WO2019135350A1 - Liquid crystal composition and liquid crystal display element - Google Patents

Liquid crystal composition and liquid crystal display element Download PDF

Info

Publication number
WO2019135350A1
WO2019135350A1 PCT/JP2018/046319 JP2018046319W WO2019135350A1 WO 2019135350 A1 WO2019135350 A1 WO 2019135350A1 JP 2018046319 W JP2018046319 W JP 2018046319W WO 2019135350 A1 WO2019135350 A1 WO 2019135350A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
carbons
compound
composition
hydrogen
Prior art date
Application number
PCT/JP2018/046319
Other languages
French (fr)
Japanese (ja)
Inventor
千佳子 鵜野
好優 古里
木村 敬二
瑛治 清水
Original Assignee
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jnc石油化学株式会社 filed Critical Jnc株式会社
Priority to JP2019563959A priority Critical patent/JP7205496B2/en
Publication of WO2019135350A1 publication Critical patent/WO2019135350A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to a liquid crystal composition, a liquid crystal display element containing the composition, and the like.
  • the present invention relates to a liquid crystal composition having a negative dielectric anisotropy, and a liquid crystal display device containing the composition and having a mode such as IPS, VA, FFS, or FPA.
  • phase change PC
  • TN twisted nematic
  • STN super twisted nematic
  • EOB electrically controlled birefringence
  • OCB optically compensated bend
  • IPS modes are modes such as (in-plane switching), VA (vertical alignment), FFS (fringe field switching), and FPA (field-induced photo-reactive alignment).
  • PM passive matrix
  • AM active matrix
  • PM is classified into static, multiplex, etc.
  • AM is classified into thin film transistor (TFT), metal insulator metal (MIM), etc.
  • TFT thin film transistor
  • MIM metal insulator metal
  • the classification of TFT is amorphous silicon and polycrystal silicon. The latter are classified into high temperature type and low temperature type according to the manufacturing process.
  • Source based classifications are reflective based on natural light, transmissive based on back light, and semi-transmissive based on both natural light and back light.
  • the liquid crystal display element contains a liquid crystal composition having a nematic phase.
  • This composition has suitable properties. By improving the properties of this composition, an AM element having good properties can be obtained.
  • the associations in these properties are summarized in Table 1 below. The characteristics of the composition will be further described based on commercially available AM devices.
  • the temperature range of the nematic phase is related to the usable temperature range of the device.
  • the preferred upper temperature limit of the nematic phase is about 70 ° C. or higher, and the preferred lower temperature limit of the nematic phase is about -10 ° C. or lower.
  • the viscosity of the composition is related to the response time of the device. Short response times are preferred for displaying motion pictures on the device. Even shorter response times of 1 millisecond are desirable.
  • the elastic constant of the composition is related to the contrast ratio of the device. In order to increase the contrast ratio in the device, a large elastic constant in the composition is more preferred.
  • the optical anisotropy of the composition is related to the contrast ratio of the device.
  • a large or small optical anisotropy ie a suitable optical anisotropy
  • the product ( ⁇ n ⁇ d) of the optical anisotropy ( ⁇ n) of the composition and the cell gap (d) of the device is designed to maximize the contrast ratio.
  • the appropriate value of the product depends on the type of operating mode. This value is in the range of about 0.30 ⁇ m to about 0.40 ⁇ m in the VA mode device and in the range of about 0.20 ⁇ m to about 0.30 ⁇ m in the IPS mode or FFS mode device. In these cases, compositions with large optical anisotropy are preferred for small cell gap devices.
  • the large dielectric anisotropy in the composition contributes to low threshold voltage, low power consumption and high contrast ratio in the device. Therefore, large dielectric anisotropy is preferred.
  • the large resistivity in the composition contributes to a large voltage holding ratio and a large contrast ratio in the device. Therefore, a composition having a large specific resistance at the initial stage is preferred. After prolonged use, compositions having high specific resistance are preferred.
  • the stability of the composition to ultraviolet light and heat is related to the lifetime of the device. When this stability is high, the lifetime of the device is long. Such characteristics are preferable for an AM element used for a liquid crystal monitor, a liquid crystal television or the like.
  • a polymer sustained alignment (PSA) type liquid crystal display device In a general-purpose liquid crystal display device, vertical alignment of liquid crystal molecules is achieved by a specific polyimide alignment film.
  • PSA polymer sustained alignment
  • a polymer is combined with an alignment film.
  • a composition to which a small amount of a polymerizable compound is added is injected into the device.
  • the composition is irradiated with ultraviolet light while applying a voltage between the substrates of the device.
  • the polymerizable compound polymerizes to form a polymer network in the composition.
  • the polymer can control the alignment of liquid crystal molecules, thereby reducing the response time of the device and improving the image sticking.
  • Such an effect of the polymer can be expected to devices having modes such as TN, ECB, OCB, IPS, VA, FFS, and FPA.
  • a liquid crystal composition containing a polymer and a polar compound is used.
  • a composition to which a small amount of polymerizable compound and a small amount of polar compound are added is injected into the device.
  • the polar compound is adsorbed on the substrate surface of the device and arranged.
  • the liquid crystal molecules are oriented according to this arrangement.
  • the composition is irradiated with ultraviolet light while applying a voltage between the substrates of the device.
  • the polymerizable compound is polymerized to stabilize the alignment of liquid crystal molecules.
  • this composition it is possible to control the alignment of liquid crystal molecules by the polymer and the polar compound, so that the response time of the device is shortened and the image sticking is improved. Furthermore, in the element having no alignment film, the process of forming the alignment film is unnecessary. Since there is no alignment film, the interaction between the alignment film and the composition does not lower the electrical resistance of the device.
  • Such an effect of the combination of a polymer and a polar compound can be expected for devices having modes such as TN, ECB, OCB, IPS, VA, FFS, and FPA.
  • an AM device having a TN mode a composition having positive dielectric anisotropy is used.
  • a composition having negative dielectric anisotropy is used.
  • an AM device having an IPS mode or an FFS mode a composition having positive or negative dielectric anisotropy is used.
  • a composition having positive or negative dielectric anisotropy is used in a polymer-supported oriented AM element.
  • a composition having positive or negative dielectric anisotropy is used in an element having no alignment film.
  • a composition having positive or negative dielectric anisotropy is used.
  • Problems of the present invention include: high upper limit temperature of nematic phase, lower lower limit temperature of nematic phase, small viscosity, appropriate optical anisotropy, large negative dielectric anisotropy, large specific resistance, high stability to ultraviolet light, thermal It is to provide a liquid crystal composition satisfying at least one of the high stability, the large elastic constant, and the like. Another object is to provide a liquid crystal composition having a proper balance between at least two of these properties. Another object is to provide a liquid crystal display device containing such a composition. Another object is to provide an AM device having characteristics such as short response time, large voltage holding ratio, low threshold voltage, large contrast ratio, and long lifetime.
  • the present invention relates to a liquid crystal composition having a property, and a liquid crystal display device containing the composition.
  • the present invention also relates to a liquid crystal composition having a nematic phase and negative dielectric anisotropy, and a liquid crystal display device containing the composition.
  • R 1 and R 2 each represent alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, at least one hydrogen Is C 1-12 alkyl substituted with fluorine or chlorine, or C 2-12 alkenyl in which at least one hydrogen is substituted by fluorine or chlorine.
  • the advantages of the present invention are: high upper limit temperature of nematic phase, lower lower limit temperature of nematic phase, small viscosity, suitable optical anisotropy, large negative dielectric anisotropy, large specific resistance, high stability to ultraviolet light, thermal It is to provide a liquid crystal composition satisfying at least one of the high stability, the large elastic constant, and the like. Another advantage is to provide a liquid crystal composition having a suitable balance between at least two of these properties. Another advantage is to provide a liquid crystal display device containing such a composition. Another advantage is to provide an AM device having characteristics such as short response time, large voltage holding ratio, low threshold voltage, large contrast ratio, and long lifetime.
  • liquid crystal composition and “liquid crystal display element” may be abbreviated as “composition” and “element”, respectively.
  • “Liquid crystal display element” is a generic term for liquid crystal display panels and liquid crystal display modules.
  • the “liquid crystal compound” is a compound having a liquid crystal phase such as a nematic phase or a smectic phase and has no liquid crystal phase, but for the purpose of adjusting properties such as temperature range of the nematic phase, viscosity and dielectric anisotropy. It is a general term for compounds mixed in a composition.
  • This compound has, for example, a six-membered ring such as 1,4-cyclohexylene or 1,4-phenylene, and its molecule (liquid crystal molecule) is rod like.
  • the "polymerizable compound” is a compound to be added for the purpose of forming a polymer in the composition. Liquid crystal compounds having alkenyl are not classified as polymerizable compounds in that sense.
  • the liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds. Additives such as optically active compounds and polymerizable compounds are added to the liquid crystal composition as needed.
  • the proportion of the liquid crystal compound is represented by mass percentage (mass%) based on the mass of the liquid crystal composition not including the additive even when the additive is added.
  • the proportion of the additive is represented by mass percentage (mass%) based on the mass of the liquid crystal composition containing no additive. That is, the proportions of the liquid crystal compound and the additive are calculated based on the total mass of the liquid crystal compound. Parts per million (ppm) by mass may be used.
  • the proportions of the polymerization initiator and the polymerization inhibitor are exceptionally expressed based on the weight of the polymerizable compound.
  • the “upper limit temperature of the nematic phase” may be abbreviated as the “upper limit temperature”.
  • the “lower limit temperature of the nematic phase” may be abbreviated as the “lower limit temperature”.
  • the expression "increase the dielectric anisotropy” means that in the case of a composition having a positive dielectric anisotropy, the value increases positively, and a composition having a negative dielectric anisotropy. In the case of goods, it means that the value increases negatively.
  • the "high voltage holding ratio” means that the device has a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit at the initial stage, and after a long period of use it shows a large voltage not only at room temperature but also at a temperature close to the upper limit. It means having a retention rate.
  • the characteristics of the composition or the device may be examined by a time-dependent change test.
  • Formula (1z) is taken as an example. At least one compound selected from the compounds represented by formula (1z) may be abbreviated as “compound (1z)”.
  • the “compound (1z)” means one compound represented by the formula (1z), a mixture of two compounds, or a mixture of three or more compounds. The same applies to compounds represented by other formulas.
  • the expression "at least one compound selected from compounds represented by the formula (1z) and the formula (2z)” means at least one compound selected from the group of the compound (1z) and the compound (2z) .
  • Ra and Rb is alkyl, alkoxy or alkenyl
  • Ra and Rb are independently selected from the group of alkyl, alkoxy and alkenyl. That is, the group represented by Ra and the group represented by Rb may be the same or different.
  • This rule is also applied when the symbol of Ra is used for a plurality of compounds. This rule also applies when multiple Ras are used in one compound.
  • symbols of ⁇ and ⁇ surrounded by a hexagon correspond to the ring ⁇ and the ring ⁇ , respectively, and represent a ring such as a 6-membered ring or a fused ring.
  • the index 'x' is 2, two rings ⁇ are present.
  • the two groups represented by the two rings ⁇ may be identical or different.
  • This rule applies to any two rings ⁇ when the index 'x' is greater than two.
  • the oblique lines crossing one side of the ring ⁇ indicate that any hydrogen on the ring ⁇ may be replaced with a substituent (—Sp—P).
  • the index 'y' indicates the number of substituted substituents. There is no such substitution when the index 'y' is zero.
  • a plurality of substituents (-Sp-P) are present on the ring ⁇ .
  • the rule "may be identical or different" applies also if the compounds have identical substituents.
  • the expression "at least one 'A'” means that the number of 'A' is arbitrary.
  • the expression "at least one -CH 2- may be replaced by -O-" may be used. In this case, -CH 2 -CH 2 -CH 2 -may be converted to -O-CH 2 -O- by replacing non-adjacent -CH 2 -with -O-. However, adjacent -CH 2- is not replaced by -O-. This replacement is because -OO-CH 2- (peroxide) is formed.
  • the alkyl of the liquid crystal compound is linear or branched and does not contain cyclic alkyl. Linear alkyls are preferred over branched alkyls. The same is true for end groups such as alkoxy and alkenyl.
  • the configuration of 1,4-cyclohexylene is preferably trans rather than cis in order to increase the maximum temperature. Because 2-fluoro-1,4-phenylene is left-right asymmetrical, there are left (L) and right (R) orientations.
  • divalent groups such as tetrahydropyran-2,5-diyl.
  • linking groups (-COO- or -OCO-) such as carbonyloxy.
  • the present invention includes the following items.
  • R 1 and R 2 each represent alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, at least one hydrogen Is C 1-12 alkyl substituted with fluorine or chlorine, or C 2-12 alkenyl in which at least one hydrogen is substituted by fluorine or chlorine.
  • Item 2. The liquid crystal composition according to item 1, wherein the proportion of the first component is in the range of 3% by mass to 30% by mass, and the proportion of the second component is in the range of 15% by mass to 45% by mass.
  • Item 3. The liquid crystal composition according to item 1 or 2, containing at least one compound selected from the compounds represented by formula (3) as a third component.
  • R 3 and R 4 are hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or at least Ring A and ring C are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-, wherein C 1-12 alkyl in which one hydrogen is replaced by fluorine or chlorine; Diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2, in which at least one hydrogen is replaced by fluorine or chlorine, 6-diyl, chroman-2,6-diyl, or chroma in which at least one
  • Item 4. The liquid crystal composition according to any one of items 1 to 3, containing at least one compound selected from the compounds represented by formulas (3-1) to (3-35) as a third component.
  • R 3 and R 4 each represent hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, 2 to 12 alkenyloxy, or C 1 to C 12 alkyl in which at least one hydrogen is replaced by fluorine or chlorine.
  • Item 5 The liquid crystal composition according to item 3 or 4, wherein the proportion of the third component is in the range of 30% by mass to 65% by mass.
  • Item 6. The liquid crystal composition according to any one of items 1 to 5, containing at least one compound selected from compounds represented by formula (4) as a fourth component.
  • R 5 and R 6 each represent alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, carbon in which at least one hydrogen is replaced by fluorine or chlorine.
  • ring D and ring E are 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene or 2,5-difluoro-1,4-phenylene;
  • Z 3 is a single bond, ethylene or carbonyloxy;
  • c is 1, 2, or 3 Ring D is different from ring E when c is 1.
  • Item 7. The liquid crystal composition according to any one of items 1 to 6, containing at least one compound selected from the compounds represented by formulas (4-1) to (4-11) as a fourth component.
  • R 5 and R 6 each represent alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, at least one hydrogen Is C 1-12 alkyl substituted with fluorine or chlorine, or C 2-12 alkenyl in which at least one hydrogen is substituted by fluorine or chlorine.
  • Item 8 The liquid crystal composition according to item 6 or 7, wherein the proportion of the fourth component is in the range of 3% by mass to 35% by mass.
  • Item 9. A liquid crystal display device containing the liquid crystal composition according to any one of items 1 to 8.
  • Item 10 The liquid crystal display element according to item 9, wherein an operation mode of the liquid crystal display element is an IPS mode, a VA mode, an FFS mode, or an FPA mode, and a driving method of the liquid crystal display element is an active matrix method.
  • an operation mode of the liquid crystal display element is an IPS mode, a VA mode, an FFS mode, or an FPA mode
  • a driving method of the liquid crystal display element is an active matrix method.
  • Item 11 Use of the liquid crystal composition according to any one of items 1 to 8 in a liquid crystal display device.
  • the present invention also includes the following items.
  • an additive such as an optically active compound, an antioxidant, an ultraviolet light absorber, a dye, an antifoaming agent, a polymerizable compound, a polymerization initiator, a polymerization inhibitor, and a polar compound
  • the above composition containing. (B) AM element containing the above composition.
  • PSD An AM element of polymer supported orientation (PSA) type containing the composition described above and in which the polymerizable compound in the composition is polymerized.
  • (E) A device containing the composition described above and having a mode of PC, TN, STN, ECB, OCB, IPS, VA, FFS, or FPA.
  • (F) A transmission type device containing the above composition.
  • (G) Use of the above composition as a composition having a nematic phase.
  • (H) Use of an optically active composition obtained by adding an optically active compound to the above composition.
  • composition of the present invention will be described in the following order. First, the composition of the composition will be described. Second, the main properties of the component compounds and the main effects of the compounds on the composition and the device are explained. Third, the combination of the component compounds in the composition, the preferred ratio, and the basis thereof will be described. Fourth, the preferred embodiments of the component compounds are described. Fifth, preferred component compounds are shown. Sixth, additives that may be added to the composition will be described. Seventh, the synthesis methods of the component compounds will be described. Finally, the application of the composition is described.
  • composition of the composition contains a plurality of liquid crystal compounds.
  • the composition may contain an additive.
  • the additive is an optically active compound, an antioxidant, an ultraviolet light absorber, a quencher, a pigment, an antifoaming agent, a polymerizable compound, a polymerization initiator, a polymerization inhibitor, a polar compound and the like.
  • This composition is classified into the composition A and the composition B from the viewpoint of the liquid crystal compound.
  • Composition A further contains other liquid crystal compounds, additives and the like in addition to the liquid crystal compounds selected from compound (1), compound (2), compound (3) and compound (4) It is also good.
  • the “other liquid crystal compound” is a liquid crystal compound different from the compound (1), the compound (2), the compound (3), and the compound (4). Such compounds are mixed into the composition for the purpose of further adjusting the properties.
  • composition B substantially consists only of the liquid crystal compound selected from the compound (1), the compound (2), the compound (3), and the compound (4).
  • the term "substantially” means that composition B may contain an additive, but does not contain any other liquid crystal compound.
  • Composition B has a smaller number of components than composition A.
  • Composition B is preferable to composition A in terms of cost reduction.
  • Composition A is preferable to composition B from the viewpoint that the characteristics can be further adjusted by mixing other liquid crystal compounds.
  • the main properties of the component compounds and the main effects of the compounds on the composition are explained.
  • the main properties of the component compounds are summarized in Table 2 based on the effects of the present invention.
  • L means large or high, M medium, and S small or low.
  • L, M, S are classifications based on qualitative comparisons among the component compounds, and the symbol 0 (zero) means smaller than S (small).
  • Compound (1) and compound (2) lower the lower limit temperature and lower the viscosity.
  • Compound (3) lowers the lower limit temperature and raises the dielectric anisotropy.
  • Compound (4) lowers the lower temperature limit and raises the upper temperature limit.
  • the preferred proportion of the compound (1) is about 3% by mass or more to reduce the viscosity, and about 30% by mass or less to reduce the lower limit temperature.
  • a further preferred ratio is in the range of about 3% by weight to about 25% by weight.
  • An especially desirable ratio is in the range of about 3% by mass to about 20% by mass.
  • the preferred proportion of the compound (2) is about 15% by mass or more to reduce the viscosity, and about 45% by mass or less to reduce the lower limit temperature.
  • a further preferred ratio is in the range of about 20% by weight to about 40% by weight.
  • An especially desirable ratio is in the range of about 25% by mass to about 35% by mass.
  • the preferred proportion of the compound (3) is about 30% by mass or more for increasing the dielectric anisotropy, or about 65% by mass or less for decreasing the viscosity.
  • a further preferred ratio is in the range of about 35% by weight to about 60% by weight.
  • An especially desirable ratio is in the range of about 40% by weight to about 55% by weight.
  • the preferred proportion of the compound (4) is about 3% by mass or more to reduce the viscosity, and about 35% by mass or less to reduce the lower limit temperature.
  • a further preferred ratio is in the range of about 5% by weight to about 30% by weight.
