WO2019134593A1 - 用户设备和相关方法 - Google Patents

用户设备和相关方法 Download PDF

Info

Publication number
WO2019134593A1
WO2019134593A1 PCT/CN2018/124897 CN2018124897W WO2019134593A1 WO 2019134593 A1 WO2019134593 A1 WO 2019134593A1 CN 2018124897 W CN2018124897 W CN 2018124897W WO 2019134593 A1 WO2019134593 A1 WO 2019134593A1
Authority
WO
WIPO (PCT)
Prior art keywords
edt
coverage level
enhanced coverage
mac layer
random access
Prior art date
Application number
PCT/CN2018/124897
Other languages
English (en)
French (fr)
Inventor
常宁娟
刘仁茂
Original Assignee
夏普株式会社
常宁娟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 常宁娟 filed Critical 夏普株式会社
Publication of WO2019134593A1 publication Critical patent/WO2019134593A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and more particularly, to a user equipment and a method related to early data transmission (EDT).
  • EDT early data transmission
  • NB-IoT Narrow Band Internet
  • MTC Machine Type Communication
  • RRC Radio Resource Control
  • the UE determines whether to use the small data transmission mechanism for data transmission according to certain conditions of current data transmission, such as whether the network side configures parameters of small data transmission, whether the UE supports small data transmission, and is to be sent. Whether the data amount of the small data is less than or equal to the configured threshold value, and the like.
  • the small data transmission block size threshold is configured by the base station, and the small data transmission mechanism can be used only when the amount of data to be transmitted by the UE is less than or equal to the transport block size threshold.
  • Each enhanced coverage level corresponds to a transport block size threshold.
  • the random access preamble used for small data transmission is also configured for each enhanced coverage level, and is distinguished from the random access preamble used by the traditional non-small data transmission mechanism, that is, whether small data is used.
  • the transmission mechanism needs to be determined based on parameters corresponding to the enhanced coverage level corresponding to the UE.
  • the UE RRC layer decides whether to use the small data transmission mechanism, and the enhanced coverage level of the UE is determined by the MAC layer. In this case, the MAC layer and the RRC need to be combined. The determination of whether to adopt a small data transmission mechanism is completed.
  • the present disclosure is directed to solving the problem of how to implement a UE MAC layer and an RRC layer interaction in an enhanced coverage level based system to achieve a decision whether to employ a small data transmission mechanism.
  • a method in a user equipment UE including: determining, at an RRC layer, determining to initiate an early data transmission EDT; and transmitting, at an RRC layer, a first indication to a medium access control MAC layer Information indicating that the MAC layer initiates a random access procedure for the EDT; and initiating a random access procedure for the EDT in response to receiving the first indication information at the MAC layer.
  • the determining to initiate the EDT is performed based at least in part on the measured reference signal received power RSRP.
  • the method further includes: when the enhanced coverage level climbs, comparing the amount of data to be transmitted at the MAC layer with a transport block size threshold corresponding to the upgraded enhanced coverage level; and when the data to be transmitted
  • the MAC layer sends a second indication message to the RRC layer to indicate that the EDT fails; or when the amount of data to be transmitted is less than or equal to the enhanced coverage after the climb.
  • the transport block size threshold corresponding to the level is exceeded, the EDT is continued at the MAC layer.
  • the method further includes: when the enhanced coverage level climbs, comparing the enhanced coverage level after the climb to the maximum enhanced coverage level of the EDT at the MAC layer; and the enhanced coverage level after the climb is higher than the maximum enhancement of the EDT.
  • the second indication information is sent to the RRC layer at the MAC layer to indicate that the EDT fails; or when the enhanced coverage level after the climb is lower than or equal to the maximum enhanced coverage level of the EDT, the EDT is continued to be performed at the MAC layer.
  • the method further includes: in the RRC layer, back to the non-EDT operation in response to receiving the second indication information.
  • the method further includes: sending, by the RRC layer, third indication information to the MAC layer, indicating that the MAC layer falls back to the non-EDT operation; and performing non-EDT randomization in response to receiving the third indication information at the MAC layer. Access process.
  • the maximum enhanced coverage level of the EDT is included in the first indication information.
  • the method further includes: when the enhanced coverage level climbs, sending, by the MAC layer, fourth indication information to the RRC layer, indicating the enhanced coverage level after the climb; and receiving, in response to receiving the fourth indication information, the RRC layer
  • the amount of data transmitted is compared with a transport block size threshold corresponding to the enhanced coverage level after the climb; and when the amount of data to be transmitted is greater than the transport block size threshold corresponding to the enhanced coverage level after the climb, in the RRC
  • the layer sends a third indication information to the MAC layer, indicating that the EDT fails; or when the amount of data to be transmitted is less than or equal to a transport block size threshold corresponding to the enhanced coverage level after the climb, the fifth layer is sent to the MAC layer at the RRC layer. Indicates that the MAC layer continues to perform EDT.
  • the method further includes: performing a non-EDT random access procedure in response to receiving the third indication information at the MAC layer; or continuing to perform the EDT in response to receiving the fifth indication information at the MAC layer.
  • a user equipment UE comprising a transceiver, a processor and a memory, the memory storing instructions executable by the processor, such that the UE performs the method according to the first aspect above .
  • FIG. 1 shows a flow chart of a method in a user equipment UE according to an embodiment of the present disclosure
  • FIG. 2 shows a block diagram of a user equipment in accordance with an embodiment of the present disclosure.
  • the base station in the present disclosure may be any type of base station, including a Node B, an enhanced base station eNB, or a 5G communication system base station gNB, or a micro base station, a pico base station, a macro base station, a home base station, etc.; the cell may also be any of the above.
  • the Coverage Enhancement level is equivalent to the Enhanced Coverage Level without explicit explanation.
  • UE User Equipment
  • UE refers to the UE within the enhanced coverage, that is, the UE needs to access the cell or network through the enhanced coverage function/mechanism.
  • Enhanced coverage level The degree of enhancement coverage in the enhanced coverage technology is divided into multiple enhancement coverage levels.
  • the enhanced coverage level can be level 0 to 3.
  • each enhanced coverage level may correspond to a different set of wireless parameter configurations, such as a random access configuration (such as a PRACH (Physical Random Access CHannel) resource).
  • a random access configuration such as a PRACH (Physical Random Access CHannel) resource.
  • Each enhanced coverage level can also contain a configuration with a maximum number of preamble transmissions.
  • the number of times the UE initiates the random access transmission preamble by using the random access resource and the parameter corresponding to the enhanced coverage level n reaches or exceeds the current enhanced coverage level n.
  • the UE considers that the current enhanced coverage level is inappropriate.
  • the UE considers that the enhanced coverage level is the next enhanced coverage level, that is, the enhanced coverage level n+1.
  • the random access resources and parameters corresponding to the enhanced coverage level n+1 are used.
  • the enhanced coverage level in the random access procedure is increased to an enhanced coverage level ramp.
  • Random Access Response The second message in the random access process. After receiving the random access preamble of the UE, the base station may respond to the reception of the random access preamble by sending a random access response message.
  • the random access response message includes a time advance domain, an uplink grant (uplink grant) domain, a UE identifier domain, and the like.
  • message 3 refers collectively to the uplink transmission sent by the UE on the uplink resource indicated by the uplink grant included in the RAR. It can refer to the third transmission in the contention-based random access procedure, or the first uplink transmission after the non-contention based random access procedure.
  • control plane cellular evolution packet service optimization cp-CIoT-EPS
  • -Optimisation control plane cellular evolution packet service optimization
  • up-CIoT-EPS-Optimisation the data of the application layer is transmitted as a non-access stratum (NAS) data packet on a signaling radio bearer (SRB) of the control plane.
  • the signaling radio bearer refers to SRB1 or SRB1bis before R14.
  • the UE includes a NAS packet for transmission in the RRC connection setup complete message after completing the random access procedure.
  • This optimization scheme can be referred to simply as a control plane optimization scheme or a control plane scheme.
  • the data of the application layer is still transmitted on the data radio bearer (DRB) in the RRC connected state, but the data is transmitted in the same manner as the data transmission in the legacy system.
  • the UE and the eNB suspend the RRC connection (indicated by the RRC Connection Release message including the suspension indication), save the UE context, and enter the RRC idle state.
  • the UE initiates an RRC connection recovery procedure to the eNB.
  • the UE sends an RRC connection recovery request message to the base station to initiate connection recovery, and the base station sends an RRC connection recovery message to the UE to indicate that the RRC connection is restored. Then, the UE feeds back the RRC connection recovery complete message to the base station to respond.
  • This scheme can also be referred to as a user plane optimization scheme or a user plane scheme.
  • the UE saves the RRC idle state of the UE context. Although it is also called the RRC idle state, it can actually be regarded as an intermediate state of an RRC idle state and a connected state. This intermediate state, in the 5G NR system, can be considered as its defined RRC inactive state (RRC_inactive).
  • the small data transmission optimization scheme in R15 is based on the above two optimization schemes and is further optimized for the characteristics of small data transmission.
  • the optimized content is mainly to transmit small data along with the message 3 in the random access process, because the optimization method can complete the data transmission at an earlier time than the traditional data transmission method.
  • So called early data transmission in the present disclosure, small data (small data or small packet) can be equivalent to early data (early data).
  • the base station initiates physical random access resources, such as a random access preamble, and a transport block size (TBS) threshold used by the EDT through system information broadcast.
  • the random access resources used by the TBS threshold and/or EDT are configured for each enhanced coverage level, that is, each enhanced coverage level corresponds to one EDT transport block size threshold and/or random access parameter (such as physical random access resources or random access preamble groups).
  • the UE determines whether the EDT condition is met, for example, whether the TBS including the data packet is less than or equal to the TBS threshold corresponding to the current enhanced coverage level, and if so, the UE uses the EDT specific preamble.
  • a random access procedure is initiated on an EDT specific Physical Random Access Channel (PRACH).
  • PRACH Physical Random Access Channel
  • the base station receives the EDT-specific preamble on the EDT-specific PRACH resource, and knows that the UE is initiating the EDT process, the base station allocates an uplink grant available for small data transmission in the RAR.
  • the UE determines whether the uplink grant in the RAR is sufficient to accommodate the entire small data packet. If yes, the UE includes the small data in the message 3 and performs uplink transmission on the resource corresponding to the uplink grant together with the RRC message. If not, the UE falls back to the traditional non-EDT process, that is, the small data packet is not included in the message 3 for transmission, that is, only the RRC message is transmitted in the message 3 to request the RRC connection establishment/recovery, and it is expected that Data is transmitted after the RRC connection is established/restored.
  • the entire transport block containing the small data packet refers to the entire transport block including the small data and the RRC message in the message 3 and its corresponding MAC header.
  • the entire transport block including the small data packet refers to a Small Data Packet Data Collection Protocol (PDCP) Service Data Unit (SDU) or a PDCP PDU and an RRC message.
  • PDCP Small Data Packet Data Collection Protocol
  • SDU Service Data Unit
  • the UE may refer to a NB-IoT UE, a Bandwidth Reduced Low Complex (BL) UE, or a UE in an enhanced coverage, or may be another UE such as a 5G NR UE.
  • BL Bandwidth Reduced Low Complex
  • the following embodiments of the present disclosure specifically describe how the UE determines whether to (continue) use the EDT mechanism based on the enhanced coverage level and the enhanced coverage level climb in the random process.
  • the UE may be based on the current The coverage level is used to determine whether to use the EDT, and the corresponding random access resource preamble is selected, so that the base station receiving the preamble knows whether the UE uses the EDT and its enhanced coverage level according to the preamble, so that the allocation is appropriate in the RAR and subsequent transmission processes.
  • the uplink grant and its transmission parameters such as the number of transmission repetitions.
  • the data to be transmitted refers to the total amount of available data to be transmitted in the uplink buffer, or is described as the size of the MAC PDU formed by the MAC header to be transmitted in the uplink buffer. Alternatively, it may also refer to a PDCP SDU/PDU in the uplink buffer.
  • FIG. 1 shows a flow diagram of a method 100 in a user equipment UE in accordance with an embodiment of the disclosure.
  • Method 100 includes the following steps.
  • step S110 at the radio resource control RRC layer, it is determined that an early data transmission EDT is to be initiated.
  • step S120 the RRC layer sends first indication information to the medium access control MAC layer, instructing the MAC layer to initiate a random access procedure for the EDT.
  • step S130 the MAC layer initiates a random access procedure for EDT in response to receiving the first indication information.
  • determining that an EDT is to be initiated may be performed based at least in part on the measured reference signal received power RSRP.
  • the method 100 may further include: a transport block size threshold corresponding to the amount of data to be transmitted at the MAC layer and the enhanced coverage level after the climb when the coverage level is increased. Compare. When the amount of data to be transmitted is greater than the transport block size threshold corresponding to the enhanced coverage level after the climb, the MAC layer sends a second indication message to the RRC layer, indicating that the EDT fails. When the amount of data to be transmitted is less than or equal to the transport block size threshold corresponding to the enhanced coverage level after the climb, the EDT is continued at the MAC layer.
  • the method 100 may further include comparing the enhanced coverage level after the climb to the maximum enhanced coverage level of the EDT at the MAC layer when the coverage level climb is enhanced.
  • the MAC layer sends a second indication message to the RRC layer, indicating that the EDT fails.
  • the EDT is continued at the MAC layer.
  • the method 100 can also include, at the RRC layer, back to the non-EDT operation in response to receiving the second indication information.
  • the method 100 may further include: transmitting, by the RRC layer, third indication information to the MAC layer, indicating that the MAC layer falls back to the non-EDT operation; and performing, in the MAC layer, in response to receiving the third indication information, performing the non- EDT random access process.
  • the maximum enhanced coverage level of the EDT may be included in the first indication information.
  • the method 100 may further include: when the enhanced coverage level climbs, transmitting, at the MAC layer, fourth indication information to the RRC layer, indicating an enhanced coverage level after the climb; and at the RRC layer In response to receiving the fourth indication information, the amount of data to be transmitted is compared with a transport block size threshold corresponding to the climbed enhanced coverage level. When the amount of data to be transmitted is greater than the transport block size threshold corresponding to the enhanced coverage level after the climb, the RRC layer sends a third indication message to the MAC layer, indicating that the EDT fails. When the amount of data to be transmitted is less than or equal to the transport block size threshold corresponding to the enhanced coverage level after the climb, the RRC layer sends a fifth indication message to the MAC layer, instructing the MAC layer to continue performing the EDT.
  • the method 100 may further include: performing a non-EDT random access procedure in response to receiving the third indication information at the MAC layer; or continuing to perform the EDT in response to receiving the fifth indication information at the MAC layer .
  • the operation of the EDT-enabled UE to determine whether to use the EDT mechanism for data transmission includes one or more of the following:
