WO2019135264A1 - 飛行体及び飛行体の飛行方法 - Google Patents

飛行体及び飛行体の飛行方法 Download PDF

Info

Publication number
WO2019135264A1
WO2019135264A1 PCT/JP2018/000001 JP2018000001W WO2019135264A1 WO 2019135264 A1 WO2019135264 A1 WO 2019135264A1 JP 2018000001 W JP2018000001 W JP 2018000001W WO 2019135264 A1 WO2019135264 A1 WO 2019135264A1
Authority
WO
WIPO (PCT)
Prior art keywords
flying
arm
fixed wing
flying body
aircraft
Prior art date
Application number
PCT/JP2018/000001
Other languages
English (en)
French (fr)
Inventor
鈴木陽一
Original Assignee
株式会社エアロネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エアロネクスト filed Critical 株式会社エアロネクスト
Priority to DE112018006754.8T priority Critical patent/DE112018006754T5/de
Priority to PCT/JP2018/000001 priority patent/WO2019135264A1/ja
Priority to US16/956,951 priority patent/US11639221B2/en
Priority to JP2019541469A priority patent/JP6613424B1/ja
Priority to CN201880086263.5A priority patent/CN111587208A/zh
Publication of WO2019135264A1 publication Critical patent/WO2019135264A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/02Tailplanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U40/00On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration
    • B64U40/20On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration for in-flight adjustment of the base configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/104UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/293Foldable or collapsible rotors or rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs

