WO2019132549A1 - Method for preparing choline alfoscerate, usable as food raw material, from phosphatidylcholine or lecithin - Google Patents

Method for preparing choline alfoscerate, usable as food raw material, from phosphatidylcholine or lecithin Download PDF

Info

Publication number
WO2019132549A1
WO2019132549A1 PCT/KR2018/016779 KR2018016779W WO2019132549A1 WO 2019132549 A1 WO2019132549 A1 WO 2019132549A1 KR 2018016779 W KR2018016779 W KR 2018016779W WO 2019132549 A1 WO2019132549 A1 WO 2019132549A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
choline alfoscerate
phosphatidylcholine
reaction
lipase
Prior art date
Application number
PCT/KR2018/016779
Other languages
French (fr)
Korean (ko)
Inventor
김병희
김정은
이정은
송예진
이수정
김도희
Original Assignee
숙명여자대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170182418A external-priority patent/KR101995643B1/en
Priority claimed from KR1020170182417A external-priority patent/KR101995642B1/en
Application filed by 숙명여자대학교산학협력단 filed Critical 숙명여자대학교산학협력단
Publication of WO2019132549A1 publication Critical patent/WO2019132549A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/082Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/087Acrylic polymers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P9/00Preparation of organic compounds containing a metal or atom other than H, N, C, O, S or halogen

Definitions

  • the present invention relates to a process for the preparation of choline alfoscerate which is available as a food source from phosphatidylcholine or lecithin.
  • Choline alfoscerate is a substance called L- ⁇ -glycerylphosphorylcholine ( sn -glycero-3-phosphocholine), which is a phosphatidylcholine (1,2-diacyl- sn -glycero -3-phosphocholine) in which two acyl groups are removed.
  • Choline alfoscerate is an in vivo precursor of the neurotransmitter acetylcholine and phosphatidylcholine, a major component of the cell membrane, and is used as a cognitive enhancer in patients with dementia such as stroke and Alzheimer's disease. Choline alfoscerate was approved by the US FDA as GRAS in November 2012 (GRN No. 419). On the other hand, the use of choline alfoscerate as a food additive or health functional food raw material has not yet been recognized in Korea.
  • Chemical synthesis can be carried out by deacylation of phosphatidylcholine or condensation reaction of glycerol derivative (eg, glycidol, solketal) with phosphocholine donor using an organic solvent as a reaction medium in the presence of a base (eg, Tetrabutylammonium hydroxide (TBAI) .
  • a base eg, Tetrabutylammonium hydroxide (TBAI)
  • phospholipase A 1 phospholipase A 1
  • sn -1 3-site specific lipase
  • phospholipase A 2 phospholipase A 2
  • choline alfoscerate was prepared by hydrolyzing 0.5 g of egg yolk phosphatidylcholine in 100 mL of Tris buffer using sn -1,3 -position specific lipase and phospholipase A 2 as reaction catalysts.
  • Organic solvent extraction and column chromatography are mainly used for the separation and purification of choline alfoscerate synthesized by chemical or enzymatic methods.
  • the organic solvent extraction method is a method of separating and purifying choline alfoscerate by selectively extracting and removing substances having lower polarity than choline alfoscerate using ether, methanol or the like.
  • Column chromatography is a method of sequentially separating and purifying substances in a reaction product such as choline alfoscerate using a polar phase fixed bed (silica, ion exchange resin, etc.) using an organic solvent such as methanol or chloroform as a mobile phase .
  • organic solvents such as ether, methanol and chloroform are not defined as extraction solvents that can be used in the production of functional food ingredients in food circulation or food additive circulation.
  • the standard must be set to control the amount of residual solvent in the production of the product.
  • the present invention relates to a method for producing choline alfoscerate usable as a food raw material from phosphatidylcholine and choline alfoscerate prepared thereby. More specifically, the present invention relates to a method of 1) hydrolyzing phosphatidylcholine under enzyme catalysis using a reaction medium in which water and hexane, which are extraction solvents usable for the production of food raw materials, are used to obtain choline alfoscerate, and 2) The present invention relates to a method for separating and purifying choline alfoscerate with high purity by extracting choline alfoscerate obtained only by the separation process or by extracting choline alfoscerate obtained by using water which is an additional extraction solvent which can be used for producing food raw materials .
  • the present invention also relates to a process for preparing choline alfoscerate which can be used as a food raw material from lecithin and choline alfoscerate prepared thereby. More specifically, the present invention relates to a method for preparing lecithin as a raw material substrate from lecithin, 2) hydrolyzing fractionated lecithin under enzyme catalysis using a reaction medium in which water and hexane, which are extractable solvents, And 3) extracting choline alfoscerate obtained by simply separating the reaction medium from the reaction medium, or adding choline alfoscerate obtained by using water as an extraction solvent which can additionally be used for the production of food ingredients To extract and purify choline alfoscerate.
  • the present invention provides a method for producing a lipase, comprising: 1) adding a mixed solvent of water and hexane and a lipase enzyme to phosphatidylcholine, followed by hydrolysis; 2) removing the lipase enzyme from the reaction product; 3) separating the reactants in step 2); And 4) recovering the water layer from the layered reactant to obtain a water fraction.
  • the present invention also relates to a method for producing lecithin comprising the steps of 1) adding ethanol to lecithin and obtaining an ethanol fraction to prepare fractionated lecithin; 2) adding a mixed solvent of water and hexane and a lipase enzyme to the prepared fractionated lecithin, and hydrolyzing the fraction; 3) removing the lipase enzyme from the reaction product; 4) separating the reaction product of step 3); And 5) recovering the water layer from the layered reactant to obtain a water fraction.
  • the present invention provides choline alfoscerate which can be used as a food raw material produced by the above method.
  • the present invention provides a health functional food for improving cognitive function containing choline alfoscerate as an active ingredient.
  • the present invention relates to a process for the production of choline alfoscerate which can be used as a food raw material from phosphatidylcholine or lecithin.
  • the process for producing choline alfoscerate according to the present invention is characterized by high purity (98 to 99 Weight%) of choline alfoscerate can be effectively produced.
  • the reaction medium is composed of solvents which can be used for food production. After completion of the reaction, it is possible to separate and purify choline alfoscerate with high purity only by simply separating the reaction medium from the reaction medium. Therefore, choline alpase Rate can be effectively produced.
  • the choline alfoscerate prepared by the method of the present invention can be usefully used as a health-aid material such as a cognitive function improving agent for dementia patients.
  • FIG. 1 is a schematic representation of the lipase catalytic hydrolysis of phosphatidylcholine for the production of choline alfoscerate.
  • FIG. 2 is a flow chart generally showing a process for producing choline alfoscerate including an enzyme reaction step of phosphatidylcholine and an isolation purification step.
  • Figure 3 shows the choline alfoscerate content in the reaction product of the hydrolysis of soybean phosphatidylcholine according to the enzyme type (Novozyme 435, Lipozyme® RM IM, Lipozyme® TL IM, immobilized Candida rugosa lipase, Lecitase® Ultra) Fig.
  • FIG. 4 is a graph showing the content of choline alfoscerate in the reaction product of the hydrolysis reaction of soybean phosphatidylcholine as a function of reaction time according to the ratio of water in the reaction medium (20-400% relative to the weight of soybean phosphatidylcholine).
  • Figure 5 shows the results of analysis of the soybean phosphatidylcholine substrate used in the production of choline alfoscerate and the reaction products and the purified products obtained during the production of choline alfoselate using a liquid chromatography-vaporization light scattering detector (LC-ELSD) system This is the chromatogram obtained.
  • PC phosphatidylcholine
  • FFA free fatty acid.
  • FIG. 6 is a flow chart that entirely illustrates the preparation process of choline alfoscerate, including an enzymatic reaction step of lecithin and an isolated purification step.
  • FIG. 7 is a graph showing the content of choline alfoscerate and the content of glycerophosphodiester in a reaction product obtained by hydrolysis of soybean phosphatidylcholine and fractionated soybean lecithin under the Novozym 435 catalyst, which is a reaction-compatible enzyme, as a function of reaction time.
  • Figure 8 shows the chromatograms obtained by analyzing the substrate used for the production of choline alfoscerate and the reaction products and the purified products obtained during the production of choline alfoselate using a liquid chromatography-vaporization light scattering detector (LC-ELSD) system Grams.
  • PC phosphatidylcholine
  • FFA free fatty acid
  • GPL glycerophospholipids
  • GD glycerophosphodiesters.
  • the inventors of the present invention found that when choline alfoscerate is prepared by hydrolyzing soybean phosphatidylcholine using a mixed solvent of water and n- hexane as a reaction medium and phospholipase A 1 as a reaction catalyst, (Bang et al., Food Chem., 190, 201-206, 2016) that the solubility of soybean phosphatidylcholine in the reaction medium was greatly increased (by dissolving phosphatidylcholine to 21 g per 100 mL of the reaction medium).
  • choline alfoscerate was separated and purified by column chromatography using a mixed solvent of methanol and water as a mobile phase by extracting and removing the free fatty acids produced by using ether after the reaction Respectively.
  • the method of producing choline alfoscerate used in this prior study is not suitable for food production because the reaction time is long (eg, 30 hours) and choline alfoscerate is separated and purified using an extraction solvent that is not usable for food production. It is difficult to use it as a food raw material.
  • the present invention relates to a method for producing a polyhydroxyalkanoate comprising the steps of: 1) adding a mixed solvent of water and hexane and a lipase enzyme to phosphatidylcholine, followed by hydrolysis; 2) removing the lipase enzyme from the reaction product; 3) separating the reactants in step 2); And 4) recovering the water layer from the layered reactant to obtain a water fraction.
  • the lipase can be a sn-position nonspecific lipase, more preferably Candida antarctica lipase B, and even more preferably a macroporous anionic but not limited to, Candida antarctic lipase B, which uses a resin as an immobilization carrier.
  • the amount of water in the mixed solvent of water and hexane may be 20 to 400% by weight based on the weight of phosphatidylcholine, but is not limited thereto.
  • the amount of the lipase enzyme may be 5-15 wt% based on the weight of phosphatidylcholine, but is not limited thereto.
  • the hydrolysis reaction is carried out at 50 to 55 ° C for 2 to 12 hours, but is not limited thereto.
  • the amount of water in the mixed solvent of water and hexane is 100 to 200% by weight based on the weight of phosphatidylcholine
  • the amount of the lipase enzyme is 5 to 10% by weight based on the weight of phosphatidylcholine, For 6 hours, but is not limited thereto.
  • the step 3) may further include a step of further separating by adding water and hexane in a volume ratio of 1: 1, but the present invention is not limited thereto.
  • the step of obtaining the water fraction of step 4) may be to remove the free fatty acid present in the hexane layer.
  • choline alfoscerate prepared by the above method can be used as a food raw material.
  • the fractionated lecithin is prepared by adding ethanol to lecithin, stirring the mixture at 60 to 65 ° C for 10 minutes to 1 hour, removing ethanol from the supernatant obtained by centrifuging to obtain an ethanol fraction , but is not limited thereto.
  • the fractionated lecithin may be removed to neutral lipids.
  • the lipase can be a sn-position nonspecific lipase, more preferably Candida antarctica lipase B, and even more preferably a macroporous anionic but not limited to, Candida antarctic lipase B, which uses a resin as an immobilization carrier.
  • the amount of water in the mixed solvent of water and hexane may be 20 to 200% by weight based on the weight of phosphatidylcholine, but is not limited thereto.
  • the amount of the lipase enzyme may be 5-15 wt% based on the weight of phosphatidylcholine, but is not limited thereto.
  • the hydrolysis reaction is carried out at 50 to 55 ° C for 2 to 12 hours, but is not limited thereto.
  • the step 4) may further include a step of further separating by adding water and hexane in a volume ratio of 1: 1, but the present invention is not limited thereto.
  • the step of obtaining the water fraction of step 5) may be to remove the free fatty acid present in the hexane layer.
  • the water fraction in step 5 may contain glycerophosphodiesters containing choline alfoscerate.
  • choline alfoscerate prepared by the above method can be used as a food raw material.
  • phosphatidylcholine (1,2-diacyl- sn -glycero-3-phosphocholine) is a kind of glycerophospholipids, and glycerol, fatty acid, phosphoric acid and choline [CH 2 CH 2 N + 3 ) 3 ], and is a major component of the cell membrane of all animals and plants.
  • the phosphatidylcholine may be purchased and used in the market, or may be directly separated and purified from soybean oil or yolk by a known method in the art.
  • &quot lecithin &quot
  • lecithin &quot is a by-product obtained when purifying egg yolk or soybean oil, and contains glycine phospholipids such as phosphatidylcholine in a large amount and is mainly used as an emulsifier in processed foods such as margarine, chocolate and ice cream, and pharmaceuticals, cosmetics and feed.
  • the fractionated lecithin of the present invention can be prepared either directly or by purchasing fractionated lecithin, which is commercially available.
  • fractionated lecithin containing a large amount of phosphatidylcholine can be prepared by completely removing neutral lipids from lecithin. It is preferable that the content of phosphatidylcholine is as high as possible.
  • soybean lecithin having a phosphatidylcholine content of 10 to 20% by weight or egg yolk lecithin containing 60 to 80% by weight of a higher content of phosphatidylcholine can be used.
  • choline alfoscerate is a substance called L- ⁇ -glycerylphosphorylcholine ( sn -glycero-3-phosphocholine), which is obtained from phosphatidylcholine by two acyl groups group is removed and is represented by the following formula (2).
  • Choline alfoscerate is an in vivo precursor of the neurotransmitter acetylcholine and phosphatidylcholine, a major component of the cell membrane, and is used as a cognitive enhancer in patients with dementia such as stroke and Alzheimer's disease.
  • the phosphatidylcholine is a substrate
  • the mixed solvent of water and hexane is a reaction medium
  • the lipase enzyme acts as a catalyst.
  • Hexane in the reaction medium serves to 1) increase the efficiency and productivity of the phosphatidylcholine, which is a substrate, by increasing the efficiency of the reaction and 2) to dissolve the free fatty acid in the reaction product during the separation of the reaction medium for purification of the reaction product .
  • the water in the reaction medium serves to 1) be used as a substrate for the hydrolysis reaction and 2) to dissolve the choline alfoscerate in the reaction product in the layer separation process of the reaction medium for the purification of the reaction product.
  • the fractionated lecithin is a substrate
  • the mixed solvent of water and hexane is a reaction medium
  • the lipase enzyme acts as a catalyst.
  • hexane increases the solubility of the fractionated lecithin as a substrate to increase the efficiency and productivity of the reaction, and 2) dissolves the free fatty acid in the reaction product in the separation of the reaction medium for purification of the reaction product. do.
  • the water in the reaction medium serves to 1) be used as a substrate for the hydrolysis reaction and 2) to obtain glycerophosphodiesters containing choline alfoscerate in the reaction product by layer separation of the reaction medium for purification of the reaction product .