  • Operation 1 The UE RRC layer determines whether to initiate an EDT based at least on the measured RSRP. Here, determining whether to initiate an EDT can also be based on other conditions.
  • the "other conditions” may include one or more of the following conditions, but are not limited to the following, and the UE determines to initiate the EDT when the following conditions are met:
  • Condition 1 The non-access stratum NAS requests to establish an RRC connection for the EDT and the UE supports the EDT based on the control plane scheme;
  • the NAS requests to restore the RRC connection for the EDT and the UE supports the EDT based on the user plane scheme and the UE holds the security parameter value for the EDT.
  • the security parameter value may be a nextHopChainingCount value.
  • the NAS indicates that the request (establish/restore RRC Connection Request) is applicable to the EDT.
  • the NAS may determine whether to apply to the EDT based on the reason or type of request (eg, data only, non-signaling, short message service, call type, mobile origination type, mobile termination type, etc.). The present disclosure is not limited to these situations.
  • the system information block SIB type 2 includes a PRACH configuration for EDT, that is, a parameter configuration in which the UE camped cell currently supports EDT transmission and broadcasts EDT transmission.
  • the amount of data to be transmitted can be transmitted once, that is, the amount of data to be transmitted is less than or equal to the transport block size threshold corresponding to the current enhanced coverage level of the UE.
  • the current enhanced coverage level of the UE may be determined by the RRC according to the measured RSRP and an RSRP threshold value obtained from the system information for determining an enhanced coverage level. For example, if the system supports the enhanced coverage level in the range of 0 to N, if the RSRP threshold th_N of the enhanced coverage level N is configured and the measured RSRP is less than the threshold value th_N and the UE supports the enhanced coverage level N, the UE or The UE RRC layer considers that it is in the enhanced coverage level N; otherwise, if the RSRP threshold th_N-1 of the enhanced coverage level N-1 is configured and the measured RSRP is less than the threshold value th_N-1 and the UE supports the enhanced coverage level N-1, The UE or the UE RRC layer considers that it is in the enhanced coverage level N-1; otherwise, if the RSRP threshold th_N of the enhanced coverage level N-2 is configured and the measured RSRP is less than the threshold value th_N-2 and the UE supports the enhanced coverage
  • Operation 2 If the RRC in the operation 1 determines to initiate the EDT, that is, if the UE is initiating/performing the EDT or the UE is initiating/performing the RRC connection recovery/establishment of the EDT, the RRC sends the first indication information to the MAC layer.
  • the first indication information is used to notify the MAC layer that the RRC layer initiates an EDT transmission and/or instructs the MAC layer to initiate a random access procedure for the EDT.
  • the “RRC transmitting first indication information” may also be described as “RRC sends an EDT random access indication” or “RRC informs the MAC layer to initiate an EDT” and the like, and the disclosure does not limit the description.
  • Operation 3 If the first indication information from the RRC layer in operation 2 is received, the MAC layer initiates a random access procedure for EDT.
  • the initiating a random access procedure for EDT refers to initiating a random access procedure using random access parameters dedicated to EDT.
  • the random access parameters herein may be physical random access resources, random access preamble, RAR window size, contention resolution timer, number of maximum transmission (retransmission) of message 3, and uplink grant (or message 3 transmission) in RAR. The transfer block size and so on.
  • the UE MAC layer needs to select one of the preamble groups corresponding to the enhanced coverage level according to the enhanced coverage level of the current UE when transmitting the preamble.
  • the enhanced coverage level of the current UE may be determined by the UE according to the measured RSRP and the RSRP threshold value used to determine the enhanced coverage level obtained in the system information (see 3GPP).
  • the technical specification document 36.321ve0 may also be obtained by the MAC layer from the RRC layer, that is, in operation 2, the RRC layer also informs the MAC layer of the enhanced coverage level of the current UE determined in operation 1.
  • Operation 4 In the random access procedure for EDT, if the enhanced coverage level climb occurs when the RAR reception is unsuccessful, the MAC layer compares the amount of data to be transmitted with the current (catch-up) UE's enhanced coverage level.
  • the transport block size threshold PRACH-TBS-EDT
  • PRACH-TBS-EDT determines if the next preamble retransmission is for EDT. If the amount of data to be transmitted is greater than a transport block size threshold of the corresponding enhanced coverage level, the MAC layer sends (or indicates) the second indication information to the RRC layer.
  • the MAC layer receives the first from the RRC layer. The selection of the random access resource continues when the three indications (see operation 5).
  • the second indication information is used to indicate that the total amount of data to be transmitted is greater than the transport block size threshold and cannot be EDT, or may be directly described as EDT not applicable, need to perform rollback, or EDT fails. Wait. If the amount of data to be transmitted is less than or equal to the transport block size threshold of the corresponding enhanced coverage level, the MAC continues the random access procedure for the EDT to continue the selection of the random access resource, and the MAC layer does not go to the RRC. The layer sends the second indication information.
  • the selection of the continuation of the random access resource in the foregoing process is further described as follows: if the MAC layer does not send the second indication information to the RRC layer, the selection of the random access resource is continued (the random access resource herein refers to the randomized use for the EDT) Accessing the resource), otherwise, the selection of the random access resource is performed until the third indication information from the RRC layer is received (the random access resource here refers to the random access resource not used for EDT).
  • the enhanced coverage level climb may be described as: when the variable coverage enhanced preamble transmission count value (PREAMBLE_TRANSMISSION_COUNTER_CE) is equal to the enhanced coverage maximum preamble trial number (maxNumPreambleAttemptCE) corresponding to the current UE enhanced coverage level n, if both the UE and the serving cell are Supporting the next enhanced coverage level n+1, the UE considers that the current UE's enhanced coverage level is the next enhanced coverage level n+1.
  • PREAMBLE_TRANSMISSION_COUNTER_CE the variable coverage enhanced preamble transmission count value
  • maxNumPreambleAttemptCE enhanced coverage maximum preamble trial number
  • the second indication information further includes an enhanced coverage level of the current UE.
  • Operation 5 When receiving the second indication information from the MAC layer in an ongoing RRC procedure for EDT, the RRC layer determines to perform the rollback and cancels the EDT that has been initiated.
  • the fallback refers to a random access procedure and/or an RRC connection setup/recovery process from the current process for EDT fallback to non-EDT, applying a traditional non-EDT random access procedure or RRC connection setup/recovery.
  • the flow enters the RRC connected state to implement data transmission.
  • the operation 5 further includes the RRC sending third indication information to the MAC layer, where the third indication information is used to indicate that the MAC layer falls back to the non-EDT operation.
  • the third indication information may also be referred to as a non-EDT random access indication or a fallback indication, and the disclosure does not limit its name.
  • Operation 6 When receiving the third indication information from the RRC layer, the MAC performs a fallback to the non-EDT, and proceeds to the random access procedure for non-EDT.
  • the performing random access for non-EDT refers to performing a random access procedure using random access parameters not used for EDT.
  • the MAC layer considers that the random access procedure is used for EDT if the MAC layer receives the first indication information from the RRC layer; otherwise, if the MAC layer does not receive the RRC layer from the RRC layer The first indication information or the MAC layer receives the third indication information from the RRC layer, and the MAC layer considers that the random access procedure is not used for the EDT.
  • the random access procedure is the same random access procedure, that is, during the random access procedure.
  • the relevant counters such as the number of preamble transmissions, etc., are not reset.
  • Example 2 differs from Example 1 mainly in the determination of whether to continue the EDT process according to the comparison of the amount of data to be transmitted and the transport block size threshold of the corresponding enhanced coverage level when the enhanced coverage level change/climb occurs in Example 2. This is done at the RRC layer, and in Example 1, the operation is done at the MAC layer.
  • the operation of the EDT-enabled UE to determine whether to use the EDT mechanism for data transmission includes one or more of the following:
  • Operation 1 The UE RRC layer determines whether to initiate an EDT based at least on the measured RSRP. Here, determining whether to initiate an EDT can also be based on other conditions.
  • the "other conditions” may include one or more of the following conditions, but are not limited to the following, and the UE determines to initiate the EDT when the following conditions are met:
  • Condition 1 The non-access stratum NAS requests to establish an RRC connection for the EDT and the UE supports the EDT based on the user plane scheme;
  • the NAS requests to restore the RRC connection for the EDT and the UE supports the EDT based on the user plane scheme and the UE holds the security parameter value for the EDT.
  • the security parameter value may be a nextHopChainingCount value.
  • the NAS indicates that the request (establish/restore RRC Connection Request) is applicable to the EDT.
  • the NAS may determine whether to apply to the EDT based on the reason or type of request (eg, data only, non-signaling, short message service, call type, mobile origination type, mobile termination type, etc.). The present disclosure is not limited to these situations.
  • the system information block SIB type 2 includes a PRACH configuration for EDT, that is, a parameter configuration in which the UE camped cell currently supports EDT transmission and broadcasts EDT transmission.
  • Condition 5 The amount of data to be transmitted can be transmitted once, that is, the data to be sent in the uplink buffer plus the MAC PDU formed by the MAC header is smaller than or equal to the transmission corresponding to the current enhanced coverage level of the UE. Block size threshold.
  • the current enhanced coverage level of the UE may be determined by the RRC according to the measured RSRP and an RSRP threshold value obtained from the system information for determining an enhanced coverage level. For example, if the system supports the enhanced coverage level in the range of 0 to N, if the RSRP threshold th_N of the enhanced coverage level N is configured and the measured RSRP is less than the threshold value th_N and the UE supports the enhanced coverage level N, the UE or The UE RRC layer considers that it is in the enhanced coverage level N; otherwise, if the RSRP threshold th_N-1 of the enhanced coverage level N-1 is configured and the measured RSRP is less than the threshold value th_N-1 and the UE supports the enhanced coverage level N-1, The UE or the UE RRC layer considers that it is in the enhanced coverage level N-1; otherwise, if the RSRP threshold th_N of the enhanced coverage level N-2 is configured and the measured RSRP is less than the threshold value th_N-2 and the UE supports the enhanced coverage
  • Operation 2 If the RRC in the operation 1 determines to initiate the EDT, that is, if the UE is initiating/performing the EDT or the UE is initiating/performing the RRC connection recovery/establishment of the EDT, the RRC sends the first indication information to the MAC layer.
  • the first indication information is used to notify the MAC layer that the RRC layer initiates an EDT transmission and/or instructs the MAC layer to initiate a random access procedure for the EDT.
  • the “RRC transmitting the first indication information” may also be described as “the RRC sends the EDT random access indication” or “the RRC informs the MAC layer to initiate the EDT”, and the first indication information may also be referred to as the EDT indication, and the disclosure does not. Limit its description.
  • Operation 3 If the first indication information from the RRC layer in operation 2 is received, the MAC layer initiates a random access procedure for EDT.
  • the initiation of the random access procedure for EDT refers to initiating a random access procedure using random access parameters dedicated to EDT.
  • the random access parameters herein may be physical random access resources, random access preamble, RAR window size, contention resolution timer, number of maximum transmission (retransmission) of message 3, and uplink grant (or message 3 transmission) in RAR. The transfer block size and so on.
  • the UE MAC layer needs to select one of the preamble groups corresponding to the enhanced coverage level according to the enhanced coverage level of the current UE when transmitting the preamble.
  • the enhanced coverage level of the current UE may be determined by the UE according to the measured RSRP and the RSRP threshold value used to determine the enhanced coverage level obtained in the system information (see 3GPP).
  • the technical specification document 36.321ve0 may also be obtained by the MAC layer from the RRC layer, that is, in operation 2, the RRC layer also informs the MAC layer of the enhanced coverage level of the current UE determined in operation 1.
  • Operation 4 In the random access procedure for EDT, when the RAR reception is unsuccessful, if the enhanced coverage level climb occurs, the MAC layer sends (or instructs) the fourth indication information to the RRC layer.
  • the fourth indication information is used to indicate that an enhanced coverage level change/climb has occurred, or is understood to be a request for whether to continue the EDT.
  • the MAC layer continues the selection of the random access resource when receiving the third indication information from the RRC layer (see operation 5), that is, the MAC layer interrupts the ongoing random connection before receiving the third indication information.
  • the incoming procedure, or described as the MAC layer deferring the selection of random access resources, until receiving the third indication information from the RRC layer.
  • the enhanced coverage level climb may be described as: when the variable coverage enhanced preamble transmission count value (PREAMBLE_TRANSMISSION_COUNTER_CE) is equal to the enhanced coverage maximum preamble trial number (maxNumPreambleAttemptCE) corresponding to the current UE enhanced coverage level n, if both the UE and the serving cell are Supporting the next enhanced coverage level n+1, the UE considers that the current UE's enhanced coverage level is the next enhanced coverage level n+1.
  • PREAMBLE_TRANSMISSION_COUNTER_CE the variable coverage enhanced preamble transmission count value
  • maxNumPreambleAttemptCE enhanced coverage maximum preamble trial number
  • the fourth indication information further includes an enhanced coverage level of the current UE.
  • Operation 5 When receiving the fourth indication information from the MAC layer in an ongoing RRC procedure for EDT, the RRC layer compares/reevaluates the amount of data to be transmitted and the enhanced coverage of the current (climbing) UE
  • the transport block size threshold (PRACH-TBS-EDT) corresponding to the rank determines whether the next random access/RRC procedure is used for EDT. If the amount of data to be transmitted is greater than the transport block size threshold of the corresponding enhanced coverage level, the RRC layer determines to perform the rollback and cancels the EDT that has been initiated.
  • PRACH-TBS-EDT transport block size threshold
  • the fallback refers to a random access procedure and/or an RRC connection setup/recovery process from the current process for EDT fallback to non-EDT, applying a traditional non-EDT random access procedure or RRC connection setup/recovery.
  • the flow enters the RRC connected state to implement data transmission.
  • the method further includes sending the third indication information to the MAC layer, where the third indication information is used to indicate that the MAC layer falls back to the non-EDT operation. More specifically, it is used to instruct the MAC layer to perform a random access procedure using a non-EDT mode of operation (continue).
  • the third indication information may also be referred to as a non-EDT random access indication or a fallback indication, and the disclosure does not limit its name.
  • the RRC continues the process for EDT, and indicates to the MAC layer fifth indication information, indicating that the MAC layer continues to be used for EDT random access process.
  • the fifth indication information may be substantially equal to the first indication information, and is used to indicate that the MAC random access procedure is for EDT, or is described as being currently in the EDT process.
  • Operation 6 When the MAC layer receives the third indication information or the fifth indication information from the RRC layer, the MAC layer continues the selection of the random access resource to continue the ongoing random access procedure. It can also be described that the MAC layer delays the selection of the random access resource until it receives the indication information (the third indication information or the fifth indication information) from the RRC layer. The continuation of the selection of the random access resource is further described as: if the MAC receives the fifth indication information, the selection of the random access resource is continued (the random access resource herein refers to the random access resource used for the EDT), Otherwise, if the third indication information from the RRC layer is received, the random access resource is selected (the random access resource here refers to the random access resource not used for EDT).