Definitions

  • the present invention relates to a flying body and a flying method of the flying body.
  • air vehicle rotary-wing aircraft
  • UAV unmanned aerial vehicle
  • flying bodies there is a flying body disclosed in Patent Document 2 that is provided with a mounting portion for loading a load.
  • Patent Document 2 In the case of carrying the above-described luggage, the technology described in Patent Document 2 has a complicated structure and measures against a crosswind at the time of descent, etc., and there is a problem in safety.
  • a flying portion provided with a plurality of rotary wings for generating thrust, a leg portion, an arm portion connecting the flying portion and the leg portion, and a fixed wing portion provided substantially at the center of the arm portion
  • An aircraft comprising
  • the flying body further includes a mounting portion provided so as to be movable between a first position of the arm portion and a second position located rearward of the first position.
  • FIG. 1 is a perspective view of an aircraft according to the present invention. It is a top view of the flying body of FIG. It is a side view of the flight body of FIG. It is a figure which shows the initial state of the aircraft of FIG. It is a figure which shows the state at the time of ascent of the aircraft of FIG. It is a figure which shows the state at the time of flight of the flying body of FIG. It is a figure which shows the state in the destination ground sky of the aircraft of FIG. It is another figure which shows the state in the destination ground sky of the aircraft of FIG. It is a figure which shows the state at the time of descent
  • the flying body and the flying method of the flying body according to the embodiment of the present invention have the following configuration.
  • [Item 1] A flying portion provided with a plurality of rotary wings for generating thrust, a leg portion, an arm portion connecting the flying portion and the leg portion, and a fixed wing portion provided substantially at the center of the arm portion
  • An aircraft comprising
  • An aircraft further comprising a mounting portion movably provided with a first position of the arm portion and a second position located rearward of the first position.
  • FIG. 7 A method of flying an aircraft according to any one of items 1 to 6,
  • the mounting portion is set to the first position to mount the mounting object, and the arm portion is vertically erected so that the flying portion is at the upper end;
  • At a predetermined height displacing the flight section horizontally by approximately 90 degrees and flying the arm section so as to extend horizontally;
  • a flying object 1 includes a flying unit 10 having a plurality of rotary wings 16 for generating thrust, a leg 20, a flying unit 10 and a leg An arm 30 connecting the two 20 and a fixed wing (upper fixed wing 40 and lower fixed wing 42) provided substantially at the center of the arm 30 are provided.
  • the illustrated flying body 1 is simplified and drawn to facilitate the description of the structure of the present invention. For example, the detailed configuration of the control unit and the like is not shown.
  • the axis in the figure represents an absolute axis.
  • the Z axis (Z direction) is the vertical direction, and both the X axis and the Y axis are horizontal.
  • the flight unit 10 includes a propeller 16, a motor 14 for rotating the propeller 16, and a motor arm 12 for supporting the motor 14.
  • the flying portion 10 according to the present embodiment has four sets of propellers 16, motors 14 and motor arms 12 in a cross shape.
  • the propeller 16 rotates in response to the output from the motor 14.
  • the rotation of the propeller 16 generates a propulsive force for taking off the aircraft 1 from the departure point, moving it horizontally, and landing on the destination (the details of the flight will be described later).
  • the propeller can rotate in the right direction, stop, and rotate in the left direction.
  • the propellers 16 may be any number of vanes (rotors) (e.g., 1, 2, 3, 4 or more vanes).
  • the shape of the vanes can be any shape, such as flat, curved, kinked, tapered, or a combination thereof.
  • wing is changeable (for example, expansion-contraction, folding, bending etc.).
  • the vanes may be symmetrical (with identical upper and lower surfaces) or asymmetric (with differently shaped upper and lower surfaces).
  • the vanes can be configured in a geometry suitable for producing dynamic aerodynamic forces (eg, lift, thrust) as the airfoils, wings, or vanes are moved through the air.
  • the geometry of the vanes can be chosen as appropriate to optimize the dynamic air characteristics of the vanes, such as increasing lift and thrust and reducing drag.
  • the motor 14 causes the propeller 16 to rotate.
  • the drive unit can include an electric motor or an engine.
  • the vanes are drivable by the motor and rotate clockwise and / or counterclockwise around the axis of rotation of the motor (e.g. the long axis of the motor).
  • the blades can all be rotated in the same direction or can be rotated independently. Some of the blades rotate in one direction and the other blades rotate in the other direction.
  • the blades can all rotate at the same number of rotations, and can each rotate at different numbers of rotations. The number of rotations can be determined automatically or manually based on the size (for example, size, weight) and control state (speed, movement direction, etc.) of the moving body.
  • the motor arm 12 is a member supporting the corresponding motor 14 and propeller 16 respectively.
  • the motor arm 12 may be provided with a color generator such as an LED to indicate the flight state, flight direction, and the like of the rotary wing aircraft.
  • the motor arm 12 according to the present embodiment can be formed of a material appropriately selected from carbon, stainless steel, aluminum, magnesium, etc., or an alloy or combination thereof.
  • the flying unit 10 (see FIG. 1) and the arm unit 30 are connected via the gimbal 60.
  • the flying unit 10 and the arm unit 30 can be displaced independently.
  • the gimbal 60 in which the direction of the arm portion 30 is not influenced by the direction of the flying portion 30 is at least two. It is a gimbal 60 displaceable in the axial (X and Z axes) direction.
  • the arm portion 30 has two linear shapes, and one end is connected to the flying portion 10 and the other end is connected to the leg portion 20, respectively.
  • the mounting unit 50 As shown in FIG. 2, the mounting unit 50 according to the present embodiment is provided on the arm unit 30.
  • the mounting portion 50 extends along the arm portion 30 from the first position shown in FIGS. 2A and 3A to the second position shown in FIGS. 2B and 3B. And is configured to be movable.