  • An especially desirable ratio is in the range of about 8% by mass to about 25% by mass.
  • R 1 and R 2 each represent alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, 2 to 12 alkenyloxy, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine.
  • Desirable R 1 or R 2 is alkenyl having 2 to 12 carbons to lower the viscosity, and alkyl having 1 to 12 carbons to increase the stability to ultraviolet light and heat.
  • R 3 and R 4 are hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or at least one hydrogen is fluorine or It is a C1-C12 alkyl substituted by chlorine.
  • Desirable R 3 or R 4 is alkenyl having 2 to 12 carbon atoms to lower the viscosity, alkyl having 1 to 12 carbons to increase the stability to ultraviolet light and heat, and to increase dielectric anisotropy C 1 to C 12 alkoxy for the purpose of R 5 and R 6 each represents an alkyl having 1 to 12 carbons, an alkoxy having 1 to 12 carbons, an alkenyl having 2 to 12 carbons, an alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine. Or at least one hydrogen is an alkenyl having 2 to 12 carbons replaced with fluorine or chlorine. Desirable R 5 or R 6 is alkenyl having 2 to 12 carbons to lower the viscosity, and alkyl having 1 to 12 carbons to increase the stability to ultraviolet light and heat.
  • Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. More preferred alkyl is methyl, ethyl, propyl, butyl or pentyl to lower the viscosity.
  • Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy or heptyloxy. More preferred alkoxy is methoxy or ethoxy to lower the viscosity.
  • Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl or 5-hexenyl. More preferred alkenyl is vinyl, 1-propenyl, 3-butenyl or 3-pentenyl to reduce viscosity.
  • alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl
  • trans is preferred to reduce viscosity
  • Cis is preferred for alkenyl such as 2-butenyl, 2-pentenyl and 2-hexenyl.
  • Preferred examples of the alkyl in which at least one hydrogen is replaced by fluorine or chlorine are fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl, 7-fluoroheptyl Or 8-fluorooctyl. Further preferred examples are 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl or 5-fluoropentyl to increase the dielectric anisotropy.
  • Preferred examples of the alkenyl in which at least one hydrogen is replaced by fluorine or chlorine are: 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro -4-pentenyl or 6,6-difluoro-5-hexenyl. Further preferred examples are 2,2-difluorovinyl or 4,4-difluoro-3-butenyl for decreasing the viscosity.
  • Ring A and ring C are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, at least one hydrogen is replaced by fluorine or chlorine 1 , 4-phenylene, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or at least one hydrogen is fluorine or chlorine
  • preferred ring A or ring C is 1,4-cyclohexylene to lower the viscosity or to raise the upper temperature limit, and to lower the lower temperature limit.
  • Ring B is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,4, 5-trifluoronaphthalene-2,6-diyl, 7,8-difluorochroman-2,6-diyl, 3,4,5,6-tetrafluorofluorene-2,7-diyl (FLF4), 4,6- Difluorodibenzofuran-3,7-diyl (DBFF2), 4,6-difluorodibenzothiophene-3,7-diyl (DBTF2), or 1,1,6,7-tetrafluoroindane-2,5-diyl (InF4) It is.
  • Preferred ring B is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluor
  • Ring D and ring E are 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene or 2,5-difluoro-1,4-phenylene.
  • Preferred ring D or ring E is 1,4-cyclohexylene to lower the viscosity or to raise the upper limit temperature, and 1,4-phenylene to increase the optical anisotropy.
  • Z 1 and Z 2 are a single bond, ethylene, carbonyloxy or methyleneoxy.
  • Preferred Z 1 or Z 2 is a single bond to lower the viscosity, and methyleneoxy to increase the dielectric anisotropy.
  • Z 3 is a single bond, ethylene or carbonyloxy. Preferred Z 3 is a single bond to lower the viscosity.
  • A is 1, 2 or 3; b is 0 or 1; and the sum of a and b is 3 or less.
  • Preferred a is 1 to lower the viscosity and 2 to raise the upper temperature limit.
  • Preferred b is 0 to lower the viscosity and 1 to raise the upper temperature limit.
  • c is 1, 2 or 3; Preferred c is 1 to lower the viscosity and 2 to raise the upper temperature limit.
  • the preferred compound (3) is the compound (3-1) to the compound (3-33) described in Item 4.
  • at least one of the third components is a compound (3-1), a compound (3-3), a compound (3-6), a compound (3-8), a compound (3-10), a compound (3 3-13), Compound (3-14) or Compound (3-16) is preferred.
  • the preferred compound (4) is the compound (4-1) described in Item 7 to the compound (4-11).
  • at least one of the fourth components is a compound (4-1), a compound (4-2), a compound (4-3), a compound (4-4), a compound (4-5), a compound (4) It is preferable that it is 4-9) or the compound (4-11). It is preferable that at least two of the fourth components be a combination of the compound (4-3) and the compound (4-4), the compound (4-2) and the compound (4-3).
  • additives that may be added to the composition will be described.
  • Such additives include optically active compounds, antioxidants, ultraviolet light absorbers, quenchers, dyes, antifoaming agents, polymerizable compounds, polymerization initiators, polymerization inhibitors, polar compounds and the like.
  • An optically active compound is added to the composition for the purpose of inducing a helical structure of liquid crystal molecules to give a twist angle. Examples of such compounds are compound (6-1) to compound (6-5).
  • the preferred proportion of the optically active compound is about 5% by mass or less.
  • a further preferred ratio is in the range of about 0.01% by weight to about 2% by weight.
  • Is added to the Preferred examples of the antioxidant include compounds (7-1) to (7-3).
  • the compound (7-2) Since the compound (7-2) has low volatility, it is effective to maintain a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature after using the device for a long time.
  • the preferred proportion of the antioxidant is about 50 ppm or more to obtain its effect, and is about 600 ppm or less so as not to lower the upper temperature limit or to raise the lower temperature limit.
  • a further preferred ratio is in the range of about 100 ppm to about 300 ppm.
  • UV absorbers are benzophenone derivatives, benzoate derivatives, triazole derivatives and the like.
  • light stabilizers such as sterically hindered amines.
  • Preferred examples of the light stabilizer include compound (8-1) to compound (8-16).
  • the preferred proportion of these absorbents and stabilizers is about 50 ppm or more in order to obtain the effect, and is about 10000 ppm or less so as not to lower the upper temperature limit or to raise the lower temperature limit.
  • a further preferred ratio is in the range of about 100 ppm to about 10000 ppm.
  • a quencher is a compound which receives the light energy absorbed by the liquid crystal compound and converts it into heat energy to prevent the decomposition of the liquid crystal compound.
  • Preferred examples of the quencher are compound (9-1) to compound (9-7).
  • the preferred proportion of these quenchers is about 50 ppm or more to obtain the effect, and about 20000 ppm or less to lower the lower limit temperature.
  • a further preferred ratio is in the range of about 100 ppm to about 10000 ppm.
  • a dichroic dye such as an azo dye or an anthraquinone dye is added to the composition.
  • the preferred proportion of dye is in the range of about 0.01% by weight to about 10% by weight.
  • an antifoam agent such as dimethyl silicone oil, methylphenyl silicone oil or the like is added to the composition.
  • the preferable proportion of the antifoaming agent is about 1 ppm or more in order to obtain the effect, and is about 1000 ppm or less in order to prevent display defects.
  • a further preferred ratio is in the range of about 1 ppm to about 500 ppm.
  • Polar compounds are organic compounds with polarity.
  • compounds having an ionic bond are not included. Atoms such as oxygen, sulfur and nitrogen are more electronegative and tend to have a partial negative charge. Carbon and hydrogen tend to be neutral or have a partial positive charge.
  • Polarity results from the inhomogeneous distribution of partial charges among different types of atoms in the compound.
  • the polar compound has at least one of partial structures such as -OH, -COOH, -SH, -NH 2 ,>NH,> N-.
  • the synthesis methods of the component compounds will be described. These compounds can be synthesized by known methods. The synthesis method is illustrated.
  • the compound (1) is synthesized by the method described in JP-A-5-140003.
  • the compound (2) is synthesized by the method described in JP-A-59-176221.
  • the compound (3-8) is synthesized by the method described in JP-A-2-503441.
  • the compound (4-3) is synthesized by the method described in JP-A-59-176221.
  • Antioxidants are commercially available.
  • Compound (6-1) can be obtained from Aldrich (Sigma-Aldrich Corporation).
  • the compound (6-2) and the like are synthesized by the method described in US Pat. No. 3,660,505.
  • compositions are prepared from the compounds thus obtained by known methods. For example, the component compounds are mixed and dissolved together by heating.
  • compositions have a lower temperature limit of about -10.degree. C. or lower, an upper temperature limit of about 70.degree. C. or higher, and an optical anisotropy in the range of about 0.07 to about 0.20.
  • a composition having an optical anisotropy in the range of about 0.08 to about 0.25 may be prepared by controlling the proportions of the component compounds, or by mixing other liquid crystal compounds.
  • compositions having optical anisotropy in the range of about 0.10 to about 0.30 may be prepared by trial and error.
  • Devices containing this composition have a large voltage holding ratio.
  • This composition is suitable for an AM device.
  • This composition is particularly suitable for transmissive AM devices.
  • This composition can be used as a composition having a nematic phase or as an optically active composition by adding an optically active compound.
  • This composition can be used for an AM device. Furthermore, the use to PM element is also possible.
  • This composition can be used for AM devices and PM devices having modes such as PC, TN, STN, ECB, OCB, IPS, FFS, VA, FPA.
  • the use for an AM device having a TN, OCB, IPS mode or FFS mode is particularly preferred.
  • the alignment of liquid crystal molecules may be parallel to or perpendicular to the glass substrate.
  • These elements may be reflective, transmissive or semi-transmissive. Its use for transmission type devices is preferred.
  • the use for amorphous silicon-TFT elements or polycrystalline silicon-TFT elements is also possible.
  • the composition can be used for an element of NCAP (nematic curvilinear aligned phase) type prepared by microencapsulation or a element of PD (polymer dispersed) type in which a three-dimensional network polymer is formed in the composition.
  • the present invention comprises a mixture of the composition of Example 1 and the composition of Example 2.
  • the present invention also includes a mixture of at least two of the compositions of the Examples.
  • the compound synthesized was identified by a method such as NMR analysis. The properties of the compounds, compositions and devices were measured by the methods described below.
  • NMR analysis For measurement, DRX-500 manufactured by Bruker Biospin Ltd. was used. In the measurement of 1 H-NMR, the sample was dissolved in a deuterated solvent such as CDCl 3, and the measurement was performed at room temperature under conditions of 500 MHz and 16 integrations. Tetramethylsilane was used as an internal standard. In the 19 F-NMR measurement, CFCl 3 was used as an internal standard, and the integration was performed 24 times. In the description of nuclear magnetic resonance spectrum, s is singlet, d is doublet, t is triplet, q is quartet, quin is quintet, sex is sextet, m is multiplet, br is broad.
  • a GC-14B gas chromatograph made by Shimadzu Corporation was used for measurement.
  • the carrier gas is helium (2 mL / min).
  • the sample vaporization chamber was set at 280 ° C. and the detector (FID) was set at 300 ° C.
  • capillary columns DB-1 length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m; fixed liquid phase is dimethylpolysiloxane; nonpolar
  • the column was kept at 200 ° C. for 2 minutes and then heated to 280 ° C. at a rate of 5 ° C./minute.
  • the sample was prepared in an acetone solution (0.1% by mass), and 1 ⁇ L thereof was injected into the sample vaporization chamber.
  • the recorder is Model C-R5A Chromatopac manufactured by Shimadzu Corporation, or its equivalent.
  • the obtained gas chromatogram showed the retention time of the peak corresponding to the component compound and the area of the peak.
  • capillary column As a solvent for diluting the sample, chloroform, hexane or the like may be used.
  • the following capillary column may be used to separate the component compounds.
  • HP-1 (30 m in length, 0.32 mm in diameter, 0.25 ⁇ m in thickness) manufactured by Agilent Technologies Inc.
  • Rtx-1 (30 m in length, 0.32 mm in inside diameter, 0.25 ⁇ m in film thickness) manufactured by Restek Corporation
  • BP-1 (30 m in length, 0.32 mm in inner diameter, 0.25 ⁇ m in film thickness) manufactured by SGE International Pty. Ltd.
  • a capillary column CBP1-M50-025 (length 50 m, inner diameter 0.25 mm, film thickness 0.25 ⁇ m) manufactured by Shimadzu Corporation may be used for the purpose of preventing overlapping of compound peaks.
  • the proportion of the liquid crystal compound contained in the composition may be calculated by the following method.
  • the mixture of liquid crystalline compounds is analyzed by gas chromatography (FID).
  • the area ratio of peaks in the gas chromatogram corresponds to the proportion (mass ratio) of the liquid crystal compound.
  • the correction coefficient of each liquid crystal compound may be regarded as 1. Therefore, the ratio (mass%) of the liquid crystal compound can be calculated from the area ratio of the peaks.
  • Measurement sample When measuring the characteristics of the composition and the device, the composition was used as it was as a sample.
  • a sample for measurement was prepared by mixing this compound (15% by mass) with the mother liquid crystal (85% by mass). The characteristic values of the compound were calculated by extrapolation from the values obtained by the measurement.
  • (Extrapolated value) ⁇ (measured value of sample) ⁇ 0.85 ⁇ (measured value of mother liquid crystal) ⁇ / 0.15.
  • the proportion of the compound and the base liquid crystal is 10 mass%: 90 mass%, 5 mass%: 95 mass%, 1 mass%: 99 mass% in this order. changed.
  • the values of the upper limit temperature, the optical anisotropy, the viscosity, and the dielectric anisotropy of the compound were determined by this extrapolation method.
  • Measurement method The measurement of the characteristics was performed by the following method. Many of these are modified methods or methods described in the JEITA standard (JEITA ED-2521B), which is deliberately established by the Japan Electronics and Information Technology Industries Association (hereinafter referred to as JEITA). It was a method. A thin film transistor (TFT) was not attached to the TN device used for the measurement.
  • TFT thin film transistor
  • Upper limit temperature of nematic phase (NI; ° C.): The sample was placed on a hot plate of a melting point measuring apparatus equipped with a polarization microscope and heated at a rate of 1 ° C./min. The temperature was measured when part of the sample changed from the nematic phase to the isotropic liquid.
  • the upper limit temperature of the nematic phase may be abbreviated as "upper limit temperature”.
  • T C Lower limit temperature of nematic phase
  • a sample having a nematic phase is placed in a glass bottle and kept for 10 days in a freezer at 0 ° C., -10 ° C., -20 ° C., -30 ° C. and -40 ° C. After storage, the liquid crystal phase was observed. For example, the sample remained in the -20 ° C. in a nematic phase, when changed to -30 ° C. At crystals or a smectic phase was described as ⁇ -20 ° C.
  • the lower limit temperature of the nematic phase may be abbreviated as "lower limit temperature”.
  • Viscosity Bulk viscosity; ;; measured at 20 ° C .; mPa ⁇ s
  • E-type rotational viscometer manufactured by Tokyo Keiki Co., Ltd. was used.
  • Viscosity (rotational viscosity; ⁇ 1; measured at 25 ° C .; mPa ⁇ s):
  • a rotational viscosity measurement system LCM-2 type manufactured by Toyo Technica Co., Ltd. was used for measurement.
  • the sample was injected into a VA device in which the distance between two glass substrates (cell gap) was 10 ⁇ m.
  • a rectangular wave (55 V, 1 ms) was applied to this element.
  • the peak current and peak time of transient current generated by this application were measured.
  • the values of rotational viscosity were obtained using these measured values and dielectric anisotropy.
  • the dielectric anisotropy was measured by the method described in the measurement (6).
  • the dielectric constants ( ⁇ and ⁇ ) were measured as follows. 1) Measurement of dielectric constant ( ⁇ ): A solution of octadecyltriethoxysilane (0.16 mL) in ethanol (20 mL) was applied to a well-cleaned glass substrate. The glass substrate was rotated by a spinner and then heated at 150 ° C. for 1 hour. A sample was placed in a VA device in which the distance between two glass substrates (cell gap) was 4 ⁇ m, and this device was sealed with an adhesive cured with ultraviolet light.
  • Sine waves (0.5 V, 1 kHz) were applied to this device, and after 2 seconds, the dielectric constant ( ⁇ ) in the major axis direction of liquid crystal molecules was measured.
  • 2) Measurement of dielectric constant ( ⁇ ) A polyimide solution was applied to a well-cleaned glass substrate. After firing the glass substrate, the obtained alignment film was rubbed. The sample was placed in a TN device in which the distance between two glass substrates (cell gap) was 9 ⁇ m and the twist angle was 80 degrees. Sine waves (0.5 V, 1 kHz) were applied to this device, and after 2 seconds, the dielectric constant ( ⁇ ) in the minor axis direction of liquid crystal molecules was measured.
  • Threshold voltage (Vth; measured at 25 ° C .; V): An LCD-5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for measurement.
  • the light source was a halogen lamp.
  • a sample is placed in a normally black mode VA device in which the distance between two glass substrates (cell gap) is 4 ⁇ m and the rubbing direction is antiparallel, and an adhesive for curing this device with ultraviolet light is used. Used and sealed.
  • the voltage (60 Hz, rectangular wave) applied to this element was gradually increased by 0.02 V from 0 V to 20 V.
  • the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured.
  • a voltage-transmittance curve was created in which the transmittance was 100% when the light amount was maximum, and the transmittance was 0% when the light amount was minimum.
  • the threshold voltage was represented by the voltage at 10% transmittance.
  • VHR-1 Voltage holding ratio
  • the TN device used for measurement had a polyimide alignment film, and the distance between two glass substrates (cell gap) was 5 ⁇ m. .
  • the element was sealed with an adhesive that cures with ultraviolet light after the sample was placed.
  • a pulse voltage 60 microseconds at 5 V was applied to the TN device to charge it.
  • the decaying voltage was measured with a high-speed voltmeter for 16.7 milliseconds, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined.
  • the area B was the area when it did not decay.
  • the voltage holding ratio was expressed as a percentage of the area A to the area B.
  • VHR-2 Voltage holding ratio (VHR-2; measured at 80 ° C .;%): The voltage holding ratio was measured by the same procedure as described above except that measurement was performed at 80 ° C. instead of 25 ° C. The obtained value was expressed as VHR-2.
  • VHR-3 Voltage holding ratio
  • the TN device used for the measurement had a polyimide alignment film, and the cell gap was 5 ⁇ m.
  • a sample was injected into the device and irradiated with light for 20 minutes.
  • the light source was an ultra-high pressure mercury lamp USH-500D (manufactured by Ushio Inc.), and the distance between the element and the light source was 20 cm.
  • the decaying voltage was measured for 16.7 milliseconds.
  • Compositions having large VHR-3 have high stability to ultraviolet light. 90% or more is preferable and 95% or more of VHR-3 is more preferable.
  • VHR-4 Voltage holding ratio
  • the TN device injected with the sample is heated in a thermostatic chamber at 80 ° C. for 500 hours, and then the voltage holding ratio is measured and stability to heat Was evaluated. In the measurement of VHR-4, the decaying voltage was measured for 16.7 milliseconds. Compositions having large VHR-4 have high thermal stability.
  • Elastic constant (K11: splay elastic constant, K33: bend elastic constant; measured at 25 ° C .; pN): To measure, use an EC-1 type elastic constant measuring instrument manufactured by Toyo Corporation. Using. The sample was placed in a vertical alignment cell in which the distance between two glass substrates (cell gap) was 20 ⁇ m. A charge of 20 volts to 0 volts was applied to the cell, and the capacitance and the applied voltage were measured. Fitting the measured capacitance (C) and applied voltage (V) values using the formula (2.98) and formula (2.101) on page 75 of “Liquid Crystal Device Handbook” (Nippon Kogyo Shimbun Ltd.) And the value of the elastic constant was obtained from equation (2.100).
  • the compounds in the examples are represented by symbols based on the definition of Table 3 below.
  • Table 3 the configuration for 1,4-cyclohexylene is trans.
  • the numbers in parentheses after the symbols correspond to the compound numbers.
  • the symbol (-) means other liquid crystal compounds.
  • the proportion (percentage) of the liquid crystal compound is a mass percentage (mass%) based on the mass of the liquid crystal composition.
  • Example 7 was selected from the compositions disclosed in Chinese Patent Application Publication No. 104593009. This composition contains the compound (1) and has negative dielectric anisotropy.
  • Example 4 2-BB-1 (1) 3% 3-HH-V (2) 10% 3-HH-V1 (2) 3% 3-HH-2 (2) 10% 5-HH-V (2) 3% 1V2-HH-2V1 (2) 3% V-HB (2F, 3F) -O2 (3-1) 3% V-ch B (2F, 3F)-O2 (3-5) 3% 2-BB (2F, 3F)-O2 (3-6) 3% 3-BB (2F, 3F)-O2 (3-6) 3% 2O-BB (2F, 3F)-O2 (3-6) 3% 2O-B (2F) B (2F, 3F) -O2 (3-7) 3% V-HH1OB (2F, 3F) -O2 (3-10) 3% 3-HchB (2F, 3F) -O2 (3-12) 5% 5-HchB (2F, 3F) -O2 (3-12) 5% V2-HchB (2F, 3F) -O2 (3-12) 4% 3-dhBB (2F, 3F) -O2 (3-16) 5% 2-B2BB
  • the rotational viscosity of the composition of Comparative Example 1 was 110.9 mPa ⁇ s. On the other hand, the rotational viscosity of the composition of Example 1 was 93.0 mPa ⁇ s. Thus, the composition of Example 1 had lower viscosity as compared to the composition of Comparative Example. Therefore, it is concluded that the liquid crystal composition of the present invention has excellent properties.
  • the liquid crystal composition of the present invention can be used for a liquid crystal monitor, a liquid crystal television and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

A liquid crystal composition which satisfies at least one of, or has a suitable balance of at least two of, the characteristics of having a high upper temperature limit, a low lower temperature limit, a low viscosity, a high optical anisotropy, a high dielectric anisotropy and a high elastic constant, and an AM element containing said composition are provided. This liquid crystal composition may contain a specific compound having a low viscosity as a first component, a specific compound having a low viscosity as a second component, a specific compound having a negative dielectric anisotropy as a third component, or a specific compound having a low viscosity as a fourth component.

