery 24A and the storage battery 23A.
  • the calculation unit 12A simulates the balance between the amount of power generated by the solar cell 21A and the amount of power consumed by the electronic device 25A using the setting information set by the setting unit 11A.
  • Arithmetic unit 12A uses, for each component of sensor system 2A shown in FIG. 21, power consumption at the time of standby, power consumption at the time of operation, boosting efficiency, step-down efficiency, operation time and period of the electronic device, etc. Perform a simulation. These items also include items not considered in the conventional design. Therefore, according to the present embodiment, the balance of the energy balance can be appropriately determined even in the electronic apparatus using the energy-generating element, which is a weak power source, more accurately than in the past as the power generation source. .
  • FIG. 22 is a view showing an example of an image displayed on the display unit 14A when the sensor system 2A according to the present embodiment does not include the primary battery 24A.
  • an image g100A displayed on the display unit 14A when the sensor system 2A does not include the primary battery 24A has a configuration image g101A of the power supply module and the sensor system 2A installed as setting items.
  • the image g100A is, as a simulation result, an image g111A of information indicating electric power that can be supplied to the electronic device 25A, an image g112A indicating total energy consumption, an image g113A of a graph indicating change of voltage versus time of the storage battery 23A, and power generation
  • the image g114A showing the energy balance of quantity and power consumption is included.
  • the pointer image g301A is an image of a pointer used when operating the display image g108A or the image g113A of a graph. The setting performed using the pointer image g301A will be described later.
  • FIG. 23 is a view showing an example of an image displayed on the display unit 14A when the sensor system 2A according to the present embodiment includes the primary battery 24A.
  • the image g1000A displayed on the display unit 14A when the sensor system 2A includes the primary battery 24A has the configuration image g101A of the power supply module and the sensor system 2A installed as setting items.
  • a display image g108A of power consumption and an image g201A for setting the capacity of the primary battery 24A are provided.
  • the image g1000A is, as a simulation result, an image g111A of information indicating electric power that can be supplied to the electronic device 25A, an image g112A indicating total energy consumption, an image g113A of a graph showing change of voltage of storage battery 23A against time, power generation amount And an image g114A representing an energy balance of power consumption, and an image g211A representing a battery life of the primary battery 24A.
  • the pointer image g301A is an image of a pointer used when operating the display image g108A or the image g113A of a graph. The setting performed using the pointer image g301A will be described later.
  • FIG. 24 is a diagram showing an example of a component image g101A of the power supply module.
  • the component image g101A of the power supply module includes an information image g101Aa related to the light quantity irradiated to the environment where the sensor system 2A is installed, and an information image g101Ab related to the selected solar cell.
  • the information image g101Aa related to the amount of light irradiated to the environment where the sensor system 2A is installed is updated each time the setting of the setting image g102A of the light state of the environment where the sensor system 2A is installed is updated.
  • the information image g101Ab related to the selected solar cell is updated each time the setting of the selected image g104A of the solar cell 21A is updated.
  • FIG. 25 is a view showing an example of a setting image g102A of the light state of the environment in which the sensor system 2A is installed.
  • the illumination time [lux] is the light irradiation time [time when light is irradiated to the sensor system 2A on one day] hr / day] is included.
  • the user operates the setting unit 11A to select each field of the setting image g102A of the light state of the environment in which the sensor system 2A is installed, and selects or inputs the value of each field.
  • FIG. 25 is a view showing an example of a setting image g102A of the light state of the environment in which the sensor system 2A is installed.
  • the illumination time [lux] is the light irradiation time [time when light is irradiated to the sensor system 2A on one day] hr / day] is included.
  • the user operates the setting unit 11A to select each field of the setting image g102A of the light state of the environment in which the sensor system 2
  • the calculation unit 12A updates the illuminance and the light irradiation time in the component image g101A of the power supply module.
  • FIG. 26 is a diagram showing an example of the selected image g103A of the solar cell 21A.
  • the selected image g103A of the solar cell 21A includes the solar cell model number, the quantity [pcs (package)], the external size [mm], and the power generation area [cm 2 ].
  • the user operates the setting unit 11A to select each field of the selection image g103A of the solar cell 21A, and selects or inputs the value of each field.
  • the example shown in FIG. 26 is an example in which the solar cell model number is set as “solar cell I” and the number is 1 [pcs].
  • the calculation unit 12A reads the information of the solar cell 21A stored in the storage unit 13A according to the setting, and updates the external size to 112 ⁇ 56 [mm] and the power generation area to 32 [cm 2 ]. Further, the operation unit 12A updates the solar cell model number and the number in the component image g101A of the power supply module according to the setting.
  • FIG. 27 is a diagram showing an example of the selected image g104A of the solar cell 21A.
  • the selected image g104A of the solar cell 21A an outline view and a dimensional view of selectable solar cells are displayed.
  • the example shown in FIG. 27 is an example in which “solar cell I” is selected by the selected image g104A of the solar cell 21A.
  • the user may select the image of “solar cell I” of the selected image g104A of the solar cell 21A by operating the setting unit 11A.
  • FIG. 27 an example of a setting method using the pointer image g301A will be described.
  • the user operates the setting unit 11A to issue an instruction to operate the pointer image g301A.
  • the user operates the pointer image g301A to select another solar cell 21A, for example, “solar cell II” from the selected image g104A of the solar cell 21A.
  • the unit 11A is operated.
  • the display unit 14A detects that the “solar cell II” has been operated to select. Then, the display unit 14A updates the image so as to indicate that "solar cell II" is selected.
  • operation unit 12A reads out information (solar cell model number, external size, power generation area) of selected solar cell 21A from storage unit 13A, and outputs the read information on solar cell 21A to display unit 14A.
  • the display unit 14A updates the selected image g103A (FIG. 26) of the solar cell 21A based on the information of the solar cell 21A output by the calculation unit 12A.
  • FIG. 28 is a diagram showing an example of the power management image g105A.
  • the power management image g105A includes the boosting efficiency [%], the bucking efficiency [%], the quiescent current [nA], and the output voltage [V].
  • the user operates the setting unit 11A to select each field of the power management image g105A, and selects or inputs the value of each field.
  • the example shown in FIG. 28 is an example where the boosting efficiency is set to 75%, the step-down efficiency to 90%, the quiescent current to 3000 nA, and the output voltage to 3.0V.
  • FIG. 29 is a diagram showing an example of a setting image g106A of the storage battery 23A.
  • the setting image g106A of the storage battery 23A includes a capacity [F], an initial voltage [V], a charge upper limit voltage [V], a discharge adjustment voltage [V], and a self discharge current [ ⁇ A].
  • the user operates the setting unit 11A to select each field of the setting image g106A of the storage battery 23A, and selects or inputs the value of each field.
  • the example shown in FIG. 29 is an example in which the capacity is set to 40 [F], the initial voltage is 3.0 [V], and the self-discharge current is 0.1 [ ⁇ A].
  • Operation unit 12A updates the charge upper limit voltage value and the discharge lower limit voltage stored in storage unit 13A according to the setting.
  • the charge upper limit voltage value and the discharge lower limit voltage may be fixed values regardless of the storage battery 23A.
  • FIG. 30 is a diagram showing an example of a setting image g107A of the power consumption of the electronic device 25A, and a display image g108A of the operation state of the electronic device 25A and the power consumption.
  • the operating voltage [V] the operating time [msec]
  • the operating interval [sec] the operating current [mA]
  • the standby current of the electronic device 25A. [ ⁇ A] is included.
  • an image g108Aa of the operating state an operating voltage [V], an operating time [msec], an operating interval [sec], Operating current [mA] and standby current [ ⁇ A] are included.
  • the operating voltage is 3.0 [V]
  • the operating time is 20 [msec]
  • the operating interval is 2.0 [sec]
  • the operating current is 20 [mA]
  • the standby current is 2.5 [C]. It is an example set as ⁇ A].
  • the image of g108Aa in FIG. 30 is a result of the display unit 14A displaying the power consumption of the electronic device 25A (load circuit) set by the setting unit 11A as a graph.
  • the user operates the setting unit 11A to select each field of the setting image g107A of the power consumption of the electronic device 25A, and selects or inputs the value of each field.
  • the operation unit 12A updates the display image g108A of the operation state of the electronic device 25A and the power consumption according to the set information.
  • the user operates the setting unit 11A to select the operation state of the electronic device 25A and the width and height of the waveform of the display image g108A of the power consumption.
  • the calculation unit 12A updates the setting image g107A of the power consumption of the electronic device 25A according to the set information.
  • FIG. 30 an example of a setting method using the pointer image g301A will be described.
  • the user operates the setting unit 11A to issue an instruction to operate the pointer image g301A.
  • the user operates the pointer image g301A to operate the setting unit 11A so as to change the pulse width of the image g108Aa in the operation state.
  • the operation unit 12A detects that, for example, the operation has been performed to widen the pulse width of the image g108Aa in the operating state.
  • the display unit 14A changes the operation time of the display image g108A from 20 [msec] to 40 [msec] as in the display image g1008A.
  • the display unit 14A updates the display of the “operation time” field of the setting image g107A as in the setting image g1007A.
  • the display unit 14A updates the screen (graph, table) of the simulation result based on the setting value changed in this manner.
  • items that can be changed by operating the pointer image g301A are, for example, an operation time, an operation interval, an operation current, and a standby current.
  • FIG. 31 is a view showing an example of an image g201A for setting the capacity of the primary battery 24A.
  • the image g201A for setting the capacity of the primary battery 24A includes the usage state (Hybrid operating) of the primary battery and the capacity [mAh] of the primary battery.
  • the user operates the setting unit 11A to select each field of the image g201A for setting the capacity of the primary battery 24A, and selects or inputs the value of each field.
  • the usage state of the primary battery 24A is set to the on state (ON), and the capacity of the primary battery 24A is set to 2000 [mAh].
  • FIG. 32 is a diagram illustrating an example of an image g111A of information indicating power that can be supplied to the electronic device 25A.
  • the average value [ ⁇ Wh / day] (typ) of the power that can be supplied per day and the power can be supplied per day Power value [ ⁇ Wh / day] (min) is included.
  • FIG. 33 is a diagram illustrating an example of the image g112A indicating the total consumption energy.
  • the image g112A showing the total energy consumption is shown by a pie chart.
  • the area indicated by reference sign g112Aa is the sum [ ⁇ Wh / day] of the power consumption per day during the operation of the electronic device 25A.
  • the area indicated by reference sign g112Ab is the sum [ ⁇ Wh / day] of the power consumption per day of the standby state of the electronic device 25A.
  • An area indicated by reference sign g112Ac is the sum [ ⁇ Wh / day] of the power consumption of the electronic device 25A per day.
  • FIG. 33 is a diagram illustrating an example of the image g112A indicating the total consumption energy.
  • the image g112A showing the total energy consumption is shown by a pie chart.
  • the area indicated by reference sign g112Aa is the sum [ ⁇ Wh / day] of the power consumption per day during the operation of
  • the total of the power consumption per day during the operation of the electronic device 25A is 14400 [ ⁇ Wh / day], and the power consumption per day during the standby state of the electronic device 25A. Is 178 [ ⁇ Wh / day], and the sum of both is 14578 [ ⁇ Wh / day].
  • the simulation is performed in consideration of items not conventionally considered, such as the self discharge current of the storage battery 23A.
  • FIG. 34 is a view showing an example of an image g113A of a graph showing a change of voltage of the storage battery 23A against time.
  • the horizontal axis is time (hour)
  • the vertical axis on the left is voltage value (V) of the storage battery 23A
  • the vertical axis is illuminance (lux) on the right. As shown in FIG. 34
  • the change of voltage versus time of the storage battery 23A when the amount of power that can be supplied per day is the average value g113Aa, 1 day A change in voltage versus time g113Ah of the storage battery 23A when the amount of power that can be supplied per unit is minimum, and a period g113Ag during which power generation is performed by the solar cell 21A.
  • a dashed line g113Ab represents a discharge lower limit voltage (lower limit voltage).
  • the dashed-dotted line g113Ac represents a voltage value at which the power stored in the storage battery 23A is re-outputted.
  • the dashed-dotted line g113Ad represents the charging upper limit voltage.
  • An area indicated by reference sign g113Ae represents a period in which power can not be supplied to the electronic device 25A.
  • a region indicated by reference sign g113Af represents a period in which power can be supplied to the electronic device 25A.
  • the period in which power can be supplied to the electronic device 25A is about 20 hours to about A period of 68 hours, a period of about 91 hours to about 140 hours, and a period of about 163 hours.
  • the period when power can not be supplied to the electronic device 25A is about 68 hours from 0 o'clock to about 20 hours from the start of operation.
  • the period of time is about 91 hours, and the period of about 140 hours to about 163 hours.
  • the period in which power can be supplied to the electronic device 25A (the drivable period) is approximately 29 hours from the start of operation.
  • the period from the start of operation is about 63 hours to about 97 hours, from 0 o'clock to about 29 hours, during the period when electric power can not be supplied Period of about 127 hours to about 162 hours.
  • the user can not supply power to the electronic device 25A longer, and the user can reduce the period that can supply power to the electronic device 25A.
  • the image g113A of the graph showing the change of the voltage of the storage battery 23A versus time can be confirmed.
  • the images with reference signs g113Ag and g113Ah in FIG. 34 are storage batteries based on at least the power consumption of the electronic device 25A (load circuit) of the computing unit 12A and the power generated by irradiating the solar cell 21A with light.
  • the change in voltage of the storage battery is calculated, and the display unit 14A graphs the change in voltage of the storage battery with respect to the elapsed time.
  • the display unit 14A graphs the change of the illuminance with respect to the elapsed time based on the illuminance and the irradiation time with which the solar cell 21A set by the setting unit 11A is irradiated. It is the result of displaying the change of the voltage of the storage battery with respect to elapsed time on the graph superimposed.
  • the images with reference numerals g113Ae and g113Af in FIG. 34 have periods during which the operation unit 12A can drive the electronic device 25A (load circuit) and the load circuit based on the change in the voltage of the storage battery with respect to the time change obtained.
  • the storage battery 23A is a graph of at least one of the periods in which the display unit 14A can drive the electronic device 25A and the periods in which the display device 14A can not drive the electronic device 25A. It is the result of being displayed in association with the graph of the change in voltage of.
  • FIG. 34 an example of a setting method using the pointer image g301A will be described.
  • the user operates the setting unit 11A to issue an instruction to operate the pointer image g301A.
  • the pointer image g301A is operated to operate to change the image of the code g113Ag in the height direction.
  • the operation unit 12A detects the operated result, and changes the illuminance, for example, from 500 [lux] to 700 [lux] in the image of g113 Ag.
  • the display unit 14A changes the illuminance from 500 [lux] to 700 [lux] in the setting image g102A (FIGS.
  • the display unit 14A recalculates a change in voltage of the storage battery with respect to time change, a period in which the electronic device 25A (load circuit) can be driven, and a period in which the load circuit can not be driven.
  • the graph image g113A indicating the change is updated.
  • items that can be changed by operating the pointer image g301A are, for example, the light intensity irradiated to the solar cell 21A, the light irradiation time irradiated to the solar cell 21A, and the power stored in the storage battery 23A again A voltage value, a charge upper limit voltage, a discharge lower limit voltage, a period in which the electronic device 25A (load circuit) can be driven, and a period in which the load circuit can not be driven.
  • the operation unit 12A performs the reverse operation of obtaining the graph of FIG.
  • the set value is changed based on the time, the power generation efficiency of the solar cell, the operation time, and the priority set in advance with respect to the operation interval, and the display images of FIG. 22 and FIG. 23 are changed.
  • the user operates the setting unit 11A in advance to set the illuminance, the light irradiation time, the power generation efficiency of the solar cell, the operation time, and the priority of the operation interval, and the calculation unit 12A stores the set result. Make it memorize in 13A.
  • FIG. 35 is a diagram showing an example of the time change of the illuminance and the voltage of the storage battery 23A.
  • the horizontal axis is time
  • the left vertical axis is the voltage of storage battery 23A
  • the right vertical axis is illuminance.
  • the illuminance of L1 (for example, 500 [lux]) is irradiated to the solar cell 21A in the period from 0 o'clock to 20 o'clock, and the voltage of the storage battery 23A becomes V1.
  • the illuminance of L2 (for example, 0 [lux]) is irradiated to the solar cell 21A in the period from 20 o'clock to 24 o'clock when the light is turned off, and the voltage of the storage battery 23A becomes V2.
  • L2 for example, 0 [lux]
  • the voltage of the storage battery 23A becomes V2.
  • one day (24 hours) is taken as a unit time.
  • FIG. 36 is a diagram illustrating an example of an image g114A representing an energy balance of the power generation amount and the power consumption.
  • the vertical axis is the ratio of the total energy consumption to the generated power generation amount.
  • the code g114Aa represents the energy balance when the amount of power that can be supplied per unit time is an average value.
  • the code g114Ab represents the energy balance when the amount of power that can be supplied per unit time is the minimum value.
  • the dashed-dotted line g114Ac represents a line in which the ratio of the total energy consumption to the generated power generation amount is 100%, that is, a balanced line.
  • the energy balance when the amount of power that can be supplied per unit time is an average value is 69.5%
  • the energy balance when the amount of power that can be supplied per unit time is a minimum value is 48. 6%.
  • the user confirms such an energy balance for example, increases the number of solar cells 21A, reselects the solar cells 21A, etc., and considers setting that balances the energy balance by re-setting. Can.
  • FIG. 37 is a view showing an example of an image g211A showing the battery life of the primary battery 24A.
  • the battery life [years] (typ) of the primary battery 24A when the amount of power that can be supplied per day is an average value, per unit time
  • the battery life [years] (min) of the primary battery 24 when the amount of power that can be supplied is the minimum value is included.
  • the battery life of the primary battery 24A is 3.7 [years (year)] (typ) when the amount of power that can be supplied per day is an average value, and the power that can be supplied per day is typical.
  • the battery life of the primary battery 24A when the amount is the minimum value is 2.2 [years] (min).
  • the pointer image g301A is manipulated with respect to the selected image g104A of the solar cell, the display image g108A of the operation state of the electronic device and the power consumption, and the graph g113A showing the change of voltage versus time of the storage battery.
  • the present invention is not limited to this.
  • the setting items etc. may be changed by operating the pointer image g301A for the setting items shown in tabular form in FIG. 22 and FIG.
  • the display unit 14A can select selectable illuminance (for example, 100, 200, 30,. .., 10000) may be displayed in a layer above the image of FIG. 22 or 23, for example, in the form of a slider or a pop-up menu.
  • selectable illuminance for example, 100, 200, 30,. .., 10000
  • the user may operate the displayed pointer image g301A to operate the slider, for example, to instruct to change the illuminance.
  • the user may operate the pointer image g301A to change the boosting efficiency, step-down efficiency, quiescent current, output voltage, capacity of storage battery 23A, self-discharge current of storage battery 23A, etc. of power supply circuit 22A. .
  • the example which operates the pointer image g301A and changes a setting with respect to the image of FIG.22 and FIG.23 was demonstrated in the example mentioned above, it does not restrict to this.
  • the calculation unit 12A reads data of an image (for example, FIG. 22) of the setting value in the initial state from the storage unit 13A and the display unit 14A displays the image in FIG. Good. Then, the user may operate the pointer image g301A to change the screen in this initial state.
  • the calculation unit 12A may initialize all the settings, and the display unit 14A may display the setting values in FIG. 22 in blanks. Then, on the screen in this initial state, the user may select and set the setting value of each item by operating the pointer image g301A.
  • Supply energy supply energy to the electronic device 25A; E chg (J / day) ⁇ Self-discharge energy consumed by storage battery 23A; E sd (J / day) ⁇ Self-discharge energy consumed by the power supply circuit 22A; E ic (J / day) ⁇ Generated energy; E in (J / day) And power generation power (Generating Power); W in ( ⁇ W) -Irradiation time; T light (hr / day) ⁇ Conversion efficiency of the power supply circuit 22A (boosting efficiency of the boosting circuit 221A); in in (%) ⁇ Conversion efficiency of power supply circuit 22A (step-down efficiency of step-down circuit 222A); ⁇ out (%) ⁇ Power consumption of the power supply circuit 22A (power consumption of the booster circuit 221A); A in (nA) ⁇ Power consumption of the power supply circuit 22A (power consumption of the step-down circuit 222A); A out (nA) ⁇ Capacity of storage battery 23A (Capacity);
  • the calculation unit 12A performs an operation of comparing the energy of supply and consumption with the amount of power per day using the consumption energy of the electronic device 25A and the supply energy of the electronic device 25A as follows. Arithmetic unit 12A obtains the consumed energy E ope when driving electronic device 25A using the following equation (9).
  • the calculation unit 12A obtains the consumption energy E sb when the electronic device 25A is on standby using the following equation (10).
  • the operation unit 12A obtains the total consumption energy E out of the electronic device 25A using the following equation (11).
  • operation unit 12A determines generated energy E in using the following equation (12).
  • operation unit 12A obtains self-discharge energy E ic consumed by power supply circuit 22A using the following equation (13).
  • operation unit 12A obtains self-discharge energy E sd consumed by storage battery 23A using the following equation (14).
  • the operation unit 12A obtains the energy E chg supplied to the electronic device 25A using the following equation (15).
  • the operation unit 12A may determine that the energy harvesting can be continuously driven.
  • FIG. 38 is a flowchart showing an example of the processing procedure performed by the calculation unit 12A and the display unit 14A according to this embodiment.
  • Step S101 The calculation unit 12A acquires setting information selected and set by the user operating the setting unit 11A.
  • the result of the operation of the setting unit 11A is any of the operation result set by a keyboard or the like, and the operation result selected or changed by the pointer image g301A (FIG. 22 or the like).
  • Step S102 Operation unit 12A reads from storage unit 13A a parameter corresponding to the acquired setting information. Subsequently, the calculation unit 12A reads a mathematical expression used for simulation from the storage unit 13A.
  • calculation unit 12A and the display unit 14A perform at least one of the processes of steps S103 to S104, the processes of steps S105 to S107, the process of step S108, and the processes of steps S110 to S111.
  • Step S103 Arithmetic unit 12A obtains a change in voltage of storage battery 23A with respect to elapsed time using setting information, parameters, and a mathematical expression. After the processing, operation unit 12A proceeds with the process to step S104.
  • Step S104 The display unit 14A graphs change in voltage of the storage battery 23A with respect to elapsed time to generate image information. After the processing, the display unit 14A proceeds with the process to step S109.
  • Step S105 The operation unit 12A obtains a period in which the electronic device 25A can be driven using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12A advances the process to step S106.
  • Step S106 The operation unit 12A obtains a period in which the electronic device 25A can not be driven, using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12A advances the process to step S107.
  • Step S107 The display unit 14A generates image information by graphing a period in which the electronic device 25A can not be driven and a period in which the electronic device 25A can not be driven. After the processing, the display unit 14A proceeds with the process to step S109.
  • Step S108 The calculation unit 12A outputs the information on the illuminance included in the acquired setting information to the display unit 14A.
  • the information on the illuminance includes at least the illuminance, and includes the light irradiation time.
  • the display unit 14A graphs information of the illuminance output from the calculation unit 12A. After the processing, the display unit 14A proceeds with the process to step S109.
  • Step S109 The display unit 14A combines the graphs graphed in step S104, step S107, and step S108. After the processing, the display unit 14A proceeds with the process to step S112.
  • Step S110 The calculation unit 12A obtains at least the power consumption of the electronic device 25A using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12A advances the process to step S111.
  • Step S111 The display unit 14A graphs change in power consumption with respect to elapsed time to generate image information. After the processing, the display unit 14A proceeds with the process to step S112.
  • Step S112 The display unit 14A updates and displays the image synthesized at step S109 and the image such as the graph generated at step S111. After the processing, the display unit 14A returns the processing to step S101.
  • Arithmetic unit 12A and display unit 14A all use the setting information set by setting unit 11A to create a graph of change in voltage of storage battery 23A with respect to elapsed time, and graph of drivable period and drivable period It is possible to create and create a graph of the change of the illuminance with respect to the elapsed time.
  • calculation unit 12A and display unit 14A each have the average value of the electric energy that can be supplied per unit time and the minimum electric energy that can be supplied per unit time, as shown in FIG. Processing may be performed.
  • calculation unit 12A and the display unit 14A perform at least one of the processing of steps S103 to S104, the processing of steps S105 to S107, the processing of step S108, and the processing of steps S110 to S111, All processing may be performed.
  • FIG. 39 is a diagram showing an example of a schematic configuration of a power simulation apparatus 1B according to the present embodiment.
  • the power simulation apparatus 1B includes a setting unit 11B, an operation unit 12B, a storage unit 13B, and a display unit 14B.
  • the setting unit 11B is, for example, a keyboard, a mouse, a touch panel sensor provided on the display unit 14B, or the like.
  • the setting unit 11B detects the information set by the user, and outputs the detected setting information to the calculation unit 12B.
  • Arithmetic unit 12B acquires setting information output from setting unit 11B.
  • the calculation unit 12B simulates the amount of generated power and the amount of consumed power with reference to the information stored in the storage unit 13B according to the acquired setting information.
  • Arithmetic unit 12B outputs the simulation result to display unit 14B. The simulation of the amount of power generated and the amount of power consumed will be described later.
  • the storage unit 13B stores mathematical expressions used by the calculation unit 12B at the time of simulation.
  • the storage unit 13B stores the specifications (model number, cell size, power generation area, maximum operating point power, operating current, open circuit voltage, and the like) of each of the solar cells that can be selected in simulation.
  • Storage unit 13B stores the specifications (charge upper limit voltage, discharge lower limit voltage, etc.) of storage battery 23B (FIG. 40) selectable in the simulation.
  • the storage unit 13B stores a configuration model 131B of the sensor system 2B.
  • the display unit 14B generates simulation results output from the calculation unit 12B as a table, image information such as a graph, and displays the generated image information. An example of the image information will be described later.
  • the display unit 14B includes an image display device.
  • the image display device is, for example, a liquid crystal display device, an organic EL (Electro Luminescence) display device, or the like.
  • FIG. 40 is a view showing an example of a configuration model of a sensor system 2B according to the present embodiment.
  • the sensor system 2B is configured to include a power supply module 20B, a primary battery 24B, and an electronic device 25B (load circuit).
  • the power supply module 20B is configured to include a solar cell 21B, a power supply circuit 22B, and a storage battery 23B.
  • the power supply circuit 22B further includes a booster circuit 221B and a step-down circuit 222B.
  • the sensor system 2B may or may not include the primary battery 24B.
  • the solar cell 21B has high light intensity under sunlight in the open air from an environment with low light intensity (for example, 10 [lux]) such as under a fluorescent lamp where sufficient power generation efficiency can not be obtained with general solar cells
  • a dye-sensitized solar cell capable of efficiently generating power up to, for example, 100,000 [lux] environment.
  • the solar cell 21B supplies the generated power to the power supply circuit 22B.
  • the power supply circuit 22B stores the power generated by the solar cell 21B in the storage battery 23B, and supplies the power stored in the storage battery 23B to the electronic device 25B.
  • the booster circuit 221B is a DC / DC converter that boosts the voltage value generated by the solar cell 21B to the voltage value according to the storage battery 23B.
  • the booster circuit 221B stores the power of the boosted voltage value in the storage battery 23B.
  • the step-down circuit 222B is a DC / DC converter that steps down the power stored in the storage battery 23B to a voltage value supplied to the electronic device 25B.
  • the step-down circuit 222B supplies the power of the stepped-down voltage value to the electronic device 25B.
  • Storage battery 23B stores the power generated by solar cell 21B and boosted by boosting circuit 221B.
  • the storage battery 23B supplies the stored power to the step-down circuit 222B.
  • the storage battery 23B is, for example, a lithium ion capacitor (LIC).
  • the primary battery 24B is, for example, a battery with a normal voltage value of 3.0V.
  • the electronic device 25B includes, for example, a communication unit, a control unit, a sensor unit, and the like.
  • the power stored in the storage battery 23B is supplied to the electronic device 25B.
  • the electric power stored in the storage battery 23B is supplied to the electronic device 25B, or the electric power is supplied from the primary battery 24B.
  • the electronic device 25B transmits the measurement value measured by the sensor unit to another device at the timing included in the setting information set by the setting unit 11B (FIG. 39).
  • the configuration of the sensor system 2B described above is an example, and the present invention is not limited to this.
  • the sensor system 2B may include, for example, a voltage detection unit, a charge / discharge control unit, and a switch for switching between the primary battery 24B and the storage battery 23B.
  • the calculation unit 12B simulates the balance between the amount of power generated by the solar cell 21B and the amount of power consumed by the electronic device 25B using the setting information set by the setting unit 11B.
  • Arithmetic unit 12B uses, for each component of sensor system 2B shown in FIG. 40, the power consumption during standby, power consumption during operation, boost efficiency, step-down efficiency, operation time and period of the electronic device, etc. Perform a simulation. These items also include items not considered in the conventional design. Therefore, according to the present embodiment, the balance of the energy balance can be appropriately determined even in the electronic apparatus using the energy-generating element, which is a weak power source, more accurately than in the past as the power generation source. .
  • FIG. 41 is a view showing an example of an image displayed on the display unit 14B when the sensor system 2B according to the present embodiment is not provided with the primary battery 24B.
  • the image g100B displayed on the display unit 14B when the sensor system 2B does not include the primary battery 24B has the configuration image g101B of the power supply module and the sensor system 2B installed as setting items.
  • the image g100B is an image g111B of information indicating the power that can be supplied to the electronic device 25B, an image g112B indicating the total consumption energy, an image g113B of a graph indicating the change of voltage versus time of the storage battery 23B, and power generation
  • the image g114B showing the energy balance of quantity and power consumption is included.
  • FIG. 42 is a view showing an example of an image displayed on the display unit 14B when the sensor system 2B according to the present embodiment includes the primary battery 24B.
  • an image g1000B displayed on the display unit 14B when the sensor system 2B includes the primary battery 24B has the configuration image g101B of the power supply module and the sensor system 2B installed as setting items.
  • Setting image g102B of environmental light state selected image g103B of solar cell 21B, g104B, power management image g105B, setting image g106B of storage battery 23B, setting image g107B of power consumption of electronic device 25B, operation state of electronic device 25B
  • a display image g108B of power consumption and an image g201B for setting the capacity of the primary battery 24B are provided.
  • the image g1000B is, as a simulation result, an image g111B of information indicating electric power that can be supplied to the electronic device 25B, an image g112B indicating total energy consumption, an image g113B of a graph indicating change of voltage versus time of the storage battery 23B, power generation amount And an image g114B representing an energy balance of power consumption, and an image g211B representing a battery life of the primary battery 24B.
  • FIG. 43 is a diagram showing an example of a component image g101B of the power supply module.
  • the component image g101B of the power supply module includes an information image g101Ba on the amount of light irradiated to the environment where the sensor system 2B is installed, and an information image g101Bb on the selected solar cell.
  • the information image g101Ba regarding the light quantity irradiated to the environment where the sensor system 2B is installed is updated every time the setting of the setting image g102B of the light state of the environment where the sensor system 2B is installed is updated.
  • the information image g101Bb related to the selected solar cell is updated each time the setting of the selected image g104B of the solar cell 21B is updated.
  • FIG. 44 is a diagram showing an example of a setting image g102B of the light state of the environment in which the sensor system 2B is installed.
  • the illumination time [lux] is the light irradiation time [time when light is irradiated to the sensor system 2B on one day] hr / day] is included.
  • the user operates the setting unit 11B to select each field of the setting image g102B of the light state of the environment in which the sensor system 2B is installed, and selects or inputs the value of each field.
  • FIG. 44 is a diagram showing an example of a setting image g102B of the light state of the environment in which the sensor system 2B is installed.
  • the illumination time [lux] is the light irradiation time [time when light is irradiated to the sensor system 2B on one day] hr / day] is included.
  • the user operates the setting unit 11B to select each field of the setting image g102B of the light state of the environment in which the sensor system 2
  • the calculation unit 12B updates the illuminance and the light irradiation time in the component image g101B of the power supply module according to the setting.
  • FIG. 45 is a diagram showing an example of the selected image g103B of the solar cell 21B.
  • the selected image g103B of the solar cell 21B includes the solar cell model number, the quantity [pcs (package)], the external size [mm], and the power generation area [cm 2 ].
  • the user operates the setting unit 11B to select each field of the selection image g103B of the solar cell 21B, and selects or inputs the value of each field.
  • the example shown in FIG. 45 is an example in which the solar cell model number is set as “solar cell I” and the number is 1 [pcs].
  • the calculation unit 12B reads out the information of the solar cell 21B stored in the storage unit 13B according to the setting, and updates the outer size to 112 ⁇ 56 [mm] and the power generation area to 32 [cm 2 ]. Furthermore, the operation unit 12B updates the solar cell model number and the number in the component image g101B of the power supply module according to the setting.
  • FIG. 46 is a diagram showing an example of the selected image g104B of the solar cell 21B. As shown in FIG. 46, in the selected image g104B of the solar cell 21B, an outline view and a dimensional view of selectable solar cells are displayed. In the example shown in FIG. 46, “solar cell I” is selected by the selected image g104B of the solar cell 21B. The user may select the image of “solar cell I” of the selected image g104B of the solar cell 21B by operating the setting unit 11B.
  • FIG. 47 is a diagram showing an example of the power management image g105B.
  • the power management image g105B includes boosting efficiency [%], bucking efficiency [%], quiescent current [nA], and output voltage [V].
  • the user operates the setting unit 11 to select each field of the power management image g105B, and selects or inputs the value of each field.
  • the example shown in FIG. 47 is an example where the boosting efficiency is set to 75%, the step-down efficiency to 90%, the quiescent current to 3000 nA, and the output voltage to 3.0V.
  • FIG. 48 is a diagram showing an example of a setting image g106B of the storage battery 23B.
  • setting image g106B of storage battery 23B includes capacity [F], initial voltage [V], charge upper limit voltage [V], discharge adjustment voltage [V], and self discharge current [ ⁇ A].
  • the user operates the setting unit 11B to select each field of the setting image g106B of the storage battery 23B, and selects or inputs the value of each field.
  • the example shown in FIG. 48 is an example in which the capacity is set to 40 [F], the initial voltage is 3.0 [V], and the self discharge current is set to 0.1 [ ⁇ A].
  • Arithmetic unit 12B updates the charge upper limit voltage value and the discharge lower limit voltage stored in storage unit 13B according to the setting.
  • the charge upper limit voltage value and the discharge lower limit voltage may be fixed values regardless of the storage battery 23B.
  • FIG. 49 is a diagram showing an example of a setting image g107B of the power consumption of the electronic device 25B and a display image g108B of the operation state of the electronic device 25B and the power consumption.
  • the operating voltage [V] the operating time [msec]
  • the operating interval [sec] the operating current [mA]
  • the standby current of the electronic device 25B. [ ⁇ A] is included. Further, as shown in FIG.
  • the image g108Ba of the operating state in the display image g108B of the operating state and power consumption of the electronic device 25B, the image g108Ba of the operating state, the operating voltage [V], the operating time [msec], the operating interval [sec], Operating current [mA] and standby current [ ⁇ A] are included.
  • the operating voltage is 3.0 [V]
  • the operating time is 20 [msec]
  • the operating interval is 2.0 [sec]
  • the operating current is 20 [mA]
  • the standby current is 2.5 [C]. It is an example set as ⁇ A].
  • the image of g108Ba in FIG. 49 is a result of displaying the power consumption of the electronic device 25B (load circuit) set by the setting unit 11B as a graph.
  • the user operates the setting unit 11B to select each field of the setting image g107B of the power consumption of the electronic device 25B, and selects or inputs the value of each field.
  • the calculation unit 12B updates the display image g108B of the operation state of the electronic device 25B and the power consumption according to the set information.
  • the user operates the setting unit 11B to select the operation state of the electronic device 25B and the width and height of the waveform of the display image g108B of the power consumption.
  • the calculation unit 12B updates the setting image g107B of the power consumption of the electronic device 25B according to the set information.
  • FIG. 50 is a diagram showing an example of an image g201B for setting the capacity of the primary battery 24B.
  • the image g201B for setting the capacity of the primary battery 24B includes the usage state (Hybrid operating) of the primary battery and the capacity [mAh] of the primary battery.
  • the user operates the setting unit 11B to select each field of the image g201B for setting the capacity of the primary battery 24B, and selects or inputs the value of each field.
  • the example shown in FIG. 50 is an example in which the usage state of the primary battery 24B is set to the on state (ON), and the capacity of the primary battery 24B is set to 2000 [mAh].
  • FIG. 51 is a diagram illustrating an example of an image g111B of information indicating power that can be supplied to the electronic device 25B.
  • the image g111B of information indicating the power that can be supplied to the electronic device 25B the average value [ ⁇ Wh / day] (typ) of the power that can be supplied per day and the power can be supplied per day Power value [ ⁇ Wh / day] (min) is included.
  • the electric power that can be supplied to the electronic device 25B is the generated electric power generated per unit time (1 day) by the light irradiated to the solar cell 21B.
  • the display unit 14B displays, in a text format, the numerical value of the generated power generated per unit time, which is calculated by the calculation unit 12B.
  • FIG. 52 is a diagram illustrating an example of the image g112B indicating the total energy consumption.
  • the image g112B indicating the total energy consumption is shown by a pie chart.
  • An area indicated by reference sign g112Ba is a sum [ ⁇ Wh / day] of power consumption per day in a period in which the electronic device 25B is operating.
  • the area indicated by reference sign g112Bb is the sum [ ⁇ Wh / day] of the power consumption per day of the standby state of the electronic device 25B.
  • An area indicated by reference sign g112Bc is the sum [ ⁇ Wh / day] of the power consumption of the electronic device 25B per day.
  • FIG. 52 is a diagram illustrating an example of the image g112B indicating the total energy consumption.
  • the image g112B indicating the total energy consumption is shown by a pie chart.
  • An area indicated by reference sign g112Ba is a sum [ ⁇ Wh / day] of power
  • the total of the power consumption per day during the operation of the electronic device 25B is 14400 [ ⁇ Wh / day], and the power consumption per day during the standby state of the electronic device 25B. Is 178 [ ⁇ Wh / day], and the sum of both is 14578 [ ⁇ Wh / day].
  • a pie chart is displayed, but the chart may be a bar graph or the like.
  • the display unit 14B displays the numerical values of the elements of the pie chart in text format.
  • the character display of the code g112Bd is the sum [ ⁇ Wh / day] of the power consumption per day during the operation of the electronic device 25B.
  • the character display of the code g112Be is the total [ ⁇ Wh / day] of the power consumption per day of the standby state of the electronic device 25B.
  • the character display of the code g112Bf is the total [ ⁇ Wh / day] of the power consumption of the electronic device 25B per day.
  • Arithmetic unit 12B uses the equation stored in storage unit 13B and the setting information set by the operation of setting unit 11B to calculate the sum of the power consumption per day during the operation of electronic device 25B, the electronic device The sum of the power consumption per day of the period of the standby state of 25 B and the sum of the power consumption per day of the electronic device 25 B are calculated.
  • the expression stored in the storage unit 13B will be described later.
  • the display unit 14B is the sum of power consumption per day during the operation of the electronic device 25B calculated by the calculation unit 12B, the sum of power consumption per day during the standby state of the electronic device 25B, and the electronic device A graph is generated using the sum of the power consumption per day of 25 B, and the generated graph is displayed.
  • the display unit 14B is a sum of power consumption per day during the operation of the electronic device 25B calculated by the calculation unit 12B, a sum of power consumption per day of the standby state of the electronic device 25B, The total of the power consumption per day of the electronic device 25B is displayed in text format in association with each element of the graph.
  • the calculation unit 12B uses the updated setting information to generate the generated power per unit time generated by the solar cell 21B and the power consumption per unit time of the electronic device 25B. Ask again. Then, the display unit 14B updates the generated power per unit time obtained by the calculation unit 12B again and the power consumption per unit time of the electronic device 25B, and displays the updated power in the text format.
  • the calculation unit 12B is a period during which the electronic device 25B is operating using at least the illuminance irradiated to the solar cell 21B among the setting information, the operating current of the electronic device 25B which is a load, the operating time, and the operating interval.
  • the total of the power consumption per day, the total of the power consumption per day of the period in which the electronic device 25B is in the standby state, and the total of the power consumption per day of the electronic device 25B are obtained.
  • the calculation unit 12B also uses the irradiation time per unit time (1 day) irradiated to the solar cell 21B which is the setting information, and the total of the power consumption per day during the operation of the electronic device 25B, the electron The sum of the power consumption per day during the standby state of the device 25B and the sum of the power consumption per day of the electronic device 25B may be obtained.
  • Arithmetic unit 12B also uses the standby current of electronic device 25B to calculate the sum of the power consumption per day of the operating period of electronic device 25B, and of the power consumption per day of the period when electronic device 25B is in the standby state. The sum total, the sum total of the power consumption per day of the electronic device 25B may be obtained. Arithmetic unit 12B also uses the operating current at the time of operation of electronic device 25B, the sum of the power consumption per day during the period in which electronic device 25B is operating, the daily period of the period in which electronic device 25B is in the standby state. The sum of the power consumption and the sum of the power consumption of the electronic device 25B per day may be obtained.
  • Arithmetic unit 12B also uses the capacity of storage battery 23B, the charge upper limit voltage, and the discharge lower limit voltage to sum up the power consumption per day of the period in which electronic device 25B is operating, and 1 of the period in which electronic device 25B is in the standby state. The total of the power consumption per day and the total of the power consumption per day of the electronic device 25B may be obtained.
  • Arithmetic unit 12B also uses the conversion efficiency of power supply circuit 22B to calculate the sum of the power consumption per day of the operating period of electronic device 25B, and the power consumption per day of the period when electronic device 25B is in the standby state. The sum total, the sum total of the power consumption per day of the electronic device 25B may be obtained.
  • the conversion efficiency of the power supply circuit 22B includes the boosting efficiency and the bucking efficiency.
  • Arithmetic unit 12B also uses the power consumption of power supply circuit 22B to calculate the sum of the power consumption per day of the operating period of electronic device 25B, and the power consumption per day of the period when electronic device 25B is in the standby state. The sum total, the sum total of the power consumption per day of the electronic device 25B may be obtained.
  • the power consumption of the power supply circuit 22B is a value determined by the calculation unit 12B using information such as a quiescent current and an output voltage. Arithmetic unit 12B also uses the information related to solar cell 21B, the sum of the power consumption per day during the operation of electronic device 25B, and the sum of the power consumption per day during the standby state of electronic device 25B. The sum of the power consumption per day of the electronic device 25B may be obtained.
  • the information on the solar cell 21B is information such as a solar cell model number, quantity, outer size, power generation area, and the like.
  • the simulation is performed also taking into consideration items such as the self discharge current of the storage battery 23B and the like that have not been taken into consideration conventionally.
  • FIG. 53 is a diagram showing an example of image g113B of a graph showing change of voltage of storage battery 23B to time.
  • the horizontal axis is time (hour)
  • the vertical axis on the left is voltage value (V) of storage battery 23B
  • the vertical axis is illuminance (lux) on the right.
  • the display unit 14B generates and displays a graph based on the result obtained by the calculation unit 12B.
  • the change of voltage versus time of the storage battery 23B when the amount of power that can be supplied per day is an average value g113Ba, 1 day
  • a change g113h in voltage versus time of the storage battery 23B when the amount of power that can be supplied per unit is minimum and a period g113Bg in which power generation is performed by the solar cell 21B.
  • the dashed-dotted line g113Bb represents the discharge lower limit voltage (lower limit voltage).
  • the dashed-dotted line g113Bc represents a voltage value for re-outputting the power stored in the storage battery 23B.
  • a dashed-dotted line g113Bc represents the charging upper limit voltage.
  • a region indicated by reference sign g113Be represents a period in which power can not be supplied to the electronic device 25B.
  • a region indicated by reference sign g113Bf represents a period in which power can be supplied to the electronic device 25B.
  • the period in which power can be supplied to the electronic device 25B is about 20 hours to about time from the start of operation.
  • the period when power can not be supplied to the electronic device 25B is about 68 hours from 0 o'clock to about 20 hours from the start of operation.
  • the period of time is about 91 hours, and the period of about 140 hours to about 163 hours.
  • the period in which power can be supplied to the electronic device 25B (the drivable period) is approximately 29 hours from the start of operation.
  • the period from the start of operation is about 63 hours to about 97 hours, from 0 o'clock to about 29 hours, during the period when power can not be supplied to the electronic device 25B. Period of about 127 hours to about 162 hours.
  • the user can not supply power to the electronic device 25B longer, and the period in which power can be supplied to the electronic device 25B becomes shorter.
  • the image g113B of the graph which shows the change of the voltage versus time of the storage battery 23B can be confirmed.
  • the images denoted by g113Bg and g113Bh in FIG. 53 are storage batteries based on at least the power consumption of the electronic device 25B (load circuit) of the computing unit 12B and the power generated by irradiating the solar cell 21B with light.
  • the change in voltage of the storage battery is calculated, and the display unit 14B graphs the change in voltage of the storage battery with respect to the elapsed time.
  • the display unit 14B graphs changes in the illuminance with respect to elapsed time based on the illuminance and the irradiation time with which the solar battery 21B is set by the setting unit 11B. It is the result of displaying the change of the voltage of the storage battery with respect to elapsed time on the graph superimposed.
  • symbol g113Be of FIG. 53, g113Bf is the period which can drive the electronic device 25B (load circuit) based on the change of the voltage of the said storage battery with respect to the time change calculated
  • the storage battery 23B is a graph of at least one of the periods in which the driving unit 12B can drive the electronic device 25B and the periods in which the display device 14B can not drive the electronic device 25B. It is the result of being displayed in association with the graph of the change in voltage of.
  • FIG. 54 is a diagram showing an example of the time change of the illuminance and the voltage of the storage battery 23B.
  • the horizontal axis is time
  • the left vertical axis is the voltage of storage battery 23B
  • the right vertical axis is illuminance.
  • the illuminance of L1 (for example, 500 [lux]) is irradiated to the solar cell 21B in the period from 0 o'clock to 20 o'clock, and the voltage of the storage battery 23B becomes V1.
  • the illuminance of L2 (for example, 0 [lux]) is irradiated to the solar cell 21B in the period from 20 o'clock to 24 o'clock when the light is turned off, and the voltage of the storage battery 23B becomes V2.
  • L2 for example, 0 [lux]
  • the voltage of the storage battery 23B becomes V2.
  • one day (24 hours) is taken as a unit time.
  • FIG. 55 is a diagram illustrating an example of an image g114B representing an energy balance of the power generation amount and the power consumption.
  • the vertical axis is the ratio of the total energy consumption to the generated power generation amount.
  • the code g114Ba represents the energy balance when the amount of power that can be supplied per unit time is an average value.
  • the code g114Bb represents the energy balance when the amount of power that can be supplied per unit time is the minimum value.
  • the dashed-dotted line g114Bc represents 100% of the ratio of the total energy consumption to the generated power generation amount, that is, a balanced line.
  • the display unit 14B generates and displays a graph based on the result obtained by the calculation unit 12B.
  • the energy balance when the amount of power that can be supplied per unit time is an average value is 69.5%
  • the energy balance when the amount of power that can be supplied per unit time is a minimum value is 48. 6%.
  • the user confirms such an energy balance for example, increases the number of solar cells 21B, reselects the solar cells 21B, etc., and reconsiders the setting to consider the setting in which the energy balance is balanced. Can.
  • FIG. 56 is a view showing an example of an image g211B showing the battery life of the primary battery 24B.
  • the battery life [years] (typ) of the primary battery 24B when the amount of power that can be supplied per day is an average value, per unit time
  • the battery life [years] (min) of the primary battery 24B when the amount of power that can be supplied is the minimum value is included.
  • the battery life of the primary battery 24B is 3.7 [years (year)] (typ) when the amount of power that can be supplied per day is an average value, and the power that can be supplied per day is typical.
  • the battery life of the primary battery 24B when the amount is the minimum value is 2.2 [years] (min).
  • Supply energy supply energy to the electronic device 25B; E chg (J / day) -Self-discharge energy consumed by storage battery 23B; E sd (J / day) ⁇ Self discharge energy consumed by the power supply circuit 22B; E ic (J / day) ⁇ Generated energy; E in (J / day) And power generation power (Generating Power); W in ( ⁇ W) -Irradiation time; T light (hr / day) ⁇ Conversion efficiency of power supply circuit 22B (boosting efficiency of boosting circuit 221B); in in (%) ⁇ Conversion efficiency of the power supply circuit 22B (step-down efficiency of the step-down circuit 222B); out out (%) ⁇ Power consumption of the power supply circuit 22B (power consumption of the booster circuit 221B); A in (nA) ⁇ Power consumption of the power supply circuit 22B (power consumption of the step-down circuit 222B); A out (nA) ⁇ Capacity of storage battery 23B (Capacity); C (F
  • the calculation unit 12B performs an operation of comparing the energy of supply and consumption with the amount of power per day using the consumption energy of the electronic device 25B and the supply energy of the electronic device 25B as follows. Arithmetic unit 12B obtains consumed energy E ope when driving electronic device 25B using the following equation (17).
  • the calculation unit 12B obtains the consumption energy E sb at the time of standby of the electronic device 25B using the following equation (18).
  • the calculation unit 12B obtains the total consumption energy E out of the electronic device 25B using the following equation (19).
  • operation unit 12B determines generated energy E in using the following equation (20).
  • operation unit 12B determines self-discharge energy E ic consumed by power supply circuit 22B using the following equation (21).
  • operation unit 12B obtains self-discharge energy E sd consumed by storage battery 23B using the following equation (22).
  • the calculation unit 12B obtains the supply energy E chg to the electronic device 25B using the following equation (23).
  • the calculation unit 12B may determine that the energy harvesting can be continuously driven.
  • FIG. 57 is a flowchart illustrating an example of processing procedures performed by the calculation unit 12B and the display unit 14B according to the present embodiment.
  • the calculation unit 12B and the display unit 14B perform the following process each time the setting information is updated.
  • Step S201 The calculation unit 12B acquires setting information selected and set by the user operating the setting unit 11B.
  • Step S202 Operation unit 12B reads from storage unit 13B a parameter corresponding to the acquired setting information. Subsequently, the calculation unit 12B reads the mathematical expression used for the simulation from the storage unit 13B.
  • calculation unit 12B and the display unit 14B perform at least one of the processing of steps S203 to S204, the processing of steps S205 to S207, the processing of step S208, and the processing of steps S210 to S211.
  • Step S203 Arithmetic unit 12B obtains a change in voltage of storage battery 23B with respect to elapsed time using setting information, parameters, and a mathematical expression. After the processing, operation unit 12B advances the process to step S204.
  • Step S204 The display unit 14B graphs change in voltage of the storage battery 23B with respect to elapsed time to generate image information. After the processing, the display unit 14B proceeds with the process to step S209.
  • Step S205 The calculation unit 12B obtains a period in which the electronic device 25B can be driven using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12B advances the processing to step S206.
  • Step S206 The calculation unit 12B obtains a period in which the electronic device 25B can not be driven, using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12B advances the processing to step S207.
  • Step S207 The display unit 14B graphs the period in which the electronic device 25B can not be driven and the period in which the electronic device 25B can be driven, and generates the image information. After the processing, the display unit 14B proceeds with the process to step S209.
  • Step S208 Operation unit 12B outputs the information on the illuminance included in the acquired setting information to display unit 14B.
  • the information on the illuminance includes at least the illuminance, and includes the light irradiation time.
  • the display unit 14B graphs information of the illuminance output by the calculation unit 12B. After the processing, the display unit 14B proceeds with the process to step S209.
  • Step S209 The display unit 14B combines the graph graphed in step S204, step S207, and step S208. After the processing, the display unit 14B proceeds with the process to step S212.
  • Step S210 The calculation unit 12B obtains at least the power consumption of the electronic device 25B using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12B advances the processing to step S211.
  • Step S211 The display unit 14B graphs change in power consumption with respect to elapsed time to generate image information. After the processing, the display unit 14B proceeds with the process to step S212.
  • Step S212 The display unit 14B updates and displays the image synthesized at step S209 and the image such as the graph generated at step S211. After the processing, the display unit 14B returns the processing to step S201.
  • Arithmetic unit 12B and display unit 14B use all the setting information set by setting unit 11B to create a graph of change in voltage of storage battery 23B with respect to elapsed time, and graph of drivable period and drivable period It is possible to create and create a graph of the change of the illuminance with respect to the elapsed time.
  • calculation unit 12B and display unit 14B are configured as shown in FIG. 57 when the amount of power that can be supplied per unit time is an average value and when the amount of power that can be supplied per unit time is a minimum value. Processing may be performed.
  • the calculation unit 12B and the display unit 14B perform at least one of the processing of steps S203 to S204, the processing of steps S205 to S207, the processing of step S208, and the processing of steps S210 to S211. All processing may be performed.
  • FIG. 58 is a diagram showing how to determine the generated power per unit time in FIG. 51, the power consumption per unit time in FIG. 52, and the update procedure.
  • the calculation unit 12B and the display unit 14B perform the following process each time the setting information is updated.
  • Step S301 The calculation unit 12B acquires setting information selected and set by the user operating the setting unit 11B.
  • Step S302 Operation unit 12B reads from storage unit 13B a parameter corresponding to the acquired setting information. Subsequently, the calculation unit 12B reads the mathematical expression used for the simulation from the storage unit 13B.
  • calculation unit 12B and the display unit 14B perform at least one of the processing of steps S303 to S304 and the processing of steps S305 to S306.
  • Step S303 The calculation unit 12B obtains the power consumption of the electronic device 25B using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12B advances the process to step S304.
  • Step S304 The display unit 14B displays the power consumption obtained in step S303 in text format, as shown in FIG. 51, for example. After the processing, the display unit 14B returns the processing to step S301.
  • Step S305 The calculation unit 12B obtains the generated power generated by the solar cell 21B using the setting information, the parameters, and the formula. After the processing, operation unit 12B advances the processing to step S306. (Step S306) For example, as shown in FIG. 52, the display unit 14B displays the generated power obtained in step S305 in the form of a text in association with each item of the graph. After the processing, the display unit 14B returns the processing to step S301.
  • the processing procedure illustrated in FIG. 58 is an example, and the present invention is not limited to this.
  • the display unit 14B may display other items obtained by the calculation unit 12B in a text format.
  • a program for realizing all or part of the functions of the power simulation apparatus 1 (1A, 1B) in the present invention is recorded in a computer readable recording medium, and the program recorded in the recording medium is a computer system May be read and executed to perform all or part of the processing performed by the power simulation apparatus 1 (1A, 1B).
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer system” also includes a WWW system provided with a homepage providing environment (or display environment).
  • the “computer-readable recording medium” means a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • the "computer-readable recording medium” is a volatile memory (RAM) in a computer system serving as a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line.
  • RAM volatile memory
  • those that hold the program for a certain period of time are also included.
  • the program may be transmitted from a computer system in which the program is stored in a storage device or the like to another computer system via a transmission medium or by transmission waves in the transmission medium.
  • the “transmission medium” for transmitting the program is a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, it may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
  • 1, 1A, 1B power simulation apparatus, 11, 11A, 11B: setting unit, 12, 12A, 12B: arithmetic unit, 13, 13A, 13B: storage unit 14, 14, 14A, 14B: display unit, 131, 131A, 131B: Configuration model of sensor system, 2, 2A, 2B: Sensor system, 20, 20A, 20B: Power supply module, 24, 24A, 24B: Primary battery, 25, 25A, 25B: Electronic device, 21, 21A, 21B ... Solar cell 22, 22, 22A, 22B: power supply circuit 23, 23, 23A, 23B: storage battery 21, 221A, 221B: boost circuit, 222, 222A, 222B: step-down circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Power Sources (AREA)