  • the MAC when receiving the third indication information from the RRC layer, the MAC performs a fallback to the non-EDT, and proceeds with the random access procedure for non-EDT.
  • the performing random access for non-EDT refers to performing a random access procedure using random access parameters not used for EDT.
  • the MAC layer if the MAC layer receives the first indication information or the fifth indication information from the RRC layer, the MAC layer considers that the random access procedure is used for EDT; otherwise, if the MAC layer receives When the third indication information from the RRC layer is reached, the MAC layer considers that the random access procedure is not used for EDT.
  • the random access procedure is the same random access procedure, that is, during the random access procedure.
  • the relevant counters such as the number of preamble transmissions, etc., are not reset.
  • Example 3 differs from Example 1 mainly in that in the example 3, when an enhanced coverage level change/climb occurs, the MAC layer determines whether to continue the EDT process according to the first indication information and the current (crawled) UE's enhanced coverage level; In 1, the MAC determines whether to continue the EDT process according to a comparison of the amount of data to be transmitted and the transport block size threshold of the current (crawled) UE's enhanced coverage level.
  • the operation of the EDT-enabled UE to determine whether to use the EDT mechanism for data transmission includes one or more of the following:
  • Operation 1 The UE RRC layer determines whether to initiate an EDT based at least on the measured RSRP. Here, determining whether to initiate an EDT can also be based on other conditions.
  • the "other conditions” may include one or more of the following conditions, but are not limited to the following, and the UE determines to initiate the EDT when the following conditions are met:
  • Condition 1 The non-access stratum NAS requests to establish an RRC connection for the EDT and the UE supports the EDT based on the user plane scheme;
  • the NAS requests to restore the RRC connection for the EDT and the UE supports the EDT based on the user plane scheme and the UE holds the security parameter value for the EDT.
  • the security parameter value may be a nextHopChainingCount value.
  • the NAS indicates that the request (establish/restore RRC Connection Request) is applicable to the EDT.
  • the NAS may determine whether to apply to the EDT based on the reason or type of request (eg, data only, non-signaling, short message service, call type, mobile origination type, mobile termination type, etc.). The present disclosure is not limited to these situations.
  • the system information block SIB type 2 includes a PRACH configuration for EDT, that is, a parameter configuration in which the UE camped cell currently supports EDT transmission and broadcasts EDT transmission.
  • the amount of data to be transmitted can be transmitted once, that is, the amount of data to be transmitted is less than or equal to the transport block size threshold corresponding to the current enhanced coverage level of the UE.
  • the current enhanced coverage level of the UE may be determined by the RRC according to the measured RSRP and an RSRP threshold value obtained from the system information for determining an enhanced coverage level. For example, if the system supports the enhanced coverage level in the range of 0 to N, if the RSRP threshold th_N of the enhanced coverage level N is configured and the measured RSRP is less than the threshold value th_N and the UE supports the enhanced coverage level N, the UE or The UE RRC layer considers that it is in the enhanced coverage level N; otherwise, if the RSRP threshold th_N-1 of the enhanced coverage level N-1 is configured and the measured RSRP is less than the threshold value th_N-1 and the UE supports the enhanced coverage level N-1, The UE or the UE RRC layer considers that it is in the enhanced coverage level N-1; otherwise, if the RSRP threshold th_N of the enhanced coverage level N-2 is configured and the measured RSRP is less than the threshold value th_N-2 and the UE supports the enhanced coverage
  • Operation 2 If the RRC in the operation 1 determines to initiate the EDT, that is, if the UE is initiating/performing the EDT or the UE is initiating/performing the RRC connection recovery/establishment of the EDT, the RRC sends the first indication information to the MAC layer.
  • the first indication information is used to notify the MAC layer that the RRC layer initiates an EDT transmission and/or instructs the MAC layer to initiate a random access procedure for the EDT.
  • the “RRC transmitting first indication information” may also be described as “RRC sends an EDT random access indication” or “RRC informs the MAC layer to initiate an EDT” and the like, and the disclosure does not limit the description.
  • the first indication information further includes a maximum enhanced coverage level that can employ EDT.
  • the maximum enhanced coverage level that can be used for EDT is used to indicate the maximum enhanced coverage level at which the EDT parameters can be used to initiate/continue the random access procedure. It can be further understood that if the current UE's enhanced coverage level is less than or equal to the maximum enhanced coverage level of the EDT, the random access procedure for the EDT may be initiated/continued, otherwise the current UE's enhanced coverage level is greater than When the maximum enhanced coverage level of EDT can be used, the random access procedure for EDT cannot be initiated/continued.
  • the maximum enhanced coverage level that can be used by the EDT is determined by the RRC layer according to the data amount to be transmitted by the current UE and the comparison result of the respective transmission coverage level corresponding to the transmission block size threshold value received in the system information. That is, on the basis of satisfying the above “other conditions”, if the amount of data to be transmitted is less than or equal to the transport block size threshold Tn corresponding to the enhanced coverage level n but greater than the transport block size gate corresponding to the enhanced coverage level n+1 When the limit value T(n+1), the RRC considers that the maximum enhanced coverage level of the EDT can be n.
  • RRC believes that the maximum enhanced coverage level of EDT can be n.
  • Operation 3 If the first indication information from the RRC layer in operation 2 is received, the MAC layer initiates a random access procedure for EDT.
  • the initiation of the random access procedure for EDT refers to initiating a random access procedure using random access parameters dedicated to EDT.
  • the random access parameters herein may be physical random access resources, random access preamble, RAR window size, contention resolution timer, number of maximum transmission (retransmission) of message 3, and uplink grant (or message 3 transmission) in RAR. The transfer block size and so on.
  • the UE MAC layer needs to select one of the preamble groups corresponding to the enhanced coverage level according to the enhanced coverage level of the current UE when transmitting the preamble.
  • the enhanced coverage level of the current UE may be determined by the UE according to the measured RSRP and the RSRP threshold value used to determine the enhanced coverage level obtained in the system information (see 3GPP).
  • the technical specification document 36.321ve0 may also be obtained by the MAC layer from the RRC layer, that is, in operation 2, the RRC layer also informs the MAC layer of the enhanced coverage level of the current UE determined in operation 1.
  • Operation 4 In the random access procedure for EDT, if the enhanced coverage level climb occurs when the RAR reception is unsuccessful, the MAC layer compares the current (catch-up) UE's enhanced coverage level and the EDT maximum enhanced coverage level (may be Included in the first indication information) to determine if the next preamble retransmission is for EDT. If the enhanced coverage level of the current UE is greater than the maximum enhanced coverage level of the EDT that can be included in the first indication information, the MAC layer sends (or indicates) the second indication information to the RRC layer, optionally, the MAC layer receives the The selection of the random access resource continues when the third indication information from the RRC layer (see operation 5).
  • the second indication information is used to indicate that the EDT is not applicable, needs to perform a rollback, or an EDT failure or the like. If the enhanced coverage level of the current UE is less than or equal to the maximum enhanced coverage level that can be used in the EDT, the MAC continues to perform the random access procedure for the EDT, that is, the selection of the random access resource continues. The MAC layer does not send the second indication information to the RRC layer.
  • the selection of the continuation of the random access resource in the foregoing process is further described as follows: if the MAC layer does not send the second indication information to the RRC layer, the selection of the random access resource is continued (the random access resource herein refers to the randomized use for the EDT) Accessing the resource), otherwise, the selection of the random access resource is performed until the third indication information from the RRC layer is received (the random access resource here refers to the random access resource not used for EDT).
  • the enhanced coverage level climb may be described as: when the variable coverage enhanced preamble transmission count value (PREAMBLE_TRANSMISSION_COUNTER_CE) is equal to the enhanced coverage maximum preamble trial number (maxNumPreambleAttemptCE) corresponding to the current UE enhanced coverage level n, if both the UE and the serving cell are Supporting the next enhanced coverage level n+1, the UE considers that the current UE's enhanced coverage level is the next enhanced coverage level n+1.
  • PREAMBLE_TRANSMISSION_COUNTER_CE the variable coverage enhanced preamble transmission count value
  • maxNumPreambleAttemptCE enhanced coverage maximum preamble trial number
  • the second indication information further includes an enhanced coverage level of the current UE.
  • Operation 5 When receiving the second indication information from the MAC layer in an ongoing RRC procedure for EDT, the RRC layer determines to perform the rollback and cancels the EDT that has been initiated.
  • the fallback refers to a random access procedure and/or an RRC connection setup/recovery process from the current process for EDT fallback to non-EDT, applying a traditional non-EDT random access procedure or RRC connection setup/recovery.
  • the flow enters the RRC connected state to implement data transmission.
  • the operation 5 further includes the RRC sending third indication information to the MAC layer, where the third indication information is used to indicate that the MAC layer falls back to the non-EDT operation.
  • the third indication information may also be referred to as a non-EDT random access indication or a fallback indication, and the disclosure does not limit its name.
  • Operation 6 When receiving the third indication information from the RRC layer, the MAC performs a fallback to the non-EDT, and proceeds to the random access procedure for non-EDT.
  • the performing random access for non-EDT refers to performing a random access procedure using random access parameters not used for EDT.
  • the MAC layer if the MAC layer receives the first indication information from the RRC layer, the MAC layer considers that the random access procedure is for the EDT; otherwise, if the MAC layer does not receive the RRC layer.
  • the first indication information or the MAC layer receives the third indication information from the RRC layer, and the MAC layer considers that the random access procedure is not used for the EDT.
  • the random access procedure is the same random access procedure, that is, during the random access procedure.
  • the relevant counters such as the number of preamble transmissions, etc., are not reset.
  • FIG. 2 shows a block diagram of a UE 200 in accordance with an embodiment of the present disclosure.
  • the UE 200 includes a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 can be used, for example, to receive configuration information for the EDT, transmit a random access preamble, receive a random access response, and the like.
  • the memory 230 stores instructions executable by the processor 220 such that the UE 200 performs the method 100 described above in connection with FIG.
  • the memory 230 stores instructions executable by the processor 220, so that the UE 200: determines, at the radio resource control RRC layer, that an early data transmission EDT is to be initiated; and sends a first to the medium access control MAC layer at the RRC layer.
  • the indication information instructs the MAC layer to initiate a random access procedure for the EDT; and initiates a random access procedure for the EDT in response to receiving the first indication information at the MAC layer.
  • the determining to initiate an EDT is performed based at least in part on the measured reference signal received power RSRP.
  • the memory 230 also stores instructions executable by the processor 220 such that the UE 200: when the enhanced coverage level climbs, the amount of data to be transmitted at the MAC layer corresponds to the enhanced coverage level after the climb.
  • the transport block size threshold is compared; and when the amount of data to be transmitted is greater than a transport block size threshold corresponding to the enhanced coverage level after the climb, the MAC layer sends a second indication message to the RRC layer, indicating that the EDT fails; Or when the amount of data to be transmitted is less than or equal to the transport block size threshold corresponding to the enhanced coverage level after the climb, the EDT is continued at the MAC layer.
  • the memory 230 also stores instructions executable by the processor 220 such that the UE 200: when the enhanced coverage level climbs, the enhanced coverage level after the climb of the MAC layer and the maximum enhanced coverage level of the EDT Comparison; when the enhanced coverage level after the climb is higher than the maximum enhanced coverage level of the EDT, the second indication information is sent to the RRC layer at the MAC layer to indicate that the EDT fails; or the enhanced coverage level after the climb is lower than or equal to the maximum of the EDT When the coverage level is enhanced, the EDT is continued at the MAC layer.
  • the memory 230 also stores instructions executable by the processor 220 such that the UE 200: falls back to a non-EDT operation in response to receiving the second indication information at the RRC layer.
  • the memory 230 also stores instructions executable by the processor 220 such that the UE 200: transmits third indication information to the MAC layer at the RRC layer, indicating that the MAC layer falls back to a non-EDT operation; and at the MAC The layer performs a non-EDT random access procedure in response to receiving the third indication information.
  • the maximum enhanced coverage level of the EDT is included in the first indication information.
  • the memory 230 also stores instructions executable by the processor 220 such that the UE 200: when the enhanced coverage level climbs, sends a fourth indication message to the RRC layer at the MAC layer indicating the enhanced coverage after the climb. Level; in response to receiving the fourth indication information, the RRC layer compares the amount of data to be transmitted with a transport block size threshold corresponding to the climbed enhanced coverage level; and when the amount of data to be transmitted is greater than the enhanced after the climb When the transport block size threshold corresponding to the level is covered, the third indication information is sent to the MAC layer at the RRC layer to indicate that the EDT fails; or when the amount of data to be transmitted is less than or equal to the transport block corresponding to the enhanced coverage level after the climb. In the case of the size threshold, the RRC layer sends a fifth indication message to the MAC layer, instructing the MAC layer to continue performing the EDT.
  • the memory 230 also stores instructions executable by the processor 220 such that the UE 200: performs a non-EDT random access procedure in response to receiving the third indication information at the MAC layer; or at the MAC layer In response to receiving the fifth indication information, the EDT is continued to be executed.
  • the program running on the device may be a program that causes a computer to implement the functions of the embodiments of the present disclosure by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memory system.
  • a volatile memory such as a random access memory RAM
  • HDD hard disk drive
  • non-volatile memory such as a flash memory
  • a program for realizing the functions of the embodiments of the present disclosure may be recorded on a computer readable recording medium.
  • the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as a peripheral device).
  • the "computer readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium of a short-term dynamic storage program, or any other recording medium readable by a computer.
  • circuitry e.g., monolithic or multi-chip integrated circuits.
  • Circuitry designed to perform the functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general purpose processor may be a microprocessor or any existing processor, controller, microcontroller, or state machine.
  • the above circuit may be a digital circuit or an analog circuit.
  • One or more embodiments of the present disclosure may also be implemented using these new integrated circuit technologies in the context of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology.
  • present disclosure is not limited to the above embodiment. Although various examples of the embodiments have been described, the present disclosure is not limited thereto.
  • Fixed or non-mobile electronic devices installed indoors or outdoors can be used as terminal devices or communication devices such as AV devices, kitchen devices, cleaning devices, air conditioners, office equipment, vending machines, and other home appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种用户设备UE中的方法,包括:在无线资源控制RRC层,确定要发起早期数据传输EDT;在RRC层向媒体接入控制MAC层发送第一指示信息,指示MAC层发起用于EDT的随机接入过程;以及在MAC层响应于接收到第一指示信息,发起用于EDT的随机接入过程。

