WO2019134714A1 - Unmanned aerial vehicle launch parachute landing methods and systems - Google Patents

Unmanned aerial vehicle launch parachute landing methods and systems Download PDF

Info

Publication number
WO2019134714A1
WO2019134714A1 PCT/CN2019/070911 CN2019070911W WO2019134714A1 WO 2019134714 A1 WO2019134714 A1 WO 2019134714A1 CN 2019070911 W CN2019070911 W CN 2019070911W WO 2019134714 A1 WO2019134714 A1 WO 2019134714A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
parachute
gcs
open
motor
Prior art date
Application number
PCT/CN2019/070911
Other languages
French (fr)
Inventor
Lung-Shun Shih
Fu-Kai Yang
Yi-Feng Cheng
Di-yang WANG
Chien-Hsun Liao
Original Assignee
Geosat Aerospace & Technology Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geosat Aerospace & Technology Inc. filed Critical Geosat Aerospace & Technology Inc.
Priority to JP2020537535A priority Critical patent/JP7242682B2/en
Priority to CN201980006750.0A priority patent/CN111542793B/en
Publication of WO2019134714A1 publication Critical patent/WO2019134714A1/en
Priority to PH12020500581A priority patent/PH12020500581A1/en
Priority to JP2023029145A priority patent/JP2023065537A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/80Vertical take-off or landing, e.g. using rockets
    • B64U70/83Vertical take-off or landing, e.g. using rockets using parachutes, balloons or the like