Abstract

This power simulation device carries out a simulation of the power in a sensor system which includes solar cells, a power supply circuit, a power storage battery and a load circuit, and is provided with: a setting unit which acquires the degree of illumination of the solar cells, the current consumption, operation time and operation interval during operation of a load circuit, and the capacity of the storage battery; a storage unit which stores formulas and parameters necessary for the simulation; a calculation unit which uses the setting information acquired by the setting unit and the formulas and parameters stored by the storage unit to calculate change in the voltage of the storage battery against time elapsed; and a display unit which graphs and displays change in the voltage of the storage battery against time elapsed calculated by the calculation unit.

Description

電力シミュレーション装置、および電力シミュレーション方法Power simulation apparatus and power simulation method
 本発明は、電力シミュレーション装置、および電力シミュレーション方法に関する。本願は、2018年1月5日に日本に出願された、特願2018-000569号と特願2018-000570号と特願2018-000571号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a power simulation apparatus and a power simulation method. Priority is claimed on Japanese Patent Application Nos. 2018-000569, 2018-000570, and 2018-000571 filed on Jan. 5, 2018, the content of which is incorporated herein by reference. Do.
 近年、電子回路や無線技術の低消費電力化により、周囲の環境から電気エネルギーを得ることで、配線や電池交換なしで動作するワイヤレスセンサといったエネルギーハーベスティング(環境発電)デバイスが注目されている。このようなデバイスでは、例えば太陽電池を用いて発電し、発電したエネルギーを蓄電池に蓄電して制御回路や無線通信回路等を有する電子機器を動作させる。太陽電池等によって得られる電力は環境に依存するものの、例えばμW~mWオーダーの微弱な電力である場合が多い。このため、動作させたい電子機器を安定的に連続して動作させるためには、設計段階で発電電力、蓄電電力を含む電子機器の消費電力のバランスを考慮することが重要視されている。 BACKGROUND In recent years, energy harvesting (environmental power generation) devices such as wireless sensors that operate without wiring and battery replacement have attracted attention by obtaining electric energy from the surrounding environment by reducing power consumption of electronic circuits and wireless technologies. In such a device, power is generated using, for example, a solar cell, and the generated energy is stored in a storage battery to operate an electronic device having a control circuit, a wireless communication circuit, and the like. Although the power obtained by the solar cell or the like depends on the environment, it is often a weak power of, for example, the order of μW to mW. Therefore, in order to stably and continuously operate the electronic device to be operated, it is considered important to consider the balance of the power consumption of the electronic device including the generated power and the stored power at the design stage.
 このため、太陽電池の発電電力を電子機器の消費電力を比較する手法や、発電された電力をDCDC(直流-直流)変換器で変換する際の変換効率を考慮した消費電力を考慮することが検討されている。
 例えば、特許文献1には、太陽電池発電システムの発電量を演算するシミュレータが開示されている。
For this reason, it is necessary to consider the power consumption considering the conversion efficiency at the time of converting the generated power of the solar battery by the DCDC (direct current-direct current) converter and comparing the power consumption of the electronic device. It is being considered.
For example, Patent Document 1 discloses a simulator that calculates the amount of power generation of a solar cell power generation system.
特許第4837191号公報Patent No. 4837191
 しかしながら、従来技術では、太陽電池等によって得られる環境発電の場合、得られる電力が上述したように微弱なため、従来のシミュレーション手法ではエネルギーバランスが成り立たない場合があるという課題があった。 However, in the conventional technology, in the case of environmental power generation obtained by a solar cell or the like, since the obtained power is weak as described above, there has been a problem that the conventional simulation method may not achieve energy balance.
 本発明は、上記の問題点に鑑みてなされたものであって、微弱な発電源である環境発電素子を発電供給源に用いた電子機器であっても、エネルギー収支のバランスを適切に求めることができる電力シミュレーション装置、および電力シミュレーション方法を提供することを目的とする。 The present invention has been made in view of the above problems, and it is desirable to properly determine the balance of the energy balance even in an electronic device using an energy harvesting element which is a weak power source as a power generation source. It is an object of the present invention to provide a power simulation apparatus capable of
 本発明の一態様に係る電力シミュレーション装置は、太陽電池と電源回路と蓄電池と負荷回路(電子機器)を含むセンサシステムの電力のシミュレーションを行う電力シミュレーション装置であって、前記太陽電池に対する照度と、前記負荷回路の動作時の消費電流と動作時間と動作間隔と、前記蓄電池の容量と、を取得する設定部と、前記シミュレーションに必要な数式とパラメータを記憶する記憶部と、経過時間に対する前記蓄電池の電圧の変化を、前記設定部によって取得された設定情報と、前記記憶部が記憶する前記数式と前記パラメータを用いて求める演算部と、前記演算部が求めた経過時間に対する前記蓄電池の電圧の変化をグラフ化して表示する表示部と、を備える。 An electric power simulation apparatus according to an aspect of the present invention is an electric power simulation apparatus that simulates electric power of a sensor system including a solar cell, a power supply circuit, a storage battery, and a load circuit (electronic equipment). A setting unit for acquiring current consumption, operation time, operation interval, and capacity of the storage battery at the time of operation of the load circuit, a storage unit for storing formulas and parameters required for the simulation, and the storage battery for elapsed time A calculation unit for obtaining a change in voltage of the storage battery using the setting information acquired by the setting unit, the equation stored in the storage unit and the parameter, and the voltage of the storage battery with respect to the elapsed time determined by the calculation unit And a display unit for graphing and displaying the change.
 また、本発明の一態様に係る電力シミュレーション装置において、前記表示部は、前記設定部によって設定された消費電力をグラフ化して表示するようにしてもよい。 Further, in the power simulation apparatus according to the aspect of the present invention, the display unit may graph and display the power consumption set by the setting unit.
 また、本発明の一態様に係る電力シミュレーション装置において、前記演算部は、求めた時間変化に対する前記蓄電池の電圧の変化に基づいて、前記負荷回路を駆動可能な期間および前記負荷回路を駆動できない期間のうち少なくとも1つを求め、前記表示部は、前記演算部が求めた前記負荷回路を駆動可能な期間および前記負荷回路を駆動できない期間のうち少なくとも1つを、グラフ化した前記蓄電池の電圧の変化に関連付けて表示するようにしてもよい。 Further, in the power simulation apparatus according to the aspect of the present invention, the operation unit can drive the load circuit and can not drive the load circuit based on a change in voltage of the storage battery with respect to the obtained time change. And at least one of the time period in which the operation unit can drive the load circuit and the time period in which the load circuit can not be driven are graphed at least one of the voltages of the storage battery. It may be displayed in association with the change.
 また、本発明の一態様に係る電力シミュレーション装置において、前記演算部は、前記太陽電池に単位時間に前記照度が照射される時間をさらに用いて、経過時間に対する前記蓄電池の電圧の変化を求めるようにしてもよい。 Further, in the power simulation apparatus according to one aspect of the present invention, the operation unit further obtains a change in voltage of the storage battery with respect to an elapsed time by further using a time during which the illuminance is irradiated to the solar cell per unit time. You may
 また、本発明の一態様に係る電力シミュレーション装置において、前記表示部は、前記太陽電池に対して光が照射されている期間をグラフ化し、グラフ化した前記蓄電池の電圧の変化に関連付けて表示するようにしてもよい。 Further, in the power simulation apparatus according to the aspect of the present invention, the display unit graphs the period during which light is irradiated to the solar cell, and displays the graph in association with the graphed voltage change of the storage battery. You may do so.
 また、本発明の一態様に係る電力シミュレーション装置において、前記演算部は、前記負荷回路の動作時の待機時の消費電流をさらに用いて、経過時間に対する前記蓄電池の電圧の変化を求めるようにしてもよい。 Further, in the power simulation apparatus according to one aspect of the present invention, the operation unit is further configured to obtain a change in voltage of the storage battery with respect to an elapsed time by further using consumption current at the time of standby of the operation of the load circuit. It is also good.
 また、本発明の一態様に係る電力シミュレーション装置において、前記演算部は、前記蓄電池の自己放電電流をさらに用いて、経過時間に対する前記蓄電池の電圧の変化を求めるようにしてもよい。 Further, in the power simulation apparatus according to the aspect of the present invention, the calculation unit may further use a self discharge current of the storage battery to obtain a change in voltage of the storage battery with respect to an elapsed time.
 また、本発明の一態様に係る電力シミュレーション装置において、前記演算部は、前記負荷回路の動作電圧をさらに用いて、経過時間に対する前記蓄電池の電圧の変化を求めるようにしてもよい。 Further, in the power simulation apparatus according to one aspect of the present invention, the operation unit may further use an operating voltage of the load circuit to obtain a change in voltage of the storage battery with respect to an elapsed time.
 また、本発明の一態様に係る電力シミュレーション装置において、前記演算部は、前記設定部によって設定された情報に基づいて、前記記憶部が記憶するパラメータを参照して、前記蓄電池の上限電圧および下限電圧のうち少なくとも1つを読み出し、前記表示部は、前記演算部が読み出した前記蓄電池の上限電圧および下限電圧のうち少なくとも1つを、グラフ化した前記蓄電池の電圧の変化に関連付けて表示するようにしてもよい。 In the power simulation apparatus according to one aspect of the present invention, the calculation unit refers to the parameter stored in the storage unit based on the information set by the setting unit, and the upper limit voltage and the lower limit of the storage battery. Reading out at least one of the voltages, and the display unit displays at least one of the upper limit voltage and the lower limit voltage of the storage battery read by the operation unit in association with the graphed voltage change of the storage battery You may
 また、本発明の一態様に係る電力シミュレーション装置において、前記演算部は、前記電源回路が有する昇圧回路の変換効率と消費電力と、前記電源回路が有する降圧回路の変換効率と消費電力とをさらに用いて、経過時間に対する前記蓄電池の電圧の変化を求めるようにしてもよい。 Further, in the power simulation apparatus according to one aspect of the present invention, the operation unit further includes conversion efficiency and power consumption of a booster circuit included in the power supply circuit, and conversion efficiency and power consumption of a step-down circuit included in the power supply circuit. The change in voltage of the storage battery with respect to the elapsed time may be determined using this.
 本発明の一態様に係る電力シミュレーション方法は、太陽電池と電源回路と蓄電池と負荷回路とセンサシステムの電力のシミュレーションに必要な数式とパラメータを記憶する記憶部を含み、前記シミュレーションを行う電力シミュレーション装置における電力シミュレーション方法であって、設定部が、前記太陽電池に対する照度と、前記負荷回路の動作時の消費電流と動作時間と動作間隔と、前記蓄電池の容量と、を取得する設定手順と、演算部が、経過時間に対する前記蓄電池の電圧の変化を、前記設定手順によって取得された設定情報と、前記記憶部が記憶する前記数式と前記パラメータを用いて求める演算手順と、表示部が、前記演算手順によって求められた経過時間に対する前記蓄電池の電圧の変化をグラフ化して表示する表示手順と、含む。 A power simulation method according to an aspect of the present invention includes a solar battery, a power supply circuit, a storage battery, a load circuit, and a storage unit for storing a formula and parameters necessary for simulation of power of a sensor system. A setting procedure for acquiring the illuminance on the solar cell, the consumed current at the time of operation of the load circuit, the operation time and the operation interval, and the capacity of the storage battery; An operation procedure for determining a change in voltage of the storage battery with respect to an elapsed time using setting information acquired by the setting procedure, the equation stored in the storage unit, and the parameter; A table that graphically displays the change in voltage of the storage battery with respect to the elapsed time determined by the procedure And procedures, including.
 本発明の一態様に係る電力シミュレーション装置は、太陽電池と電源回路と蓄電池と負荷回路(電子機器)を含むセンサシステムの電力のシミュレーションを行う電力シミュレーション装置であって、前記太陽電池に対する照度と、前記負荷回路の動作時の消費電流と動作時間と動作間隔と、前記蓄電池の容量と、を表示部が表示するポインタ画像の操作に基づいて取得する設定部と、前記シミュレーションに必要な数式とパラメータを記憶する記憶部と、経過時間に対する前記蓄電池の電圧の変化を、前記設定部によって取得された設定情報と、前記記憶部が記憶する前記数式と前記パラメータを用いて求める演算部と、前記演算部が求めた経過時間に対する前記蓄電池の電圧の変化をグラフ化して表示し、前記グラフ化した表示を変更するポインタ画像を表示する表示部と、を備える。 An electric power simulation apparatus according to an aspect of the present invention is an electric power simulation apparatus that simulates electric power of a sensor system including a solar cell, a power supply circuit, a storage battery, and a load circuit (electronic equipment). A setting unit for acquiring, based on an operation of a pointer image displayed by a display unit, a current consumption, an operation time, an operation interval, and a capacity of the storage battery at the time of operation of the load circuit; A calculation unit that calculates a change in voltage of the storage battery with respect to elapsed time, using setting information acquired by the setting unit, the equation stored in the storage unit, and the parameter; Change the voltage of the storage battery with respect to the elapsed time determined by Comprising a display unit for displaying a pointer image that, the.
 また、本発明の一態様に係る電力シミュレーション装置において、前記表示部は、前記ポインタ画像が操作された結果に基づいて、前記経過時間に対する前記蓄電池の電圧の変化のグラフを変更するようにしてもよい。 Further, in the power simulation apparatus according to the aspect of the present invention, the display unit may change the graph of the change of the voltage of the storage battery with respect to the elapsed time based on the result of the operation of the pointer image. Good.
 また、本発明の一態様に係る電力シミュレーション装置において、前記表示部は、前記設定部によって設定された消費電力をグラフ化して表示し、前記設定部は、前記ポインタ画像が操作された結果に基づいて、前記消費電力のグラフを変更するようにしてもよい。 Further, in the power simulation apparatus according to the aspect of the present invention, the display unit graphs and displays the power consumption set by the setting unit, and the setting unit is based on a result of operating the pointer image. The graph of the power consumption may be changed.
 また、本発明の一態様に係る電力シミュレーション装置において、前記設定部は、前記ポインタ画像が操作された結果に基づいて、前記太陽電池に照射される単位時間あたりの照射時間を取得し、取得した前記単位時間あたりの照射時間に基づいて、前記消費電力のグラフを変更するようにしてもよい。 Further, in the power simulation apparatus according to the aspect of the present invention, the setting unit acquires and acquires the irradiation time per unit time irradiated to the solar cell based on the result of the operation of the pointer image. The graph of the power consumption may be changed based on the irradiation time per unit time.
 また、本発明の一態様に係る電力シミュレーション装置において、前記設定部は、前記ポインタ画像が操作された結果に基づいて、前記負荷回路の待機電流を取得し、取得した前記待機電流に基づいて、前記消費電力のグラフを変更するようにしてもよい。 Further, in the power simulation apparatus according to one aspect of the present invention, the setting unit acquires a standby current of the load circuit based on a result of the operation of the pointer image, and based on the acquired standby current. The graph of the power consumption may be changed.
 また、本発明の一態様に係る電力シミュレーション装置において、前記設定部は、前記ポインタ画像が操作された結果に基づいて、前記負荷回路の動作電流を取得し、取得した前記動作電流に基づいて、前記消費電力のグラフを変更するようにしてもよい。 Further, in the power simulation apparatus according to the aspect of the present invention, the setting unit acquires an operating current of the load circuit based on a result of the operation of the pointer image, and based on the acquired operating current. The graph of the power consumption may be changed.
 また、本発明の一態様に係る電力シミュレーション装置において、前記設定部は、前記ポインタ画像が操作された結果に基づいて、前記蓄電池の上限電圧または下限電圧を取得し、取得した前記上限電圧または前記下限電圧に基づいて、前記経過時間に対する前記蓄電池の電圧の変化のグラフを変更するようにしてもよい。 Further, in the power simulation apparatus according to the aspect of the present invention, the setting unit acquires an upper limit voltage or a lower limit voltage of the storage battery based on a result of operation of the pointer image, and acquires the acquired upper limit voltage or the acquired upper limit voltage The graph of the change in voltage of the storage battery with respect to the elapsed time may be changed based on the lower limit voltage.
 本発明の一態様に係る電力シミュレーション方法は、太陽電池と電源回路と蓄電池と負荷回路とセンサシステムの電力のシミュレーションに必要な数式とパラメータを記憶する記憶部を含み、前記シミュレーションを行う電力シミュレーション装置における電力シミュレーション方法であって、設定部が、前記太陽電池に対する照度と、前記負荷回路の動作時の消費電流と動作時間と動作間隔と、前記蓄電池の容量と、を取得する設定手順と、演算部が、経過時間に対する前記蓄電池の電圧の変化を、前記設定手順によって取得された設定情報と、前記記憶部が記憶する前記数式と前記パラメータを用いて求める演算手順と、表示部が、前記演算手順が求めた経過時間に対する前記蓄電池の電圧の変化をグラフ化して表示し、前記グラフ化した表示を変更するポインタ画像を表示する表示手順と、前記設定部が、表示部ポインタ画像が操作された結果を取得する手順と、前記表示部が、前記ポインタ画像が操作された結果に基づいて、前記経過時間に対する前記蓄電池の電圧の変化のグラフを変更する表示変更手順と、含む。 A power simulation method according to an aspect of the present invention includes a solar battery, a power supply circuit, a storage battery, a load circuit, and a storage unit for storing a formula and parameters necessary for simulation of power of a sensor system. A setting procedure for acquiring the illuminance on the solar cell, the consumed current at the time of operation of the load circuit, the operation time and the operation interval, and the capacity of the storage battery; An operation procedure for determining a change in voltage of the storage battery with respect to an elapsed time using setting information acquired by the setting procedure, the equation stored in the storage unit, and the parameter; Change the voltage of the storage battery with respect to the elapsed time determined by the procedure by graphing and display A display procedure for displaying a pointer image for changing the display, a procedure for the setting unit to acquire a result of operating the display pointer image, and the display unit based on a result of the operation of the pointer image The display change procedure which changes the graph of the change of the voltage of the said storage battery with respect to the said elapsed time is included.
 本発明の一態様に係る電力シミュレーション装置は、太陽電池と電源回路と蓄電池と負荷回路(電子機器)を含むセンサシステムの電力のシミュレーションを行う電力シミュレーション装置であって、前記太陽電池に対する照度を示す情報と、前記負荷回路の動作時の消費電流を示す情報と、前記負荷回路の動作時間を示す情報と、前記負荷回路の動作時の動作間隔を示す情報と、を取得する設定部と、前記シミュレーションに必要な数式とパラメータを記憶する記憶部と、前記設定部によって取得された設定情報と、前記記憶部が記憶する前記数式と前記パラメータを用いて、前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求める演算部と、前記演算部が求めた単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力とを、テキスト形式で表示する表示部と、を備える。 An electric power simulation apparatus according to an aspect of the present invention is an electric power simulation apparatus that simulates the electric power of a sensor system including a solar cell, a power supply circuit, a storage battery, and a load circuit (electronic equipment). A setting unit configured to obtain information, information indicating current consumption at the time of operation of the load circuit, information indicating the operation time of the load circuit, and information indicating an operation interval at the time of operation of the load circuit; Per unit time generated by the solar cell using the storage unit storing the equation and parameters necessary for the simulation, the setting information acquired by the setting unit, the equation and the parameter stored by the storage unit A calculation unit for obtaining the generated power of the load circuit and the power consumption per unit time of the load circuit, and the unit time determined by the calculation unit. Comprising a Rino generated power, and a power consumption per the unit load circuit time, and a display unit for displaying in text format, the.
 また、本発明の一態様に係る電力シミュレーション装置において、前記演算部は、前記設定情報が更新された際、更新された設定情報を用いて、前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を再度求め、前記表示部は、前記演算部が再度求めた単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力とを、更新してテキスト形式で表示するようにしてもよい。 Further, in the power simulation apparatus according to the aspect of the present invention, when the setting information is updated, the calculation unit uses the updated setting information to generate electric power generated per unit time by the solar cell. The power consumption per unit time of the load circuit is determined again, and the display unit generates the generated power per unit time again determined by the calculation unit, and the power consumption per unit time of the load circuit. , May be updated and displayed in text format.
 また、本発明の一態様に係る電力シミュレーション装置において、前記設定部は、前記太陽電池に照射される単位時間あたりの照射時間を示す情報を取得し、前記演算部は、前記単位時間あたりの照射時間も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求めるようにしてもよい。 Further, in the power simulation apparatus according to one aspect of the present invention, the setting unit acquires information indicating an irradiation time per unit time irradiated to the solar cell, and the calculation unit performs the irradiation per unit time. The time may also be used to determine the generated power per unit time generated by the solar cell and the power consumption per unit time of the load circuit.
 また、本発明の一態様に係る電力シミュレーション装置において、前記設定部は、前記負荷回路の待機電流を示す情報を取得し、前記演算部は、前記待機電流も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求めるようにしてもよい。 Further, in the power simulation apparatus according to one aspect of the present invention, the setting unit acquires information indicating a standby current of the load circuit, and the operation unit is also generated by the solar cell using the standby current. The generated power per unit time and the power consumption per unit time of the load circuit may be determined.
 また、本発明の一態様に係る電力シミュレーション装置において、前記設定部は、前記負荷回路の動作時の動作電流を示す情報を取得し、前記演算部は、前記動作電流も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求めるようにしてもよい。 Further, in the power simulation apparatus according to one aspect of the present invention, the setting unit acquires information indicating an operating current at the time of operation of the load circuit, and the arithmetic unit also uses the operating current to use the solar cell. The generated power per unit time to be generated and the power consumption per unit time of the load circuit may be determined.
 また、本発明の一態様に係る電力シミュレーション装置において、前記設定部は、前記蓄電池の容量を示す情報と、前記蓄電池の上限電流を示す情報と、前記蓄電池の下限電流を示す情報を取得し、前記演算部は、前記容量と前記上限電流と前記下限電流も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求めるようにしてもよい。 Further, in the power simulation apparatus according to one aspect of the present invention, the setting unit acquires information indicating a capacity of the storage battery, information indicating an upper limit current of the storage battery, and information indicating a lower limit current of the storage battery, The calculation unit is configured to obtain the generated power per unit time generated by the solar cell and the power consumption per unit time of the load circuit also using the capacity, the upper limit current, and the lower limit current. It is also good.
 また、本発明の一態様に係る電力シミュレーション装置において、前記設定部は、前記電源回路の変換効率を示す情報を取得し、前記演算部は、前記変換効率も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求めるようにしてもよい。 Further, in the power simulation apparatus according to the aspect of the present invention, the setting unit acquires information indicating conversion efficiency of the power supply circuit, and the operation unit is used to generate power by the solar cell also using the conversion efficiency. The generated power per unit time and the power consumption per unit time of the load circuit may be determined.
 また、本発明の一態様に係る電力シミュレーション装置において、前記設定部は、前記電源回路の消費電力を示す情報を取得し、前記演算部は、前記電源回路の消費電力も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求めるようにしてもよい。 Further, in the power simulation apparatus according to one aspect of the present invention, the setting unit acquires information indicating power consumption of the power supply circuit, and the arithmetic unit also uses power consumption of the power supply circuit and uses the solar cell. The generated power per unit time to be generated and the power consumption per unit time of the load circuit may be determined.
 また、本発明の一態様に係る電力シミュレーション装置において、前記設定部は、前記太陽電池の特性に関する情報を取得し、前記演算部は、前記太陽電池の特性に関する情報も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求めるようにしてもよい。 In the power simulation apparatus according to one aspect of the present invention, the setting unit acquires information on the characteristics of the solar cell, and the calculation unit also uses the information on the characteristics of the solar cell to generate electric power by the solar cell. The generated power per unit time and the power consumption per unit time of the load circuit may be determined.
 本発明の一態様に係る電力シミュレーション方法は、太陽電池と電源回路と蓄電池と負荷回路とセンサシステムの電力のシミュレーションに必要な数式とパラメータを記憶する記憶部を含み、前記シミュレーションを行う電力シミュレーション装置における電力シミュレーション方法であって、設定部が、前記太陽電池に対する照度を示す情報と、前記負荷回路の動作時の消費電流を示す情報と、前記負荷回路の動作時間を示す情報と、前記負荷回路の動作時の動作間隔を示す情報と、を取得する設定手順と、演算部が、前記設定部によって取得された設定情報と、前記記憶部が記憶する前記数式と前記パラメータを用いて、前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求める演算手順と、表示部が、前記演算部が求めた単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力とを、テキスト形式で表示する表示手順と、含む。 A power simulation method according to an aspect of the present invention includes a solar battery, a power supply circuit, a storage battery, a load circuit, and a storage unit for storing a formula and parameters necessary for simulation of power of a sensor system. The power simulation method according to claim 1, wherein the setting unit is information indicating illuminance to the solar cell, information indicating current consumption at the time of operation of the load circuit, information indicating operation time of the load circuit, and the load circuit. A setting procedure for acquiring an operation interval at the time of operation, the calculation unit, the setting information acquired by the setting unit, the formula and the parameter stored in the storage unit, the sun The power generation per unit time generated by the battery and the power consumption per unit time of the load circuit are determined. And calculation procedures that, the display unit, and the generated power per unit the calculation unit is calculated time, and power consumption per unit of load circuit time, and a display procedure for displaying in text format, including.
 本発明によれば、微弱な発電源である環境発電素子を発電供給源に用いた電子機器であっても、エネルギー収支のバランスを適切に求めることができる。 According to the present invention, it is possible to appropriately determine the balance of the energy balance even in an electronic device using an energy harvesting element, which is a weak power source, as a power source.
第1実施形態に係る電力シミュレーション装置の概略構成例を示す図である。It is a figure which shows the example of a schematic structure of the electric power simulation apparatus which concerns on 1st Embodiment. 第1実施形態に係るセンサシステムの構成モデル例を示す図である。It is a figure showing an example of composition model of a sensor system concerning a 1st embodiment. 第1実施形態に係るセンサシステムが一次電池を備えていない場合の表示部上に表示される画像例を示す図である。It is a figure which shows the image example displayed on a display part in case the sensor system which concerns on 1st Embodiment is not equipped with the primary battery. 第1実施形態に係るセンサシステムが一次電池を備えている場合の表示部上に表示される画像例を示す図である。It is a figure which shows the image example displayed on a display part in case the sensor system which concerns on 1st Embodiment is equipped with a primary battery. 電源モジュールの構成画像g101の例を示す図である。It is a figure which shows the example of the structural image g101 of a power supply module. センサシステムが設置される環境の光の状態の設定画像g102の例を示す図である。It is a figure which shows the example of the setting image g102 of the state of the light of the environment where a sensor system is installed. 太陽電池の選択画像g103の例を示す図である。It is a figure which shows the example of the selection image g103 of a solar cell. 太陽電池の選択画像g104の例を示す図である。It is a figure which shows the example of the selection image g104 of a solar cell. 電力管理画像g105の例を示す図である。It is a figure which shows the example of the electric power management image g105. 蓄電池の設定画像g106の例を示す図である。It is a figure which shows the example of the setting image g106 of a storage battery. 電子機器の消費電力の設定画像g107、電子機器の動作状態や消費電力の表示画像g108の例を示す図である。It is a figure which shows the setting image g107 of the power consumption of an electronic device, and the example of the display image g108 of the operation state of an electronic device, and power consumption. 一次電池の容量を設定する画像g201の例を示す図である。It is a figure which shows the example of the image g201 which sets the capacity | capacitance of a primary battery. 電子機器に供給可能な電力を示す情報の画像g111の例を示す図である。It is a figure which shows the example of the image g111 of the information which shows the electric power which can be supplied to an electronic device. 総消費エネルギーを示す画像g112の例を示す図である。It is a figure which shows the example of the image g112 which shows a total consumption energy. 蓄電池の電圧対時間の変化を示すグラフの画像g113の例を示す図である。It is a figure which shows the example of the image g113 of the graph which shows the change of the voltage versus time of a storage battery. 照度と蓄電池の電圧の時間変化の例を示す図である。It is a figure which shows the example of the time change of illumination intensity and the voltage of a storage battery. 発電量と消費電力の比を表す画像g114の例を示す図である。It is a figure which shows the example of the image g114 showing the ratio of power generation amount and power consumption. 一次電池のバッテリ寿命を示す画像g211の例を示す図である。It is a figure which shows the example of the image g211 which shows the battery life of a primary battery. 第1実施形態に係る演算部、表示部が行う処理手順例を示すフローチャートである。It is a flowchart which shows the process sequence example which the calculating part and display part which concern on 1st Embodiment perform. 第2実施形態に係る電力シミュレーション装置の概略構成例を示す図である。It is a figure which shows the example of a schematic structure of the electric power simulation apparatus which concerns on 2nd Embodiment. 第2実施形態に係るセンサシステムの構成モデル例を示す図である。It is a figure showing an example of composition model of a sensor system concerning a 2nd embodiment. 第2実施形態に係るセンサシステムが一次電池を備えていない場合の表示部上に表示される画像例を示す図である。It is a figure which shows the image example displayed on a display part in case the sensor system which concerns on 2nd Embodiment is not equipped with the primary battery. 第2実施形態に係るセンサシステムが一次電池を備えている場合の表示部上に表示される画像例を示す図である。It is a figure which shows the image example displayed on a display part in case the sensor system which concerns on 2nd Embodiment is equipped with the primary battery. 電源モジュールの構成画像g101Aの例を示す図である。It is a figure which shows the example of the structural image g101A of a power supply module. センサシステムが設置される環境の光の状態の設定画像g102Aの例を示す図である。It is a figure which shows the example of the setting image g102A of the state of the light of the environment where a sensor system is installed. 太陽電池の選択画像g103Aの例を示す図である。It is a figure which shows the example of selection image g103A of a solar cell. 太陽電池の選択画像g104Aの例を示す図である。It is a figure which shows the example of the selection image g104A of a solar cell. 電力管理画像g105Aの例を示す図である。It is a figure which shows the example of the electric power management image g105A. 蓄電池の設定画像g106Aの例を示す図である。It is a figure which shows the example of the setting image g106A of a storage battery. 電子機器の消費電力の設定画像g107A、電子機器の動作状態や消費電力の表示画像g108Aの例を示す図である。It is a figure which shows the setting image g107A of the power consumption of an electronic device, and the example of the display image g108A of the operation state of an electronic device, and power consumption. 一次電池の容量を設定する画像g201Aの例を示す図である。It is a figure which shows the example of the image g201A which sets the capacity | capacitance of a primary battery. 電子機器に供給可能な電力を示す情報の画像g111Aの例を示す図である。It is a figure which shows the example of the image g111A of the information which shows the electric power which can be supplied to an electronic device. 総消費エネルギーを示す画像g112Aの例を示す図である。It is a figure which shows the example of the image g112A which shows a total consumption energy. 蓄電池の電圧対時間の変化を示すグラフの画像g113Aの例を示す図である。It is a figure which shows the example of the image g113A of the graph which shows the change of the voltage versus time of a storage battery. 照度と蓄電池の電圧の時間変化の例を示す図である。It is a figure which shows the example of the time change of illumination intensity and the voltage of a storage battery. 発電量と消費電力の比を表す画像g114Aの例を示す図である。It is a figure which shows the example of the image g114A showing the ratio of electric power generation amount and power consumption. 一次電池のバッテリ寿命を示す画像g211Aの例を示す図である。It is a figure which shows the example of the image g211A which shows the battery life of a primary battery. 第2実施形態に係る演算部、表示部が行う処理手順例を示すフローチャートである。It is a flowchart which shows the process sequence example which the calculating part which concerns on 2nd Embodiment, and a display part performs. 第3実施形態に係る電力シミュレーション装置の概略構成例を示す図である。It is a figure which shows the example of a schematic structure of the electric power simulation apparatus which concerns on 3rd Embodiment. 第3実施形態に係るセンサシステムの構成モデル例を示す図である。It is a figure showing an example of composition model of a sensor system concerning a 3rd embodiment. 第3実施形態に係るセンサシステムが一次電池を備えていない場合の表示部上に表示される画像例を示す図である。It is a figure which shows the image example displayed on a display part in case the sensor system which concerns on 3rd Embodiment is not equipped with the primary battery. 第3実施形態に係るセンサシステムが一次電池を備えている場合の表示部上に表示される画像例を示す図である。It is a figure which shows the image example displayed on a display part in case the sensor system which concerns on 3rd Embodiment is provided with the primary battery. 電源モジュールの構成画像g101Bの例を示す図である。It is a figure which shows the example of the structural image g101B of a power supply module. センサシステムが設置される環境の光の状態の設定画像g102Bの例を示す図である。It is a figure which shows the example of the setting image g102B of the state of the light of the environment where a sensor system is installed. 太陽電池の選択画像g103Bの例を示す図である。It is a figure which shows the example of the selection image g103B of a solar cell. 太陽電池の選択画像g104Bの例を示す図である。It is a figure which shows the example of the selection image g104B of a solar cell. 電力管理画像g105Bの例を示す図である。It is a figure which shows the example of the electric power management image g105B. 蓄電池の設定画像g106Bの例を示す図である。It is a figure which shows the example of the setting image g106B of a storage battery. 電子機器の消費電力の設定画像g107B、電子機器の動作状態や消費電力の表示画像g108Bの例を示す図である。It is a figure which shows the setting image g107B of the power consumption of an electronic device, and the example of the display image g108B of the operation state of an electronic device, and power consumption. 一次電池の容量を設定する画像g201Bの例を示す図である。It is a figure which shows the example of the image g201B which sets the capacity | capacitance of a primary battery. 電子機器に供給可能な電力を示す情報の画像g111Bの例を示す図である。It is a figure which shows the example of the image g111B of the information which shows the electric power which can be supplied to an electronic device. 総消費エネルギーを示す画像g112Bの例を示す図である。It is a figure which shows the example of the image g112B which shows a total consumption energy. 蓄電池の電圧対時間の変化を示すグラフの画像g113Bの例を示す図である。It is a figure which shows the example of the image g113B of the graph which shows the change of the voltage versus time of a storage battery. 照度と蓄電池の電圧の時間変化の例を示す図である。It is a figure which shows the example of the time change of illumination intensity and the voltage of a storage battery. 発電量と消費電力の比を表す画像g114Bの例を示す図である。It is a figure which shows the example of the image g114B showing the ratio of power generation amount and power consumption. 一次電池のバッテリ寿命を示す画像g211Bの例を示す図である。It is a figure which shows the example of the image g211B which shows the battery life of a primary battery. 第3実施形態に係る演算部、表示部が行う処理手順例を示すフローチャートである。It is a flowchart which shows the process sequence example which the calculating part which concerns on 3rd Embodiment, and a display part performs. 図51の単位時間あたりの発電電力と、図52の単位時間あたりの消費電力の求め方と更新手順を示す図である。FIG. 52 is a diagram showing how to determine the generated power per unit time of FIG. 51 and the power consumption per unit time of FIG. 52 and an update procedure.
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [第1実施形態]
 図1は、本実施形態に係る電力シミュレーション装置1の概略構成例を示す図である。図1に示すように、電力シミュレーション装置1は、設定部11、演算部12、記憶部13、および表示部14を備える。
First Embodiment
FIG. 1 is a diagram showing an example of a schematic configuration of a power simulation apparatus 1 according to the present embodiment. As shown in FIG. 1, the power simulation apparatus 1 includes a setting unit 11, an arithmetic unit 12, a storage unit 13, and a display unit 14.
 設定部11は、例えば、キーボード、マウス、表示部14上に設けられたタッチパネルセンサ等である。設定部11は、利用者が設定した情報を検出して、検出した設定情報を演算部12に出力する。 The setting unit 11 is, for example, a keyboard, a mouse, a touch panel sensor provided on the display unit 14 or the like. The setting unit 11 detects information set by the user, and outputs the detected setting information to the calculation unit 12.
 演算部12は、設定部11が出力する設定情報を取得する。演算部12は、取得した設定情報に応じて、記憶部13が記憶する情報を参照して、発電される電力量と、消費される電力量のシミュレーションを行う。演算部12は、シミュレーションした結果を表示部14に出力する。なお、発電される電力量と、消費される電力量のシミュレーションについては、後述する。 Arithmetic unit 12 acquires setting information output from setting unit 11. The calculation unit 12 simulates the amount of generated power and the amount of consumed power with reference to the information stored in the storage unit 13 according to the acquired setting information. The calculation unit 12 outputs the simulation result to the display unit 14. The simulation of the amount of power generated and the amount of power consumed will be described later.
 記憶部13は、演算部12がシミュレーションの際に使用する数式を記憶する。記憶部13は、シミュレーションの際に選択可能な太陽電池それぞれの仕様(型番、セルサイズ、発電面積、最大動作点電力、動作電流、開放電圧等)を記憶する。記憶部13は、シミュレーションの際に選択可能な蓄電池23(図2)の仕様(充電上限電圧、放電下限電圧等)を記憶する。記憶部13は、センサシステム2の構成モデル131を記憶する。 The storage unit 13 stores mathematical expressions used by the calculation unit 12 in simulation. The storage unit 13 stores specifications (model number, cell size, power generation area, maximum operating point power, operating current, open circuit voltage, etc.) of each of the solar cells that can be selected in the simulation. The storage unit 13 stores specifications (charge upper limit voltage, discharge lower limit voltage, etc.) of the storage battery 23 (FIG. 2) selectable in the simulation. The storage unit 13 stores a configuration model 131 of the sensor system 2.
 表示部14は、演算部12が出力するシミュレーションされた結果を表、グラフ等の画像情報として生成し、生成した画像情報を表示する。なお、画像情報の例については、後述する。表示部14は、画像表示装置を備える。画像表示装置は、例えば、液晶表示装置、有機EL(Electro Luminescence)表示装置等である。 The display unit 14 generates a simulation result output from the calculation unit 12 as image information such as a table and a graph, and displays the generated image information. An example of the image information will be described later. The display unit 14 includes an image display device. The image display device is, for example, a liquid crystal display device, an organic EL (Electro Luminescence) display device, or the like.
 ここで、センサシステム2の構成モデル例を説明する。
 図2は、本実施形態に係るセンサシステム2の構成モデル例を示す図である。図2に示すように、センサシステム2は、電源モジュール20、一次電池24、および電子機器25(負荷回路)を含んで構成される。電源モジュール20は、太陽電池21、電源回路22、蓄電池23を含んで構成される。また、電源回路22は、昇圧回路221、降圧回路222を備える。なお、センサシステム2は、一次電池24を備える場合と、備えない場合とがある。
Here, a configuration model example of the sensor system 2 will be described.
FIG. 2 is a view showing an example of a configuration model of the sensor system 2 according to the present embodiment. As shown in FIG. 2, the sensor system 2 includes a power supply module 20, a primary battery 24, and an electronic device 25 (load circuit). The power supply module 20 includes a solar cell 21, a power supply circuit 22, and a storage battery 23. In addition, the power supply circuit 22 includes a booster circuit 221 and a step-down circuit 222. The sensor system 2 may or may not include the primary battery 24.
 太陽電池21は、例えば、一般の太陽電池では十分な発電効率の得られない蛍光灯下などの光照度強度が低い(例えば10[lux])環境から、野外の太陽光下の光照度強度が高い(例えば10万[lux])環境まで、効率良く発電可能な例えば色素増感太陽電池である。太陽電池21は、発電した電力を電源回路22に供給する。 For example, the solar cell 21 has high light intensity under sunlight in the open air from an environment with low light intensity (for example, 10 [lux]) such as under a fluorescent lamp where sufficient power generation efficiency can not be obtained with general solar cells For example, a dye-sensitized solar cell capable of efficiently generating power up to, for example, 100,000 [lux] environment. The solar cell 21 supplies the generated power to the power supply circuit 22.
 電源回路22は、太陽電池21によって発電された電力を蓄電池23に蓄電させ、蓄電池23に蓄電された電力を電子機器25に供給する。
 昇圧回路221は、太陽電池21によって発電された電圧値を蓄電池23に応じた電圧値に昇圧するDC/DCコンバータである。昇圧回路221は、昇圧した電圧値の電力を蓄電池23に蓄電させる。
 降圧回路222は、蓄電池23に蓄電された電力を、電子機器25に供給する電圧値に降圧するDC/DCコンバータである。降圧回路222は、降圧した電圧値の電力を電子機器25に供給する。
The power supply circuit 22 stores the power generated by the solar cell 21 in the storage battery 23 and supplies the power stored in the storage battery 23 to the electronic device 25.
The booster circuit 221 is a DC / DC converter that boosts the voltage value generated by the solar cell 21 to a voltage value according to the storage battery 23. The booster circuit 221 causes the storage battery 23 to store power of the boosted voltage value.
The step-down circuit 222 is a DC / DC converter that steps down the power stored in the storage battery 23 to a voltage value supplied to the electronic device 25. The step-down circuit 222 supplies the power of the stepped-down voltage value to the electronic device 25.