  • a mixed solvent of water and hexane was used as the reaction medium, and the amount of hexane in the mixed solvent was preferably about 260% (i.e., 4 mL per gram of the substrate) of the fractionated lecithin used as the substrate,
  • the amount may preferably be 20 to 400% by weight relative to the weight of phosphatidylcholine used as the substrate, but the lower the amount of water, the slower the reaction rate, while if the amount of water is too high, the leaching from the solid support promotes , And more preferably 100 to 200% by weight (that is, 1 to 2 mL / g of phosphatidylcholine) relative to the weight of phosphatidylcholine.
  • the reaction medium may be composed of hexane and water in a volume ratio of 4: 1.
  • a mixed solvent of water and hexane was used as the reaction medium, and the amount of hexane in the mixed solvent was preferably about 260% (i.e., 4 mL per gram of the substrate) of the fractionated lecithin used as the substrate, The amount may be 20 to 200% by weight based on the weight of the fractionated lecithin. However, the lower the amount of water, the slower the reaction rate.
  • the reaction medium may be composed of hexane and water in a volume ratio of 4: 1.
  • the steps 3) and 4) are steps of separating the reaction medium which is a mixed solvent of water and hexane to obtain choline alfoscerate produced from phosphatidylcholine And recovering the choline alfoscerate dissolved in the water layer after layer separation.
  • the reaction product obtained from the phosphatidylcholine can be filtered to obtain a reaction product from which the enzyme has been removed.
  • the reaction product is dissolved in a reaction medium composed of water and hexane, which are solvents that can be used in food production.
  • the free fatty acid generated by the hydrolysis of phosphatidylcholine is present in the hexane layer and the choline alfoscerate is dissolved in the water layer.
  • the reaction medium is allowed to stand at room temperature for 30 minutes to separate the water layer, and then dried using a rotary vacuum concentrator or the like to separate and purify only the choline alfoscerate available as a food raw material.
  • the choline alfoscerate content of the purified product (water fraction) obtained after the separation and purification step of the reaction product obtained from the phosphatidylcholine according to the present invention may be 98% by weight or more.
  • the steps 4) and 5) are a step of separating the reaction medium which is a mixed solvent of water and hexane to obtain choline alfoscerate produced from the fractionated lecithin And recovering the choline alfoscerate dissolved in the water layer after layer separation.
  • the reaction product is allowed to stand overnight at 4 to 23 ° C, and then filtered to obtain a reaction product from which the enzyme has been removed. The reason for this is that the final purified product of the reaction product obtained through the settling process exhibits a higher glycerophosphoester content than the final purified product obtained by filtration immediately after the completion of the reaction.
  • the reaction product is dissolved in a reaction medium composed of water and hexane, which are solvents that can be used for food production.
  • a reaction medium composed of water and hexane, which are solvents that can be used for food production.
  • the free fatty acid generated by the hydrolysis of phosphatidylcholine is present in the hexane layer and the glycerophosphodiester Is dissolved in the water layer. Therefore, the reaction medium is left at room temperature for 30 minutes to separate the water layer, and then dried using a rotary vacuum concentrator or the like to separate and purify only the glycerophosphoester containing choline alfoscerate can do.
  • the glycerophosphodiester content of the purified product (water fraction) obtained after the separation and purification step of the reaction product obtained from the fractionated lecithin according to the present invention, including choline alfoscerate, may be 50% by weight or more.
  • the final purified product of the reaction product obtained from the phosphatidylcholine may contain 98-99% by weight of choline alfoscerate.
  • the final purified product of the reaction product obtained from the fractionated lecithin may contain, in addition to choline alfoscerate, L-? -Glycerylphosphorylinositol, L-? -Glycerylphosphoryl And 50-70% by weight of glycerophosphodiesters such as L-alpha-glycerylphosphorylethanolamine.
  • the present invention provides choline alfoscerate which can be used as a food raw material produced by the above method.
  • the purified product of the reaction product obtained from the phosphatidylcholine contains choline alfoscerate in a high purity (98 to 99% by weight), so that it can have a major physiological activity of choline alfoscerate.
  • the purified product of the reaction product obtained from the fractionated lecithin contains 50 to 70% by weight of glycerophosphoester including choline alfoscerate, and thus may have a major physiological activity of choline alfoscerate.
  • Rate may be usefully used in the field of production of foods, medicines and the like containing the above-mentioned effects.
  • the purified product of the reaction product obtained from phosphatidylcholine or lecithin in the present invention is water-soluble as a water fraction, and thus may be usefully used in the production of liquid foods (drinks, tea, etc.) and pharmaceuticals.
  • the present invention provides a health functional food for improving cognitive function containing choline alfoscerate as an active ingredient.
  • the composition can be used as a pharmaceutical composition for improving cognitive function, a food composition, a food additive composition or a health supplement food composition containing the choline alfoscerate as an active ingredient.
  • the form of the health functional food in the present invention is not particularly limited. It can be manufactured in various forms including beverage, granule, tablet, powder, ring, capsule, wire, noodles, confectionery, meat, fish, herb, stew, rice and the like by mixing known ingredient, food additive and the like.
  • the health functional foods of the present invention may contain conventional food additives and, unless otherwise specified, whether or not they are suitable as food additives are subject to the provisions of the General Food and Drug Administration approved by the Food and Drug Administration, Shall be determined according to the relevant standards and standards.
  • the food additives include sugars such as monosaccharides, disaccharides, polysaccharides and sugar alcohols and flavorings such as tau martin, stevia extract, saccharin and aspartame, nutrients, vitamins, edible electrolytes, flavors, coloring agents, , Chocolate, etc.), pectic acid, alginic acid, organic acid, protective colloid thickening agent, pH adjusting agent, stabilizer, preservative, glycerin, alcohol and carbonating agent.
  • sugars such as monosaccharides, disaccharides, polysaccharides and sugar alcohols and flavorings such as tau martin, stevia extract, saccharin and aspartame, nutrients, vitamins, edible electrolytes, flavors, coloring agents, , Chocolate, etc.
  • pectic acid alginic acid, organic acid, protective colloid thickening agent, pH adjusting agent, stabilizer, preservative, glycerin, alcohol and carbonating agent.
  • the health functional food in tablet form may be prepared by granulating a mixture obtained by mixing the active ingredient (choline alfoscerate) of the present invention with an excipient, a binder, a disintegrant, and other additives in a usual manner, Or the mixture can be directly compression-molded.
  • the health functional food of the tablet form may contain a sweetener or the like as needed.
  • the hard capsule of the capsule type health functional food can be prepared by filling the normal hard capsule with the active ingredient of the present invention (choline alfoscerate), and the soft capsule is prepared by mixing the active ingredient with an additive such as an excipient Such as gelatin, into a capsule base.
  • the soft capsule may contain a plasticizer such as glycerin or sorbitol, a coloring agent, a preservative and the like, if necessary.
  • the ring-shaped health functional food can be prepared by molding a mixture of the active ingredient (choline alfoscerate) of the present invention, an excipient, a binder, a disintegrant, and the like by a conventionally known method and, if necessary, It may be applied to the skin, or the surface may be coated with a substance such as starch or talc.
  • the granular health functional food may be prepared by granulating a mixture of the active ingredient (skin care agent) of the present invention with an excipient, a binder, a disintegrant, etc. by a conventionally known method and, if necessary, adding a flavoring agent, ≪ / RTI >
  • the health functional food of the present invention is manufactured and processed in the form of tablets, capsules, powders, granules, liquids, and rings, and is easy to carry, and is easy to take at anytime and anywhere.
  • Soybean phosphatidylcholine (purity> 97%) used in the following experiments was purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA); Soybean lecithin is available from Ilshinwells Co. (Cheongwon, Korea); Novozym 435 [ Candida antarctica lipase B immobilized on a macroporous anionic resin (Lewatit VP OC 1600), Lipozyme RM IM ( Rhizomucor miehei lipase immobilized on an ion-exchange resin, Lipozyme TL IM ( Thermomyces lanuginosus lipase immobilized on silica gel) and Lecitase Ultra (phospholipase A1 from T.
  • Candida antarctica lipase B immobilized on a macroporous anionic resin Lewatit VP OC 1600
  • Lipozyme RM IM Rhizomucor miehei lipas
  • lanuginosus / Fusarium oxysporum were purchased from Novozymes A / S (Bagsvaerd, Denmark); Candida rugosa lipase immobilized on Immobead 150 was purchased from Sigma-Aldrich Chemical Co. (St. Louis, Mo., USA).
  • the fatty acid composition of commercial soybean phosphatidylcholine used as a substrate of the enzyme reaction for producing choline alfoscerate in the present invention is shown in Table 1 below.
  • the main fatty acids of soybean phosphatidylcholine were linoleic acid (62.6 mol%), palmitic acid (15.1 mol%) and oleic acid (11.0 mol%) and the total unsaturated fatty acid content was 81.3 mol%.
  • the choline alfoscerate of the present invention was prepared by hydrolysis using commercially available soybean phosphatidylcholine as a substrate and a mixed solvent of water and hexane as a reaction medium and using lipase as a catalyst.
  • lipozyme RM IM and lipozyme TL IM have sn -1,3 position specificity of neutral fat or phospholipid.
  • Novogym 435 and Candida lucosa lipase are lipases having no specificity in the sn positions of neutral fat or phospholipids.
  • soybean phosphatidylcholine was placed in a batch reactor (15 cm ⁇ 5 cm id), 20 mL of a mixed solvent of water and hexane (16 mL of hexane + 4 mL of water) and 0.4 g of each lipase (10% of substrate weight)
  • the reaction temperature was kept constant by a constant temperature circulating water bath connected to the water jacket of the reactor.
  • the reaction time was set at least 2 hours to 12 hours.
  • the reaction product samples were taken at 0.2, 0.2, and 0.2 hours at reaction times 0, 2, 4, 6, 8, 10, and 12 hours, respectively.
  • a LiChrosorb Si 60 column (250 mm ⁇ 4 mm i.d., 5 ⁇ m particle size, Merck, Darmstadt, Germany) was used as a column and detected using an evaporative light scattering detector (ELSD).
  • the sample injection amount was 20 ⁇ L and the flow rate of the mobile phase was 1 mL / min.
  • the drift tube temperature of ELSD was 60 ° C and nitrogen was supplied at a flow rate of 1.5 L / min.
  • the content of choline alfoscerate in the reaction product measured by the above method was calculated as a function of the reaction time as a percentage of the total content of phosphatidylcholine, lysophosphatidylcholine and choline alfoscerate in the reaction product.
  • the hydrolysis reaction of phosphatidylcholine occurred only when noborg 435 and Lecitase Ultra were used as catalysts. Especially, in the case of noborg 435 catalytic hydrolysis, phosphatidylcholine completely hydrolyzed And converted to choline alfoscerate. On the other hand, in the case of lipozyme RM IM, lipozyme TL IM and Candida lucosa lipase, the hydrolysis reaction of phosphatidylcholine did not occur within the reaction time range.
  • noborg 435 an sn -position specific lyticase, was an enzyme suitable for producing choline alfoscerate.
  • the amount of water in the medium suitable for the Novogym 435 catalytic hydrolysis reaction and the optimal reaction conditions were further investigated in the following experiment, and the suitability of the phosphatidylcholine as a substrate was compared and evaluated.
  • hydrolysis reaction was carried out using noborg 435, which was shown to have the best suitability for reaction with soybean phosphatidylcholine as a substrate.
  • the reaction temperature was maintained at 50 ° C and the amount of water in the medium was maintained while maintaining the amount of enzyme at 10% of the weight of the substrate phosphatidylcholine (20-400% relative to the weight of phosphatidylcholine) in the reaction product.
  • soybean phosphatidylcholine was placed in a batch reactor (15 cm ⁇ 5 cm id), and 16.8 to 32 mL of a mixed solvent of water and hexane (16 mL of hexane + 0.8, 1.6, 2.4, 3.2, ), Novogym 435 0.4 g (10% of substrate weight) was added and stirred at a reaction temperature of 50 ⁇ at a speed of 600 rpm.
  • the reaction temperature was kept constant by a constant temperature circulating water bath connected to the water jacket of the reactor.
  • the reaction time was set at least 1 hour to 6 hours.
  • the reaction product samples were taken at 0, 1, 2, 3, 4, 5 and 6 hours.
  • the content of choline alfoscerate in the reaction product was measured in the same manner as in Example ⁇ 2-1>, and the content of choline alfoscerate in the reaction product according to the amount of water in the medium was measured by using phosphatidylcholine, lysophosphatidylcholine, The percentage of total content of serrate was calculated as a function of reaction time.
  • the choline alfoscerate content of the reaction product obtained at the reaction time of 5 hours when the amount of water was 80% based on the weight of the substrate was 97.2 wt%
  • the choline alfoscerate content of the reaction product obtained at the reaction time of 6 hours was 100.0 wt% .
  • the amount of water was 100%, 200%, 300%, and 400% of the substrate weight
  • the choline alfoscerate contents of the reaction products obtained at the reaction time of 4 hours were 79.3 wt%, 99.7 wt%, 99.7 wt%, 99.9 wt% %
  • the choline alfoscerate content of the reaction product obtained at the reaction time of 5 hours was 100.0% by weight.
  • the phosphatidylcholine completely converted to choline alfoscerate within 5 hours of reaction time when the amount of water was 100% or more of the substrate weight. Based on the above results, the amount of water in the medium suitable for producing choline alfoscerate was selected as 100% or more of the substrate weight.
  • the experiment was designed using a central composite circumscribed (CCC) design with a star point at a distance of 1.414 from the center point of the central composite design.
  • the independent variables for the optimal reaction conditions for the production of choline alfoscerate are the reaction temperature (50-55 ° C), the reaction time (3-5 hours), the amount of water in the medium (100-200% of the weight of phosphatidylcholine) 5 to 15% by weight), and the dependent variable was the choline alfoscerate content (wt%) of the reaction product.
  • the experimental range of each independent variable was coded in five stages of +1.414, +1, 0, -1, -1.414, and 27 items including 16 factorial points, 8 axis points, and 3 center points After setting the conditions, enzyme reaction was performed under each condition.
  • the second-order regression model which predicts the effect of the above four reaction conditions on choline alfoscerate content, is as follows.
  • Y was the dependent variable, ie, choline alfoscerate content
  • X i was the independent variable and was the temperature (Te), the reaction time (RT), the amount of water in the medium (WC) and the enzyme amount (En).
  • the content of choline alfoscerate in the reaction product was measured in the same manner as in Example ⁇ 2-1>, and the content of choline alfoscerate in the reaction product according to the amount of water in the medium was measured by using phosphatidylcholine, lysophosphatidylcholine, Calculated as a percentage of the total content of serrate.
  • the range of the choline alfoscerate content of the reaction product obtained at 27 reaction conditions was 1.0 to 100.0% by weight.
  • the quadratic polynomial regression model showing the relationship between the four reaction factors and the choline alfoscerate content was statistically significant at the 0.01% significance level and evaluated as appropriate at the 5% significance level.
  • the coefficient of determination of the model was calculated as another index to evaluate the fit of the second polynomial regression model.
  • Regression coefficient indicator decision indicating how well the fit to the data used in the derivation of the regression model (R 2) value and the adjusted coefficient of determination (adjusted R 2) value respectively 0.8298 and 0.7787 were regression model the response to the new observation (Q 2 ), which is an indicator of how well we predicted, is 0.6965. Therefore, the explanatory power and the predictive power of the regression model were evaluated to be excellent.