Definitions

  • the present application relates to unmanned aerial vehicles (UAVs) , and more particularly, to parachute landing methods and systems for UAVs.
  • UAVs unmanned aerial vehicles
  • a conventional UAV may land by wheels or belly.
  • the wheels may add weight to the UAV, and may be unfavorable components for a UAV for long flight time. Landing by belly may require extra protection at the UAV’s belly. The protection may also add weight to the UAV.
  • the weight of the UAV may become one of critical requirements. It would be desirable to have new landing methods and systems for the UAV in a safe way and without too much extra weight.
  • a conventional ground control system may monitor the status of a UAV and may control the UAV to execute a mission, such as taking aerial images over an area of interest.
  • a mission such as taking aerial images over an area of interest.
  • it may still rely on a user to control the UAV in accordance with his experience and training.
  • users of these UAVs may require having different training and experience. For example, when a user may plan to land the UAV at an open position, accurate and easy-to-operate landing methods and systems may be favorable approaches. It would be desirable to have user-friendly GCS for flight safety and easy landing.
  • Embodiments of the present disclosure provide improved methods and systems for memory management of kernel and user spaces in computers, apparatuses, or systems.
  • a system for UAV parachute landing may include a detector configured to detect a flight speed, a wind speed, a position, a height, or a voltage of a UAV.
  • the system may also include a memory storing instructions for UAV parachute landing.
  • the system may further include a processor configured to execute the instructions to determine whether to open a parachute of the UAV in accordance with a criterion.
  • the processor of the system may also be configured to, responsive to a determination to open the parachute of the UAV, stop a motor of the UAV that spins a propeller of the UAV.
  • the processor of the system may also be configured to open the parachute of the UAV after stopping the motor of the UAV for a period.
  • These embodiments also include a method for UAV parachute landing.
  • the method may include determining whether to open a parachute of a UAV in accordance with a criterion.
  • the method may also include responsive to a determination to open the parachute of the UAV, stopping a motor of the UAV that spins a propeller of the UAV.
  • the method may further include opening the parachute of the UAV after stopping the motor of the UAV for a period.
  • these embodiments include a non-transitory computer-readable medium storing instructions that are executable by one or more processors of an apparatus to perform a method for UAV parachute landing.
  • the method may include determining whether to open a parachute of a UAV in accordance with a criterion.
  • the method may also include responsive to a determination to open the parachute of the UAV, stopping a motor of the UAV that spins a propeller of the UAV.
  • the method may further include opening the parachute of the UAV after stopping the motor of the UAV for a period.
  • Fig. 1 is a schematic diagram of an exemplary UAV and an exemplary GCS and an exemplary remote controller for controlling the UAV, according to some embodiments of the present disclosure.
  • Fig. 2 is a schematic diagram of an exemplary UAV, according to some embodiments of the present disclosure.
  • Fig. 3 is a schematic diagram of an exemplary method for UAV parachute landing, according to some embodiments of the present disclosure.
  • Fig. 4 is a schematic diagram of an exemplary integrated unit of a flight control computer (FCC) , an Attitude and Heading Reference System (AHRS) , and a communication unit for controlling the UAV, according to some embodiments of the present disclosure.
  • FCC flight control computer
  • AHRS Attitude and Heading Reference System
  • Fig. 5 is a block diagram of an exemplary GCS, according to some embodiments of the present disclosure.
  • Fig. 6 is a schematic diagram of an exemplary method for UAV parachute landing, according to some embodiments of the present disclosure.
  • Fig. 7 is a schematic diagram of an exemplary user interface of a GCS for a UAV, according to some embodiments of the present disclosure.
  • Fig. 8 is a schematic diagram of an exemplary user interface of a GCS for flight check before launching a UAV, according to some embodiments of the present disclosure.
  • Fig. 9 is a schematic diagram of an exemplary user interface of a GCS for flight check before launching a UAV, according to some embodiments of the present disclosure.
  • Fig. 10 is a schematic diagram of an exemplary user interface of a GCS for flight check before launching a UAV, according to some embodiments of the present disclosure.
  • Fig. 11 is a schematic diagram of an exemplary user interface of a GCS for flight check before launching a UAV, according to some embodiments of the present disclosure.
  • Fig. 12 is a schematic diagram of an exemplary user interface of a GCS for flight check before launching a UAV, according to some embodiments of the present disclosure.
  • Fig. 13 is a schematic diagram of an exemplary user interface of a GCS for flight check before launching a UAV, according to some embodiments of the present disclosure.
  • Fig. 14 is a schematic diagram of an exemplary user interface of a GCS for setting a home point or a landing point, according to some embodiments of the present disclosure.
  • Fig. 15 is a schematic diagram of an exemplary user interface of a GCS for setting a home point and a landing point, according to some embodiments of the present disclosure.
  • Fig. 1 is a schematic diagram of an exemplary UAV 100 and an exemplary GCS 500 and an exemplary remote controller 700 for controlling UAV 100, according to some embodiments of the present disclosure.
  • a user may control UAV 100 through GCS 500 or remote controller 700.
  • GCS 500 can be run on a desktop computer, a laptop, a tablet, or a smartphone.
  • the User can input an instruction on GCS 500 to control or set a parameter on UAV 100.
  • GCS 500 may transmit a signal through a communication unit 650 to UAV 100.
  • the user may use remote controller 700 to manually control UAV 100.
  • the user may input an instruction to remote controller 700 to control or set a parameter on UAV 100.
  • remote controller 700 may transmit a signal through a communication unit to UAV 100.
  • Fig. 2 is a schematic diagram of an exemplary UAV 100, according to some embodiments of the present disclosure.
  • UAV 100 includes a body 110, a pair of wings 171 and 172, a pair of ailerons 173 and 174, an integrated unit 120, a payload 140, a parachute 160, a motor 150, and a propeller 130.
  • Payload 140 may be a camera, Light Detection And Ranging (LiDAR) sensors, real-time digital elevation model (DSM) sensors, sensors for post-producing DSM, or a thermal imaging sensor.
  • LiDAR Light Detection And Ranging
  • DSM digital elevation model
  • Fig. 3 is a schematic diagram of an exemplary method for UAV parachute landing, according to some embodiments of the present disclosure. For example, when UAV 100 finishes a flight mission, UAV 100 may fly to a set landing point and open parachute 160 of UAV 100 for landing.
  • Fig. 4 is a schematic diagram of an exemplary integrated unit 120.
  • integrated unit 120 includes a flight control computer (FCC) 122, an Attitude and Heading Reference System (AHRS) 124, a communication unit 125, an antenna 126 for controlling UAV 100, according to some embodiments of the present disclosure.
  • FCC flight control computer
  • AHRS Attitude and Heading Reference System
  • AHRS 125 includes a detector 123.
  • FCC 122 may include a processor and a memory storing instructions. FCC 122 may be configured to control UAV 100’s direction in flight. For example, FCC 122 may be configured to control motor 150 to speed up or slow down UAV 100. FCC 122 may also be configured to control aileron 173 and 174 to make UAV 100 pitch, roll, or yaw.
  • AHRS 124 may include sensors on three axes that provide attitude information for UAV 100, including roll, pitch, and yaw. These sensors may also be referred to as magnetic, angular rate, and gravity (MARG) sensors, and may include either solid-state or microelectromechanical systems (MEMS) gyroscopes, accelerometers, and magnetometers. As shown in Fig. 4, detector 123 includes one or more of these sensors. AHRS 124 may include an on-board processing system which provides attitude and heading information. In some embodiments, AHRS 124 may provide attitude determination of UAV 100, and may also form part of an inertial navigation system of UAV 100.
  • MEMS microelectromechanical systems
  • Communication unit 125 may include a modem for transmitting and receiving radio frequency signals through antenna 126 and communicating with GCS 500 or remote controller 700.
  • FIG. 5 is a block diagram of an exemplary GCS 500, according to some embodiments of the present disclosure.
  • GCS 500 includes a memory 510, a processor 520, a storage 530, an I/O interface 540, a communication unit 550, and an antenna 560.
  • One or more of these units of GCS 500 may be included for ground controlling UAV 100. These units may be configured to transfer data and send or receive instructions between or among each other.
  • Processor 520 includes any appropriate type of general-purpose or special-purpose microprocessor, digital signal processor, or microcontroller. Processor 520 can be one of processors in a computer.
  • Memory 510 and storage 530 may include any appropriate type of mass storage provided to store any type of information that processor 520 may need to operate.
  • Memory 510 and storage 530 may be a volatile or non-volatile, magnetic, semiconductor, tape, optical, removable, non-removable, or other type of storage device or tangible (e.g., non-transitory) computer-readable medium including, but not limited to, a read-only memory (ROM) , a flash memory, a dynamic random-access memory (RAM) , and a static RAM.
  • ROM read-only memory
  • RAM dynamic random-access memory
  • Memory 510 and/or storage 530 may be configured to store one or more programs for execution by processor 520 to control UAV 100, as disclosed herein.
  • Memory 510 and/or storage 530 may be further configured to store information and data used by processor 520.
  • memory 510 and/or storage 530 may be configured to store home points, landing points, previous routes, previous missions, photographs, and location information associated with photographs.
  • I/O interface 540 may be configured to facilitate the communication between GCS 500 and other apparatuses.
  • I/O interface 540 may receive a signal from another apparatus (e.g., a computer) including system configuration for GCS 500.
  • I/O interface 540 may also output data of flight routes and photographs.
  • Communication unit 550 may include one or more cellular communication modules, including, for example, an IEEE 802.11, a fifth generation (5G) radio system, a Long-Term Evolution (LTE) , a High Speed Packet Access (HSPA) , a Wideband Code-Division Multiple Access (WCDMA) , and/or a Global System for Mobile communication (GSM) communication module.
  • GCS 500 can communicate with UAV 100 through communication unit 550 and antenna 560.
  • Communication unit 550 may also include a global positioning system (GPS) receiver. GCS 500 may receive positioning information through the GPS receiver of communication unit 550.
  • GPS global positioning system
  • Fig. 6 is a schematic diagram of an exemplary method for UAV parachute landing, according to some embodiments of the present disclosure.
  • Method 600 may be performed by, for example, FCC 122 of UAV 100.
  • a processor of FCC 122 may be configured to execute instructions to perform method 600, as illustrated below.
  • Method 600 includes determining whether to open the parachute of the UAV in accordance with a criterion (step 620) , responsive to a determination to open a parachute of the UAV, stopping a motor of the UAV that spins a propeller of the UAV (step 640) , braking the propeller of the UAV (step 660) , and opening the parachute of the UAV after stopping the motor of the UAV for a period (step 680) .
  • Step 620 includes determining whether to open a parachute of the UAV in accordance with a criterion. For example, when a criterion is met, FCC 122 may be configured to determine to open parachute 160 of UAV 100.