 蓄電池23は、太陽電池21によって発電され昇圧回路221によって昇圧された電力を蓄電する。蓄電池23は、蓄電した電力を降圧回路222に供給する。蓄電池23は、例えばリチウムイオンキャパシタ(LIC)である。 Storage battery 23 stores the electric power generated by solar cell 21 and boosted by boosting circuit 221. The storage battery 23 supplies the stored power to the step-down circuit 222. The storage battery 23 is, for example, a lithium ion capacitor (LIC).
 一次電池24は、例えば通常時の電圧値が3.0Vの電池である。 The primary battery 24 is, for example, a battery with a normal voltage value of 3.0V.
 電子機器25は、例えば、通信部、制御部、センサ部等を備える。電子機器25には、蓄電池23に蓄電されている電力が供給される。または、電子機器25には、蓄電池23に蓄電されている電力が供給されるか、一次電池24から電力が供給される。電子機器25がセンサ部を備える場合、電子機器25は、センサ部が計測した計測値を、設定部11(図1)で設定された設定情報に含まれるタイミングで、他の機器へ送信する。 The electronic device 25 includes, for example, a communication unit, a control unit, a sensor unit, and the like. The power stored in the storage battery 23 is supplied to the electronic device 25. Alternatively, the power stored in the storage battery 23 is supplied to the electronic device 25 or power is supplied from the primary battery 24. When the electronic device 25 includes the sensor unit, the electronic device 25 transmits the measurement value measured by the sensor unit to another device at the timing included in the setting information set by the setting unit 11 (FIG. 1).
 なお、上述したセンサシステム2の構成は一例であり、これに限らない。センサシステム2は、例えば、電圧検出部、充放電制御部、一次電池24と蓄電池23との切り換えスイッチ等を備えていてもよい。 In addition, the structure of the sensor system 2 mentioned above is an example, It does not restrict to this. The sensor system 2 may include, for example, a voltage detection unit, a charge / discharge control unit, a switch for switching between the primary battery 24 and the storage battery 23, and the like.
 次に、演算部12が行うシミュレーションについて説明する。
 演算部12は、設定部11によって設定された設定情報を用いて、太陽電池21によって発電される電力量、電子機器25によって消費される電力量の収支をシミュレーションする。演算部12は、図2に示したセンサシステム2の各構成要素について、待機時の消費電力、動作時の消費電力、昇圧効率、降圧効率、電子機器の動作する時間と周期等を用いて、シミュレーションを行う。これらの項目は、従来の設計では考慮されなかった項目も含まれる。このため、本実施形態によれば、従来よりも精度良く、微弱な発電源である環境発電素子を発電供給源に用いた電子機器であっても、エネルギー収支のバランスを適切に求めることができる。
Next, a simulation performed by the calculation unit 12 will be described.
The calculation unit 12 simulates the balance between the amount of power generated by the solar cell 21 and the amount of power consumed by the electronic device 25 using the setting information set by the setting unit 11. The calculation unit 12 uses, for each component of the sensor system 2 shown in FIG. 2, power consumption at the time of standby, power consumption at the time of operation, boosting efficiency, step-down efficiency, time and cycle of operation of the electronic device, etc. Perform a simulation. These items also include items not considered in the conventional design. Therefore, according to the present embodiment, the balance of the energy balance can be appropriately determined even in the electronic apparatus using the energy-generating element, which is a weak power source, more accurately than in the past as the power generation source. .
 次に、設定項目と、シミュレーション結果の例を説明する。
 図3は、本実施形態に係るセンサシステム2が一次電池24を備えていない場合の表示部14上に表示される画像例を示す図である。
 図3に示すように、センサシステム2が一次電池24を備えていない場合の表示部14上に表示される画像g100は、設定項目として、電源モジュールの構成画像g101、センサシステム2が設置される環境の光の状態の設定画像g102、太陽電池21の選択画像g103、g104、電力管理画像g105、蓄電池23の設定画像g106、電子機器25の消費電力の設定画像g107、および電子機器25の動作状態や消費電力の表示画像g108を備える。また、画像g100は、シミュレーション結果として、電子機器25に供給可能な電力を示す情報の画像g111、総消費エネルギーを示す画像g112、蓄電池23の電圧対時間の変化を示すグラフの画像g113、および発電量と消費電力のエネルギー収支を表す画像g114を含む。
Next, examples of setting items and simulation results will be described.
FIG. 3 is a view showing an example of an image displayed on the display unit 14 when the sensor system 2 according to the present embodiment does not include the primary battery 24. As shown in FIG.
As shown in FIG. 3, the image g100 displayed on the display unit 14 when the sensor system 2 does not include the primary battery 24 has the configuration image g101 of the power supply module and the sensor system 2 installed as setting items. Setting image g102 of light condition of environment, selected images g103 and g104 of solar battery 21, power management image g105, setting image g106 of storage battery 23, setting image g107 of power consumption of electronic device 25, and operating condition of electronic device 25 And a display image g108 of power consumption. In addition, as the simulation result, the image g100 is an image g111 of information indicating the power that can be supplied to the electronic device 25, an image g112 indicating the total consumption energy, an image g113 of a graph showing a change of voltage versus time of the storage battery 23, and power generation The image g114 showing the energy balance of quantity and power consumption is included.
 図4は、本実施形態に係るセンサシステム2が一次電池24を備えている場合の表示部14上に表示される画像例を示す図である。
 図4に示すように、センサシステム2が一次電池24を備えている場合の表示部14上に表示される画像g1000は、設定項目として、電源モジュールの構成画像g101、センサシステム2が設置される環境の光の状態の設定画像g102、太陽電池21の選択画像g103、g104、電力管理画像g105、蓄電池23の設定画像g106、電子機器25の消費電力の設定画像g107、電子機器25の動作状態や消費電力の表示画像g108、および一次電池24の容量を設定する画像g201を備える。また、画像g1000は、シミュレーション結果として、電子機器25に供給可能な電力を示す情報の画像g111、総消費エネルギーを示す画像g112、蓄電池23の電圧対時間の変化を示すグラフの画像g113、発電量と消費電力のエネルギー収支を表す画像g114、および一次電池24のバッテリ寿命を示す画像g211を含む。
FIG. 4 is a view showing an example of an image displayed on the display unit 14 when the sensor system 2 according to the present embodiment includes the primary battery 24. As shown in FIG.
As shown in FIG. 4, an image g1000 displayed on the display unit 14 when the sensor system 2 includes the primary battery 24 has the configuration image g101 of the power supply module and the sensor system 2 installed as setting items. Setting image g102 of environmental light conditions, selected images g103 and g104 of solar battery 21, power management image g105, setting image g106 of storage battery 23, setting image g107 of power consumption of electronic device 25, operation state of electronic device 25 A display image g108 of power consumption and an image g201 for setting the capacity of the primary battery 24 are provided. The image g1000 is, as a simulation result, an image g111 of information indicating the power that can be supplied to the electronic device 25, an image g112 indicating the total consumption energy, an image g113 of a graph indicating the change of voltage versus time of the storage battery 23, the power generation amount And an image g114 indicating the energy balance of power consumption, and an image g211 indicating the battery life of the primary battery 24.
<設定項目の例>
 次に、図3、図4に示した各画像のうち設定項目について説明する。
 図5は、電源モジュールの構成画像g101の例を示す図である。図5に示すように、電源モジュールの構成画像g101には、センサシステム2が設置される環境に照射される光量に関する情報画像g101a、選択された太陽電池に関する情報画像g101bが含まれる。センサシステム2が設置される環境に照射される光量に関する情報画像g101aは、センサシステム2が設置される環境の光の状態の設定画像g102の設定が更新される毎に更新される。また、選択された太陽電池に関する情報画像g101bは、太陽電池21の選択画像g104の設定が更新される毎に更新される。
<Example of setting item>
Next, setting items among the images shown in FIGS. 3 and 4 will be described.
FIG. 5 is a view showing an example of a component image g101 of the power supply module. As shown in FIG. 5, the configuration image g101 of the power supply module includes an information image g101a related to the amount of light irradiated to the environment where the sensor system 2 is installed, and an information image g101b related to the selected solar cell. The information image g101a regarding the light quantity irradiated to the environment where the sensor system 2 is installed is updated each time the setting of the setting image g102 of the light state of the environment where the sensor system 2 is installed is updated. In addition, the information image g101b regarding the selected solar cell is updated each time the setting of the selected image g104 of the solar cell 21 is updated.
<設定に使用する画面の説明>
 まず、設定に使用する画面について説明する。
 図6は、センサシステム2が設置される環境の光の状態の設定画像g102の例を示す図である。図6に示すように、センサシステム2が設置される環境の光の状態の設定画像g102には、照度[lux]、1日に光がセンサシステム2に照射される時間である光照射時間[hr/day]が含まれる。利用者は、センサシステム2が設置される環境の光の状態の設定画像g102の各欄を、設定部11を操作して選択し、各欄の値を選択または入力する。図6に示す例は、照度が500[lux]、光照射時間が20[hr/day]として設定された例である。演算部12は、この設定に応じて、電源モジュールの構成画像g101において、照度と光照射時間を更新する。
<Description of screen used for setting>
First, the screen used for setting will be described.
FIG. 6 is a view showing an example of the setting image g102 of the state of light of the environment in which the sensor system 2 is installed. As shown in FIG. 6, in the setting image g102 of the light state of the environment in which the sensor system 2 is installed, the illumination time [lux] is the light irradiation time [time when light is irradiated to the sensor system 2 on one day] hr / day] is included. The user operates the setting unit 11 to select each field of the setting image g102 of the light state of the environment in which the sensor system 2 is installed, and selects or inputs the value of each field. The example shown in FIG. 6 is an example in which the illuminance is set to 500 [lux] and the light irradiation time is set to 20 [hr / day]. The calculation unit 12 updates the illuminance and the light irradiation time in the component image g101 of the power supply module according to the setting.
 図7は、太陽電池21の選択画像g103の例を示す図である。図7に示すように、電源モジュールの選択画像g103には、太陽電池型番、数量[pcs(パッケージ)]、外形サイズ[mm]、発電面積[cm]が含まれる。利用者は、太陽電池21の選択画像g103の各欄を、設定部11を操作して選択し、各欄の値を選択または入力する。図7に示す例は、太陽電池型番が「太陽電池I」、数量が1[pcs]として設定された例である。演算部12は、設定に応じて、記憶部13が記憶する太陽電池21の情報を読み出し、外形サイズを112×56[mm]、発電面積を32[cm]に更新する。さらに、演算部12は、この設定に応じて、電源モジュールの構成画像g101において、太陽電池型番と数量を更新する。 FIG. 7 is a view showing an example of the selected image g103 of the solar cell 21. As shown in FIG. As shown in FIG. 7, the selected image g103 of the power supply module includes a solar cell model number, a quantity [pcs (package)], an outer size [mm], and a power generation area [cm 2 ]. The user operates the setting unit 11 to select each field of the selection image g103 of the solar cell 21, and selects or inputs the value of each field. The example illustrated in FIG. 7 is an example in which the solar cell model number is set as “solar cell I” and the number is 1 [pcs]. The calculation unit 12 reads the information of the solar cell 21 stored in the storage unit 13 according to the setting, and updates the external size to 112 × 56 [mm] and the power generation area to 32 [cm 2 ]. Furthermore, the operation unit 12 updates the solar cell model number and the number in the configuration image g101 of the power supply module according to the setting.
 図8は、太陽電池21の選択画像g104の例を示す図である。図8に示すように、電源モジュールの選択画像g104には、選択可能な太陽電池の外形図、寸法図が表示される。図8に示す例では、太陽電池21の選択画像g104によって、「太陽電池I」が選択された例である。なお、利用者は、太陽電池21の選択画像g104の「太陽電池I」の画像を、設定部11を操作して選択するようにしてもよい。 FIG. 8 is a view showing an example of the selected image g104 of the solar cell 21. As shown in FIG. As shown in FIG. 8, in the selected image g104 of the power supply module, an outline view and a dimension view of selectable solar cells are displayed. In the example illustrated in FIG. 8, “solar cell I” is selected by the selected image g104 of the solar cell 21. The user may operate the setting unit 11 to select the image of “solar cell I” of the selection image g104 of the solar cell 21.
 図9は、電力管理画像g105の例を示す図である。図9に示すように、電力管理画像g105には、昇圧効率[%]、降圧効率[%]、静止電流[nA]、出力電圧[V]が含まれる。利用者は、電力管理画像g105の各欄を、設定部11を操作して選択し、各欄の値を選択または入力する。図9に示す例は、昇圧効率が75[%]、降圧効率が90[%]、静止電流が3000[nA]、出力電圧が3.0[V]として設定された例である。 FIG. 9 is a diagram showing an example of the power management image g105. As shown in FIG. 9, the power management image g105 includes the boosting efficiency [%], the bucking efficiency [%], the quiescent current [nA], and the output voltage [V]. The user operates the setting unit 11 to select each field of the power management image g105, and selects or inputs the value of each field. The example shown in FIG. 9 is an example where the boosting efficiency is set to 75%, the step-down efficiency to 90%, the quiescent current to 3000 nA, and the output voltage to 3.0V.
 図10は、蓄電池23の設定画像g106の例を示す図である。図10に示すように、蓄電池23の設定画像g106には、容量[F]、初期電圧[V]、充電上限電圧[V]、放電加減電圧[V]、自己放電電流[μA]が含まれる。利用者は、蓄電池23の設定画像g106の各欄を、設定部11を操作して選択し、各欄の値を選択または入力する。図10に示す例は、容量が40[F]、初期電圧が3.0[V]、自己放電電流が0.1[μA]として設定された例である。演算部12は、この設定に応じて、記憶部13が記憶する充電上限電圧値と放電下限電圧を更新する。なお、充電上限電圧値と放電下限電圧は、蓄電池23に関わらず、固定値であってもよい。 FIG. 10 is a view showing an example of the setting image g106 of the storage battery 23. As shown in FIG. As shown in FIG. 10, setting image g106 of storage battery 23 includes capacity [F], initial voltage [V], charge upper limit voltage [V], discharge adjustment voltage [V], and self discharge current [μA]. . The user operates the setting unit 11 to select each field of the setting image g106 of the storage battery 23, and selects or inputs the value of each field. The example shown in FIG. 10 is an example in which the capacity is set to 40 [F], the initial voltage is 3.0 [V], and the self-discharge current is 0.1 [μA]. Arithmetic unit 12 updates the charge upper limit voltage value and the discharge lower limit voltage stored in storage unit 13 according to the setting. The charge upper limit voltage value and the discharge lower limit voltage may be fixed values regardless of the storage battery 23.
 図11は、電子機器25の消費電力の設定画像g107、電子機器25の動作状態や消費電力の表示画像g108の例を示す図である。図11に示すように、電子機器25の消費電力の設定画像g107には、電子機器25の動作電圧[V]、動作時間[msec]、動作インターバル[sec]、動作電流[mA]、待機電流[μA]が含まれる。また、図11に示すように、電子機器25の動作状態や消費電力の表示画像g108には、動作状態の画像g108aと、動作電圧[V]、動作時間[msec]、動作インターバル[sec]、動作電流[mA]、待機電流[μA]が含まれる。図11に示す例では、動作電圧が3.0[V]、動作時間が20[msec]、動作インターバルが2.0[sec]、動作電流が20[mA]、待機電流が2.5[μA]として設定された例である。
 図11のg108aの画像は、表示部14が、設定部11によって設定された電子機器25(負荷回路)の消費電力をグラフ化して表示した結果である。
FIG. 11 is a view showing an example of a setting image g107 of power consumption of the electronic device 25, and a display image g108 of the operation state of the electronic device 25 and the power consumption. As shown in FIG. 11, the setting image g107 of the power consumption of the electronic device 25 includes the operating voltage [V], the operating time [msec], the operating interval [sec], the operating current [mA], and the standby current of the electronic device 25. [ΜA] is included. Further, as shown in FIG. 11, the display image g108 of the operating state and power consumption of the electronic device 25 includes the image g108a of the operating state, the operating voltage [V], the operating time [msec], the operating interval [sec], Operating current [mA] and standby current [μA] are included. In the example shown in FIG. 11, the operating voltage is 3.0 [V], the operating time is 20 [msec], the operating interval is 2.0 [sec], the operating current is 20 [mA], and the standby current is 2.5 [C]. It is an example set as μA].
The image of g108a in FIG. 11 is a result of the display unit 14 displaying the power consumption of the electronic device 25 (load circuit) set by the setting unit 11 as a graph.
 利用者は、電子機器25の消費電力の設定画像g107の各欄を、設定部11を操作して選択し、各欄の値を選択または入力する。この場合、演算部12は、設定された情報に応じて電子機器25の動作状態や消費電力の表示画像g108を更新する。
 または、利用者は、電子機器25の動作状態や消費電力の表示画像g108の波形の幅や高さを、設定部11を操作して選択する。この場合、演算部12は、設定された情報に応じて電子機器25の消費電力の設定画像g107を更新する。
The user operates the setting unit 11 to select each field of the setting image g107 of the power consumption of the electronic device 25, and selects or inputs the value of each field. In this case, the calculation unit 12 updates the display image g108 of the operation state of the electronic device 25 and the power consumption according to the set information.
Alternatively, the user operates the setting unit 11 to select the operation state of the electronic device 25 and the width and height of the waveform of the display image g108 of the power consumption. In this case, the calculation unit 12 updates the setting image g107 of the power consumption of the electronic device 25 according to the set information.
 図12は、一次電池24の容量を設定する画像g201の例を示す図である。図12に示すように、一次電池24の容量を設定する画像g201には、一次電池の使用状態(Hybrid operating)、一次電池の容量[mAh]が含まれる。利用者は、一次電池24の容量を設定する画像g201の各欄を、設定部11を操作して選択し、各欄の値を選択または入力する。図12に示す例では、一次電池24の使用状態がオン状態(ON)、一次電池24の容量が2000[mAh]として設定された例である。 FIG. 12 is a view showing an example of the image g201 for setting the capacity of the primary battery 24. As shown in FIG. As shown in FIG. 12, the image g201 for setting the capacity of the primary battery 24 includes the usage state (Hybrid operating) of the primary battery and the capacity [mAh] of the primary battery. The user operates the setting unit 11 to select each field of the image g201 for setting the capacity of the primary battery 24, and selects or inputs the value of each field. The example shown in FIG. 12 is an example in which the usage state of the primary battery 24 is set to the on state (ON), and the capacity of the primary battery 24 is set to 2000 [mAh].
<設定に使用する画面の説明>
 次に、シミュレーション結果の画面について説明する。
 図13は、電子機器25に供給可能な電力を示す情報の画像g111の例を示す図である。図13に示すように、電子機器25に供給可能な電力を示す情報の画像g111には、1日あたり供給可能な電力量の平均値[μWh/day](typ)と、1日あたり供給可能な電力量の最小値[μWh/day](min)が含まれる。なお、電子機器25に供給可能な電力は、太陽電池21に照射された光によって単位時間(1日)あたりの発電される発電電力である。図13に示すように、表示部14は、演算部12が求めた単位時間あたりの発電される発電電力の数値を、テキスト形式で表示する。
<Description of screen used for setting>
Next, the screen of the simulation result will be described.
FIG. 13 is a diagram illustrating an example of an image g111 of information indicating power that can be supplied to the electronic device 25. As shown in FIG. 13, in the image g 111 of information indicating the power that can be supplied to the electronic device 25, the average value of the power that can be supplied per day [μWh / day] (typ) and the power can be supplied per day Power value [μWh / day] (min) is included. The electric power that can be supplied to the electronic device 25 is generated electric power generated per unit time (one day) by the light irradiated to the solar cell 21. As shown in FIG. 13, the display unit 14 displays, in a text format, the numerical value of the generated power generated per unit time, which is calculated by the calculation unit 12.
 図14は、総消費エネルギーを示す画像g112の例を示す図である。図14に示す例では、総消費エネルギーを示す画像g112は、円グラフで示されている。符号g112aが示す領域は、電子機器25が動作している期間の1日あたりの消費電力の総和[μWh/day]である。符号g112bが示す領域は、電子機器25が待機状態の期間の1日あたりの消費電力の総和[μWh/day]である。符号g112cが示す領域は、電子機器25の1日あたりの消費電力の総和[μWh/day]である。図14に示す例では、電子機器25が動作している期間の1日あたりの消費電力の総和が14400[μWh/day]であり、電子機器25が待機状態の期間の1日あたりの消費電力の総和が178[μWh/day]であり、両方の総和が14578[μWh/day]である。なお、図14に示した例では、円グラフで表示する例を示したが、グラフは棒グラフ等であってもよい。 FIG. 14 is a diagram illustrating an example of the image g112 indicating the total consumption energy. In the example shown in FIG. 14, the image g112 indicating the total energy consumption is shown as a pie chart. An area indicated by reference sign g112a is a sum [μWh / day] of power consumption per day during a period in which the electronic device 25 is operating. An area indicated by reference sign g112b is the sum [μWh / day] of the power consumption per day during the standby state of the electronic device 25. An area indicated by reference sign g112c is the sum [μWh / day] of the power consumption of the electronic device 25 per day. In the example illustrated in FIG. 14, the total of the power consumption per day during the operation of the electronic device 25 is 14400 [μWh / day], and the power consumption per day during the standby state of the electronic device 25. Is 178 [μWh / day], and the sum of both is 14578 [μWh / day]. In the example shown in FIG. 14, an example in which a pie chart is displayed is shown, but the chart may be a bar graph or the like.
 演算部12は、記憶部13が記憶する式と、設定部11の操作によって設定された設定値を用いて、電子機器25が動作している期間の1日あたりの消費電力の総和、電子機器25が待機状態の期間の1日あたりの消費電力の総和、電子機器25の1日あたりの消費電力の総和それぞれを求める。なお、記憶部13が記憶する式については、後述する。表示部14は、演算部12が求めた電子機器25が動作している期間の1日あたりの消費電力の総和、電子機器25が待機状態の期間の1日あたりの消費電力の総和、電子機器25の1日あたりの消費電力の総和を用いてグラフを生成して、生成したグラフを表示する。また、表示部14は、演算部12が求めた電子機器25が動作している期間の1日あたりの消費電力の総和、電子機器25が待機状態の期間の1日あたりの消費電力の総和、電子機器25の1日あたりの消費電力の総和をテキスト形式で、グラフの各要素に対応付けて表示する。 Arithmetic unit 12 uses the equation stored in storage unit 13 and the set value set by the operation of setting unit 11 to calculate the sum of the power consumption per day during the period in which electronic device 25 is operating. The sum of the power consumption per day in the period of the standby state 25 and the sum of the power consumption per day of the electronic device 25 are calculated. The expression stored in the storage unit 13 will be described later. The display unit 14 is a sum of power consumption per day of the operating period of the electronic device 25 calculated by the computing unit 12, a sum of power consumption per day of the standby state of the electronic device 25, the electronic device Generate a graph using the sum of 25 power consumptions per day, and display the generated graph. In addition, the display unit 14 is a sum of power consumption per day of the operating period of the electronic device 25 calculated by the computing unit 12, a sum of power consumption per day of the standby state of the electronic device 25, The total of the power consumption per day of the electronic device 25 is displayed in text format in association with each element of the graph.
 上述したように、太陽電池21によって発電される電力量が微弱であるため、わずかな消費電力であっても、運用期間に関わってくる。このため、本実施形態では、電子機器25が待機状態の場合、蓄電池23の自己放電電流等、従来考慮されなかった項目についても考慮してシミュレーションを行う。 As described above, since the amount of power generated by the solar cell 21 is weak, even a small amount of power consumption is involved in the operation period. For this reason, in the present embodiment, when the electronic device 25 is in the standby state, simulation is performed in consideration of items such as the self discharge current of the storage battery 23 and the like that have not been taken into consideration conventionally.
 図15は、蓄電池23の電圧対時間の変化を示すグラフの画像g113の例を示す図である。図15において、横軸は時刻(時)、左の縦軸は蓄電池23の電圧値(V)、右に縦軸は照度(lux)である。なお、図15に示す図は、表示部14が、演算部12が求めた結果に基づいてグラフを生成して表示する。 FIG. 15 is a diagram showing an example of an image g113 of a graph showing a change in voltage of the storage battery 23 versus time. In FIG. 15, the horizontal axis is time (hour), the left vertical axis is the voltage value (V) of the storage battery 23, and the vertical axis is illuminance (lux) on the right. In the diagram shown in FIG. 15, the display unit 14 generates and displays a graph based on the result obtained by the calculation unit 12.
 図15に示すように、蓄電池23の電圧対時間の変化を示すグラフの画像g113には、1日あたり供給可能な電力量が平均値の際の蓄電池23の電圧対時間の変化g113a、1日あたり供給可能な電力量が最小時の蓄電池23の電圧対時間の変化g113h、太陽電池21によって発電が行われている期間g113gを含む。また、鎖線g113bは放電下限電圧(下限電圧)を表す。鎖線g113cは蓄電池23に蓄電された電力を再出力する電圧値を表す。すなわち、蓄電池23の電圧値が、鎖線g113cで示す3.3(V)に達したとき、蓄電池23の電力の放電を開始する。鎖線g113dは充電上限電圧を表す。符号g113eが示す領域は、電子機器25に電力を供給できない期間を表す。符号g113fが示す領域は、電子機器25に電力を供給できる期間を表す。 As shown in FIG. 15, the image g113 of the graph showing the change of voltage versus time of the storage battery 23, the change of voltage versus time g113a of the storage battery 23 when the amount of power that can be supplied per day is the average value, 1 day A change in voltage vs. time g113h of the storage battery 23 when the amount of power that can be supplied per unit is minimum, and a period g113g in which power generation is performed by the solar cell 21 are included. Further, the dashed line g113b represents the discharge lower limit voltage (lower limit voltage). The dashed-dotted line g113c represents a voltage value for re-outputting the power stored in the storage battery 23. That is, when the voltage value of the storage battery 23 reaches 3.3 (V) shown by the dashed-dotted line g113c, discharge of the power of the storage battery 23 is started. The dashed line g113 d represents the charging upper limit voltage. A region indicated by reference sign g113e represents a period in which power can not be supplied to the electronic device 25. A region indicated by reference sign g113f represents a period in which power can be supplied to the electronic device 25.
 図15に示す例では、1日あたり供給可能な電力量が平均値の際、電子機器25に電力を供給できる期間(駆動可能な期間)は、運用開始からの時間が、約20時間~約68時間の期間、約91時間~約140時間の期間、約163時間~である。また、1日あたり供給可能な電力量が平均値の際、電子機器25に電力を供給できない期間(駆動できない期間)は、運用開始からの時間が、0時~約20時間の期間、約68時間~約91時間の期間、約140時間~約163時間の期間である。 In the example shown in FIG. 15, when the amount of power that can be supplied per day is an average value, the period in which power can be supplied to the electronic device 25 (the drivable period) is about 20 hours to about A period of 68 hours, a period of about 91 hours to about 140 hours, and a period of about 163 hours. In addition, when the amount of power that can be supplied per day is an average value, the period when power can not be supplied to the electronic device 25 (period when it can not be driven) is approximately 68 hours from 0 o'clock to about 20 hours from the start of operation. The period of time is about 91 hours, and the period of about 140 hours to about 163 hours.
 また、図15に示すように、1日あたり供給可能な電力量が最小値の際、電子機器25に電力を供給できる期間(駆動可能な期間)は、運用開始からの時間が、約29時間~約63時間の期間、約97時間~約127時間の期間、約162時間~である。また、1日あたり供給可能な電力量が最小値の際、電子機器25に電力を供給できない期間は、運用開始からの時間が、0時~約29時間の期間、約63時間~約97時間の期間、約127時間~約162時間の期間である。1日あたり供給可能な電力量が平均値に比べて最小時の際、電子機器25に電力を供給できない期間が長くなり、電子機器25に電力を供給できる期間が短くなることを、利用者は、蓄電池23の電圧対時間の変化を示すグラフの画像g113を見て確認することができる。 Further, as shown in FIG. 15, when the amount of power that can be supplied per day is the minimum value, the period in which power can be supplied to the electronic device 25 (the drivable period) is approximately 29 hours from the start of operation. A period of ~ 63 hours, a period of about 97 hours to about 127 hours, ~ 162 hours. In addition, when the amount of power that can be supplied per day is the minimum value, the period from the start of operation is about 63 hours to about 97 hours, from 0 o'clock to about 29 hours, during the period when power can not be supplied to the electronic device 25 Period of about 127 hours to about 162 hours. When the amount of power that can be supplied per day is at a minimum compared to the average value, the user can not supply power to the electronic device 25 longer and the user can supply a shorter period of time to supply power to the electronic device 25. The image g113 of the graph showing the change of the voltage of the storage battery 23 versus time can be confirmed.
 図15の符号g113gとg113hの画像は、演算部12が、少なくとも電子機器25(負荷回路)の消費電力、太陽電池21に対して光が照射されることによって発電される電力とに基づいて蓄電池の電圧の変化を演算し、表示部14が経過時間に対する蓄電池の電圧の変化をグラフ化した結果である。また、図15の符号g113gの画像は、表示部14が、設定部11によって設定された太陽電池21に対して照射される照度と照射時間に基づいて、経過時間に対する照度の変化をグラフ化し、経過時間に対する蓄電池の電圧の変化をグラフに関連付けて表示した結果である。 The images denoted by g113g and g113h in FIG. 15 are storage batteries based on at least the power consumption of the electronic device 25 (load circuit) of the computing unit 12 and the power generated by irradiating the solar cell 21 with light. The change in voltage of the storage battery is calculated and the display unit 14 graphs the change in voltage of the storage battery with respect to the elapsed time. Further, in the image g113g in FIG. 15, the display unit 14 graphs the change of the illuminance with respect to the elapsed time based on the illuminance and the irradiation time with which the solar battery 21 set by the setting unit 11 is irradiated. It is the result of displaying the change of the voltage of the storage battery with respect to elapsed time in relation to the graph.
 また、図15の符号g113e、g113fの画像は、演算部12が、求めた時間変化に対する前記蓄電池の電圧の変化に基づいて、電子機器25(負荷回路)を駆動可能な期間および前記負荷回路を駆動できない期間のうち少なくとも1つを求め、表示部14が、演算部12が求めた電子機器25を駆動可能な期間および電子機器25を駆動できない期間のうち少なくとも1つを、グラフ化した蓄電池23の電圧の変化のグラフに関連付けて表示した結果である。 Moreover, the image of the code | symbol g113e of FIG. 15 and g113f is the period which can drive the electronic device 25 (load circuit), and the said load circuit based on the change of the voltage of the said storage battery with respect to the time change which the calculating part 12 calculated | required. A storage battery 23 graphing at least one of the periods in which the driving unit 12 can not drive and the period in which the display unit 14 can not drive the electronic device 25 is obtained. It is the result of displaying in relation to the graph of the change of the voltage of.
 図16は、照度と蓄電池23の電圧の時間変化の例を示す図である。図16において、横軸は時間、左縦軸は蓄電池23の電圧、右縦軸は照度である。
 図16に示す例では、0時~20時の期間、L1(例えば500[lux])の照度が太陽電池21に照射され、蓄電池23の電圧がV1となる。そして、消灯時の20時~24時の期間、L2(例えば0[lux])の照度が太陽電池21に照射され、蓄電池23の電圧がV2となる。また、本実施形態では、1日(24時間)を単位時間とする。
FIG. 16 is a diagram showing an example of the time change of the illuminance and the voltage of the storage battery 23. In FIG. 16, the horizontal axis is time, the left vertical axis is the voltage of the storage battery 23, and the right vertical axis is illuminance.
In the example shown in FIG. 16, the illuminance of L1 (for example, 500 [lux]) is irradiated to the solar cell 21 in the period from 0 o'clock to 20 o'clock, and the voltage of the storage battery 23 becomes V1. Then, the illuminance of L2 (for example, 0 [lux]) is applied to the solar cell 21 in the period from 20 o'clock to 24 o'clock when the light is turned off, and the voltage of the storage battery 23 becomes V2. In the present embodiment, one day (24 hours) is taken as a unit time.
 図17は、発電量と消費電力のエネルギー収支を表す画像g114の例を示す図である。図17において、縦軸は、発電された発電電力量に対する総消費エネルギーの比である。符号g114aは、単位時間あたり供給可能な電力量が平均値の場合のエネルギー収支を表す。符号g114bは、単位時間あたり供給可能な電力量が最小値の場合のエネルギー収支を表す。鎖線g114cは、発電された発電電力量に対する総消費エネルギーの比が100%、すなわちバランスが取れているラインを表す。なお、図17に示す図は、表示部14が、演算部12が求めた結果に基づいてグラフを生成して表示する。 FIG. 17 is a diagram illustrating an example of an image g114 representing an energy balance of the power generation amount and the power consumption. In FIG. 17, the vertical axis is the ratio of the total energy consumption to the generated power generation amount. The code g114a represents the energy balance when the amount of power that can be supplied per unit time is an average value. The code g114b represents the energy balance when the amount of power that can be supplied per unit time is the minimum value. The dashed-dotted line g114c represents 100% of the ratio of the total energy consumption to the generated power generation amount, that is, a balanced line. In the diagram illustrated in FIG. 17, the display unit 14 generates and displays a graph based on the result obtained by the calculation unit 12.
 図17に示す例では、単位時間あたり供給可能な電力量が平均値の場合のエネルギー収支が69.5%であり、単位時間あたり供給可能な電力量が最小値の場合のエネルギー収支が48.6%である。利用者は、このようなエネルギー収支を確認して、例えば太陽電池21の数量を増やしたり、太陽電池21を選択し直したり等、設定をやり直して、エネルギー収支のバランスが取れる設定を検討することができる。 In the example shown in FIG. 17, the energy balance when the amount of power that can be supplied per unit time is the average value is 69.5%, and the energy balance when the amount of power that can be supplied per unit time is the minimum value is 48. 6%. The user confirms such an energy balance, for example, increases the number of solar cells 21, reselects the solar cells 21, etc., and reconsiders the setting so as to consider a setting in which the energy balance can be balanced. Can.
 図18は、一次電池24のバッテリ寿命を示す画像g211の例を示す図である。図18に示すように、一次電池24のバッテリ寿命を示す画像g211には、1日あたり供給可能な電力量が平均値の場合の一次電池24のバッテリ寿命[years](typ)、単位時間あたり供給可能な電力量が最小値の場合の一次電池24のバッテリ寿命[years](min)が含まれる。図18に示す例では、1日あたり供給可能な電力量が平均値の場合の一次電池24のバッテリ寿命が3.7[years(年)](typ)であり、1日あたり供給可能な電力量が最小値の場合の一次電池24のバッテリ寿命が2.2[years](min)である。 FIG. 18 is a view showing an example of an image g211 showing the battery life of the primary battery 24. As shown in FIG. As shown in FIG. 18, the image g211 showing the battery life of the primary battery 24 shows the battery life [years] (typ) of the primary battery 24 when the amount of power that can be supplied per day is an average value, per unit time The battery life [years] (min) of the primary battery 24 when the amount of power that can be supplied is the minimum value is included. In the example shown in FIG. 18, the battery life of the primary battery 24 is 3.7 [years (years)] (typ) when the amount of power that can be supplied per day is an average value, and the power that can be supplied per day is typical. The battery life of the primary battery 24 is 2.2 [years] (min) when the quantity is the minimum value.
<シミュレーション>
 次に、演算部12が行うシミュレーションについて説明する。
 まず、演算部12がシミュレーションに用いる符号を以下のように定義する。
<Simulation>
Next, a simulation performed by the calculation unit 12 will be described.
First, codes used by the calculation unit 12 for simulation are defined as follows.
[1]電子機器25の消費エネルギー側
・動作電圧(Operating Voltage);Vope(V)
・動作時間(Operating Time);Tope(msec)
・動作インターバル(Operating Interval);Tint(sec)
・動作電流(Operating Current);Aope(mA)
・待機電流(Standby Current);Asb(μA)
[1] Operating energy side of the electronic device 25 · Operating voltage (Operating Voltage); V ope (V)
・ Operating time (Operating Time); T ope (msec)
・ Operating interval (Operating Interval); T int (sec)
・ Operating current (Operating Current); A ope (mA)
・ Standby current (Standby Current); Asb (μA)
[2]供給エネルギー側
・電子機器25への供給エネルギー;Echg(J/day)
・蓄電池23で消費される自己放電エネルギー;Esd(J/day)
・電源回路22で消費される自己放電エネルギー;Eic(J/day)
・発電エネルギー;Ein(J/day)
・発電電力(Generating Power);Win(μW)
・光照射時間(Irradiation time);Tlight(hr/day)
・電源回路22の変換効率(昇圧回路221の昇圧効率);ηin(%)
・電源回路22の変換効率(降圧回路222の降圧効率);ηout(%)
・電源回路22の自己消費電力(昇圧回路221の自己消費電力);Ain(nA)
・電源回路22の自己消費電力(降圧回路222の自己消費電力);Aout(nA)
・蓄電池23の容量(Capacity);C(F)
・蓄電池23の電圧(Storage device voltage);Vsd(V)
・蓄電池23の自己放電電流(Leakage Current);Asd(μA)
[2] Supply energy: supply energy to the electronic device 25; E chg (J / day)
· Self-discharge energy consumed by storage battery 23; E sd (J / day)
· Self-discharge energy consumed by the power supply circuit 22; E ic (J / day)
・ Generated energy; E in (J / day)
And power generation power (Generating Power); W in ( μW)
-Irradiation time; T light (hr / day)
· Conversion efficiency of the power supply circuit 22 (boosting efficiency of the boosting circuit 221); in in (%)
· Conversion efficiency of power supply circuit 22 (step-down efficiency of step-down circuit 222); η out (%)
· Self-power consumption of the power supply circuit 22 (self-power consumption of the booster circuit 221); A in (nA)
・ Self power consumption of the power supply circuit 22 (self power consumption of the step-down circuit 222); A out (nA)
・ Capacity of storage battery 23 (Capacity); C (F)
-Voltage of storage battery 23 (Storage device voltage); V sd (V)
・ Self discharge current of the storage battery 23 (Leakage Current); Asd (μA)
 演算部12は、[1]電子機器25の消費エネルギー、[2]供給エネルギーを用いて、1日あたりの電力量に対して、供給と消費のエネルギーを比較する演算を以下のように行う。
 演算部12は、電子機器25の駆動時の消費エネルギーEopeを、次式(1)を用いて求める。
The calculation unit 12 performs an operation of comparing the energy of supply and consumption with respect to the amount of power per day using the consumption energy of the electronic device 25 and the supply energy of the electronic device 25 as follows.
The calculation unit 12 obtains the consumed energy E ope at the time of driving the electronic device 25 using the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 次に、演算部12は、電子機器25の待機時の消費エネルギーEsbを、次式(2)を用いて求める。 Next, the calculation unit 12 obtains the consumed energy E sb at the time of standby of the electronic device 25 using the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 次に、演算部12は、電子機器25の総消費エネルギーEoutを、次式(3)を用いて求める。 Next, the calculation unit 12 obtains the total consumption energy E out of the electronic device 25 using the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、演算部12は、発電エネルギーEinを、次式(4)を用いて求める。 Next, the calculation unit 12 obtains the generated energy E in using the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 次に、演算部12は、電源回路22で消費される自己放電エネルギーEicを、次式(5)を用いて求める。 Next, operation unit 12 obtains self-discharge energy E ic consumed by power supply circuit 22 using the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 次に、演算部12は、蓄電池23で消費される自己放電エネルギーEsdを、次式(6)を用いて求める。 Next, operation unit 12 obtains self-discharge energy E sd consumed by storage battery 23 using the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 次に、演算部12は、電子機器25への供給エネルギーEchgを、次式(7)を用いて求める。 Next, the calculation unit 12 obtains the energy Echg supplied to the electronic device 25 using the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 そして、演算部12は、次式(8)が成り立たつ場合に、エナジーハーベスティングの連続駆動できると判断するようにしてもよい。 Then, the computing unit 12 may determine that the energy harvesting can be continuously driven when the following equation (8) holds.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
<シミュレーションの手順例>
 次に、演算部12、表示部14が行う処理手順例を説明する。
 図19は、本実施形態に係る演算部12、表示部14が行う処理手順例を示すフローチャートである。
<Example of procedure of simulation>
Next, an example of processing procedure performed by the calculation unit 12 and the display unit 14 will be described.
FIG. 19 is a flowchart illustrating an example of processing procedures performed by the calculation unit 12 and the display unit 14 according to the present embodiment.
 (ステップS1)演算部12は、利用者が設定部11を操作して設定、選択した設定情報を取得する。
 (ステップS2)演算部12は、取得した設定情報に応じたパラメータを、記憶部13から読み出す。続けて、演算部12は、記憶部13からシミュレーションに使用する数式を読み出す。
(Step S1) The operation unit 12 acquires setting information selected and set by the user operating the setting unit 11.
(Step S2) The operation unit 12 reads from the storage unit 13 a parameter corresponding to the acquired setting information. Subsequently, the calculation unit 12 reads the mathematical expression to be used for the simulation from the storage unit 13.
 以下、演算部12と表示部14は、ステップS3~S4の処理、ステップS5~S7の処理、ステップS8の処理、ステップS10~S11の処理のうち、少なくとも1つを行う。 Subsequently, the calculation unit 12 and the display unit 14 perform at least one of the processes of steps S3 to S4, the processes of steps S5 to S7, the process of step S8, and the processes of steps S10 to S11.
 (ステップS3)演算部12は、設定情報、パラメータ、数式を用いて、経過時間に対する蓄電池23の電圧の変化を求める。処理後、演算部12は、ステップS4に処理を進める。
 (ステップS4)表示部14は、経過時間に対する蓄電池23の電圧の変化をグラフ化して画像情報を生成する。処理後、表示部14は、ステップS9に処理を進める。
(Step S3) Arithmetic unit 12 obtains a change in voltage of storage battery 23 with respect to elapsed time using setting information, parameters, and mathematical expressions. After the processing, operation unit 12 advances the processing to step S4.
(Step S4) The display unit 14 graphs the change of the voltage of the storage battery 23 with respect to the elapsed time to generate image information. After the processing, the display unit 14 proceeds with the process to step S9.
 (ステップS5)演算部12は、設定情報、パラメータ、数式を用いて、電子機器25を駆動可能な期間を求める。処理後、演算部12は、ステップS6に処理を進める。
 (ステップS6)演算部12は、設定情報、パラメータ、数式を用いて、電子機器25を駆動できない期間を求める。処理後、演算部12は、ステップS7に処理を進める。
 (ステップS7)表示部14は、電子機器25を駆動可能な期間、電子機器25を駆動できない期間をグラフ化して画像情報を生成する。処理後、表示部14は、ステップS9に処理を進める。
(Step S5) The calculation unit 12 obtains a period in which the electronic device 25 can be driven using the setting information, the parameters, and the mathematical expression. After the processing, the calculation unit 12 proceeds the processing to step S6.
(Step S6) The calculation unit 12 obtains a period in which the electronic device 25 can not be driven using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12 advances the processing to step S7.
(Step S7) The display unit 14 generates image information by graphing a period in which the electronic device 25 can not be driven and a period in which the electronic device 25 can not be driven. After the processing, the display unit 14 proceeds with the process to step S9.
 (ステップS8)演算部12は、取得した設定情報に含まれる照度の情報を表示部14に出力する。なお、照度の情報には、少なくとも照度が含まれ、光照射時間が含まれている。続けて、表示部14は、演算部12が出力する照度の情報をグラフ化する。処理後、表示部14は、ステップS9に処理を進める。 (Step S8) The calculation unit 12 outputs the information on the illuminance included in the acquired setting information to the display unit 14. The information on the illuminance includes at least the illuminance, and includes the light irradiation time. Subsequently, the display unit 14 graphs the information of the illuminance output from the calculation unit 12. After the processing, the display unit 14 proceeds with the process to step S9.
 (ステップS9)表示部14は、ステップS4、ステップS7、ステップS8でグラフ化されたグラフを合成する。処理後、表示部14は、ステップS12に処理を進める。 (Step S9) The display unit 14 synthesizes the graph graphed in step S4, step S7, and step S8. After the processing, the display unit 14 proceeds with the process to step S12.
 (ステップS10)演算部12は、設定情報、パラメータ、数式を用いて、少なくとも電子機器25の消費電力を求める。処理後、演算部12は、ステップS11に処理を進める。