  • the mounting portion 50 guides the arm portion 30 formed in a rail shape to make the first position and the second position displaceable.
  • the method of movement may be another method, and any method may be used as long as fixation to the first position and the second position and movement control between these positions can be performed.
  • the first position in the present embodiment is at a position at least partially overlapping the fixed wing 40 in the traveling direction (Y direction).
  • the position of the first position can be appropriately changed according to the weight, shape, and the like of the mounting object.
  • the fixed wing parts (upper fixed wing 40 and lower fixed wing 42) are connected to the arm part 30, respectively.
  • the flying object according to the present embodiment is of a concept in which a biplane is connected to a rotary wing aircraft via a gimbal, but it may not be a biplane.
  • FIG. 4 is a view showing an initial state of the flying object.
  • the mounting object 52 is mounted on the mounting unit 50.
  • the mounting unit 50 is located at the first position.
  • the center of gravity mark in the figure represents the center of gravity (Center Of Gravity: COG) of the flying object.
  • the flying object In the initial state, the flying object is upright with the legs 20 in contact with the ground. In other words, in the initial state, the flying object is set with the arm portion 30 standing vertically.
  • an auxiliary arm In the initial state, an auxiliary arm, an auxiliary leg, or the like may be used to prevent the flying object from falling down.
  • the flying body gains upward thrust by rotating the propeller 16 of the flying unit 10, and ascends and rises (rising attitude) as shown in FIG.
  • the flying portion 10 when the flying body ascends to a predetermined height, the flying portion 10 is horizontally displaced by approximately 90 degrees to change the direction of the airframe (horizontal attitude).
  • the aircraft when reaching the target ground sky, the aircraft is shifted to the hovering state with the airframe vertical (lowering posture) while the rotational speed of the propeller 16 is reduced. That is, the orientation of the airframe is returned from the horizontal direction to the vertical direction.
  • the mounting unit 50 at the first position moves to the second position, and the mounting object 52 also moves accordingly (see the arrow M in the figure). With the movement of the mounting object, the center of gravity G also shifts to the leg side.
  • FIG. 9 is a diagram illustrating how the destination ground sky descends to the destination.
  • the mounting object 52 is completely moved to the second position, and the center of gravity G is also moved from the initial position.
  • the transition of the mounting object 52 is preferably after the start of the transition to the lowered posture, and more preferably, the transition in the completely lowered posture.
  • the flying part is freely displaced by the gimbal 60, so it does not flow laterally. .
  • the rotorcraft described above has the functional blocks shown in FIG.
  • the functional blocks in FIG. 11 are the minimum reference configuration.
  • the flight controller is a so-called processing unit.
  • the processing unit may comprise one or more processors, such as a programmable processor (e.g., a central processing unit (CPU)).
  • a programmable processor e.g., a central processing unit (CPU)
  • the processing unit has a memory (not shown) and can access the memory.
  • the memory stores logic, code, and / or program instructions that can be executed by the processing unit to perform one or more steps.
  • the memory may include, for example, a removable medium such as an SD card or random access memory (RAM) or an external storage device. Data obtained from cameras and sensors may be directly transmitted and stored in a memory. For example, still image / moving image data captured by a camera or the like is recorded in the built-in memory or the external memory.
  • a removable medium such as an SD card or random access memory (RAM) or an external storage device.
  • RAM random access memory
  • Data obtained from cameras and sensors may be directly transmitted and stored in a memory. For example, still image / moving image data captured by a camera or the like is recorded in the built-in memory or the external memory.
  • the processing unit includes a control module configured to control the state of the rotorcraft.
  • the control module may adjust the spatial arrangement, velocity, and / or acceleration of a rotorcraft having six degrees of freedom (translational motions x, y and z, and rotational motions ⁇ x , ⁇ y and ⁇ z ) Control the propulsion mechanism (motor etc.) of the rotorcraft.
  • the control module can control one or more of the mounting unit and the state of the sensors.
  • the processing unit may be in communication with a transceiver configured to transmit and / or receive data from one or more external devices (e.g., a terminal, a display device, or other remote controller).
  • the transceiver may use any suitable communication means, such as wired communication or wireless communication.
  • the transmitting and receiving unit uses one or more of a local area network (LAN), wide area network (WAN), infrared, wireless, WiFi, point-to-point (P2P) network, telecommunications network, cloud communication, etc. be able to.
  • LAN local area network
  • WAN wide area network
  • infrared wireless
  • WiFi point-to-point
  • P2P point-to-point
  • telecommunications network cloud communication, etc. be able to.
  • the transmission / reception unit can transmit and / or receive one or more of data acquired by sensors, processing results generated by the processing unit, predetermined control data, user commands from a terminal or a remote controller, etc. .
  • the sensors according to the present embodiment may include an inertial sensor (acceleration sensor, gyro sensor), a GPS sensor, a proximity sensor (eg, a rider), or a vision / image sensor (eg, a camera).
  • an inertial sensor acceleration sensor, gyro sensor
  • GPS sensor GPS sensor
  • proximity sensor eg, a rider
  • vision / image sensor eg, a camera
  • the rotary wing aircraft of the present invention can be expected to be used as an aircraft body dedicated to home delivery service in the middle and long distance, and as a rotary wing aircraft for wide area surveillance work, reconnaissance and rescue work in mountain area.
  • the rotary wing aircraft of the present invention can be used in the aircraft related industry such as multicopter drone etc.
  • the present invention is preferably also suitable as a flying object that can be equipped with a camera etc. Besides being usable, it can be used in various industries such as security field, agriculture, and infrastructure monitoring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)