  • the criterion may include that UAV 100 receives a signal to open parachute 160 from GCS 500.
  • a user may input an instruction to open parachute 160 of UAV 100 on GCS 500.
  • GCS 500 is configured to send a signal to open parachute 160 to UAV 100 through communication unit 550.
  • FCC 122 may be configured to determine to open parachute 160 of UAV 100 when receiving the signal to open parachute 160 from GCS 500.
  • the criterion may include that UAV 100 receives a signal to open the parachute from remote controller 700.
  • a user may input an instruction to open parachute 160 of UAV 100 by remote controller 700.
  • remote controller 700 is configured to send a signal to open parachute 160 to UAV 100 through a communication unit of remote controller 700.
  • FCC 122 may be configured to determine to open parachute 160 of UAV 100 when receiving the signal to open parachute 160 from remote controller 700.
  • the criterion may include that UAV 100 arrives at a position. For example, after completing a flight mission, UAV 100 flies to a set landing point. After UAV 100 arrives at the set landing point, FCC 122 may be configured to determine to open parachute 160 of UAV 100. As another example, FCC may be configured to detect that UAV 100 arrives at a position within 5 meters from the landing point, FCC may be configured to determine that the UAV already flies to the landing point. Accordingly, FCC 122 may be configured to determine to open parachute 160 of UAV 100.
  • the above landing point may be set by GCS 500 before UAV 100 takes off. In some embodiments, the above landing point can be a landing point set by GCS 500 after UAV 100 takes off. For example, GCS 500 may transmit a new landing point to UAV 100 through communication unit 125.
  • UAV 100 After completing a flight mission, UAV 100 can also fly back to a set home point when no landing point is set. After UAV 100 arrives at the set home point, FCC 122 may be configured to determine to open parachute 160 of UAV 100.
  • the above home point may be set by GCS 500 before UAV 100 takes off. In some embodiments, the above home point can be a home point set by GCS 500 after UAV 100 takes off. For example, GCS 500 may transmit a new home point to UAV 100 through communication unit 125.
  • the criterion may include that the UAV is at a low voltage.
  • FCC 122 may be configured to detect that a battery of UAV 100 is at a low voltage, e.g., 10.8 volts while the battery should have a voltage at around 13.2 volts. After FCC detects that the battery of UAV 100 is at a low voltage, FCC 122 may be configured to determine to open parachute 160 of UAV 100.
  • the criterion may include that UAV 100 does not receive a signal of Globe Positioning System (GPS) for a period.
  • GPS Globe Positioning System
  • FCC 122 may be configured to determine to open parachute 160 of UAV 100.
  • the criterion can also include that UAV 100 does not receive a signal of data link from GCS 500 for a period of time.
  • FCC 122 may be configured to determine to open parachute 160 of UAV 100.
  • FCC 122 may be configured to determine to fly back to a set home point or a set landing point and wait for the resume of the datalink. In such a case, if the loss of the data link continues, FCC 122 may be configured to switch to a landing mode that stop the motor and open parachute 160 of UAV 100 upon complete rest of the motor.
  • the criterion may include a stall of UAV 100. If the FCC 122 fails to recover the stall of UAV 100 and a normal flight cannot be resumed in a predetermined period, the altitude of UAV 100 lowers to a threshold height. For example, FCC 122 is configured to detect that a stall where the altitude of UAV 100 lowers to a height of 35 meters in a predetermined period, FCC 122 may be configured to switch to an emergency landing mode to stop the motor and open the parachute 160 upon completely rest of the motor
  • the threshold height may be within a range of a predetermined height. For example, the threshold height may be within a range of 5 meters above or below the predetermined height of 35 meter.
  • the criterion may include that UAV 100 flies around an unintended area or UAV 100 is confined in an area in an undesirable manner for a predetermined period.
  • FCC 122 may detect that UAV 100 flies around an unintended area over two minutes, or that UAV 100 is confined by obstructions.
  • FCC 122 may be configured to switch to a emergency landing mode that stop the motor and open parachute 160 of UAV 100 upon complete rest of the motor.
  • Step 640 includes responsive to a determination to open a parachute of the UAV, stopping a motor of the UAV that spins a propeller of the UAV.
  • FCC 122 may be configured to stop motor 150 that spins propeller 130 of UAV 100.
  • FCC 122 may be configured to stop motor 150 that spins propeller 130 of UAV 100 when UAV 100 flies against the wind.
  • FCC 122 may be configured to reduce the height of UAV 100 to the height of 35 meters before stopping motor 150 of UAV 100.
  • Step 660 includes braking the propeller of the UAV.
  • FCC 122 may be configured to brake propeller 130 of UAV 100 by motor 150 of UAV 100.
  • Step 680 includes opening the parachute of the UAV after stopping the motor of the UAV for a first period.
  • FCC 122 may be configured to open parachute 160 of UAV 100 after stopping motor 150 for one second.
  • FCC 122 may be configured to open parachute 160 of UAV 100 after stopping motor 150 for 0.5 second.
  • a size of the parachute of the UAV may be associated with a weight of the UAV.
  • a size of parachute 160 of UAV 100 may be associated with a weight of UAV 100.
  • the disclosure is also directed to a system for UAV parachute landing.
  • the system may include FCC 122, AHRS 124, or integrated unit 120 including FCC 122, AHRS 124, communication unit 125, and antenna 126.
  • Detector 123 of AHRS 124 may be configured to detect an acceleration of the UAV.
  • the system may also include a memory storing instructions.
  • a memory of FCC 122 may be configured to store instructions for UAV parachute landing method 600.
  • the system may further include a processor configured to execute the instructions to: determine whether to open a parachute of the UAV in accordance with a criterion; responsive to a determination to open the parachute of the UAV, stop a motor of the UAV that spins a propeller of the UAV; and open the parachute of the UAV after stopping the motor of the UAV for a first period.
  • a processor configured to execute the instructions to: determine whether to open a parachute of the UAV in accordance with a criterion; responsive to a determination to open the parachute of the UAV, stop a motor of the UAV that spins a propeller of the UAV; and open the parachute of the UAV after stopping the motor of the UAV for a first period.
  • FCC 122 of the system may be configured to execute the instructions to determine whether to open parachute 160 of UAV 100 in accordance with a criterion; responsive to a determination to open parachute 160 of UAV 100, stop motor 150 of UAV 100 that spins propeller 130 of UAV 100; and open parachute 160 of UAV 100 after stopping motor 150 of UAV 100 for one period.
  • the computer-readable medium may include volatile or non-volatile, magnetic, semiconductor, tape, optical, removable, non-removable, or other types of computer-readable medium or computer-readable storage devices.
  • the computer-readable medium may be the storage device or the memory module having the computer instructions stored thereon, as disclosed.
  • the computer-readable medium may be a disc or a flash drive having the computer instructions stored thereon.
  • Fig. 7 is a schematic diagram of an exemplary user interface (UI) of GCS 500 for UAV 100, according to some embodiments of the present disclosure.
  • UI user interface
  • the user may perform a preflight check by clicking on the Preflight Check icon, as shown in Fig. 7.
  • Fig. 8 is a schematic diagram of an exemplary user interface of GCS 500 for flight check before launching UAV 100, according to some embodiments of the present disclosure.
  • GCS 500 may prompt a preflight check UI for checking a status of parachute 160, as shown in Fig. 8.
  • GCS 500 may inquire FCC 122 of UAV 100 about the status of parachute 160, and obtain the status of parachute 160 after FCC 122 detects and reports.
  • the user may follow the instructions of the UI to check the status of parachute 160.
  • Fig. 9 is a schematic diagram of an exemplary user interface of GCS 500 for flight check before launching UAV 100, according to some embodiments of the present disclosure.
  • GCS 500 may prompt a preflight check UI for checking the status of payload 140, i.e., a camera, as shown in Fig. 9.
  • GCS 500 may inquire FCC 122 about the status of the camera, and obtain the status of the camera after FCC 122 detects and reports.
  • the user may follow the instructions of the UI to check the status of the camera.
  • Fig. 10 is a schematic diagram of an exemplary user interface of GCS 500 for flight check before launching UAV 100, according to some embodiments of the present disclosure.
  • GCS 500 may prompt a preflight check UI for checking the status of a battery of UAV 100, as shown in Fig. 10.
  • GCS 500 may inquire the status of the battery of UAV 100, and obtain the status of the battery of UAV 100 after FCC 122 detects and reports.
  • the user may follow the instructions of the UI to check the status of the battery of UAV 100.
  • Fig. 11 is a schematic diagram of an exemplary user interface of GCS 500 for flight check before launching UAV 100, according to some embodiments of the present disclosure.
  • GCS 500 may prompt a preflight check UI for checking the status of the structure of UAV 100, as shown in Fig. 11.
  • GCS 500 may inquire the status of the structure of UAV 100, and obtain the status of the structure of UAV 100 after FCC 122 detects and reports.
  • the user may follow the instructions of the UI to check the status of the structure of UAV 100.
  • Fig. 12 is a schematic diagram of an exemplary user interface of GCS 500 for flight check before launching a UAV, according to some embodiments of the present disclosure.
  • GCS 500 may prompt a preflight check UI for checking the status of ailerons 172 and 174 of UAV 100, as shown in Fig. 12.
  • GCS 500 may inquire the status of ailerons 173 and 174 of UAV 100, and obtain the status of ailerons 172 and 174 of UAV 100 after FCC 122 detects and reports.
  • the user may follow the instructions of the UI to check the status of ailerons 172 and 174 of UAV 100.
  • Fig. 13 is a schematic diagram of an exemplary user interface of GCS 500 for flight check before launching a UAV, according to some embodiments of the present disclosure.
  • GCS 500 may prompt a preflight check UI for displaying statuses of UAV 100, as shown in Fig. 13.
  • GCS 500 may display whether data link is workable, whether a sensor is workable, whether a voltage of UAV 100 is at a reasonable voltage, whether a recorder on UAV 100 is workable, whether a GPS receiver on UAV 100 is workable, whether GCS 500 is workable, and whether a home point has been set by a set of light icons 1400. The user may understand statuses of these components of UAV 100 before launching in a quick and easy way. When all light icons 1300 are lighted, UAV 100 may be ready to launch.
  • Fig. 14 is a schematic diagram of an exemplary user interface of a GCS for setting a home point or a landing point, according to some embodiments of the present disclosure.
  • the user may click on the Home Point icon to prepare to select a home point, as shown in Fig. 14.
  • the user can look at the map display on the UI and double clicks on one point to set up the home point for UAV 100.
  • the user may also click on the Landing Point icon to prepare to select a landing point, as shown in Fig. 14.
  • the user can look at the map display on the UI and double clicks on one point to set up a landing point for UAV 100, as shown in Fig. 14.
  • Fig. 15 is a schematic diagram of an exemplary user interface of GCS 500 for setting a home point and a landing point, according to some embodiments of the present disclosure. Similar to above examples in Fig. 14, the user may select a home point or a landing point after setting up an area for a flight mission.
  • the user may click a parachute icon 1520, as shown in Fig. 15, to command UAV 100 to open parachute 160 immediately for landing.
  • GCS 500 may send a signal to open the parachute to UAV 100.
  • FCC 122 may be configured to open parachute 160 of UAV 100 accordingly.