 (ステップS11)表示部14は、経過時間に対する消費電力の変化をグラフ化して画像情報を生成する。処理後、表示部14は、ステップS12に処理を進める。
(Step S10) The computing unit 12 obtains at least the power consumption of the electronic device 25 using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12 advances the processing to step S11.
(Step S11) The display unit 14 graphs change of power consumption with respect to elapsed time to generate image information. After the processing, the display unit 14 proceeds with the process to step S12.
 (ステップS12)表示部14は、ステップS9で合成された画像、ステップS11で生成されたグラフ等の画像を更新して表示する。処理後、表示部14は、ステップS1に処理を戻す。 (Step S12) The display unit 14 updates and displays the image synthesized at step S9 and the image such as the graph generated at step S11. After the processing, the display unit 14 returns the processing to step S1.
 なお、上述した処理手順は一例であり、これに限られない。演算部12と表示部14は、設定部11によって設定された設定情報を全て使用して、経過時間に対する蓄電池23の電圧の変化のグラフを作成し、駆動可能な期間や駆動できない期間のグラフを作成し、経過時間に対する照度の変化のグラフを作成するようにしてもよい。
 また、演算部12と表示部14は、上述したように、単位時間あたり供給可能な電力量が平均値の場合と、単位時間あたり供給可能な電力量が最小値の場合毎に、図19の処理を行うようにしてもよい。
In addition, the processing procedure mentioned above is an example and is not restricted to this. Arithmetic unit 12 and display unit 14 all use the setting information set by setting unit 11 to create a graph of change in voltage of storage battery 23 with respect to elapsed time, and graph of drivable period and drivable period It is possible to create and create a graph of the change of the illuminance with respect to the elapsed time.
In addition, as described above, the arithmetic unit 12 and the display unit 14 are configured as shown in FIG. 19 when the electric energy that can be supplied per unit time is an average value and when the electric energy that can be supplied per unit time is a minimum value. Processing may be performed.
 なお、演算部12と表示部14は、ステップS3~S4の処理、ステップS5~S7の処理、ステップS8の処理、ステップS10~S11の処理のうち、少なくとも1つを行う例を説明したが、全ての処理を行うようにしてもよい。 Although the calculation unit 12 and the display unit 14 have described an example in which at least one of the processing of steps S3 to S4, the processing of steps S5 to S7, the processing of step S8, and the processing of steps S10 to S11 is performed. All processing may be performed.
 [第2実施形態]
 図20は、本実施形態に係る電力シミュレーション装置1Aの概略構成例を示す図である。図20に示すように、電力シミュレーション装置1Aは、設定部11A、演算部12A、記憶部13A、および表示部14Aを備える。
Second Embodiment
FIG. 20 is a diagram showing an example of a schematic configuration of a power simulation apparatus 1A according to the present embodiment. As shown in FIG. 20, the power simulation apparatus 1A includes a setting unit 11A, an operation unit 12A, a storage unit 13A, and a display unit 14A.
 設定部11Aは、例えば、キーボード、マウス、表示部14A上に設けられたタッチパネルセンサ等である。設定部11Aは、利用者が設定した情報を検出して、検出した設定情報を演算部12Aに出力する。 The setting unit 11A is, for example, a keyboard, a mouse, a touch panel sensor provided on the display unit 14A, or the like. The setting unit 11A detects the information set by the user, and outputs the detected setting information to the calculation unit 12A.
 演算部12Aは、設定部11Aが出力する設定情報を取得する。演算部12Aは、取得した設定情報に応じて、記憶部13Aが記憶する情報を参照して、発電される電力量と、消費される電力量のシミュレーションを行う。演算部12Aは、シミュレーションした結果を表示部14Aに出力する。なお、発電される電力量と、消費される電力量のシミュレーションについては、後述する。 Arithmetic unit 12A acquires setting information output from setting unit 11A. The operation unit 12A simulates the amount of generated power and the amount of consumed power with reference to the information stored in the storage unit 13A according to the acquired setting information. Arithmetic unit 12A outputs the simulation result to display unit 14A. The simulation of the amount of power generated and the amount of power consumed will be described later.
 記憶部13Aは、演算部12Aがシミュレーションの際に使用する数式を記憶する。記憶部13Aは、シミュレーションの際に選択可能な太陽電池それぞれの仕様(型番、セルサイズ、発電面積、最大動作点電力、動作電流、開放電圧等)を記憶する。記憶部13Aは、シミュレーションの際に選択可能な蓄電池23A(図21)の仕様(充電上限電圧、放電下限電圧等)を記憶する。記憶部13Aは、センサシステム2Aの構成モデル131Aを記憶する。 The storage unit 13A stores mathematical expressions used by the calculation unit 12A in simulation. The storage unit 13A stores the specifications (model number, cell size, power generation area, maximum operating point power, operating current, open circuit voltage, and the like) of each of the solar cells that can be selected in simulation. Storage unit 13A stores the specifications (charge upper limit voltage, discharge lower limit voltage, etc.) of storage battery 23A (FIG. 21) selectable during simulation. The storage unit 13A stores a configuration model 131A of the sensor system 2A.
 表示部14Aは、演算部12Aが出力するシミュレーションされた結果を表、グラフ等の画像情報として生成し、生成した画像情報を表示する。また、表示部14Aは、画像情報を変更する際に用いられるポインタ画像を表示する。なお、画像情報の例、ポインタ画像の例については、後述する。表示部14Aは、画像表示装置を備える。画像表示装置は、例えば、液晶表示装置、有機EL(Electro Luminescence)表示装置等である。 The display unit 14A generates a simulation result output from the calculation unit 12A as a table, image information such as a graph, and displays the generated image information. In addition, the display unit 14A displays a pointer image used when changing the image information. An example of image information and an example of a pointer image will be described later. The display unit 14A includes an image display device. The image display device is, for example, a liquid crystal display device, an organic EL (Electro Luminescence) display device, or the like.
 ここで、センサシステム2Aの構成モデル例を説明する。
 図21は、本実施形態に係るセンサシステム2Aの構成モデル例を示す図である。図21に示すように、センサシステム2Aは、電源モジュール20A、一次電池24A、および電子機器25A(負荷回路)を含んで構成される。電源モジュール20Aは、太陽電池21A、電源回路22A、蓄電池23Aを含んで構成される。また、電源回路22Aは、昇圧回路221A、降圧回路222Aを備える。なお、センサシステム2Aは、一次電池24Aを備える場合と、備えない場合とがある。
Here, a configuration model example of the sensor system 2A will be described.
FIG. 21 is a view showing an example of a configuration model of a sensor system 2A according to the present embodiment. As shown in FIG. 21, the sensor system 2A includes a power supply module 20A, a primary battery 24A, and an electronic device 25A (load circuit). The power supply module 20A includes a solar cell 21A, a power supply circuit 22A, and a storage battery 23A. The power supply circuit 22A further includes a booster circuit 221A and a step-down circuit 222A. The sensor system 2A may or may not be provided with the primary battery 24A.
 太陽電池21Aは、例えば、一般の太陽電池では十分な発電効率の得られない蛍光灯下などの光照度強度が低い(例えば10[lux])環境から、野外の太陽光下の光照度強度が高い(例えば10万[lux])環境まで、効率良く発電可能な例えば色素増感太陽電池である。太陽電池21Aは、発電した電力を電源回路22Aに供給する。 For example, the solar cell 21A has a high light intensity under sunlight in the open air from an environment with a low light intensity (for example, 10 [lux]) such as under a fluorescent lamp where sufficient power generation efficiency can not be obtained with a general solar cell For example, a dye-sensitized solar cell capable of efficiently generating power up to, for example, 100,000 [lux] environment. The solar cell 21A supplies the generated power to the power supply circuit 22A.
 電源回路22Aは、太陽電池21Aによって発電された電力を蓄電池23Aに蓄電させ、蓄電池23Aに蓄電された電力を電子機器25Aに供給する。
 昇圧回路221Aは、太陽電池21Aによって発電された電圧値を蓄電池23Aに応じた電圧値に昇圧するDC/DCコンバータである。昇圧回路221Aは、昇圧した電圧値の電力を蓄電池23Aに蓄電させる。
 降圧回路222Aは、蓄電池23Aに蓄電された電力を、電子機器25Aに供給する電圧値に降圧するDC/DCコンバータである。降圧回路222Aは、降圧した電圧値の電力を電子機器25Aに供給する。
The power supply circuit 22A stores the power generated by the solar cell 21A in the storage battery 23A, and supplies the power stored in the storage battery 23A to the electronic device 25A.
The booster circuit 221A is a DC / DC converter that boosts a voltage value generated by the solar cell 21A to a voltage value according to the storage battery 23A. The booster circuit 221A stores the power of the boosted voltage value in the storage battery 23A.
The step-down circuit 222A is a DC / DC converter that steps down the power stored in the storage battery 23A to a voltage value supplied to the electronic device 25A. The step-down circuit 222A supplies the power of the reduced voltage value to the electronic device 25A.
 蓄電池23Aは、太陽電池21Aによって発電され昇圧回路221Aによって昇圧された電力を蓄電する。蓄電池23Aは、蓄電した電力を降圧回路222Aに供給する。蓄電池23Aは、例えばリチウムイオンキャパシタ(LIC)である。 Storage battery 23A stores the power generated by solar cell 21A and boosted by boosting circuit 221A. The storage battery 23A supplies the stored power to the step-down circuit 222A. The storage battery 23A is, for example, a lithium ion capacitor (LIC).
 一次電池24Aは、例えば通常時の電圧値が3.0Vの電池である。 The primary battery 24A is, for example, a battery having a normal voltage value of 3.0V.
 電子機器25Aは、例えば、通信部、制御部、センサ部等を備える。電子機器25Aには、蓄電池23Aに蓄電されている電力が供給される。または、電子機器25Aには、蓄電池23Aに蓄電されている電力が供給されるか、一次電池24Aから電力が供給される。電子機器25Aがセンサ部を備える場合、電子機器25Aは、センサ部が計測した計測値を、設定部11A(図20)で設定された設定情報に含まれるタイミングで、他の機器へ送信する。 The electronic device 25A includes, for example, a communication unit, a control unit, a sensor unit, and the like. The power stored in the storage battery 23A is supplied to the electronic device 25A. Alternatively, the power stored in the storage battery 23A is supplied to the electronic device 25A, or power is supplied from the primary battery 24A. When the electronic device 25A includes the sensor unit, the electronic device 25A transmits the measurement value measured by the sensor unit to another device at the timing included in the setting information set by the setting unit 11A (FIG. 20).
 なお、上述したセンサシステム2Aの構成は一例であり、これに限らない。センサシステム2Aは、例えば、電圧検出部、充放電制御部、一次電池24Aと蓄電池23Aとの切り換えスイッチ等を備えていてもよい。 The configuration of the sensor system 2A described above is an example, and the present invention is not limited to this. The sensor system 2A may include, for example, a voltage detection unit, a charge / discharge control unit, and a switch for switching between the primary battery 24A and the storage battery 23A.
 次に、演算部12Aが行うシミュレーションについて説明する。
 演算部12Aは、設定部11Aによって設定された設定情報を用いて、太陽電池21Aによって発電される電力量、電子機器25Aによって消費される電力量の収支をシミュレーションする。演算部12Aは、図21に示したセンサシステム2Aの各構成要素について、待機時の消費電力、動作時の消費電力、昇圧効率、降圧効率、電子機器の動作する時間と周期等を用いて、シミュレーションを行う。これらの項目は、従来の設計では考慮されなかった項目も含まれる。このため、本実施形態によれば、従来よりも精度良く、微弱な発電源である環境発電素子を発電供給源に用いた電子機器であっても、エネルギー収支のバランスを適切に求めることができる。
Next, a simulation performed by the calculation unit 12A will be described.
The calculation unit 12A simulates the balance between the amount of power generated by the solar cell 21A and the amount of power consumed by the electronic device 25A using the setting information set by the setting unit 11A. Arithmetic unit 12A uses, for each component of sensor system 2A shown in FIG. 21, power consumption at the time of standby, power consumption at the time of operation, boosting efficiency, step-down efficiency, operation time and period of the electronic device, etc. Perform a simulation. These items also include items not considered in the conventional design. Therefore, according to the present embodiment, the balance of the energy balance can be appropriately determined even in the electronic apparatus using the energy-generating element, which is a weak power source, more accurately than in the past as the power generation source. .
 次に、設定項目と、シミュレーション結果の例を説明する。
 図22は、本実施形態に係るセンサシステム2Aが一次電池24Aを備えていない場合の表示部14A上に表示される画像例を示す図である。
 図22に示すように、センサシステム2Aが一次電池24Aを備えていない場合の表示部14A上に表示される画像g100Aは、設定項目として、電源モジュールの構成画像g101A、センサシステム2Aが設置される環境の光の状態の設定画像g102A、太陽電池21Aの選択画像g103A、g104A、電力管理画像g105A、蓄電池23Aの設定画像g106A、電子機器25Aの消費電力の設定画像g107A、および電子機器25Aの動作状態や消費電力の表示画像g108Aを備える。また、画像g100Aは、シミュレーション結果として、電子機器25Aに供給可能な電力を示す情報の画像g111A、総消費エネルギーを示す画像g112A、蓄電池23Aの電圧対時間の変化を示すグラフの画像g113A、および発電量と消費電力のエネルギー収支を表す画像g114Aを含む。また、ポインタ画像g301Aは、表示画像g108Aやグラフの画像g113Aを操作する際に用いるポインタの画像である。なお、ポインタ画像g301Aを用いて行う設定については、後述する。
Next, examples of setting items and simulation results will be described.
FIG. 22 is a view showing an example of an image displayed on the display unit 14A when the sensor system 2A according to the present embodiment does not include the primary battery 24A.
As shown in FIG. 22, an image g100A displayed on the display unit 14A when the sensor system 2A does not include the primary battery 24A has a configuration image g101A of the power supply module and the sensor system 2A installed as setting items. Setting image g102A of environmental light state, selected image g103A and g104A of solar battery 21A, power management image g105A, setting image g106A of storage battery 23A, setting image g107A of power consumption of electronic device 25A, and operation state of electronic device 25A And a display image g108A of power consumption. The image g100A is, as a simulation result, an image g111A of information indicating electric power that can be supplied to the electronic device 25A, an image g112A indicating total energy consumption, an image g113A of a graph indicating change of voltage versus time of the storage battery 23A, and power generation The image g114A showing the energy balance of quantity and power consumption is included. The pointer image g301A is an image of a pointer used when operating the display image g108A or the image g113A of a graph. The setting performed using the pointer image g301A will be described later.
 図23は、本実施形態に係るセンサシステム2Aが一次電池24Aを備えている場合の表示部14A上に表示される画像例を示す図である。
 図23に示すように、センサシステム2Aが一次電池24Aを備えている場合の表示部14A上に表示される画像g1000Aは、設定項目として、電源モジュールの構成画像g101A、センサシステム2Aが設置される環境の光の状態の設定画像g102A、太陽電池21Aの選択画像g103A、g104A、電力管理画像g105A、蓄電池23Aの設定画像g106A、電子機器25Aの消費電力の設定画像g107A、電子機器25Aの動作状態や消費電力の表示画像g108A、および一次電池24Aの容量を設定する画像g201Aを備える。また、画像g1000Aは、シミュレーション結果として、電子機器25Aに供給可能な電力を示す情報の画像g111A、総消費エネルギーを示す画像g112A、蓄電池23Aの電圧対時間の変化を示すグラフの画像g113A、発電量と消費電力のエネルギー収支を表す画像g114A、および一次電池24Aのバッテリ寿命を示す画像g211Aを含む。また、ポインタ画像g301Aは、表示画像g108Aやグラフの画像g113Aを操作する際に用いるポインタの画像である。なお、ポインタ画像g301Aを用いて行う設定については、後述する。
FIG. 23 is a view showing an example of an image displayed on the display unit 14A when the sensor system 2A according to the present embodiment includes the primary battery 24A.
As shown in FIG. 23, the image g1000A displayed on the display unit 14A when the sensor system 2A includes the primary battery 24A has the configuration image g101A of the power supply module and the sensor system 2A installed as setting items. Setting image g102A of environmental light state, selected image g103A and g104A of solar battery 21A, power management image g105A, setting image g106A of storage battery 23A, setting image g107A of power consumption of electronic device 25A, operation state of electronic device 25A A display image g108A of power consumption and an image g201A for setting the capacity of the primary battery 24A are provided. In addition, the image g1000A is, as a simulation result, an image g111A of information indicating electric power that can be supplied to the electronic device 25A, an image g112A indicating total energy consumption, an image g113A of a graph showing change of voltage of storage battery 23A against time, power generation amount And an image g114A representing an energy balance of power consumption, and an image g211A representing a battery life of the primary battery 24A. The pointer image g301A is an image of a pointer used when operating the display image g108A or the image g113A of a graph. The setting performed using the pointer image g301A will be described later.
<設定項目の例>
 次に、図22、図23に示した各画像のうち設定項目について説明する。
 図24は、電源モジュールの構成画像g101Aの例を示す図である。図24に示すように、電源モジュールの構成画像g101Aには、センサシステム2Aが設置される環境に照射される光量に関する情報画像g101Aa、選択された太陽電池に関する情報画像g101Abが含まれる。センサシステム2Aが設置される環境に照射される光量に関する情報画像g101Aaは、センサシステム2Aが設置される環境の光の状態の設定画像g102Aの設定が更新される毎に更新される。また、選択された太陽電池に関する情報画像g101Abは、太陽電池21Aの選択画像g104Aの設定が更新される毎に更新される。
<Example of setting item>
Next, setting items among the images shown in FIGS. 22 and 23 will be described.
FIG. 24 is a diagram showing an example of a component image g101A of the power supply module. As shown in FIG. 24, the component image g101A of the power supply module includes an information image g101Aa related to the light quantity irradiated to the environment where the sensor system 2A is installed, and an information image g101Ab related to the selected solar cell. The information image g101Aa related to the amount of light irradiated to the environment where the sensor system 2A is installed is updated each time the setting of the setting image g102A of the light state of the environment where the sensor system 2A is installed is updated. Further, the information image g101Ab related to the selected solar cell is updated each time the setting of the selected image g104A of the solar cell 21A is updated.
<設定に使用する画面の説明>
 まず、設定に使用する画面について説明する。
 図25は、センサシステム2Aが設置される環境の光の状態の設定画像g102Aの例を示す図である。図25に示すように、センサシステム2Aが設置される環境の光の状態の設定画像g102Aには、照度[lux]、1日に光がセンサシステム2Aに照射される時間である光照射時間[hr/day]が含まれる。利用者は、センサシステム2Aが設置される環境の光の状態の設定画像g102Aの各欄を、設定部11Aを操作して選択し、各欄の値を選択または入力する。図25に示す例は、照度が500[lux]、光照射時間が20[hr/day]として設定された例である。演算部12Aは、この設定に応じて、電源モジュールの構成画像g101Aにおいて、照度と光照射時間を更新する。
<Description of screen used for setting>
First, the screen used for setting will be described.
FIG. 25 is a view showing an example of a setting image g102A of the light state of the environment in which the sensor system 2A is installed. As shown in FIG. 25, in the setting image g102A of the state of the light in the environment where the sensor system 2A is installed, the illumination time [lux] is the light irradiation time [time when light is irradiated to the sensor system 2A on one day] hr / day] is included. The user operates the setting unit 11A to select each field of the setting image g102A of the light state of the environment in which the sensor system 2A is installed, and selects or inputs the value of each field. The example shown in FIG. 25 is an example in which the illuminance is set to 500 [lux] and the light irradiation time is set to 20 [hr / day]. In accordance with this setting, the calculation unit 12A updates the illuminance and the light irradiation time in the component image g101A of the power supply module.
 図26は、太陽電池21Aの選択画像g103Aの例を示す図である。図26に示すように、太陽電池21Aの選択画像g103Aには、太陽電池型番、数量[pcs(パッケージ)]、外形サイズ[mm]、発電面積[cm]が含まれる。利用者は、太陽電池21Aの選択画像g103Aの各欄を、設定部11Aを操作して選択し、各欄の値を選択または入力する。図26に示す例は、太陽電池型番が「太陽電池I」、数量が1[pcs]として設定された例である。演算部12Aは、設定に応じて、記憶部13Aが記憶する太陽電池21Aの情報を読み出し、外形サイズを112×56[mm]、発電面積を32[cm]に更新する。さらに、演算部12Aは、この設定に応じて、電源モジュールの構成画像g101Aにおいて、太陽電池型番と数量を更新する。 FIG. 26 is a diagram showing an example of the selected image g103A of the solar cell 21A. As shown in FIG. 26, the selected image g103A of the solar cell 21A includes the solar cell model number, the quantity [pcs (package)], the external size [mm], and the power generation area [cm 2 ]. The user operates the setting unit 11A to select each field of the selection image g103A of the solar cell 21A, and selects or inputs the value of each field. The example shown in FIG. 26 is an example in which the solar cell model number is set as “solar cell I” and the number is 1 [pcs]. The calculation unit 12A reads the information of the solar cell 21A stored in the storage unit 13A according to the setting, and updates the external size to 112 × 56 [mm] and the power generation area to 32 [cm 2 ]. Further, the operation unit 12A updates the solar cell model number and the number in the component image g101A of the power supply module according to the setting.
 図27は、太陽電池21Aの選択画像g104Aの例を示す図である。図27に示すように、太陽電池21Aの選択画像g104Aには、選択可能な太陽電池の外形図、寸法図が表示される。図27に示す例では、太陽電池21Aの選択画像g104Aによって、「太陽電池I」が選択された例である。なお、利用者は、太陽電池21Aの選択画像g104Aの「太陽電池I」の画像を、設定部11Aを操作して選択するようにしてもよい。 FIG. 27 is a diagram showing an example of the selected image g104A of the solar cell 21A. As shown in FIG. 27, in the selected image g104A of the solar cell 21A, an outline view and a dimensional view of selectable solar cells are displayed. The example shown in FIG. 27 is an example in which “solar cell I” is selected by the selected image g104A of the solar cell 21A. The user may select the image of “solar cell I” of the selected image g104A of the solar cell 21A by operating the setting unit 11A.
 ここで、図27において、ポインタ画像g301Aを用いた設定方法の例を説明する。
 なお、利用者は、設定部11Aを操作することで、ポインタ画像g301Aを操作する指示を行う。
 図27において、太陽電池21Aを変更したい場合、利用者は、ポインタ画像g301Aを操作して、太陽電池21Aの選択画像g104Aから他の太陽電池21A、例えば「太陽電池II」を選択するように設定部11Aを操作する。表示部14Aは、「太陽電池II」が選択するように操作されたことを検出する。そして、表示部14Aは、「太陽電池II」が選択されたことを示すように画像を更新する。また、演算部12Aは、選択された太陽電池21Aの情報(太陽電池型番、外形サイズ、発電面積)を記憶部13Aから読み出し、読み出した太陽電池21Aの情報を表示部14Aに出力する。表示部14Aは、演算部12Aが出力する太陽電池21Aの情報に基づいて、太陽電池21Aの選択画像g103A(図26)を更新する。
Here, in FIG. 27, an example of a setting method using the pointer image g301A will be described.
The user operates the setting unit 11A to issue an instruction to operate the pointer image g301A.
In FIG. 27, when it is desired to change the solar cell 21A, the user operates the pointer image g301A to select another solar cell 21A, for example, “solar cell II” from the selected image g104A of the solar cell 21A. The unit 11A is operated. The display unit 14A detects that the “solar cell II” has been operated to select. Then, the display unit 14A updates the image so as to indicate that "solar cell II" is selected. In addition, operation unit 12A reads out information (solar cell model number, external size, power generation area) of selected solar cell 21A from storage unit 13A, and outputs the read information on solar cell 21A to display unit 14A. The display unit 14A updates the selected image g103A (FIG. 26) of the solar cell 21A based on the information of the solar cell 21A output by the calculation unit 12A.
 図28は、電力管理画像g105Aの例を示す図である。図28に示すように、電力管理画像g105Aには、昇圧効率[%]、降圧効率[%]、静止電流[nA]、出力電圧[V]が含まれる。利用者は、電力管理画像g105Aの各欄を、設定部11Aを操作して選択し、各欄の値を選択または入力する。図28に示す例は、昇圧効率が75[%]、降圧効率が90[%]、静止電流が3000[nA]、出力電圧が3.0[V]として設定された例である。 FIG. 28 is a diagram showing an example of the power management image g105A. As shown in FIG. 28, the power management image g105A includes the boosting efficiency [%], the bucking efficiency [%], the quiescent current [nA], and the output voltage [V]. The user operates the setting unit 11A to select each field of the power management image g105A, and selects or inputs the value of each field. The example shown in FIG. 28 is an example where the boosting efficiency is set to 75%, the step-down efficiency to 90%, the quiescent current to 3000 nA, and the output voltage to 3.0V.
 図29は、蓄電池23Aの設定画像g106Aの例を示す図である。図29に示すように、蓄電池23Aの設定画像g106Aには、容量[F]、初期電圧[V]、充電上限電圧[V]、放電加減電圧[V]、自己放電電流[μA]が含まれる。利用者は、蓄電池23Aの設定画像g106Aの各欄を、設定部11Aを操作して選択し、各欄の値を選択または入力する。図29に示す例は、容量が40[F]、初期電圧が3.0[V]、自己放電電流が0.1[μA]として設定された例である。演算部12Aは、この設定に応じて、記憶部13Aが記憶する充電上限電圧値と放電下限電圧を更新する。なお、充電上限電圧値と放電下限電圧は、蓄電池23Aに関わらず、固定値であってもよい。 FIG. 29 is a diagram showing an example of a setting image g106A of the storage battery 23A. As shown in FIG. 29, the setting image g106A of the storage battery 23A includes a capacity [F], an initial voltage [V], a charge upper limit voltage [V], a discharge adjustment voltage [V], and a self discharge current [μA]. . The user operates the setting unit 11A to select each field of the setting image g106A of the storage battery 23A, and selects or inputs the value of each field. The example shown in FIG. 29 is an example in which the capacity is set to 40 [F], the initial voltage is 3.0 [V], and the self-discharge current is 0.1 [μA]. Operation unit 12A updates the charge upper limit voltage value and the discharge lower limit voltage stored in storage unit 13A according to the setting. The charge upper limit voltage value and the discharge lower limit voltage may be fixed values regardless of the storage battery 23A.
 図30は、電子機器25Aの消費電力の設定画像g107A、電子機器25Aの動作状態や消費電力の表示画像g108Aの例を示す図である。図30に示すように、電子機器25Aの消費電力の設定画像g107Aには、電子機器25Aの動作電圧[V]、動作時間[msec]、動作インターバル[sec]、動作電流[mA]、待機電流[μA]が含まれる。また、図30に示すように、電子機器25Aの動作状態や消費電力の表示画像g108Aには、動作状態の画像g108Aaと、動作電圧[V]、動作時間[msec]、動作インターバル[sec]、動作電流[mA]、待機電流[μA]が含まれる。図30に示す例では、動作電圧が3.0[V]、動作時間が20[msec]、動作インターバルが2.0[sec]、動作電流が20[mA]、待機電流が2.5[μA]として設定された例である。
 図30のg108Aaの画像は、表示部14Aが、設定部11Aによって設定された電子機器25A(負荷回路)の消費電力をグラフ化して表示した結果である。
FIG. 30 is a diagram showing an example of a setting image g107A of the power consumption of the electronic device 25A, and a display image g108A of the operation state of the electronic device 25A and the power consumption. As shown in FIG. 30, in the setting image g107A of the power consumption of the electronic device 25A, the operating voltage [V], the operating time [msec], the operating interval [sec], the operating current [mA], and the standby current of the electronic device 25A. [ΜA] is included. In addition, as shown in FIG. 30, in the display image g108A of the operating state and power consumption of the electronic device 25A, an image g108Aa of the operating state, an operating voltage [V], an operating time [msec], an operating interval [sec], Operating current [mA] and standby current [μA] are included. In the example shown in FIG. 30, the operating voltage is 3.0 [V], the operating time is 20 [msec], the operating interval is 2.0 [sec], the operating current is 20 [mA], and the standby current is 2.5 [C]. It is an example set as μA].
The image of g108Aa in FIG. 30 is a result of the display unit 14A displaying the power consumption of the electronic device 25A (load circuit) set by the setting unit 11A as a graph.
 利用者は、電子機器25Aの消費電力の設定画像g107Aの各欄を、設定部11Aを操作して選択し、各欄の値を選択または入力する。この場合、演算部12Aは、設定された情報に応じて電子機器25Aの動作状態や消費電力の表示画像g108Aを更新する。
 または、利用者は、電子機器25Aの動作状態や消費電力の表示画像g108Aの波形の幅や高さを、設定部11Aを操作して選択する。この場合、演算部12Aは、設定された情報に応じて電子機器25Aの消費電力の設定画像g107Aを更新する。
The user operates the setting unit 11A to select each field of the setting image g107A of the power consumption of the electronic device 25A, and selects or inputs the value of each field. In this case, the operation unit 12A updates the display image g108A of the operation state of the electronic device 25A and the power consumption according to the set information.
Alternatively, the user operates the setting unit 11A to select the operation state of the electronic device 25A and the width and height of the waveform of the display image g108A of the power consumption. In this case, the calculation unit 12A updates the setting image g107A of the power consumption of the electronic device 25A according to the set information.
 ここで、図30において、ポインタ画像g301Aを用いた設定方法の例を説明する。
 なお、利用者は、設定部11Aを操作することで、ポインタ画像g301Aを操作する指示を行う。
 図30において、例えば動作時間を変更したい場合、利用者は、ポインタ画像g301Aを操作して、動作状態の画像g108Aaのパルスの幅を変更するように設定部11Aを操作する。演算部12Aは、例えば、動作状態の画像g108Aaのパルスの幅を広げるように操作されたことを検出する。そして、表示部14Aは、表示画像g108Aを表示画像g1008Aのように、動作時間を20[msec]から40[msec]に変更する。また、表示部14Aは、設定画像g107Aの「動作時間」の欄の表示を、設定画像g1007Aのように更新する。
 このように、本実施形態では、表示画像g108Aを、ポインタ画像g301Aを操作して変更することで、設定を変更し、変更した内容が設定画像g107Aに反映される。この結果、利用者は、表示画像g108Aのように設定値をグラフ化した画像に対して、操作して変更することで、直感的に設定値を変更することができる。なお、表示部14Aは、このように変更された設定値に基づいて、シミュレーション結果の画面(グラフ、表)を更新する。
Here, in FIG. 30, an example of a setting method using the pointer image g301A will be described.
The user operates the setting unit 11A to issue an instruction to operate the pointer image g301A.
In FIG. 30, for example, to change the operation time, the user operates the pointer image g301A to operate the setting unit 11A so as to change the pulse width of the image g108Aa in the operation state. The operation unit 12A detects that, for example, the operation has been performed to widen the pulse width of the image g108Aa in the operating state. Then, the display unit 14A changes the operation time of the display image g108A from 20 [msec] to 40 [msec] as in the display image g1008A. In addition, the display unit 14A updates the display of the “operation time” field of the setting image g107A as in the setting image g1007A.
As described above, in the present embodiment, by changing the display image g108A by operating the pointer image g301A, the setting is changed, and the changed content is reflected on the setting image g107A. As a result, the user can intuitively change the setting value by operating and changing the graphed image of the setting value as in the display image g108A. The display unit 14A updates the screen (graph, table) of the simulation result based on the setting value changed in this manner.
 図30の表示画像g108Aにおいて、ポインタ画像g301Aを操作して変更可能な項目は、例えば、動作時間、動作インターバル、動作電流、待機電流である。 In the display image g108A of FIG. 30, items that can be changed by operating the pointer image g301A are, for example, an operation time, an operation interval, an operation current, and a standby current.
 図31は、一次電池24Aの容量を設定する画像g201Aの例を示す図である。図31に示すように、一次電池24Aの容量を設定する画像g201Aには、一次電池の使用状態(Hybrid operating)、一次電池の容量[mAh]が含まれる。利用者は、一次電池24Aの容量を設定する画像g201Aの各欄を、設定部11Aを操作して選択し、各欄の値を選択または入力する。図31に示す例では、一次電池24Aの使用状態がオン状態(ON)、一次電池24Aの容量が2000[mAh]として設定された例である。 FIG. 31 is a view showing an example of an image g201A for setting the capacity of the primary battery 24A. As shown in FIG. 31, the image g201A for setting the capacity of the primary battery 24A includes the usage state (Hybrid operating) of the primary battery and the capacity [mAh] of the primary battery. The user operates the setting unit 11A to select each field of the image g201A for setting the capacity of the primary battery 24A, and selects or inputs the value of each field. In the example illustrated in FIG. 31, the usage state of the primary battery 24A is set to the on state (ON), and the capacity of the primary battery 24A is set to 2000 [mAh].
<設定に使用する画面の説明>
 次に、シミュレーション結果の画面について説明する。
 図32は、電子機器25Aに供給可能な電力を示す情報の画像g111Aの例を示す図である。図32に示すように、電子機器25Aに供給可能な電力を示す情報の画像g111Aには、1日あたり供給可能な電力量の平均値[μWh/day](typ)と、1日あたり供給可能な電力量の最小値[μWh/day](min)が含まれる。
<Description of screen used for setting>
Next, the screen of the simulation result will be described.
FIG. 32 is a diagram illustrating an example of an image g111A of information indicating power that can be supplied to the electronic device 25A. As shown in FIG. 32, in the image g111A of the information indicating the power that can be supplied to the electronic device 25A, the average value [μWh / day] (typ) of the power that can be supplied per day and the power can be supplied per day Power value [μWh / day] (min) is included.
 図33は、総消費エネルギーを示す画像g112Aの例を示す図である。図33に示す例では、総消費エネルギーを示す画像g112Aは、円グラフで示されている。符号g112Aaが示す領域は、電子機器25Aが動作している期間の1日あたりの消費電力の総和[μWh/day]である。符号g112Abが示す領域は、電子機器25Aが待機状態の期間の1日あたりの消費電力の総和[μWh/day]である。符号g112Acが示す領域は、電子機器25Aの1日あたりの消費電力の総和[μWh/day]である。図33に示す例では、電子機器25Aが動作している期間の1日あたりの消費電力の総和が14400[μWh/day]であり、電子機器25Aが待機状態の期間の1日あたりの消費電力の総和が178[μWh/day]であり、両方の総和が14578[μWh/day]である。 FIG. 33 is a diagram illustrating an example of the image g112A indicating the total consumption energy. In the example shown in FIG. 33, the image g112A showing the total energy consumption is shown by a pie chart. The area indicated by reference sign g112Aa is the sum [μWh / day] of the power consumption per day during the operation of the electronic device 25A. The area indicated by reference sign g112Ab is the sum [μWh / day] of the power consumption per day of the standby state of the electronic device 25A. An area indicated by reference sign g112Ac is the sum [μWh / day] of the power consumption of the electronic device 25A per day. In the example illustrated in FIG. 33, the total of the power consumption per day during the operation of the electronic device 25A is 14400 [μWh / day], and the power consumption per day during the standby state of the electronic device 25A. Is 178 [μWh / day], and the sum of both is 14578 [μWh / day].
 上述したように、太陽電池21Aによって発電される電力量が微弱であるため、わずかな消費電力であっても、運用期間に関わってくる。このため、本実施形態では、電子機器25Aが待機状態の場合、蓄電池23Aの自己放電電流等、従来考慮されなかった項目についても考慮してシミュレーションを行う。 As described above, since the amount of power generated by the solar cell 21A is very weak, even a small amount of power consumption is involved in the operation period. For this reason, in the present embodiment, when the electronic device 25A is in the standby state, the simulation is performed in consideration of items not conventionally considered, such as the self discharge current of the storage battery 23A.
 図34は、蓄電池23Aの電圧対時間の変化を示すグラフの画像g113Aの例を示す図である。図34において、横軸は時刻(時)、左の縦軸は蓄電池23Aの電圧値(V)、右に縦軸は照度(lux)である。
 図34に示すように、蓄電池23Aの電圧対時間の変化を示すグラフの画像g113Aには、1日あたり供給可能な電力量が平均値の際の蓄電池23Aの電圧対時間の変化g113Aa、1日あたり供給可能な電力量が最小時の蓄電池23Aの電圧対時間の変化g113Ah、太陽電池21Aによって発電が行われている期間g113Agを含む。また、鎖線g113Abは放電下限電圧(下限電圧)を表す。鎖線g113Acは蓄電池23Aに蓄電された電力を再出力する電圧値を表す。すなわち、蓄電池23Aの電圧値が、鎖線g113Acで示す3.3(V)に達したとき、蓄電池23Aの電力の放電を開始する。鎖線g113Adは充電上限電圧を表す。符号g113Aeが示す領域は、電子機器25Aに電力を供給できない期間を表す。符号g113Afが示す領域は、電子機器25Aに電力を供給できる期間を表す。
FIG. 34 is a view showing an example of an image g113A of a graph showing a change of voltage of the storage battery 23A against time. In FIG. 34, the horizontal axis is time (hour), the vertical axis on the left is voltage value (V) of the storage battery 23A, and the vertical axis is illuminance (lux) on the right.
As shown in FIG. 34, in the image g113A of the graph showing the change of voltage versus time of the storage battery 23A, the change of voltage versus time of the storage battery 23A when the amount of power that can be supplied per day is the average value g113Aa, 1 day A change in voltage versus time g113Ah of the storage battery 23A when the amount of power that can be supplied per unit is minimum, and a period g113Ag during which power generation is performed by the solar cell 21A. Further, a dashed line g113Ab represents a discharge lower limit voltage (lower limit voltage). The dashed-dotted line g113Ac represents a voltage value at which the power stored in the storage battery 23A is re-outputted. That is, when the voltage value of the storage battery 23A reaches 3.3 (V) indicated by the dashed-dotted line g113Ac, discharging of the power of the storage battery 23A is started. The dashed-dotted line g113Ad represents the charging upper limit voltage. An area indicated by reference sign g113Ae represents a period in which power can not be supplied to the electronic device 25A. A region indicated by reference sign g113Af represents a period in which power can be supplied to the electronic device 25A.
 図34に示す例では、1日あたり供給可能な電力量が平均値の際、電子機器25Aに電力を供給できる期間(駆動可能な期間)は、運用開始からの時間が、約20時間~約68時間の期間、約91時間~約140時間の期間、約163時間~である。また、1日あたり供給可能な電力量が平均値の際、電子機器25Aに電力を供給できない期間(駆動できない期間)は、運用開始からの時間が、0時~約20時間の期間、約68時間~約91時間の期間、約140時間~約163時間の期間である。 In the example shown in FIG. 34, when the amount of power that can be supplied per day is an average value, the period in which power can be supplied to the electronic device 25A (the drivable period) is about 20 hours to about A period of 68 hours, a period of about 91 hours to about 140 hours, and a period of about 163 hours. In addition, when the amount of power that can be supplied per day is an average value, the period when power can not be supplied to the electronic device 25A (period when it can not be driven) is about 68 hours from 0 o'clock to about 20 hours from the start of operation. The period of time is about 91 hours, and the period of about 140 hours to about 163 hours.
 また、図34に示すように、1日あたり供給可能な電力量が最小値の際、電子機器25Aに電力を供給できる期間(駆動可能な期間)は、運用開始からの時間が、約29時間~約63時間の期間、約97時間~約127時間の期間、約162時間~である。また、1日あたり供給可能な電力量が最小値の際、電子機器25Aに電力を供給できない期間は、運用開始からの時間が、0時~約29時間の期間、約63時間~約97時間の期間、約127時間~約162時間の期間である。1日あたり供給可能な電力量が平均値に比べて最小時の際、電子機器25Aに電力を供給できない期間が長くなり、電子機器25Aに電力を供給できる期間が短くなることを、利用者は、蓄電池23Aの電圧対時間の変化を示すグラフの画像g113Aを見て確認することができる。 In addition, as shown in FIG. 34, when the amount of power that can be supplied per day is the minimum value, the period in which power can be supplied to the electronic device 25A (the drivable period) is approximately 29 hours from the start of operation. A period of ~ 63 hours, a period of about 97 hours to about 127 hours, ~ 162 hours. In addition, when the amount of power that can be supplied per day is the minimum value, the period from the start of operation is about 63 hours to about 97 hours, from 0 o'clock to about 29 hours, during the period when electric power can not be supplied Period of about 127 hours to about 162 hours. When the amount of power that can be supplied per day is at a minimum compared to the average value, the user can not supply power to the electronic device 25A longer, and the user can reduce the period that can supply power to the electronic device 25A. The image g113A of the graph showing the change of the voltage of the storage battery 23A versus time can be confirmed.
 図34の符号g113Agとg113Ahの画像は、演算部12Aが、少なくとも電子機器25A(負荷回路)の消費電力、太陽電池21Aに対して光が照射されることによって発電される電力とに基づいて蓄電池の電圧の変化を演算し、表示部14Aが経過時間に対する蓄電池の電圧の変化をグラフ化した結果である。また、図34の符号g113Agの画像は、表示部14Aが、設定部11Aによって設定された太陽電池21Aに対して照射される照度と照射時間に基づいて、経過時間に対する照度の変化をグラフ化し、経過時間に対する蓄電池の電圧の変化をグラフに重ねて表示した結果である。 The images with reference signs g113Ag and g113Ah in FIG. 34 are storage batteries based on at least the power consumption of the electronic device 25A (load circuit) of the computing unit 12A and the power generated by irradiating the solar cell 21A with light. The change in voltage of the storage battery is calculated, and the display unit 14A graphs the change in voltage of the storage battery with respect to the elapsed time. Further, in the image with the code g113Ag in FIG. 34, the display unit 14A graphs the change of the illuminance with respect to the elapsed time based on the illuminance and the irradiation time with which the solar cell 21A set by the setting unit 11A is irradiated. It is the result of displaying the change of the voltage of the storage battery with respect to elapsed time on the graph superimposed.
 また、図34の符号g113Ae、g113Afの画像は、演算部12Aが、求めた時間変化に対する前記蓄電池の電圧の変化に基づいて、電子機器25A(負荷回路)を駆動可能な期間および前記負荷回路を駆動できない期間のうち少なくとも1つを求め、表示部14Aが、演算部12Aが求めた電子機器25Aを駆動可能な期間および電子機器25Aを駆動できない期間のうち少なくとも1つを、グラフ化した蓄電池23Aの電圧の変化のグラフに対応付けて、重ねて表示した結果である。 In addition, the images with reference numerals g113Ae and g113Af in FIG. 34 have periods during which the operation unit 12A can drive the electronic device 25A (load circuit) and the load circuit based on the change in the voltage of the storage battery with respect to the time change obtained. The storage battery 23A is a graph of at least one of the periods in which the display unit 14A can drive the electronic device 25A and the periods in which the display device 14A can not drive the electronic device 25A. It is the result of being displayed in association with the graph of the change in voltage of.
 ここで、図34において、ポインタ画像g301Aを用いた設定方法の例を説明する。
 なお、利用者は、設定部11Aを操作することで、ポインタ画像g301Aを操作する指示を行う。
 図34において、例えば、太陽電池21Aに照射される照度を変更したいとき、ポインタ画像g301Aを操作して、符号g113Agの画像を高さ方向に変更するように操作する。演算部12Aは、操作された結果を検出し、符号g113Agの画像において、例えば、照度を500[lux]から700[lux]に変更する。これに伴い、表示部14Aは、センサシステム2Aが設置される環境の光の状態の設定画像g102A(図22、図23)において、照度を500[lux]から700[lux]に変更する。
 さらに、表示部14Aは、時間変化に対する前記蓄電池の電圧の変化、電子機器25A(負荷回路)を駆動可能な期間、前記負荷回路を駆動できない期間を再演算して、蓄電池23Aの電圧対時間の変化を示すグラフの画像g113Aを更新する。
Here, in FIG. 34, an example of a setting method using the pointer image g301A will be described.
The user operates the setting unit 11A to issue an instruction to operate the pointer image g301A.
In FIG. 34, for example, when it is desired to change the illuminance irradiated to the solar cell 21A, the pointer image g301A is operated to operate to change the image of the code g113Ag in the height direction. The operation unit 12A detects the operated result, and changes the illuminance, for example, from 500 [lux] to 700 [lux] in the image of g113 Ag. Along with this, the display unit 14A changes the illuminance from 500 [lux] to 700 [lux] in the setting image g102A (FIGS. 22 and 23) of the state of light in the environment where the sensor system 2A is installed.
Furthermore, the display unit 14A recalculates a change in voltage of the storage battery with respect to time change, a period in which the electronic device 25A (load circuit) can be driven, and a period in which the load circuit can not be driven. The graph image g113A indicating the change is updated.
 図34において、ポインタ画像g301Aを操作して変更可能な項目は、例えば、太陽電池21Aに照射される照度、太陽電池21Aに照射される光照射時間、蓄電池23Aに蓄電された電力を再出力する電圧値、充電上限電圧、放電下限電圧、電子機器25A(負荷回路)を駆動可能な期間、前記負荷回路を駆動できない期間である。
 例えば、電子機器25A(負荷回路)を駆動可能な期間がポインタ画像g301Aの操作によって変更された場合、演算部12Aは、図34のグラフを求めた逆演算を行って、例えば、照度、光照射時間、太陽電池の発電効率、動作時間、動作インターバルに対して予め設定された優先順位に基づいて、設定値を変更して図22や図23の各表示画像を変更する。なお、照度、光照射時間、太陽電池の発電効率、動作時間、動作インターバルの優先順位は、予め利用者が設定部11Aを操作して設定を行い、設定された結果を演算部12Aが記憶部13Aに記憶させる。