Description

用户设备和相关方法 技术领域
本公开涉及无线通信技术领域,更具体地,本公开涉及一种用户设备和与早期数据传输(EDT)相关的方法。
背景技术
2017年3月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#75次全会上,一个关于窄带物联网(NarrowBand Internet Of things,NB-IoT)进一步增强的新工作项目(参见RP-170852:New WID on Further NB-IoT enhancements)和一个关于机器类通信(Machine Type Communication:MTC)更进一步增强的新的工作项目(参见非专利文献:RP-170732:New WID on Even further enhanced MTC for LTE)获得批准。这两个研究项目的目标之一是针对小数据包业务的传输进行增强,考虑小数据包业务在一段时间内所要传输的数据量比较小,比如1000比特,即通过一个物理层的传输块即可传完,而现有机制中数据传输都必须在完成与空口的连接进行RRC连接状态之后才能完成,这使得用于传输小数据包的信令开销比较大,考虑到MTC或NB-IoT的用户终端数据庞大,导致了更严重的信令开销;同时过大的信令开销也导致了不必要的用户终端能耗。为了使得能以较少的信令开销来完成小数据包的传输,并实现用户终端(User Equipment,UE)的节能,在版本15的小数据传输增强中,提出UE可以不进入无线资源控制(Radio Resource Control,RRC)连接态来实现数据传输,比如在随机接入过程中将小数据和随机接入消息3一起发送。在当前3GPP达成的共识中,UE根据当前数据发送的若干条件来判断是否采用小数据传输机制进行数据传输,比如网络侧是否配置了小数据传输的参数、UE是否支持小数据传输,将要发送的小数据的数据量是否小于等于所配置的门限值等。小数据传输块大小门限值是由基站配置的,只有当UE将要传输的数据量小于等于该传输块大小门限值时,才能使用小数据传输机 制。每个增强覆盖等级都会对应一个传输块大小门限值。此外,用于小数据传输所使用的随机接入前导也是会每个增强覆盖等级进行配置的,并与传统非小数据传输机制所使用的随机接入前导区分开,也就是说是否采用小数据传输机制需要基于UE所对应的增强覆盖等级所对应的参数来判断。在当前的3GPP RAN2会议达成的结论中,UE RRC层来决定是否使用小数据传输机制,而UE的增强覆盖等级是由MAC层决定的,在这种情况下,需要MAC层和RRC联合作用才能完成是否采用小数据传输机制的确定。
本公开旨在解决在基于增强覆盖等级的系统中如何实现UE MAC层和RRC层交互以实现是否采用小数据传输机制的决策的问题。
发明内容
根据本公开的第一方面,提供了一种用户设备UE中的方法,包括:在无线资源控制RRC层,确定要发起早期数据传输EDT;在RRC层向媒体接入控制MAC层发送第一指示信息,指示MAC层发起用于EDT的随机接入过程;以及在MAC层响应于接收到第一指示信息,发起用于EDT的随机接入过程。
在实施例中,所述确定要发起EDT是至少部分基于测量的参考信号接收功率RSRP来执行的。
在实施例中,上述方法还包括:当增强覆盖等级爬升时,在MAC层将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较;以及当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在MAC层向RRC层发送第二指示信息,指示EDT失败;或当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在MAC层继续执行EDT。
在实施例中,上述方法还包括:当增强覆盖等级爬升时,在MAC层将爬升后的增强覆盖等级与EDT的最大增强覆盖等级进行比较;当爬升后的增强覆盖等级高于EDT的最大增强覆盖等级时,在MAC层向RRC层发送第二指示信息,指示EDT失败;或当爬升后的增强覆盖等级低于或等于EDT的最大增强覆盖等级时,在MAC层继续执行EDT。
在实施例中,上述方法还包括:在RRC层响应于接收到第二指示信息,回退到非EDT操作。
在实施例中,上述方法还包括:在RRC层向MAC层发送第三指示信息,指示MAC层回退到非EDT操作;以及在MAC层响应于接收到第三指示信息,执行非EDT的随机接入过程。
在实施例中,所述EDT的最大增强覆盖等级被包括在第一指示信息中。
在实施例中,上述方法还包括:当增强覆盖等级爬升时,在MAC层向RRC层发送第四指示信息,指示爬升后的增强覆盖等级;在RRC层响应于接收到第四指示信息,将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较;以及当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在RRC层向MAC层发送第三指示信息,指示EDT失败;或当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在RRC层向MAC层发送第五指示信息,指示MAC层继续执行EDT。
在实施例中,上述方法还包括:在MAC层响应于接收到第三指示信息,执行非EDT的随机接入过程;或在MAC层响应于接收到第五指示信息,继续执行EDT。
根据本公开的第二方面,提供了一种用户设备UE,包括收发机、处理器和存储器,所述存储器存储所述处理器可执行的指令,使得所述UE执行根据上述第一方面的方法。
附图说明
通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:
图1示出了根据本公开实施例的用户设备UE中的方法的流程图;以及
图2示出了根据本公开实施例的用户设备的框图。
具体实施方式
根据结合附图对本公开示例性实施例的以下详细描述,本公开的其它方面、优势和突出特征对于本领域技术人员将变得显而易见。
在本公开中,术语“包括”和“含有”及其派生词意为包括而非限制;术语“或”是包含性的,意为和/或。
在本说明书中,下述用于描述本公开原理的各种实施例只是说明,不应该以任何方式解释为限制公开的范围。参照附图的下述描述用于帮助全面理解由权利要求及其等同物限定的本公开的示例性实施例。下述描述包括多种具体细节来帮助理解,但这些细节应认为仅仅是示例性的。因此,本领域普通技术人员应认识到,在不背离本公开的范围和精神的情况下,可以对本文中描述的实施例进行多种改变和修改。此外,为了清楚和简洁起见,省略了公知功能和结构的描述。此外,贯穿附图,相同参考数字用于相似功能和操作。
下文以LTE移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本公开的多个实施方式。然而,需要指出的是,本公开不限于以下实施方式,而是可适用于更多其它的无线通信系统,如NB-IoT系统中、MTC系统中,也可以用于5G下一代无线通信系统(New Radio,NR)中。
本公开中的基站可以是任何类型基站,包含Node B、增强基站eNB,也可以是5G通信系统基站gNB、或者微基站、微微基站、宏基站、家庭基站等;所述小区也可以是上述任何类型基站下的小区。在本公开中,在无明确说明的前提下,覆盖增强等级(Coverage Enhancement level)等同于增强覆盖等级(Enhanced Coverage level)。
不同的实施例之间也可以结合工作。
下面先对本公开涉及到的一些概念和进行说明。值得注意的是,在下文的描述中的一些命名仅是实例说明性的,而不是限制性的,也可以作其他命名。
增强覆盖用户(User Equipment,UE):指的是增强覆盖内的UE,即UE需要通过增强覆盖功能/机制来接入到小区或网络。
增强覆盖等级:增强覆盖技术中将需要增强覆盖的程度分为多个增 强覆盖等级,比如在NB-IoT中,增强覆盖等级可以是等级0~3。在一些增强覆盖方法中,每一个增强覆盖等级可以对应一套不同的无线参数配置,如随机接入配置(如PRACH(Physical Random Access CHannel)资源)。在最新的3GPP协议规范中(技术规范36.321ve40),UE的媒体接入控制(Medium Access Control)层在发起随机接入时,会根据所测量的RSRP和系统信息中收到的用于确定增强覆盖等级的RSRP门限值来判断UE的增强覆盖等级,并根据所确定的增强覆盖等级选择对应的随机接入资源(如随机接入前导(简称为前导))和参数(如随机接入响应窗口大小)来发起随机接入过程。每个增强覆盖等级还可以包含一个前导最大传输次数的配置。在一个随机接入过程中,在成功接收到随机接入响应之前,当UE使用一个增强覆盖等级n对应的随机接入资源和参数发起随机接入发送前导的次数达到或超过当前增强覆盖等级n所对应的前导最大传输次数时,UE会认为当前的增强覆盖等级不合适,此时,UE认为其增强覆盖等级为下一个增强覆盖等级即增强覆盖等级n+1。在下一次的前导传输时,则采用增强覆盖等级n+1对应的随机接入资源和参数,本公开中称这种随机接入过程中的增强覆盖等级递增为增强覆盖等级爬升(ramp)。
随机接入响应(Random Access Response,RAR):随机接入过程中的第二条消息。基站会在接收到UE的随机接入前导之后,通过发送随机接入响应消息来对该随机接入前导的接收进行响应。随机接入响应消息中包括时间提前域、上行许可(uplink grant)域、UE标识域等。
消息3:随机接入过程中的第三条消息。在本公开中,消息3统指UE在RAR中包含的上行许可所指示的上行资源上所发送的上行传输。既可以指基于竞争的随机接入过程中的第三条传输,也可以指基于非竞争的随机接入过程后的第一个上行传输。
用户面优化方案和控制面优化方案:
实际上,在R15之前的通信系统中,已经支持两种优化的数据传输方案,以用来降低数据传输的信令开销和UE能耗,称控制面蜂窝演进分组服务优化(cp-CIoT-EPS-Optimisation)和用户面蜂窝演进分组服务优化(up-CIoT-EPS-Optimisation)。在控制面蜂窝演进分组服务优化方案 中,应用层的数据作为一个非接入层(Non Access Stratum,NAS)数据包包含在控制面的信令无线承载(Signalling Radio Bearer,SRB)上传输,所述信令无线承载在R14之前指的是SRB1或SRB1bis,如UE在完成随机接入过程后在RRC连接建立完成消息中包含一个NAS数据包进行发送。这种优化方案可简称为控制面优化方案或控制面方案。在用户面蜂窝演进分组服务优化方案中,仍和传统系统中的数据传输一样应用层的数据在RRC连接状态下的数据无线承载((user)Data Radio Bearer,DRB)上传输,但在当数据传输完成后,UE和eNB挂起(suspend)RRC连接(通过包含挂起指示的RRC连接释放消息来指示),保存UE上下文,进入RRC空闲状态。当UE要进行数据传输时,UE向eNB发起RRC连接恢复流程(在该流程中,UE向基站发送RRC连接恢复请求消息来发起连接恢复,基站向UE发送RRC连接恢复消息来指示其恢复RRC连接,继而UE向基站反馈RRC连接恢复完成消息以进行响应),因为UE和eNB上保存了UE上下文,通过该流程可以恢复其RRC连接、DRB和安全,无需重新建立RRC连接、DRB和安全。这种方案也可简称用户面优化方案或用户面方案。其中UE保存了UE上下文的RRC空闲态,虽然也称RRC空闲态,但实际上可以看做一个RRC空闲态和连接态的一个中间状态。这个中间状态,在5G NR系统中,可以认为是其定义的RRC非活动状态(RRC_inactive)。
早期数据传输(Early Data Transmission,EDT):
R15中的小数据传输优化方案基于上述两种优化方案并针对小数据传输的特性做了进一步的优化。对于上行数据传输来说,优化的内容主要是在随机接入过程中伴随消息3一起传输小数据,因为这种优化方式相较传统数据传输方式而言,能够在更早的时刻完成数据传输,所以称为早期数据传输,本公开中,小数据(small data或small packet)可等同于早期数据(early data)。在支持EDT优化方案的小区中,基站通过系统信息广播发起EDT所使用的物理随机接入资源如随机接入前导,以及传输块大小(Transport Block Size,TBS)门限值。所述TBS门限值和/或EDT所使用的随机接入资源是对每个增强覆盖等级配置的,即每个增强覆盖等级对应一个EDT传输块大小门限值和/或随机接入参数(如 物理随机接入资源或随机接入前导组)。
下面简单描述EDT的过程。
1.当UE要进行上行传输时,UE判断是否满足EDT的条件,比如包含数据包的TBS是否小于或等于当前增强覆盖等级所对应的TBS门限值,如果是,则UE使用EDT特定的前导在EDT特定的物理随机接入信道资源(Physical Random Access Channel,PRACH)上发起随机接入过程。
2.基站在EDT特定的PRACH资源上接收到EDT特定的前导,得知UE正在发起EDT过程,则基站会在RAR中分配可用于小数据传输的上行许可。
3.接收到RAR后,UE判断RAR中的上行许可是否足够容纳整个小数据包,如果是,则UE将小数据包含在消息3中和RRC消息一起在上行许可所对应的资源上进行上行传输;如果否,则UE回退(fallback)到传统非EDT过程,即不将小数据包包含在消息3中一起传输,即消息3中仅传输RRC消息,以请求RRC连接建立/恢复,期望在RRC连接建立/恢复之后传输数据。优选地,所述包含小数据包的整个传输块指的是包含小数据和消息3中的RRC消息以及其对应的MAC头在内的整个传输块。备选地,所述包含小数据包的整个传输块指的是小数据分组数据汇聚协议(Packet Data Covergence Protocol,PDCP)服务数据单元(Service Data Unit,SDU)或PDCP PDU和RRC消息。
本公开下述实施例中,指示(indicate/indication)和通知(notify/notification)或知会/信息(inform/information)可以互换。UE可以指NB-IoT UE、带宽降低低复杂度(Bandwidth reduced Low complexity,BL)UE、或在增强覆盖(enhanced coverage)中的UE、也可以是其他UE如5G NR UE。
本公开下述实施例中具体描述UE如何基于增强覆盖等级以及随机过程中的增强覆盖等级爬升来确定是否(继续)使用EDT机制的方法,通过本发明的下述实施例,UE可以基于当前的覆盖等级来确定是否使用EDT,并选择对应的随机接入资源前导,使得收到前导的基站根据该 前导来获知UE是否使用EDT及其增强覆盖等级,从而在RAR和后续的传输过程中分配合适的上行许可及其传输参数如传输重复次数。
在本公开中,所述将要传输的数据指的是上行缓存中将要发送的可用数据总量,或者描述为上行缓存中将要发送的数据加上其导致的MAC头所形成的MAC PDU其大小。备选地,也可指上行缓存中的PDCP SDU/PDU。