Description

液晶組成物および液晶表示素子Liquid crystal composition and liquid crystal display device
 本発明は、液晶組成物、この組成物を含有する液晶表示素子などに関する。特に、誘電率異方性が負の液晶組成物、およびこの組成物を含有し、IPS、VA、FFS、FPAなどのモードを有する液晶表示素子に関する。 The present invention relates to a liquid crystal composition, a liquid crystal display element containing the composition, and the like. In particular, the present invention relates to a liquid crystal composition having a negative dielectric anisotropy, and a liquid crystal display device containing the composition and having a mode such as IPS, VA, FFS, or FPA.
 液晶表示素子において、液晶分子の動作モードに基づいた分類は、PC(phase change)、TN(twisted nematic)、STN(super twisted nematic)、ECB(electrically controlled birefringence)、OCB(optically compensated bend)、IPS(in-plane switching)、VA(vertical alignment)、FFS(fringe field switching)、FPA(field-induced photo-reactive alignment)などのモードである。素子の駆動方式に基づいた分類は、PM(passive matrix)とAM(active matrix)である。PMは、スタティック(static)、マルチプレックス(multiplex)などに分類され、AMは、TFT(thin film transistor)、MIM(metal insulator metal)などに分類される。TFTの分類は非晶質シリコン(amorphous silicon)および多結晶シリコン(polycrystal silicon)である。後者は製造工程によって高温型と低温型とに分類される。光源に基づいた分類は、自然光を利用する反射型、バックライトを利用する透過型、そして自然光とバックライトの両方を利用する半透過型である。 In liquid crystal display devices, classification based on the operation mode of liquid crystal molecules is as follows: phase change (PC), twisted nematic (TN), super twisted nematic (STN), electrically controlled birefringence (ECB), optically compensated bend (OCB), IPS These modes are modes such as (in-plane switching), VA (vertical alignment), FFS (fringe field switching), and FPA (field-induced photo-reactive alignment). The classification based on the driving system of elements is PM (passive matrix) and AM (active matrix). PM is classified into static, multiplex, etc., and AM is classified into thin film transistor (TFT), metal insulator metal (MIM), etc. The classification of TFT is amorphous silicon and polycrystal silicon. The latter are classified into high temperature type and low temperature type according to the manufacturing process. Source based classifications are reflective based on natural light, transmissive based on back light, and semi-transmissive based on both natural light and back light.
 液晶表示素子はネマチック相を有する液晶組成物を含有する。この組成物は適切な特性を有する。この組成物の特性を向上させることによって、良好な特性を有するAM素子を得ることができる。これらの特性における関連を下記の表1にまとめる。組成物の特性を市販されているAM素子に基づいてさらに説明する。ネマチック相の温度範囲は、素子の使用できる温度範囲に関連する。ネマチック相の好ましい上限温度は約70℃以上であり、そしてネマチック相の好ましい下限温度は約-10℃以下である。組成物の粘度は素子の応答時間に関連する。素子で動画を表示するためには短い応答時間が好ましい。1ミリ秒でもより短い応答時間が望ましい。したがって、組成物における小さな粘度が好ましい。低い温度における小さな粘度はさらに好ましい。組成物の弾性定数は素子のコントラスト比に関連する。素子においてコントラスト比を上げるためには、組成物における大きな弾性定数がより好ましい。 The liquid crystal display element contains a liquid crystal composition having a nematic phase. This composition has suitable properties. By improving the properties of this composition, an AM element having good properties can be obtained. The associations in these properties are summarized in Table 1 below. The characteristics of the composition will be further described based on commercially available AM devices. The temperature range of the nematic phase is related to the usable temperature range of the device. The preferred upper temperature limit of the nematic phase is about 70 ° C. or higher, and the preferred lower temperature limit of the nematic phase is about -10 ° C. or lower. The viscosity of the composition is related to the response time of the device. Short response times are preferred for displaying motion pictures on the device. Even shorter response times of 1 millisecond are desirable. Thus, low viscosity in the composition is preferred. Smaller viscosities at lower temperatures are more preferred. The elastic constant of the composition is related to the contrast ratio of the device. In order to increase the contrast ratio in the device, a large elastic constant in the composition is more preferred.
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
 組成物の光学異方性は、素子のコントラスト比に関連する。素子のモードに応じて、大きな光学異方性または小さな光学異方性、すなわち適切な光学異方性が必要である。組成物の光学異方性(Δn)と素子のセルギャップ(d)との積(Δn×d)は、コントラスト比を最大にするように設計される。積の適切な値は動作モードの種類に依存する。この値は、VAモードの素子では約0.30μmから約0.40μmの範囲であり、IPSモードまたはFFSモードの素子では約0.20μmから約0.30μmの範囲である。これらの場合、小さなセルギャップの素子には大きな光学異方性を有する組成物が好ましい。組成物における大きな誘電率異方性は、素子における低いしきい値電圧、小さな消費電力と大きなコントラスト比に寄与する。したがって、大きな誘電率異方性が好ましい。組成物における大きな比抵抗は、素子における大きな電圧保持率と大きなコントラスト比とに寄与する。したがって、初期段階において大きな比抵抗を有する組成物が好ましい。長時間使用したあと、大きな比抵抗を有する組成物が好ましい。紫外線や熱に対する組成物の安定性は、素子の寿命に関連する。この安定性が高いとき、素子の寿命は長い。このような特性は、液晶モニター、液晶テレビなどに用いるAM素子に好ましい。 The optical anisotropy of the composition is related to the contrast ratio of the device. Depending on the mode of the device, a large or small optical anisotropy, ie a suitable optical anisotropy, is required. The product (Δn × d) of the optical anisotropy (Δn) of the composition and the cell gap (d) of the device is designed to maximize the contrast ratio. The appropriate value of the product depends on the type of operating mode. This value is in the range of about 0.30 μm to about 0.40 μm in the VA mode device and in the range of about 0.20 μm to about 0.30 μm in the IPS mode or FFS mode device. In these cases, compositions with large optical anisotropy are preferred for small cell gap devices. The large dielectric anisotropy in the composition contributes to low threshold voltage, low power consumption and high contrast ratio in the device. Therefore, large dielectric anisotropy is preferred. The large resistivity in the composition contributes to a large voltage holding ratio and a large contrast ratio in the device. Therefore, a composition having a large specific resistance at the initial stage is preferred. After prolonged use, compositions having high specific resistance are preferred. The stability of the composition to ultraviolet light and heat is related to the lifetime of the device. When this stability is high, the lifetime of the device is long. Such characteristics are preferable for an AM element used for a liquid crystal monitor, a liquid crystal television or the like.
 汎用の液晶表示素子において、液晶分子の垂直配向は、特定のポリイミド配向膜によって達成される。高分子支持配向(PSA;polymer sustained alignment)型の液晶表示素子では、配向膜に重合体を組み合せる。まず、少量の重合性化合物を添加した組成物を素子に注入する。次に、この素子の基板のあいだに電圧を印加しながら、組成物に紫外線を照射する。重合性化合物は重合して、組成物中に重合体の網目構造を生成する。この組成物では、重合体によって液晶分子の配向を制御することが可能になるので、素子の応答時間が短縮され、画像の焼き付きが改善される。重合体のこのような効果は、TN、ECB、OCB、IPS、VA、FFS、FPAのようなモードを有する素子に期待できる。 In a general-purpose liquid crystal display device, vertical alignment of liquid crystal molecules is achieved by a specific polyimide alignment film. In a polymer sustained alignment (PSA) type liquid crystal display device, a polymer is combined with an alignment film. First, a composition to which a small amount of a polymerizable compound is added is injected into the device. Next, the composition is irradiated with ultraviolet light while applying a voltage between the substrates of the device. The polymerizable compound polymerizes to form a polymer network in the composition. In this composition, the polymer can control the alignment of liquid crystal molecules, thereby reducing the response time of the device and improving the image sticking. Such an effect of the polymer can be expected to devices having modes such as TN, ECB, OCB, IPS, VA, FFS, and FPA.
 一方、配向膜を有しない液晶表示素子では、重合体および極性化合物を含有する液晶組成物が用いられる。まず、少量の重合性化合物および少量の極性化合物を添加した組成物を素子に注入する。ここで、極性化合物は素子の基板表面に吸着され、配列する。この配列にしたがって液晶分子が配向される。次に、この素子の基板のあいだに電圧を印加しながら、組成物に紫外線を照射する。ここで、重合性化合物が重合し、液晶分子の配向を安定化させる。この組成物では、重合体および極性化合物によって液晶分子の配向を制御することが可能になるので、素子の応答時間が短縮され、画像の焼き付きが改善される。さらに、配向膜を有しない素子では、配向膜を形成する工程が不要である。配向膜がないので、配向膜と組成物との相互作用によって、素子の電気抵抗が低下することはない。重合体と極性化合物の組合せによるこのような効果は、TN、ECB、OCB、IPS、VA、FFS、FPAのようなモードを有する素子に期待できる。 On the other hand, in a liquid crystal display element having no alignment film, a liquid crystal composition containing a polymer and a polar compound is used. First, a composition to which a small amount of polymerizable compound and a small amount of polar compound are added is injected into the device. Here, the polar compound is adsorbed on the substrate surface of the device and arranged. The liquid crystal molecules are oriented according to this arrangement. Next, the composition is irradiated with ultraviolet light while applying a voltage between the substrates of the device. Here, the polymerizable compound is polymerized to stabilize the alignment of liquid crystal molecules. In this composition, it is possible to control the alignment of liquid crystal molecules by the polymer and the polar compound, so that the response time of the device is shortened and the image sticking is improved. Furthermore, in the element having no alignment film, the process of forming the alignment film is unnecessary. Since there is no alignment film, the interaction between the alignment film and the composition does not lower the electrical resistance of the device. Such an effect of the combination of a polymer and a polar compound can be expected for devices having modes such as TN, ECB, OCB, IPS, VA, FFS, and FPA.
 TNモードを有するAM素子においては正の誘電率異方性を有する組成物が用いられる。VAモードを有するAM素子においては負の誘電率異方性を有する組成物が用いられる。IPSモードまたはFFSモードを有するAM素子においては正または負の誘電率異方性を有する組成物が用いられる。高分子支持配向型のAM素子においては正または負の誘電率異方性を有する組成物が用いられる。配向膜を有しない素子においては正または負の誘電率異方性を有する組成物が用いられる。 In an AM device having a TN mode, a composition having positive dielectric anisotropy is used. In an AM device having a VA mode, a composition having negative dielectric anisotropy is used. In an AM device having an IPS mode or an FFS mode, a composition having positive or negative dielectric anisotropy is used. In a polymer-supported oriented AM element, a composition having positive or negative dielectric anisotropy is used. In an element having no alignment film, a composition having positive or negative dielectric anisotropy is used.
 中国特許出願公開第104593009号明細書 Chinese Patent Application Publication No. 104593009
 本発明の課題は、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、負に大きな誘電率異方性、大きな比抵抗、紫外線に対する高い安定性、熱に対する高い安定性、大きな弾性定数のような特性の少なくとも1つを充足する液晶組成物を提供することである。別の課題は、これらの特性の少なくとも2つのあいだで適切なバランスを有する液晶組成物を提供することである。別の課題は、このような組成物を含有する液晶表示素子を提供することである。別の課題は、短い応答時間、大きな電圧保持率、低いしきい値電圧、大きなコントラスト比、長い寿命のような特性を有するAM素子を提供することである。 Problems of the present invention include: high upper limit temperature of nematic phase, lower lower limit temperature of nematic phase, small viscosity, appropriate optical anisotropy, large negative dielectric anisotropy, large specific resistance, high stability to ultraviolet light, thermal It is to provide a liquid crystal composition satisfying at least one of the high stability, the large elastic constant, and the like. Another object is to provide a liquid crystal composition having a proper balance between at least two of these properties. Another object is to provide a liquid crystal display device containing such a composition. Another object is to provide an AM device having characteristics such as short response time, large voltage holding ratio, low threshold voltage, large contrast ratio, and long lifetime.
 第一成分として式(1)で表される化合物、および第二成分として式(2)で表される化合物から選択された少なくとも1つの化合物を含有し、そしてネマチック相および負の誘電率異方性を有する液晶組成物、およびこの組成物を含有する液晶表示素子に関する。そしてネマチック相および負の誘電率異方性を有する液晶組成物、およびこの組成物を含有する液晶表示素子に関する。
Figure JPOXMLDOC01-appb-I000009

式(2)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。
A compound represented by the formula (1) as the first component, and at least one compound selected from the compounds represented by the formula (2) as the second component, and the nematic phase and the negative dielectric constant anisotropy The present invention relates to a liquid crystal composition having a property, and a liquid crystal display device containing the composition. The present invention also relates to a liquid crystal composition having a nematic phase and negative dielectric anisotropy, and a liquid crystal display device containing the composition.
Figure JPOXMLDOC01-appb-I000009

In the formula (2), R 1 and R 2 each represent alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, at least one hydrogen Is C 1-12 alkyl substituted with fluorine or chlorine, or C 2-12 alkenyl in which at least one hydrogen is substituted by fluorine or chlorine.
 本発明の長所は、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、負に大きな誘電率異方性、大きな比抵抗、紫外線に対する高い安定性、熱に対する高い安定性、大きな弾性定数のような特性の少なくとも1つを充足する液晶組成物を提供することである。別の長所は、これらの特性の少なくとも2つのあいだで適切なバランスを有する液晶組成物を提供することである。別の長所は、このような組成物を含有する液晶表示素子を提供することである。別の長所は、短い応答時間、大きな電圧保持率、低いしきい値電圧、大きなコントラスト比、長い寿命のような特性を有するAM素子を提供することである。 The advantages of the present invention are: high upper limit temperature of nematic phase, lower lower limit temperature of nematic phase, small viscosity, suitable optical anisotropy, large negative dielectric anisotropy, large specific resistance, high stability to ultraviolet light, thermal It is to provide a liquid crystal composition satisfying at least one of the high stability, the large elastic constant, and the like. Another advantage is to provide a liquid crystal composition having a suitable balance between at least two of these properties. Another advantage is to provide a liquid crystal display device containing such a composition. Another advantage is to provide an AM device having characteristics such as short response time, large voltage holding ratio, low threshold voltage, large contrast ratio, and long lifetime.
 この明細書における用語の使い方は次のとおりである。「液晶組成物」および「液晶表示素子」の用語をそれぞれ「組成物」および「素子」と略すことがある。「液晶表示素子」は液晶表示パネルおよび液晶表示モジュールの総称である。「液晶性化合物」は、ネマチック相、スメクチック相のような液晶相を有する化合物および液晶相を有しないが、ネマチック相の温度範囲、粘度、誘電率異方性のような特性を調節する目的で組成物に混合される化合物の総称である。この化合物は、例えば1,4-シクロヘキシレンや1,4-フェニレンのような六員環を有し、その分子(液晶分子)は棒状(rod like)である。「重合性化合物」は、組成物中に重合体を生成させる目的で添加する化合物である。アルケニルを有する液晶性化合物は、その意味では重合性化合物に分類されない。 The usage of the terms in this specification is as follows. The terms "liquid crystal composition" and "liquid crystal display element" may be abbreviated as "composition" and "element", respectively. "Liquid crystal display element" is a generic term for liquid crystal display panels and liquid crystal display modules. The “liquid crystal compound” is a compound having a liquid crystal phase such as a nematic phase or a smectic phase and has no liquid crystal phase, but for the purpose of adjusting properties such as temperature range of the nematic phase, viscosity and dielectric anisotropy. It is a general term for compounds mixed in a composition. This compound has, for example, a six-membered ring such as 1,4-cyclohexylene or 1,4-phenylene, and its molecule (liquid crystal molecule) is rod like. The "polymerizable compound" is a compound to be added for the purpose of forming a polymer in the composition. Liquid crystal compounds having alkenyl are not classified as polymerizable compounds in that sense.
 液晶組成物は、複数の液晶性化合物を混合することによって調製される。この液晶組成物に、光学活性化合物や重合性化合物のような添加物が必要に応じて添加される。液晶性化合物の割合は、添加物を添加した場合であっても、添加物を含まない液晶組成物の質量に基づいた質量百分率(質量%)で表される。添加物の割合は、添加物を含まない液晶組成物の質量に基づいた質量百分率(質量%)で表される。すなわち、液晶性化合物や添加物の割合は、液晶性化合物の全質量に基づいて算出される。質量百万分率(ppm)が用いられることがある。重合開始剤および重合禁止剤の割合は、例外的に重合性化合物の質量に基づいて表される。 The liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds. Additives such as optically active compounds and polymerizable compounds are added to the liquid crystal composition as needed. The proportion of the liquid crystal compound is represented by mass percentage (mass%) based on the mass of the liquid crystal composition not including the additive even when the additive is added. The proportion of the additive is represented by mass percentage (mass%) based on the mass of the liquid crystal composition containing no additive. That is, the proportions of the liquid crystal compound and the additive are calculated based on the total mass of the liquid crystal compound. Parts per million (ppm) by mass may be used. The proportions of the polymerization initiator and the polymerization inhibitor are exceptionally expressed based on the weight of the polymerizable compound.
 「ネマチック相の上限温度」を「上限温度」と略すことがある。「ネマチック相の下限温度」を「下限温度」と略すことがある。「誘電率異方性を上げる」の表現は、誘電率異方性が正である組成物のときは、その値が正に増加することを意味し、誘電率異方性が負である組成物のときは、その値が負に増加することを意味する。「電圧保持率が大きい」は、素子が初期段階において室温だけでなく上限温度に近い温度でも大きな電圧保持率を有し、そして長時間使用したあと室温だけでなく上限温度に近い温度でも大きな電圧保持率を有することを意味する。組成物や素子の特性が経時変化試験によって検討されることがある。 The “upper limit temperature of the nematic phase” may be abbreviated as the “upper limit temperature”. The “lower limit temperature of the nematic phase” may be abbreviated as the “lower limit temperature”. The expression "increase the dielectric anisotropy" means that in the case of a composition having a positive dielectric anisotropy, the value increases positively, and a composition having a negative dielectric anisotropy. In the case of goods, it means that the value increases negatively. The "high voltage holding ratio" means that the device has a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit at the initial stage, and after a long period of use it shows a large voltage not only at room temperature but also at a temperature close to the upper limit. It means having a retention rate. The characteristics of the composition or the device may be examined by a time-dependent change test.
 式(1z)を例にする。式(1z)で表される化合物から選択された少なくとも1つの化合物を「化合物(1z)」と略すことがある。
Figure JPOXMLDOC01-appb-I000010