In FIG. 34, items that can be changed by operating the pointer image g301A are, for example, the light intensity irradiated to the solar cell 21A, the light irradiation time irradiated to the solar cell 21A, and the power stored in the storage battery 23A again A voltage value, a charge upper limit voltage, a discharge lower limit voltage, a period in which the electronic device 25A (load circuit) can be driven, and a period in which the load circuit can not be driven.
For example, when the period during which the electronic device 25A (load circuit) can be driven is changed by the operation of the pointer image g301A, the operation unit 12A performs the reverse operation of obtaining the graph of FIG. The set value is changed based on the time, the power generation efficiency of the solar cell, the operation time, and the priority set in advance with respect to the operation interval, and the display images of FIG. 22 and FIG. 23 are changed. The user operates the setting unit 11A in advance to set the illuminance, the light irradiation time, the power generation efficiency of the solar cell, the operation time, and the priority of the operation interval, and the calculation unit 12A stores the set result. Make it memorize in 13A.
 図35は、照度と蓄電池23Aの電圧の時間変化の例を示す図である。図35において、横軸は時間、左縦軸は蓄電池23Aの電圧、右縦軸は照度である。
 図35に示す例では、0時~20時の期間、L1(例えば500[lux])の照度が太陽電池21Aに照射され、蓄電池23Aの電圧がV1となる。そして、消灯時の20時~24時の期間、L2(例えば0[lux])の照度が太陽電池21Aに照射され、蓄電池23Aの電圧がV2となる。また、本実施形態では、1日(24時間)を単位時間とする。
FIG. 35 is a diagram showing an example of the time change of the illuminance and the voltage of the storage battery 23A. In FIG. 35, the horizontal axis is time, the left vertical axis is the voltage of storage battery 23A, and the right vertical axis is illuminance.
In the example shown in FIG. 35, the illuminance of L1 (for example, 500 [lux]) is irradiated to the solar cell 21A in the period from 0 o'clock to 20 o'clock, and the voltage of the storage battery 23A becomes V1. Then, the illuminance of L2 (for example, 0 [lux]) is irradiated to the solar cell 21A in the period from 20 o'clock to 24 o'clock when the light is turned off, and the voltage of the storage battery 23A becomes V2. In the present embodiment, one day (24 hours) is taken as a unit time.
 図36は、発電量と消費電力のエネルギー収支を表す画像g114Aの例を示す図である。図36において、縦軸は、発電された発電電力量に対する総消費エネルギーの比である。符号g114Aaは、単位時間あたり供給可能な電力量が平均値の場合のエネルギー収支を表す。符号g114Abは、単位時間あたり供給可能な電力量が最小値の場合のエネルギー収支を表す。鎖線g114Acは、発電された発電電力量に対する総消費エネルギーの比が100%、すなわちバランスが取れているラインを表す。 FIG. 36 is a diagram illustrating an example of an image g114A representing an energy balance of the power generation amount and the power consumption. In FIG. 36, the vertical axis is the ratio of the total energy consumption to the generated power generation amount. The code g114Aa represents the energy balance when the amount of power that can be supplied per unit time is an average value. The code g114Ab represents the energy balance when the amount of power that can be supplied per unit time is the minimum value. The dashed-dotted line g114Ac represents a line in which the ratio of the total energy consumption to the generated power generation amount is 100%, that is, a balanced line.
 図36に示す例では、単位時間あたり供給可能な電力量が平均値の場合のエネルギー収支が69.5%であり、単位時間あたり供給可能な電力量が最小値の場合のエネルギー収支が48.6%である。利用者は、このようなエネルギー収支を確認して、例えば太陽電池21Aの数量を増やしたり、太陽電池21Aを選択し直したり等、設定をやり直して、エネルギー収支のバランスが取れる設定を検討することができる。 In the example shown in FIG. 36, the energy balance when the amount of power that can be supplied per unit time is an average value is 69.5%, and the energy balance when the amount of power that can be supplied per unit time is a minimum value is 48. 6%. The user confirms such an energy balance, for example, increases the number of solar cells 21A, reselects the solar cells 21A, etc., and considers setting that balances the energy balance by re-setting. Can.
 図37は、一次電池24Aのバッテリ寿命を示す画像g211Aの例を示す図である。図37に示すように、一次電池24Aのバッテリ寿命を示す画像g211Aには、1日あたり供給可能な電力量が平均値の場合の一次電池24Aのバッテリ寿命[years](typ)、単位時間あたり供給可能な電力量が最小値の場合の一次電池24のバッテリ寿命[years](min)が含まれる。図37に示す例では、1日あたり供給可能な電力量が平均値の場合の一次電池24Aのバッテリ寿命が3.7[years(年)](typ)であり、1日あたり供給可能な電力量が最小値の場合の一次電池24Aのバッテリ寿命が2.2[years](min)である。 FIG. 37 is a view showing an example of an image g211A showing the battery life of the primary battery 24A. As shown in FIG. 37, in the image g211A showing the battery life of the primary battery 24A, the battery life [years] (typ) of the primary battery 24A when the amount of power that can be supplied per day is an average value, per unit time The battery life [years] (min) of the primary battery 24 when the amount of power that can be supplied is the minimum value is included. In the example shown in FIG. 37, the battery life of the primary battery 24A is 3.7 [years (year)] (typ) when the amount of power that can be supplied per day is an average value, and the power that can be supplied per day is typical. The battery life of the primary battery 24A when the amount is the minimum value is 2.2 [years] (min).
 なお、上述した例では、太陽電池の選択画像g104A、電子機器の動作状態や消費電力の表示画像g108A、蓄電池の電圧対時間の変化を示すグラフの画像g113Aに対して、ポインタ画像g301Aを操作して、設定値等を変更する例を説明したが、これに限らない。図22、図23において表形式で示した設定項目を、ポインタ画像g301Aを操作して、設定値等を変更するようにしてもよい。 In the example described above, the pointer image g301A is manipulated with respect to the selected image g104A of the solar cell, the display image g108A of the operation state of the electronic device and the power consumption, and the graph g113A showing the change of voltage versus time of the storage battery. Although the example of changing the setting value etc. has been described, the present invention is not limited to this. The setting items etc. may be changed by operating the pointer image g301A for the setting items shown in tabular form in FIG. 22 and FIG.
 例えば、センサシステム2Aが設置される環境の光の状態の設定画像g102Aにおいて、ポインタ画像g301Aで照度が選択された場合、表示部14Aは、選択可能な照度(例えば、100、200、30、・・・、10000)を、図22や図23の画像の上のレイヤに、例えばスライダ形式やポップアップメニュー形式で表示させるようにしてもよい。利用者は、表示されたポインタ画像g301Aを操作して、スライダを操作することで、例えば照度を変更するように指示してもよい。また、利用者は、ポインタ画像g301Aを操作して、電源回路22Aの昇圧効率、降圧効率、静止電流、出力電圧、蓄電池23Aの容量、蓄電池23Aの自己放電電流等を変更するようにしてもよい。 For example, in the setting image g102A of the light state of the environment in which the sensor system 2A is installed, when the illuminance is selected in the pointer image g301A, the display unit 14A can select selectable illuminance (for example, 100, 200, 30,. .., 10000) may be displayed in a layer above the image of FIG. 22 or 23, for example, in the form of a slider or a pop-up menu. The user may operate the displayed pointer image g301A to operate the slider, for example, to instruct to change the illuminance. In addition, the user may operate the pointer image g301A to change the boosting efficiency, step-down efficiency, quiescent current, output voltage, capacity of storage battery 23A, self-discharge current of storage battery 23A, etc. of power supply circuit 22A. .
 また、上述した例では、図22や図23の画像に対して、ポインタ画像g301Aを操作して設定を変更する例を説明したが、これに限らない。例えば、演算部12Aが初期状態の設定値の画像(例えば図22)のデータを記憶部13Aから読み出し、表示部14Aがこの初期状態の設定に基づいて図22の画像を表示するようにしてもよい。そして、利用者は、この初期状態の画面を変更するようにポインタ画像g301Aを操作するようにしてもよい。あるいは、演算部12Aは、設定を全て初期化し、表示部14Aは、図22の設定値を空欄の状態で表示させるようにしてもよい。そして、利用者は、この初期状態の画面において、各項目の設定値をポインタ画像g301Aを操作して選択して設定するようにしてもよい。 Moreover, although the example which operates the pointer image g301A and changes a setting with respect to the image of FIG.22 and FIG.23 was demonstrated in the example mentioned above, it does not restrict to this. For example, even if the calculation unit 12A reads data of an image (for example, FIG. 22) of the setting value in the initial state from the storage unit 13A and the display unit 14A displays the image in FIG. Good. Then, the user may operate the pointer image g301A to change the screen in this initial state. Alternatively, the calculation unit 12A may initialize all the settings, and the display unit 14A may display the setting values in FIG. 22 in blanks. Then, on the screen in this initial state, the user may select and set the setting value of each item by operating the pointer image g301A.
<シミュレーション>
 次に、演算部12Aが行うシミュレーションについて説明する。
 まず、演算部12Aがシミュレーションに用いる符号を以下のように定義する。
<Simulation>
Next, a simulation performed by the calculation unit 12A will be described.
First, codes used by the calculation unit 12A for simulation are defined as follows.
[1]電子機器25Aの消費エネルギー側
・動作電圧(Operating Voltage);Vope(V)
・動作時間(Operating Time);Tope(msec)
・動作インターバル(Operating Interval);Tint(sec)
・動作電流(Operating Current);Aope(mA)
・待機電流(Standby Current);Asb(μA)
[1] Operating energy side of the electronic device 25A (Operating Voltage); V ope (V)
・ Operating time (Operating Time); T ope (msec)
・ Operating interval (Operating Interval); T int (sec)
・ Operating current (Operating Current); A ope (mA)
・ Standby current (Standby Current); Asb (μA)
[2]供給エネルギー側
・電子機器25Aへの供給エネルギー;Echg(J/day)
・蓄電池23Aで消費される自己放電エネルギー;Esd(J/day)
・電源回路22Aで消費される自己放電エネルギー;Eic(J/day)
・発電エネルギー;Ein(J/day)
・発電電力(Generating Power);Win(μW)
・光照射時間(Irradiation time);Tlight(hr/day)
・電源回路22Aの変換効率(昇圧回路221Aの昇圧効率);ηin(%)
・電源回路22Aの変換効率(降圧回路222Aの降圧効率);ηout(%)
・電源回路22Aの自己消費電力(昇圧回路221Aの自己消費電力);Ain(nA)
・電源回路22Aの自己消費電力(降圧回路222Aの自己消費電力);Aout(nA)
・蓄電池23Aの容量(Capacity);C(F)
・蓄電池23Aの電圧(Storage device voltage);Vsd(V)
・蓄電池23Aの自己放電電流(Leakage Current);Asd(μA)
[2] Supply energy: supply energy to the electronic device 25A; E chg (J / day)
· Self-discharge energy consumed by storage battery 23A; E sd (J / day)
· Self-discharge energy consumed by the power supply circuit 22A; E ic (J / day)
・ Generated energy; E in (J / day)
And power generation power (Generating Power); W in ( μW)
-Irradiation time; T light (hr / day)
· Conversion efficiency of the power supply circuit 22A (boosting efficiency of the boosting circuit 221A); in in (%)
· Conversion efficiency of power supply circuit 22A (step-down efficiency of step-down circuit 222A); η out (%)
· Power consumption of the power supply circuit 22A (power consumption of the booster circuit 221A); A in (nA)
· Power consumption of the power supply circuit 22A (power consumption of the step-down circuit 222A); A out (nA)
・ Capacity of storage battery 23A (Capacity); C (F)
-Voltage of storage battery 23A (Storage device voltage); V sd (V)
・ Self discharge current of the storage battery 23A (Leakage Current); Asd (μA)
 演算部12Aは、[1]電子機器25Aの消費エネルギー、[2]供給エネルギーを用いて、1日あたりの電力量に対して、供給と消費のエネルギーを比較する演算を以下のように行う。
 演算部12Aは、電子機器25Aの駆動時の消費エネルギーEopeを、次式(9)を用いて求める。
The calculation unit 12A performs an operation of comparing the energy of supply and consumption with the amount of power per day using the consumption energy of the electronic device 25A and the supply energy of the electronic device 25A as follows.
Arithmetic unit 12A obtains the consumed energy E ope when driving electronic device 25A using the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 次に、演算部12Aは、電子機器25Aの待機時の消費エネルギーEsbを、次式(10)を用いて求める。 Next, the calculation unit 12A obtains the consumption energy E sb when the electronic device 25A is on standby using the following equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 次に、演算部12Aは、電子機器25Aの総消費エネルギーEoutを、次式(11)を用いて求める。 Next, the operation unit 12A obtains the total consumption energy E out of the electronic device 25A using the following equation (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 次に、演算部12Aは、発電エネルギーEinを、次式(12)を用いて求める。 Next, operation unit 12A determines generated energy E in using the following equation (12).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 次に、演算部12Aは、電源回路22Aで消費される自己放電エネルギーEicを、次式(13)を用いて求める。 Next, operation unit 12A obtains self-discharge energy E ic consumed by power supply circuit 22A using the following equation (13).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 次に、演算部12Aは、蓄電池23Aで消費される自己放電エネルギーEsdを、次式(14)を用いて求める。 Next, operation unit 12A obtains self-discharge energy E sd consumed by storage battery 23A using the following equation (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 次に、演算部12Aは、電子機器25Aへの供給エネルギーEchgを、次式(15)を用いて求める。 Next, the operation unit 12A obtains the energy E chg supplied to the electronic device 25A using the following equation (15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 そして、演算部12Aは、次式(16)が成り立たつ場合に、エナジーハーベスティングの連続駆動できると判断するようにしてもよい。 Then, when the following equation (16) holds, the operation unit 12A may determine that the energy harvesting can be continuously driven.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
<シミュレーションの手順例>
 次に、演算部12A、表示部14Aが行う処理手順例を説明する。
 図38は、本実施形態に係る演算部12A、表示部14Aが行う処理手順例を示すフローチャートである。
<Example of procedure of simulation>
Next, an example of a processing procedure performed by the calculation unit 12A and the display unit 14A will be described.
FIG. 38 is a flowchart showing an example of the processing procedure performed by the calculation unit 12A and the display unit 14A according to this embodiment.
 (ステップS101)演算部12Aは、利用者が設定部11Aを操作して設定、選択した設定情報を取得する。なお、設定部11Aが操作された結果は、キーボード等によって設定された操作結果、ポインタ画像g301A(図22等)によって選択や変更された操作結果のいずれかである。 (Step S101) The calculation unit 12A acquires setting information selected and set by the user operating the setting unit 11A. The result of the operation of the setting unit 11A is any of the operation result set by a keyboard or the like, and the operation result selected or changed by the pointer image g301A (FIG. 22 or the like).
 (ステップS102)演算部12Aは、取得した設定情報に応じたパラメータを、記憶部13Aから読み出す。続けて、演算部12Aは、記憶部13Aからシミュレーションに使用する数式を読み出す。 (Step S102) Operation unit 12A reads from storage unit 13A a parameter corresponding to the acquired setting information. Subsequently, the calculation unit 12A reads a mathematical expression used for simulation from the storage unit 13A.
 以下、演算部12Aと表示部14Aは、ステップS103~S104の処理、ステップS105~S107の処理、ステップS108の処理、ステップS110~S111の処理のうち、少なくとも1つを行う。 Thereafter, the calculation unit 12A and the display unit 14A perform at least one of the processes of steps S103 to S104, the processes of steps S105 to S107, the process of step S108, and the processes of steps S110 to S111.
 (ステップS103)演算部12Aは、設定情報、パラメータ、数式を用いて、経過時間に対する蓄電池23Aの電圧の変化を求める。処理後、演算部12Aは、ステップS104に処理を進める。
 (ステップS104)表示部14Aは、経過時間に対する蓄電池23Aの電圧の変化をグラフ化して画像情報を生成する。処理後、表示部14Aは、ステップS109に処理を進める。
(Step S103) Arithmetic unit 12A obtains a change in voltage of storage battery 23A with respect to elapsed time using setting information, parameters, and a mathematical expression. After the processing, operation unit 12A proceeds with the process to step S104.
(Step S104) The display unit 14A graphs change in voltage of the storage battery 23A with respect to elapsed time to generate image information. After the processing, the display unit 14A proceeds with the process to step S109.
 (ステップS105)演算部12Aは、設定情報、パラメータ、数式を用いて、電子機器25Aを駆動可能な期間を求める。処理後、演算部12Aは、ステップS106に処理を進める。
 (ステップS106)演算部12Aは、設定情報、パラメータ、数式を用いて、電子機器25Aを駆動できない期間を求める。処理後、演算部12Aは、ステップS107に処理を進める。
 (ステップS107)表示部14Aは、電子機器25Aを駆動可能な期間、電子機器25Aを駆動できない期間をグラフ化して画像情報を生成する。処理後、表示部14Aは、ステップS109に処理を進める。
(Step S105) The operation unit 12A obtains a period in which the electronic device 25A can be driven using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12A advances the process to step S106.
(Step S106) The operation unit 12A obtains a period in which the electronic device 25A can not be driven, using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12A advances the process to step S107.
(Step S107) The display unit 14A generates image information by graphing a period in which the electronic device 25A can not be driven and a period in which the electronic device 25A can not be driven. After the processing, the display unit 14A proceeds with the process to step S109.
 (ステップS108)演算部12Aは、取得した設定情報に含まれる照度の情報を表示部14Aに出力する。なお、照度の情報には、少なくとも照度が含まれ、光照射時間が含まれている。続けて、表示部14Aは、演算部12Aが出力する照度の情報をグラフ化する。処理後、表示部14Aは、ステップS109に処理を進める。 (Step S108) The calculation unit 12A outputs the information on the illuminance included in the acquired setting information to the display unit 14A. The information on the illuminance includes at least the illuminance, and includes the light irradiation time. Subsequently, the display unit 14A graphs information of the illuminance output from the calculation unit 12A. After the processing, the display unit 14A proceeds with the process to step S109.
 (ステップS109)表示部14Aは、ステップS104、ステップS107、ステップS108でグラフ化されたグラフを合成する。処理後、表示部14Aは、ステップS112に処理を進める。 (Step S109) The display unit 14A combines the graphs graphed in step S104, step S107, and step S108. After the processing, the display unit 14A proceeds with the process to step S112.
 (ステップS110)演算部12Aは、設定情報、パラメータ、数式を用いて、少なくとも電子機器25Aの消費電力を求める。処理後、演算部12Aは、ステップS111に処理を進める。
 (ステップS111)表示部14Aは、経過時間に対する消費電力の変化をグラフ化して画像情報を生成する。処理後、表示部14Aは、ステップS112に処理を進める。
(Step S110) The calculation unit 12A obtains at least the power consumption of the electronic device 25A using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12A advances the process to step S111.
(Step S111) The display unit 14A graphs change in power consumption with respect to elapsed time to generate image information. After the processing, the display unit 14A proceeds with the process to step S112.
 (ステップS112)表示部14Aは、ステップS109で合成された画像、ステップS111で生成されたグラフ等の画像を更新して表示する。処理後、表示部14Aは、ステップS101に処理を戻す。 (Step S112) The display unit 14A updates and displays the image synthesized at step S109 and the image such as the graph generated at step S111. After the processing, the display unit 14A returns the processing to step S101.
 なお、上述した処理手順は一例であり、これに限られない。演算部12Aと表示部14Aは、設定部11Aによって設定された設定情報を全て使用して、経過時間に対する蓄電池23Aの電圧の変化のグラフを作成し、駆動可能な期間や駆動できない期間のグラフを作成し、経過時間に対する照度の変化のグラフを作成するようにしてもよい。
 また、演算部12Aと表示部14Aは、上述したように、単位時間あたり供給可能な電力量が平均値の場合と、単位時間あたり供給可能な電力量が最小値の場合毎に、図38の処理を行うようにしてもよい。
In addition, the processing procedure mentioned above is an example and is not restricted to this. Arithmetic unit 12A and display unit 14A all use the setting information set by setting unit 11A to create a graph of change in voltage of storage battery 23A with respect to elapsed time, and graph of drivable period and drivable period It is possible to create and create a graph of the change of the illuminance with respect to the elapsed time.
In addition, as described above, calculation unit 12A and display unit 14A each have the average value of the electric energy that can be supplied per unit time and the minimum electric energy that can be supplied per unit time, as shown in FIG. Processing may be performed.
 なお、演算部12Aと表示部14Aは、ステップS103~S104の処理、ステップS105~S107の処理、ステップS108の処理、ステップS110~S111の処理のうち、少なくとも1つを行う例を説明したが、全ての処理を行うようにしてもよい。 Although the calculation unit 12A and the display unit 14A perform at least one of the processing of steps S103 to S104, the processing of steps S105 to S107, the processing of step S108, and the processing of steps S110 to S111, All processing may be performed.
 [第3実施形態]
 図39は、本実施形態に係る電力シミュレーション装置1Bの概略構成例を示す図である。図39に示すように、電力シミュレーション装置1Bは、設定部11B、演算部12B、記憶部13B、および表示部14Bを備える。
Third Embodiment
FIG. 39 is a diagram showing an example of a schematic configuration of a power simulation apparatus 1B according to the present embodiment. As shown in FIG. 39, the power simulation apparatus 1B includes a setting unit 11B, an operation unit 12B, a storage unit 13B, and a display unit 14B.
 設定部11Bは、例えば、キーボード、マウス、表示部14B上に設けられたタッチパネルセンサ等である。設定部11Bは、利用者が設定した情報を検出して、検出した設定情報を演算部12Bに出力する。 The setting unit 11B is, for example, a keyboard, a mouse, a touch panel sensor provided on the display unit 14B, or the like. The setting unit 11B detects the information set by the user, and outputs the detected setting information to the calculation unit 12B.
 演算部12Bは、設定部11Bが出力する設定情報を取得する。演算部12Bは、取得した設定情報に応じて、記憶部13Bが記憶する情報を参照して、発電される電力量と、消費される電力量のシミュレーションを行う。演算部12Bは、シミュレーションした結果を表示部14Bに出力する。なお、発電される電力量と、消費される電力量のシミュレーションについては、後述する。 Arithmetic unit 12B acquires setting information output from setting unit 11B. The calculation unit 12B simulates the amount of generated power and the amount of consumed power with reference to the information stored in the storage unit 13B according to the acquired setting information. Arithmetic unit 12B outputs the simulation result to display unit 14B. The simulation of the amount of power generated and the amount of power consumed will be described later.
 記憶部13Bは、演算部12Bがシミュレーションの際に使用する数式を記憶する。記憶部13Bは、シミュレーションの際に選択可能な太陽電池それぞれの仕様(型番、セルサイズ、発電面積、最大動作点電力、動作電流、開放電圧等)を記憶する。記憶部13Bは、シミュレーションの際に選択可能な蓄電池23B(図40)の仕様(充電上限電圧、放電下限電圧等)を記憶する。記憶部13Bは、センサシステム2Bの構成モデル131Bを記憶する。 The storage unit 13B stores mathematical expressions used by the calculation unit 12B at the time of simulation. The storage unit 13B stores the specifications (model number, cell size, power generation area, maximum operating point power, operating current, open circuit voltage, and the like) of each of the solar cells that can be selected in simulation. Storage unit 13B stores the specifications (charge upper limit voltage, discharge lower limit voltage, etc.) of storage battery 23B (FIG. 40) selectable in the simulation. The storage unit 13B stores a configuration model 131B of the sensor system 2B.
 表示部14Bは、演算部12Bが出力するシミュレーションされた結果を表、グラフ等の画像情報として生成し、生成した画像情報を表示する。なお、画像情報の例については、後述する。表示部14Bは、画像表示装置を備える。画像表示装置は、例えば、液晶表示装置、有機EL(Electro Luminescence)表示装置等である。 The display unit 14B generates simulation results output from the calculation unit 12B as a table, image information such as a graph, and displays the generated image information. An example of the image information will be described later. The display unit 14B includes an image display device. The image display device is, for example, a liquid crystal display device, an organic EL (Electro Luminescence) display device, or the like.
 ここで、センサシステム2Bの構成モデル例を説明する。
 図40は、本実施形態に係るセンサシステム2Bの構成モデル例を示す図である。図40に示すように、センサシステム2Bは、電源モジュール20B、一次電池24B、および電子機器25B(負荷回路)を含んで構成される。電源モジュール20Bは、太陽電池21B、電源回路22B、蓄電池23Bを含んで構成される。また、電源回路22Bは、昇圧回路221B、降圧回路222Bを備える。なお、センサシステム2Bは、一次電池24Bを備える場合と、備えない場合とがある。
Here, a configuration model example of the sensor system 2B will be described.
FIG. 40 is a view showing an example of a configuration model of a sensor system 2B according to the present embodiment. As shown in FIG. 40, the sensor system 2B is configured to include a power supply module 20B, a primary battery 24B, and an electronic device 25B (load circuit). The power supply module 20B is configured to include a solar cell 21B, a power supply circuit 22B, and a storage battery 23B. The power supply circuit 22B further includes a booster circuit 221B and a step-down circuit 222B. The sensor system 2B may or may not include the primary battery 24B.
 太陽電池21Bは、例えば、一般の太陽電池では十分な発電効率の得られない蛍光灯下などの光照度強度が低い(例えば10[lux])環境から、野外の太陽光下の光照度強度が高い(例えば10万[lux])環境まで、効率良く発電可能な例えば色素増感太陽電池である。太陽電池21Bは、発電した電力を電源回路22Bに供給する。 For example, the solar cell 21B has high light intensity under sunlight in the open air from an environment with low light intensity (for example, 10 [lux]) such as under a fluorescent lamp where sufficient power generation efficiency can not be obtained with general solar cells For example, a dye-sensitized solar cell capable of efficiently generating power up to, for example, 100,000 [lux] environment. The solar cell 21B supplies the generated power to the power supply circuit 22B.
 電源回路22Bは、太陽電池21Bによって発電された電力を蓄電池23Bに蓄電させ、蓄電池23Bに蓄電された電力を電子機器25Bに供給する。
 昇圧回路221Bは、太陽電池21Bによって発電された電圧値を蓄電池23Bに応じた電圧値に昇圧するDC/DCコンバータである。昇圧回路221Bは、昇圧した電圧値の電力を蓄電池23Bに蓄電させる。
 降圧回路222Bは、蓄電池23Bに蓄電された電力を、電子機器25Bに供給する電圧値に降圧するDC/DCコンバータである。降圧回路222Bは、降圧した電圧値の電力を電子機器25Bに供給する。
The power supply circuit 22B stores the power generated by the solar cell 21B in the storage battery 23B, and supplies the power stored in the storage battery 23B to the electronic device 25B.
The booster circuit 221B is a DC / DC converter that boosts the voltage value generated by the solar cell 21B to the voltage value according to the storage battery 23B. The booster circuit 221B stores the power of the boosted voltage value in the storage battery 23B.
The step-down circuit 222B is a DC / DC converter that steps down the power stored in the storage battery 23B to a voltage value supplied to the electronic device 25B. The step-down circuit 222B supplies the power of the stepped-down voltage value to the electronic device 25B.
 蓄電池23Bは、太陽電池21Bによって発電され昇圧回路221Bによって昇圧された電力を蓄電する。蓄電池23Bは、蓄電した電力を降圧回路222Bに供給する。蓄電池23Bは、例えばリチウムイオンキャパシタ(LIC)である。 Storage battery 23B stores the power generated by solar cell 21B and boosted by boosting circuit 221B. The storage battery 23B supplies the stored power to the step-down circuit 222B. The storage battery 23B is, for example, a lithium ion capacitor (LIC).
 一次電池24Bは、例えば通常時の電圧値が3.0Vの電池である。 The primary battery 24B is, for example, a battery with a normal voltage value of 3.0V.
 電子機器25Bは、例えば、通信部、制御部、センサ部等を備える。電子機器25Bには、蓄電池23Bに蓄電されている電力が供給される。または、電子機器25Bには、蓄電池23Bに蓄電されている電力が供給されるか、一次電池24Bから電力が供給される。電子機器25Bがセンサ部を備える場合、電子機器25Bは、センサ部が計測した計測値を、設定部11B(図39)で設定された設定情報に含まれるタイミングで、他の機器へ送信する。 The electronic device 25B includes, for example, a communication unit, a control unit, a sensor unit, and the like. The power stored in the storage battery 23B is supplied to the electronic device 25B. Alternatively, the electric power stored in the storage battery 23B is supplied to the electronic device 25B, or the electric power is supplied from the primary battery 24B. When the electronic device 25B includes the sensor unit, the electronic device 25B transmits the measurement value measured by the sensor unit to another device at the timing included in the setting information set by the setting unit 11B (FIG. 39).
 なお、上述したセンサシステム2Bの構成は一例であり、これに限らない。センサシステム2Bは、例えば、電圧検出部、充放電制御部、一次電池24Bと蓄電池23Bとの切り換えスイッチ等を備えていてもよい。 The configuration of the sensor system 2B described above is an example, and the present invention is not limited to this. The sensor system 2B may include, for example, a voltage detection unit, a charge / discharge control unit, and a switch for switching between the primary battery 24B and the storage battery 23B.
<シミュレーション>
 次に、演算部12Bが行うシミュレーションについて説明する。
 演算部12Bは、設定部11Bによって設定された設定情報を用いて、太陽電池21Bによって発電される電力量、電子機器25Bによって消費される電力量の収支をシミュレーションする。演算部12Bは、図40に示したセンサシステム2Bの各構成要素について、待機時の消費電力、動作時の消費電力、昇圧効率、降圧効率、電子機器の動作する時間と周期等を用いて、シミュレーションを行う。これらの項目は、従来の設計では考慮されなかった項目も含まれる。このため、本実施形態によれば、従来よりも精度良く、微弱な発電源である環境発電素子を発電供給源に用いた電子機器であっても、エネルギー収支のバランスを適切に求めることができる。
<Simulation>
Next, a simulation performed by the calculation unit 12B will be described.
The calculation unit 12B simulates the balance between the amount of power generated by the solar cell 21B and the amount of power consumed by the electronic device 25B using the setting information set by the setting unit 11B. Arithmetic unit 12B uses, for each component of sensor system 2B shown in FIG. 40, the power consumption during standby, power consumption during operation, boost efficiency, step-down efficiency, operation time and period of the electronic device, etc. Perform a simulation. These items also include items not considered in the conventional design. Therefore, according to the present embodiment, the balance of the energy balance can be appropriately determined even in the electronic apparatus using the energy-generating element, which is a weak power source, more accurately than in the past as the power generation source. .
 次に、設定項目と、シミュレーション結果の例を説明する。
 図41は、本実施形態に係るセンサシステム2Bが一次電池24Bを備えていない場合の表示部14B上に表示される画像例を示す図である。
 図41に示すように、センサシステム2Bが一次電池24Bを備えていない場合の表示部14B上に表示される画像g100Bは、設定項目として、電源モジュールの構成画像g101B、センサシステム2Bが設置される環境の光の状態の設定画像g102B、太陽電池21Bの選択画像g103B、g104B、電力管理画像g105B、蓄電池23Bの設定画像g106B、電子機器25Bの消費電力の設定画像g107B、および電子機器25Bの動作状態や消費電力の表示画像g108Bを備える。また、画像g100Bは、シミュレーション結果として、電子機器25Bに供給可能な電力を示す情報の画像g111B、総消費エネルギーを示す画像g112B、蓄電池23Bの電圧対時間の変化を示すグラフの画像g113B、および発電量と消費電力のエネルギー収支を表す画像g114Bを含む。
Next, examples of setting items and simulation results will be described.
FIG. 41 is a view showing an example of an image displayed on the display unit 14B when the sensor system 2B according to the present embodiment is not provided with the primary battery 24B.
As shown in FIG. 41, the image g100B displayed on the display unit 14B when the sensor system 2B does not include the primary battery 24B has the configuration image g101B of the power supply module and the sensor system 2B installed as setting items. Setting image g102B of environmental light state, selected image g103B and g104B of solar cell 21B, power management image g105B, setting image g106B of storage battery 23B, setting image g107B of power consumption of electronic device 25B, and operating state of electronic device 25B And a display image g108B of power consumption. In addition, as the simulation result, the image g100B is an image g111B of information indicating the power that can be supplied to the electronic device 25B, an image g112B indicating the total consumption energy, an image g113B of a graph indicating the change of voltage versus time of the storage battery 23B, and power generation The image g114B showing the energy balance of quantity and power consumption is included.
 図42は、本実施形態に係るセンサシステム2Bが一次電池24Bを備えている場合の表示部14B上に表示される画像例を示す図である。
 図42に示すように、センサシステム2Bが一次電池24Bを備えている場合の表示部14B上に表示される画像g1000Bは、設定項目として、電源モジュールの構成画像g101B、センサシステム2Bが設置される環境の光の状態の設定画像g102B、太陽電池21Bの選択画像g103B、g104B、電力管理画像g105B、蓄電池23Bの設定画像g106B、電子機器25Bの消費電力の設定画像g107B、電子機器25Bの動作状態や消費電力の表示画像g108B、および一次電池24Bの容量を設定する画像g201Bを備える。また、画像g1000Bは、シミュレーション結果として、電子機器25Bに供給可能な電力を示す情報の画像g111B、総消費エネルギーを示す画像g112B、蓄電池23Bの電圧対時間の変化を示すグラフの画像g113B、発電量と消費電力のエネルギー収支を表す画像g114B、および一次電池24Bのバッテリ寿命を示す画像g211Bを含む。
FIG. 42 is a view showing an example of an image displayed on the display unit 14B when the sensor system 2B according to the present embodiment includes the primary battery 24B.
As shown in FIG. 42, an image g1000B displayed on the display unit 14B when the sensor system 2B includes the primary battery 24B has the configuration image g101B of the power supply module and the sensor system 2B installed as setting items. Setting image g102B of environmental light state, selected image g103B of solar cell 21B, g104B, power management image g105B, setting image g106B of storage battery 23B, setting image g107B of power consumption of electronic device 25B, operation state of electronic device 25B A display image g108B of power consumption and an image g201B for setting the capacity of the primary battery 24B are provided. In addition, the image g1000B is, as a simulation result, an image g111B of information indicating electric power that can be supplied to the electronic device 25B, an image g112B indicating total energy consumption, an image g113B of a graph indicating change of voltage versus time of the storage battery 23B, power generation amount And an image g114B representing an energy balance of power consumption, and an image g211B representing a battery life of the primary battery 24B.
<設定項目の例>
 次に、図41、図42に示した各画像のうち設定項目について説明する。
 図43は、電源モジュールの構成画像g101Bの例を示す図である。図43に示すように、電源モジュールの構成画像g101Bには、センサシステム2Bが設置される環境に照射される光量に関する情報画像g101Ba、選択された太陽電池に関する情報画像g101Bbが含まれる。センサシステム2Bが設置される環境に照射される光量に関する情報画像g101Baは、センサシステム2Bが設置される環境の光の状態の設定画像g102Bの設定が更新される毎に更新される。また、選択された太陽電池に関する情報画像g101Bbは、太陽電池21Bの選択画像g104Bの設定が更新される毎に更新される。
<Example of setting item>
Next, setting items among the images shown in FIGS. 41 and 42 will be described.
FIG. 43 is a diagram showing an example of a component image g101B of the power supply module. As shown in FIG. 43, the component image g101B of the power supply module includes an information image g101Ba on the amount of light irradiated to the environment where the sensor system 2B is installed, and an information image g101Bb on the selected solar cell. The information image g101Ba regarding the light quantity irradiated to the environment where the sensor system 2B is installed is updated every time the setting of the setting image g102B of the light state of the environment where the sensor system 2B is installed is updated. Further, the information image g101Bb related to the selected solar cell is updated each time the setting of the selected image g104B of the solar cell 21B is updated.
<設定に使用する画面の説明>
 まず、設定に使用する画面について説明する。
 図44は、センサシステム2Bが設置される環境の光の状態の設定画像g102Bの例を示す図である。図44に示すように、センサシステム2Bが設置される環境の光の状態の設定画像g102Bには、照度[lux]、1日に光がセンサシステム2Bに照射される時間である光照射時間[hr/day]が含まれる。利用者は、センサシステム2Bが設置される環境の光の状態の設定画像g102Bの各欄を、設定部11Bを操作して選択し、各欄の値を選択または入力する。図44に示す例は、照度が500[lux]、光照射時間が20[hr/day]として設定された例である。演算部12Bは、この設定に応じて、電源モジュールの構成画像g101Bにおいて、照度と光照射時間を更新する。
<Description of screen used for setting>
First, the screen used for setting will be described.
FIG. 44 is a diagram showing an example of a setting image g102B of the light state of the environment in which the sensor system 2B is installed. As shown in FIG. 44, in the setting image g102B of the state of light in the environment where the sensor system 2B is installed, the illumination time [lux] is the light irradiation time [time when light is irradiated to the sensor system 2B on one day] hr / day] is included. The user operates the setting unit 11B to select each field of the setting image g102B of the light state of the environment in which the sensor system 2B is installed, and selects or inputs the value of each field. The example shown in FIG. 44 is an example in which the illuminance is set to 500 [lux] and the light irradiation time is set to 20 [hr / day]. The calculation unit 12B updates the illuminance and the light irradiation time in the component image g101B of the power supply module according to the setting.
 図45は、太陽電池21Bの選択画像g103Bの例を示す図である。図45に示すように、太陽電池21Bの選択画像g103Bには、太陽電池型番、数量[pcs(パッケージ)]、外形サイズ[mm]、発電面積[cm]が含まれる。利用者は、太陽電池21Bの選択画像g103Bの各欄を、設定部11Bを操作して選択し、各欄の値を選択または入力する。図45に示す例は、太陽電池型番が「太陽電池I」、数量が1[pcs]として設定された例である。演算部12Bは、設定に応じて、記憶部13Bが記憶する太陽電池21Bの情報を読み出し、外形サイズを112×56[mm]、発電面積を32[cm]に更新する。さらに、演算部12Bは、この設定に応じて、電源モジュールの構成画像g101Bにおいて、太陽電池型番と数量を更新する。 FIG. 45 is a diagram showing an example of the selected image g103B of the solar cell 21B. As shown in FIG. 45, the selected image g103B of the solar cell 21B includes the solar cell model number, the quantity [pcs (package)], the external size [mm], and the power generation area [cm 2 ]. The user operates the setting unit 11B to select each field of the selection image g103B of the solar cell 21B, and selects or inputs the value of each field. The example shown in FIG. 45 is an example in which the solar cell model number is set as “solar cell I” and the number is 1 [pcs]. The calculation unit 12B reads out the information of the solar cell 21B stored in the storage unit 13B according to the setting, and updates the outer size to 112 × 56 [mm] and the power generation area to 32 [cm 2 ]. Furthermore, the operation unit 12B updates the solar cell model number and the number in the component image g101B of the power supply module according to the setting.
 図46は、太陽電池21Bの選択画像g104Bの例を示す図である。図46に示すように、太陽電池21Bの選択画像g104Bには、選択可能な太陽電池の外形図、寸法図が表示される。図46に示す例では、太陽電池21Bの選択画像g104Bによって、「太陽電池I」が選択された例である。なお、利用者は、太陽電池21Bの選択画像g104Bの「太陽電池I」の画像を、設定部11Bを操作して選択するようにしてもよい。 FIG. 46 is a diagram showing an example of the selected image g104B of the solar cell 21B. As shown in FIG. 46, in the selected image g104B of the solar cell 21B, an outline view and a dimensional view of selectable solar cells are displayed. In the example shown in FIG. 46, “solar cell I” is selected by the selected image g104B of the solar cell 21B. The user may select the image of “solar cell I” of the selected image g104B of the solar cell 21B by operating the setting unit 11B.
 図47は、電力管理画像g105Bの例を示す図である。図47に示すように、電力管理画像g105Bには、昇圧効率[%]、降圧効率[%]、静止電流[nA]、出力電圧[V]が含まれる。利用者は、電力管理画像g105Bの各欄を、設定部11を操作して選択し、各欄の値を選択または入力する。図47に示す例は、昇圧効率が75[%]、降圧効率が90[%]、静止電流が3000[nA]、出力電圧が3.0[V]として設定された例である。 FIG. 47 is a diagram showing an example of the power management image g105B. As shown in FIG. 47, the power management image g105B includes boosting efficiency [%], bucking efficiency [%], quiescent current [nA], and output voltage [V]. The user operates the setting unit 11 to select each field of the power management image g105B, and selects or inputs the value of each field. The example shown in FIG. 47 is an example where the boosting efficiency is set to 75%, the step-down efficiency to 90%, the quiescent current to 3000 nA, and the output voltage to 3.0V.
 図48は、蓄電池23Bの設定画像g106Bの例を示す図である。図48に示すように、蓄電池23Bの設定画像g106Bには、容量[F]、初期電圧[V]、充電上限電圧[V]、放電加減電圧[V]、自己放電電流[μA]が含まれる。利用者は、蓄電池23Bの設定画像g106Bの各欄を、設定部11Bを操作して選択し、各欄の値を選択または入力する。図48に示す例は、容量が40[F]、初期電圧が3.0[V]、自己放電電流が0.1[μA]として設定された例である。演算部12Bは、この設定に応じて、記憶部13Bが記憶する充電上限電圧値と放電下限電圧を更新する。なお、充電上限電圧値と放電下限電圧は、蓄電池23Bに関わらず、固定値であってもよい。 FIG. 48 is a diagram showing an example of a setting image g106B of the storage battery 23B. As shown in FIG. 48, setting image g106B of storage battery 23B includes capacity [F], initial voltage [V], charge upper limit voltage [V], discharge adjustment voltage [V], and self discharge current [μA]. . The user operates the setting unit 11B to select each field of the setting image g106B of the storage battery 23B, and selects or inputs the value of each field. The example shown in FIG. 48 is an example in which the capacity is set to 40 [F], the initial voltage is 3.0 [V], and the self discharge current is set to 0.1 [μA]. Arithmetic unit 12B updates the charge upper limit voltage value and the discharge lower limit voltage stored in storage unit 13B according to the setting. The charge upper limit voltage value and the discharge lower limit voltage may be fixed values regardless of the storage battery 23B.
 図49は、電子機器25Bの消費電力の設定画像g107B、電子機器25Bの動作状態や消費電力の表示画像g108Bの例を示す図である。図49に示すように、電子機器25Bの消費電力の設定画像g107Bには、電子機器25Bの動作電圧[V]、動作時間[msec]、動作インターバル[sec]、動作電流[mA]、待機電流[μA]が含まれる。また、図49に示すように、電子機器25Bの動作状態や消費電力の表示画像g108Bには、動作状態の画像g108Baと、動作電圧[V]、動作時間[msec]、動作インターバル[sec]、動作電流[mA]、待機電流[μA]が含まれる。図49に示す例では、動作電圧が3.0[V]、動作時間が20[msec]、動作インターバルが2.0[sec]、動作電流が20[mA]、待機電流が2.5[μA]として設定された例である。
 図49のg108Baの画像は、表示部14Bが、設定部11Bによって設定された電子機器25B(負荷回路)の消費電力をグラフ化して表示した結果である。
FIG. 49 is a diagram showing an example of a setting image g107B of the power consumption of the electronic device 25B and a display image g108B of the operation state of the electronic device 25B and the power consumption. As shown in FIG. 49, in the setting image g107B of the power consumption of the electronic device 25B, the operating voltage [V], the operating time [msec], the operating interval [sec], the operating current [mA], and the standby current of the electronic device 25B. [ΜA] is included. Further, as shown in FIG. 49, in the display image g108B of the operating state and power consumption of the electronic device 25B, the image g108Ba of the operating state, the operating voltage [V], the operating time [msec], the operating interval [sec], Operating current [mA] and standby current [μA] are included. In the example shown in FIG. 49, the operating voltage is 3.0 [V], the operating time is 20 [msec], the operating interval is 2.0 [sec], the operating current is 20 [mA], and the standby current is 2.5 [C]. It is an example set as μA].
The image of g108Ba in FIG. 49 is a result of displaying the power consumption of the electronic device 25B (load circuit) set by the setting unit 11B as a graph.
 利用者は、電子機器25Bの消費電力の設定画像g107Bの各欄を、設定部11Bを操作して選択し、各欄の値を選択または入力する。この場合、演算部12Bは、設定された情報に応じて電子機器25Bの動作状態や消費電力の表示画像g108Bを更新する。
 または、利用者は、電子機器25Bの動作状態や消費電力の表示画像g108Bの波形の幅や高さを、設定部11Bを操作して選択する。この場合、演算部12Bは、設定された情報に応じて電子機器25Bの消費電力の設定画像g107Bを更新する。
The user operates the setting unit 11B to select each field of the setting image g107B of the power consumption of the electronic device 25B, and selects or inputs the value of each field. In this case, the calculation unit 12B updates the display image g108B of the operation state of the electronic device 25B and the power consumption according to the set information.
Alternatively, the user operates the setting unit 11B to select the operation state of the electronic device 25B and the width and height of the waveform of the display image g108B of the power consumption. In this case, the calculation unit 12B updates the setting image g107B of the power consumption of the electronic device 25B according to the set information.