  • the independent variables used in the derivation of the regression model for the novolac 435 catalytic hydrolysis of phosphatidylcholine for the production of choline alfoscerate were selected using the backward elimination method.
  • the reaction temperature (Te), the reaction time (RT), the amount of water in the medium (WC) and the amount of enzyme (En) considered as reaction factors affecting the choline alfoscerate content of the hydrolyzed product of phosphatidylcholine
  • the linear term, the quadratic term that is the square of these factors, and the interaction term between these factors are all inserted into the model as explanatory variables.
  • Regression models for choline alfoscerate content were derived by leaving only significant explanatory variables in the model.
  • the absolute value of the coefficients of the finally selected independent variables in each regression model means the relative influence on the dependent variable, choline alfoscerate content.
  • Second-order regression model for Novogem 435 catalytic hydrolysis of phosphatidylcholine Effect Coefficient p-value Intercept 79.06 ⁇ 0.0001 Linear term Te 12.33 0.0124 RT 28.73 ⁇ 0.0001 WC 15.45 0.0026 En 22.99 ⁇ 0.0001 Quadratic term RT * RT -14.69 0.0396 En * En -14.14 0.0468
  • reaction conditions other than the 27 reaction conditions in Table 2 were additionally set in a given range of the independent variables, and the content of choline alfoscerate in the reaction products obtained under these conditions was regressed Were compared with the choline alfoscerate content predicted using the parental format.
  • the prediction error of the regression model for the choline alfoscerate content ranged from 0.6 to 61.4%.
  • the prediction error of choline alfoscerate content of reaction products obtained at 5 ⁇ 10 conditions with relatively large predicted values was relatively low as 0.6 ⁇ 24.6%.
  • the use of the second regression model derived from the present invention establishes an optimal reaction condition that maximizes the amount of choline alfoscerate produced, so the above regression model is evaluated to be valid.
  • the optimal reaction conditions for the Novogem 435 catalytic hydrolysis of phosphatidylcholine, which maximizes the production of choline alfoscerate were established using the regression model derived from the present invention.
  • the optimum conditions for the reaction temperature, reaction time, amount of water in the medium and amount of enzyme in the reaction products were determined.
  • the optimum conditions were determined by using Optimization function of Design Expert 8.0 program.
  • the content of choline alfoscerate in the reaction product obtained in the above experiment was examined.
  • the amount of water in the reaction medium according to the present invention increases, the stability of the noborg 435 decreases, which makes it difficult to recover the noborg 435 after the reaction. Therefore, in the present invention, the amount of water in the medium is relatively low (Reaction temperature 55 ° C, reaction time 4.9 hours, amount of water 105.9% by weight in the medium, amount of enzyme 9.4% by weight) or similar conditions (reaction temperature 55 ° C, reaction time 6 hours, amount of water in the medium 100% was set as the optimal reaction condition for the Novogem 435 catalytic hydrolysis of phosphatidylcholine to maximize the production of choline alfoscerate.
  • Choline alfoscerate was isolated and purified by subjecting the crude product of soybean phosphatidylcholine produced by Novojim 435 catalytic hydrolysis reaction product prepared under the optimal reaction conditions set forth in the above Example ⁇ 3-1> to reaction and then separating the reaction medium.
  • a water fraction was prepared from the reaction product obtained by hydrolyzing soybean phosphatidylcholine under novolac 435 catalyst, and the choline alfoscerate content of the fraction was measured.
  • soybean phosphatidylcholine was placed in a batch reactor (15 cm ⁇ 5 cm id), 20 mL of a mixed solvent of water and hexane (16 mL of hexane + 4 mL of water) and 0.4 g of Novogym 435 (10% of substrate weight)
  • the reaction was carried out at a reaction temperature of 55 ° C at 600 rpm for 6 hours with stirring.
  • the reaction temperature was kept constant by a constant temperature circulating water bath connected to the water jacket of the reactor.
  • the reaction product was placed in a Buchner funnel with a filter paper, and filtration under reduced pressure was conducted to obtain a reaction product from which novoid 435 enzyme was removed.
  • the remaining reaction product in the reactor was further washed with 20 mL of water into the Buchner funnel and filtered. After filtration, the reaction product was put into a separatory funnel, and further, 20 mL of water and 20 mL of hexane were added, and the mixture was allowed to stand at room temperature for 30 minutes, and the reaction medium was separated into a hexane layer and a water layer.
  • the water layer is recovered and dried at 40 ° C using a rotary vacuum concentrator to purify the choline alpocellate Water (water fraction) was prepared.
  • the content of phosphatidylcholine, lysophosphatidylcholine and choline alfoscerate in the water fraction obtained from the reaction product of soybean phosphatidylcholine was measured in the same manner as in Example ⁇ 2-1>, and the content of each component was measured by phosphatidylcholine, Phosphatidylcholine and choline alfoscerate as a percentage of the total content.
  • the yield of the water fraction obtained from the reaction product of soybean phosphatidylcholine was 31.8% by weight with respect to the weight of soybean phosphatidylcholine choline as a raw material substrate and the choline alfoscerate content of the water fraction was 98.6% by weight.
  • the chemical composition of soybean lecithin used as a raw material in the present invention is shown in detail in Table 8 below.
  • the total lipid content including the glycerophospholipids of the soybean lecithin was ⁇ 90 wt%.
  • the content of phosphatidylcholine (PC) was the highest at ⁇ 15 wt%, and the content of phosphatidylinositol (PI; ⁇ 11 wt%), phosphatidylethanolamine (PE; weight%).
  • the content of lipids other than phospholipids such as neutral lipids was ⁇ 45 wt%.
  • fractionated soybean lecithin ethanol fraction of soy lecithin
  • the fractionated soybean lecithin prepared under the above fractionation conditions was confirmed to have completely removed the neutral lipids.
  • the yield of the obtained fractionated soybean lecithin was ⁇ 48 wt% based on the weight of soybean lecithin.
  • the obtained fractionated soybean lecithin was refrigerated at 4 ° C until use.
  • the major fatty acids of the fractionated soybean lecithin were 51.4 mol% linoleic acid (18: 2n-6), 23.3 mol% oleic acid (18: 1 n-9) and 16.5 mol% palmitic acid : 0) and the total unsaturated fatty acid content was 80.2 mol%.
  • the amount of choline alfoscerate produced in the Novogam 435 catalytic hydrolysis reaction was determined by using the fractionated soybean lecithin and the commercial soybean phosphatidylcholine prepared in Example ⁇ 5-2> as the substrate and the mixed solvent of water and hexane as the reaction medium, Respectively.
  • soybean phosphatidylcholine or fractionated soybean lecithin was placed in a batch reactor (15 cm ⁇ 5 cm id), and 20 mL of a mixed solvent of water and hexane (16 mL of hexane + 4 mL of water) and 0.4 g of Novogym 435 ) was added thereto, followed by stirring at a reaction temperature of 55 ° C at a speed of 600 rpm.
  • the reaction temperature was kept constant by a constant temperature circulating water bath connected to the water jacket of the reactor.
  • the reaction time was set at least 2 hours to 12 hours.
  • the reaction product samples were taken at 0.2, 0.2, and 0.2 hours at reaction times 0, 2, 4, 6, 8, 10, and 12 hours, respectively.
  • a LiChrosorb Si 60 column (250 mm ⁇ 4 mm i.d., 5 ⁇ m particle size, Merck, Darmstadt, Germany) was used as a column and detected using an evaporative light scattering detector (ELSD).
  • the sample injection amount was 20 ⁇ L and the flow rate of the mobile phase was 1 mL / min.
  • the drift tube temperature of ELSD was 60 ° C and nitrogen was supplied at a flow rate of 1.5 L / min.
  • the content of choline alfoscerate in the reaction product measured by the above method was calculated as a function of the reaction time as a percentage of the total content of phosphatidylcholine, lysophosphatidylcholine and choline alfoscerate in the reaction product.
  • GPL glycerophospholipids
  • PI phosphatidylinositol
  • PE phosphatidylethanolamine
  • Lysoglycerophospholipids such as lysophosphatidylinositol (LPI), lysophosphatidyl ethanolamine (LPE), and the like, which are produced from the glycerophospholipid species by the hydrolysis reaction of fractionated soybean lecithin and L- Glycerophosphodiesters (GD) such as L- ⁇ -glycerylphosphorylinositol and L- ⁇ -glycerylphosphorylethanolamine are known as lysophosphatidylcholine and choline alfoscerate
  • the phosphodiester content (including choline alfoscerate content) was measured and the content of each component The content was expressed as a function of the reaction time as a percentage of the total content of glycerophospholipid, lithoglycerol phospholipid and glycerophosphoester in the reaction product.
  • the production amount of glycerophosphoester (20.0 wt%) including choline alfoscerate by the hydrolysis reaction of the fractionated soybean lecithin before the reaction time of 2 hours before the hydrolysis reaction of soybean phosphatidylcholine was higher than that of choline alfoscerate (3.7% by weight).
  • soybean phosphatidylcholine was higher than that of fractionated soybean lecithin after 4 hours of reaction. Especially, soybean phosphatidylcholine is completely converted to choline alfoscerate after 6 hours of reaction, whereas when fractionated soybean lecithin is used as a substrate, glycerophospholipid (including phosphatidylcholine) is completely dissolved in glycerophosphate Ester (including choline alfoscerate).
  • the reaction products obtained from the fractionated soybean lecithin contained three kinds of unknown components (1, 2, and 3 in addition to glycerophosphoester (including choline alfoselate) Peak) were present together. Two of the three unknown components (peaks 1 and 2) were also contained in the fractionated soybean lecithin as a raw material substrate and one (peak 3) was determined to be produced during the reaction.
  • the glycerophosphoester (including choline alfoscerate) was separated from the reaction medium after the reaction by reacting the Novogem 435 catalytic hydrolysis product of the fractionated soybean lecithin prepared under the optimum conditions set up in the previous study Lt; / RTI >
  • a water fraction was prepared from the reaction product obtained by hydrolyzing fractionated soybean lecithin under Novogem 435 catalyst, and the content of glycerophosphoester (including choline alfoscerate) of the fraction was measured.
  • reaction product was placed in a Buchner funnel with a filter paper and filtered under reduced pressure to obtain a reaction product in which novoid 435 enzyme was removed.
  • the remaining reaction product in the reactor was further washed with 20 mL of water into the Buchner funnel and filtered. After filtration, the reaction product was put into a separatory funnel, and further, 20 mL of water and 20 mL of hexane were added, and the mixture was allowed to stand at room temperature for 30 minutes, and the reaction medium was separated into a hexane layer and a water layer.
  • the water layer is recovered and dried using a rotary vacuum concentrator at 40 ° C To give a purified product (water fraction) of glycerophosphoester (including choline alfoscerate).
  • the total glycerol content (including phosphatidylcholine content), the total lithoglycerol phospholipid content (including lysophosphatidylcholine content) and the total glycerophosphoester content (including choline alfoscerate content) in the water fraction obtained from the reaction product of fractionated soybean lecithin ) was measured in the same manner as in Example 7, and the content of each component was expressed as a percentage of the total content of glycerophospholipid, lithoglycerophospholipid and glycerophosphoester in the water fraction.
  • the yield of the water fraction obtained in the reaction product of the fractionated soybean lecithin was 12.0% by weight based on the weight of the fractionated soybean lecithin as the raw material substrate, and the glycerophosphate The ester content was 52.4 wt%.

Abstract

The present invention relates to a method for preparing choline alfoscerate, usable as a food raw material, from phosphatidylcholine or lecithin, and a choline alfoscerate preparation method according to the present invention uses a specific reaction medium and a specific catalytic enzyme, thereby enabling a high purity choline alfoscerate to be effectively prepared. Particularly, the preparation method allows a mixed solvent of water and hexane, which have high substrate solubility and an extraction solvent usable in the preparation of food raw materials, to be used as a reaction medium, and enables high purity purification of choline alfoscerate by only using a layer separation process of the reaction medium, thereby enhancing the productivity of choline alfoscerate to be greater than that of a conventional enzymatic synthesis method, having, unlike a conventional chemical synthesis method and a conventional purification method, very simple purification, and enabling the preparation of choline alfoscerate which is usable as a food raw material. Specifically, lecithin is a raw material of fractionated lecithin used as a substrate in the preparation method and is an inexpensive raw material obtained as a by-product in a soybean oil refining process and the like, and thus is expected to be greatly helpful in the commercialization of the preparation method in the future. In addition, choline alfoscerate prepared by the method according to the present invention can be effectively usable as a material for foods, pharmaceuticals and the like for improving cognitive function in patients having had a stroke and having dementia such as Alzheimer's disease.

Description

포스파티딜콜린 또는 레시틴으로부터 식품원료로 이용가능한 콜린알포세레이트의 제조방법Process for the production of choline alfoscerate, which is available as a food source from phosphatidylcholine or lecithin
본 발명은 포스파티딜콜린 또는 레시틴으로부터 식품원료로 이용가능한 콜린알포세레이트의 제조방법에 관한 것이다.The present invention relates to a process for the preparation of choline alfoscerate which is available as a food source from phosphatidylcholine or lecithin.
콜린알포세레이트(choline alfoscerate)는 L-α-글리세릴포스포릴콜린(L-α-glycerylphosphorylcholine; sn-glycero-3-phosphocholine)이라고도 불리는 물질로 포스파티딜콜린(phosphatidylcholine; 1,2-diacyl-sn-glycero-3-phosphocholine)으로부터 두 개의 아실기(acyl group)가 제거된 형태를 가진다. 콜린알포세레이트는 신경전달물질인 아세틸콜린(acetylcholine)과 세포막의 주요성분인 포스파티딜콜린의 생체 내 전구물질로 뇌졸중과 알츠하이머병 등의 치매 환자의 인지기능 개선제(cognitive enhancer)로 사용된다. 콜린알포세레이트는 2012년 11월에 미국 FDA에 의해 GRAS로 인정되었다(GRN No. 419). 반면에 국내에서는 콜린알포세레이트의 식품첨가물이나 건강기능식품 원료로의 사용이 아직까지 인정되지 않았다.Choline alfoscerate is a substance called L-α-glycerylphosphorylcholine ( sn -glycero-3-phosphocholine), which is a phosphatidylcholine (1,2-diacyl- sn -glycero -3-phosphocholine) in which two acyl groups are removed. Choline alfoscerate is an in vivo precursor of the neurotransmitter acetylcholine and phosphatidylcholine, a major component of the cell membrane, and is used as a cognitive enhancer in patients with dementia such as stroke and Alzheimer's disease. Choline alfoscerate was approved by the US FDA as GRAS in November 2012 (GRN No. 419). On the other hand, the use of choline alfoscerate as a food additive or health functional food raw material has not yet been recognized in Korea.