「化合物(1z)」は、式(1z)で表される1つの化合物、2つの化合物の混合物、または3つ以上の化合物の混合物を意味する。他の式で表される化合物についても同様である。「式(1z)および式(2z)で表される化合物から選択された少なくとも1つの化合物」の表現は、化合物(1z)および化合物(2z)の群から選択された少なくとも1つの化合物を意味する。
Formula (1z) is taken as an example. At least one compound selected from the compounds represented by formula (1z) may be abbreviated as “compound (1z)”.
Figure JPOXMLDOC01-appb-I000010

The “compound (1z)” means one compound represented by the formula (1z), a mixture of two compounds, or a mixture of three or more compounds. The same applies to compounds represented by other formulas. The expression "at least one compound selected from compounds represented by the formula (1z) and the formula (2z)" means at least one compound selected from the group of the compound (1z) and the compound (2z) .
 式(1z)において、「RaおよびRbは、アルキル、アルコキシ、またはアルケニルである」の表現は、RaおよびRbが独立して、アルキル、アルコキシ、およびアルケニルの群から選択されることを意味する。すなわち、Raによって表される基とRbによって表される基が同一であってもよく、または異なってもよい。このルールは、Raの記号を複数の化合物に用いた場合にも適用される。このルールは、複数のRaを1つの化合物に用いた場合にも適用される。 In formula (1z), the expression “Ra and Rb is alkyl, alkoxy or alkenyl” means that Ra and Rb are independently selected from the group of alkyl, alkoxy and alkenyl. That is, the group represented by Ra and the group represented by Rb may be the same or different. This rule is also applied when the symbol of Ra is used for a plurality of compounds. This rule also applies when multiple Ras are used in one compound.
 式(1z)において、六角形で囲んだαおよびβの記号はそれぞれ環αおよび環βに対応し、六員環、縮合環のような環を表す。添え字‘x’が2のとき、2つの環αが存在する。2つの環αが表す2つの基は、同一であってもよく、または異なってもよい。このルールは、添え字‘x’が2より大きいとき、任意の2つの環αに適用される。環βの一辺を横切る斜線は、環β上の任意の水素が置換基(-Sp-P)で置き換えられてもよいことを表す。添え字‘y’は置き換えられた置換基の数を示す。添え字‘y’が0のとき、そのような置き換えはない。添え字‘y’が2以上のとき、環β上には複数の置換基(-Sp-P)が存在する。化合物が同一の置換基を有する場合にも「同一であってもよく、または異なってもよい」というルールが適用される。 In the formula (1z), symbols of α and β surrounded by a hexagon correspond to the ring α and the ring β, respectively, and represent a ring such as a 6-membered ring or a fused ring. When the index 'x' is 2, two rings α are present. The two groups represented by the two rings α may be identical or different. This rule applies to any two rings α when the index 'x' is greater than two. The oblique lines crossing one side of the ring β indicate that any hydrogen on the ring β may be replaced with a substituent (—Sp—P). The index 'y' indicates the number of substituted substituents. There is no such substitution when the index 'y' is zero. When the index 'y' is 2 or more, a plurality of substituents (-Sp-P) are present on the ring β. The rule "may be identical or different" applies also if the compounds have identical substituents.
 「少なくとも1つの‘A’」の表現は、‘A’の数は任意であることを意味する。「少なくとも1つの‘A’は、‘B’で置き換えられてもよい」の表現は、‘A’の数が1つのとき、‘A’の位置は任意であり、‘A’の数が2つ以上のときも、それらの位置は制限なく選択できる。「少なくとも1つの-CH-は-O-で置き換えられてもよい」の表現が使われることがある。この場合、-CH-CH-CH-は、隣接しない-CH-が-O-で置き換えられることによって-O-CH-O-に変換されてもよい。しかしながら、隣接した-CH-が-O-で置き換えられることはない。この置き換えでは-O-O-CH-(ペルオキシド)が生成するからである。 The expression "at least one 'A'" means that the number of 'A' is arbitrary. In the expression “at least one 'A' may be replaced by 'B'”, when the number of 'A' is one, the position of 'A' is arbitrary and the number of 'A' is two Even in the case of three or more, their positions can be selected without limitation. The expression "at least one -CH 2- may be replaced by -O-" may be used. In this case, -CH 2 -CH 2 -CH 2 -may be converted to -O-CH 2 -O- by replacing non-adjacent -CH 2 -with -O-. However, adjacent -CH 2- is not replaced by -O-. This replacement is because -OO-CH 2- (peroxide) is formed.
 液晶性化合物のアルキルは、直鎖状または分岐状であり、環状アルキルを含まない。直鎖状アルキルは、分岐状アルキルよりも好ましい。これらのことは、アルコキシ、アルケニルのような末端基についても同様である。1,4-シクロヘキシレンに関する立体配置は、上限温度を上げるためにシスよりもトランスが好ましい。2-フルオロ-1,4-フェニレンは左右非対称であるから、左向き(L)および右向き(R)が存在する。
Figure JPOXMLDOC01-appb-I000011

テトラヒドロピラン-2,5-ジイルのような二価基においても同様である。カルボニルオキシのような結合基(-COO-または-OCO-)も同様である。
The alkyl of the liquid crystal compound is linear or branched and does not contain cyclic alkyl. Linear alkyls are preferred over branched alkyls. The same is true for end groups such as alkoxy and alkenyl. The configuration of 1,4-cyclohexylene is preferably trans rather than cis in order to increase the maximum temperature. Because 2-fluoro-1,4-phenylene is left-right asymmetrical, there are left (L) and right (R) orientations.
Figure JPOXMLDOC01-appb-I000011

The same applies to divalent groups such as tetrahydropyran-2,5-diyl. The same applies to linking groups (-COO- or -OCO-) such as carbonyloxy.
 本発明は、下記の項などである。 The present invention includes the following items.
項1. 第一成分として式(1)で表される化合物、および第二成分として式(2)で表される化合物から選択された少なくとも1つの化合物を含有し、そしてネマチック相および負の誘電率異方性を有する液晶組成物。
Figure JPOXMLDOC01-appb-I000012

式(2)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。
Item 1. A compound represented by the formula (1) as the first component, and at least one compound selected from the compounds represented by the formula (2) as the second component, and the nematic phase and the negative dielectric constant anisotropy Liquid crystal composition having conductivity.
Figure JPOXMLDOC01-appb-I000012

In the formula (2), R 1 and R 2 each represent alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, at least one hydrogen Is C 1-12 alkyl substituted with fluorine or chlorine, or C 2-12 alkenyl in which at least one hydrogen is substituted by fluorine or chlorine.
項2. 第一成分の割合が3質量%から30質量%の範囲であり、第二成分の割合が15質量%から45質量%の範囲である、項1に記載の液晶組成物。 Item 2. Item 2. The liquid crystal composition according to item 1, wherein the proportion of the first component is in the range of 3% by mass to 30% by mass, and the proportion of the second component is in the range of 15% by mass to 45% by mass.
項3. 第三成分として式(3)で表される化合物から選択された少なくとも1つの化合物を含有する、項1または2に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000013

式(3)において、RおよびRは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルであり;環Aおよび環Cは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、ナフタレン-2,6-ジイル、少なくとも1つの水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、クロマン-2,6-ジイル、または少なくとも1つの水素がフッ素または塩素で置き換えられたクロマン-2,6-ジイルであり;環Bは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、7,8-ジフルオロクロマン-2,6-ジイル、3,4,5,6-テトラフルオロフルオレン-2,7-ジイル、4,6-ジフルオロジベンゾフラン-3,7-ジイル、または1,1,6,7-テトラフルオロインダン-2,5-ジイルであり;ZおよびZは、単結合、エチレン、カルボニルオキシ、またはメチレンオキシであり;aは、1、2、または3であり、bは、0または1であり、そしてaとbとの和は3以下である。
Item 3. Item 3. The liquid crystal composition according to item 1 or 2, containing at least one compound selected from the compounds represented by formula (3) as a third component.
Figure JPOXMLDOC01-appb-I000013

In the formula (3), R 3 and R 4 are hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or at least Ring A and ring C are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-, wherein C 1-12 alkyl in which one hydrogen is replaced by fluorine or chlorine; Diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2, in which at least one hydrogen is replaced by fluorine or chlorine, 6-diyl, chroman-2,6-diyl, or chroma in which at least one hydrogen is replaced by fluorine or chlorine Ring B is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1 , 4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl, 7,8-difluorochroman-2,6-diyl, 3,4,5,6-tetrafluorofluorene-2,7- Diyl, 4,6-difluorodibenzofuran-3,7-diyl, or 1,1,6,7-tetrafluoroindane-2,5-diyl; Z 1 and Z 2 are a single bond, ethylene, carbonyloxy A is 1, 2 or 3; b is 0 or 1; and the sum of a and b is 3 or less.
項4. 第三成分として式(3-1)から式(3-35)で表される化合物から選択された少なくとも1つの化合物を含有する、項1から3のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000015

Figure JPOXMLDOC01-appb-I000016

式(3-1)から式(3-35)において、RおよびRは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルである。
Item 4. 4. The liquid crystal composition according to any one of items 1 to 3, containing at least one compound selected from the compounds represented by formulas (3-1) to (3-35) as a third component.
Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000015

Figure JPOXMLDOC01-appb-I000016

In formulas (3-1) to (3-35), R 3 and R 4 each represent hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, 2 to 12 alkenyloxy, or C 1 to C 12 alkyl in which at least one hydrogen is replaced by fluorine or chlorine.
項5. 第三成分の割合が30質量%から65質量%の範囲である、項3または4に記載の液晶組成物。 Item 5. 5. The liquid crystal composition according to item 3 or 4, wherein the proportion of the third component is in the range of 30% by mass to 65% by mass.
項6. 第四成分として式(4)で表される化合物から選択された少なくとも1つの化合物を含有する、項1から5のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000017

式(4)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルであり;環Dおよび環Eは、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンであり;Zは、単結合、エチレン、またはカルボニルオキシであり;cは、1、2、または3であり、cが1であるときの環Dと環Eは異なる。
Item 6. 6. The liquid crystal composition according to any one of items 1 to 5, containing at least one compound selected from compounds represented by formula (4) as a fourth component.
Figure JPOXMLDOC01-appb-I000017

In Formula (4), R 5 and R 6 each represent alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, carbon in which at least one hydrogen is replaced by fluorine or chlorine. And alkyl having a number of 1 to 12 or alkenyl having 2 to 12 carbon atoms in which at least one hydrogen is replaced with fluorine or chlorine; ring D and ring E are 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene or 2,5-difluoro-1,4-phenylene; Z 3 is a single bond, ethylene or carbonyloxy; c is 1, 2, or 3 Ring D is different from ring E when c is 1.
項7. 第四成分として式(4-1)から式(4-11)で表される化合物から選択された少なくとも1つの化合物を含有する、項1から6のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000018

式(4-1)から式(4-11)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。
Item 7. 7. The liquid crystal composition according to any one of items 1 to 6, containing at least one compound selected from the compounds represented by formulas (4-1) to (4-11) as a fourth component.
Figure JPOXMLDOC01-appb-I000018