图1示出了根据本公开实施例的用户设备UE中的方法100的流程图。方法100包括以下步骤。
在步骤S110,在无线资源控制RRC层,确定要发起早期数据传输EDT。
在步骤S120,在RRC层向媒体接入控制MAC层发送第一指示信息,指示MAC层发起用于EDT的随机接入过程。
在步骤S130,在MAC层响应于接收到第一指示信息,发起用于EDT的随机接入过程。
在非限制性示例中,在步骤S110中,确定要发起EDT可以至少部分基于测量的参考信号接收功率RSRP来执行。
在非限制性示例中,例如参见以下示例1,方法100还可以包括:当增强覆盖等级爬升时,在MAC层将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较。当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在MAC层向RRC层发送第二指示信息,指示EDT失败。当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在MAC层继续执行EDT。
在非限制性示例中,例如参见以下示例3,方法100还可以包括:当增强覆盖等级爬升时,在MAC层将爬升后的增强覆盖等级与EDT的最大增强覆盖等级进行比较。当爬升后的增强覆盖等级高于EDT的最大增强覆盖等级时,在MAC层向RRC层发送第二指示信息,指示EDT失败。当爬升后的增强覆盖等级低于或等于EDT的最大增强覆盖等级时,在MAC层继续执行EDT。
在非限制性示例中,方法100还可以包括:在RRC层响应于接收 到第二指示信息,回退到非EDT操作。
在非限制性示例中,方法100还可以包括:在RRC层向MAC层发送第三指示信息,指示MAC层回退到非EDT操作;以及在MAC层响应于接收到第三指示信息,执行非EDT的随机接入过程。
在非限制性示例中,所述EDT的最大增强覆盖等级可以被包括在第一指示信息中。
在非限制性示例中,例如参见以下示例2,方法100还可以包括:当增强覆盖等级爬升时,在MAC层向RRC层发送第四指示信息,指示爬升后的增强覆盖等级;以及在RRC层响应于接收到第四指示信息,将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较。当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在RRC层向MAC层发送第三指示信息,指示EDT失败。当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在RRC层向MAC层发送第五指示信息,指示MAC层继续执行EDT。
在非限制性示例中,方法100还可以包括:在MAC层响应于接收到第三指示信息,执行非EDT的随机接入过程;或在MAC层响应于接收到第五指示信息,继续执行EDT。
以下结合具体示例来描述方法100的具体实现。
示例1:
本示例中,支持EDT的UE确定是否使用EDT机制进行数据传输的操作包括下述一个或多个:
操作1:UE RRC层至少根据所测量的RSRP来确定是否发起EDT。这里,确定是否发起EDT还可以根据其他条件。
所述“其他条件”可以包括下述条件的一个或多个,但并不限制下述,UE在下述条件满足时确定发起EDT:
条件1:非接入层NAS请求为EDT建立一个RRC连接且UE支持基于控制面方案的EDT;
条件2:NAS请求为EDT恢复RRC连接且UE支持基于用户面方 案的EDT且UE保存有用于EDT的安全参数值。所述安全参数值可以为nextHopChainingCount值。
条件3:NAS指示所述请求(建立/恢复RRC连接请求)适用于EDT。NAS可基于所述请求的理由或请求类型(如仅数据、非信令、短信息业务、呼叫类型、移动发起类型、移动终结类型等)来确定是否适用于EDT。本公开不限于这些情形。
条件4:系统信息块SIB类型2中包含了用于EDT的PRACH配置,即UE驻留的小区当前支持EDT传输且广播了EDT传输的参数配置。
条件5:要发送的数据量一次传输即可传完,即要发送的数据量小于或等于UE当前的增强覆盖等级所对应的传输块大小门限值。
所述UE当前的增强覆盖等级可由RRC根据所测量的RSRP和从系统信息中获取的用于确定增强覆盖等级的RSRP门限值来确定。举例如下:如果系统支持增强覆盖等级的范围为0~N,则如果配置了增强覆盖等级N的RSRP门限th_N且所测量的RSRP小于该门限值th_N且UE支持增强覆盖等级N,则UE或UE RRC层认为其处于增强覆盖等级N;否则若配置了增强覆盖等级N-1的RSRP门限th_N-1且所测量的RSRP小于该门限值th_N-1且UE支持增强覆盖等级N-1,则UE或UE RRC层认为其处于增强覆盖等级N-1;否则若配置了增强覆盖等级N-2的RSRP门限th_N且所测量的RSRP小于该门限值th_N-2且UE支持增强覆盖等级N-2,则UE或UE RRC层认为其处于增强覆盖等级N-2;以此类推,否则若配置了增强覆盖等级1的RSRP门限th_1且所测量的RSRP小于该门限值th_1,则UE或UE RRC层认为其处于增强覆盖等级1;否则认为其处于增强覆盖等级0。
操作2:若操作1中RRC确定发起EDT,即若UE正在发起/进行EDT或UE正在发起/进行EDT的RRC连接恢复/建立,则RRC发送第一指示信息给MAC层。所述第一指示信息用于向MAC层告知RRC层发起了EDT传输和/或指示MAC层发起用于EDT的随机接入过程。所述“RRC发送第一指示信息”也可描述为“RRC发送EDT随机接入指示”或“RRC告知MAC层发起EDT”等,本公开不限定其描述。
操作3:若收到操作2中来自RRC层的所述第一指示信息,则MAC层发起用于EDT的随机接入过程。所述发起用于EDT的随机接入过程 指的是采用专用于EDT的随机接入参数发起随机接入过程。这里的随机接入参数可以是物理随机接入资源、随机接入前导、RAR窗大小、竞争解决定时器、消息3最大传输(重传)次数、RAR中上行许可(或消息3传输)所允许的传输块大小等。
因为每个增强覆盖等级会对应一个前导组,UE MAC层在发送前导时需要根据当前UE的增强覆盖等级从该增强覆盖等级所对应的前导组中选择一个。在操作3中,优选地,所述当前UE的增强覆盖等级可以是UE根据所测量的RSRP和系统信息中所获取的用于确定增强覆盖等级的RSRP门限值进行比较所确定的(参见3GPP技术规范文档36.321ve0),备选地,也可以是MAC层从RRC层获取的,即在操作2中RRC层还会将操作1中所确定的当前UE的增强覆盖等级告知MAC层。
操作4:在用于EDT的随机接入过程中,在RAR接收不成功时,若发生增强覆盖等级爬升,MAC层比较将要传输的数据量和当前(爬升后)UE的增强覆盖等级所对应的传输块大小门限值(PRACH-TBS-EDT)确定接下来的前导重传是否用于EDT。若将要传输的数据量大于相应的增强覆盖等级的传输块大小门限值时,MAC层向RRC层发送(或指示)第二指示信息,可选地,MAC层在收到来自RRC层的第三指示信息(见操作5)时继续随机接入资源的选择。所述第二指示信息用于指示上述将要传输的数据总量大于所述传输块大小门限值而无法进行EDT的情况,或者也可以直接描述为EDT不适用,需要执行回退,或EDT失败等。若将要传输的数据量小于或等于相应的增强覆盖等级的传输块大小门限值时,MAC继续进行用于EDT的随机接入过程即继续随机接入资源的选择,此时MAC层不向RRC层发送第二指示信息。上述过程中继续进行随机接入资源的选择进一步描述为:若MAC层没有发送第二指示信息给RRC层,则继续随机接入资源的选择(这里的随机接入资源是指用于EDT的随机接入资源),否则直到接收到来自RRC层的第三指示信息时再进行随机接入资源的选择(这里的随机接入资源指不用于EDT专用的随机接入资源)。
所述增强覆盖等级爬升可描述为:当变量覆盖增强前导发送计数值(PREAMBLE_TRANSMISSION_COUNTER_CE)等于当前UE增强覆 盖等级n所对应的增强覆盖最大前导尝试次数(maxNumPreambleAttemptCE)加1时,若UE和服务小区都支持下一个增强覆盖等级n+1,则UE认为当前UE的增强覆盖等级为下一个增强覆盖等级n+1。
备选地,所述第二指示信息还包括当前UE的增强覆盖等级。
操作5:当在一个用于EDT的正在进行的RRC过程中,收到来自MAC层的第二指示信息时,RRC层确定执行回退,取消已经发起的EDT。所述回退指的是从当前的用于EDT的过程回退到非EDT的随机接入过程和/或RRC连接建立/恢复过程,应用传统非EDT的随机接入流程或RRC连接建立/恢复流程进入RRC连接态以实现数据传输。备选地,操作5还包括RRC向MAC层发送第三指示信息,所述第三指示信息用于指示MAC层回退到非EDT操作。更确切地,用于指示MAC层采用非EDT操作方式(继续)执行随机接入过程。所述第三指示信息也可称为非EDT随机接入指示或回退指示,本公开并不限定其名称。
操作6:当收到来自RRC层的第三指示信息时,MAC执行回退到非EDT,继续进行用于非EDT的随机接入过程。所述进行用于非EDT的随机接入指的是采用不用于EDT专用的随机接入参数来执行随机接入过程。
备选地,在示例1中还包括,若MAC层收到了来自RRC层的第一指示信息,则MAC层认为随机接入过程是用于EDT的;否则,若MAC层没有收到来自RRC层的第一指示信息或者MAC层收到了来自RRC层的第三指示信息,则MAC层认为随机接入过程是不用于EDT的。
值得注意的是,MAC层在从用于EDT的随机接入过程回退到非EDT的传统随机接入过程时,所述随机接入过程是同一个随机接入过程,即随机接入过程中的相关计数器如前导发送次数等并不重置。
示例2:
示例2与示例1的不同主要在于示例2中当发生增强覆盖等级变更/爬升时根据将要传输的数据量和相应增强覆盖等级的传输块大小门限值的比较来确定是否继续EDT过程的确定操作是在RRC层完成,而在示例1中,该操作是在MAC层完成。
本示例中,支持EDT的UE确定是否使用EDT机制进行数据传输的操作包括下述一个或多个:
操作1:UE RRC层至少根据所测量的RSRP来确定是否发起EDT。这里,确定是否发起EDT还可以根据其他条件。
所述“其他条件”可以包括下述条件的一个或多个,但并不限制下述,UE在下述条件满足时确定发起EDT:
条件1:非接入层NAS请求为EDT建立一个RRC连接且UE支持基于用户面方案的EDT;
条件2:NAS请求为EDT恢复RRC连接且UE支持基于用户面方案的EDT且UE保存有用于EDT的安全参数值。所述安全参数值可以为nextHopChainingCount值。
条件3:NAS指示所述请求(建立/恢复RRC连接请求)适用于EDT。NAS可基于所述请求的理由或请求类型(如仅数据、非信令、短信息业务、呼叫类型、移动发起类型、移动终结类型等)来确定是否适用于EDT。本公开不限于这些情形。
条件4:系统信息块SIB类型2中包含了用于EDT的PRACH配置,即UE驻留的小区当前支持EDT传输且广播了EDT传输的参数配置。
条件5:要发送的数据量一次传输即可传完,即上行缓存中将要发送的数据加上其导致的MAC头所形成的MAC PDU其大小小于或等于UE当前的增强覆盖等级所对应的传输块大小门限值。
所述UE当前的增强覆盖等级可由RRC根据所测量的RSRP和从系统信息中获取的用于确定增强覆盖等级的RSRP门限值来确定。举例如下:如果系统支持增强覆盖等级的范围为0~N,则如果配置了增强覆盖等级N的RSRP门限th_N且所测量的RSRP小于该门限值th_N且UE支持增强覆盖等级N,则UE或UE RRC层认为其处于增强覆盖等级N;否则若配置了增强覆盖等级N-1的RSRP门限th_N-1且所测量的RSRP小于该门限值th_N-1且UE支持增强覆盖等级N-1,则UE或UE RRC层认为其处于增强覆盖等级N-1;否则若配置了增强覆盖等级N-2的RSRP门限th_N且所测量的RSRP小于该门限值th_N-2且UE支持增强覆盖等级N-2,则UE或UE RRC层认为其处于增强覆盖等级N-2;以此类推,否则若配置了增强覆盖等级1的RSRP门限th_1且所测量的RSRP 小于该门限值th_1,则UE或UE RRC层认为其处于增强覆盖等级1;否则认为其处于增强覆盖等级0。
操作2:若操作1中RRC确定发起EDT,即若UE正在发起/进行EDT或UE正在发起/进行EDT的RRC连接恢复/建立,则RRC发送第一指示信息给MAC层。所述第一指示信息用于向MAC层告知RRC层发起了EDT传输和/或指示MAC层发起用于EDT的随机接入过程。所述“RRC发送第一指示信息”也可描述为“RRC发送EDT随机接入指示”或“RRC告知MAC层发起EDT”等,所述第一指示信息也可简称为EDT指示,本公开不限定其描述。
操作3:若收到操作2中来自RRC层的所述第一指示信息,则MAC层发起用于EDT的随机接入过程。所述发起用于EDT的随机接入过程指的是采用专用于EDT的随机接入参数发起随机接入过程。这里的随机接入参数可以是物理随机接入资源、随机接入前导、RAR窗大小、竞争解决定时器、消息3最大传输(重传)次数、RAR中上行许可(或消息3传输)所允许的传输块大小等。
因为每个增强覆盖等级会对应一个前导组,UE MAC层在发送前导时需要根据当前UE的增强覆盖等级从该增强覆盖等级所对应的前导组中选择一个。在操作3中,优选地,所述当前UE的增强覆盖等级可以是UE根据所测量的RSRP和系统信息中所获取的用于确定增强覆盖等级的RSRP门限值进行比较所确定的(参见3GPP技术规范文档36.321ve0),备选地,也可以是MAC层从RRC层获取的,即在操作2中RRC层还会将操作1中所确定的当前UE的增强覆盖等级告知MAC层。
操作4:在用于EDT的随机接入过程中,在RAR接收不成功时,若发生增强覆盖等级爬升,MAC层向RRC层发送(或指示)第四指示信息。所述第四指示信息用于指示发生了增强覆盖等级变更/爬升,或者理解为请求是否继续EDT。可选地,MAC层在收到来自RRC层的第三指示信息(见操作5)时继续随机接入资源的选择,也就是说MAC层在收到第三指示信息之前中断正在进行的随机接入过程,或者描述为MAC层推迟随机接入资源的选择,直到收到来自RRC层的第三指示信息。
所述增强覆盖等级爬升可描述为:当变量覆盖增强前导发送计数值 (PREAMBLE_TRANSMISSION_COUNTER_CE)等于当前UE增强覆盖等级n所对应的增强覆盖最大前导尝试次数(maxNumPreambleAttemptCE)加1时,若UE和服务小区都支持下一个增强覆盖等级n+1,则UE认为当前UE的增强覆盖等级为下一个增强覆盖等级n+1。
备选地,所述第四指示信息还包括当前UE的增强覆盖等级。