 図50は、一次電池24Bの容量を設定する画像g201Bの例を示す図である。図50に示すように、一次電池24Bの容量を設定する画像g201Bには、一次電池の使用状態(Hybrid operating)、一次電池の容量[mAh]が含まれる。利用者は、一次電池24Bの容量を設定する画像g201Bの各欄を、設定部11Bを操作して選択し、各欄の値を選択または入力する。図50に示す例では、一次電池24Bの使用状態がオン状態(ON)、一次電池24Bの容量が2000[mAh]として設定された例である。 FIG. 50 is a diagram showing an example of an image g201B for setting the capacity of the primary battery 24B. As shown in FIG. 50, the image g201B for setting the capacity of the primary battery 24B includes the usage state (Hybrid operating) of the primary battery and the capacity [mAh] of the primary battery. The user operates the setting unit 11B to select each field of the image g201B for setting the capacity of the primary battery 24B, and selects or inputs the value of each field. The example shown in FIG. 50 is an example in which the usage state of the primary battery 24B is set to the on state (ON), and the capacity of the primary battery 24B is set to 2000 [mAh].
<設定に使用する画面の説明>
 次に、シミュレーション結果の画面について説明する。
 図51は、電子機器25Bに供給可能な電力を示す情報の画像g111Bの例を示す図である。図51に示すように、電子機器25Bに供給可能な電力を示す情報の画像g111Bには、1日あたり供給可能な電力量の平均値[μWh/day](typ)と、1日あたり供給可能な電力量の最小値[μWh/day](min)が含まれる。なお、電子機器25Bに供給可能な電力は、太陽電池21Bに照射された光によって単位時間(1日)あたりの発電される発電電力である。図51に示すように、表示部14Bは、演算部12Bが求めた単位時間あたりの発電される発電電力の数値を、テキスト形式で表示する。
<Description of screen used for setting>
Next, the screen of the simulation result will be described.
FIG. 51 is a diagram illustrating an example of an image g111B of information indicating power that can be supplied to the electronic device 25B. As shown in FIG. 51, in the image g111B of information indicating the power that can be supplied to the electronic device 25B, the average value [μWh / day] (typ) of the power that can be supplied per day and the power can be supplied per day Power value [μWh / day] (min) is included. The electric power that can be supplied to the electronic device 25B is the generated electric power generated per unit time (1 day) by the light irradiated to the solar cell 21B. As shown in FIG. 51, the display unit 14B displays, in a text format, the numerical value of the generated power generated per unit time, which is calculated by the calculation unit 12B.
 図52は、総消費エネルギーを示す画像g112Bの例を示す図である。図52に示す例では、総消費エネルギーを示す画像g112Bは、円グラフで示されている。符号g112Baが示す領域は、電子機器25Bが動作している期間の1日あたりの消費電力の総和[μWh/day]である。符号g112Bbが示す領域は、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和[μWh/day]である。符号g112Bcが示す領域は、電子機器25Bの1日あたりの消費電力の総和[μWh/day]である。図52に示す例では、電子機器25Bが動作している期間の1日あたりの消費電力の総和が14400[μWh/day]であり、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和が178[μWh/day]であり、両方の総和が14578[μWh/day]である。なお、図52に示した例では、円グラフで表示する例を示したが、グラフは棒グラフ等であってもよい。 FIG. 52 is a diagram illustrating an example of the image g112B indicating the total energy consumption. In the example shown in FIG. 52, the image g112B indicating the total energy consumption is shown by a pie chart. An area indicated by reference sign g112Ba is a sum [μWh / day] of power consumption per day in a period in which the electronic device 25B is operating. The area indicated by reference sign g112Bb is the sum [μWh / day] of the power consumption per day of the standby state of the electronic device 25B. An area indicated by reference sign g112Bc is the sum [μWh / day] of the power consumption of the electronic device 25B per day. In the example shown in FIG. 52, the total of the power consumption per day during the operation of the electronic device 25B is 14400 [μWh / day], and the power consumption per day during the standby state of the electronic device 25B. Is 178 [μWh / day], and the sum of both is 14578 [μWh / day]. In the example shown in FIG. 52, an example in which a pie chart is displayed is shown, but the chart may be a bar graph or the like.
 図52に示すように、表示部14Bは、円グラフの各要素の数値を、テキスト形式で表示させる。符号g112Bdの文字表示は、電子機器25Bが動作している期間の1日あたりの消費電力の総和[μWh/day]である。符号g112Beの文字表示は、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和[μWh/day]である。符号g112Bfの文字表示は、電子機器25Bの1日あたりの消費電力の総和[μWh/day]である。 As shown in FIG. 52, the display unit 14B displays the numerical values of the elements of the pie chart in text format. The character display of the code g112Bd is the sum [μWh / day] of the power consumption per day during the operation of the electronic device 25B. The character display of the code g112Be is the total [μWh / day] of the power consumption per day of the standby state of the electronic device 25B. The character display of the code g112Bf is the total [μWh / day] of the power consumption of the electronic device 25B per day.
 演算部12Bは、記憶部13Bが記憶する式と、設定部11Bの操作によって設定された設定情報を用いて、電子機器25Bが動作している期間の1日あたりの消費電力の総和、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和、電子機器25Bの1日あたりの消費電力の総和それぞれを求める。なお、記憶部13Bが記憶する式については、後述する。表示部14Bは、演算部12Bが求めた電子機器25Bが動作している期間の1日あたりの消費電力の総和、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和、電子機器25Bの1日あたりの消費電力の総和を用いてグラフを生成して、生成したグラフを表示する。また、表示部14Bは、演算部12Bが求めた電子機器25Bが動作している期間の1日あたりの消費電力の総和、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和、電子機器25Bの1日あたりの消費電力の総和をテキスト形式で、グラフの各要素に対応付けて表示する。 Arithmetic unit 12B uses the equation stored in storage unit 13B and the setting information set by the operation of setting unit 11B to calculate the sum of the power consumption per day during the operation of electronic device 25B, the electronic device The sum of the power consumption per day of the period of the standby state of 25 B and the sum of the power consumption per day of the electronic device 25 B are calculated. The expression stored in the storage unit 13B will be described later. The display unit 14B is the sum of power consumption per day during the operation of the electronic device 25B calculated by the calculation unit 12B, the sum of power consumption per day during the standby state of the electronic device 25B, and the electronic device A graph is generated using the sum of the power consumption per day of 25 B, and the generated graph is displayed. In addition, the display unit 14B is a sum of power consumption per day during the operation of the electronic device 25B calculated by the calculation unit 12B, a sum of power consumption per day of the standby state of the electronic device 25B, The total of the power consumption per day of the electronic device 25B is displayed in text format in association with each element of the graph.
 なお、演算部12Bは、設定情報が更新された際、更新された設定情報を用いて、太陽電池21Bによる発電される単位時間あたりの発電電力と、電子機器25Bの単位時間あたりの消費電力と、を再度求める。そして、表示部14Bは、演算部12Bが再度求めた単位時間あたりの発電電力と、電子機器25Bの単位時間あたりの消費電力とを、更新してテキスト形式で表示する。 In addition, when the setting information is updated, the calculation unit 12B uses the updated setting information to generate the generated power per unit time generated by the solar cell 21B and the power consumption per unit time of the electronic device 25B. Ask again. Then, the display unit 14B updates the generated power per unit time obtained by the calculation unit 12B again and the power consumption per unit time of the electronic device 25B, and displays the updated power in the text format.
 なお、演算部12Bは、設定情報のうち少なくとも太陽電池21Bに照射される照度、負荷である電子機器25Bの動作電流、動作時間、動作インターバルを用いて、電子機器25Bが動作している期間の1日あたりの消費電力の総和、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和、電子機器25Bの1日あたりの消費電力の総和を求める。
 演算部12Bは、設定情報である太陽電池21Bに照射される単位時間(1日)あたりの照射時間も用いて、電子機器25Bが動作している期間の1日あたりの消費電力の総和、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和、電子機器25Bの1日あたりの消費電力の総和を求めるようにしてもよい。
Note that the calculation unit 12B is a period during which the electronic device 25B is operating using at least the illuminance irradiated to the solar cell 21B among the setting information, the operating current of the electronic device 25B which is a load, the operating time, and the operating interval. The total of the power consumption per day, the total of the power consumption per day of the period in which the electronic device 25B is in the standby state, and the total of the power consumption per day of the electronic device 25B are obtained.
The calculation unit 12B also uses the irradiation time per unit time (1 day) irradiated to the solar cell 21B which is the setting information, and the total of the power consumption per day during the operation of the electronic device 25B, the electron The sum of the power consumption per day during the standby state of the device 25B and the sum of the power consumption per day of the electronic device 25B may be obtained.
 演算部12Bは、電子機器25Bの待機電流も用いて、電子機器25Bが動作している期間の1日あたりの消費電力の総和、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和、電子機器25Bの1日あたりの消費電力の総和を求めるようにしてもよい。
 演算部12Bは、電子機器25Bの動作時の動作電流も用いて、電子機器25Bが動作している期間の1日あたりの消費電力の総和、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和、電子機器25Bの1日あたりの消費電力の総和を求めるようにしてもよい。
 演算部12Bは、蓄電池23Bの容量と充電上限電圧と放電下限電圧も用いて、電子機器25Bが動作している期間の1日あたりの消費電力の総和、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和、電子機器25Bの1日あたりの消費電力の総和を求めるようにしてもよい。
Arithmetic unit 12B also uses the standby current of electronic device 25B to calculate the sum of the power consumption per day of the operating period of electronic device 25B, and of the power consumption per day of the period when electronic device 25B is in the standby state. The sum total, the sum total of the power consumption per day of the electronic device 25B may be obtained.
Arithmetic unit 12B also uses the operating current at the time of operation of electronic device 25B, the sum of the power consumption per day during the period in which electronic device 25B is operating, the daily period of the period in which electronic device 25B is in the standby state. The sum of the power consumption and the sum of the power consumption of the electronic device 25B per day may be obtained.
Arithmetic unit 12B also uses the capacity of storage battery 23B, the charge upper limit voltage, and the discharge lower limit voltage to sum up the power consumption per day of the period in which electronic device 25B is operating, and 1 of the period in which electronic device 25B is in the standby state. The total of the power consumption per day and the total of the power consumption per day of the electronic device 25B may be obtained.
 演算部12Bは、電源回路22Bの変換効率も用いて、電子機器25Bが動作している期間の1日あたりの消費電力の総和、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和、電子機器25Bの1日あたりの消費電力の総和を求めるようにしてもよい。なお、電源回路22Bの変換効率は、昇圧効率、降圧効率を含む。
 演算部12Bは、電源回路22Bの消費電力も用いて、電子機器25Bが動作している期間の1日あたりの消費電力の総和、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和、電子機器25Bの1日あたりの消費電力の総和を求めるようにしてもよい。なお、電源回路22Bの消費電力は、静止電流、出力電圧等の情報を用いて演算部12Bが求める値である。
 演算部12Bは、太陽電池21Bに関する情報も用いて、電子機器25Bが動作している期間の1日あたりの消費電力の総和、電子機器25Bが待機状態の期間の1日あたりの消費電力の総和、電子機器25Bの1日あたりの消費電力の総和を求めるようにしてもよい。なお、太陽電池21Bに関する情報とは、太陽電池型番、数量、外形サイズ、発電面積等の情報である。
Arithmetic unit 12B also uses the conversion efficiency of power supply circuit 22B to calculate the sum of the power consumption per day of the operating period of electronic device 25B, and the power consumption per day of the period when electronic device 25B is in the standby state. The sum total, the sum total of the power consumption per day of the electronic device 25B may be obtained. The conversion efficiency of the power supply circuit 22B includes the boosting efficiency and the bucking efficiency.
Arithmetic unit 12B also uses the power consumption of power supply circuit 22B to calculate the sum of the power consumption per day of the operating period of electronic device 25B, and the power consumption per day of the period when electronic device 25B is in the standby state. The sum total, the sum total of the power consumption per day of the electronic device 25B may be obtained. The power consumption of the power supply circuit 22B is a value determined by the calculation unit 12B using information such as a quiescent current and an output voltage.
Arithmetic unit 12B also uses the information related to solar cell 21B, the sum of the power consumption per day during the operation of electronic device 25B, and the sum of the power consumption per day during the standby state of electronic device 25B. The sum of the power consumption per day of the electronic device 25B may be obtained. The information on the solar cell 21B is information such as a solar cell model number, quantity, outer size, power generation area, and the like.
 上述したように、太陽電池21Bによって発電される電力量が微弱であるため、わずかな消費電力であっても、運用期間に関わってくる。このため、本実施形態では、電子機器25Bが待機状態の場合、蓄電池23Bの自己放電電流等、従来考慮されなかった項目についても考慮してシミュレーションを行う。 As described above, since the amount of power generated by the solar cell 21B is weak, even a small amount of power consumption is involved in the operation period. For this reason, in the present embodiment, when the electronic device 25B is in the standby state, the simulation is performed also taking into consideration items such as the self discharge current of the storage battery 23B and the like that have not been taken into consideration conventionally.
 図53は、蓄電池23Bの電圧対時間の変化を示すグラフの画像g113Bの例を示す図である。図53において、横軸は時刻(時)、左の縦軸は蓄電池23Bの電圧値(V)、右に縦軸は照度(lux)である。なお、図53に示す図は、表示部14Bが、演算部12Bが求めた結果に基づいてグラフを生成して表示する。 FIG. 53 is a diagram showing an example of image g113B of a graph showing change of voltage of storage battery 23B to time. In FIG. 53, the horizontal axis is time (hour), the vertical axis on the left is voltage value (V) of storage battery 23B, and the vertical axis is illuminance (lux) on the right. In the diagram shown in FIG. 53, the display unit 14B generates and displays a graph based on the result obtained by the calculation unit 12B.
 図53に示すように、蓄電池23Bの電圧対時間の変化を示すグラフの画像g113Bには、1日あたり供給可能な電力量が平均値の際の蓄電池23Bの電圧対時間の変化g113Ba、1日あたり供給可能な電力量が最小時の蓄電池23Bの電圧対時間の変化g113h、太陽電池21Bによって発電が行われている期間g113Bgを含む。また、鎖線g113Bbは放電下限電圧(下限電圧)を表す。鎖線g113Bcは蓄電池23Bに蓄電された電力を再出力する電圧値を表す。すなわち、蓄電池23Bの電圧値が、鎖線g113Bcで示す3.3(V)に達したとき、蓄電池23Bの電力の放電を開始する。鎖線g113Bdは充電上限電圧を表す。符号g113Beが示す領域は、電子機器25Bに電力を供給できない期間を表す。符号g113Bfが示す領域は、電子機器25Bに電力を供給できる期間を表す。 As shown in FIG. 53, in the image g113B of the graph showing the change of voltage versus time of the storage battery 23B, the change of voltage versus time of the storage battery 23B when the amount of power that can be supplied per day is an average value g113Ba, 1 day A change g113h in voltage versus time of the storage battery 23B when the amount of power that can be supplied per unit is minimum and a period g113Bg in which power generation is performed by the solar cell 21B. Further, the dashed-dotted line g113Bb represents the discharge lower limit voltage (lower limit voltage). The dashed-dotted line g113Bc represents a voltage value for re-outputting the power stored in the storage battery 23B. That is, when the voltage value of storage battery 23B reaches 3.3 (V) shown by a dashed-dotted line g113Bc, the discharge of the power of storage battery 23B is started. The dashed-dotted line g113Bd represents the charging upper limit voltage. A region indicated by reference sign g113Be represents a period in which power can not be supplied to the electronic device 25B. A region indicated by reference sign g113Bf represents a period in which power can be supplied to the electronic device 25B.
 図53に示す例では、1日あたり供給可能な電力量が平均値の際、電子機器25Bに電力を供給できる期間(駆動可能な期間)は、運用開始からの時間が、約20時間~約68時間の期間、約91時間~約140時間の期間、約163時間~である。また、1日あたり供給可能な電力量が平均値の際、電子機器25Bに電力を供給できない期間(駆動できない期間)は、運用開始からの時間が、0時~約20時間の期間、約68時間~約91時間の期間、約140時間~約163時間の期間である。 In the example shown in FIG. 53, when the amount of power that can be supplied per day is an average value, the period in which power can be supplied to the electronic device 25B (the drivable period) is about 20 hours to about time from the start of operation. A period of 68 hours, a period of about 91 hours to about 140 hours, and a period of about 163 hours. In addition, when the amount of power that can be supplied per day is an average value, the period when power can not be supplied to the electronic device 25B (period when it can not be driven) is about 68 hours from 0 o'clock to about 20 hours from the start of operation. The period of time is about 91 hours, and the period of about 140 hours to about 163 hours.
 また、図53に示すように、1日あたり供給可能な電力量が最小値の際、電子機器25Bに電力を供給できる期間(駆動可能な期間)は、運用開始からの時間が、約29時間~約63時間の期間、約97時間~約127時間の期間、約162時間~である。また、1日あたり供給可能な電力量が最小値の際、電子機器25Bに電力を供給できない期間は、運用開始からの時間が、0時~約29時間の期間、約63時間~約97時間の期間、約127時間~約162時間の期間である。1日あたり供給可能な電力量が平均値に比べて最小時の際、電子機器25Bに電力を供給できない期間が長くなり、電子機器25Bに電力を供給できる期間が短くなることを、利用者は、蓄電池23Bの電圧対時間の変化を示すグラフの画像g113Bを見て確認することができる。 Further, as shown in FIG. 53, when the amount of power that can be supplied per day is the minimum value, the period in which power can be supplied to the electronic device 25B (the drivable period) is approximately 29 hours from the start of operation. A period of ~ 63 hours, a period of about 97 hours to about 127 hours, ~ 162 hours. In addition, when the amount of power that can be supplied per day is the minimum value, the period from the start of operation is about 63 hours to about 97 hours, from 0 o'clock to about 29 hours, during the period when power can not be supplied to the electronic device 25B. Period of about 127 hours to about 162 hours. When the amount of power that can be supplied per day is at a minimum compared to the average value, the user can not supply power to the electronic device 25B longer, and the period in which power can be supplied to the electronic device 25B becomes shorter. , The image g113B of the graph which shows the change of the voltage versus time of the storage battery 23B can be confirmed.
 図53の符号g113Bgとg113Bhの画像は、演算部12Bが、少なくとも電子機器25B(負荷回路)の消費電力、太陽電池21Bに対して光が照射されることによって発電される電力とに基づいて蓄電池の電圧の変化を演算し、表示部14Bが経過時間に対する蓄電池の電圧の変化をグラフ化した結果である。また、図53の符号g113Bgの画像は、表示部14Bが、設定部11Bによって設定された太陽電池21Bに対して照射される照度と照射時間に基づいて、経過時間に対する照度の変化をグラフ化し、経過時間に対する蓄電池の電圧の変化をグラフに重ねて表示した結果である。 The images denoted by g113Bg and g113Bh in FIG. 53 are storage batteries based on at least the power consumption of the electronic device 25B (load circuit) of the computing unit 12B and the power generated by irradiating the solar cell 21B with light. The change in voltage of the storage battery is calculated, and the display unit 14B graphs the change in voltage of the storage battery with respect to the elapsed time. Further, in the image with the code g113Bg in FIG. 53, the display unit 14B graphs changes in the illuminance with respect to elapsed time based on the illuminance and the irradiation time with which the solar battery 21B is set by the setting unit 11B. It is the result of displaying the change of the voltage of the storage battery with respect to elapsed time on the graph superimposed.
 また、図53の符号g113Be、g113Bfの画像は、演算部12Bが、求めた時間変化に対する前記蓄電池の電圧の変化に基づいて、電子機器25B(負荷回路)を駆動可能な期間および前記負荷回路を駆動できない期間のうち少なくとも1つを求め、表示部14Bが、演算部12Bが求めた電子機器25Bを駆動可能な期間および電子機器25Bを駆動できない期間のうち少なくとも1つを、グラフ化した蓄電池23Bの電圧の変化のグラフに対応付けて、重ねて表示した結果である。 Moreover, the image of the code | symbol g113Be of FIG. 53, g113Bf is the period which can drive the electronic device 25B (load circuit) based on the change of the voltage of the said storage battery with respect to the time change calculated | required with the calculating part 12B. The storage battery 23B is a graph of at least one of the periods in which the driving unit 12B can drive the electronic device 25B and the periods in which the display device 14B can not drive the electronic device 25B. It is the result of being displayed in association with the graph of the change in voltage of.
 図54は、照度と蓄電池23Bの電圧の時間変化の例を示す図である。図54において、横軸は時間、左縦軸は蓄電池23Bの電圧、右縦軸は照度である。
 図54に示す例では、0時~20時の期間、L1(例えば500[lux])の照度が太陽電池21Bに照射され、蓄電池23Bの電圧がV1となる。そして、消灯時の20時~24時の期間、L2(例えば0[lux])の照度が太陽電池21Bに照射され、蓄電池23Bの電圧がV2となる。また、本実施形態では、1日(24時間)を単位時間とする。
FIG. 54 is a diagram showing an example of the time change of the illuminance and the voltage of the storage battery 23B. In FIG. 54, the horizontal axis is time, the left vertical axis is the voltage of storage battery 23B, and the right vertical axis is illuminance.
In the example shown in FIG. 54, the illuminance of L1 (for example, 500 [lux]) is irradiated to the solar cell 21B in the period from 0 o'clock to 20 o'clock, and the voltage of the storage battery 23B becomes V1. Then, the illuminance of L2 (for example, 0 [lux]) is irradiated to the solar cell 21B in the period from 20 o'clock to 24 o'clock when the light is turned off, and the voltage of the storage battery 23B becomes V2. In the present embodiment, one day (24 hours) is taken as a unit time.
 図55は、発電量と消費電力のエネルギー収支を表す画像g114Bの例を示す図である。図55において、縦軸は、発電された発電電力量に対する総消費エネルギーの比である。符号g114Baは、単位時間あたり供給可能な電力量が平均値の場合のエネルギー収支を表す。符号g114Bbは、単位時間あたり供給可能な電力量が最小値の場合のエネルギー収支を表す。鎖線g114Bcは、発電された発電電力量に対する総消費エネルギーの比が100%、すなわちバランスが取れているラインを表す。なお、図55に示す図は、表示部14Bが、演算部12Bが求めた結果に基づいてグラフを生成して表示する。 FIG. 55 is a diagram illustrating an example of an image g114B representing an energy balance of the power generation amount and the power consumption. In FIG. 55, the vertical axis is the ratio of the total energy consumption to the generated power generation amount. The code g114Ba represents the energy balance when the amount of power that can be supplied per unit time is an average value. The code g114Bb represents the energy balance when the amount of power that can be supplied per unit time is the minimum value. The dashed-dotted line g114Bc represents 100% of the ratio of the total energy consumption to the generated power generation amount, that is, a balanced line. In the diagram shown in FIG. 55, the display unit 14B generates and displays a graph based on the result obtained by the calculation unit 12B.
 図55に示す例では、単位時間あたり供給可能な電力量が平均値の場合のエネルギー収支が69.5%であり、単位時間あたり供給可能な電力量が最小値の場合のエネルギー収支が48.6%である。利用者は、このようなエネルギー収支を確認して、例えば太陽電池21Bの数量を増やしたり、太陽電池21Bを選択し直したり等、設定をやり直して、エネルギー収支のバランスが取れる設定を検討することができる。 In the example shown in FIG. 55, the energy balance when the amount of power that can be supplied per unit time is an average value is 69.5%, and the energy balance when the amount of power that can be supplied per unit time is a minimum value is 48. 6%. The user confirms such an energy balance, for example, increases the number of solar cells 21B, reselects the solar cells 21B, etc., and reconsiders the setting to consider the setting in which the energy balance is balanced. Can.
 図56は、一次電池24Bのバッテリ寿命を示す画像g211Bの例を示す図である。図56に示すように、一次電池24Bのバッテリ寿命を示す画像g211Bには、1日あたり供給可能な電力量が平均値の場合の一次電池24Bのバッテリ寿命[years](typ)、単位時間あたり供給可能な電力量が最小値の場合の一次電池24Bのバッテリ寿命[years](min)が含まれる。図56に示す例では、1日あたり供給可能な電力量が平均値の場合の一次電池24Bのバッテリ寿命が3.7[years(年)](typ)であり、1日あたり供給可能な電力量が最小値の場合の一次電池24Bのバッテリ寿命が2.2[years](min)である。 FIG. 56 is a view showing an example of an image g211B showing the battery life of the primary battery 24B. As shown in FIG. 56, in the image g211B showing the battery life of the primary battery 24B, the battery life [years] (typ) of the primary battery 24B when the amount of power that can be supplied per day is an average value, per unit time The battery life [years] (min) of the primary battery 24B when the amount of power that can be supplied is the minimum value is included. In the example shown in FIG. 56, the battery life of the primary battery 24B is 3.7 [years (year)] (typ) when the amount of power that can be supplied per day is an average value, and the power that can be supplied per day is typical. The battery life of the primary battery 24B when the amount is the minimum value is 2.2 [years] (min).
<シミュレーション>
 次に、演算部12Bが行うシミュレーションについて説明する。
 まず、演算部12Bがシミュレーションに用いる符号を以下のように定義する。
<Simulation>
Next, a simulation performed by the calculation unit 12B will be described.
First, codes used by the calculation unit 12B for simulation are defined as follows.
[1]電子機器25Bの消費エネルギー側
・動作電圧(Operating Voltage);Vope(V)
・動作時間(Operating Time);Tope(msec)
・動作インターバル(Operating Interval);Tint(sec)
・動作電流(Operating Current);Aope(mA)
・待機電流(Standby Current);Asb(μA)
[1] Operating energy side of the electronic device 25B (Operating Voltage); V ope (V)
・ Operating time (Operating Time); T ope (msec)
・ Operating interval (Operating Interval); T int (sec)
・ Operating current (Operating Current); A ope (mA)
・ Standby current (Standby Current); Asb (μA)
[2]供給エネルギー側
・電子機器25Bへの供給エネルギー;Echg(J/day)
・蓄電池23Bで消費される自己放電エネルギー;Esd(J/day)
・電源回路22Bで消費される自己放電エネルギー;Eic(J/day)
・発電エネルギー;Ein(J/day)
・発電電力(Generating Power);Win(μW)
・光照射時間(Irradiation time);Tlight(hr/day)
・電源回路22Bの変換効率(昇圧回路221Bの昇圧効率);ηin(%)
・電源回路22Bの変換効率(降圧回路222Bの降圧効率);ηout(%)
・電源回路22Bの自己消費電力(昇圧回路221Bの自己消費電力);Ain(nA)
・電源回路22Bの自己消費電力(降圧回路222Bの自己消費電力);Aout(nA)
・蓄電池23Bの容量(Capacity);C(F)
・蓄電池23Bの電圧(Storage device voltage);Vsd(V)
・蓄電池23Bの自己放電電流(Leakage Current);Asd(μA)
[2] Supply energy: supply energy to the electronic device 25B; E chg (J / day)
-Self-discharge energy consumed by storage battery 23B; E sd (J / day)
・ Self discharge energy consumed by the power supply circuit 22B; E ic (J / day)
・ Generated energy; E in (J / day)
And power generation power (Generating Power); W in ( μW)
-Irradiation time; T light (hr / day)
· Conversion efficiency of power supply circuit 22B (boosting efficiency of boosting circuit 221B); in in (%)
· Conversion efficiency of the power supply circuit 22B (step-down efficiency of the step-down circuit 222B); out out (%)
· Power consumption of the power supply circuit 22B (power consumption of the booster circuit 221B); A in (nA)
· Power consumption of the power supply circuit 22B (power consumption of the step-down circuit 222B); A out (nA)
・ Capacity of storage battery 23B (Capacity); C (F)
-Voltage of storage battery 23B (Storage device voltage); V sd (V)
・ Self discharge current of the storage battery 23B (Leakage Current); Asd (μA)
 演算部12Bは、[1]電子機器25Bの消費エネルギー、[2]供給エネルギーを用いて、1日あたりの電力量に対して、供給と消費のエネルギーを比較する演算を以下のように行う。
 演算部12Bは、電子機器25Bの駆動時の消費エネルギーEopeを、次式(17)を用いて求める。
The calculation unit 12B performs an operation of comparing the energy of supply and consumption with the amount of power per day using the consumption energy of the electronic device 25B and the supply energy of the electronic device 25B as follows.
Arithmetic unit 12B obtains consumed energy E ope when driving electronic device 25B using the following equation (17).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 次に、演算部12Bは、電子機器25Bの待機時の消費エネルギーEsbを、次式(18)を用いて求める。 Next, the calculation unit 12B obtains the consumption energy E sb at the time of standby of the electronic device 25B using the following equation (18).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 次に、演算部12Bは、電子機器25Bの総消費エネルギーEoutを、次式(19)を用いて求める。 Next, the calculation unit 12B obtains the total consumption energy E out of the electronic device 25B using the following equation (19).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 次に、演算部12Bは、発電エネルギーEinを、次式(20)を用いて求める。 Next, operation unit 12B determines generated energy E in using the following equation (20).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 次に、演算部12Bは、電源回路22Bで消費される自己放電エネルギーEicを、次式(21)を用いて求める。 Next, operation unit 12B determines self-discharge energy E ic consumed by power supply circuit 22B using the following equation (21).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 次に、演算部12Bは、蓄電池23Bで消費される自己放電エネルギーEsdを、次式(22)を用いて求める。 Next, operation unit 12B obtains self-discharge energy E sd consumed by storage battery 23B using the following equation (22).
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 次に、演算部12Bは、電子機器25Bへの供給エネルギーEchgを、次式(23)を用いて求める。 Next, the calculation unit 12B obtains the supply energy E chg to the electronic device 25B using the following equation (23).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 そして、演算部12Bは、次式(24)が成り立たつ場合に、エナジーハーベスティングの連続駆動できると判断するようにしてもよい。 Then, when the following equation (24) is established, the calculation unit 12B may determine that the energy harvesting can be continuously driven.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
<シミュレーションの手順例>
 次に、演算部12B、表示部14Bが行う処理手順例を説明する。
 図57は、本実施形態に係る演算部12B、表示部14Bが行う処理手順例を示すフローチャートである。なお、演算部12Bと表示部14Bは、以下の処理を、設定情報が更新される毎に行う。
<Example of procedure of simulation>
Next, an example of a processing procedure performed by the calculation unit 12B and the display unit 14B will be described.
FIG. 57 is a flowchart illustrating an example of processing procedures performed by the calculation unit 12B and the display unit 14B according to the present embodiment. The calculation unit 12B and the display unit 14B perform the following process each time the setting information is updated.
 (ステップS201)演算部12Bは、利用者が設定部11Bを操作して設定、選択した設定情報を取得する。 (Step S201) The calculation unit 12B acquires setting information selected and set by the user operating the setting unit 11B.
 (ステップS202)演算部12Bは、取得した設定情報に応じたパラメータを、記憶部13Bから読み出す。続けて、演算部12Bは、記憶部13Bからシミュレーションに使用する数式を読み出す。 (Step S202) Operation unit 12B reads from storage unit 13B a parameter corresponding to the acquired setting information. Subsequently, the calculation unit 12B reads the mathematical expression used for the simulation from the storage unit 13B.
 以下、演算部12Bと表示部14Bは、ステップS203~S204の処理、ステップS205~S207の処理、ステップS208の処理、ステップS210~S211の処理のうち、少なくとも1つを行う。 Thereafter, the calculation unit 12B and the display unit 14B perform at least one of the processing of steps S203 to S204, the processing of steps S205 to S207, the processing of step S208, and the processing of steps S210 to S211.
 (ステップS203)演算部12Bは、設定情報、パラメータ、数式を用いて、経過時間に対する蓄電池23Bの電圧の変化を求める。処理後、演算部12Bは、ステップS204に処理を進める。
 (ステップS204)表示部14Bは、経過時間に対する蓄電池23Bの電圧の変化をグラフ化して画像情報を生成する。処理後、表示部14Bは、ステップS209に処理を進める。
(Step S203) Arithmetic unit 12B obtains a change in voltage of storage battery 23B with respect to elapsed time using setting information, parameters, and a mathematical expression. After the processing, operation unit 12B advances the process to step S204.
(Step S204) The display unit 14B graphs change in voltage of the storage battery 23B with respect to elapsed time to generate image information. After the processing, the display unit 14B proceeds with the process to step S209.
 (ステップS205)演算部12Bは、設定情報、パラメータ、数式を用いて、電子機器25Bを駆動可能な期間を求める。処理後、演算部12Bは、ステップS206に処理を進める。
 (ステップS206)演算部12Bは、設定情報、パラメータ、数式を用いて、電子機器25Bを駆動できない期間を求める。処理後、演算部12Bは、ステップS207に処理を進める。
 (ステップS207)表示部14Bは、電子機器25Bを駆動可能な期間、電子機器25Bを駆動できない期間をグラフ化して画像情報を生成する。処理後、表示部14Bは、ステップS209に処理を進める。
(Step S205) The calculation unit 12B obtains a period in which the electronic device 25B can be driven using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12B advances the processing to step S206.
(Step S206) The calculation unit 12B obtains a period in which the electronic device 25B can not be driven, using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12B advances the processing to step S207.
(Step S207) The display unit 14B graphs the period in which the electronic device 25B can not be driven and the period in which the electronic device 25B can be driven, and generates the image information. After the processing, the display unit 14B proceeds with the process to step S209.
 (ステップS208)演算部12Bは、取得した設定情報に含まれる照度の情報を表示部14Bに出力する。なお、照度の情報には、少なくとも照度が含まれ、光照射時間が含まれている。続けて、表示部14Bは、演算部12Bが出力する照度の情報をグラフ化する。処理後、表示部14Bは、ステップS209に処理を進める。 (Step S208) Operation unit 12B outputs the information on the illuminance included in the acquired setting information to display unit 14B. The information on the illuminance includes at least the illuminance, and includes the light irradiation time. Subsequently, the display unit 14B graphs information of the illuminance output by the calculation unit 12B. After the processing, the display unit 14B proceeds with the process to step S209.
 (ステップS209)表示部14Bは、ステップS204、ステップS207、ステップS208でグラフ化されたグラフを合成する。処理後、表示部14Bは、ステップS212に処理を進める。 (Step S209) The display unit 14B combines the graph graphed in step S204, step S207, and step S208. After the processing, the display unit 14B proceeds with the process to step S212.
 (ステップS210)演算部12Bは、設定情報、パラメータ、数式を用いて、少なくとも電子機器25Bの消費電力を求める。処理後、演算部12Bは、ステップS211に処理を進める。
 (ステップS211)表示部14Bは、経過時間に対する消費電力の変化をグラフ化して画像情報を生成する。処理後、表示部14Bは、ステップS212に処理を進める。
(Step S210) The calculation unit 12B obtains at least the power consumption of the electronic device 25B using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12B advances the processing to step S211.
(Step S211) The display unit 14B graphs change in power consumption with respect to elapsed time to generate image information. After the processing, the display unit 14B proceeds with the process to step S212.
 (ステップS212)表示部14Bは、ステップS209で合成された画像、ステップS211で生成されたグラフ等の画像を更新して表示する。処理後、表示部14Bは、ステップS201に処理を戻す。 (Step S212) The display unit 14B updates and displays the image synthesized at step S209 and the image such as the graph generated at step S211. After the processing, the display unit 14B returns the processing to step S201.
 なお、上述した処理手順は一例であり、これに限られない。演算部12Bと表示部14Bは、設定部11Bによって設定された設定情報を全て使用して、経過時間に対する蓄電池23Bの電圧の変化のグラフを作成し、駆動可能な期間や駆動できない期間のグラフを作成し、経過時間に対する照度の変化のグラフを作成するようにしてもよい。
 また、演算部12Bと表示部14Bは、上述したように、単位時間あたり供給可能な電力量が平均値の場合と、単位時間あたり供給可能な電力量が最小値の場合毎に、図57の処理を行うようにしてもよい。
In addition, the processing procedure mentioned above is an example and is not restricted to this. Arithmetic unit 12B and display unit 14B use all the setting information set by setting unit 11B to create a graph of change in voltage of storage battery 23B with respect to elapsed time, and graph of drivable period and drivable period It is possible to create and create a graph of the change of the illuminance with respect to the elapsed time.
In addition, as described above, calculation unit 12B and display unit 14B are configured as shown in FIG. 57 when the amount of power that can be supplied per unit time is an average value and when the amount of power that can be supplied per unit time is a minimum value. Processing may be performed.
 なお、演算部12Bと表示部14Bは、ステップS203~S204の処理、ステップS205~S207の処理、ステップS208の処理、ステップS210~S211の処理のうち、少なくとも1つを行う例を説明したが、全ての処理を行うようにしてもよい。 In the example described above, the calculation unit 12B and the display unit 14B perform at least one of the processing of steps S203 to S204, the processing of steps S205 to S207, the processing of step S208, and the processing of steps S210 to S211. All processing may be performed.
 次に、図51の単位時間あたりの発電電力と、図52の単位時間あたりの消費電力の求め方と更新手順例を説明する。
 図58は、図51の単位時間あたりの発電電力と、図52の単位時間あたりの消費電力の求め方と更新手順を示す図である。なお、演算部12Bと表示部14Bは、以下の処理を、設定情報が更新される毎に行う。
Next, how to determine the generated power per unit time in FIG. 51 and the power consumption per unit time in FIG. 52 will be described and an example of an update procedure.
FIG. 58 is a diagram showing how to determine the generated power per unit time in FIG. 51, the power consumption per unit time in FIG. 52, and the update procedure. The calculation unit 12B and the display unit 14B perform the following process each time the setting information is updated.
 (ステップS301)演算部12Bは、利用者が設定部11Bを操作して設定、選択した設定情報を取得する。
 (ステップS302)演算部12Bは、取得した設定情報に応じたパラメータを、記憶部13Bから読み出す。続けて、演算部12Bは、記憶部13Bからシミュレーションに使用する数式を読み出す。
(Step S301) The calculation unit 12B acquires setting information selected and set by the user operating the setting unit 11B.
(Step S302) Operation unit 12B reads from storage unit 13B a parameter corresponding to the acquired setting information. Subsequently, the calculation unit 12B reads the mathematical expression used for the simulation from the storage unit 13B.
 以下、演算部12Bと表示部14Bは、ステップS303~S304の処理、ステップS305~S306の処理のうち、少なくとも1つを行う。 Thereafter, the calculation unit 12B and the display unit 14B perform at least one of the processing of steps S303 to S304 and the processing of steps S305 to S306.
 (ステップS303)演算部12Bは、設定情報、パラメータ、数式を用いて、電子機器25Bの消費電力を求める。処理後、演算部12Bは、ステップS304に処理を進める。
 (ステップS304)表示部14Bは、例えば図51のように、ステップS303で求めた消費電力をテキスト形式で表示する。処理後、表示部14Bは、ステップS301に処理を戻す。
(Step S303) The calculation unit 12B obtains the power consumption of the electronic device 25B using the setting information, the parameters, and the mathematical expression. After the processing, operation unit 12B advances the process to step S304.
(Step S304) The display unit 14B displays the power consumption obtained in step S303 in text format, as shown in FIG. 51, for example. After the processing, the display unit 14B returns the processing to step S301.
 (ステップS305)演算部12Bは、設定情報、パラメータ、数式を用いて、太陽電池21Bによって発電される発電電力を求める。処理後、演算部12Bは、ステップS306に処理を進める。
 (ステップS306)表示部14Bは、例えば図52のように、ステップS305で求めた発電電力をテキスト形式で、グラフの各項目に対応付けて表示する。処理後、表示部14Bは、ステップS301に処理を戻す。
(Step S305) The calculation unit 12B obtains the generated power generated by the solar cell 21B using the setting information, the parameters, and the formula. After the processing, operation unit 12B advances the processing to step S306.
(Step S306) For example, as shown in FIG. 52, the display unit 14B displays the generated power obtained in step S305 in the form of a text in association with each item of the graph. After the processing, the display unit 14B returns the processing to step S301.
 なお、図58に示した処理手順は一例であり、これに限られない。表示部14Bは、演算部12Bが求めた他の項目についても、テキスト形式で表示するようにしてもよい。 The processing procedure illustrated in FIG. 58 is an example, and the present invention is not limited to this. The display unit 14B may display other items obtained by the calculation unit 12B in a text format.
 なお、本発明における電力シミュレーション装置1(1A、1B)の機能の全てまたは一部を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより電力シミュレーション装置1(1A、1B)が行う処理の全てまたは一部を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。 Note that a program for realizing all or part of the functions of the power simulation apparatus 1 (1A, 1B) in the present invention is recorded in a computer readable recording medium, and the program recorded in the recording medium is a computer system May be read and executed to perform all or part of the processing performed by the power simulation apparatus 1 (1A, 1B). Here, the “computer system” includes an OS and hardware such as peripheral devices. The "computer system" also includes a WWW system provided with a homepage providing environment (or display environment). The “computer-readable recording medium” means a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in a computer system. Furthermore, the "computer-readable recording medium" is a volatile memory (RAM) in a computer system serving as a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, those that hold the program for a certain period of time are also included.
 また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。 The program may be transmitted from a computer system in which the program is stored in a storage device or the like to another computer system via a transmission medium or by transmission waves in the transmission medium. Here, the “transmission medium” for transmitting the program is a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. Further, the program may be for realizing a part of the functions described above. Furthermore, it may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形および置換を加えることができる。 As mentioned above, although the form for carrying out the present invention was explained using an embodiment, the present invention is not limited at all by such an embodiment, and various modification and substitution in the range which does not deviate from the gist of the present invention Can be added.
1,1A,1B…電力シミュレーション装置、11,11A,11B…設定部、12,12A,12B…演算部、13,13A,13B…記憶部、14,14A,14B…表示部、131,131A,131B…センサシステムの構成モデル、2,2A,2B…センサシステム、20,20A,20B…電源モジュール、24,24A,24B…一次電池、25,25A,25B…電子機器、21,21A,21B…太陽電池、22,22A,22B…電源回路、23,23A,23B…蓄電池、221,221A,221B…昇圧回路、222,222A,222B…降圧回路 1, 1A, 1B: power simulation apparatus, 11, 11A, 11B: setting unit, 12, 12A, 12B: arithmetic unit, 13, 13A, 13B: storage unit 14, 14, 14A, 14B: display unit, 131, 131A, 131B: Configuration model of sensor system, 2, 2A, 2B: Sensor system, 20, 20A, 20B: Power supply module, 24, 24A, 24B: Primary battery, 25, 25A, 25B: Electronic device, 21, 21A, 21B ... Solar cell 22, 22, 22A, 22B: power supply circuit 23, 23, 23A, 23B: storage battery 21, 221A, 221B: boost circuit, 222, 222A, 222B: step-down circuit