현재 콜린알포세레이트의 합성방법은 크게 화학적 방법과 효소적 방법이 있다. 화학적 합성법은 염기(e.g., Tetrabutylammonium hydroxide (TBAI)) 촉매 하에 유기용매를 반응매질로 하여 포스파티딜콜린의 탈아실화반응 또는 글리세롤 유도체(e.g., glycidol, solketal)와 포스포콜린 공여체 간의 축합반응으로 콜린알포세레이트를 제조하는 방법이다. 화학적 합성법은 반응의 효율성과 생산성이 높은 장점이 있으나 유독성의 기질과 촉매를 사용한다는 문제점이 있어 식품원료로 이용이 어려우며 최근의 세계적인 환경규제 강화와 친환경 제조기술 개발 추세에 부합하지 않는다. 이에 반해 효소적 합성법은 화학적 합성법에 비해 환경 친화적 대체기술로 주목을 받고 있는데 반응촉매로 포스포리파아제 A1(phospholipase A1)을 단독으로 사용하거나 sn-1,3 위치 특이성 리파아제(sn-1,3 specific lipase)와 포스포리파아제 A2(phospholipase A2)를 병용하여 pH 완충용액과 같은 수용액 매질에서 순수 포스파티딜콜린 또는 레시틴을 가수분해하여 콜린알포세레이트를 제조하는 방법이 널리 사용되고 있다. 하지만 이와 같은 기존의 효소반응 시스템은 레시틴 등의 기질이 수용액 매질에 대한 용해도가 낮기 때문에 화학적 합성법에 비해 반응의 효율성 및 생산성이 현저히 떨어지는 문제점이 있어 산업적으로 활용하기에는 많은 제한점이 있다. 예를 들어, 이전 보고에서는 sn-1,3 위치 특이성 리파아제와 포스포리파아제 A2를 함께 반응촉매로 사용하여 Tris buffer 100mL에서 난황 포스파티딜콜린 0.5g을 가수분해하여 콜린알포세레이트를 제조하였다.Currently, there are chemical and enzymatic methods for the synthesis of choline alfoscerate. Chemical synthesis can be carried out by deacylation of phosphatidylcholine or condensation reaction of glycerol derivative (eg, glycidol, solketal) with phosphocholine donor using an organic solvent as a reaction medium in the presence of a base (eg, Tetrabutylammonium hydroxide (TBAI) . The chemical synthesis method has advantages of high reaction efficiency and high productivity but it is difficult to use it as a food material because it uses a toxic substrate and a catalyst and does not meet the recent trend of strengthening environmental regulations and development of environmentally friendly manufacturing technology. In contrast, enzymatic synthesis has attracted attention as an eco-friendly alternative to chemical synthesis. As a reaction catalyst, phospholipase A 1 (phospholipase A 1 ) alone or sn -1, 3-site specific lipase ( sn- 3 specific lipase) and phospholipase A 2 (phospholipase A 2 ) are commonly used to produce choline alfoscerate by hydrolyzing pure phosphatidylcholine or lecithin in an aqueous medium such as a pH buffer solution. However, in the conventional enzyme reaction system, there is a problem that the reaction efficiency and productivity are significantly lower than those of the chemical synthesis method because the substrate such as lecithin has a low solubility in the aqueous medium, and thus there are many limitations in industrial application. For example, in previous reports, choline alfoscerate was prepared by hydrolyzing 0.5 g of egg yolk phosphatidylcholine in 100 mL of Tris buffer using sn -1,3 -position specific lipase and phospholipase A 2 as reaction catalysts.
화학적 또는 효소적 방법에 의해 합성된 콜린알포세레이트의 분리정제에는 주로 유기용매 추출법과 칼럼 크로마토그래피법이 이용되고 있다. 유기용매 추출법은 에테르, 메탄올 등을 이용하여 콜린알포세레이트보다 극성도가 낮은 물질들을 선택적으로 추출하여 제거함으로써 콜린알포세레이트를 분리정제하는 방법이다. 칼럼 크로마토그래피법은 주로 극성 고정상(실리카, 이온 교환수지 등)에서 메탄올, 클로로포름 등의 유기용매를 이동상으로 이용하여 콜린알포세레이트 등 반응산물 내 물질들을 극성도에 따라 순차적으로 분리정제하는 방법이다. 하지만 에테르, 메탄올, 클로로포름 등의 유기용매는 식품공전 또는 식품첨가물공전에서 기능성 식품원료의 제조에 사용될 수 있는 추출용매로 규정하고 있지 않으며 부득이하게 사용할 경우 제조공정 중 이를 제거하는 공정을 추가하고 그 잔류기준을 설정하여 제품생산 시 잔류 용매량을 관리해야 한다.Organic solvent extraction and column chromatography are mainly used for the separation and purification of choline alfoscerate synthesized by chemical or enzymatic methods. The organic solvent extraction method is a method of separating and purifying choline alfoscerate by selectively extracting and removing substances having lower polarity than choline alfoscerate using ether, methanol or the like. Column chromatography is a method of sequentially separating and purifying substances in a reaction product such as choline alfoscerate using a polar phase fixed bed (silica, ion exchange resin, etc.) using an organic solvent such as methanol or chloroform as a mobile phase . However, organic solvents such as ether, methanol and chloroform are not defined as extraction solvents that can be used in the production of functional food ingredients in food circulation or food additive circulation. Inevitably, The standard must be set to control the amount of residual solvent in the production of the product.
본 발명은 포스파티딜콜린으로부터 식품원료로 이용가능한 콜린알포세레이트를 제조하는 방법과 이를 통해 제조된 콜린알포세레이트에 관한 것이다. 보다 자세하게는 1) 식품원료 제조에 사용가능한 추출용매인 물과 헥산을 혼합한 반응매질을 사용하여 포스파티딜콜린을 효소촉매 하에 가수분해하여 콜린알포세레이트를 수득하는 방법과 2) 이 반응매질을 단순히 층 분리하는 과정만으로 수득된 콜린알포세레이트를 추출하거나 추가적으로 식품원료 제조에 사용가능한 추출용매인 물을 사용하여 수득된 콜린알포세레이트를 추출하여 콜린알포세레이트를 고순도로 분리정제하는 방법에 관한 것이다. The present invention relates to a method for producing choline alfoscerate usable as a food raw material from phosphatidylcholine and choline alfoscerate prepared thereby. More specifically, the present invention relates to a method of 1) hydrolyzing phosphatidylcholine under enzyme catalysis using a reaction medium in which water and hexane, which are extraction solvents usable for the production of food raw materials, are used to obtain choline alfoscerate, and 2) The present invention relates to a method for separating and purifying choline alfoscerate with high purity by extracting choline alfoscerate obtained only by the separation process or by extracting choline alfoscerate obtained by using water which is an additional extraction solvent which can be used for producing food raw materials .
또한, 본 발명은 레시틴으로부터 식품원료로 이용가능한 콜린알포세레이트를 제조하는 방법과 이를 통해 제조된 콜린알포세레이트에 관한 것이다. 보다 자세하게는 1) 레시틴으로부터 원료기질인 분별 레시틴을 준비하는 방법과, 2) 식품원료 제조에 사용가능한 추출용매인 물과 헥산을 혼합한 반응매질을 사용하여 분별 레시틴을 효소촉매 하에 가수분해하여 콜린알포세레이트를 수득하는 방법과, 3) 이 반응매질을 단순히 층 분리하는 과정만으로 수득된 콜린알포세레이트를 추출하거나 추가적으로 식품원료 제조에 사용가능한 추출용매인 물을 사용하여 수득된 콜린알포세레이트를 추출하여 콜린알포세레이트를 분리정제하는 방법에 관한 것이다.The present invention also relates to a process for preparing choline alfoscerate which can be used as a food raw material from lecithin and choline alfoscerate prepared thereby. More specifically, the present invention relates to a method for preparing lecithin as a raw material substrate from lecithin, 2) hydrolyzing fractionated lecithin under enzyme catalysis using a reaction medium in which water and hexane, which are extractable solvents, And 3) extracting choline alfoscerate obtained by simply separating the reaction medium from the reaction medium, or adding choline alfoscerate obtained by using water as an extraction solvent which can additionally be used for the production of food ingredients To extract and purify choline alfoscerate.
상기 목적을 달성하기 위하여, 본 발명은 1) 포스파티딜콜린에 물과 헥산의 혼합용매 및 리파아제 효소를 첨가한 후 가수분해 반응시키는 단계; 2) 상기 반응물로부터 리파아제 효소를 제거하는 단계; 3) 상기 2) 단계 반응물을 층 분리하는 단계; 및 4) 상기 층 분리된 반응물로부터 물층을 회수하여 물 분획물을 수득하는 단계를 포함하는 콜린알포세레이트 제조방법을 제공한다. In order to accomplish the above object, the present invention provides a method for producing a lipase, comprising: 1) adding a mixed solvent of water and hexane and a lipase enzyme to phosphatidylcholine, followed by hydrolysis; 2) removing the lipase enzyme from the reaction product; 3) separating the reactants in step 2); And 4) recovering the water layer from the layered reactant to obtain a water fraction.
또한, 본 발명은 1) 레시틴에 에탄올을 첨가하고, 에탄올 분획물을 수득하여 분별 레시틴을 제조하는 단계; 2) 상기 제조된 분별 레시틴에 물과 헥산의 혼합용매 및 리파아제 효소를 첨가한 후 가수분해 반응시키는 단계; 3) 상기 반응물로부터 리파아제 효소를 제거하는 단계; 4) 상기 3) 단계 반응물을 층 분리하는 단계; 및 5) 상기 층 분리된 반응물로부터 물층을 회수하여 물 분획물을 수득하는 단계를 포함하는 콜린알포세레이트 제조방법을 제공한다.The present invention also relates to a method for producing lecithin comprising the steps of 1) adding ethanol to lecithin and obtaining an ethanol fraction to prepare fractionated lecithin; 2) adding a mixed solvent of water and hexane and a lipase enzyme to the prepared fractionated lecithin, and hydrolyzing the fraction; 3) removing the lipase enzyme from the reaction product; 4) separating the reaction product of step 3); And 5) recovering the water layer from the layered reactant to obtain a water fraction.
또한, 본 발명은 상기 방법으로 제조된 식품원료로 이용가능한 콜린알포세레이트를 제공한다.In addition, the present invention provides choline alfoscerate which can be used as a food raw material produced by the above method.
또한, 본 발명은 상기 콜린알포세레이트를 유효성분으로 함유하는 인지기능 개선용 건강기능식품을 제공한다. In addition, the present invention provides a health functional food for improving cognitive function containing choline alfoscerate as an active ingredient.
본 발명은 포스파티딜콜린 또는 레시틴으로부터 식품원료로 이용가능한 콜린알포세레이트의 제조방법에 대한 것으로, 본 발명에 따른 콜린알포세레이트 제조방법은 특정 반응매질 및 특정 촉매 효소를 사용함으로써, 고순도(98~99중량%)의 콜린알포세레이트를 효과적으로 제조할 수 있다. 또한 상기 반응매질은 식품제조에 사용이 가능한 용매들로 구성되며 반응 종료 후 상기 반응매질을 단순히 층 분리하는 과정만으로 콜린알포세레이트를 고순도로 분리정제하는 것이 가능하므로 식품원료로 이용가능한 콜린알포세레이트를 효과적으로 제조할 수 있다. 또한 본 발명에 따른 방법으로 제조된 콜린알포세레이트는 치매 환자의 인지기능 개선제 등 건강보조를 위한 소재로 유용하게 사용될 수 있다.The present invention relates to a process for the production of choline alfoscerate which can be used as a food raw material from phosphatidylcholine or lecithin. The process for producing choline alfoscerate according to the present invention is characterized by high purity (98 to 99 Weight%) of choline alfoscerate can be effectively produced. In addition, the reaction medium is composed of solvents which can be used for food production. After completion of the reaction, it is possible to separate and purify choline alfoscerate with high purity only by simply separating the reaction medium from the reaction medium. Therefore, choline alpase Rate can be effectively produced. Also, the choline alfoscerate prepared by the method of the present invention can be usefully used as a health-aid material such as a cognitive function improving agent for dementia patients.
도 1은 본 콜린알포세레이트 제조를 위한 포스파티딜콜린의 리파아제 촉매 가수분해 반응을 간략하게 보여주는 반응식이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic representation of the lipase catalytic hydrolysis of phosphatidylcholine for the production of choline alfoscerate.
도 2는 포스파티딜콜린의 효소반응 단계 및 분리정제 단계를 포함하는 콜린알포세레이트의 제조 과정을 전체적으로 나타내는 흐름도이다.FIG. 2 is a flow chart generally showing a process for producing choline alfoscerate including an enzyme reaction step of phosphatidylcholine and an isolation purification step.
도 3은 효소 종류(Novozyme® 435, Lipozyme® RM IM, Lipozyme® TL IM, immobilized Candida rugosa lipase, Lecitase® Ultra)에 따른 대두 포스파티딜콜린의 가수분해 반응의 반응산물 내 콜린알포세레이트 함량을 반응시간의 함수로 나타낸 그래프이다.Figure 3 shows the choline alfoscerate content in the reaction product of the hydrolysis of soybean phosphatidylcholine according to the enzyme type (Novozyme 435, Lipozyme® RM IM, Lipozyme® TL IM, immobilized Candida rugosa lipase, Lecitase® Ultra) Fig.
도 4는 반응매질 내 물의 비율(대두 포스파티딜콜린 무게 대비 20~400%)에 따른 대두 포스파티딜콜린의 가수분해 반응의 반응산물 내 콜린알포세레이트 함량을 반응시간의 함수로 나타낸 그래프이다.4 is a graph showing the content of choline alfoscerate in the reaction product of the hydrolysis reaction of soybean phosphatidylcholine as a function of reaction time according to the ratio of water in the reaction medium (20-400% relative to the weight of soybean phosphatidylcholine).
도 5는 콜린알포세레이트의 제조에 사용된 대두 포스파티딜콜린 기질과 콜린알포세레이트 제조 과정 중 수득된 반응산물 및 정제물을 액체 크로마토그래피-증기화 광산란 검출기(LC-ELSD) 시스템을 이용하여 분석하여 얻은 크로마토그램이다. 약어: PC, 포스파티딜콜린(phosphatidylcholine); FFA, 유리지방산(free fatty acid).Figure 5 shows the results of analysis of the soybean phosphatidylcholine substrate used in the production of choline alfoscerate and the reaction products and the purified products obtained during the production of choline alfoselate using a liquid chromatography-vaporization light scattering detector (LC-ELSD) system This is the chromatogram obtained. Abbreviation: PC, phosphatidylcholine; FFA, free fatty acid.
도 6은 레시틴의 효소반응 단계 및 분리정제 단계를 포함하는 콜린알포세레이트의 제조 과정을 전체적으로 나타내는 흐름도이다.FIG. 6 is a flow chart that entirely illustrates the preparation process of choline alfoscerate, including an enzymatic reaction step of lecithin and an isolated purification step.
도 7은 반응적합 효소인 노보짐 435 촉매 하에 대두 포스파티딜콜린과 분별 대두 레시틴을 각각 가수분해 시 수득되는 반응산물 내 콜린알포세레이트 함량과 글리세로포스포디에스터 함량을 반응시간의 함수로 나타낸 그래프이다.7 is a graph showing the content of choline alfoscerate and the content of glycerophosphodiester in a reaction product obtained by hydrolysis of soybean phosphatidylcholine and fractionated soybean lecithin under the Novozym 435 catalyst, which is a reaction-compatible enzyme, as a function of reaction time.