操作5:当在一个用于EDT的正在进行的RRC过程中,收到来自MAC层的第四指示信息时,RRC层比较/重新评估将要传输的数据量和当前(爬升后)UE的增强覆盖等级所对应的传输块大小门限值(PRACH-TBS-EDT)以确定接下来的随机接入/RRC过程是否用于EDT。若将要传输的数据量大于相应的增强覆盖等级的传输块大小门限值时,RRC层确定执行回退,取消已经发起的EDT。所述回退指的是从当前的用于EDT的过程回退到非EDT的随机接入过程和/或RRC连接建立/恢复过程,应用传统非EDT的随机接入流程或RRC连接建立/恢复流程进入RRC连接态以实现数据传输。可选地,还包括向MAC层发送第三指示信息;所述第三指示信息用于指示MAC层回退到非EDT操作。更确切地,用于指示MAC层采用非EDT操作方式(继续)执行随机接入过程。所述第三指示信息也可称为非EDT随机接入指示或回退指示,本公开并不限定其名称。若将要传输的数据量小于或等于相应的增强覆盖等级的传输块大小门限值时,RRC继续进行用于EDT的过程,并向MAC层指示第五指示信息,用于指示MAC层继续用于EDT的随机接入过程。所述第五指示信息实际上可以等同于第一指示信息,都是用于指示MAC随机接入过程是用于EDT的,或描述为当前处于EDT过程中。
操作6:当MAC层接收到来自RRC层的第三指示信息或第五指示信息时,MAC层继续随机接入资源的选择来继续正在进行的随机接入过程。也可描述为,MAC层推迟(delay)进行随机接入资源的选择,直到其收到来自RRC层的指示信息(第三指示信息或第五指示信息)。所述继续进行随机接入资源的选择进一步描述为:若MAC收到第五指示信息,则继续随机接入资源的选择(这里的随机接入资源是指用于EDT的随机接入资源),否则若接收到来自RRC层的第三指示信息时则进行 随机接入资源的选择(这里的随机接入资源指不用于EDT专用的随机接入资源)。在该操作中,当收到来自RRC层的第三指示信息时,MAC执行回退到非EDT,继续进行用于非EDT的随机接入过程。所述进行用于非EDT的随机接入指的是采用不用于EDT专用的随机接入参数来执行随机接入过程。
备选地,在示例2中还包括,若MAC层收到了来自RRC层的第一指示信息或第五指示信息,则MAC层认为随机接入过程是用于EDT的;否则,若MAC层收到了来自RRC层的第三指示信息,则MAC层认为随机接入过程是不用于EDT的。
值得注意的是,MAC层在从用于EDT的随机接入过程回退到非EDT的传统随机接入过程时,所述随机接入过程是同一个随机接入过程,即随机接入过程中的相关计数器如前导发送次数等并不重置。
示例3
示例3与示例1的不同主要在于示例3中当发生增强覆盖等级变更/爬升时,MAC层根据第一指示信息和当前(爬升后)UE的增强覆盖等级来确定是否继续EDT过程;而在示例1中,MAC根据将要传输的数据量和当前(爬升后)UE的增强覆盖等级的传输块大小门限值的比较来确定是否继续EDT过程。
本示例中,支持EDT的UE确定是否使用EDT机制进行数据传输的操作包括下述一个或多个:
操作1:UE RRC层至少根据所测量的RSRP来确定是否发起EDT。这里,确定是否发起EDT还可以根据其他条件。
所述“其他条件”可以包括下述条件的一个或多个,但并不限制下述,UE在下述条件满足时确定发起EDT:
条件1:非接入层NAS请求为EDT建立一个RRC连接且UE支持基于用户面方案的EDT;
条件2:NAS请求为EDT恢复RRC连接且UE支持基于用户面方案的EDT且UE保存有用于EDT的安全参数值。所述安全参数值可以为nextHopChainingCount值。
条件3:NAS指示所述请求(建立/恢复RRC连接请求)适用于EDT。 NAS可基于所述请求的理由或请求类型(如仅数据、非信令、短信息业务、呼叫类型、移动发起类型、移动终结类型等)来确定是否适用于EDT。本公开不限于这些情形。
条件4:系统信息块SIB类型2中包含了用于EDT的PRACH配置,即UE驻留的小区当前支持EDT传输且广播了EDT传输的参数配置。
条件5:要发送的数据量一次传输即可传完,即要发送的数据量小于或等于UE当前的增强覆盖等级所对应的传输块大小门限值。
所述UE当前的增强覆盖等级可由RRC根据所测量的RSRP和从系统信息中获取的用于确定增强覆盖等级的RSRP门限值来确定。举例如下:如果系统支持增强覆盖等级的范围为0~N,则如果配置了增强覆盖等级N的RSRP门限th_N且所测量的RSRP小于该门限值th_N且UE支持增强覆盖等级N,则UE或UE RRC层认为其处于增强覆盖等级N;否则若配置了增强覆盖等级N-1的RSRP门限th_N-1且所测量的RSRP小于该门限值th_N-1且UE支持增强覆盖等级N-1,则UE或UE RRC层认为其处于增强覆盖等级N-1;否则若配置了增强覆盖等级N-2的RSRP门限th_N且所测量的RSRP小于该门限值th_N-2且UE支持增强覆盖等级N-2,则UE或UE RRC层认为其处于增强覆盖等级N-2;以此类推,否则若配置了增强覆盖等级1的RSRP门限th_1且所测量的RSRP小于该门限值th_1,则UE或UE RRC层认为其处于增强覆盖等级1;否则认为其处于增强覆盖等级0。
操作2:若操作1中RRC确定发起EDT,即若UE正在发起/进行EDT或UE正在发起/进行EDT的RRC连接恢复/建立,则RRC发送第一指示信息给MAC层。所述第一指示信息用于向MAC层告知RRC层发起了EDT传输和/或指示MAC层发起用于EDT的随机接入过程。所述“RRC发送第一指示信息”也可描述为“RRC发送EDT随机接入指示”或“RRC告知MAC层发起EDT”等,本公开不限定其描述。
在本示例中,所述第一指示信息还包括可采用EDT的最大增强覆盖等级。该可采用EDT的最大增强覆盖等级用于指示可以采用EDT参数发起/继续随机接入过程的最大增强覆盖等级。可进一步理解为:若当前UE的增强覆盖等级小于或等于所述可采用EDT的最大增强覆盖等级时,可以发起/继续用于EDT的随机接入流程,否则若当前UE的增强 覆盖等级大于所述可采用EDT的最大增强覆盖等级时,不能发起/继续用于EDT的随机接入流程。所述可采用EDT的最大增强覆盖等级由RRC层根据当前UE将要传输的数据量和系统信息中收到的各个增强覆盖等级对应传输块大小门限值比较结果来确定。即在满足上述“其他条件”的基础上,若将要传输的数据量小于或等于增强覆盖等级n所对应的传输块大小门限值Tn但是大于增强覆盖等级n+1所对应的传输块大小门限值T(n+1)时,则RRC认为可采用EDT的最大增强覆盖等级为n。在另一种情况下,若将要传输的数据量小于或等于增强覆盖等级n所对应的传输块大小门限值Tn,n为UE和/或服务小区所能支持的最大增强覆盖等级时,则RRC认为可采用EDT的最大增强覆盖等级为n。
操作3:若收到操作2中来自RRC层的所述第一指示信息,则MAC层发起用于EDT的随机接入过程。所述发起用于EDT的随机接入过程指的是采用专用于EDT的随机接入参数发起随机接入过程。这里的随机接入参数可以是物理随机接入资源、随机接入前导、RAR窗大小、竞争解决定时器、消息3最大传输(重传)次数、RAR中上行许可(或消息3传输)所允许的传输块大小等。
因为每个增强覆盖等级会对应一个前导组,UE MAC层在发送前导时需要根据当前UE的增强覆盖等级从该增强覆盖等级所对应的前导组中选择一个。在操作3中,优选地,所述当前UE的增强覆盖等级可以是UE根据所测量的RSRP和系统信息中所获取的用于确定增强覆盖等级的RSRP门限值进行比较所确定的(参见3GPP技术规范文档36.321ve0),备选地,也可以是MAC层从RRC层获取的,即在操作2中RRC层还会将操作1中所确定的当前UE的增强覆盖等级告知MAC层。
操作4:在用于EDT的随机接入过程中,在RAR接收不成功时,若发生增强覆盖等级爬升,MAC层比较当前(爬升后)UE的增强覆盖等级和EDT的最大增强覆盖等级(可以包括在第一指示信息中)以确定接下来的前导重传是否用于EDT。若当前UE的增强覆盖等级大于第一指示信息中所包括的可采用EDT的最大增强覆盖等级时,MAC层向RRC层发送(或指示)第二指示信息,可选地,MAC层在收到来自RRC层的第三指示信息(见操作5)时继续随机接入资源的选择。所述第二 指示信息用于指示EDT不适用,需要执行回退,或EDT失败等。若当前UE的增强覆盖等级小于或等于第一指示信息中所包括的可采用EDT的最大增强覆盖等级时,MAC继续进行用于EDT的随机接入过程即继续随机接入资源的选择,此时MAC层不向RRC层发送第二指示信息。上述过程中继续进行随机接入资源的选择进一步描述为:若MAC层没有发送第二指示信息给RRC层,则继续随机接入资源的选择(这里的随机接入资源是指用于EDT的随机接入资源),否则直到接收到来自RRC层的第三指示信息时再进行随机接入资源的选择(这里的随机接入资源指不用于EDT专用的随机接入资源)。
所述增强覆盖等级爬升可描述为:当变量覆盖增强前导发送计数值(PREAMBLE_TRANSMISSION_COUNTER_CE)等于当前UE增强覆盖等级n所对应的增强覆盖最大前导尝试次数(maxNumPreambleAttemptCE)加1时,若UE和服务小区都支持下一个增强覆盖等级n+1,则UE认为当前UE的增强覆盖等级为下一个增强覆盖等级n+1。
备选地,所述第二指示信息还包括当前UE的增强覆盖等级。
操作5:当在一个用于EDT的正在进行的RRC过程中,收到来自MAC层的第二指示信息时,RRC层确定执行回退,取消已经发起的EDT。所述回退指的是从当前的用于EDT的过程回退到非EDT的随机接入过程和/或RRC连接建立/恢复过程,应用传统非EDT的随机接入流程或RRC连接建立/恢复流程进入RRC连接态以实现数据传输。备选地,操作5还包括RRC向MAC层发送第三指示信息,所述第三指示信息用于指示MAC层回退到非EDT操作。更确切地,用于指示MAC层采用非EDT操作方式(继续)执行随机接入过程。所述第三指示信息也可称为非EDT随机接入指示或回退指示,本公开并不限定其名称。
操作6:当收到来自RRC层的第三指示信息时,MAC执行回退到非EDT,继续进行用于非EDT的随机接入过程。所述进行用于非EDT的随机接入指的是采用不用于EDT专用的随机接入参数来执行随机接入过程。
备选地,在示例3中还包括,若MAC层收到了来自RRC层的第一指示信息,则MAC层认为随机接入过程是用于EDT的;否则,若MAC 层没有收到来自RRC层的第一指示信息或者MAC层收到了来自RRC层的第三指示信息,则MAC层认为随机接入过程是不用于EDT的。
值得注意的是,MAC层在从用于EDT的随机接入过程回退到非EDT的传统随机接入过程时,所述随机接入过程是同一个随机接入过程,即随机接入过程中的相关计数器如前导发送次数等并不重置。
与上述方法100相对应,本公开提供了一种用户设备UE。图2示出了根据本公开实施例的UE 200的框图。如图所示,UE 200包括:收发机210、处理器220和存储器230。收发机210可以用于例如接收EDT的配置信息、发送随机接入前导、接收随机接入响应等。所述存储器230存储所述处理器220可执行的指令,使得所述UE 200执行以上结合图1描述的方法100。
具体地,所述存储器230存储所述处理器220可执行的指令,使得UE 200:在无线资源控制RRC层,确定要发起早期数据传输EDT;在RRC层向媒体接入控制MAC层发送第一指示信息,指示MAC层发起用于EDT的随机接入过程;以及在MAC层响应于接收到第一指示信息,发起用于EDT的随机接入过程。
在一个示例中,所述确定要发起EDT是至少部分基于测量的参考信号接收功率RSRP来执行的。
在一个示例中,所述存储器230还存储所述处理器220可执行的指令,使得UE 200:当增强覆盖等级爬升时,在MAC层将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较;以及当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在MAC层向RRC层发送第二指示信息,指示EDT失败;或当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在MAC层继续执行EDT。
在一个示例中,所述存储器230还存储所述处理器220可执行的指令,使得UE 200:当增强覆盖等级爬升时,在MAC层将爬升后的增强覆盖等级与EDT的最大增强覆盖等级进行比较;当爬升后的增强覆盖等级高于EDT的最大增强覆盖等级时,在MAC层向RRC层发送第二指示信息,指示EDT失败;或当爬升后的增强覆盖等级低于或等于EDT 的最大增强覆盖等级时,在MAC层继续执行EDT。
在一个示例中,所述存储器230还存储所述处理器220可执行的指令,使得UE 200:在RRC层响应于接收到第二指示信息,回退到非EDT操作。
在一个示例中,所述存储器230还存储所述处理器220可执行的指令,使得UE 200:在RRC层向MAC层发送第三指示信息,指示MAC层回退到非EDT操作;以及在MAC层响应于接收到第三指示信息,执行非EDT的随机接入过程。
在一个示例中,所述EDT的最大增强覆盖等级被包括在第一指示信息中。
在一个示例中,所述存储器230还存储所述处理器220可执行的指令,使得UE 200:当增强覆盖等级爬升时,在MAC层向RRC层发送第四指示信息,指示爬升后的增强覆盖等级;在RRC层响应于接收到第四指示信息,将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较;以及当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在RRC层向MAC层发送第三指示信息,指示EDT失败;或当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在RRC层向MAC层发送第五指示信息,指示MAC层继续执行EDT。
在一个示例中,所述存储器230还存储所述处理器220可执行的指令,使得UE 200:在MAC层响应于接收到第三指示信息,执行非EDT的随机接入过程;或在MAC层响应于接收到第五指示信息,继续执行EDT。
以上结合方法100所描述的各个方面,尤其是示例1~3,也适用于UE 200。
运行在根据本公开的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本公开的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本公开各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本公开的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本公开并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本公开并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本公开的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本公开也包括不偏离本公开主旨的任何设计改动。另外,可以在权利要求的范围内对本公开进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本公开的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (10)