Abstract

Methods and systems for UAV (100) parachute landing are disclosed. A system for UAV (100) parachute landing may include a detector (123) configured to detect a flight speed, a wind speed, a position, a height or a voltage of the UAV (100). The system may also include a memory (510) storing instructions. The system may further include a processor (520) configured to execute the instructions to determine whether to open a parachute (160) of the UAV in accordance with a criterion; responsive to a determination to open the parachute, stop a motor (150) of the UAV (100) that spins a propeller (130) of the UAV (100); and open the parachute (160) after stopping the motor (150).

Description

UNMANNED AERIAL VEHICLE LAUNCH PARACHUTE LANDING METHODS AND SYSTEMS TECHNICAL FIELD
The present application relates to unmanned aerial vehicles (UAVs) , and more particularly, to parachute landing methods and systems for UAVs.
BACKGROUND
A conventional UAV may land by wheels or belly. The wheels may add weight to the UAV, and may be unfavorable components for a UAV for long flight time. Landing by belly may require extra protection at the UAV’s belly. The protection may also add weight to the UAV. However, when the UAV is intended to fly on a mission over a long period of time, the weight of the UAV may become one of critical requirements. It would be desirable to have new landing methods and systems for the UAV in a safe way and without too much extra weight.
A conventional ground control system (GCS) may monitor the status of a UAV and may control the UAV to execute a mission, such as taking aerial images over an area of interest. However, it may still rely on a user to control the UAV in accordance with his experience and training. When UAVs are used to different applications, users of these UAVs may require having different training and experience. For example, when a user may plan to land the UAV at an open position, accurate and easy-to-operate landing methods and systems may be favorable approaches. It would be desirable to have user-friendly GCS for flight safety and easy landing.
SUMMARY
Embodiments of the present disclosure provide improved methods and systems for memory management of kernel and user spaces in computers, apparatuses, or systems.
These embodiments include a system for UAV parachute landing, the system may include a detector configured to detect a flight speed, a wind speed, a position, a height, or a voltage of a UAV. The system may also include a memory storing instructions for UAV parachute landing. The system may further include a processor configured to execute the instructions to determine whether to open a parachute of the UAV in accordance with a criterion. The processor of the system may also be configured to, responsive to a determination to open the parachute of the UAV, stop a motor of the UAV that spins a propeller of the UAV. The processor of the system may also be configured to open the parachute of the UAV after stopping the motor of the UAV for a period.
These embodiments also include a method for UAV parachute landing. The method may include determining whether to open a parachute of a UAV in accordance with a criterion. The method may also include responsive to a determination to open the parachute of the UAV, stopping a motor of the UAV that spins a propeller of the UAV. The method may further include opening the parachute of the UAV after stopping the motor of the UAV for a period.
Moreover, these embodiments include a non-transitory computer-readable medium storing instructions that are executable by one or more processors of an apparatus to perform a method for UAV parachute landing. The method may include determining whether to open a parachute of a UAV in accordance with a criterion. The method may also include responsive to a determination to open the parachute of the UAV, stopping a motor of the UAV that spins a propeller of the UAV. The method may further include opening the parachute of the UAV after stopping the motor of the UAV for a period.
It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention, as claimed.
BRIEF DESCRIPTION OF THE DRAWINGS
Reference will now be made to the accompanying drawings showing exemplary embodiments of this disclosure. In the drawings:
Fig. 1 is a schematic diagram of an exemplary UAV and an exemplary GCS and an exemplary remote controller for controlling the UAV, according to some embodiments of the present disclosure.
Fig. 2 is a schematic diagram of an exemplary UAV, according to some embodiments of the present disclosure.
Fig. 3 is a schematic diagram of an exemplary method for UAV parachute landing, according to some embodiments of the present disclosure.
Fig. 4 is a schematic diagram of an exemplary integrated unit of a flight control computer (FCC) , an Attitude and Heading Reference System (AHRS) , and a communication unit for controlling the UAV, according to some embodiments of the present disclosure.
Fig. 5 is a block diagram of an exemplary GCS, according to some embodiments of the present disclosure.
Fig. 6 is a schematic diagram of an exemplary method for UAV parachute landing, according to some embodiments of the present disclosure.
Fig. 7 is a schematic diagram of an exemplary user interface of a GCS for a UAV, according to some embodiments of the present disclosure.
Fig. 8 is a schematic diagram of an exemplary user interface of a GCS for flight check before launching a UAV, according to some embodiments of the present disclosure.
Fig. 9 is a schematic diagram of an exemplary user interface of a GCS for flight check before launching a UAV, according to some embodiments of the present disclosure.
Fig. 10 is a schematic diagram of an exemplary user interface of a GCS for flight check before launching a UAV, according to some embodiments of the present disclosure.
Fig. 11 is a schematic diagram of an exemplary user interface of a GCS for flight check before launching a UAV, according to some embodiments of the present disclosure.
Fig. 12 is a schematic diagram of an exemplary user interface of a GCS for flight check before launching a UAV, according to some embodiments of the present disclosure.
Fig. 13 is a schematic diagram of an exemplary user interface of a GCS for flight check before launching a UAV, according to some embodiments of the present disclosure.
Fig. 14 is a schematic diagram of an exemplary user interface of a GCS for setting a home point or a landing point, according to some embodiments of the present disclosure.
Fig. 15 is a schematic diagram of an exemplary user interface of a GCS for setting a home point and a landing point, according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
Reference will now be made in detail to exemplary embodiments, examples of which are illustrated in the accompanying drawings. The following description refers to the accompanying drawings in which the same numbers in different drawings represent the same or similar elements unless otherwise represented. The implementations set forth in the following description of exemplary embodiments do not represent all implementations consistent with the  invention. Instead, they are merely examples of apparatuses and methods consistent with aspects related to the invention as recited in the appended claims.
Fig. 1 is a schematic diagram of an exemplary UAV 100 and an exemplary GCS 500 and an exemplary remote controller 700 for controlling UAV 100, according to some embodiments of the present disclosure. After UAV 100 is launched successfully, a user may control UAV 100 through GCS 500 or remote controller 700. GCS 500 can be run on a desktop computer, a laptop, a tablet, or a smartphone. The User can input an instruction on GCS 500 to control or set a parameter on UAV 100. After receiving the instruction, GCS 500 may transmit a signal through a communication unit 650 to UAV 100.
The user may use remote controller 700 to manually control UAV 100. For example, the user may input an instruction to remote controller 700 to control or set a parameter on UAV 100. After receiving the instruction, remote controller 700 may transmit a signal through a communication unit to UAV 100.
Fig. 2 is a schematic diagram of an exemplary UAV 100, according to some embodiments of the present disclosure. UAV 100 includes a body 110, a pair of  wings  171 and 172, a pair of  ailerons  173 and 174, an integrated unit 120, a payload 140, a parachute 160, a motor 150, and a propeller 130. Payload 140 may be a camera, Light Detection And Ranging (LiDAR) sensors, real-time digital elevation model (DSM) sensors, sensors for post-producing DSM, or a thermal imaging sensor.
Fig. 3 is a schematic diagram of an exemplary method for UAV parachute landing, according to some embodiments of the present disclosure. For example, when UAV 100 finishes a flight mission, UAV 100 may fly to a set landing point and open parachute 160 of UAV 100 for landing.
Fig. 4 is a schematic diagram of an exemplary integrated unit 120. As shown in Fig. 4, integrated unit 120 includes a flight control computer (FCC) 122, an Attitude and Heading Reference System (AHRS) 124, a communication unit 125, an antenna 126 for controlling UAV 100, according to some embodiments of the present disclosure. AHRS 125 includes a detector 123.