Abstract

【課題】より基本的な構造でかつ安全対策のとられた飛行体を提供すること。 【解決手段】本発明による飛行体は、推力を発生させるための複数の回転翼を備えた飛行部と、脚部と、当該飛行部及び当該脚部を連結するアーム部と、当該アーム部の略中央に設けられた固定翼部とを備えている。飛行体は、アーム部の第1位置と当該第1位置よりも後方に位置する第2位置とを移動自在に設けられた搭載部を更に備えている。飛行体は、目的地上空で、搭載部を第1位置から第2位置に変位させ下降する。

Description

飛行体及び飛行体の飛行方法
 本発明は、飛行体及び飛行体の飛行方法に関する。
 近年、様々な用途に利用されるドローン(Drone)や無人航空機(UAV:Unmanned Aerial Vehicle)などの回転翼機(以下、単に「飛行体」と総称する)を利用した様々なサービスが提供されている(例えば、特許文献1参照)。
 また、このよう飛行体のうち、荷物を搭載するための搭載部を備えたものが特許文献2に開示されている飛行体が存在する。
特開2017-15697号公報 特開2017-159751号公報
 上述した荷物を運ぶ場合、特許文献2に記載の技術では、構造が複雑なことに加えて、下降時の横風対策等がなされておらず、安全性に問題がある。
 そこで、本発明は、より基本的な構造でかつ安全対策のとられた飛行体を提供することを一つの目的とする。
 本発明によれば、
 推力を発生させるための複数の回転翼を備えた飛行部と、脚部と、当該飛行部及び当該脚部を連結するアーム部と、当該アーム部の略中央に設けられた固定翼部とを備える飛行体であって、
 前記アーム部の第1位置と当該第1位置よりも後方に位置する第2位置とを移動自在に設けられた搭載部を更に備える
飛行体が得られる。
 本発明によれば、より基本的な構造でかつ安全対策のとられた飛行体を提供し得る。
本発明による飛行体の斜視図である。 図1の飛行体の上面図である。 図1の飛行体の側面図である。 図1の飛行体の初期状態を示す図である。 図1の飛行体の上昇時の状態を示す図である。 図1の飛行体の飛行時の状態を示す図である。 図1の飛行体の目的地上空における状態を示す図である。 図1の飛行体の目的地上空における状態を示す他の図である。 図1の飛行体の下降時の状態を示す図である。 図1の飛行体の下降時の状態を示す他の図である。 図1の飛行体の飛行部の機能ブロックを示す図である。
 本発明の実施形態の内容を列記して説明する。本発明の実施の形態による飛行体及び飛行体の飛行方法は、以下のような構成を備える。
[項目1]
 推力を発生させるための複数の回転翼を備えた飛行部と、脚部と、当該飛行部及び当該脚部を連結するアーム部と、当該アーム部の略中央に設けられた固定翼部とを備える飛行体であって、
 前記アーム部の第1位置と当該第1位置よりも後方に位置する第2位置とを移動自在に設けられた搭載部を更に備える
飛行体。
[項目2]
 項目1に記載の飛行体であって、
 前記第1位置は、前後方向において前記固定翼部と少なくとも重複する、
飛行体。
[項目3]
 項目1又は項目2に記載の飛行体であって、
 前記固定翼部は、二枚の固定翼の対で構成されており、
 前記第1位置は、当該固定翼の対の間に位置している、
飛行体。
[項目4]
 項目1乃至項目3のいずれかに記載の飛行体であって、
 前記第2位置は、前後方向において前記固定翼部と少なくとも重複する、
飛行体。
[項目5]
 項目1乃至項目4のいずれかに記載の飛行体であって、
 前記飛行部と前記アーム部とを独立して変位可能に連結する連結部を更に備えている、
飛行体。
[項目6]
 項目5に記載の飛行体であって、
 前記飛行部と前記アーム部とを連結する連結部は、ジンバルである、
飛行体。
[項目7]
 項目1乃至項目6のいずれかに記載の飛行体の飛行方法であって、
 初期状態において、前記搭載部を第1位置にセットし搭載対象物を搭載させるとともに、前記飛行部が上端となるように前記アーム部を垂直方向に立てるステップと、
 前記飛行部を駆動させ、当該駆動部が進行方向前端となるように上昇させるステップと、
 所定の高さにおいて、前記飛行部を略90度水平方向にむけて変位させ、前記アーム部が水平方向に延びるように飛行させるステップと、
 目的地上空において前記脚部が下端となるように前記アーム部を垂直方向に立てつつ、前記搭載部を前記第1位置から前記第2位置に変位させるステップと、
 前記脚部が下端となるように下降するステップと、を備える、
飛行体の飛行方法。
<実施の形態の詳細>
 以下、本発明の実施の形態による飛行体及び飛行体の飛行方法について、図面を参照しながら説明する。
<本発明による実施の形態の詳細>
 図1に示されるように、本発明の実施の形態による飛行体1は、推力を発生させるための複数の回転翼16を備えた飛行部10と、脚部20と、飛行部10及び脚部20を連結するアーム部30と、アーム部30の略中央に設けられた固定翼部(上側固定翼40、下側固定翼42)とを備えている。
 なお、図示されている飛行体1は、本発明の構造の説明を容易にするため簡略化されて描かれており、例えば、制御部等の詳しい構成は図示していない。