Claims (29)

  1.  太陽電池と電源回路と蓄電池と負荷回路を含むセンサシステムの電力のシミュレーションを行う電力シミュレーション装置であって、
     前記太陽電池に対する照度と、前記負荷回路の動作時の消費電流と動作時間と動作間隔と、前記蓄電池の容量と、を取得する設定部と、
     前記シミュレーションに必要な数式とパラメータを記憶する記憶部と、
     経過時間に対する前記蓄電池の電圧の変化を、前記設定部によって取得された設定情報と、前記記憶部が記憶する前記数式と前記パラメータを用いて求める演算部と、
     前記演算部が求めた経過時間に対する前記蓄電池の電圧の変化をグラフ化して表示する表示部と、
     を備える電力シミュレーション装置。
    A power simulation apparatus that simulates the power of a sensor system including a solar cell, a power supply circuit, a storage battery, and a load circuit,
    A setting unit configured to obtain an illuminance on the solar cell, a consumed current at the time of operation of the load circuit, an operation time and an operation interval, and a capacity of the storage battery;
    A storage unit storing formulas and parameters necessary for the simulation;
    A calculation unit for determining a change in voltage of the storage battery with respect to an elapsed time using the setting information acquired by the setting unit, the equation stored in the storage unit, and the parameter;
    A display unit configured to graph and display a change in voltage of the storage battery with respect to an elapsed time obtained by the calculation unit;
    Power simulation apparatus comprising:
  2.  前記表示部は、前記設定部によって設定された消費電力をグラフ化して表示する、請求項1に記載の電力シミュレーション装置。 The power simulation apparatus according to claim 1, wherein the display unit graphically displays the power consumption set by the setting unit.
  3.  前記演算部は、求めた時間変化に対する前記蓄電池の電圧の変化に基づいて、前記負荷回路を駆動可能な期間および前記負荷回路を駆動できない期間のうち少なくとも1つを求め、
     前記表示部は、前記演算部が求めた前記負荷回路を駆動可能な期間および前記負荷回路を駆動できない期間のうち少なくとも1つを、グラフ化した前記蓄電池の電圧の変化に関連付けて表示する、請求項1または請求項2に記載の電力シミュレーション装置。
    The calculation unit determines at least one of a period in which the load circuit can be driven and a period in which the load circuit can not be driven, based on a change in voltage of the storage battery with respect to a determined time change.
    The display unit displays at least one of a period in which the load circuit can be driven and a period in which the load circuit can not be driven determined by the calculation unit, in association with the graphed voltage change of the storage battery. The electric power simulation apparatus of Claim 1 or Claim 2.
  4.  前記演算部は、前記太陽電池に単位時間に前記照度が照射される時間をさらに用いて、経過時間に対する前記蓄電池の電圧の変化を求める、請求項1から請求項3のいずれか1項に記載の電力シミュレーション装置。 The calculation unit according to any one of claims 1 to 3, wherein a change in voltage of the storage battery with respect to an elapsed time is obtained by further using a time during which the illuminance is irradiated to the solar cell per unit time. Power simulation equipment.
  5.  前記表示部は、
     前記太陽電池に対して光が照射されている期間をグラフ化し、グラフ化した前記蓄電池の電圧の変化に関連付けて表示する、請求項4に記載の電力シミュレーション装置。
    The display unit is
    The power simulation apparatus according to claim 4, wherein a period during which light is irradiated to the solar cell is graphed, and is displayed in association with the graphed voltage change of the storage battery.
  6.  前記演算部は、前記負荷回路の動作時の待機時の消費電流をさらに用いて、経過時間に対する前記蓄電池の電圧の変化を求める、請求項1から請求項5のいずれか1項に記載の電力シミュレーション装置。 The electric power according to any one of claims 1 to 5, wherein the operation unit further calculates a change in voltage of the storage battery with respect to an elapsed time by further using a consumption current at the time of standby of the operation of the load circuit. Simulation equipment.
  7.  前記演算部は、前記蓄電池の自己放電電流をさらに用いて、経過時間に対する前記蓄電池の電圧の変化を求める、請求項1から請求項6のいずれか1項に記載の電力シミュレーション装置。 The electric power simulation apparatus according to any one of claims 1 to 6, wherein the calculation unit further uses a self discharge current of the storage battery to obtain a change in voltage of the storage battery with respect to an elapsed time.
  8.  前記演算部は、前記負荷回路の動作電圧をさらに用いて、経過時間に対する前記蓄電池の電圧の変化を求める、請求項1から請求項7のいずれか1項に記載の電力シミュレーション装置。 The electric power simulation apparatus according to any one of claims 1 to 7, wherein the calculation unit further calculates a change in voltage of the storage battery with respect to an elapsed time by further using an operating voltage of the load circuit.
  9.  前記演算部は、前記設定部によって設定された情報に基づいて、前記記憶部が記憶するパラメータを参照して、前記蓄電池の上限電圧および下限電圧のうち少なくとも1つを読み出し、
     前記表示部は、前記演算部が読み出した前記蓄電池の上限電圧および下限電圧のうち少なくとも1つを、グラフ化した前記蓄電池の電圧の変化に関連付けて表示する、請求項1から請求項8のいずれか1項に記載の電力シミュレーション装置。
    The calculation unit reads at least one of the upper limit voltage and the lower limit voltage of the storage battery with reference to the parameter stored in the storage unit based on the information set by the setting unit.
    9. The display device according to claim 1, wherein at least one of the upper limit voltage and the lower limit voltage of the storage battery read by the calculation unit is displayed in association with the graphed voltage change of the storage battery. The power simulation apparatus according to any one of the items 1 to 4.
  10.  前記演算部は、前記電源回路が有する昇圧回路の変換効率と消費電力と、前記電源回路が有する降圧回路の変換効率と消費電力とをさらに用いて、経過時間に対する前記蓄電池の電圧の変化を求める、請求項1から請求項9のいずれか1項に記載の電力シミュレーション装置。 The calculation unit further determines a change in voltage of the storage battery with respect to an elapsed time by further using the conversion efficiency and power consumption of the booster circuit included in the power supply circuit and the conversion efficiency and power consumption of the step-down circuit included in the power supply circuit. The power simulation apparatus according to any one of claims 1 to 9.
  11.  太陽電池と電源回路と蓄電池と負荷回路とセンサシステムの電力のシミュレーションに必要な数式とパラメータを記憶する記憶部を含み、前記シミュレーションを行う電力シミュレーション装置における電力シミュレーション方法であって、
     設定部が、前記太陽電池に対する照度と、前記負荷回路の動作時の消費電流と動作時間と動作間隔と、前記蓄電池の容量と、を取得する設定手順と、
     演算部が、経過時間に対する前記蓄電池の電圧の変化を、前記設定手順によって取得された設定情報と、前記記憶部が記憶する前記数式と前記パラメータを用いて求める演算手順と、
     表示部が、前記演算手順によって求められた経過時間に対する前記蓄電池の電圧の変化をグラフ化して表示する表示手順と、
     含む電力シミュレーション方法。
    A power simulation method in a power simulation apparatus that includes the solar battery, a power supply circuit, a storage battery, a load circuit, and a storage unit that stores formulas and parameters necessary for simulation of power of a sensor system, and performs the simulation.
    A setting procedure in which a setting unit acquires illuminance on the solar cell, current consumption during operation of the load circuit, operation time and operation interval, and capacity of the storage battery;
    An operation procedure for obtaining a change in voltage of the storage battery with respect to an elapsed time using setting information acquired by the setting procedure, the equation stored in the storage unit, and the parameter;
    A display procedure in which a display unit graphically displays a change in voltage of the storage battery with respect to an elapsed time obtained by the calculation procedure;
    Power simulation method.
  12.  太陽電池と電源回路と蓄電池と負荷回路を含むセンサシステムの電力のシミュレーションを行う電力シミュレーション装置であって、
     前記太陽電池に対する照度と、前記負荷回路の動作時の消費電流と動作時間と動作間隔と、前記蓄電池の容量と、を表示部が表示するポインタ画像の操作に基づいて取得する設定部と、
     前記シミュレーションに必要な数式とパラメータを記憶する記憶部と、
     経過時間に対する前記蓄電池の電圧の変化を、前記設定部によって取得された設定情報と、前記記憶部が記憶する前記数式と前記パラメータを用いて求める演算部と、
     前記演算部が求めた経過時間に対する前記蓄電池の電圧の変化をグラフ化して表示し、前記グラフ化した表示を変更するポインタ画像を表示する表示部と、
     を備える電力シミュレーション装置。
    A power simulation apparatus that simulates the power of a sensor system including a solar cell, a power supply circuit, a storage battery, and a load circuit,
    A setting unit configured to obtain, based on an operation of a pointer image displayed by a display unit, the illuminance on the solar cell, the consumption current at the time of operation of the load circuit, the operation time, the operation interval, and the capacity of the storage battery;
    A storage unit storing formulas and parameters necessary for the simulation;
    A calculation unit for determining a change in voltage of the storage battery with respect to an elapsed time using the setting information acquired by the setting unit, the equation stored in the storage unit, and the parameter;
    A display unit for displaying a graph of changes in the voltage of the storage battery with respect to the elapsed time obtained by the calculation unit and displaying a pointer image for changing the graphed display;
    Power simulation apparatus comprising:
  13.  前記表示部は、前記ポインタ画像が操作された結果に基づいて、前記経過時間に対する前記蓄電池の電圧の変化のグラフを変更する、請求項12に記載の電力シミュレーション装置。 The power simulation apparatus according to claim 12, wherein the display unit changes a graph of a change in voltage of the storage battery with respect to the elapsed time based on a result of operating the pointer image.
  14.  前記表示部は、前記設定部によって設定された消費電力をグラフ化して表示し、
     前記設定部は、前記ポインタ画像が操作された結果に基づいて、前記消費電力のグラフを変更する、請求項12または請求項13に記載の電力シミュレーション装置。
    The display unit graphs and displays the power consumption set by the setting unit.
    The power simulation apparatus according to claim 12, wherein the setting unit changes the graph of the power consumption based on a result of operating the pointer image.
  15.  前記設定部は、前記ポインタ画像が操作された結果に基づいて、前記太陽電池に照射される単位時間あたりの照射時間を取得し、取得した前記単位時間あたりの照射時間に基づいて、前記消費電力のグラフを変更する、請求項14に記載の電力シミュレーション装置。 The setting unit acquires the irradiation time per unit time irradiated to the solar cell based on the result of the operation of the pointer image, and the power consumption based on the acquired irradiation time per unit time The power simulation apparatus according to claim 14, which changes the graph of.
  16.  前記設定部は、前記ポインタ画像が操作された結果に基づいて、前記負荷回路の待機電流を取得し、取得した前記待機電流に基づいて、前記消費電力のグラフを変更する、請求項14または請求項15に記載の電力シミュレーション装置。 The setting unit acquires a standby current of the load circuit based on a result of manipulating the pointer image, and changes the graph of the power consumption based on the acquired standby current. The power simulation device according to Item 15.
  17.  前記設定部は、前記ポインタ画像が操作された結果に基づいて、前記負荷回路の動作電流を取得し、取得した前記動作電流に基づいて、前記消費電力のグラフを変更する、請求項14から請求項16のいずれか1項に記載の電力シミュレーション装置。 15. The apparatus according to claim 14, wherein the setting unit acquires an operating current of the load circuit based on a result of manipulating the pointer image, and changes a graph of the power consumption based on the acquired operating current. The electric power simulation apparatus of any one of claim 16.
  18.  前記設定部は、前記ポインタ画像が操作された結果に基づいて、前記蓄電池の上限電圧または下限電圧を取得し、取得した前記上限電圧または前記下限電圧に基づいて、前記経過時間に対する前記蓄電池の電圧の変化のグラフを変更する、請求項12から請求項17のいずれか1項に記載の電力シミュレーション装置。 The setting unit acquires an upper limit voltage or a lower limit voltage of the storage battery based on a result of operating the pointer image, and based on the acquired upper limit voltage or the lower limit voltage, a voltage of the storage battery with respect to the elapsed time The power simulation apparatus according to any one of claims 12 to 17, wherein a graph of change of is changed.
  19.  太陽電池と電源回路と蓄電池と負荷回路とセンサシステムの電力のシミュレーションに必要な数式とパラメータを記憶する記憶部を含み、前記シミュレーションを行う電力シミュレーション装置における電力シミュレーション方法であって、
     設定部が、前記太陽電池に対する照度と、前記負荷回路の動作時の消費電流と動作時間と動作間隔と、前記蓄電池の容量と、を取得する設定手順と、
     演算部が、経過時間に対する前記蓄電池の電圧の変化を、前記設定手順によって取得された設定情報と、前記記憶部が記憶する前記数式と前記パラメータを用いて求める演算手順と、
     表示部が、前記演算手順が求めた経過時間に対する前記蓄電池の電圧の変化をグラフ化して表示し、前記グラフ化した表示を変更するポインタ画像を表示する表示手順と、
     前記設定部が、表示部ポインタ画像が操作された結果を取得する手順と、
     前記表示部が、前記ポインタ画像が操作された結果に基づいて、前記経過時間に対する前記蓄電池の電圧の変化のグラフを変更する表示変更手順と、
     含む電力シミュレーション方法。
    A power simulation method in a power simulation apparatus that includes the solar battery, a power supply circuit, a storage battery, a load circuit, and a storage unit that stores formulas and parameters necessary for simulation of power of a sensor system, and performs the simulation.
    A setting procedure in which a setting unit acquires illuminance on the solar cell, current consumption during operation of the load circuit, operation time and operation interval, and capacity of the storage battery;
    An operation procedure for obtaining a change in voltage of the storage battery with respect to an elapsed time using setting information acquired by the setting procedure, the equation stored in the storage unit, and the parameter;
    A display procedure for displaying a graph of a change in voltage of the storage battery with respect to an elapsed time obtained by the calculation procedure and displaying a pointer image for changing the graphed display;
    A procedure in which the setting unit obtains a result of an operation on the display unit pointer image;
    A display change procedure of changing the graph of the change in voltage of the storage battery with respect to the elapsed time based on the result of the operation of the pointer image by the display unit;
    Power simulation method.
  20.  太陽電池と電源回路と蓄電池と負荷回路を含むセンサシステムの電力のシミュレーションを行う電力シミュレーション装置であって、
     前記太陽電池に対する照度を示す情報と、前記負荷回路の動作時の消費電流を示す情報と、前記負荷回路の動作時間を示す情報と、前記負荷回路の動作時の動作間隔を示す情報と、を取得する設定部と、
     前記シミュレーションに必要な数式とパラメータを記憶する記憶部と、
     前記設定部によって取得された設定情報と、前記記憶部が記憶する前記数式と前記パラメータを用いて、前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求める演算部と、
     前記演算部が求めた単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力とを、テキスト形式で表示する表示部と、
     を備える電力シミュレーション装置。
    A power simulation apparatus that simulates the power of a sensor system including a solar cell, a power supply circuit, a storage battery, and a load circuit,
    Information indicating illuminance on the solar cell, information indicating current consumption at the time of operation of the load circuit, information indicating an operation time of the load circuit, and information indicating an operation interval at operation of the load circuit Setting part to acquire,
    A storage unit storing formulas and parameters necessary for the simulation;
    The generated power per unit time generated by the solar cell using the setting information acquired by the setting unit, the equation stored in the storage unit, and the parameter, and the consumption per unit time of the load circuit An operation unit for obtaining electric power;
    A display unit for displaying the generated power per unit time determined by the calculation unit and the power consumption per unit time of the load circuit in a text format;
    Power simulation apparatus comprising:
  21.  前記演算部は、前記設定情報が更新された際、更新された設定情報を用いて、前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を再度求め、
     前記表示部は、前記演算部が再度求めた単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力とを、更新してテキスト形式で表示する、請求項20に記載の電力シミュレーション装置。
    When the setting information is updated, the calculation unit uses the updated setting information to generate the generated power per unit time generated by the solar cell, and the power consumption per unit time of the load circuit. Ask again,
    21. The power simulation according to claim 20, wherein the display unit updates and displays the generated power per unit time obtained again by the calculation unit and the power consumption per unit time of the load circuit in a text format. apparatus.
  22.  前記設定部は、前記太陽電池に照射される単位時間あたりの照射時間を示す情報を取得し、
     前記演算部は、前記単位時間あたりの照射時間も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求める、請求項20または請求項21に記載の電力シミュレーション装置。
    The setting unit acquires information indicating an irradiation time per unit time irradiated to the solar cell,
    21. The computing unit according to claim 20 or claim 20, wherein the generated power per unit time generated by the solar cell and the power consumption per unit time of the load circuit are calculated using also the irradiation time per unit time. The power simulation device according to Item 21.
  23.  前記設定部は、前記負荷回路の待機電流を示す情報を取得し、
     前記演算部は、前記待機電流も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求める、請求項20から請求項22のいずれか1項に記載の電力シミュレーション装置。
    The setting unit acquires information indicating a standby current of the load circuit,
    The said calculating part calculates | requires the generated electric power per unit time electric power generated by the said solar cell also using the said standby current, and the power consumption per unit time of the said load circuit. The power simulation apparatus according to any one of the items 1 to 4.
  24.  前記設定部は、前記負荷回路の動作時の動作電流を示す情報を取得し、
     前記演算部は、前記動作電流も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求める、請求項20から請求項23のいずれか1項に記載の電力シミュレーション装置。
    The setting unit acquires information indicating an operating current when the load circuit operates.
    24. The computing unit according to any one of claims 20 to 23, wherein the operation unit also obtains the generated power per unit time generated by the solar cell and the power consumption per unit time of the load circuit using the operating current. The power simulation apparatus according to any one of the items 1 to 4.
  25.  前記設定部は、前記蓄電池の容量を示す情報と、前記蓄電池の上限電流を示す情報と、前記蓄電池の下限電流を示す情報を取得し、
     前記演算部は、前記容量と前記上限電流と前記下限電流も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求める、請求項20から請求項24のいずれか1項に記載の電力シミュレーション装置。
    The setting unit acquires information indicating a capacity of the storage battery, information indicating an upper limit current of the storage battery, and information indicating a lower limit current of the storage battery,
    The calculation unit obtains the generated power per unit time generated by the solar cell and the power consumption per unit time of the load circuit using also the capacity, the upper limit current, and the lower limit current. The power simulation apparatus according to any one of claims 20 to 24.
  26.  前記設定部は、前記電源回路の変換効率を示す情報を取得し、
     前記演算部は、前記変換効率も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求める、請求項20から請求項25のいずれか1項に記載の電力シミュレーション装置。
    The setting unit acquires information indicating conversion efficiency of the power supply circuit;
    26. The computing unit according to any one of claims 20 to 25, wherein the generated power per unit time generated by the solar cell and the power consumption per unit time of the load circuit are also calculated using the conversion efficiency. The power simulation apparatus according to any one of the items 1 to 4.
  27.  前記設定部は、前記電源回路の消費電力を示す情報を取得し、
     前記演算部は、前記電源回路の消費電力も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求める、請求項20から請求項26のいずれか1項に記載の電力シミュレーション装置。
    The setting unit acquires information indicating power consumption of the power supply circuit;
    21. The apparatus according to claim 20, wherein said calculation unit also uses the power consumption of said power supply circuit to determine the generated power per unit time generated by said solar cell and the power consumption per unit time of said load circuit. 26. The power simulation device according to any one of 26.
  28.  前記設定部は、前記太陽電池の特性に関する情報を取得し、
     前記演算部は、前記太陽電池の特性に関する情報も用いて前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求める、請求項20から請求項27のいずれか1項に記載の電力シミュレーション装置。
    The setting unit acquires information on characteristics of the solar cell,
    21. The electric power generation unit according to claim 20, wherein the calculation unit obtains the generated power per unit time generated by the solar cell and the power consumption per unit time of the load circuit also using information on characteristics of the solar cell. Item 28. A power simulation apparatus according to any one of items 27.
  29.  太陽電池と電源回路と蓄電池と負荷回路とセンサシステムの電力のシミュレーションに必要な数式とパラメータを記憶する記憶部を含み、前記シミュレーションを行う電力シミュレーション装置における電力シミュレーション方法であって、
     設定部が、前記太陽電池に対する照度を示す情報と、前記負荷回路の動作時の消費電流を示す情報と、前記負荷回路の動作時間を示す情報と、前記負荷回路の動作時の動作間隔を示す情報と、を取得する設定手順と、
     演算部が、前記設定部によって取得された設定情報と、前記記憶部が記憶する前記数式と前記パラメータを用いて、前記太陽電池による発電される単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力と、を求める演算手順と、
     表示部が、前記演算部が求めた単位時間あたりの発電電力と、前記負荷回路の単位時間あたりの消費電力とを、テキスト形式で表示する表示手順と、
     含む電力シミュレーション方法。
    A power simulation method in a power simulation apparatus that includes the solar battery, a power supply circuit, a storage battery, a load circuit, and a storage unit that stores formulas and parameters necessary for simulation of power of a sensor system, and performs the simulation.
    The setting unit indicates information indicating illuminance on the solar cell, information indicating current consumption at the time of operation of the load circuit, information indicating an operation time of the load circuit, and an operation interval at operation of the load circuit Information, and setting procedure to get,
    A calculation unit uses the setting information acquired by the setting unit, the equation stored in the storage unit, and the parameter to generate power generated per unit time by the solar cell, and a unit of the load circuit. Arithmetic procedure to find the power consumption per hour,
    A display procedure in which a display unit displays generated power per unit time determined by the calculation unit and power consumption per unit time of the load circuit in a text format;
    Power simulation method.
PCT/JP2019/000020 2018-01-05 2019-01-04 Power simulation device and power simulation method WO2019135410A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018000571A JP2019122153A (en) 2018-01-05 2018-01-05 Power simulation apparatus and power simulation method
JP2018-000569 2018-01-05
JP2018-000570 2018-01-05
JP2018000570A JP2019122152A (en) 2018-01-05 2018-01-05 Power simulation apparatus and power simulation method
JP2018000569A JP2019122151A (en) 2018-01-05 2018-01-05 Power simulation apparatus and power simulation method
JP2018-000571 2018-01-05