도 8은 콜린알포세레이트의 제조에 사용된 기질과 콜린알포세레이트 제조 과정 중 수득된 반응산물 및 정제물을 액체 크로마토그래피-증기화 광산란 검출기(LC-ELSD) 시스템을 이용하여 분석하여 얻은 크로마토그램이다. 크로마토그램에 표시된 1, 2 및 3은 미지(unknown)의 성분 피크이다. 약어: PC, 포스파티딜콜린(phosphatidylcholine); FFA, 유리지방산(free fatty acid); GPL, 글리세로인지질(glycerophospholipids); GD, 글리세로포스포디에스터(glycerophosphodiesters).Figure 8 shows the chromatograms obtained by analyzing the substrate used for the production of choline alfoscerate and the reaction products and the purified products obtained during the production of choline alfoselate using a liquid chromatography-vaporization light scattering detector (LC-ELSD) system Grams. 1, 2 and 3 in the chromatogram are unknown component peaks. Abbreviation: PC, phosphatidylcholine; FFA, free fatty acid; GPL, glycerophospholipids; GD, glycerophosphodiesters.
본 발명자들은 선행연구에서 물과 헥산(n-hexane)의 혼합용매를 반응매질로, 포스포리파아제 A1을 반응촉매로 사용하여 대두 포스파티딜콜린을 가수분해하여 콜린알포세레이트를 제조하면 이 반응매질에 대한 대두 포스파티딜콜린의 용해도가 크게 증가하여(반응매질 100mL 당 포스파티딜콜린 ~21g 용해) 반응의 효율성 및 생산성이 크게 증가하는 것을 확인하였다(Bang et al., Food Chem., 190, 201-206, 2016). 또한 이 선행연구에서는 반응 후 에테르를 이용하여 생성된 유리지방산을 추출하여 제거하고 다시 메탄올과 물의 혼합용매를 이동상으로 이용한 칼럼 크로마토그래피법으로 고순도(>99중량%)의 콜린알포세레이트를 분리정제하였다. 다만 이 선행연구에서 사용한 콜린알포세레이트 제조방법은 반응시간이 길고(e.g., 30시간) 식품제조에 사용이 불가능한 추출용매를 이용하여 콜린알포세레이트를 분리정제하기 때문에 수득된 콜린알포세레이트를 식품원료로 이용이 어려운 단점이 있었다. 이러한 문제를 해결하기 위한 후속 연구에서 물과 헥산의 혼합 반응매질 중 물이 일정 용량 비율 이상이 되면 특정 효소를 사용하였을 때만 짧은 반응시간(e.g., 5~6시간) 내에 대두 포스파티딜콜린이 모두 콜린알포세레이트로 전환되는 것을 확인하였다. 또한 반응 종료 후 이 물과 헥산의 혼합 반응매질을 단순히 층 분리하는 과정만으로 콜린알포세레이트가 고순도(98~99중량%)로 분리정제되는 것을 확인함으로써 본 발명을 완성하였다.The inventors of the present invention found that when choline alfoscerate is prepared by hydrolyzing soybean phosphatidylcholine using a mixed solvent of water and n- hexane as a reaction medium and phospholipase A 1 as a reaction catalyst, (Bang et al., Food Chem., 190, 201-206, 2016) that the solubility of soybean phosphatidylcholine in the reaction medium was greatly increased (by dissolving phosphatidylcholine to 21 g per 100 mL of the reaction medium). In the previous study, high-purity (> 99% by weight) choline alfoscerate was separated and purified by column chromatography using a mixed solvent of methanol and water as a mobile phase by extracting and removing the free fatty acids produced by using ether after the reaction Respectively. However, the method of producing choline alfoscerate used in this prior study is not suitable for food production because the reaction time is long (eg, 30 hours) and choline alfoscerate is separated and purified using an extraction solvent that is not usable for food production. It is difficult to use it as a food raw material. In a subsequent study to solve this problem, it was found that when the water content in the mixed reaction medium of water and hexane was more than a certain volume ratio, only soybean phosphatidylcholine contained choline alpase in a short reaction time (eg, 5-6 hours) Rate. ≪ / RTI > Also, after completion of the reaction, it was confirmed that choline alfoscerate was separated and purified to a high purity (98 to 99% by weight) only by simply separating the mixed reaction medium of water and hexane, thereby completing the present invention.
또한, 상기 후속 연구에서 개발한 효소반응 시스템의 상업화 가능성을 탐색하기 위해 대두 포스파티딜콜린 대신 가격이 훨씬 저렴한 대두 레시틴을 원료기질로 이용하는 방법을 모색하였으나 대두 레시틴을 기질로 이용 시 효소반응이 전혀 일어나지 않는 문제점이 있었다. 이러한 문제를 해결하기 위한 후속 연구에서 레시틴으로부터 중성지질을 제거하여 제조한 분별 레시틴의 경우 상기 물과 헥산의 혼합 반응매질에 분산 및 용해되면서 효소반응이 잘 일어나는 것을 확인함으로써 본 발명을 완성하였다.In order to investigate the commercialization possibility of the enzyme reaction system developed in the follow-up study, a method of using soybean lecithin as raw material substrate which is much cheaper instead of soybean phosphatidylcholine has been sought. However, when soybean lecithin is used as a substrate, . In a subsequent study to solve this problem, the present inventors completed the present invention by confirming that the fractionated lecithin prepared by removing the neutral lipid from lecithin is dispersed and dissolved in the mixed reaction medium of water and hexane and the enzyme reaction occurs well.
본 발명은 1) 포스파티딜콜린에 물과 헥산의 혼합용매 및 리파아제 효소를 첨가한 후 가수분해 반응시키는 단계; 2) 상기 반응물로부터 리파아제 효소를 제거하는 단계; 3) 상기 2) 단계 반응물을 층 분리하는 단계; 및 4) 상기 층 분리된 반응물로부터 물층을 회수하여 물 분획물을 수득하는 단계를 포함하는 콜린알포세레이트 제조방법을 제공한다.The present invention relates to a method for producing a polyhydroxyalkanoate comprising the steps of: 1) adding a mixed solvent of water and hexane and a lipase enzyme to phosphatidylcholine, followed by hydrolysis; 2) removing the lipase enzyme from the reaction product; 3) separating the reactants in step 2); And 4) recovering the water layer from the layered reactant to obtain a water fraction.
바람직하게는, 상기 리파아제는 sn-위치 비특이성 리파아제일 수 있으며, 보다 바람직하게는, 칸디다 안타르크티카 리파아제 B(Candida antarctica lipase B)일 수 있으며, 보다 더 바람직하게는, 다공성 음이온 수지(macroporous anionic resin)를 고정화 담체로 사용한 칸디다 안타르크티카 리파아제 B일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the lipase can be a sn-position nonspecific lipase, more preferably Candida antarctica lipase B, and even more preferably a macroporous anionic but not limited to, Candida antarctic lipase B, which uses a resin as an immobilization carrier.
바람직하게는, 상기 물과 헥산의 혼합용매 내 물의 양은 포스파티딜콜린 중량 대비 20 내지 400 중량%일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the amount of water in the mixed solvent of water and hexane may be 20 to 400% by weight based on the weight of phosphatidylcholine, but is not limited thereto.
바람직하게는, 상기 리파아제 효소량은 포스파티딜콜린 중량 대비 5 내지 15 중량%일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the amount of the lipase enzyme may be 5-15 wt% based on the weight of phosphatidylcholine, but is not limited thereto.
바람직하게는, 상기 가수분해 반응은 50 내지 55℃에서 2 내지 12시간 동안 반응시킬 수 있으나, 이에 제한되는 것은 아니다.Preferably, the hydrolysis reaction is carried out at 50 to 55 ° C for 2 to 12 hours, but is not limited thereto.
보다 바람직하게는, 상기 가수분해 반응은 상기 물과 헥산의 혼합용매 내 물의 양은 포스파티딜콜린 중량 대비 100 내지 200 중량%이고, 상기 리파아제 효소량은 포스파티딜콜린 중량 대비 5 내지 10 중량%이며, 50 내지 55℃에서 3 내지 6시간 동안 반응시킬 수 있으나, 이에 제한되는 것은 아니다.More preferably, in the hydrolysis reaction, the amount of water in the mixed solvent of water and hexane is 100 to 200% by weight based on the weight of phosphatidylcholine, the amount of the lipase enzyme is 5 to 10% by weight based on the weight of phosphatidylcholine, For 6 hours, but is not limited thereto.
바람직하게는, 상기 3) 단계는 1 : 1 부피비의 물 및 헥산을 추가로 첨가하여 층 분리하는 단계를 더 포함할 수 있으나, 이에 제한되는 것은 아니다.Preferably, the step 3) may further include a step of further separating by adding water and hexane in a volume ratio of 1: 1, but the present invention is not limited thereto.
바람직하게는, 상기 4) 단계의 물 분획물을 수득하는 단계는 헥산층에 존재하는 유리지방산을 제거하기 위한 것일 수 있다.Preferably, the step of obtaining the water fraction of step 4) may be to remove the free fatty acid present in the hexane layer.
한편, 상기 방법에 의해 제조되는 콜린알포세레이트는 식품원료로 이용가능하다.On the other hand, choline alfoscerate prepared by the above method can be used as a food raw material.
본 발명은 1) 레시틴에 에탄올을 첨가하고, 에탄올 분획물을 수득하여 분별 레시틴을 제조하는 단계; 2) 상기 제조된 분별 레시틴에 물과 헥산의 혼합용매 및 리파아제 효소를 첨가한 후 가수분해 반응시키는 단계; 3) 상기 반응물로부터 리파아제 효소를 제거하는 단계; 4) 상기 3) 단계 반응물을 층 분리하는 단계; 및 5) 상기 층 분리된 반응물로부터 물층을 회수하여 물 분획물을 수득하는 단계를 포함하는 콜린알포세레이트 제조방법을 제공한다.1) adding ethanol to lecithin and obtaining an ethanol fraction to prepare fractionated lecithin; 2) adding a mixed solvent of water and hexane and a lipase enzyme to the prepared fractionated lecithin, and hydrolyzing the fraction; 3) removing the lipase enzyme from the reaction product; 4) separating the reaction product of step 3); And 5) recovering the water layer from the layered reactant to obtain a water fraction.
바람직하게는, 상기 분별 레시틴을 제조하는 단계는 레시틴에 에탄올을 첨가하고 60 내지 65℃에서 10분 내지 1시간 동안 교반한 후, 원심분리하여 얻은 상등액에서 에탄올을 제거하여 에탄올 분획물을 수득할 수 있으나, 이에 제한되는 것은 아니다.Preferably, the fractionated lecithin is prepared by adding ethanol to lecithin, stirring the mixture at 60 to 65 ° C for 10 minutes to 1 hour, removing ethanol from the supernatant obtained by centrifuging to obtain an ethanol fraction , But is not limited thereto.
바람직하게는, 상기 분별 레시틴은 중성지질에 제거된 것일 수 있다.Preferably, the fractionated lecithin may be removed to neutral lipids.
바람직하게는, 상기 리파아제는 sn-위치 비특이성 리파아제일 수 있으며, 보다 바람직하게는, 칸디다 안타르크티카 리파아제 B(Candida antarctica lipase B)일 수 있으며, 보다 더 바람직하게는, 다공성 음이온 수지(macroporous anionic resin)를 고정화 담체로 사용한 칸디다 안타르크티카 리파아제 B일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the lipase can be a sn-position nonspecific lipase, more preferably Candida antarctica lipase B, and even more preferably a macroporous anionic but not limited to, Candida antarctic lipase B, which uses a resin as an immobilization carrier.
바람직하게는, 상기 물과 헥산의 혼합용매 내 물의 양은 포스파티딜콜린 중량 대비 20 내지 200 중량%일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the amount of water in the mixed solvent of water and hexane may be 20 to 200% by weight based on the weight of phosphatidylcholine, but is not limited thereto.
바람직하게는, 상기 리파아제 효소량은 포스파티딜콜린 중량 대비 5 내지 15 중량%일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the amount of the lipase enzyme may be 5-15 wt% based on the weight of phosphatidylcholine, but is not limited thereto.
바람직하게는, 상기 가수분해 반응은 50 내지 55℃에서 2 내지 12시간 동안 반응시킬 수 있으나, 이에 제한되는 것은 아니다.Preferably, the hydrolysis reaction is carried out at 50 to 55 ° C for 2 to 12 hours, but is not limited thereto.
바람직하게는, 상기 4) 단계는 1 : 1 부피비의 물 및 헥산을 추가로 첨가하여 층 분리하는 단계를 더 포함할 수 있으나, 이에 제한되는 것은 아니다.Preferably, the step 4) may further include a step of further separating by adding water and hexane in a volume ratio of 1: 1, but the present invention is not limited thereto.
바람직하게는, 상기 5) 단계의 물 분획물을 수득하는 단계는 헥산층에 존재하는 유리지방산을 제거하기 위한 것일 수 있다.Preferably, the step of obtaining the water fraction of step 5) may be to remove the free fatty acid present in the hexane layer.
바람직하게는, 상기 5) 단계의 물 분획물에는 콜린알포세레이트가 포함된 글리세로포스포디에스터가 함유된 것일 수 있다.Preferably, the water fraction in step 5) may contain glycerophosphodiesters containing choline alfoscerate.
한편, 상기 방법에 의해 제조되는 콜린알포세레이트는 식품원료로 이용가능하다.On the other hand, choline alfoscerate prepared by the above method can be used as a food raw material.
본 발명에서 "포스파티딜콜린(phosphatidylcholine; 1,2-diacyl-sn-glycero-3-phosphocholine)"은 글리세로인지질(glycerophospholipids)의 한 종류로 글리세롤, 지방산, 인산 및 콜린[CH2CH2N+(CH3)3]기로 구성되며 모든 동물과 식물의 세포막의 주요성분으로 하기 화학식 1로 표시된다.In the present invention, "phosphatidylcholine (1,2-diacyl- sn -glycero-3-phosphocholine)" is a kind of glycerophospholipids, and glycerol, fatty acid, phosphoric acid and choline [CH 2 CH 2 N + 3 ) 3 ], and is a major component of the cell membrane of all animals and plants.
[화학식 1][Chemical Formula 1]
Figure PCTKR2018016779-appb-I000001
Figure PCTKR2018016779-appb-I000001
상기 포스파티딜콜린은 시중에서 판매되는 것을 구입하여 사용하거나 또는 당업계의 공지된 방법으로 대두유 또는 난황으로부터 직접 분리·정제하여 사용할 수도 있다.The phosphatidylcholine may be purchased and used in the market, or may be directly separated and purified from soybean oil or yolk by a known method in the art.