FCC 122 may include a processor and a memory storing instructions. FCC 122 may be configured to control UAV 100’s direction in flight. For example, FCC 122 may be configured to control motor 150 to speed up or slow down UAV 100. FCC 122 may also be configured to control  aileron  173 and 174 to make UAV 100 pitch, roll, or yaw.
AHRS 124 may include sensors on three axes that provide attitude information for UAV 100, including roll, pitch, and yaw. These sensors may also be referred to as magnetic, angular rate, and gravity (MARG) sensors, and may include either solid-state or microelectromechanical systems (MEMS) gyroscopes, accelerometers, and magnetometers. As shown in Fig. 4, detector 123 includes one or more of these sensors. AHRS 124 may include an on-board processing system which provides attitude and heading information. In some embodiments, AHRS 124 may provide attitude determination of UAV 100, and may also form part of an inertial navigation system of UAV 100.
Communication unit 125 may include a modem for transmitting and receiving radio frequency signals through antenna 126 and communicating with GCS 500 or remote controller 700.
Fig. 5 is a block diagram of an exemplary GCS 500, according to some embodiments of the present disclosure. GCS 500 includes a memory 510, a processor 520, a storage 530, an I/O interface 540, a communication unit 550, and an antenna 560. One or more  of these units of GCS 500 may be included for ground controlling UAV 100. These units may be configured to transfer data and send or receive instructions between or among each other.
Processor 520 includes any appropriate type of general-purpose or special-purpose microprocessor, digital signal processor, or microcontroller. Processor 520 can be one of processors in a computer. Memory 510 and storage 530 may include any appropriate type of mass storage provided to store any type of information that processor 520 may need to operate. Memory 510 and storage 530 may be a volatile or non-volatile, magnetic, semiconductor, tape, optical, removable, non-removable, or other type of storage device or tangible (e.g., non-transitory) computer-readable medium including, but not limited to, a read-only memory (ROM) , a flash memory, a dynamic random-access memory (RAM) , and a static RAM. Memory 510 and/or storage 530 may be configured to store one or more programs for execution by processor 520 to control UAV 100, as disclosed herein.
Memory 510 and/or storage 530 may be further configured to store information and data used by processor 520. For instance, memory 510 and/or storage 530 may be configured to store home points, landing points, previous routes, previous missions, photographs, and location information associated with photographs.
I/O interface 540 may be configured to facilitate the communication between GCS 500 and other apparatuses. For example, I/O interface 540 may receive a signal from another apparatus (e.g., a computer) including system configuration for GCS 500. I/O interface 540 may also output data of flight routes and photographs.
Communication unit 550 may include one or more cellular communication modules, including, for example, an IEEE 802.11, a fifth generation (5G) radio system, a Long-Term Evolution (LTE) , a High Speed Packet Access (HSPA) , a Wideband Code-Division  Multiple Access (WCDMA) , and/or a Global System for Mobile communication (GSM) communication module. GCS 500 can communicate with UAV 100 through communication unit 550 and antenna 560. Communication unit 550 may also include a global positioning system (GPS) receiver. GCS 500 may receive positioning information through the GPS receiver of communication unit 550.
Fig. 6 is a schematic diagram of an exemplary method for UAV parachute landing, according to some embodiments of the present disclosure. Method 600 may be performed by, for example, FCC 122 of UAV 100. A processor of FCC 122 may be configured to execute instructions to perform method 600, as illustrated below. Method 600 includes determining whether to open the parachute of the UAV in accordance with a criterion (step 620) , responsive to a determination to open a parachute of the UAV, stopping a motor of the UAV that spins a propeller of the UAV (step 640) , braking the propeller of the UAV (step 660) , and opening the parachute of the UAV after stopping the motor of the UAV for a period (step 680) .
Step 620 includes determining whether to open a parachute of the UAV in accordance with a criterion. For example, when a criterion is met, FCC 122 may be configured to determine to open parachute 160 of UAV 100.
The criterion may include that UAV 100 receives a signal to open parachute 160 from GCS 500. For example, a user may input an instruction to open parachute 160 of UAV 100 on GCS 500. After GCS 500 receives the instruction, GCS 500 is configured to send a signal to open parachute 160 to UAV 100 through communication unit 550. FCC 122 may be configured to determine to open parachute 160 of UAV 100 when receiving the signal to open parachute 160 from GCS 500.
Alternatively, the criterion may include that UAV 100 receives a signal to open the parachute from remote controller 700. For example, a user may input an instruction to open parachute 160 of UAV 100 by remote controller 700. After remote controller 700 receives the instruction, remote controller 700 is configured to send a signal to open parachute 160 to UAV 100 through a communication unit of remote controller 700. FCC 122 may be configured to determine to open parachute 160 of UAV 100 when receiving the signal to open parachute 160 from remote controller 700.
In some embodiments, the criterion may include that UAV 100 arrives at a position. For example, after completing a flight mission, UAV 100 flies to a set landing point. After UAV 100 arrives at the set landing point, FCC 122 may be configured to determine to open parachute 160 of UAV 100. As another example, FCC may be configured to detect that UAV 100 arrives at a position within 5 meters from the landing point, FCC may be configured to determine that the UAV already flies to the landing point. Accordingly, FCC 122 may be configured to determine to open parachute 160 of UAV 100. The above landing point may be set by GCS 500 before UAV 100 takes off. In some embodiments, the above landing point can be a landing point set by GCS 500 after UAV 100 takes off. For example, GCS 500 may transmit a new landing point to UAV 100 through communication unit 125.
After completing a flight mission, UAV 100 can also fly back to a set home point when no landing point is set. After UAV 100 arrives at the set home point, FCC 122 may be configured to determine to open parachute 160 of UAV 100. The above home point may be set by GCS 500 before UAV 100 takes off. In some embodiments, the above home point can be a home point set by GCS 500 after UAV 100 takes off. For example, GCS 500 may transmit a new home point to UAV 100 through communication unit 125.
In some embodiments, the criterion may include that the UAV is at a low voltage. For example, FCC 122 may be configured to detect that a battery of UAV 100 is at a low voltage, e.g., 10.8 volts while the battery should have a voltage at around 13.2 volts. After FCC detects that the battery of UAV 100 is at a low voltage, FCC 122 may be configured to determine to open parachute 160 of UAV 100.
Alternatively, the criterion may include that UAV 100 does not receive a signal of Globe Positioning System (GPS) for a period. For example, when FCC 122 is configured to receive the GPS signal from communication unit 125, but does not receive the GPS signal for more than four seconds, FCC 122 may be configured to determine to open parachute 160 of UAV 100.
The criterion can also include that UAV 100 does not receive a signal of data link from GCS 500 for a period of time. For example, when FCC 122 is configured to receive a data link signal from GCS 500, but does not receive the data link signal for more than one minute, FCC 122 may be configured to determine to open parachute 160 of UAV 100. As another example, when FCC 122 is configured to receive the data link signal from GCS 500, but does not receive the data link signal for more than one minute, FCC 122 may be configured to determine to fly back to a set home point or a set landing point and wait for the resume of the datalink. In such a case, if the loss of the data link continues, FCC 122 may be configured to switch to a landing mode that stop the motor and open parachute 160 of UAV 100 upon complete rest of the motor.
In some embodiments, the criterion may include a stall of UAV 100. If the FCC 122 fails to recover the stall of UAV 100 and a normal flight cannot be resumed in a predetermined period, the altitude of UAV 100 lowers to a threshold height. For example, FCC  122 is configured to detect that a stall where the altitude of UAV 100 lowers to a height of 35 meters in a predetermined period, FCC 122 may be configured to switch to an emergency landing mode to stop the motor and open the parachute 160 upon completely rest of the motor The threshold height may be within a range of a predetermined height. For example, the threshold height may be within a range of 5 meters above or below the predetermined height of 35 meter.