In formulas (4-1) to (4-11), R 5 and R 6 each represent alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, at least one hydrogen Is C 1-12 alkyl substituted with fluorine or chlorine, or C 2-12 alkenyl in which at least one hydrogen is substituted by fluorine or chlorine.
項8. 第四成分の割合が3質量%から35質量%の範囲である、項6または7に記載の液晶組成物。 Item 8. Item 8. The liquid crystal composition according to item 6 or 7, wherein the proportion of the fourth component is in the range of 3% by mass to 35% by mass.
項9. 項1から8のいずれか1項に記載の液晶組成物を含有する液晶表示素子。 Item 9. 9. A liquid crystal display device containing the liquid crystal composition according to any one of items 1 to 8.
項10. 液晶表示素子の動作モードが、IPSモード、VAモード、FFSモード、またはFPAモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である、項9に記載の液晶表示素子。 Item 10. 10. The liquid crystal display element according to item 9, wherein an operation mode of the liquid crystal display element is an IPS mode, a VA mode, an FFS mode, or an FPA mode, and a driving method of the liquid crystal display element is an active matrix method.
項11. 項1から8のいずれか1項に記載の液晶組成物の、液晶表示素子における使用。 Item 11. 9. Use of the liquid crystal composition according to any one of items 1 to 8 in a liquid crystal display device.
 本発明は、次の項も含む。(a)添加物として、光学活性化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤、極性化合物のような添加物の少なくとも1つをさらに含有する上記の組成物。(b)上記の組成物を含有するAM素子。(c)上記の組成物を含有する高分子支持配向(PSA)型のAM素子。(d)上記の組成物を含有し、この組成物中の重合性化合物が重合されている、高分子支持配向(PSA)型のAM素子。(e)上記の組成物を含有し、そしてPC、TN、STN、ECB、OCB、IPS、VA、FFS、またはFPAのモードを有する素子。(f)上記の組成物を含有する透過型の素子。(g)ネマチック相を有する組成物として、上記の組成物の使用。(h)上記の組成物に光学活性化合物を添加することによって得られる光学活性な組成物の使用。 The present invention also includes the following items. (A) As an additive, at least one of an additive such as an optically active compound, an antioxidant, an ultraviolet light absorber, a dye, an antifoaming agent, a polymerizable compound, a polymerization initiator, a polymerization inhibitor, and a polar compound The above composition containing. (B) AM element containing the above composition. (C) Polymer supported orientation (PSA) type AM element containing the above composition. (D) An AM element of polymer supported orientation (PSA) type containing the composition described above and in which the polymerizable compound in the composition is polymerized. (E) A device containing the composition described above and having a mode of PC, TN, STN, ECB, OCB, IPS, VA, FFS, or FPA. (F) A transmission type device containing the above composition. (G) Use of the above composition as a composition having a nematic phase. (H) Use of an optically active composition obtained by adding an optically active compound to the above composition.
 本発明の組成物を次の順で説明する。第一に、組成物の構成を説明する。第二に、成分化合物の主要な特性、およびこの化合物が組成物や素子に及ぼす主要な効果を説明する。第三に、組成物における成分化合物の組合せ、好ましい割合、およびその根拠を説明する。第四に、成分化合物の好ましい形態を説明する。第五に、好ましい成分化合物を示す。第六に、組成物に添加してもよい添加物を説明する。第七に、成分化合物の合成法を説明する。最後に、組成物の用途を説明する。 The composition of the present invention will be described in the following order. First, the composition of the composition will be described. Second, the main properties of the component compounds and the main effects of the compounds on the composition and the device are explained. Third, the combination of the component compounds in the composition, the preferred ratio, and the basis thereof will be described. Fourth, the preferred embodiments of the component compounds are described. Fifth, preferred component compounds are shown. Sixth, additives that may be added to the composition will be described. Seventh, the synthesis methods of the component compounds will be described. Finally, the application of the composition is described.
 第一に、組成物の構成を説明する。この組成物は、複数の液晶性化合物を含有する。この組成物は、添加物を含有してもよい。添加物は、光学活性化合物、酸化防止剤、紫外線吸収剤、消光剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤、極性化合物などである。この組成物は、液晶性化合物の観点から組成物Aと組成物Bに分類される。組成物Aは、化合物(1)、化合物(2)、化合物(3)、および化合物(4)から選択された液晶性化合物の他に、その他の液晶性化合物、添加物などをさらに含有してもよい。「その他の液晶性化合物」は、化合物(1)、化合物(2)、化合物(3)、および化合物(4)とは異なる液晶性化合物である。このような化合物は、特性をさらに調整する目的で組成物に混合される。 First, the composition of the composition will be described. This composition contains a plurality of liquid crystal compounds. The composition may contain an additive. The additive is an optically active compound, an antioxidant, an ultraviolet light absorber, a quencher, a pigment, an antifoaming agent, a polymerizable compound, a polymerization initiator, a polymerization inhibitor, a polar compound and the like. This composition is classified into the composition A and the composition B from the viewpoint of the liquid crystal compound. Composition A further contains other liquid crystal compounds, additives and the like in addition to the liquid crystal compounds selected from compound (1), compound (2), compound (3) and compound (4) It is also good. The “other liquid crystal compound” is a liquid crystal compound different from the compound (1), the compound (2), the compound (3), and the compound (4). Such compounds are mixed into the composition for the purpose of further adjusting the properties.
 組成物Bは、実質的に化合物(1)、化合物(2)、化合物(3)、および化合物(4)から選択された液晶性化合物のみからなる。「実質的に」の用語は、組成物Bが添加物を含有してもよいが、その他の液晶性化合物を含有しないことを意味する。組成物Bは組成物Aに比較して成分の数が少ない。コストを下げるという観点から、組成物Bは組成物Aよりも好ましい。その他の液晶性化合物を混合することによって特性をさらに調整できるという観点から、組成物Aは組成物Bよりも好ましい。 The composition B substantially consists only of the liquid crystal compound selected from the compound (1), the compound (2), the compound (3), and the compound (4). The term "substantially" means that composition B may contain an additive, but does not contain any other liquid crystal compound. Composition B has a smaller number of components than composition A. Composition B is preferable to composition A in terms of cost reduction. Composition A is preferable to composition B from the viewpoint that the characteristics can be further adjusted by mixing other liquid crystal compounds.
 第二に、成分化合物の主要な特性、およびこの化合物が組成物に及ぼす主要な効果を説明する。成分化合物の主要な特性を本発明の効果に基づいて表2にまとめる。表2の記号において、Lは大きいまたは高い、Mは中程度の、Sは小さいまたは低い、を意味する。記号L、M、Sは、成分化合物のあいだの定性的な比較に基づいた分類であり、記号0(ゼロ)は、S(小さい)よりも小さいことを意味する。 Second, the main properties of the component compounds and the main effects of the compounds on the composition are explained. The main properties of the component compounds are summarized in Table 2 based on the effects of the present invention. In the symbols of Table 2, L means large or high, M medium, and S small or low. The symbols L, M, S are classifications based on qualitative comparisons among the component compounds, and the symbol 0 (zero) means smaller than S (small).
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000019
 成分化合物が組成物の特性に及ぼす主要な効果は次のとおりである。化合物(1)および化合物(2)は、下限温度を下げ、そして粘度を下げる。化合物(3)は下限温度を下げ、そして誘電率異方性を上げる。化合物(4)は、下限温度を下げ、そして上限温度を上げる。 The main effects of the component compounds on the properties of the composition are as follows. Compound (1) and compound (2) lower the lower limit temperature and lower the viscosity. Compound (3) lowers the lower limit temperature and raises the dielectric anisotropy. Compound (4) lowers the lower temperature limit and raises the upper temperature limit.
 第三に、組成物における成分化合物の組合せ、好ましい割合およびその根拠を説明する。組成物における成分の好ましい組合せは、化合物(1)+化合物(2)、化合物(1)+化合物(2)+化合物(3)、および化合物(1)+化合物(2)+化合物(3)+化合物(4)である。さらに好ましい組合せは、化合物(1)+化合物(2)+化合物(3)+化合物(4)である。 Third, the combination of the component compounds in the composition, the preferable ratio and the basis thereof will be described. Preferred combinations of the components in the composition are compound (1) + compound (2), compound (1) + compound (2) + compound (3), and compound (1) + compound (2) + compound (3) + Compound (4). A further preferred combination is compound (1) + compound (2) + compound (3) + compound (4).
 化合物(1)の好ましい割合は、粘度を下げるために約3質量%以上であり、下限温度を下げるために約30質量%以下である。さらに好ましい割合は約3質量%から約25質量%の範囲である。特に好ましい割合は約3質量%から約20質量%の範囲である。 The preferred proportion of the compound (1) is about 3% by mass or more to reduce the viscosity, and about 30% by mass or less to reduce the lower limit temperature. A further preferred ratio is in the range of about 3% by weight to about 25% by weight. An especially desirable ratio is in the range of about 3% by mass to about 20% by mass.
 化合物(2)の好ましい割合は、粘度を下げるために約15質量%以上であり、下限温度を下げるために約45質量%以下である。さらに好ましい割合は約20質量%から約40質量%の範囲である。特に好ましい割合は約25質量%から約35質量%の範囲である。 The preferred proportion of the compound (2) is about 15% by mass or more to reduce the viscosity, and about 45% by mass or less to reduce the lower limit temperature. A further preferred ratio is in the range of about 20% by weight to about 40% by weight. An especially desirable ratio is in the range of about 25% by mass to about 35% by mass.
 化合物(3)の好ましい割合は、誘電率異方性を上げるために、または上限温度を上げるために約30質量%以上であり粘度を下げるために約65質量%以下である。さらに好ましい割合は約35質量%から約60質量%の範囲である。特に好ましい割合は約40質量%から約55質量%の範囲である。 The preferred proportion of the compound (3) is about 30% by mass or more for increasing the dielectric anisotropy, or about 65% by mass or less for decreasing the viscosity. A further preferred ratio is in the range of about 35% by weight to about 60% by weight. An especially desirable ratio is in the range of about 40% by weight to about 55% by weight.
 化合物(4)の好ましい割合は、粘度を下げるために約3質量%以上であり、下限温度を下げるために約35質量%以下である。さらに好ましい割合は約5質量%から約30質量%の範囲である。特に好ましい割合は約8質量%から約25質量%の範囲である。 The preferred proportion of the compound (4) is about 3% by mass or more to reduce the viscosity, and about 35% by mass or less to reduce the lower limit temperature. A further preferred ratio is in the range of about 5% by weight to about 30% by weight. An especially desirable ratio is in the range of about 8% by mass to about 25% by mass.
 第四に、成分化合物の好ましい形態を説明する。
式(2)、式(3)、および式(4)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。好ましいRまたはRは、粘度を下げるために炭素数2から12のアルケニルであり、紫外線や熱に対する安定性を上げるために炭素数1から12のアルキルである。RおよびRは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルである。好ましいRまたはRは、粘度を下げるために炭素数2から12のアルケニルであり、紫外線や熱に対する安定性を上げるために炭素数1から12のアルキルであり、誘電率異方性を上げるために炭素数1から12のアルコキシである。RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。好ましいRまたはRは、粘度を下げるために炭素数2から12のアルケニルであり、紫外線や熱に対する安定性を上げるために炭素数1から12のアルキルである。
Fourth, the preferred embodiments of the component compounds are described.
In the formulas (2), (3) and (4), R 1 and R 2 each represent alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, 2 to 12 alkenyloxy, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, or alkenyl having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine. Desirable R 1 or R 2 is alkenyl having 2 to 12 carbons to lower the viscosity, and alkyl having 1 to 12 carbons to increase the stability to ultraviolet light and heat. R 3 and R 4 are hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or at least one hydrogen is fluorine or It is a C1-C12 alkyl substituted by chlorine. Desirable R 3 or R 4 is alkenyl having 2 to 12 carbon atoms to lower the viscosity, alkyl having 1 to 12 carbons to increase the stability to ultraviolet light and heat, and to increase dielectric anisotropy C 1 to C 12 alkoxy for the purpose of R 5 and R 6 each represents an alkyl having 1 to 12 carbons, an alkoxy having 1 to 12 carbons, an alkenyl having 2 to 12 carbons, an alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine. Or at least one hydrogen is an alkenyl having 2 to 12 carbons replaced with fluorine or chlorine. Desirable R 5 or R 6 is alkenyl having 2 to 12 carbons to lower the viscosity, and alkyl having 1 to 12 carbons to increase the stability to ultraviolet light and heat.
 好ましいアルキルは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、またはオクチルである。さらに好ましいアルキルは、粘度を下げるためにメチル、エチル、プロピル、ブチル、またはペンチルである。 Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. More preferred alkyl is methyl, ethyl, propyl, butyl or pentyl to lower the viscosity.
 好ましいアルコキシは、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、またはヘプチルオキシである。さらに好ましいアルコキシは、粘度を下げるためにメトキシまたはエトキシである。 Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy or heptyloxy. More preferred alkoxy is methoxy or ethoxy to lower the viscosity.
 好ましいアルケニルは、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、または5-ヘキセニルである。さらに好ましいアルケニルは、粘度を下げるために、ビニル、1-プロペニル、3-ブテニル、または3-ペンテニルである。これらのアルケニルにおける-CH=CH-の好ましい立体配置は、二重結合の位置に依存する。1-プロペニル、1-ブテニル、1-ペンテニル、1-ヘキセニル、3-ペンテニル、3-ヘキセニルのようなアルケニルにおいては、粘度を下げるためにトランスが好ましい。2-ブテニル、2-ペンテニル、2-ヘキセニルのようなアルケニルにおいてはシスが好ましい。 Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl or 5-hexenyl. More preferred alkenyl is vinyl, 1-propenyl, 3-butenyl or 3-pentenyl to reduce viscosity. The preferred configuration of —CH = CH— in these alkenyls depends on the position of the double bond. In alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl, trans is preferred to reduce viscosity. Cis is preferred for alkenyl such as 2-butenyl, 2-pentenyl and 2-hexenyl.
 少なくとも1つの水素がフッ素または塩素で置き換えられたアルキルの好ましい例は、フルオロメチル、2-フルオロエチル、3-フルオロプロピル、4-フルオロブチル、5-フルオロペンチル、6-フルオロヘキシル、7-フルオロヘプチル、または8-フルオロオクチルである。さらに好ましい例は、誘電率異方性を上げるために2-フルオロエチル、3-フルオロプロピル、4-フルオロブチル、または5-フルオロペンチルである。 Preferred examples of the alkyl in which at least one hydrogen is replaced by fluorine or chlorine are fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl, 7-fluoroheptyl Or 8-fluorooctyl. Further preferred examples are 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl or 5-fluoropentyl to increase the dielectric anisotropy.
 少なくとも1つの水素がフッ素または塩素で置き換えられたアルケニルの好ましい例は、2,2-ジフルオロビニル、3,3-ジフルオロ-2-プロペニル、4,4-ジフルオロ-3-ブテニル、5,5-ジフルオロ-4-ペンテニル、または6,6-ジフルオロ-5-ヘキセニルである。さらに好ましい例は、粘度を下げるために2,2-ジフルオロビニルまたは4,4-ジフルオロ-3-ブテニルである。 Preferred examples of the alkenyl in which at least one hydrogen is replaced by fluorine or chlorine are: 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro -4-pentenyl or 6,6-difluoro-5-hexenyl. Further preferred examples are 2,2-difluorovinyl or 4,4-difluoro-3-butenyl for decreasing the viscosity.
 環Aおよび環Cは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、ナフタレン-2,6-ジイル、少なくとも1つの水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、クロマン-2,6-ジイル、または少なくとも1つの水素がフッ素または塩素で置き換えられたクロマン-2,6-ジイルであり、好ましい環Aまたは環Cは、粘度を下げるためにまたは上限温度を上げるために、1,4-シクロヘキシレンであり、下限温度を下げるために1,4-フェニレンであり、誘電率異方性を上げるために少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレンである。環Bは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、7,8-ジフルオロクロマン-2,6-ジイル、3,4,5,6-テトラフルオロフルオレン-2,7-ジイル(FLF4)、4,6-ジフルオロジベンゾフラン-3,7-ジイル(DBFF2)、4,6-ジフルオロジベンゾチオフェン-3,7-ジイル(DBTF2)、または1,1,6,7-テトラフルオロインダン-2,5-ジイル(InF4)である。好ましい環Bは、誘電率異方性を上げるために2,3-ジフルオロ-1,4-フェニレンである。
Figure JPOXMLDOC01-appb-I000020
Ring A and ring C are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, at least one hydrogen is replaced by fluorine or chlorine 1 , 4-phenylene, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or at least one hydrogen is fluorine or chlorine And preferred ring A or ring C is 1,4-cyclohexylene to lower the viscosity or to raise the upper temperature limit, and to lower the lower temperature limit. 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine to increase dielectric anisotropy 1, It is 4-phenylene. Ring B is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,4, 5-trifluoronaphthalene-2,6-diyl, 7,8-difluorochroman-2,6-diyl, 3,4,5,6-tetrafluorofluorene-2,7-diyl (FLF4), 4,6- Difluorodibenzofuran-3,7-diyl (DBFF2), 4,6-difluorodibenzothiophene-3,7-diyl (DBTF2), or 1,1,6,7-tetrafluoroindane-2,5-diyl (InF4) It is. Preferred ring B is 2,3-difluoro-1,4-phenylene to increase dielectric anisotropy.
Figure JPOXMLDOC01-appb-I000020
 環Dおよび環Eは、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンである。好ましい環Dまたは環Eは、粘度を下げるために、または上限温度を上げるために、1,4-シクロヘキシレンであり、光学異方性を上げるために、1,4-フェニレンである。 Ring D and ring E are 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene or 2,5-difluoro-1,4-phenylene. Preferred ring D or ring E is 1,4-cyclohexylene to lower the viscosity or to raise the upper limit temperature, and 1,4-phenylene to increase the optical anisotropy.
 ZおよびZは、単結合、エチレン、カルボニルオキシ、またはメチレンオキシである。好ましいZまたはZは、粘度を下げるために単結合であり、誘電率異方性を上げるためにメチレンオキシである。Zは、単結合、エチレン、またはカルボニルオキシである。好ましいZは、粘度を下げるために単結合である。 Z 1 and Z 2 are a single bond, ethylene, carbonyloxy or methyleneoxy. Preferred Z 1 or Z 2 is a single bond to lower the viscosity, and methyleneoxy to increase the dielectric anisotropy. Z 3 is a single bond, ethylene or carbonyloxy. Preferred Z 3 is a single bond to lower the viscosity.
 aは、1、2、または3であり、bは、0または1であり、そしてaとbとの和は3以下である。好ましいaは、粘度を下げるために1であり、上限温度を上げるために2である。好ましいbは、粘度を下げるために0であり、上限温度を上げるために1である。cは、1、2、または3である。好ましいcは、粘度を下げるために1であり、上限温度を上げるために2である。 A is 1, 2 or 3; b is 0 or 1; and the sum of a and b is 3 or less. Preferred a is 1 to lower the viscosity and 2 to raise the upper temperature limit. Preferred b is 0 to lower the viscosity and 1 to raise the upper temperature limit. c is 1, 2 or 3; Preferred c is 1 to lower the viscosity and 2 to raise the upper temperature limit.
 第五に、好ましい成分化合物を示す。好ましい化合物(3)は、項4に記載の化合物(3-1)から化合物(3-33)である。これらの化合物において、第三成分の少なくとも1つが、化合物(3-1)、化合物(3-3)、化合物(3-6)、化合物(3-8)、化合物(3-10)、化合物(3-13)、化合物(3-14)または化合物(3-16)であることが好ましい。化合物(3-3)および化合物(3-8)、化合物(3-3)および化合物(3-10)、化合物(3-3)および化合物(3-14)、化合物(3-3)および化合物(3-18)、化合物(3-6)および化合物(3-8)、化合物(3-6)および化合物(3-10)、化合物(3-6)および化合物(3-16)、化合物(3-6)および化合物(3-18)、または化合物(3-10)および化合物(3-14)の組合せであることが好ましい。 Fifth, preferred component compounds are shown. The preferred compound (3) is the compound (3-1) to the compound (3-33) described in Item 4. In these compounds, at least one of the third components is a compound (3-1), a compound (3-3), a compound (3-6), a compound (3-8), a compound (3-10), a compound (3 3-13), Compound (3-14) or Compound (3-16) is preferred. Compound (3-3) and Compound (3-8), Compound (3-3) and Compound (3-10), Compound (3-3) and Compound (3-14), Compound (3-3) and Compound (3-18), compound (3-6) and compound (3-8), compound (3-6) and compound (3-10), compound (3-6) and compound (3-16), compound (3 It is preferable that it is a combination of compound 3-6) and compound (3-18), or compound (3-10) and compound (3-14).
 好ましい化合物(4)は、項7に記載の化合物(4-1)から化合物(4-11)である。これらの化合物において、第四成分の少なくとも1つが、化合物(4-1)、化合物(4-2)、化合物(4-3)、化合物(4-4)、化合物(4-5)、化合物(4-9)、または化合物(4-11)であることが好ましい。第四成分の少なくとも2つが、化合物(4-3)および化合物(4-4)、化合物(4-2)および化合物(4-3)の組合せであることが好ましい。 The preferred compound (4) is the compound (4-1) described in Item 7 to the compound (4-11). In these compounds, at least one of the fourth components is a compound (4-1), a compound (4-2), a compound (4-3), a compound (4-4), a compound (4-5), a compound (4) It is preferable that it is 4-9) or the compound (4-11). It is preferable that at least two of the fourth components be a combination of the compound (4-3) and the compound (4-4), the compound (4-2) and the compound (4-3).
 第六に、組成物に添加してもよい添加物を説明する。このような添加物は、光学活性化合物、酸化防止剤、紫外線吸収剤、消光剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤、極性化合物などである。液晶分子のらせん構造を誘起してねじれ角を与える目的で光学活性化合物が組成物に添加される。このような化合物の例は、化合物(6-1)から化合物(6-5)である。光学活性化合物の好ましい割合は約5質量%以下である。さらに好ましい割合は約0.01質量%から約2質量%の範囲である。 Sixth, additives that may be added to the composition will be described. Such additives include optically active compounds, antioxidants, ultraviolet light absorbers, quenchers, dyes, antifoaming agents, polymerizable compounds, polymerization initiators, polymerization inhibitors, polar compounds and the like. An optically active compound is added to the composition for the purpose of inducing a helical structure of liquid crystal molecules to give a twist angle. Examples of such compounds are compound (6-1) to compound (6-5). The preferred proportion of the optically active compound is about 5% by mass or less. A further preferred ratio is in the range of about 0.01% by weight to about 2% by weight.
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000021
 大気中での加熱による比抵抗の低下を防止するために、または素子を長時間使用したあと、室温だけではなく上限温度に近い温度でも大きな電圧保持率を維持するために、酸化防止剤が組成物に添加される。酸化防止剤の好ましい例は、化合物(7-1)から化合物(7-3)などである。
Figure JPOXMLDOC01-appb-I000022
In order to prevent the decrease in specific resistance due to heating in the atmosphere, or after using the device for a long time, in order to maintain a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature, Is added to the Preferred examples of the antioxidant include compounds (7-1) to (7-3).
Figure JPOXMLDOC01-appb-I000022