본 발명에서“레시틴(lecithin)”은 난황 또는 대두유 정제 시 얻어지는 부산물로 포스파티딜콜린 등의 글리세로인지질을 다량 함유하며 마가린, 초콜릿, 아이스크림 등의 가공식품과 의약품, 화장품, 사료 등에서 유화제로 주로 이용된다. In the present invention, " lecithin " is a by-product obtained when purifying egg yolk or soybean oil, and contains glycine phospholipids such as phosphatidylcholine in a large amount and is mainly used as an emulsifier in processed foods such as margarine, chocolate and ice cream, and pharmaceuticals, cosmetics and feed.
본 발명의 분별 레시틴은 직접 제조하거나 시중에서 판매되는 분별 레시틴을 구입하여 준비할 수 있다. 분별 레시틴을 직접 제조하여 사용하는 경우, 레시틴으로부터 중성지질이 완전히 제거되고 포스파티딜콜린을 다량으로 함유하는 분별 레시틴을 제조할 수 있으며, 상기 레시틴은 포스파티딜콜린 함량이 가능한 높은 것이 바람직하다. 따라서 포스파티딜콜린 함량이 10~20중량%인 대두 레시틴 또는 60~80중량%의 보다 높은 함량의 포스파티딜콜린을 함유하고 있는 난황 레시틴을 이용할 수 있다.The fractionated lecithin of the present invention can be prepared either directly or by purchasing fractionated lecithin, which is commercially available. When fractionated lecithin is directly prepared and used, fractionated lecithin containing a large amount of phosphatidylcholine can be prepared by completely removing neutral lipids from lecithin. It is preferable that the content of phosphatidylcholine is as high as possible. Thus, soybean lecithin having a phosphatidylcholine content of 10 to 20% by weight or egg yolk lecithin containing 60 to 80% by weight of a higher content of phosphatidylcholine can be used.
본 발명에서 “콜린알포세레이트(choline alfoscerate)”는 L-α-글리세릴포스포릴콜린(L-α-glycerylphosphorylcholine; sn-glycero-3-phosphocholine)라고도 불리는 물질로 포스파티딜콜린으로부터 두 개의 아실기(acyl group)가 제거된 형태를 가지며 하기 화학식 2로 표시된다. 콜린알포세레이트는 신경전달물질인 아세틸콜린(acetylcholine)과 세포막의 주요성분인 포스파티딜콜린의 생체 내 전구물질로 뇌졸중과 알츠하이머병 등의 치매 환자의 인지기능 개선제(cognitive enhancer)로 사용된다.In the present invention, "choline alfoscerate" is a substance called L-α-glycerylphosphorylcholine ( sn -glycero-3-phosphocholine), which is obtained from phosphatidylcholine by two acyl groups group is removed and is represented by the following formula (2). Choline alfoscerate is an in vivo precursor of the neurotransmitter acetylcholine and phosphatidylcholine, a major component of the cell membrane, and is used as a cognitive enhancer in patients with dementia such as stroke and Alzheimer's disease.
[화학식 2](2)
Figure PCTKR2018016779-appb-I000002
Figure PCTKR2018016779-appb-I000002
본 발명에 있어서, 포스파티딜콜린은 기질이며, 물과 헥산의 혼합용매는 반응매질이고, 리파아제 효소는 촉매로 작용한다. 반응매질 중 헥산은 1) 기질인 포스파티딜콜린의 용해도를 향상시켜 반응의 효율성과 생산성을 증가시키고 2) 반응산물 정제를 위한 반응매질의 층 분리 과정에서 반응산물 내 유리지방산을 용해시켜 제거하는 역할을 한다. 반응매질 중 물은 1) 가수분해 반응의 기질로 사용되는 동시에 2) 반응산물 정제를 위한 반응매질의 층 분리 과정에서 반응산물 내 콜린알포세레이트를 용해시켜 수득하는 역할을 한다.In the present invention, the phosphatidylcholine is a substrate, the mixed solvent of water and hexane is a reaction medium, and the lipase enzyme acts as a catalyst. Hexane in the reaction medium serves to 1) increase the efficiency and productivity of the phosphatidylcholine, which is a substrate, by increasing the efficiency of the reaction and 2) to dissolve the free fatty acid in the reaction product during the separation of the reaction medium for purification of the reaction product . The water in the reaction medium serves to 1) be used as a substrate for the hydrolysis reaction and 2) to dissolve the choline alfoscerate in the reaction product in the layer separation process of the reaction medium for the purification of the reaction product.
본 발명에 있어서, 분별 레시틴은 기질이며, 물과 헥산의 혼합용매는 반응매질이고, 리파아제 효소는 촉매로 작용한다. 반응매질 중 헥산은 1) 기질인 분별 레시틴의 용해도를 향상시켜 반응의 효율성과 생산성을 증가시키고 2) 반응산물 정제를 위한 반응매질의 층 분리 과정에서 반응산물 내 유리지방산을 용해시켜 제거하는 역할을 한다. 반응매질 중 물은 1) 가수분해 반응의 기질로 사용되는 동시에 2) 반응산물 정제를 위한 반응매질의 층 분리 과정에서 반응산물 내 콜린알포세레이트를 포함한 글리세로포스포디에스터를 용해시켜 수득하는 역할을 한다.In the present invention, the fractionated lecithin is a substrate, the mixed solvent of water and hexane is a reaction medium, and the lipase enzyme acts as a catalyst. In the reaction medium, hexane increases the solubility of the fractionated lecithin as a substrate to increase the efficiency and productivity of the reaction, and 2) dissolves the free fatty acid in the reaction product in the separation of the reaction medium for purification of the reaction product. do. The water in the reaction medium serves to 1) be used as a substrate for the hydrolysis reaction and 2) to obtain glycerophosphodiesters containing choline alfoscerate in the reaction product by layer separation of the reaction medium for purification of the reaction product .
본 발명의 실시예에서, 반응매질로서 물과 헥산의 혼합용매를 이용하였으며, 혼합용매 내 헥산의 양은 바람직하게는 기질로 사용된 분별 레시틴 중량 대비 약 260%(즉 기질 1g 당 4mL)이고, 물의 양은 바람직하게는 기질로 사용된 포스파티딜콜린 중량 대비 20 내지 400 중량%일 수 있으나, 물의 양이 적을수록 반응속도가 느려지고 반면에 물의 양이 너무 많으면 상기 고정화 효소의 침출(leaching from the solid support)이 촉진되는 등 효소의 안정성이 감소하기 때문에, 보다 바람직하게는 포스파티딜콜린 중량 대비 100 내지 200 중량(즉 포스파티딜콜린 1g 당 1 내지 2mL)일 수 있다. 따라서 반응매질은 헥산과 물이 4:1의 부피비로 구성될 수도 있다. In the examples of the present invention, a mixed solvent of water and hexane was used as the reaction medium, and the amount of hexane in the mixed solvent was preferably about 260% (i.e., 4 mL per gram of the substrate) of the fractionated lecithin used as the substrate, The amount may preferably be 20 to 400% by weight relative to the weight of phosphatidylcholine used as the substrate, but the lower the amount of water, the slower the reaction rate, while if the amount of water is too high, the leaching from the solid support promotes , And more preferably 100 to 200% by weight (that is, 1 to 2 mL / g of phosphatidylcholine) relative to the weight of phosphatidylcholine. Thus, the reaction medium may be composed of hexane and water in a volume ratio of 4: 1.
본 발명의 실시예에서, 반응매질로서 물과 헥산의 혼합용매를 이용하였으며, 혼합용매 내 헥산의 양은 바람직하게는 기질로 사용된 분별 레시틴 중량 대비 약 260%(즉 기질 1g 당 4mL)이고, 물의 양은 분별 레시틴 중량 대비 20 내지 200 중량%일 수 있으나, 물의 양이 적을수록 반응속도가 느려지고 반면에 물의 양이 너무 많으면 상기 고정화 효소의 침출(leaching from the solid support)이 촉진되는 등 효소의 안정성이 감소하기 때문에, 보다 바람직하게는 분별 레시틴 중량 대비 100 내지 200 중량(즉 포스파티딜콜린 1g 당 1 내지 2mL)일 수 있다. 따라서 반응매질은 헥산과 물이 4:1의 부피비로 구성될 수도 있다. In the examples of the present invention, a mixed solvent of water and hexane was used as the reaction medium, and the amount of hexane in the mixed solvent was preferably about 260% (i.e., 4 mL per gram of the substrate) of the fractionated lecithin used as the substrate, The amount may be 20 to 200% by weight based on the weight of the fractionated lecithin. However, the lower the amount of water, the slower the reaction rate. On the other hand, if the amount of water is too high, the stability of the enzyme is accelerated by leaching from the solid support More preferably from 100 to 200 parts by weight (i.e., from 1 to 2 mL per gram of phosphatidylcholine) relative to the weight of fractionated lecithin. Thus, the reaction medium may be composed of hexane and water in a volume ratio of 4: 1.
본 발명의 포스파티딜콜린으로부터 콜린알포세레이트의 제조방법에 있어서, 상기 3) 단계 및 4) 단계는 물과 헥산의 혼합용매인 반응매질을 층 분리하여 포스파티딜콜린으로부터 생성된 콜린알포세레이트를 수득하는 단계로서, 층 분리 후 물 층에 녹아있는 콜린알포세레이트를 회수하는 과정을 포함한다. 반응 종료 후 포스파티딜콜린으로부터 얻은 반응산물은 여과하여 효소가 제거된 반응산물을 얻을 수 있다. 상기 반응산물은 식품제조에 사용이 가능한 용매들인 물과 헥산으로 구성된 반응매질에 용해되어 있는데 특히 포스파티딜콜린이 가수분해되면서 생성된 유리지방산은 헥산층에 존재하고 콜린알포세레이트는 물층에 녹아있기 때문에 상기 반응매질을 상온에서 30분 동안 정치하여 물층을 분리한 후 회전식 감압 농축기 등을 이용하여 건조하면 식품원료로 이용가능한 콜린알포세레이트만을 분리정제할 수 있다. 본 발명에 따른 포스파티딜콜린으로부터 얻은 반응산물의 상기 분리정제 단계 후 수득되는 정제물(물 분획물)의 콜린알포세레이트 함량은 98중량% 이상일 수 있다. In the method for producing choline alfoscerate from the phosphatidylcholine of the present invention, the steps 3) and 4) are steps of separating the reaction medium which is a mixed solvent of water and hexane to obtain choline alfoscerate produced from phosphatidylcholine And recovering the choline alfoscerate dissolved in the water layer after layer separation. After completion of the reaction, the reaction product obtained from the phosphatidylcholine can be filtered to obtain a reaction product from which the enzyme has been removed. The reaction product is dissolved in a reaction medium composed of water and hexane, which are solvents that can be used in food production. Especially, the free fatty acid generated by the hydrolysis of phosphatidylcholine is present in the hexane layer and the choline alfoscerate is dissolved in the water layer. The reaction medium is allowed to stand at room temperature for 30 minutes to separate the water layer, and then dried using a rotary vacuum concentrator or the like to separate and purify only the choline alfoscerate available as a food raw material. The choline alfoscerate content of the purified product (water fraction) obtained after the separation and purification step of the reaction product obtained from the phosphatidylcholine according to the present invention may be 98% by weight or more.
본 발명의 레시틴으로부터 콜린알포세레이트의 제조방법에 있어서, 상기 4) 단계 및 5) 단계는 물과 헥산의 혼합용매인 반응매질을 층 분리하여 분별 레시틴으로부터 생성된 콜린알포세레이트를 수득하는 단계로서, 층 분리 후 물 층에 녹아있는 콜린알포세레이트를 회수하는 과정을 포함한다. 반응 종료 후 반응산물은 4~23℃에서 하룻밤 동안 정치 후 여과하여 효소가 제거된 반응산물을 얻는 것이 보다 바람직하다. 그 이유는 정치 과정을 거쳐 수득된 반응산물의 최종 정제물은 반응종료 후 바로 여과하여 얻은 반응산물의 최종 정제물보다 높은 글리세로포스포디에스터 함량을 나타내기 때문이다. 상기 반응산물은 식품제조에 사용이 가능한 용매들인 물과 헥산으로 구성된 반응매질에 용해되어 있는데 특히 포스파티딜콜린이 가수분해되면서 생성된 유리지방산은 헥산층에 존재하고 콜린알포세레이트를 포함한 글리세로포스포디에스터는 물층에 녹아있기 때문에 상기 반응매질을 상온에서 30분 동안 정치하여 물층을 분리한 후 회전식 감압 농축기 등을 이용하여 건조하면 식품원료로 이용가능한 콜린알포세레이트를 포함한 글리세로포스포디에스터만을 분리정제할 수 있다. 본 발명에 따른 분별 레시틴으로부터 얻은 반응산물의 상기 분리정제 단계 후 수득되는 정제물(물 분획물)의 콜린알포세레이트를 포함한 글리세로포스포디에스터 함량은 50중량% 이상일 수 있다. In the method for producing choline alfoscerate from the lecithin of the present invention, the steps 4) and 5) are a step of separating the reaction medium which is a mixed solvent of water and hexane to obtain choline alfoscerate produced from the fractionated lecithin And recovering the choline alfoscerate dissolved in the water layer after layer separation. After completion of the reaction, the reaction product is allowed to stand overnight at 4 to 23 ° C, and then filtered to obtain a reaction product from which the enzyme has been removed. The reason for this is that the final purified product of the reaction product obtained through the settling process exhibits a higher glycerophosphoester content than the final purified product obtained by filtration immediately after the completion of the reaction. The reaction product is dissolved in a reaction medium composed of water and hexane, which are solvents that can be used for food production. Particularly, the free fatty acid generated by the hydrolysis of phosphatidylcholine is present in the hexane layer and the glycerophosphodiester Is dissolved in the water layer. Therefore, the reaction medium is left at room temperature for 30 minutes to separate the water layer, and then dried using a rotary vacuum concentrator or the like to separate and purify only the glycerophosphoester containing choline alfoscerate can do. The glycerophosphodiester content of the purified product (water fraction) obtained after the separation and purification step of the reaction product obtained from the fractionated lecithin according to the present invention, including choline alfoscerate, may be 50% by weight or more.
본 발명의 실시예에 있어서, 상기 포스파티딜콜린으로부터 얻은 반응산물의 최종 정제물은 98~99중량%의 콜린알포세레이트를 함유할 수 있다.In an embodiment of the present invention, the final purified product of the reaction product obtained from the phosphatidylcholine may contain 98-99% by weight of choline alfoscerate.
본 발명의 실시예에 있어서, 상기 분별 레시틴으로부터 얻은 반응산물의 최종 정제물은 콜린알포세레이트 외에도 L-α-글리세릴포스포릴이노시톨(L-α-glycerylphosphorylinositol), L-α-글리세릴포스포릴에탄올아민(L-α-glycerylphosphorylethanolamine) 등의 글리세로포스포디에스터(glycerophosphodiesters)를 50-70중량% 함유할 수 있다.In an embodiment of the present invention, the final purified product of the reaction product obtained from the fractionated lecithin may contain, in addition to choline alfoscerate, L-? -Glycerylphosphorylinositol, L-? -Glycerylphosphoryl And 50-70% by weight of glycerophosphodiesters such as L-alpha-glycerylphosphorylethanolamine.