 また、図中の軸は、絶対軸を表している。Z軸(Z方向)は垂直方向であり、X軸及びY軸は共に水平方向である。
<構造の詳細>
 本実施の形態による飛行部10は、プロペラ16と、当該プロペラ16を回転させるモータ14と、モータ14を支持するモータアーム12とを備えている。本実施の形態による飛行部10は、プロペラ16、モータ14、モータアーム12のセットは十字状に4つ有している。
 プロペラ16は、モータ14からの出力を受けて回転する。プロペラ16が回転することによって、飛行体1を出発地から離陸させ、水平移動させ、目的地に着陸させるための推進力が発生する(飛行の詳細は後述する)。なお、プロペラは、右方向への回転、停止及び左方向への回転が可能である。
 プロペラ16は、任意の羽根(回転子)の数(例えば、1、2、3、4、またはそれ以上の羽根)でよい。羽根の形状は、平らな形状、曲がった形状、よじれた形状、テーパ形状、またはそれらの組み合わせ等の任意の形状が可能である。
 なお、羽根の形状は変化可能である(例えば、伸縮、折りたたみ、折り曲げ等)。羽根は対称的(同一の上部及び下部表面を有する)または非対称的(異なる形状の上部及び下部表面を有する)であってもよい。
 羽根はエアホイル、ウイング、または羽根が空中を移動される時に動的空気力(例えば、揚力、推力)を生成するために好適な幾何学形状に形成可能である。羽根の幾何学形状は、揚力及び推力を増加させ、抗力を削減する等の、羽根の動的空気特性を最適化するために適宜選択可能である。
 モータ14は、プロペラ16の回転を生じさせるものであり、例えば、駆動ユニットは、電気モータ又はエンジン等を含むことが可能である。羽根は、モータによって駆動可能であり、時計方向に及び/または反時計方向に、モータの回転軸(例えば、モータの長軸)の周りに回転する。
 羽根は、すべて同一方向に回転可能であるし、独立して回転することも可能である。羽根のいくつかは一方の方向に回転し、他の羽根は他方方向に回転する。羽根は、同一回転数ですべて回転することも可能であり、夫々異なる回転数で回転することも可能である。回転数は移動体の寸法(例えば、大きさ、重さ)や制御状態(速さ、移動方向等)に基づいて自動又は手動により定めることができる。
 モータアーム12は、それぞれ対応するモータ14及びプロペラ16を支持している部材である。モータアーム12には、回転翼機の飛行状態、飛行方向等を示すためにLED等の発色体を設けることとしてもよい。本実施の形態によるモータアーム12は、カーボン、ステンレス、アルミニウム、マグネシウム等またはこれらの合金又は組合わせ等から適宜選択される素材で形成することが可能である。
 本実施の形態において、飛行部10(図1参照)とアーム部30とは、ジンバル60を介して連結されている。これにより、飛行部10とアーム部30とは、独立して変位可能となる。
 即ち、飛行部10の向きをアーム部30の向きとは別個独立に制御することが可能となることから、アーム部30の向きは飛行部30の向きの影響を受けないジンバル60は、少なくとも二軸(X軸及びZ軸)方向に変位可能なジンバル60である。
 アーム部30は、2本の直線形状を有しており、夫々、一端は飛行部10に接続され他端は脚部20に接続されている。
 図2に示されるように、本実施の形態による搭載部50は、アーム部30に設けられている。搭載部50は、図2(a)及び図3(a)に示される第1位置から、図2(b)及び図3(b)に示される第2位置に向けて、アーム部30に沿って移動可能に構成されている。
 本実施の形態による搭載部50は、レール状に形成されたアーム部30をガイドさせるようにして、第1位置と第2位置とを変位可能にする。なお、移動の方法は他の方法であってもよく、第1位置及び第2位置への固定及びこれらの位置間の移動制御が可能な方法であれば、どのようなものでもよい。
 本実施の形態における第1位置は、進行方向(Y方向)において固定翼部40と少なくとも一部が重複する位置にある。これにより、推力中心と搭載対象物52の重心とを近接させることができ、飛行が安定する。
 第1位置の場所については、搭載対象物の重量、形状に素材等に応じて適宜変更することができる。
 固定翼部(上側固定翼40及び下側固定翼42)は、アーム部30に夫々連結されている。本実施の形態による飛行体は、ジンバルを介して回転翼機に複葉機を接続した概念のものであるが、複葉機でなくてもよい。
 続いて、図4乃至図10を参照して本実施の形態による飛行体の飛行方法を説明する。
 図4は、飛行体の初期状態を示す図である。搭載対象物52は、搭載部50に搭載されている。搭載部50は、第1位置に位置している。図中の重心マークは飛行体の重心(Center Of Gravity:COG)を表している。
 初期状態において、飛行体は脚部20が地面に接した状態で直立している。換言すると、初期状態において、飛行体は、アーム部30を垂直方向に立てるようにしてセットされる。
 なお、初期状態において、飛行体が倒れないようにするために、補助アームや補助脚等を使用することとしてもよい。