  1. 一种用户设备UE中的方法,包括:
    在无线资源控制RRC层,确定要发起早期数据传输EDT;
    在RRC层向媒体接入控制MAC层发送第一指示信息,指示MAC层发起用于EDT的随机接入过程;以及
    在MAC层响应于接收到第一指示信息,发起用于EDT的随机接入过程。
  2. 根据权利要求1所述的方法,其中,所述确定要发起EDT是至少部分基于测量的参考信号接收功率RSRP来执行的。
  3. 根据权利要求1所述的方法,还包括:
    当增强覆盖等级爬升时,在MAC层将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较;以及
    当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在MAC层向RRC层发送第二指示信息,指示EDT失败;或
    当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在MAC层继续执行EDT。
  4. 根据权利要求1所述的方法,还包括:
    当增强覆盖等级爬升时,在MAC层将爬升后的增强覆盖等级与EDT的最大增强覆盖等级进行比较;
    当爬升后的增强覆盖等级高于EDT的最大增强覆盖等级时,在MAC层向RRC层发送第二指示信息,指示EDT失败;或
    当爬升后的增强覆盖等级低于或等于EDT的最大增强覆盖等级时,在MAC层继续执行EDT。
  5. 根据权利要求3或4所述的方法,还包括:
    在RRC层响应于接收到第二指示信息,回退到非EDT操作。
  6. 根据权利要求3或4所述的方法,还包括:
    在RRC层向MAC层发送第三指示信息,指示MAC层回退到非EDT操作;以及
    在MAC层响应于接收到第三指示信息,执行非EDT的随机接入过 程。
  7. 根据权利要求4所述的方法,其中,所述EDT的最大增强覆盖等级被包括在第一指示信息中。
  8. 根据权利要求1或2所述的方法,还包括:
    当增强覆盖等级爬升时,在MAC层向RRC层发送第四指示信息,指示爬升后的增强覆盖等级;
    在RRC层响应于接收到第四指示信息,将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较;以及
    当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在RRC层向MAC层发送第三指示信息,指示EDT失败;或
    当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在RRC层向MAC层发送第五指示信息,指示MAC层继续执行EDT。
  9. 根据权利要求8所述的方法,还包括:
    在MAC层响应于接收到第三指示信息,执行非EDT的随机接入过程;或
    在MAC层响应于接收到第五指示信息,继续执行EDT。
  10. 一种用户设备UE,包括收发机、处理器和存储器,所述存储器存储所述处理器可执行的指令,使得所述UE执行根据权利要求1-9中任一项所述的方法。
PCT/CN2018/124897 2018-01-05 2018-12-28 用户设备和相关方法 WO2019134593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810013347.8A CN110012551A (zh) 2018-01-05 2018-01-05 用户设备和相关方法
CN201810013347.8 2018-01-05