Publications (1)

Publication Number Publication Date
WO2019135410A1 true WO2019135410A1 (en) 2019-07-11

Family

ID=67144194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000020 WO2019135410A1 (en) 2018-01-05 2019-01-04 Power simulation device and power simulation method

Country Status (1)

Country Link
WO (1) WO2019135410A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025629A (en) * 2000-07-04 2002-01-25 Fuji Heavy Ind Ltd Remainder monitor for secondary battery
JP2003018763A (en) * 2001-06-27 2003-01-17 Nippon Telegr & Teleph Corp <Ntt> Energy prediction method in solar power generation
JP2005012916A (en) * 2003-06-19 2005-01-13 Tm T & D Kk Power system monitor control system
JP2005278335A (en) * 2004-03-25 2005-10-06 Toshiba Corp Support system for creating operation program of power consignment and support program for creating operation program of power consignment
JP2008141918A (en) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> Device, method, and program for evaluating photovoltaic power generation system
JP2013027163A (en) * 2011-07-21 2013-02-04 Sanyo Electric Co Ltd Battery charge plan support system
WO2015046320A1 (en) * 2013-09-27 2015-04-02 積水化学工業株式会社 Home energy management system and hone energy management method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025629A (en) * 2000-07-04 2002-01-25 Fuji Heavy Ind Ltd Remainder monitor for secondary battery
JP2003018763A (en) * 2001-06-27 2003-01-17 Nippon Telegr & Teleph Corp <Ntt> Energy prediction method in solar power generation
JP2005012916A (en) * 2003-06-19 2005-01-13 Tm T & D Kk Power system monitor control system
JP2005278335A (en) * 2004-03-25 2005-10-06 Toshiba Corp Support system for creating operation program of power consignment and support program for creating operation program of power consignment
JP2008141918A (en) * 2006-12-05 2008-06-19 Nippon Telegr & Teleph Corp <Ntt> Device, method, and program for evaluating photovoltaic power generation system
JP2013027163A (en) * 2011-07-21 2013-02-04 Sanyo Electric Co Ltd Battery charge plan support system
WO2015046320A1 (en) * 2013-09-27 2015-04-02 積水化学工業株式会社 Home energy management system and hone energy management method

Similar Documents

Publication Publication Date Title
US10394302B2 (en) Self-service equipment energy saving control method and device
KR101610008B1 (en) Power supplying apparatus and display apparatus including the same
Marshiana et al. Footstep power production using piezoelectric sensors
Singh et al. Accurate power-sharing, voltage regulation, and SOC regulation for LVDC microgrid with hybrid energy storage system using artificial neural network
WO2019135410A1 (en) Power simulation device and power simulation method
JP2004265000A (en) Electronic device and power supply setting method for the same
JP2019122153A (en) Power simulation apparatus and power simulation method
JP2019122152A (en) Power simulation apparatus and power simulation method
JP2019122151A (en) Power simulation apparatus and power simulation method
US9265124B2 (en) Electronic device and control method thereof
US8982675B2 (en) Power supply unit and electronic timepiece
JP2021012662A (en) Electric power simulation device and electric power simulation method
JP2012251945A (en) Electronic apparatus, electronic clock and program
JP2021012661A (en) Electric power simulation device and electric power simulation method
JP2021012663A (en) Electric power simulation device and electric power simulation method
Nehani et al. An energy neutral wearable camera with EPD display
JP2019033597A (en) Electric power supply and control method of the same
JP2014131384A (en) Power generation amount prediction result display device, power generation amount prediction result display method, and power generation amount prediction result display program
Leng et al. Dynamics and stabilization of peak current-mode controlled buck converter with constant current load
Drumea et al. Modelling and simulation of datalogging embedded module with solar panel supply and NiMH battery energy storage
WO2016031395A1 (en) Electronic device and control method
Ketter et al. Use of DigiSim to model cyclic voltammetric and photonic responses in electrogenerated chemiluminescent systems
Sezen et al. Visual Re-Initialization Model Development Methodology for Solving Problems Regarding Metaheuristic Algorithm-Based MPPT Applications
CN103019409B (en) Based on characters input method and the device of surround lighting
US20140082379A1 (en) Powering a display controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19735817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19735817

Country of ref document: EP

Kind code of ref document: A1