Alternatively, the criterion may include that UAV 100 flies around an unintended area or UAV 100 is confined in an area in an undesirable manner for a predetermined period. For example, FCC 122 may detect that UAV 100 flies around an unintended area over two minutes, or that UAV 100 is confined by obstructions. To avoid damaging UAV 100 and third party’s property and personnel safety, FCC 122 may be configured to switch to a emergency landing mode that stop the motor and open parachute 160 of UAV 100 upon complete rest of the motor.
Step 640 includes responsive to a determination to open a parachute of the UAV, stopping a motor of the UAV that spins a propeller of the UAV. For example, FCC 122 may be configured to stop motor 150 that spins propeller 130 of UAV 100. As another example, FCC 122 may be configured to stop motor 150 that spins propeller 130 of UAV 100 when UAV 100 flies against the wind. In some embodiments, FCC 122 may be configured to reduce the height of UAV 100 to the height of 35 meters before stopping motor 150 of UAV 100.
Step 660 includes braking the propeller of the UAV. For example, FCC 122 may be configured to brake propeller 130 of UAV 100 by motor 150 of UAV 100.
Step 680 includes opening the parachute of the UAV after stopping the motor of the UAV for a first period. For example, FCC 122 may be configured to open parachute 160 of  UAV 100 after stopping motor 150 for one second. As another example, FCC 122 may be configured to open parachute 160 of UAV 100 after stopping motor 150 for 0.5 second.
In some embodiments, a size of the parachute of the UAV may be associated with a weight of the UAV. For example, a size of parachute 160 of UAV 100 may be associated with a weight of UAV 100.
The disclosure is also directed to a system for UAV parachute landing. For example, the system may include FCC 122, AHRS 124, or integrated unit 120 including FCC 122, AHRS 124, communication unit 125, and antenna 126. Detector 123 of AHRS 124 may be configured to detect an acceleration of the UAV. The system may also include a memory storing instructions. For example, a memory of FCC 122 may be configured to store instructions for UAV parachute landing method 600. The system may further include a processor configured to execute the instructions to: determine whether to open a parachute of the UAV in accordance with a criterion; responsive to a determination to open the parachute of the UAV, stop a motor of the UAV that spins a propeller of the UAV; and open the parachute of the UAV after stopping the motor of the UAV for a first period. For example, FCC 122 of the system may be configured to execute the instructions to determine whether to open parachute 160 of UAV 100 in accordance with a criterion; responsive to a determination to open parachute 160 of UAV 100, stop motor 150 of UAV 100 that spins propeller 130 of UAV 100; and open parachute 160 of UAV 100 after stopping motor 150 of UAV 100 for one period.
Another aspect of the disclosure is directed to a non-transitory computer-readable medium storing a set of instructions that are executable by one or more processors of an apparatus to cause the apparatus to perform a method for UAV parachute landing, as discussed above. The computer-readable medium may include volatile or non-volatile, magnetic,  semiconductor, tape, optical, removable, non-removable, or other types of computer-readable medium or computer-readable storage devices. For example, the computer-readable medium may be the storage device or the memory module having the computer instructions stored thereon, as disclosed. In some embodiments, the computer-readable medium may be a disc or a flash drive having the computer instructions stored thereon.
Fig. 7 is a schematic diagram of an exemplary user interface (UI) of GCS 500 for UAV 100, according to some embodiments of the present disclosure. Before launching UAV 100, the user may perform a preflight check by clicking on the Preflight Check icon, as shown in Fig. 7.
Fig. 8 is a schematic diagram of an exemplary user interface of GCS 500 for flight check before launching UAV 100, according to some embodiments of the present disclosure. For example, after the user clicks on the Preflight Check icon, GCS 500 may prompt a preflight check UI for checking a status of parachute 160, as shown in Fig. 8. GCS 500 may inquire FCC 122 of UAV 100 about the status of parachute 160, and obtain the status of parachute 160 after FCC 122 detects and reports. In some embodiments, the user may follow the instructions of the UI to check the status of parachute 160.
Fig. 9 is a schematic diagram of an exemplary user interface of GCS 500 for flight check before launching UAV 100, according to some embodiments of the present disclosure. For example, after the user clicks on the Preflight Check icon, GCS 500 may prompt a preflight check UI for checking the status of payload 140, i.e., a camera, as shown in Fig. 9. GCS 500 may inquire FCC 122 about the status of the camera, and obtain the status of the camera after FCC 122 detects and reports. In some embodiments, the user may follow the instructions of the UI to check the status of the camera.
Fig. 10 is a schematic diagram of an exemplary user interface of GCS 500 for flight check before launching UAV 100, according to some embodiments of the present disclosure. For example, after the user clicks on the Preflight Check icon, GCS 500 may prompt a preflight check UI for checking the status of a battery of UAV 100, as shown in Fig. 10. GCS 500 may inquire the status of the battery of UAV 100, and obtain the status of the battery of UAV 100 after FCC 122 detects and reports. In some embodiments, the user may follow the instructions of the UI to check the status of the battery of UAV 100.
Fig. 11 is a schematic diagram of an exemplary user interface of GCS 500 for flight check before launching UAV 100, according to some embodiments of the present disclosure. For example, after the user clicks on the Preflight Check icon, GCS 500 may prompt a preflight check UI for checking the status of the structure of UAV 100, as shown in Fig. 11. GCS 500 may inquire the status of the structure of UAV 100, and obtain the status of the structure of UAV 100 after FCC 122 detects and reports. In some embodiments, the user may follow the instructions of the UI to check the status of the structure of UAV 100.
Fig. 12 is a schematic diagram of an exemplary user interface of GCS 500 for flight check before launching a UAV, according to some embodiments of the present disclosure. For example, after the user clicks on the Preflight Check icon, GCS 500 may prompt a preflight check UI for checking the status of  ailerons  172 and 174 of UAV 100, as shown in Fig. 12. GCS 500 may inquire the status of  ailerons  173 and 174 of UAV 100, and obtain the status of  ailerons  172 and 174 of UAV 100 after FCC 122 detects and reports. In some embodiments, the user may follow the instructions of the UI to check the status of  ailerons  172 and 174 of UAV 100.
Fig. 13 is a schematic diagram of an exemplary user interface of GCS 500 for flight check before launching a UAV, according to some embodiments of the present disclosure.  For example, after the user clicks on the Preflight Check icon, GCS 500 may prompt a preflight check UI for displaying statuses of UAV 100, as shown in Fig. 13. GCS 500 may display whether data link is workable, whether a sensor is workable, whether a voltage of UAV 100 is at a reasonable voltage, whether a recorder on UAV 100 is workable, whether a GPS receiver on UAV 100 is workable, whether GCS 500 is workable, and whether a home point has been set by a set of light icons 1400. The user may understand statuses of these components of UAV 100 before launching in a quick and easy way. When all light icons 1300 are lighted, UAV 100 may be ready to launch.
Fig. 14 is a schematic diagram of an exemplary user interface of a GCS for setting a home point or a landing point, according to some embodiments of the present disclosure. For example, the user may click on the Home Point icon to prepare to select a home point, as shown in Fig. 14. The user can look at the map display on the UI and double clicks on one point to set up the home point for UAV 100. The user may also click on the Landing Point icon to prepare to select a landing point, as shown in Fig. 14. The user can look at the map display on the UI and double clicks on one point to set up a landing point for UAV 100, as shown in Fig. 14.
Fig. 15 is a schematic diagram of an exemplary user interface of GCS 500 for setting a home point and a landing point, according to some embodiments of the present disclosure. Similar to above examples in Fig. 14, the user may select a home point or a landing point after setting up an area for a flight mission.
In some embodiments, the user may click a parachute icon 1520, as shown in Fig. 15, to command UAV 100 to open parachute 160 immediately for landing. GCS 500 may send a signal to open the parachute to UAV 100. FCC 122 may be configured to open parachute 160 of UAV 100 accordingly.
It will be appreciated that the present disclosure is not limited to the exact construction that has been described above and illustrated in the accompanying drawings, and that various modifications and changes can be made without departing from the scope thereof. It is intended that the scope of the application should only be limited by the appended claims.