 化合物(7-2)は、揮発性が小さいので、素子を長時間使用したあと、室温だけではなく上限温度に近い温度でも大きな電圧保持率を維持するのに有効である。酸化防止剤の好ましい割合は、その効果を得るために約50ppm以上であり、上限温度を下げないように、または下限温度を上げないように約600ppm以下である。さらに好ましい割合は、約100ppmから約300ppmの範囲である。 Since the compound (7-2) has low volatility, it is effective to maintain a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature after using the device for a long time. The preferred proportion of the antioxidant is about 50 ppm or more to obtain its effect, and is about 600 ppm or less so as not to lower the upper temperature limit or to raise the lower temperature limit. A further preferred ratio is in the range of about 100 ppm to about 300 ppm.
 紫外線吸収剤の好ましい例は、ベンゾフェノン誘導体、ベンゾエート誘導体、トリアゾール誘導体などである。立体障害のあるアミンのような光安定剤もまた好ましい。光安定剤の好ましい例は、化合物(8-1)から化合物(8-16)などである。これらの吸収剤や安定剤における好ましい割合は、その効果を得るために約50ppm以上であり、上限温度を下げないように、または下限温度を上げないように約10000ppm以下である。さらに好ましい割合は約100ppmから約10000ppmの範囲である。
Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024
Preferred examples of the UV absorbers are benzophenone derivatives, benzoate derivatives, triazole derivatives and the like. Also preferred are light stabilizers such as sterically hindered amines. Preferred examples of the light stabilizer include compound (8-1) to compound (8-16). The preferred proportion of these absorbents and stabilizers is about 50 ppm or more in order to obtain the effect, and is about 10000 ppm or less so as not to lower the upper temperature limit or to raise the lower temperature limit. A further preferred ratio is in the range of about 100 ppm to about 10000 ppm.
Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024
 消光剤は、液晶性化合物が吸収した光エネルギーを受容し、熱エネルギーに変換することにより、液晶性化合物の分解を防止する化合物である。消光剤の好ましい例は、化合物(9-1)から化合物(9-7)などである。これらの消光剤における好ましい割合は、その効果を得るために約50ppm以上であり、下限温度を下げるために約20000ppm以下である。さらに好ましい割合は約100ppmから約10000ppmの範囲である。
Figure JPOXMLDOC01-appb-I000025
A quencher is a compound which receives the light energy absorbed by the liquid crystal compound and converts it into heat energy to prevent the decomposition of the liquid crystal compound. Preferred examples of the quencher are compound (9-1) to compound (9-7). The preferred proportion of these quenchers is about 50 ppm or more to obtain the effect, and about 20000 ppm or less to lower the lower limit temperature. A further preferred ratio is in the range of about 100 ppm to about 10000 ppm.
Figure JPOXMLDOC01-appb-I000025
 GH(guest host)モードの素子に適合させるために、アゾ系色素、アントラキノン系色素などのような二色性色素(dichroic dye)が組成物に添加される。色素の好ましい割合は、約0.01質量%から約10質量%の範囲である。泡立ちを防ぐために、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどの消泡剤が組成物に添加される。消泡剤の好ましい割合は、その効果を得るために約1ppm以上であり、表示不良を防ぐために約1000ppm以下である。さらに好ましい割合は、約1ppmから約500ppmの範囲である。 In order to conform to a guest host (GH) mode device, a dichroic dye such as an azo dye or an anthraquinone dye is added to the composition. The preferred proportion of dye is in the range of about 0.01% by weight to about 10% by weight. In order to prevent foaming, an antifoam agent such as dimethyl silicone oil, methylphenyl silicone oil or the like is added to the composition. The preferable proportion of the antifoaming agent is about 1 ppm or more in order to obtain the effect, and is about 1000 ppm or less in order to prevent display defects. A further preferred ratio is in the range of about 1 ppm to about 500 ppm.
 極性化合物は、極性をもつ有機化合物である。ここでは、イオン結合を有する化合物は含まれない。酸素、硫黄、および窒素のような原子は、より電気的に陰性であり、部分的な負電荷をもつ傾向にある。炭素および水素は中性であるか、または部分的な正電荷をもつ傾向がある。極性は、化合物中の別種の原子間で部分電荷が均等に分布しないことから生じる。例えば、極性化合物は、-OH、-COOH、-SH、-NH、>NH、>N-のような部分構造の少なくとも1つを有する。 Polar compounds are organic compounds with polarity. Here, compounds having an ionic bond are not included. Atoms such as oxygen, sulfur and nitrogen are more electronegative and tend to have a partial negative charge. Carbon and hydrogen tend to be neutral or have a partial positive charge. Polarity results from the inhomogeneous distribution of partial charges among different types of atoms in the compound. For example, the polar compound has at least one of partial structures such as -OH, -COOH, -SH, -NH 2 ,>NH,> N-.
 第七に、成分化合物の合成法を説明する。これらの化合物は既知の方法によって合成できる。合成法を例示する。化合物(1)は、特開平5-140003号公報に記載された方法で合成する。化合物(2)は、特開昭59-176221号公報に記載された方法で合成する。化合物(3-8)は、特表平2-503441号公報に記載された方法で合成する。化合物(4-3)は、特開昭59-176221号公報に記載された方法で合成する。酸化防止剤は市販されている。化合物(6-1)は、アルドリッチ(Sigma-Aldrich Corporation)から入手できる。化合物(6-2)などは、米国特許3660505号明細書に記載された方法によって合成する。 Seventh, the synthesis methods of the component compounds will be described. These compounds can be synthesized by known methods. The synthesis method is illustrated. The compound (1) is synthesized by the method described in JP-A-5-140003. The compound (2) is synthesized by the method described in JP-A-59-176221. The compound (3-8) is synthesized by the method described in JP-A-2-503441. The compound (4-3) is synthesized by the method described in JP-A-59-176221. Antioxidants are commercially available. Compound (6-1) can be obtained from Aldrich (Sigma-Aldrich Corporation). The compound (6-2) and the like are synthesized by the method described in US Pat. No. 3,660,505.
 合成法を記載しなかった化合物は、オーガニック・シンセシス(Organic Syntheses, John Wiley & Sons, Inc.)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc.)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などの成書に記載された方法によって合成できる。組成物は、このようにして得た化合物から公知の方法によって調製される。例えば、成分化合物を混合し、そして加熱によって互いに溶解させる。 Compounds that did not describe the method of synthesis were organic syntheses (John Wiley & Sons, Inc.), Organic Reactions (John Wiley & Sons, Inc.), complementary organic syntheses ( It can be synthesized by the method described in the book of Comprehensive Organic Synthesis, Pergamon Press), New Experimental Chemistry Lecture (Maruzen) and the like. The compositions are prepared from the compounds thus obtained by known methods. For example, the component compounds are mixed and dissolved together by heating.
 最後に、組成物の用途を説明する。大部分の組成物は、約-10℃以下の下限温度、約70℃以上の上限温度、そして約0.07から約0.20の範囲の光学異方性を有する。成分化合物の割合を制御することによって、またはその他の液晶性化合物を混合することによって、約0.08から約0.25の範囲の光学異方性を有する組成物を調製してもよい。さらには、試行錯誤によって約0.10から約0.30の範囲の光学異方性を有する組成物を調製してもよい。この組成物を含有する素子は大きな電圧保持率を有する。この組成物はAM素子に適する。この組成物は透過型のAM素子に特に適する。この組成物は、ネマチック相を有する組成物としての使用や、光学活性化合物を添加することによって光学活性な組成物としての使用が可能である。 Finally, the application of the composition is described. Most compositions have a lower temperature limit of about -10.degree. C. or lower, an upper temperature limit of about 70.degree. C. or higher, and an optical anisotropy in the range of about 0.07 to about 0.20. A composition having an optical anisotropy in the range of about 0.08 to about 0.25 may be prepared by controlling the proportions of the component compounds, or by mixing other liquid crystal compounds. Furthermore, compositions having optical anisotropy in the range of about 0.10 to about 0.30 may be prepared by trial and error. Devices containing this composition have a large voltage holding ratio. This composition is suitable for an AM device. This composition is particularly suitable for transmissive AM devices. This composition can be used as a composition having a nematic phase or as an optically active composition by adding an optically active compound.
 この組成物はAM素子への使用が可能である。さらにPM素子への使用も可能である。この組成物は、PC、TN、STN、ECB、OCB、IPS、FFS、VA、FPAなどのモードを有するAM素子およびPM素子への使用が可能である。TN、OCB、IPSモードまたはFFSモードを有するAM素子への使用は特に好ましい。IPSモードまたはFFSモードを有するAM素子において、電圧が無印加のとき、液晶分子の配列がガラス基板に対して平行であってもよく、または垂直であってもよい。これらの素子が反射型、透過型または半透過型であってもよい。透過型の素子への使用は好ましい。非結晶シリコン-TFT素子または多結晶シリコン-TFT素子への使用も可能である。この組成物をマイクロカプセル化して作製したNCAP(nematic curvilinear aligned phase)型の素子や、組成物中に三次元の網目状高分子を形成させたPD(polymer dispersed)型の素子にも使用できる。 This composition can be used for an AM device. Furthermore, the use to PM element is also possible. This composition can be used for AM devices and PM devices having modes such as PC, TN, STN, ECB, OCB, IPS, FFS, VA, FPA. The use for an AM device having a TN, OCB, IPS mode or FFS mode is particularly preferred. In an AM device having an IPS mode or an FFS mode, when no voltage is applied, the alignment of liquid crystal molecules may be parallel to or perpendicular to the glass substrate. These elements may be reflective, transmissive or semi-transmissive. Its use for transmission type devices is preferred. The use for amorphous silicon-TFT elements or polycrystalline silicon-TFT elements is also possible. The composition can be used for an element of NCAP (nematic curvilinear aligned phase) type prepared by microencapsulation or a element of PD (polymer dispersed) type in which a three-dimensional network polymer is formed in the composition.
 実施例によって本発明をさらに詳しく説明する。本発明はこれらの実施例によっては制限されない。本発明は、実施例1の組成物と実施例2の組成物との混合物を含む。本発明は、実施例の組成物の少なくとも2つを混合した混合物をも含む。合成した化合物は、NMR分析などの方法により同定した。化合物、組成物および素子の特性は、下記に記載した方法により測定した。 The invention will be further described by way of examples. The invention is not limited by these examples. The present invention comprises a mixture of the composition of Example 1 and the composition of Example 2. The present invention also includes a mixture of at least two of the compositions of the Examples. The compound synthesized was identified by a method such as NMR analysis. The properties of the compounds, compositions and devices were measured by the methods described below.
 NMR分析:測定には、ブルカーバイオスピン社製のDRX-500を用いた。H-NMRの測定では、試料をCDClなどの重水素化溶媒に溶解させ、測定は、室温で、500MHz、積算回数16回の条件で行った。テトラメチルシランを内部標準として用いた。19F-NMRの測定では、CFClを内部標準として用い、積算回数24回で行った。核磁気共鳴スペクトルの説明において、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、quinはクインテット、sexはセクステット、mはマルチプレット、brはブロードであることを意味する。 NMR analysis: For measurement, DRX-500 manufactured by Bruker Biospin Ltd. was used. In the measurement of 1 H-NMR, the sample was dissolved in a deuterated solvent such as CDCl 3, and the measurement was performed at room temperature under conditions of 500 MHz and 16 integrations. Tetramethylsilane was used as an internal standard. In the 19 F-NMR measurement, CFCl 3 was used as an internal standard, and the integration was performed 24 times. In the description of nuclear magnetic resonance spectrum, s is singlet, d is doublet, t is triplet, q is quartet, quin is quintet, sex is sextet, m is multiplet, br is broad.
 ガスクロマト分析:測定には島津製作所製のGC-14B型ガスクロマトグラフを用いた。キャリアーガスはヘリウム(2mL/分)である。試料気化室を280℃に、検出器(FID)を300℃に設定した。成分化合物の分離には、Agilent Technologies Inc.製のキャピラリカラムDB-1(長さ30m、内径0.32mm、膜厚0.25μm;固定液相はジメチルポリシロキサン;無極性)を用いた。このカラムは、200℃で2分間保持したあと、5℃/分の割合で280℃まで昇温した。試料はアセトン溶液(0.1質量%)に調製したあと、その1μLを試料気化室に注入した。記録計は島津製作所製のC-R5A型Chromatopac、またはその同等品である。得られたガスクロマトグラムは、成分化合物に対応するピークの保持時間およびピークの面積を示した。 Gas Chromatographic Analysis: A GC-14B gas chromatograph made by Shimadzu Corporation was used for measurement. The carrier gas is helium (2 mL / min). The sample vaporization chamber was set at 280 ° C. and the detector (FID) was set at 300 ° C. For separation of the component compounds, capillary columns DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm; fixed liquid phase is dimethylpolysiloxane; nonpolar) manufactured by Agilent Technologies Inc. were used. The column was kept at 200 ° C. for 2 minutes and then heated to 280 ° C. at a rate of 5 ° C./minute. The sample was prepared in an acetone solution (0.1% by mass), and 1 μL thereof was injected into the sample vaporization chamber. The recorder is Model C-R5A Chromatopac manufactured by Shimadzu Corporation, or its equivalent. The obtained gas chromatogram showed the retention time of the peak corresponding to the component compound and the area of the peak.
 試料を希釈するための溶媒は、クロロホルム、ヘキサンなどを用いてもよい。成分化合物を分離するために、次のキャピラリカラムを用いてもよい。Agilent Technologies Inc.製のHP-1(長さ30m、内径0.32mm、膜厚0.25μm)、Restek Corporation製のRtx-1(長さ30m、内径0.32mm、膜厚0.25μm)、SGE International Pty. Ltd製のBP-1(長さ30m、内径0.32mm、膜厚0.25μm)。化合物ピークの重なりを防ぐ目的で島津製作所製のキャピラリカラムCBP1-M50-025(長さ50m、内径0.25mm、膜厚0.25μm)を用いてもよい。 As a solvent for diluting the sample, chloroform, hexane or the like may be used. The following capillary column may be used to separate the component compounds. HP-1 (30 m in length, 0.32 mm in diameter, 0.25 μm in thickness) manufactured by Agilent Technologies Inc., Rtx-1 (30 m in length, 0.32 mm in inside diameter, 0.25 μm in film thickness) manufactured by Restek Corporation, BP-1 (30 m in length, 0.32 mm in inner diameter, 0.25 μm in film thickness) manufactured by SGE International Pty. Ltd. A capillary column CBP1-M50-025 (length 50 m, inner diameter 0.25 mm, film thickness 0.25 μm) manufactured by Shimadzu Corporation may be used for the purpose of preventing overlapping of compound peaks.
 組成物に含有される液晶性化合物の割合は、次のような方法で算出してよい。液晶性化合物の混合物をガスクロマトグラフィー(FID)で分析する。ガスクロマトグラムにおけるピークの面積比は液晶性化合物の割合(質量比)に相当する。上に記載したキャピラリカラムを用いたときは、各々の液晶性化合物の補正係数を1とみなしてよい。したがって、液晶性化合物の割合(質量%)は、ピークの面積比から算出することができる。 The proportion of the liquid crystal compound contained in the composition may be calculated by the following method. The mixture of liquid crystalline compounds is analyzed by gas chromatography (FID). The area ratio of peaks in the gas chromatogram corresponds to the proportion (mass ratio) of the liquid crystal compound. When the capillary column described above is used, the correction coefficient of each liquid crystal compound may be regarded as 1. Therefore, the ratio (mass%) of the liquid crystal compound can be calculated from the area ratio of the peaks.
 測定試料:組成物および素子の特性を測定するときは、組成物をそのまま試料として用いた。化合物の特性を測定するときは、この化合物(15質量%)を母液晶(85質量%)に混合することによって測定用の試料を調製した。測定によって得られた値から外挿法によって化合物の特性値を算出した。(外挿値)={(試料の測定値)-0.85×(母液晶の測定値)}/0.15。この割合でスメクチック相(または結晶)が25℃で析出するときは、化合物と母液晶の割合を10質量%:90質量%、5質量%:95質量%、1質量%:99質量%の順に変更した。この外挿法によって化合物に関する上限温度、光学異方性、粘度、および誘電率異方性の値を求めた。 Measurement sample: When measuring the characteristics of the composition and the device, the composition was used as it was as a sample. When measuring the properties of the compound, a sample for measurement was prepared by mixing this compound (15% by mass) with the mother liquid crystal (85% by mass). The characteristic values of the compound were calculated by extrapolation from the values obtained by the measurement. (Extrapolated value) = {(measured value of sample) −0.85 × (measured value of mother liquid crystal)} / 0.15. When a smectic phase (or crystal) precipitates at 25 ° C. in this proportion, the proportion of the compound and the base liquid crystal is 10 mass%: 90 mass%, 5 mass%: 95 mass%, 1 mass%: 99 mass% in this order. changed. The values of the upper limit temperature, the optical anisotropy, the viscosity, and the dielectric anisotropy of the compound were determined by this extrapolation method.
 下記の母液晶を用いた。成分化合物の割合は質量%で示した。
Figure JPOXMLDOC01-appb-I000026
The following mother liquid crystals were used. The proportions of the component compounds are indicated by mass%.
Figure JPOXMLDOC01-appb-I000026
 測定方法:特性の測定は下記の方法で行った。これらの多くは、社団法人電子情報技術産業協会(Japan Electronics and Information Technology Industries Association;以下JEITAという)で審議制定されるJEITA規格(JEITA・ED-2521B)に記載された方法、またはこれを修飾した方法であった。測定に用いたTN素子には、薄膜トランジスター(TFT)を取り付けなかった。 Measurement method: The measurement of the characteristics was performed by the following method. Many of these are modified methods or methods described in the JEITA standard (JEITA ED-2521B), which is deliberately established by the Japan Electronics and Information Technology Industries Association (hereinafter referred to as JEITA). It was a method. A thin film transistor (TFT) was not attached to the TN device used for the measurement.
(1)ネマチック相の上限温度(NI;℃):偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃/分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。ネマチック相の上限温度を「上限温度」と略すことがある。 (1) Upper limit temperature of nematic phase (NI; ° C.): The sample was placed on a hot plate of a melting point measuring apparatus equipped with a polarization microscope and heated at a rate of 1 ° C./min. The temperature was measured when part of the sample changed from the nematic phase to the isotropic liquid. The upper limit temperature of the nematic phase may be abbreviated as "upper limit temperature".
(2)ネマチック相の下限温度(T;℃):ネマチック相を有する試料をガラス瓶に入れ、0℃、-10℃、-20℃、-30℃、および-40℃のフリーザー中に10日間保管したあと、液晶相を観察した。例えば、試料が-20℃ではネマチック相のままであり、-30℃では結晶またはスメクチック相に変化したとき、Tを<-20℃と記載した。ネマチック相の下限温度を「下限温度」と略すことがある。 (2) Lower limit temperature of nematic phase (T C ; ° C.): A sample having a nematic phase is placed in a glass bottle and kept for 10 days in a freezer at 0 ° C., -10 ° C., -20 ° C., -30 ° C. and -40 ° C. After storage, the liquid crystal phase was observed. For example, the sample remained in the -20 ° C. in a nematic phase, when changed to -30 ° C. At crystals or a smectic phase was described as <-20 ° C. The T C. The lower limit temperature of the nematic phase may be abbreviated as "lower limit temperature".
(3)粘度(バルク粘度;η;20℃で測定;mPa・s):測定には東京計器株式会社製のE型回転粘度計を用いた。 (3) Viscosity (bulk viscosity; ;; measured at 20 ° C .; mPa · s): For measurement, an E-type rotational viscometer manufactured by Tokyo Keiki Co., Ltd. was used.
(4)粘度(回転粘度;γ1;25℃で測定;mPa・s):測定には、東陽テクニカ株式会社の回転粘性率測定システムLCM-2型を用いた。2枚のガラス基板の間隔(セルギャップ)が10μmのVA素子に試料を注入した。この素子に矩形波(55V、1ms)を印加した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)を測定した。これらの測定値および誘電率異方性を用いて、回転粘度の値を得た。誘電率異方性は、測定(6)に記載された方法で測定した。 (4) Viscosity (rotational viscosity; γ1; measured at 25 ° C .; mPa · s): For measurement, a rotational viscosity measurement system LCM-2 type manufactured by Toyo Technica Co., Ltd. was used. The sample was injected into a VA device in which the distance between two glass substrates (cell gap) was 10 μm. A rectangular wave (55 V, 1 ms) was applied to this element. The peak current and peak time of transient current generated by this application were measured. The values of rotational viscosity were obtained using these measured values and dielectric anisotropy. The dielectric anisotropy was measured by the method described in the measurement (6).
(5)光学異方性(屈折率異方性;Δn;25℃で測定):測定は、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行った。主プリズムの表面を一方向にラビングしたあと、試料を主プリズムに滴下した。屈折率n∥は偏光の方向がラビングの方向と平行であるときに測定した。屈折率n⊥は偏光の方向がラビングの方向と垂直であるときに測定した。光学異方性の値は、Δn=n∥-n⊥、の式から計算した。 (5) Optical anisotropy (refractive index anisotropy; Δn; measured at 25 ° C.): Measurement was performed using an Abbe refractometer with a polarizing plate attached to the ocular, using light of wavelength 589 nm. After rubbing the surface of the main prism in one direction, a sample was dropped on the main prism. The refractive index n∥ was measured when the polarization direction was parallel to the rubbing direction. The refractive index n⊥ was measured when the polarization direction was perpendicular to the rubbing direction. The value of optical anisotropy was calculated from the formula of Δn = n∥−n⊥.
(6)誘電率異方性(Δε;25℃で測定):誘電率異方性の値は、Δε=ε∥-ε⊥、の式から計算した。誘電率(ε∥およびε⊥)は次のように測定した。
1)誘電率(ε∥)の測定:よく洗浄したガラス基板にオクタデシルトリエトキシシラン(0.16mL)のエタノール(20mL)溶液を塗布した。ガラス基板をスピンナーで回転させたあと、150℃で1時間加熱した。2枚のガラス基板の間隔(セルギャップ)が4μmであるVA素子に試料を入れ、この素子を紫外線で硬化する接着剤で密閉した。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の長軸方向における誘電率(ε∥)を測定した。
2)誘電率(ε⊥)の測定:よく洗浄したガラス基板にポリイミド溶液を塗布した。このガラス基板を焼成した後、得られた配向膜にラビング処理をした。2枚のガラス基板の間隔(セルギャップ)が9μmであり、ツイスト角が80度であるTN素子に試料を入れた。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の短軸方向における誘電率(ε⊥)を測定した。
(6) Dielectric anisotropy (Δε; measured at 25 ° C.): The value of dielectric anisotropy was calculated from the equation of Δε = εε−ε⊥. The dielectric constants (ε∥ and ε⊥) were measured as follows.
1) Measurement of dielectric constant (ε∥): A solution of octadecyltriethoxysilane (0.16 mL) in ethanol (20 mL) was applied to a well-cleaned glass substrate. The glass substrate was rotated by a spinner and then heated at 150 ° C. for 1 hour. A sample was placed in a VA device in which the distance between two glass substrates (cell gap) was 4 μm, and this device was sealed with an adhesive cured with ultraviolet light. Sine waves (0.5 V, 1 kHz) were applied to this device, and after 2 seconds, the dielectric constant (ε∥) in the major axis direction of liquid crystal molecules was measured.
2) Measurement of dielectric constant (ε⊥): A polyimide solution was applied to a well-cleaned glass substrate. After firing the glass substrate, the obtained alignment film was rubbed. The sample was placed in a TN device in which the distance between two glass substrates (cell gap) was 9 μm and the twist angle was 80 degrees. Sine waves (0.5 V, 1 kHz) were applied to this device, and after 2 seconds, the dielectric constant (⊥) in the minor axis direction of liquid crystal molecules was measured.