 飛行体は、図4に示される状態から、飛行部10のプロペラ16を回転させることによって上向きの推力を得て、図5に示されるように、浮上し上昇する(上昇姿勢)。
 図6に示されるように、飛行体は、所定の高さまで上昇すると、飛行部10を略90度水平方向にむけて変位させ、機体の向きを変える(水平姿勢)。
 この状態においてはあたかもプロペラ飛行機と同様の原理で水平方向に推進することが可能となる。かかる構成によれば、目的地上空まで高速に移動することが可能となる。
 図7及び図8に示されるように、目的地上空に到着すると、プロペラ16の回転速度を低下させつつ機体が垂直になるようにして(下降姿勢)、ホバリング状態に移行する。即ち、機体の向きを水平方向から垂直方向に戻す。この際、第1位置にあった搭載部50は第2位置に移動し、それに伴い搭載対象物52も移動する(図中の矢印M参照)。搭載対象物の移動に伴い、重心Gも脚部側にずれることとなる。
 図9は、目的地上空から目的地まで下降する様子を表す図である。搭載対象物52は第2位置に移動が完了し、重心Gも初期の位置から移動している。
 なお、水平姿勢の状態で搭載対象物52を第2位置に移行してしまうと、搭載対象物52の重量によっては、下降姿勢に移行した際に、アーム部30全体が振り子のように振れてしまうため、搭載対象物52の移行は、下降姿勢に移行が開始され始めた後が好ましく、より安全には、完全に下降姿勢となった状態で移行することが好ましい。
 本実施の形態においては、図10に示されるように、下降の際に横風等が吹いた場合であっても、ジンバル60によって、飛行部が自在に変位するため、横に流されることがない。
 上述した回転翼機は、図11に示される機能ブロックを有している。なお、図11の機能ブロックは最低限の参考構成である。フライトコントローラは、所謂処理ユニットである。処理ユニットは、プログラマブルプロセッサ(例えば、中央処理ユニット(CPU))などの1つ以上のプロセッサを有することができる。
 処理ユニットは、図示しないメモリを有しており、当該メモリにアクセス可能である。メモリは、1つ以上のステップを行うために処理ユニットが実行可能であるロジック、コード、および/またはプログラム命令を記憶している。
 メモリは、例えば、SDカードやランダムアクセスメモリ(RAM)などの分離可能な媒体または外部の記憶装置を含んでいてもよい。カメラやセンサ類から取得したデータは、メモリに直接に伝達されかつ記憶されてもよい。例えば、カメラ等で撮影した静止画・動画データが内蔵メモリ又は外部メモリに記録される。
 処理ユニットは、回転翼機の状態を制御するように構成された制御モジュールを含んでいる。例えば、制御モジュールは、6自由度(並進運動x、y及びz、並びに回転運動θ、θ及びθ)を有する回転翼機の空間的配置、速度、および/または加速度を調整するために回転翼機の推進機構(モータ等)を制御する。制御モジュールは、搭載部、センサ類の状態のうちの1つ以上を制御することができる。
 処理ユニットは、1つ以上の外部のデバイス(例えば、端末、表示装置、または他の遠隔の制御器)からのデータを送信および/または受け取るように構成された送受信部と通信可能である。送受信機は、有線通信または無線通信などの任意の適当な通信手段を使用することができる。
 例えば、送受信部は、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、赤外線、無線、WiFi、ポイントツーポイント(P2P)ネットワーク、電気通信ネットワーク、クラウド通信などのうちの1つ以上を利用することができる。
 送受信部は、センサ類で取得したデータ、処理ユニットが生成した処理結果、所定の制御データ、端末または遠隔の制御器からのユーザコマンドなどのうちの1つ以上を送信および/または受け取ることができる。
 本実施の形態によるセンサ類は、慣性センサ(加速度センサ、ジャイロセンサ)、GPSセンサ、近接センサ(例えば、ライダー)、またはビジョン/イメージセンサ(例えば、カメラ)を含み得る。
 本発明の回転翼機は、中長距離における宅配業務専用の飛行体としての利用、及び広域の監視業務、山岳領域の偵察・救助業務における産業用の回転翼機としての利用が期待できる。また、本発明の回転翼機は、マルチコプター・ドローン等の飛行機関連産業において利用することができ、さらに、本発明に、カメラ等を搭載し空撮任務も遂行可能な飛行体としても好適に使用することができる他、セキュリティ分野、農業、インフラ監視等の様々な産業にも利用することができる。
 上述した実施の形態は、本発明の理解を容易にするための例示に過ぎず、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができると共に、本発明にはその均等物が含まれることは言うまでもない。
 1    飛行体
 10    飛行部
 12    モータアーム
 14    モータ
 16    プロペラ
 20    脚部
 30    アーム部
 40    上側固定翼
 42    下側固定翼
 50    搭載部
 52    搭載物
 60    ジンバル