Claims (19)

  1. A method for unmanned aerial vehicle (UAV) parachute landing, the method comprising:
    determining whether to open a parachute of a UAV in accordance with a criterion;
    responsive to a determination to open the parachute of the UAV, stopping a motor of the UAV that spins a propeller of the UAV; and
    opening the parachute of the UAV after stopping the motor of the UAV for a first period.
  2. The method of claim 1, wherein the criterion includes:
    the UAV receives a first signal to open the parachute from a ground control system (GCS) ;
    the UAV receives a second signal to open the parachute from a remote controller;
    the UAV arrives at a first position;
    the UAV is at a low voltage;
    the UAV does not receive a signal of Globe Positioning System (GPS) for a second period;
    the UAV does not receive a signal of data link from the GCS for a third period;
    the UAV reduces to a first height; or
    the UAV flies around an area for a fourth period.
  3. The method of claim 2, wherein the criterion that the UAV arrives at the first position is met when the UAV flies to a second position within a distance from the first position.
  4. The method of claim 2, wherein the criterion that the UAV reduces to the first height is met when the UAV flies to a second height within a range of height from the first height.
  5. The method of claim 2, wherein the first position includes:
    a first landing point set by the GCS;
    a second landing point set by the GCS after launching the UAV;
    a first home point set by the GCS; or
    a second home point set by the GCS after launching the UAV.
  6. The method of claim 1, wherein stopping the motor of the UAV that spins the propeller of the UAV further includes:
    braking the propeller of the UAV.
  7. The method of claim 1, wherein stopping the motor of the UAV includes stopping the motor of the UAV when the UAV flies against the wind.
  8. The method of claim 1, wherein responsive to the determination to open the parachute of the UAV, stopping the motor of the UAV that spins the propeller of the UAV includes:
    reducing a height of the UAV to the first height; and
    stopping the motor of the UAV.
  9. The method of claim 1, wherein a size of the parachute of the UAV is associated with a weight of the UAV.
  10. A system for unmanned aerial vehicle (UAV) parachute landing, the system comprising:
    a detector configured to detect a flight speed, a wind speed, a position, a height, or a voltage of a UAV;
    a memory storing instructions;
    a processor configured to execute the instructions to cause the system to:
    determine whether to open a parachute of the UAV in accordance with a criterion;
    responsive to a determination to open the parachute of the UAV, stop a motor of the UAV that spins a propeller of the UAV; and
    open the parachute of the UAV after stopping the motor of the UAV for a first period.
  11. The system of claim 10, wherein the criterion includes:
    the UAV receives a first signal to open the parachute from a ground control system (GCS) ;
    the UAV receives a second signal to open the parachute from a remote controller;
    the UAV arrives at a first position;
    the UAV is at a low voltage;
    the UAV does not receive a signal of Globe Positioning System (GPS) for a second period;
    the UAV does not receive a signal of data link from the GCS for a third period;
    the UAV reduces to a first height; or
    the UAV flies around an area for a fourth period.
  12. The system of claim 11, wherein the criterion that the UAV arrives at the first position is met when the UAV flies to a second position within a distance from the first position.
  13. The system of claim 11, wherein the criterion that the UAV reduce to the first height is met when the UAV flies to a second height within a range of height from the first height.
  14. The system of claim 11, wherein the first position includes:
    a first landing point set by the GCS;
    a second landing point set by the GCS after launching the UAV;
    a first home point set by the GCS; or
    a second home point set by the GCS after launching the UAV.
  15. The system of claim 10, wherein the processor is configured to execute the instructions to cause the system to:
    brake the propeller of the UAV after stopping the motor of the UAV that spins the propeller of the UAV.
    .
  16. The system of claim 10, wherein the processor is configured to execute the instructions to cause the system to stop the motor of the UAV when the UAV flies against the wind.
  17. The system of claim 10, wherein responsive to the determination to open the parachute of the UAV, the processor is further configured to execute the instructions to cause the system to:
    reduce a height of the UAV to the first height before stopping the motor of the UAV that spins the propeller of the UAV.
  18. The system of claim 10, wherein a size of the parachute of the UAV is associated with a weight of the UAV.
  19. A non-transitory computer-readable medium storing a set of instructions that is executable by one or more processors of an apparatus to cause the apparatus to perform a method for unmanned aerial vehicle (UAV) parachute landing, the method comprising:
    determining whether to open a parachute of a UAV in accordance with a criterion;
    responsive to a determination to open the parachute of the UAV, stopping a motor of the UAV that spins a propeller of the UAV; and
    opening the parachute of the UAV after stopping the motor of the UAV for a first period.
PCT/CN2019/070911 2018-01-08 2019-01-08 Unmanned aerial vehicle launch parachute landing methods and systems WO2019134714A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020537535A JP7242682B2 (en) 2018-01-08 2019-01-08 Unmanned aerial vehicle launch parachute landing method and system
CN201980006750.0A CN111542793B (en) 2018-01-08 2019-01-08 Unmanned aerial vehicle parachute landing method and system
PH12020500581A PH12020500581A1 (en) 2018-01-08 2020-07-06 Unmanned aerial vehicle launch parachute landing methods and systems
JP2023029145A JP2023065537A (en) 2018-01-08 2023-02-28 Parachute landing methods and systems for unmanned aerial vehicle launch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862614933P 2018-01-08 2018-01-08
US62/614,933 2018-01-08