(7)しきい値電圧(Vth;25℃で測定;V):測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプであった。2枚のガラス基板の間隔(セルギャップ)が4μmであり、ラビング方向がアンチパラレルであるノーマリーブラックモード(normally black mode)のVA素子に試料を入れ、この素子を紫外線で硬化する接着剤を用いて密閉した。この素子に印加する電圧(60Hz、矩形波)は0Vから20Vまで0.02Vずつ段階的に増加させた。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%である電圧-透過率曲線を作成した。しきい値電圧は透過率が10%になったときの電圧で表した。 (7) Threshold voltage (Vth; measured at 25 ° C .; V): An LCD-5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for measurement. The light source was a halogen lamp. A sample is placed in a normally black mode VA device in which the distance between two glass substrates (cell gap) is 4 μm and the rubbing direction is antiparallel, and an adhesive for curing this device with ultraviolet light is used. Used and sealed. The voltage (60 Hz, rectangular wave) applied to this element was gradually increased by 0.02 V from 0 V to 20 V. At this time, the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured. A voltage-transmittance curve was created in which the transmittance was 100% when the light amount was maximum, and the transmittance was 0% when the light amount was minimum. The threshold voltage was represented by the voltage at 10% transmittance.
(8)電圧保持率(VHR-1;25℃で測定;%):測定に用いたTN素子はポリイミド配向膜を有し、そして2枚のガラス基板の間隔(セルギャップ)は5μmであった。この素子は試料を入れたあと紫外線で硬化する接着剤で密閉した。このTN素子にパルス電圧(5Vで60マイクロ秒)を印加して充電した。減衰する電圧を高速電圧計で16.7ミリ秒のあいだ測定し、単位周期における電圧曲線と横軸との間の面積Aを求めた。面積Bは減衰しなかったときの面積であった。電圧保持率は面積Bに対する面積Aの百分率で表した。 (8) Voltage holding ratio (VHR-1; measured at 25 ° C .;%): The TN device used for measurement had a polyimide alignment film, and the distance between two glass substrates (cell gap) was 5 μm. . The element was sealed with an adhesive that cures with ultraviolet light after the sample was placed. A pulse voltage (60 microseconds at 5 V) was applied to the TN device to charge it. The decaying voltage was measured with a high-speed voltmeter for 16.7 milliseconds, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined. The area B was the area when it did not decay. The voltage holding ratio was expressed as a percentage of the area A to the area B.
(9)電圧保持率(VHR-2;80℃で測定;%):25℃の代わりに、80℃で測定した以外は、上記と同じ手順で電圧保持率を測定した。得られた値をVHR-2で表した。 (9) Voltage holding ratio (VHR-2; measured at 80 ° C .;%): The voltage holding ratio was measured by the same procedure as described above except that measurement was performed at 80 ° C. instead of 25 ° C. The obtained value was expressed as VHR-2.
(10)電圧保持率(VHR-3;25℃で測定;%):紫外線を照射したあと、電圧保持率を測定し、紫外線に対する安定性を評価した。測定に用いたTN素子はポリイミド配向膜を有し、そしてセルギャップは5μmであった。この素子に試料を注入し、光を20分間照射した。光源は超高圧水銀ランプUSH-500D(ウシオ電機製)であり、素子と光源の間隔は20cmであった。VHR-3の測定では、16.7ミリ秒のあいだ減衰する電圧を測定した。大きなVHR-3を有する組成物は紫外線に対して大きな安定性を有する。VHR-3は90%以上が好ましく、95%以上がさらに好ましい。 (10) Voltage holding ratio (VHR-3; measured at 25 ° C .;%): After irradiation with ultraviolet light, the voltage holding ratio was measured to evaluate the stability to ultraviolet light. The TN device used for the measurement had a polyimide alignment film, and the cell gap was 5 μm. A sample was injected into the device and irradiated with light for 20 minutes. The light source was an ultra-high pressure mercury lamp USH-500D (manufactured by Ushio Inc.), and the distance between the element and the light source was 20 cm. In the measurement of VHR-3, the decaying voltage was measured for 16.7 milliseconds. Compositions having large VHR-3 have high stability to ultraviolet light. 90% or more is preferable and 95% or more of VHR-3 is more preferable.
(11)電圧保持率(VHR-4;25℃で測定;%):試料を注入したTN素子を80℃の恒温槽内で500時間加熱したあと、電圧保持率を測定し、熱に対する安定性を評価した。VHR-4の測定では、16.7ミリ秒のあいだ減衰する電圧を測定した。大きなVHR-4を有する組成物は熱に対して大きな安定性を有する。 (11) Voltage holding ratio (VHR-4; measured at 25 ° C .;%): The TN device injected with the sample is heated in a thermostatic chamber at 80 ° C. for 500 hours, and then the voltage holding ratio is measured and stability to heat Was evaluated. In the measurement of VHR-4, the decaying voltage was measured for 16.7 milliseconds. Compositions having large VHR-4 have high thermal stability.
(12)応答時間(τ;25℃で測定;ms):測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプであった。ローパス・フィルター(Low-pass filter)は5kHzに設定した。2枚のガラス基板の間隔(セルギャップ)が4μmであり、ラビング方向がアンチパラレルであるノーマリーブラックモード(normally black mode)のVA素子に試料を入れた。この素子を紫外線で硬化する接着剤を用いて密閉した。この素子に矩形波(60Hz、10V、0.5秒)を印加した。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%であるとみなした。応答時間は透過率90%から10%に変化するのに要した時間(立ち下がり時間;fall time;ミリ秒)で表した。 (12) Response time (τ; measured at 25 ° C .; ms): For measurement, LCD Evaluation System Model LCD-5100 made by Otsuka Electronics Co., Ltd. was used. The light source was a halogen lamp. The low pass filter (Low-pass filter) was set to 5 kHz. The sample was placed in a normally black mode VA element in which the distance between two glass substrates (cell gap) was 4 μm and the rubbing direction was antiparallel. The device was sealed using an adhesive that cures with ultraviolet light. A rectangular wave (60 Hz, 10 V, 0.5 seconds) was applied to this element. At this time, the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured. It was considered that the transmittance was 100% when the light amount was maximum, and the transmittance was 0% when the light amount was minimum. The response time is represented by the time (fall time; milliseconds) taken to change from 90% transmittance to 10% transmittance.
(13)弾性定数(K11:広がり(splay)弾性定数、K33:曲げ(bend)弾性定数;25℃で測定;pN):測定には株式会社東陽テクニカ製のEC-1型弾性定数測定器を用いた。2枚のガラス基板の間隔(セルギャップ)が20μmである垂直配向セルに試料を入れた。このセルに20ボルトから0ボルト電荷を印加し、静電容量および印加電圧を測定した。測定した静電容量(C)と印加電圧(V)の値を『液晶デバイスハンドブック』(日刊工業新聞社)、75頁にある式(2.98)、式(2.101)を用いてフィッティングし、式(2.100)から弾性定数の値を得た。 (13) Elastic constant (K11: splay elastic constant, K33: bend elastic constant; measured at 25 ° C .; pN): To measure, use an EC-1 type elastic constant measuring instrument manufactured by Toyo Corporation. Using. The sample was placed in a vertical alignment cell in which the distance between two glass substrates (cell gap) was 20 μm. A charge of 20 volts to 0 volts was applied to the cell, and the capacitance and the applied voltage were measured. Fitting the measured capacitance (C) and applied voltage (V) values using the formula (2.98) and formula (2.101) on page 75 of “Liquid Crystal Device Handbook” (Nippon Kogyo Shimbun Ltd.) And the value of the elastic constant was obtained from equation (2.100).
(14)比抵抗(ρ;25℃で測定;Ωcm):電極を備えた容器に試料1.0mLを注入した。この容器に直流電圧(10V)を印加し、10秒後の直流電流を測定した。比抵抗は次の式から算出した。(比抵抗)={(電圧)×(容器の電気容量)}/{(直流電流)×(真空の誘電率)}。 (14) Specific resistance (ρ; measured at 25 ° C .; Ω cm): 1.0 mL of a sample was injected into a container equipped with an electrode. A direct current voltage (10 V) was applied to the container, and a direct current after 10 seconds was measured. The specific resistance was calculated from the following equation. (Specific resistance) = {(voltage) × (electric capacity of container)} / {(direct current) × (dielectric constant of vacuum)}.
 実施例における化合物は、下記の表3の定義に基づいて記号により表した。表3において、1,4-シクロヘキシレンに関する立体配置はトランスである。記号の後にあるかっこ内の番号は化合物の番号に対応する。(-)の記号はその他の液晶性化合物を意味する。液晶性化合物の割合(百分率)は、液晶組成物の質量に基づいた質量百分率(質量%)である。最後に、組成物の特性値をまとめた。 The compounds in the examples are represented by symbols based on the definition of Table 3 below. In Table 3, the configuration for 1,4-cyclohexylene is trans. The numbers in parentheses after the symbols correspond to the compound numbers. The symbol (-) means other liquid crystal compounds. The proportion (percentage) of the liquid crystal compound is a mass percentage (mass%) based on the mass of the liquid crystal composition. Finally, the characteristic values of the composition were summarized.
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000027
 比較例として、中国特許出願公開第104593009号明細書に開示された組成物の中から実施例7を選んだ。この組成物は、化合物(1)を含有し、負の誘電率異方性を有する。 As a comparative example, Example 7 was selected from the compositions disclosed in Chinese Patent Application Publication No. 104593009. This composition contains the compound (1) and has negative dielectric anisotropy.
[比較例1]
Cpr-2HB(2F,3F)-O2   (-)      12%
Cpr-HHB(2F,3F)-O2   (-)       8%
Cpr-2HH1OB(2F,3F)-O2(-)       8%
2-HH1OB(2F,3F)-O2   (3-10)   12%
1-HB-4              (4-1)    15%
2-BB-1              (1)      10%
1-BBB-2             (4)      10%
4-BB(2F,3F)B-O2     (3-19)    6%
2-BB(2F,3F)B(2F,3F)-O2
                    (3)       5%
Cpr-1BB(2F,3F)B-4   (-)       7%
3-HB(2F,3F)-4       (3-1)     7%
NI=105.5℃;Δn=0.1735;Δε=-5.5;γ1=110.9mPa・s.
Comparative Example 1
Cpr-2HB (2F, 3F) -O2 (-) 12%
Cpr-HHB (2F, 3F) -O2 (-) 8%
Cpr-2HH1OB (2F, 3F) -O2 (-) 8%
2-HH1OB (2F, 3F) -O2 (3-10) 12%
1-HB-4 (4-1) 15%
2-BB-1 (1) 10%
1-BBB-2 (4) 10%
4-BB (2F, 3F) B-O2 (3-19) 6%
2-BB (2F, 3F) B (2F, 3F)-O2
(3) 5%
Cpr-1 BB (2F, 3F) B-4 (-) 7%
3-HB (2F, 3F) -4 (3-1) 7%
NI = 105.5 ° C .; Δn = 0.1735; Δε = −5.5; γ1 = 110.9 mPa · s.
[実施例1]
2-BB-1              (1)      14%
3-HH-2              (2)      25%
3-H1OB(2F,3F)-O2    (3-3)     8%
3-HHB(2F,3F)-O2     (3-8)    11%
2-HH1OB(2F,3F)-O2   (3-10)    6%
3-HH1OB(2F,3F)-O2   (3-10)   20%
3-HB(2F)B(2F,3F)-O2 (3-18)    4%
3-HHB-1             (4-3)     8%
3-BB-1              (-)       4%
NI=73.7℃;Tc<-20℃;Δn=0.097;Δε=-3.1;γ1=93.0mPa・s;K33=13.8pN.
Example 1
2-BB-1 (1) 14%
3-HH-2 (2) 25%
3-H1OB (2F, 3F) -O2 (3-3) 8%
3-HHB (2F, 3F) -O2 (3-8) 11%
2-HH1OB (2F, 3F) -O2 (3-10) 6%
3-HH1OB (2F, 3F) -O2 (3-10) 20%
3-HB (2F) B (2F, 3F) -O2 (3-18) 4%
3-HHB-1 (4-3) 8%
3-BB-1 (-) 4%
NI = 73.7 ° C .; Tc <−20 ° C .; Δn = 0.097; Δε = −3.1; γ1 = 93.0 mPa · s; K33 = 13.8 pN.
[実施例2]
2-BB-1              (1)      10%
3-HH-2              (2)      28%
3-HB(2F,3F)-O2      (3-1)    10%
2-HH1OB(2F,3F)-O2   (3-10)   14%
3-HH1OB(2F,3F)-O2   (3-10)   16%
3-HBB-2             (4-4)    19%
3-BB-1              (-)       3%
NI=72.9℃;Tc<-20℃;Δn=0.100;Δε=-2.4;γ1=91.4mPa・s;K33=11.9pN.
Example 2
2-BB-1 (1) 10%
3-HH-2 (2) 28%
3-HB (2F, 3F) -O2 (3-1) 10%
2-HH1OB (2F, 3F) -O2 (3-10) 14%
3-HH1OB (2F, 3F) -O2 (3-10) 16%
3-HBB-2 (4-4) 19%
3-BB-1 (-) 3%
Tc <−20 ° C .; Δn = 0.100; Δε = −2.4; γ1 = 91.4 mPa · s; K33 = 11.9 pN.
[実施例3]
2-BB-1              (1)       8%
3-HH-V              (2)       7%
3-HH-2              (2)      15%
2-H1OB(2F,3F)-O2    (3-3)     3%
3-H1OB(2F,3F)-O2    (3-3)     3%
V2-BB(2F,3F)-O2     (3-6)     5%
2-HHB(2F,3F)-O2     (3-8)     3%
3-HHB(2F,3F)-O2     (3-8)     4%
5-HHB(2F,3F)-O2     (3-8)     3%
V-HHB(2F,3F)-O1     (3-8)     3%
V-HHB(2F,3F)-O2     (3-8)     3%
V-HHB(2F,3F)-O4     (3-8)     2%
3-HH2B(2F,3F)-O2    (3-9)     4%
5-HH2B(2F,3F)-O2    (3-9)     4%
2-HBB(2F,3F)-O2     (3-14)    3%
3-HBB(2F,3F)-O2     (3-14)    3%
3-H1OCro(7F,8F)-5   (3-26)    3%
V-HHB-1             (4-3)     4%
V2-HHB-1            (4-3)     4%
5-B(F)BB-2          (4-6)     3%
3-BB-1              (-)       3%
5-BB-1              (-)       3%
1V2-BB-1            (-)       3%
1O1-HBBH-5          (-)       4%
NI=77.7℃;Tc<-20℃;Δn=0.111;Δε=-2.3;γ1=92.5mPa・s.
[Example 3]
2-BB-1 (1) 8%
3-HH-V (2) 7%
3-HH-2 (2) 15%
2-H1OB (2F, 3F)-O2 (3-3) 3%
3-H1OB (2F, 3F) -O2 (3-3) 3%
V2-BB (2F, 3F) -O2 (3-6) 5%
2-HHB (2F, 3F) -O2 (3-8) 3%
3-HHB (2F, 3F) -O2 (3-8) 4%
5-HHB (2F, 3F) -O2 (3-8) 3%
V-HHB (2F, 3F) -O1 (3-8) 3%
V-HHB (2F, 3F) -O2 (3-8) 3%
V-HHB (2F, 3F) -O4 (3-8) 2%
3-HH2B (2F, 3F) -O2 (3-9) 4%
5-HH2B (2F, 3F) -O2 (3-9) 4%
2-HBB (2F, 3F) -O2 (3-14) 3%
3-HBB (2F, 3F) -O2 (3-14) 3%
3-H1OCro (7F, 8F) -5 (3-26) 3%
V-HHB-1 (4-3) 4%
V2-HHB-1 (4-3) 4%
5-B (F) BB-2 (4-6) 3%
3-BB-1 (-) 3%
5-BB-1 (-) 3%
1V2-BB-1 (-) 3%
1O1-HBBH-5 (-) 4%
Tc <−20 ° C .; Δn = 0.111; Δε = −2.3; γ1 = 92.5 mPa · s.
[実施例4]
2-BB-1              (1)       3%
3-HH-V              (2)      10%
3-HH-V1             (2)       3%
3-HH-2              (2)      10%
5-HH-V              (2)       3%
1V2-HH-2V1          (2)       3%
V-HB(2F,3F)-O2      (3-1)     3%
V-chB(2F,3F)-O2     (3-5)     3%
2-BB(2F,3F)-O2      (3-6)     3%
3-BB(2F,3F)-O2      (3-6)     3%
2O-BB(2F,3F)-O2     (3-6)     3%
2O-B(2F)B(2F,3F)-O2 (3-7)     3%
V-HH1OB(2F,3F)-O2   (3-10)    3%
3-HchB(2F,3F)-O2    (3-12)    5%
5-HchB(2F,3F)-O2    (3-12)    5%
V2-HchB(2F,3F)-O2   (3-12)    4%
3-dhBB(2F,3F)-O2    (3-16)    5%
2-B2BB(2F,3F)-O2    (3-22)    3%
2-BB2B(2F,3F)-3     (3-23)    3%
3-HH1OCro(7F,8F)-5  (3-27)    3%
3-HHB-3             (4-3)     3%
V2-BB2B-1           (4-7)     3%
3-HHEBH-3           (4-9)     3%
3-BB-1              (-)       4%
V2-BB-1             (-)       6%
NI=74.0℃;Tc<-20℃;Δn=0.117;Δε=-2.5;γ1=91.4mPa・s.
Example 4
2-BB-1 (1) 3%
3-HH-V (2) 10%
3-HH-V1 (2) 3%
3-HH-2 (2) 10%
5-HH-V (2) 3%
1V2-HH-2V1 (2) 3%
V-HB (2F, 3F) -O2 (3-1) 3%
V-ch B (2F, 3F)-O2 (3-5) 3%
2-BB (2F, 3F)-O2 (3-6) 3%
3-BB (2F, 3F)-O2 (3-6) 3%
2O-BB (2F, 3F)-O2 (3-6) 3%
2O-B (2F) B (2F, 3F) -O2 (3-7) 3%
V-HH1OB (2F, 3F) -O2 (3-10) 3%
3-HchB (2F, 3F) -O2 (3-12) 5%
5-HchB (2F, 3F) -O2 (3-12) 5%
V2-HchB (2F, 3F) -O2 (3-12) 4%
3-dhBB (2F, 3F) -O2 (3-16) 5%
2-B2BB (2F, 3F) -O2 (3-22) 3%
2-BB2B (2F, 3F)-3 (3-23) 3%
3-HH1OCro (7F, 8F) -5 (3-27) 3%
3-HHB-3 (4-3) 3%
V2-BB2B-1 (4-7) 3%
3-HHEBH-3 (4-9) 3%
3-BB-1 (-) 4%
V2-BB-1 (-) 6%
NI = 74.0 ° C .; Tc <−20 ° C .; Δn = 0.117; Δε = −2.5; γ1 = 91.4 mPa · s.
[実施例5]
2-BB-1              (1)       8%
V-HH-V              (2)       8%
V-HH-V1             (2)       8%
3-HH-V              (2)       8%
1V2-HH-3            (2)       4%
5-HB(2F,3F)-O2      (3-1)     5%
3-DhB(2F,3F)-O2     (3-4)     5%
3-chB(2F,3F)-O2     (3-5)     5%
V-HHB(2F,3F)-O2     (3-8)     3%
V-HHB(2F,3F)-O4     (3-8)     3%
V-HH1OB(2F,3F)-O2   (3-10)    5%
3-HDhB(2F,3F)-O2    (3-13)    3%
4-HBB(2F,3F)-O2     (3-14)    3%
5-HBB(2F,3F)-O2     (3-14)    3%
3-BB(2F)B(2F,3F)-O2 (3-20)    3%
5-BB(2F)B(2F,3F)-O2 (3-20)    3%
V-HH2BB(2F,3F)-O2   (3-24)    3%
3-HB-O2             (4-1)     3%
V-HHB-1             (4-3)     3%
3-HBB-2             (4-4)     3%
V-HBB-2             (4-4)     3%
3-HB(F)HH-2         (4-8)     3%
5-HB(F)BH-2         (4-10)    5%
NI=85.2℃;Tc<-20℃;Δn=0.118;Δε=-2.5;γ1=92.8mPa・s.
[Example 5]
2-BB-1 (1) 8%
V-HH-V (2) 8%
V-HH-V1 (2) 8%
3-HH-V (2) 8%
1V2-HH-3 (2) 4%
5-HB (2F, 3F) -O2 (3-1) 5%
3-DhB (2F, 3F)-O2 (3-4) 5%
3-chB (2F, 3F)-O2 (3-5) 5%
V-HHB (2F, 3F) -O2 (3-8) 3%
V-HHB (2F, 3F) -O4 (3-8) 3%
V-HH1OB (2F, 3F) -O2 (3-10) 5%
3-HDhB (2F, 3F) -O2 (3-13) 3%
4-HBB (2F, 3F) -O2 (3-14) 3%
5-HBB (2F, 3F) -O2 (3-14) 3%
3-BB (2F) B (2F, 3F)-O2 (3-20) 3%
5-BB (2F) B (2F, 3F)-O2 (3-20) 3%
V-HH2BB (2F, 3F) -O2 (3-24) 3%
3-HB-O2 (4-1) 3%
V-HHB-1 (4-3) 3%
3-HBB-2 (4-4) 3%
V-HBB-2 (4-4) 3%
3-HB (F) HH-2 (4-8) 3%
5-HB (F) BH-2 (4-10) 5%
NI = 85.2 ° C .; Tc <−20 ° C .; Δn = 0.118; Δε = −2.5; γ1 = 92.8 mPa · s.
[実施例6]
2-BB-1              (1)       7%
3-HH-V1             (2)       8%
3-HH-2              (2)      20%
3-H2B(2F,3F)-O2     (3-2)     5%
5-H2B(2F,3F)-O2     (3-2)     5%
3-HH1OB(2F,3F)-O2   (3-10)    8%
3-HHB(2F,3Cl)-O2    (3-11)    3%
5-HHB(2F,3Cl)-O2    (3-11)    3%
3-HchB(2F,3F)-O2    (3-12)    3%
5-HchB(2F,3F)-O2    (3-12)    3%
V-HBB(2F,3F)-O2     (3-14)    3%
3-HBB(2F,3Cl)-O2    (3-15)    4%
5-HBB(2F,3Cl)-O2    (3-15)    3%
5-HB-3              (4-1)     4%
3-HHB-1             (4-3)     3%
V-HBB-3             (4-4)     3%
1-BB(F)B-2V         (4-5)     3%
2-BB(F)B-2V         (4-5)     3%
3-BB(F)B-2V         (4-5)     3%
V2-BB-1             (-)       3%
1V2-BB-1            (-)       3%
NI=83.6℃;Tc<-20℃;Δn=0.118;Δε=-1.8;γ1=91.7mPa・s.
[Example 6]
2-BB-1 (1) 7%
3-HH-V1 (2) 8%
3-HH-2 (2) 20%
3-H2B (2F, 3F)-O2 (3-2) 5%
5-H2B (2F, 3F)-O2 (3-2) 5%
3-HH1OB (2F, 3F) -O2 (3-10) 8%
3-HHB (2F, 3Cl) -O2 (3-11) 3%
5-HHB (2F, 3Cl) -O2 (3-11) 3%
3-HchB (2F, 3F) -O2 (3-12) 3%
5-HchB (2F, 3F) -O2 (3-12) 3%
V-HBB (2F, 3F) -O2 (3-14) 3%
3-HBB (2F, 3Cl) -O2 (3-15) 4%
5-HBB (2F, 3Cl) -O2 (3-15) 3%
5-HB-3 (4-1) 4%
3-HHB-1 (4-3) 3%
V-HBB-3 (4-4) 3%
1-BB (F) B-2V (4-5) 3%
2-BB (F) B-2 V (4-5) 3%
3-BB (F) B-2V (4-5) 3%
V2-BB-1 (-) 3%
1V2-BB-1 (-) 3%
NI = 83.6 ° C .; Tc <−20 ° C .; Δn = 0.118; Δε = −1.8; γ1 = 91.7 mPa · s.
[実施例7]
2-BB-1              (1)       3%
3-HH-V              (2)      31%
3-HH-VFF            (2)       4%
3-HB(2F,3F)-O2      (3-1)     5%
5-HB(2F,3F)-O2      (3-1)     5%
3-BB(2F,3F)-O2      (3-6)    10%
3-HHB(2F,3F)-O2     (3-8)     5%
V-HHB(2F,3F)-O2     (3-8)     3%
3-HH2B(2F,3F)-O2    (3-9)     8%
2-HBB(2F,3F)-O2     (3-14)    3%
3-HBB(2F,3F)-O2     (3-14)    6%
4-HBB(2F,3F)-O2     (3-14)    3%
2-BB(2F,3F)B-3      (3-19)    3%
2-BB(2F,3F)B-4      (3-19)    3%
3-HHEH-3            (4-2)     4%
5-HBB(F)B-2         (4-11)    2%
5-HBB(F)B-3         (4-11)    2%
NI=78.5℃;Tc<-20℃;Δn=0.107;Δε=-2.4;γ1=90.0mPa・s.
[Example 7]
2-BB-1 (1) 3%
3-HH-V (2) 31%
3-HH-VFF (2) 4%
3-HB (2F, 3F) -O2 (3-1) 5%
5-HB (2F, 3F) -O2 (3-1) 5%
3-BB (2F, 3F)-O2 (3-6) 10%
3-HHB (2F, 3F) -O2 (3-8) 5%
V-HHB (2F, 3F) -O2 (3-8) 3%
3-HH2B (2F, 3F) -O2 (3-9) 8%
2-HBB (2F, 3F) -O2 (3-14) 3%
3-HBB (2F, 3F) -O2 (3-14) 6%
4-HBB (2F, 3F) -O2 (3-14) 3%
2-BB (2F, 3F) B-3 (3-19) 3%
2-BB (2F, 3F) B-4 (3-19) 3%
3-HHEH-3 (4-2) 4%
5-HBB (F) B-2 (4-11) 2%
5-HBB (F) B-3 (4-11) 2%
Tc <−20 ° C .; Δn = 0.107; Δε = −2.4; γ1 = 90.0 mPa · s.
[実施例8]
2-BB-1              (1)       4%
V-HH-V              (2)      14%
V-HH-V1             (2)       5%
3-HH-2              (2)       6%
3-HH-4              (2)       3%
2-HH-5              (2)       3%
2-H1OB(2F,3F)-O2    (3-3)     6%
2-HH1OB(2F,3F)-O2   (3-10)   13%
3-HB(2F,3F)B-O2     (3-17)    8%
3-HB(2F)B(2F,3F)-O2 (3-18)    4%
3-BB(F)B(2F,3F)-O2  (3-21)    3%
2-B2BB(2F,3F)-O2    (3-22)    3%
3-H2BBB(2F,3F)-O2   (3-25)    3%
5-HFLF4-3           (3-28)    3%
3-HB-O2             (4-1)     3%
5-HB-O2             (4-1)     3%
7-HB-1              (4-1)     4%
3-HHB-O1            (4-3)     3%
5-B(F)BB-3          (4-6)     3%
3-HHEBH-3           (4-9)     3%
V2-BB-1             (-)       3%
NI=73.0℃;Tc<-20℃;Δn=0.107;Δε=-2.9;γ1=91.9mPa・s.
[Example 8]
2-BB-1 (1) 4%
V-HH-V (2) 14%
V-HH-V1 (2) 5%
3-HH-2 (2) 6%
3-HH-4 (2) 3%
2-HH-5 (2) 3%
2-H1OB (2F, 3F)-O2 (3-3) 6%
2-HH1OB (2F, 3F) -O2 (3-10) 13%
3-HB (2F, 3F) B-O2 (3-17) 8%
3-HB (2F) B (2F, 3F) -O2 (3-18) 4%
3-BB (F) B (2F, 3F) -O2 (3-21) 3%
2-B2BB (2F, 3F) -O2 (3-22) 3%
3-H2BBB (2F, 3F) -O2 (3-25) 3%
5-HFLF 4-3 (3-28) 3%
3-HB-O2 (4-1) 3%
5-HB-O2 (4-1) 3%
7-HB-1 (4-1) 4%
3-HHB-O1 (4-3) 3%
5-B (F) BB-3 (4-6) 3%
3-HHEBH-3 (4-9) 3%
V2-BB-1 (-) 3%
NI = 73.0 ° C .; Tc <−20 ° C .; Δn = 0.107; Δε = −2.9; γ1 = 91.9 mPa · s.
[実施例9]
2-BB-1              (1)       6%
V-HH-V              (2)       2%
V-HH-V1             (2)       2%
3-HH-2              (2)      10%
3-HH-O1             (2)       4%
5-HH-O1             (2)       4%
V-HB(2F,3F)-O2      (3-1)     3%
3-HB(2F,3F)-O2      (3-1)     3%
2-H1OB(2F,3F)-O2    (3-3)     5%
3-H1OB(2F,3F)-O2    (3-3)     5%
3-BB(2F,3F)-O2      (3-6)     5%
5-BB(2F,3F)-O2      (3-6)     5%
3-HHB(2F,3F)-O2     (3-8)     4%
3-HH1OB(2F,3F)-O2   (3-10)   12%
3-HHEH-3            (4-2)     3%
3-HHEH-5            (4-2)     3%
3-HHB-O1            (4-3)     3%
2-BB(F)B-3          (4-5)     3%
2-BB(F)B-5          (4-5)     3%
3-HHEBH-3           (4-9)     3%
3-HHEBH-4           (4-9)     3%
3-HHEBH-5           (4-9)     3%
V2-BB-1             (-)       3%
1V2-BB-1            (-)       3%
NI=78.0℃;Tc<-20℃;Δn=0.104;Δε=-2.8;γ1=92.1mPa・s.
[Example 9]
2-BB-1 (1) 6%
V-HH-V (2) 2%
V-HH-V1 (2) 2%
3-HH-2 (2) 10%
3-HH-O1 (2) 4%
5-HH-O1 (2) 4%
V-HB (2F, 3F) -O2 (3-1) 3%
3-HB (2F, 3F) -O2 (3-1) 3%
2-H1OB (2F, 3F)-O2 (3-3) 5%
3-H1OB (2F, 3F) -O2 (3-3) 5%
3-BB (2F, 3F)-O2 (3-6) 5%
5-BB (2F, 3F)-O2 (3-6) 5%
3-HHB (2F, 3F) -O2 (3-8) 4%
3-HH1OB (2F, 3F) -O2 (3-10) 12%
3-HHEH-3 (4-2) 3%
3-HHEH-5 (4-2) 3%
3-HHB-O1 (4-3) 3%
2-BB (F) B-3 (4-5) 3%
2-BB (F) B-5 (4-5) 3%
3-HHEBH-3 (4-9) 3%
3-HHEBH-4 (4-9) 3%
3-HHEBH-5 (4-9) 3%
V2-BB-1 (-) 3%
1V2-BB-1 (-) 3%
Tc <−20 ° C .; Δn = 0.104; Δε = −2.8; γ1 = 92.1 mPa · s.
 比較例1の組成物の回転粘度は、110.9mPa・sであった。一方、実施例1の組成物の回転粘度は、93.0mPa・sであった。このように、実施例1の組成物は、比較例の組成物と比べて、低い粘度を有した。したがって、本発明の液晶組成物は優れた特性を有すると結論される。 The rotational viscosity of the composition of Comparative Example 1 was 110.9 mPa · s. On the other hand, the rotational viscosity of the composition of Example 1 was 93.0 mPa · s. Thus, the composition of Example 1 had lower viscosity as compared to the composition of Comparative Example. Therefore, it is concluded that the liquid crystal composition of the present invention has excellent properties.
 本発明の液晶組成物は、液晶モニター、液晶テレビなどに用いることができる。 The liquid crystal composition of the present invention can be used for a liquid crystal monitor, a liquid crystal television and the like.