 

Claims (7)

  1.  推力を発生させるための複数の回転翼を備えた飛行部と、脚部と、当該飛行部及び当該脚部を連結するアーム部と、当該アーム部の略中央に設けられた固定翼部とを備える飛行体であって、
     前記アーム部の第1位置と当該第1位置よりも後方に位置する第2位置とを前記アーム部に沿って移動自在に設けられた搭載部を更に備える、
    飛行体。
  2.  請求項1に記載の飛行体であって、
     前記第1位置は、前後方向において前記固定翼部と少なくとも重複する、
    飛行体。
  3.  請求項1又は請求項2に記載の飛行体であって、
     前記固定翼部は、二枚の固定翼の対で構成されており、
     前記第1位置は、当該固定翼の対の間に位置している、
    飛行体。
  4.  請求項1乃至請求項3のいずれかに記載の飛行体であって、
     前記第2位置は、前後方向において前記固定翼部と少なくとも重複する、
    飛行体。
  5.  請求項1乃至請求項4のいずれかに記載の飛行体であって、
     前記飛行部と前記アーム部とを独立して変位可能に連結する連結部を更に備えている、
    飛行体。
  6.  請求項5に記載の飛行体であって、
     前記飛行部と前記アーム部とを連結する連結部は、ジンバルである、
    飛行体。
  7.  請求項1乃至請求項6のいずれかに記載の飛行体の飛行方法であって、
     初期状態において、前記搭載部を第1位置にセットし搭載対象物を搭載させるとともに、前記飛行部が上端となるように前記アーム部を垂直方向に立てるステップと、
     前記飛行部を駆動させ、当該駆動部が進行方向前端となるように上昇させるステップと、
     所定の高さにおいて、前記飛行部を略90度水平方向にむけて変位させ、前記アーム部が水平方向に延びるように飛行させるステップと、
     目的地上空において前記脚部が下端となるように前記アーム部を垂直方向に立てつつ、前記搭載部を前記第1位置から前記第2位置に変位させるステップと、
     前記脚部が下端となるように下降するステップとを含む、
    飛行体の飛行方法。

     
PCT/JP2018/000001 2018-01-03 2018-01-03 飛行体及び飛行体の飛行方法 WO2019135264A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112018006754.8T DE112018006754T5 (de) 2018-01-03 2018-01-03 Fluggerät und flugverfahren dafür
PCT/JP2018/000001 WO2019135264A1 (ja) 2018-01-03 2018-01-03 飛行体及び飛行体の飛行方法
US16/956,951 US11639221B2 (en) 2018-01-03 2018-01-03 Flying vehicle and flying method therefor
JP2019541469A JP6613424B1 (ja) 2018-01-03 2018-01-03 飛行体の飛行方法
CN201880086263.5A CN111587208A (zh) 2018-01-03 2018-01-03 飞行体以及飞行体的飞行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000001 WO2019135264A1 (ja) 2018-01-03 2018-01-03 飛行体及び飛行体の飛行方法

Publications (1)

Publication Number Publication Date
WO2019135264A1 true WO2019135264A1 (ja) 2019-07-11

Family

ID=67143687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000001 WO2019135264A1 (ja) 2018-01-03 2018-01-03 飛行体及び飛行体の飛行方法

Country Status (5)