Publications (1)

Publication Number Publication Date
WO2019134714A1 true WO2019134714A1 (en) 2019-07-11

Family

ID=67143836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070911 WO2019134714A1 (en) 2018-01-08 2019-01-08 Unmanned aerial vehicle launch parachute landing methods and systems

Country Status (4)

Country Link
JP (2) JP7242682B2 (en)
CN (1) CN111542793B (en)
PH (1) PH12020500581A1 (en)
WO (1) WO2019134714A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812634C1 (en) * 2023-02-13 2024-01-30 Максим Анатольевич Миронов Small unmanned aerial vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034468A1 (en) * 2005-09-23 2007-03-29 Bluebird Aero Systems Ltd. Parachute release device and methods
CN105292494A (en) * 2014-06-11 2016-02-03 国家电网公司 Parachuting method and device of unmanned aerial vehicle
CN105366059A (en) * 2015-12-09 2016-03-02 深圳飞马机器人科技有限公司 Fixed-point parachuting method of fixed-wing unmanned aerial vehicle
CN105867413A (en) * 2016-04-18 2016-08-17 西安爱生技术集团公司 Automatic retraction method for parachute landing unmanned aerial vehicle
CN105892289A (en) * 2014-12-15 2016-08-24 中国人民解放军军械工程学院 Unmanned aerial vehicle parachute landing recovery method based on accurate measurement of wind field
WO2016198809A1 (en) * 2015-06-12 2016-12-15 Airborne Concept Drone launching device and launch method
CN106716281A (en) * 2016-10-24 2017-05-24 深圳市大疆创新科技有限公司 Controlling method, controlling device and unmanned aerial vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3152630A4 (en) * 2014-06-09 2017-06-21 Izak Van Cruyningen Uav constraint in overhead line inspection
US10059459B2 (en) 2015-05-28 2018-08-28 Kespry Inc. Unmanned aerial vehicle recovery system
CN204998780U (en) * 2015-08-06 2016-01-27 江苏优埃唯智能科技有限公司 Parachute for unmanned aerial vehicle
AU2016338690B2 (en) 2015-10-14 2021-02-18 Flirtey Holdings, Inc. Parachute deployment system for an unmanned aerial vehicle
CN106828941B (en) * 2017-01-19 2019-06-04 西安忠林世纪电子科技有限公司 Unmanned plane accuracy system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034468A1 (en) * 2005-09-23 2007-03-29 Bluebird Aero Systems Ltd. Parachute release device and methods
CN105292494A (en) * 2014-06-11 2016-02-03 国家电网公司 Parachuting method and device of unmanned aerial vehicle
CN105892289A (en) * 2014-12-15 2016-08-24 中国人民解放军军械工程学院 Unmanned aerial vehicle parachute landing recovery method based on accurate measurement of wind field
WO2016198809A1 (en) * 2015-06-12 2016-12-15 Airborne Concept Drone launching device and launch method
CN105366059A (en) * 2015-12-09 2016-03-02 深圳飞马机器人科技有限公司 Fixed-point parachuting method of fixed-wing unmanned aerial vehicle
CN105867413A (en) * 2016-04-18 2016-08-17 西安爱生技术集团公司 Automatic retraction method for parachute landing unmanned aerial vehicle
CN106716281A (en) * 2016-10-24 2017-05-24 深圳市大疆创新科技有限公司 Controlling method, controlling device and unmanned aerial vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812634C1 (en) * 2023-02-13 2024-01-30 Максим Анатольевич Миронов Small unmanned aerial vehicle

Also Published As

Publication number Publication date
CN111542793A (en) 2020-08-14
JP2021509875A (en) 2021-04-08
PH12020500581A1 (en) 2021-06-21
JP7242682B2 (en) 2023-03-20
CN111542793B (en) 2023-12-08
JP2023065537A (en) 2023-05-12

Similar Documents

Publication Publication Date Title
US11474516B2 (en) Flight aiding method and system for unmanned aerial vehicle, unmanned aerial vehicle, and mobile terminal
US11884406B2 (en) Parachute landing methods and systems for an unmanned aerial vehicle
US20220176846A1 (en) Unmanned Aerial Vehicle Remote Flight Planning System
JP6900608B2 (en) How to fly an unmanned aerial vehicle to stationary and moving objects
US20220185471A1 (en) Unmanned Aerial Vehicle Beyond Visual Line of Sight Control
US9811084B2 (en) Identifying unmanned aerial vehicles for mission performance
Zaheer et al. Aerial surveillance system using UAV
WO2019134713A1 (en) Unmanned aerial vehicle launch methods and systems
US8774989B1 (en) Aircraft energy state display
US20220137643A1 (en) Aircraft control method and aircraft
US20230289445A1 (en) Tamper-resistant geo-fence system for drones
CN111684378B (en) Managing limited safe mode operation of robotic vehicles
US11188075B2 (en) Controlling a robotic vehicle following flight controller signal loss
JP2019163028A (en) Methods and systems for controlling thrust produced by multiple engines on aircraft for assisting in certain flight conditions
Wong et al. Low cost unmanned aerial vehicle monitoring using smart phone technology
WO2019134714A1 (en) Unmanned aerial vehicle launch parachute landing methods and systems
Bryant et al. Autonomous UAS controlled by onboard smartphone
US20200110424A1 (en) Geofencing of unmanned aerial vehicles
JP7166587B2 (en) Monitoring system
Rushdi et al. Development of a small-scale autonomous UAV for research and development
ES2906805T3 (en) Automatic takeoff and landing for aircraft
WO2023060467A1 (en) Unmanned aerial vehicle return flight method and apparatus, unmanned aerial vehicle, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19736267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020537535

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19736267

Country of ref document: EP

Kind code of ref document: A1