Publications (1)

Publication Number Publication Date
WO2019134593A1 true WO2019134593A1 (zh) 2019-07-11

Family

ID=67143845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124897 WO2019134593A1 (zh) 2018-01-05 2018-12-28 用户设备和相关方法

Country Status (2)

Country Link
CN (1) CN110012551A (zh)
WO (1) WO2019134593A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210219351A1 (en) * 2018-08-07 2021-07-15 Institute For Information Industry Base station and user equipment for early-data transmission in a random access procedure
US20210259021A1 (en) * 2020-02-13 2021-08-19 Asustek Computer Inc. Method and apparatus for fallback action of small data transmission in a wireless communication system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836280B (zh) * 2019-08-27 2022-02-01 维沃移动通信有限公司 一种数据传输方法及终端
EP4035483A4 (en) * 2019-09-25 2023-05-03 Telefonaktiebolaget LM Ericsson (publ.) OPTIMIZATION FOR EARLY DATA TRANSMISSION (EDT)
CN115604822B (zh) * 2019-09-29 2024-03-05 中兴通讯股份有限公司 一种数据传输和信息确定方法、装置和存储介质
CN114830813A (zh) * 2019-10-14 2022-07-29 诺基亚技术有限公司 用于高效rrc状态变化的早期状态处置辅助
JP2023534881A (ja) * 2020-08-06 2023-08-14 維沃移動通信有限公司 データ伝送タイプの設定方法と端末
WO2022061885A1 (zh) * 2020-09-28 2022-03-31 Oppo广东移动通信有限公司 数据传输方法、装置、终端设备和存储介质
CN116746195A (zh) * 2021-01-14 2023-09-12 上海诺基亚贝尔股份有限公司 用于小数据传输过程的物理下行链路控制信道监测
CN115349292A (zh) * 2021-03-15 2022-11-15 北京小米移动软件有限公司 一种上行数据的处理方法及其装置
WO2022205380A1 (zh) * 2021-04-01 2022-10-06 北京小米移动软件有限公司 小数据传输sdt退回到非sdt的处理方法及其装置
CN117322116A (zh) * 2021-05-14 2023-12-29 上海诺基亚贝尔股份有限公司 用于数据传输过程确定的方法、装置和计算机可读介质
CN113993367B (zh) * 2021-09-24 2023-06-16 广州市安旭特电子有限公司 一种pcb移送方法
WO2023151043A1 (en) * 2022-02-11 2023-08-17 Nec Corporation Method, device and computer storage medium of communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010382A (zh) * 2013-02-25 2014-08-27 中兴通讯股份有限公司 数据传输方法、装置及系统
WO2017197063A1 (en) * 2016-05-11 2017-11-16 Idac Holdings, Inc. Distributed control in wireless systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104010382A (zh) * 2013-02-25 2014-08-27 中兴通讯股份有限公司 数据传输方法、装置及系统
WO2017197063A1 (en) * 2016-05-11 2017-11-16 Idac Holdings, Inc. Distributed control in wireless systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining Issues for EDT in the CP Solution for eMTC and NB-IoT", 3GPP TSG-RAN WG2 MEETING #100, R2-1713184, 1 December 2017 (2017-12-01), XP051371984 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210219351A1 (en) * 2018-08-07 2021-07-15 Institute For Information Industry Base station and user equipment for early-data transmission in a random access procedure
US11678378B2 (en) * 2018-08-07 2023-06-13 Institute For Information Industry Base station and user equipment for early-data transmission in a random access procedure
US20210259021A1 (en) * 2020-02-13 2021-08-19 Asustek Computer Inc. Method and apparatus for fallback action of small data transmission in a wireless communication system

Also Published As

Publication number Publication date
CN110012551A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2019134593A1 (zh) 用户设备和相关方法
US11596019B2 (en) Wireless communication device and method
TWI583157B (zh) 傳送上行鏈路資訊的方法及裝置
US11382141B2 (en) Method for performing actions based on integrity check by user and user equipment performing actions based on integrity check
CN110958688B (zh) 用户设备及其执行的方法、基站及其执行的方法
EP3651503A1 (en) Communication control method
JP5295365B2 (ja) ランダムアクセス手順の失敗を検出する方法
US10986592B2 (en) Method related to power headroom report of user, user equipment, base station, and computer-readable medium
TWI622312B (zh) 處理無線資源控制連結的裝置及方法
JP2015165712A (ja) Macのリセットおよび再構成
EP3231242B1 (en) Access management of a communication device in a cellular network
US11445528B2 (en) Method implemented by user equipment and user equipment
WO2020192730A1 (zh) 用户设备及其执行的预配置上行资源发送方法
AU2018311884B2 (en) Method and device for resetting media access control layer
TW201803400A (zh) 處理與基地台的通訊的裝置及方法
WO2022022444A1 (zh) 由用户设备执行的方法以及用户设备
WO2020151650A1 (zh) 无线链路控制层的重置方法和用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897954

Country of ref document: EP

Kind code of ref document: A1