또한, 본 발명은 상기 방법으로 제조된 식품원료로 이용가능한 콜린알포세레이트를 제공한다. In addition, the present invention provides choline alfoscerate which can be used as a food raw material produced by the above method.
본 발명에서 포스파티딜콜린으로부터 얻은 반응산물의 정제물들은 콜린알포세레이트를 고순도(98~99중량%)로 함유하고 있기 때문에 콜린알포세레이트가 가지는 주요 생리학적 활성을 가질 수 있다.In the present invention, the purified product of the reaction product obtained from the phosphatidylcholine contains choline alfoscerate in a high purity (98 to 99% by weight), so that it can have a major physiological activity of choline alfoscerate.
본 발명에서 분별 레시틴으로부터 얻은 반응산물의 정제물들은 콜린알포세레이트를 포함한 글리세로포스포디에스터를 50~70중량% 함유하고 있기 때문에 콜린알포세레이트가 가지는 주요 생리학적 활성을 가질 수 있다.In the present invention, the purified product of the reaction product obtained from the fractionated lecithin contains 50 to 70% by weight of glycerophosphoester including choline alfoscerate, and thus may have a major physiological activity of choline alfoscerate.
콜린알포세레이트는 신경전달물질인 아세틸콜린(acetylcholine)과 세포막의 주요성분인 포스파티딜콜린의 생체 내 전구물질로 뇌졸중과 알츠하이머병 등의 치매 환자의 인지기능을 개선한다고 알려져 있으므로, 본 발명의 콜린알포세레이트는 상기 효능을 포함하는 식품, 의약품 등의 생산 분야에서 유용하게 사용될 수 있을 것이다. 특히 본 발명에서 포스파티딜콜린 또는 레시틴으로부터 얻은 반응산물의 정제물들은 물 분획물로 수용성이므로 액상형태의 식품(음료, 차 등), 의약품 등의 생산 분야에서 유용하게 사용될 수 있을 것이다.Since choline alfoscerate is known to improve the cognitive function of dementia patients such as stroke and Alzheimer's disease as a neurotransmitter acetylcholine and phosphatidylcholine in vivo as a main component of the cell membrane, Rate may be usefully used in the field of production of foods, medicines and the like containing the above-mentioned effects. In particular, the purified product of the reaction product obtained from phosphatidylcholine or lecithin in the present invention is water-soluble as a water fraction, and thus may be usefully used in the production of liquid foods (drinks, tea, etc.) and pharmaceuticals.
또한, 본 발명은 상기 콜린알포세레이트를 유효성분으로 함유하는 인지기능 개선용 건강기능식품을 제공한다. 또한, 상기 콜린알포세레이트를 유효성분으로 함유하는 인지기능 개선용 약제학적 조성물, 식품 조성물, 식품 첨가제 조성물 또는 건강보조식품 조성물로도 사용될 수 있다.In addition, the present invention provides a health functional food for improving cognitive function containing choline alfoscerate as an active ingredient. In addition, the composition can be used as a pharmaceutical composition for improving cognitive function, a food composition, a food additive composition or a health supplement food composition containing the choline alfoscerate as an active ingredient.
본 발명에서 건강기능식품의 형태는 특별히 제한되지 않는다. 공지의 부재료, 식품 첨가물 등을 혼합하여 음료, 과립, 정제, 분말, 환, 캅셀, 선식, 면류, 과자류, 육류, 생선류, 나물류, 찌개류, 밥류 등을 포함하는 다양한 형태로 제조될 수 있다.The form of the health functional food in the present invention is not particularly limited. It can be manufactured in various forms including beverage, granule, tablet, powder, ring, capsule, wire, noodles, confectionery, meat, fish, herb, stew, rice and the like by mixing known ingredient, food additive and the like.
본 발명의 건강기능식품은 통상의 식품 첨가물을 포함할 수 있으며, 식품 첨가물로서의 적합 여부는 다른 규정이 없는 한, 식품의약품안전처에 승인된 식품 첨가물 공전의 총칙 및 일반시험법 등에 따라 해당 품목에 관한 규격 및 기준에 의하여 판정한다.The health functional foods of the present invention may contain conventional food additives and, unless otherwise specified, whether or not they are suitable as food additives are subject to the provisions of the General Food and Drug Administration approved by the Food and Drug Administration, Shall be determined according to the relevant standards and standards.
식품 첨가물로 예를 들어 단당류, 이당류, 다당류, 당알콜 등의 당류와, 타우마틴, 스테비아 추출물, 사카린, 아스파탐 등의 향미제와, 영양제, 비타민, 식용 전해질, 풍미제, 착색제, 증진제(예, 치즈, 초콜릿 등), 펙트산, 알긴산, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산화제 등이 이용될 수 있다.Examples of the food additives include sugars such as monosaccharides, disaccharides, polysaccharides and sugar alcohols and flavorings such as tau martin, stevia extract, saccharin and aspartame, nutrients, vitamins, edible electrolytes, flavors, coloring agents, , Chocolate, etc.), pectic acid, alginic acid, organic acid, protective colloid thickening agent, pH adjusting agent, stabilizer, preservative, glycerin, alcohol and carbonating agent.
예를 들어, 정제 형태의 건강기능식품은 본 발명의 유효성분(콜린알포세레이트)을 부형제, 결합제, 붕해제 및 다른 첨가제와 혼합한 혼합물을 통상의 방법으로 과립화한 다음, 활택제 등을 넣어 압축성형하거나, 상기 혼합물을 직접 압축 성형할 수 있다. 또한 상기 정제 형태의 건강기능식품은 필요에 따라 감미제 등을 함유할 수도 있다.For example, the health functional food in tablet form may be prepared by granulating a mixture obtained by mixing the active ingredient (choline alfoscerate) of the present invention with an excipient, a binder, a disintegrant, and other additives in a usual manner, Or the mixture can be directly compression-molded. The health functional food of the tablet form may contain a sweetener or the like as needed.
캅셀 형태의 건강기능식품 중 경질 캅셀제는 통상의 경질 캅셀에 본 발명의 유효성분(콜린알포세레이트)을 충진하여 제조할 수 있으며, 연질 캅셀제는 상기 유효성분을 부형제 등의 첨가제와 혼합한 혼합물을 젤라틴과 같은 캅셀기제에 충진하여 제조할 수 있다. 상기 연질 캅셀제는 필요에 따라 글리세린 또는 소르비톨 등의 가소제, 착색제, 보존제 등을 함유할 수 있다.The hard capsule of the capsule type health functional food can be prepared by filling the normal hard capsule with the active ingredient of the present invention (choline alfoscerate), and the soft capsule is prepared by mixing the active ingredient with an additive such as an excipient Such as gelatin, into a capsule base. The soft capsule may contain a plasticizer such as glycerin or sorbitol, a coloring agent, a preservative and the like, if necessary.
환 형태의 건강기능식품은 본 발명의 유효성분(콜린알포세레이트)과 부형제, 결합제, 붕해제 등을 혼합한 혼합물을 기존에 공지된 방법으로 성형하여 조제할 수 있으며, 필요에 따라 백당이나 다른 제피제로 제피할 수 있으며, 또는 전분, 탈크와 같은 물질로 표면을 코팅할 수도 있다.The ring-shaped health functional food can be prepared by molding a mixture of the active ingredient (choline alfoscerate) of the present invention, an excipient, a binder, a disintegrant, and the like by a conventionally known method and, if necessary, It may be applied to the skin, or the surface may be coated with a substance such as starch or talc.
과립 형태의 건강기능식품은 본 발명의 유효성분(제피제)과 부형제, 결합제, 붕해제 등을 혼합한 혼합물을 기존에 공지된 방법으로 입상으로 제조할 수 있으며, 필요에 따라 착향제, 감미제 등을 함유할 수 있다.The granular health functional food may be prepared by granulating a mixture of the active ingredient (skin care agent) of the present invention with an excipient, a binder, a disintegrant, etc. by a conventionally known method and, if necessary, adding a flavoring agent, ≪ / RTI >
본 발명의 건강기능식품은 정제, 캅셀, 분말, 과립, 액상, 환 등의 형태로 제조 및 가공되어 휴대가 간편하고 언제 어디서나 수시로 섭취하기가 용이하다.The health functional food of the present invention is manufactured and processed in the form of tablets, capsules, powders, granules, liquids, and rings, and is easy to carry, and is easy to take at anytime and anywhere.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .
<실험예><Experimental Example>
하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.The following experimental examples are intended to provide experimental examples that are commonly applied to the respective embodiments according to the present invention.
1. 시약1. Reagents
하기 실험에서 사용한 대두 포스파티딜콜린(순도 >97%)은 Avanti Polar Lipids, Inc. (Alabaster, AL, USA)에서 구입하였고; 대두 레시틴은 Ilshinwells Co. (Cheongwon, Korea)에서 공급받았으며; Novozym 435 [Candida antarctica lipase B immobilized on a macroporous anionic resin (Lewatit VP OC 1600), Lipozyme RM IM (Rhizomucor miehei lipase immobilized on an ion-exchange resin), Lipozyme TL IM (Thermomyces lanuginosus lipase immobilized on silica gel) 및 Lecitase Ultra (phospholipase A1 from T. lanuginosus/Fusarium oxysporum)는 Novozymes A/S (Bagsvaerd, Denmark)에서 구입하였으며; Candida rugosa lipase immobilized on Immobead 150는 Sigma-Aldrich Chemical Co. (St. Louis, MO, USA)에서 구입하였다.Soybean phosphatidylcholine (purity> 97%) used in the following experiments was purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA); Soybean lecithin is available from Ilshinwells Co. (Cheongwon, Korea); Novozym 435 [ Candida antarctica lipase B immobilized on a macroporous anionic resin (Lewatit VP OC 1600), Lipozyme RM IM ( Rhizomucor miehei lipase immobilized on an ion-exchange resin, Lipozyme TL IM ( Thermomyces lanuginosus lipase immobilized on silica gel) and Lecitase Ultra (phospholipase A1 from T. lanuginosus / Fusarium oxysporum ) were purchased from Novozymes A / S (Bagsvaerd, Denmark); Candida rugosa lipase immobilized on Immobead 150 was purchased from Sigma-Aldrich Chemical Co. (St. Louis, Mo., USA).
<실시예 1> 대두 포스파티딜콜린의 지방산 조성 분석Example 1 Analysis of Fatty Acid Composition of Soybean Phosphatidylcholine
본 발명에서 콜린알포세레이트 제조를 위한 효소반응의 기질로 사용된 상업용 대두 포스파티딜콜린의 지방산 조성을 하기 표 1에 나타내었다.The fatty acid composition of commercial soybean phosphatidylcholine used as a substrate of the enzyme reaction for producing choline alfoscerate in the present invention is shown in Table 1 below.
대두 포스파티딜콜린의 지방산 조성Fatty acid composition of soybean phosphatidylcholine
Fatty acidFatty acid Content (mol%)Content (mol%)
14:014: 0 0.1±0.00.1 ± 0.0
16:016: 0 15.1±0.115.1 ± 0.1
16:1n-716: 1n-7 0.1±0.00.1 ± 0.0
18:018: 0 3.5±0.03.5 ± 0.0
18:1n-918: 1n-9 11.0±0.011.0 0.0
18:1n-718: 1n-7 1.7±0.01.7 ± 0.0
18:2n-618: 2n-6 62.6±0.162.6 ± 0.1
18:3n-318: 3n-3 5.8±0.05.8 ± 0.0
20:120: 1 0.1±0.00.1 ± 0.0
Total SFATotal SFA 18.7±0.118.7 ± 0.1
Total USFATotal USFA 81.3±0.181.3 ± 0.1
모든 수치는 평균 ± SD (n = 2)으로 나타냈다.약어: SFA, 포화지방산(saturated fatty acids); 및 USFA, 불포화지방산(unsaturated fatty acids).All values were expressed as mean ± SD (n = 2). Abbreviations: SFA, saturated fatty acids; And USFA, unsaturated fatty acids.
상기 표 1에서 나타낸 바와 같이, 대두 포스파티딜콜린의 주요 지방산은 리놀레산(62.6몰%), 팔미트산(15.1몰%) 및 올레산(11.0몰%)이었으며 총 불포화지방산의 함량은 81.3몰%이었다. As shown in Table 1, the main fatty acids of soybean phosphatidylcholine were linoleic acid (62.6 mol%), palmitic acid (15.1 mol%) and oleic acid (11.0 mol%) and the total unsaturated fatty acid content was 81.3 mol%.
<실시예 2> 효소촉매 반응을 이용한 콜린알포세레이트의 제조Example 2 Preparation of choline alfoscerate using enzyme catalysis
상업용 대두 포스파티딜콜린을 기질로 하고 물과 헥산의 혼합용매를 반응매질로 하여 리파아제를 촉매로 이용하는 가수분해 반응을 통해 본 발명의 콜린알포세레이트를 제조하였다. The choline alfoscerate of the present invention was prepared by hydrolysis using commercially available soybean phosphatidylcholine as a substrate and a mixed solvent of water and hexane as a reaction medium and using lipase as a catalyst.
<2-1> 콜린알포세레이트 제조에 적합한 효소의 선별<2-1> Selection of enzymes suitable for the production of choline alfoscerate
본 실험에서는 포스파티딜콜린을 가수분해하여 콜린알포세레이트를 제조하는 반응의 촉매로 적합한 상업용 고정화 리파아제를 선별하기 위해 반응온도를 50℃, 효소량을 기질인 대두 포스파티딜콜린의 무게의 10%로 유지하면서 리파아제의 종류에 따른 반응산물 내 콜린알포세레이트 함량을 측정하였다. 반응 적합성을 평가한 상업용 고정화 효소는 노보짐 435(Novozym 435), 리포자임 RM IM(Lipozyme RM IM), 리포자임 TL IM(Lipozyme TL IM), 칸디다 루고사 리파아제(Candida rugosa lipase immobilized on Immobead 150)의 리파아제 4종과 포스포리파아제 A1 활성을 갖는 Lecitase Ultra를 이용하였다. 상기 리파아제 중 리포자임 RM IM과 리포자임 TL IM은 중성지방 또는 인지질의 sn-1,3 위치 특이성을 가지며 노보짐 435와 칸디다 루고사 리파아제는 중성지방 또는 인지질의 sn 위치에 특이성이 없는 리파아제이다.In this experiment, in order to select a commercial immobilized lipase suitable as a catalyst for the reaction for producing choline alfoscerate by hydrolyzing phosphatidylcholine, the reaction temperature was maintained at 50 ° C, the enzyme amount was adjusted to 10% of the weight of soybean phosphatidylcholine as a substrate, The choline alfoscerate content in the reaction product was measured. Commercial immobilized enzymes that evaluated the suitability of the reaction were Novozym 435, Lipozyme RM IM, Lipozyme TL IM, Candida lyase, rugosa lipase immobilized on Immobead 150) and Lecitase Ultra with phospholipase A1 activity. Among these lipases, lipozyme RM IM and lipozyme TL IM have sn -1,3 position specificity of neutral fat or phospholipid. Novogym 435 and Candida lucosa lipase are lipases having no specificity in the sn positions of neutral fat or phospholipids.