Claims (11)

  1.  第一成分として式(1)で表される化合物、および第二成分として式(2)で表される化合物から選択された少なくとも1つの化合物を含有し、そしてネマチック相および負の誘電率異方性を有する液晶組成物。
    Figure JPOXMLDOC01-appb-I000001

    式(2)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。
    A compound represented by the formula (1) as the first component, and at least one compound selected from the compounds represented by the formula (2) as the second component, and the nematic phase and the negative dielectric constant anisotropy Liquid crystal composition having conductivity.
    Figure JPOXMLDOC01-appb-I000001

    In the formula (2), R 1 and R 2 each represent alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, at least one hydrogen Is C 1-12 alkyl substituted with fluorine or chlorine, or C 2-12 alkenyl in which at least one hydrogen is substituted by fluorine or chlorine.
  2.  第一成分の割合が3質量%から30質量%の範囲であり、第二成分の割合が15質量%から45質量%の範囲である、請求項1に記載の液晶組成物。 The liquid crystal composition according to claim 1, wherein the proportion of the first component is in the range of 3% by mass to 30% by mass, and the proportion of the second component is in the range of 15% by mass to 45% by mass.
  3.  第三成分として式(3)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1または2に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000002

    式(3)において、RおよびRは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルであり;環Aおよび環Cは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、ナフタレン-2,6-ジイル、少なくとも1つの水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、クロマン-2,6-ジイル、または少なくとも1つの水素がフッ素または塩素で置き換えられたクロマン-2,6-ジイルであり;環Bは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、7,8-ジフルオロクロマン-2,6-ジイル、3,4,5,6-テトラフルオロフルオレン-2,7-ジイル、4,6-ジフルオロジベンゾフラン-3,7-ジイル、または1,1,6,7-テトラフルオロインダン-2,5-ジイルであり;ZおよびZは、単結合、エチレン、カルボニルオキシ、またはメチレンオキシであり;aは、1、2、または3であり、bは、0または1であり、そしてaとbとの和は3以下である。
    The liquid crystal composition according to claim 1, containing at least one compound selected from the compounds represented by Formula (3) as a third component.
    Figure JPOXMLDOC01-appb-I000002

    In the formula (3), R 3 and R 4 are hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, alkenyloxy having 2 to 12 carbons, or at least Ring A and ring C are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-, wherein C 1-12 alkyl in which one hydrogen is replaced by fluorine or chlorine; Diyl, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2, in which at least one hydrogen is replaced by fluorine or chlorine, 6-diyl, chroman-2,6-diyl, or chroma in which at least one hydrogen is replaced by fluorine or chlorine Ring B is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1 , 4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl, 7,8-difluorochroman-2,6-diyl, 3,4,5,6-tetrafluorofluorene-2,7- Diyl, 4,6-difluorodibenzofuran-3,7-diyl, or 1,1,6,7-tetrafluoroindane-2,5-diyl; Z 1 and Z 2 are a single bond, ethylene, carbonyloxy A is 1, 2 or 3; b is 0 or 1; and the sum of a and b is 3 or less.
  4.  第三成分として式(3-1)から式(3-35)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1から3のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000003

    Figure JPOXMLDOC01-appb-I000004

    Figure JPOXMLDOC01-appb-I000005

    式(3-1)から式(3-35)において、RおよびRは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、炭素数2から12のアルケニルオキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキルである。
    The liquid crystal composition according to any one of claims 1 to 3, containing at least one compound selected from the compounds represented by formulas (3-1) to (3-35) as a third component. .
    Figure JPOXMLDOC01-appb-I000003

    Figure JPOXMLDOC01-appb-I000004

    Figure JPOXMLDOC01-appb-I000005

    In formulas (3-1) to (3-35), R 3 and R 4 each represent hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, 2 to 12 alkenyloxy, or C 1 to C 12 alkyl in which at least one hydrogen is replaced by fluorine or chlorine.
  5.  第三成分の割合が30質量%から65質量%の範囲である、請求項3または4に記載の液晶組成物。 The liquid crystal composition according to claim 3 or 4, wherein the proportion of the third component is in the range of 30% by mass to 65% by mass.
  6.  第四成分として式(4)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1から5のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000006

    式(4)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルであり;環Dおよび環Eは、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンであり;Zは、単結合、エチレン、またはカルボニルオキシであり;cは、1、2、または3であり、cが1であるときの環Dと環Eは異なる。
    The liquid crystal composition according to any one of claims 1 to 5, containing at least one compound selected from the compounds represented by formula (4) as a fourth component.
    Figure JPOXMLDOC01-appb-I000006

    In Formula (4), R 5 and R 6 each represent alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, carbon in which at least one hydrogen is replaced by fluorine or chlorine. And alkyl having a number of 1 to 12 or alkenyl having 2 to 12 carbon atoms in which at least one hydrogen is replaced with fluorine or chlorine; ring D and ring E are 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene or 2,5-difluoro-1,4-phenylene; Z 3 is a single bond, ethylene or carbonyloxy; c is 1, 2, or 3 Ring D is different from ring E when c is 1.
  7.  第四成分として式(4-1)から式(4-11)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1から6のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000007

    式(4-1)から式(4-11)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。
    The liquid crystal composition according to any one of claims 1 to 6, containing at least one compound selected from the compounds represented by formulas (4-1) to (4-11) as a fourth component. .
    Figure JPOXMLDOC01-appb-I000007

    In formulas (4-1) to (4-11), R 5 and R 6 each represent alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, at least one hydrogen Is C 1-12 alkyl substituted with fluorine or chlorine, or C 2-12 alkenyl in which at least one hydrogen is substituted by fluorine or chlorine.
  8.  第四成分の割合が3質量%から35質量%の範囲である、請求項6または7に記載の液晶組成物。 The liquid crystal composition according to claim 6 or 7, wherein the proportion of the fourth component is in the range of 3% by mass to 35% by mass.
  9.  請求項1から8のいずれか1項に記載の液晶組成物を含有する液晶表示素子。 A liquid crystal display device comprising the liquid crystal composition according to any one of claims 1 to 8.
  10.  液晶表示素子の動作モードが、IPSモード、VAモード、FFSモード、またはFPAモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である、請求項9に記載の液晶表示素子。 10. The liquid crystal display element according to claim 9, wherein an operation mode of the liquid crystal display element is an IPS mode, a VA mode, an FFS mode, or an FPA mode, and a driving method of the liquid crystal display element is an active matrix method.
  11.  請求項1から8のいずれか1項に記載の液晶組成物の、液晶表示素子における使用。 Use of the liquid crystal composition according to any one of claims 1 to 8 in a liquid crystal display device.
PCT/JP2018/046319 2018-01-05 2018-12-17 Liquid crystal composition and liquid crystal display element WO2019135350A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019563959A JP7205496B2 (en) 2018-01-05 2018-12-17 Liquid crystal composition and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018000775 2018-01-05
JP2018-000775 2018-01-05

Publications (1)

Publication Number Publication Date
WO2019135350A1 true WO2019135350A1 (en) 2019-07-11

Family

ID=67144116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046319 WO2019135350A1 (en) 2018-01-05 2018-12-17 Liquid crystal composition and liquid crystal display element

Country Status (3)

Country Link
JP (1) JP7205496B2 (en)
TW (1) TW201930564A (en)
WO (1) WO2019135350A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119466A (en) * 2001-07-31 2003-04-23 Merck Patent Gmbh Liquid crystal medium
JP2009504814A (en) * 2005-08-09 2009-02-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Liquid crystal medium
CN104593009A (en) * 2015-02-15 2015-05-06 石家庄诚志永华显示材料有限公司 Liquid crystal composition and application thereof in liquid crystal display
WO2017188005A1 (en) * 2016-04-27 2017-11-02 Dic株式会社 Nematic liquid crystal composition, and liquid crystal display element using same
CN107353908A (en) * 2016-05-10 2017-11-17 北京八亿时空液晶科技股份有限公司 A kind of negative dielectric anisotropy liquid crystal composition and its application
CN107384442A (en) * 2016-05-16 2017-11-24 北京八亿时空液晶科技股份有限公司 A kind of negative dielectric anisotropy liquid crystal composition and its application

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119466A (en) * 2001-07-31 2003-04-23 Merck Patent Gmbh Liquid crystal medium
JP2009504814A (en) * 2005-08-09 2009-02-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Liquid crystal medium
CN104593009A (en) * 2015-02-15 2015-05-06 石家庄诚志永华显示材料有限公司 Liquid crystal composition and application thereof in liquid crystal display
WO2017188005A1 (en) * 2016-04-27 2017-11-02 Dic株式会社 Nematic liquid crystal composition, and liquid crystal display element using same
CN107353908A (en) * 2016-05-10 2017-11-17 北京八亿时空液晶科技股份有限公司 A kind of negative dielectric anisotropy liquid crystal composition and its application
CN107384442A (en) * 2016-05-16 2017-11-24 北京八亿时空液晶科技股份有限公司 A kind of negative dielectric anisotropy liquid crystal composition and its application

Also Published As

Publication number Publication date
JP7205496B2 (en) 2023-01-17
JPWO2019135350A1 (en) 2021-01-07
TW201930564A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
WO2017010281A1 (en) Liquid crystal composition and liquid crystal display element
JP7331686B2 (en) Liquid crystal composition and liquid crystal display element
TW201734182A (en) Liquid crystal composition and liquid crystal display element
JP5920606B2 (en) Liquid crystal composition and liquid crystal display element
JP6493219B2 (en) Liquid crystal composition and liquid crystal display element
JP6476691B2 (en) Liquid crystal composition and liquid crystal display element
WO2017141671A1 (en) Liquid crystal composition and liquid crystal display device
JP2016155921A (en) Liquid crystal composition and liquid crystal display element
WO2019003982A1 (en) Liquid-crystal composition and liquid-crystal display element
JP2017193596A (en) Liquid crystal composition and liquid crystal display element
JP2016079292A (en) Liquid crystal composition and liquid crystal display element
WO2016136344A1 (en) Liquid crystal composition and liquid crystal display element
WO2016185793A1 (en) Liquid crystal composition and liquid crystal display element
JP2016065149A (en) Liquid crystal composition and liquid crystal display element
JPWO2018020838A1 (en) Liquid crystal composition and liquid crystal display device
JP6780587B2 (en) Manufacturing method of liquid crystal display element
JP2018141033A (en) Liquid crystal composition, and liquid crystal display element
JP2018076437A (en) Liquid crystal composition and liquid crystal display element
JP7205496B2 (en) Liquid crystal composition and liquid crystal display element
JP2020037671A (en) Liquid crystal composition and liquid crystal display element
JP7348592B2 (en) Liquid crystal composition and liquid crystal display element
TWI795543B (en) Liquid crystal composition, use thereof, and liquid crystal display device
JP6564495B1 (en) Liquid crystal composition and liquid crystal display element
JP6939070B2 (en) Liquid crystal composition and liquid crystal display element
JP6816596B2 (en) Liquid crystal composition and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019563959

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898464

Country of ref document: EP

Kind code of ref document: A1