Country Link
US (1) US11639221B2 (ja)
JP (1) JP6613424B1 (ja)
CN (1) CN111587208A (ja)
DE (1) DE112018006754T5 (ja)
WO (1) WO2019135264A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102214395B1 (ko) * 2019-10-25 2021-02-10 김경수 24시간 비행 가능한 드론
EP3912910A1 (en) * 2020-05-20 2021-11-24 Bell Textron Inc. Tailsitting biplane aircraft having a coaxial rotor system
CN114206723A (zh) * 2019-08-02 2022-03-18 盐城辉空科技有限公司 飞行体以及飞行体的飞行方法
JP2023076742A (ja) * 2020-01-27 2023-06-01 株式会社エアロネクスト 飛行体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11479354B2 (en) 2020-05-20 2022-10-25 Textron Innovations Inc. Thrust vectoring coaxial rotor systems for aircraft
US11320841B2 (en) 2020-05-20 2022-05-03 Textron Innovations Inc. Yaw control systems for tailsitting biplane aircraft
US11479353B2 (en) 2020-05-20 2022-10-25 Textron Innovations Inc. Distributed elevon systems for tailsitting biplane aircraft
JP6952380B1 (ja) * 2020-08-11 2021-10-20 株式会社エアロネクスト 移動体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052713A (ja) * 2009-03-05 2010-03-11 Technical Research & Development Institute Ministry Of Defence 球形飛行機及びテールシッター機
JP2016517821A (ja) * 2013-05-03 2016-06-20 エアロバイロメント, インコーポレイテッドAerovironment, Inc. 垂直離着陸(vtol)航空機
US20160244159A1 (en) * 2009-08-24 2016-08-25 Transition Robotics, Inc. Controlled Take-Off And Flight System Using Thrust Differentials

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6845939B1 (en) 2003-10-24 2005-01-25 G. Douglas Baldwin Tailboom-stabilized VTOL aircraft
CN201923320U (zh) * 2011-01-13 2011-08-10 杨苡 双发动机垂直起降固定翼无人机
KR20160041697A (ko) * 2014-10-08 2016-04-18 한화테크윈 주식회사 무인 비행체
KR101565979B1 (ko) * 2015-04-13 2015-11-13 한국항공우주연구원 무인 비행체
FR3037672B1 (fr) 2015-06-16 2017-06-16 Parrot Drone comportant des moyens perfectionnes de compensation du biais de la centrale inertielle en fonction de la temperature
JP6714911B2 (ja) 2016-03-08 2020-07-01 国立大学法人京都大学 ティルトウイング形態無人飛行機
CN105966612B (zh) 2016-05-27 2017-11-17 东北师范大学 变姿态垂直起落无人机
US9963228B2 (en) 2016-07-01 2018-05-08 Bell Helicopter Textron Inc. Aircraft with selectively attachable passenger pod assembly
JP6993711B2 (ja) 2019-09-26 2022-01-14 株式会社エアロネクスト 飛行体及び飛行体の飛行方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052713A (ja) * 2009-03-05 2010-03-11 Technical Research & Development Institute Ministry Of Defence 球形飛行機及びテールシッター機
US20160244159A1 (en) * 2009-08-24 2016-08-25 Transition Robotics, Inc. Controlled Take-Off And Flight System Using Thrust Differentials
JP2016517821A (ja) * 2013-05-03 2016-06-20 エアロバイロメント, インコーポレイテッドAerovironment, Inc. 垂直離着陸(vtol)航空機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114206723A (zh) * 2019-08-02 2022-03-18 盐城辉空科技有限公司 飞行体以及飞行体的飞行方法
KR102214395B1 (ko) * 2019-10-25 2021-02-10 김경수 24시간 비행 가능한 드론
JP2023076742A (ja) * 2020-01-27 2023-06-01 株式会社エアロネクスト 飛行体
EP3912910A1 (en) * 2020-05-20 2021-11-24 Bell Textron Inc. Tailsitting biplane aircraft having a coaxial rotor system

Also Published As

Publication number Publication date
JPWO2019135264A1 (ja) 2020-01-16
US11639221B2 (en) 2023-05-02
US20200391863A1 (en) 2020-12-17
DE112018006754T5 (de) 2020-09-24
JP6613424B1 (ja) 2019-12-04
CN111587208A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2019135264A1 (ja) 飛行体及び飛行体の飛行方法
JP6578477B2 (ja) 回転翼機
JP7466217B2 (ja) 離着陸システム
JP6993711B2 (ja) 飛行体及び飛行体の飛行方法
WO2021059322A1 (ja) 飛行体
JP7438523B2 (ja) 飛行体及び飛行体の飛行方法
JP7006930B2 (ja) 回転翼機
JP7398790B2 (ja) 飛行体
JP7137222B2 (ja) プロペラ、モータ部品及びこれを備えた飛行体
JP6758697B2 (ja) 飛行体及び飛行体の飛行方法
JP7244955B2 (ja) 飛行体及び飛行体の飛行方法
JP7265776B2 (ja) 飛行体
JP7153351B2 (ja) 飛行体の飛行方法
WO2021070363A1 (ja) 飛行体
JP7417244B2 (ja) 飛行体
JP7539683B2 (ja) 飛行体
WO2021059323A1 (ja) アタッチメント及び飛行体
WO2021024370A1 (ja) 飛行体
JP2024149697A (ja) 飛行体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019541469

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898034

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18898034

Country of ref document: EP

Kind code of ref document: A1