자세하게는, 대두 포스파티딜콜린 4g을 회분식 반응기(15cm×5cm i.d.)에 넣고 반응매질로 물과 헥산의 혼합용매 20mL(헥산 16mL + 물 4mL), 각각의 리파아제 0.4g(기질무게의 10%)를 첨가한 후 반응온도 50℃에서 600rpm의 속도로 교반하였다. 반응온도는 반응기의 물 재킷에 연결된 항온 순환 수조에 의하여 일정하게 유지하였다. 반응시간은 최소 2시간에서 12시간으로 설정하였고 반응산물의 시료는 반응시간 0, 2, 4, 6, 8, 10, 12시간에서 각각 0.2mL씩 취하였다. Specifically, 4 g of soybean phosphatidylcholine was placed in a batch reactor (15 cm × 5 cm id), 20 mL of a mixed solvent of water and hexane (16 mL of hexane + 4 mL of water) and 0.4 g of each lipase (10% of substrate weight) Followed by stirring at a reaction temperature of 50 DEG C at 600 rpm. The reaction temperature was kept constant by a constant temperature circulating water bath connected to the water jacket of the reactor. The reaction time was set at least 2 hours to 12 hours. The reaction product samples were taken at 0.2, 0.2, and 0.2 hours at reaction times 0, 2, 4, 6, 8, 10, and 12 hours, respectively.
한편, 리파아제의 종류에 따른 반응산물 내 콜린알포세레이트 함량을 측정을 위해, 효소반응에 의해 생성된 반응산물 내 포스파티딜콜린, 리소포스파티딜콜린 및 콜린알포세레이트 함량을 액체크로마토그래피를 이용하여 분석하였다.On the other hand, in order to determine the content of choline alfosceride in the reaction product according to the kind of lipase, the content of phosphatidylcholine, lysophosphatidylcholine and choline alfoscerate in the reaction product produced by the enzyme reaction was analyzed by liquid chromatography.
효소반응에 의해 생성된 반응산물 0.2mL에 클로로포름/메탄올(1:2, v/v) 2mL을 가하고 0.45μm syringe filter (13mm)로 여과하여 효소를 제거하였다. 질소 기류 하에 용매를 제거하고 액체 크로마토그래피의 이동상으로 사용한 93 v/v% 메탄올 0.2mL에 1mg/mL의 농도로 녹인 후 0.45μm syringe filter (13mm)로 여과한 후 액체크로마토그래프(JASCO Corp., Tokyo, Japan)에 주입하여 분석을 실시하였다. 칼럼으로 LiChrosorb Si 60 column (250mm × 4mm i.d., 5μm particle size, Merck, Darmstadt, Germany)을 사용하였고 증기화 광산란 검출기(Evaporative Light Scattering Detector, ELSD)를 이용하여 검출하였다. 시료 주입량은 20μL, 이동상의 유속은 1mL/분이었다. ELSD의 drift tube 온도는 60℃이었으며 질소는 1.5L/분의 유속으로 공급하였다.2 mL of chloroform / methanol (1: 2, v / v) was added to 0.2 mL of the reaction product produced by the enzyme reaction, and the enzyme was removed by filtration with a 0.45 μm syringe filter (13 mm). The solvent was removed under a nitrogen stream and the solution was dissolved in 0.2 mL of 93 v / v% methanol used as a mobile phase of liquid chromatography. The resulting solution was filtered with a 0.45 μm syringe filter (13 mm), and then filtered through a liquid chromatograph (JASCO Corp., Tokyo, Japan). A LiChrosorb Si 60 column (250 mm × 4 mm i.d., 5 μm particle size, Merck, Darmstadt, Germany) was used as a column and detected using an evaporative light scattering detector (ELSD). The sample injection amount was 20 μL and the flow rate of the mobile phase was 1 mL / min. The drift tube temperature of ELSD was 60 ° C and nitrogen was supplied at a flow rate of 1.5 L / min.
상기와 같은 방법으로 측정된 반응산물 내 콜린알포세레이트 함량은 반응산물 내 포스파티딜콜린, 리소포스파티딜콜린 및 콜린알포세레이트의 총 함량 대비 백분율로 계산하여 반응시간에 따른 함수로 나타내었다.The content of choline alfoscerate in the reaction product measured by the above method was calculated as a function of the reaction time as a percentage of the total content of phosphatidylcholine, lysophosphatidylcholine and choline alfoscerate in the reaction product.
그 결과 도 3에서 나타낸 바와 같이, 노보짐 435와 Lecitase Ultra를 촉매로 사용한 경우에만 포스파티딜콜린의 가수분해 반응이 일어났으며 특히 노보짐 435 촉매 가수분해 반응에서는 반응시간 6시간 만에 포스파티딜콜린이 완전히 가수분해되어 콜린 알포세레이트로 전환되었다. 반면에 리포자임 RM IM, 리포자임 TL IM과 칸디다 루고사 리파아제의 경우 조사한 반응시간 범위 내에서는 포스파티딜콜린의 가수분해 반응이 일어나지 않는 것으로 나타났다. As a result, as shown in FIG. 3, the hydrolysis reaction of phosphatidylcholine occurred only when noborg 435 and Lecitase Ultra were used as catalysts. Especially, in the case of noborg 435 catalytic hydrolysis, phosphatidylcholine completely hydrolyzed And converted to choline alfoscerate. On the other hand, in the case of lipozyme RM IM, lipozyme TL IM and Candida lucosa lipase, the hydrolysis reaction of phosphatidylcholine did not occur within the reaction time range.
상기와 같은 결과를 통해, sn-위치 비특이성 리파아제인 노보짐 435이 콜린알포세레이트 제조에 적합한 효소로 확인되었다. From the above results, it was confirmed that noborg 435, an sn -position specific lyticase, was an enzyme suitable for producing choline alfoscerate.
이에, 하기 실험에서는 노보짐 435 촉매 가수분해 반응에 적합한 매질 내 물의 양과 최적 반응조건을 추가로 조사하였고 기질인 포스파티딜콜린의 반응 적합성을 비교 평가하였다.Therefore, the amount of water in the medium suitable for the Novogym 435 catalytic hydrolysis reaction and the optimal reaction conditions were further investigated in the following experiment, and the suitability of the phosphatidylcholine as a substrate was compared and evaluated.
<2-2> 콜린 알포세레이트 제조에 적합한 매질 내 물의 양 선별&Lt; 2-2 > Selection of the amount of water in the medium suitable for producing choline alfoscerate
콜린알포세레이트 제조를 위해 대두 포스파티딜콜린을 기질로 하고 반응 적합성이 가장 우수한 것으로 나타난 노보짐 435를 촉매로 하여 가수분해 반응을 실시하였다.For the production of choline alfoscerate, hydrolysis reaction was carried out using noborg 435, which was shown to have the best suitability for reaction with soybean phosphatidylcholine as a substrate.
상기 포스파티딜콜린의 가수분해 반응의 매질인 물과 헥산의 혼합용매 중 반응에 필요한 물의 최적 첨가량을 결정하기 위해 반응온도를 50℃, 효소량을 기질인 대두 포스파티딜콜린의 무게의 10%로 유지하면서 매질 내 물의 양(포스파티딜콜린 무게 대비 20~400%)에 따른 반응산물 내 콜린알포세레이트 함량을 측정하였다.In order to determine the optimum amount of water required for the reaction in a mixed solvent of water and hexane, which is the medium of the hydrolysis of phosphatidylcholine, the reaction temperature was maintained at 50 ° C and the amount of water in the medium was maintained while maintaining the amount of enzyme at 10% of the weight of the substrate phosphatidylcholine (20-400% relative to the weight of phosphatidylcholine) in the reaction product.
자세하게는, 대두 포스파티딜콜린 4g을 회분식 반응기(15cm×5cm i.d.)에 넣고 반응매질로 물과 헥산의 혼합용매 16.8~32mL(헥산 16mL + 물 0.8, 1.6, 2.4, 3.2, 4, 8, 12, 또는 16mL), 노보짐 435 0.4g(기질무게의 10%)를 첨가한 후 반응온도 50℃에서 600rpm의 속도로 교반하였다. 반응온도는 반응기의 물 재킷에 연결된 항온 순환 수조에 의하여 일정하게 유지하였다. 반응시간은 최소 1시간에서 6시간으로 설정하였고 반응산물의 시료는 반응시간 0, 1, 2, 3, 4, 5, 6시간에서 각각 0.2mL씩 취하였다. Specifically, 4 g of soybean phosphatidylcholine was placed in a batch reactor (15 cm × 5 cm id), and 16.8 to 32 mL of a mixed solvent of water and hexane (16 mL of hexane + 0.8, 1.6, 2.4, 3.2, ), Novogym 435 0.4 g (10% of substrate weight) was added and stirred at a reaction temperature of 50 캜 at a speed of 600 rpm. The reaction temperature was kept constant by a constant temperature circulating water bath connected to the water jacket of the reactor. The reaction time was set at least 1 hour to 6 hours. The reaction product samples were taken at 0, 1, 2, 3, 4, 5 and 6 hours.
반응산물 내 콜린알포세레이트 함량 측정은 상기 실시예 <2-1>과 동일한 방식으로 측정하였으며, 매질 내 물의 양에 따른 반응산물 내 콜린알포세레이트 함량은 반응산물 내 포스파티딜콜린, 리소포스파티딜콜린 및 콜린알포세레이트의 총 함량 대비 백분율로 계산하여 반응시간에 따른 함수로 나타내었다.The content of choline alfoscerate in the reaction product was measured in the same manner as in Example <2-1>, and the content of choline alfoscerate in the reaction product according to the amount of water in the medium was measured by using phosphatidylcholine, lysophosphatidylcholine, The percentage of total content of serrate was calculated as a function of reaction time.
그 결과 도 4에서 나타낸 바와 같이, 물의 양이 기질 무게 대비 20% 이상일 때 조사한 반응시간 내에서 포스파티딜콜린이 가수분해되어 콜린알포세레이트가 생성되었으며 물의 양이 증가할수록 콜린알포세레이트가 빨리 생성되었다. 물의 양이 기질 무게 대비 20%, 40%, 60%일 때 반응시간 6시간에서 수득된 반응산물의 콜린알포세레이트 함량은 각각 2.4중량%, 21.4중량%, 46.9중량%이었다. 물의 양이 기질 무게 대비 80%일 때 반응시간 5시간에서 수득된 반응산물의 콜린알포세레이트 함량은 97.2중량%이었고 반응시간 6시간에서 수득된 반응산물의 콜린알포세레이트 함량은 100.0중량%이었다. 물의 양이 기질 무게 대비 100%, 200%, 300%, 400%일 때 반응시간 4시간에서 수득된 반응산물의 콜린알포세레이트 함량은 각각 79.3중량%, 99.7중량%, 99.7중량%, 99.9중량%이었고 반응시간 5시간에서 수득된 반응산물의 콜린알포세레이트 함량은 모두 100.0중량%이었다. 결과적으로 물의 양이 기질 무게 대비 100% 이상일 때 반응시간 5시간 이내에 포스파티딜콜린이 완전히 콜린알포세레이트로 전환되는 것을 확인하였다. 상기와 같은 결과를 통해, 기질 무게 대비 100% 이상을 콜린알포세레이트 제조에 적합한 매질 내 물의 양으로 선정하였다.As a result, as shown in FIG. 4, when the amount of water was 20% or more based on the weight of the substrate, phosphatidylcholine was hydrolyzed to produce choline alfoscerate within the reaction time period, and choline alpocellate was formed as the amount of water increased. The choline alfoscerate contents of the reaction products obtained at reaction time of 6 hours when the amount of water was 20%, 40%, and 60% based on the weight of the substrate were 2.4 wt%, 21.4 wt%, and 46.9 wt%, respectively. The choline alfoscerate content of the reaction product obtained at the reaction time of 5 hours when the amount of water was 80% based on the weight of the substrate was 97.2 wt%, and the choline alfoscerate content of the reaction product obtained at the reaction time of 6 hours was 100.0 wt% . When the amount of water was 100%, 200%, 300%, and 400% of the substrate weight, the choline alfoscerate contents of the reaction products obtained at the reaction time of 4 hours were 79.3 wt%, 99.7 wt%, 99.7 wt%, 99.9 wt% %, And the choline alfoscerate content of the reaction product obtained at the reaction time of 5 hours was 100.0% by weight. As a result, it was confirmed that the phosphatidylcholine completely converted to choline alfoscerate within 5 hours of reaction time when the amount of water was 100% or more of the substrate weight. Based on the above results, the amount of water in the medium suitable for producing choline alfoscerate was selected as 100% or more of the substrate weight.
<실시예 3> 콜린알포세레이트 제조를 위한 최적 반응조건&Lt; Example 3 > Optimum reaction conditions for the production of choline alfoscerate
상기 실시예 2를 통해 효소촉매 반응을 이용한 콜린알포세레이트 제조를 위해 효소로 노보짐 435를 사용하고, 매질로 물과 헥산의 혼합용매를 사용하여야 하며 매질 내 물의 양은 기질 무게 대비 100% 이상 사용하는 것이 효과적인 사실을 규명하였는바, 본 실험에서는 추가적으로 콜린알포세레이트 제조를 위한 최적 반응조건을 분석하였다.In order to prepare choline alfoscerate using enzyme catalysis in Example 2, Novozym 435 was used as the enzyme, and a mixed solvent of water and hexane was used as a medium. The amount of water in the medium was 100% or more In addition, the optimal reaction conditions for the production of choline alfoscerate were further analyzed in this experiment.
<3-1> 반응표면분석법을 이용한 최적 반응조건 확립<3-1> Establishment of optimal reaction conditions using reaction surface analysis method
본 실험에서는 반응표면분석법(response surface methodology, RSM)의 원리를 이용하여 콜린알포세레이트의 생성량을 최대화하는 포스파티딜콜린의 노보짐 435 촉매 가수분해 반응의 최적 반응조건(반응온도, 반응시간, 매질 내 물의 양, 효소량)을 설정하였다. In this experiment, the optimal reaction conditions (reaction temperature, reaction time, water content in the medium) of novolac 435 catalytic hydrolysis of phosphatidylcholine to maximize the production of choline alfoscerate by using the principle of response surface methodology (RSM) Amount, and enzyme amount).
자세하게는, 중심합성계획법(central composite design) 중 축점(star point)이 중심점으로부터 1.414의 거리(star distance)에 있는 central composite circumscribed (CCC) design을 이용하여 실험을 설계하였다. 콜린알포세레이트 제조의 최적 반응조건 설정을 위한 독립변수는 반응온도(50~55℃), 반응시간(3~5시간), 매질 내 물의 양(포스파티딜콜린 무게 대비 100~200%) 및 효소량(포스파티딜콜린 무게 대비 5~15%)이였으며 종속변수는 반응산물의 콜린알포세레이트 함량(중량%)이었다. 각 독립변수의 실험범위를 +1.414, +1, 0, -1, -1.414의 5단계로 부호화하고 요인점(factorial point) 16개, 축점 8개, 중심점(center point) 3개를 포함한 27개의 조건을 설정한 후 각각의 조건에서 효소반응을 실시하였다. 위의 4개의 반응조건이 콜린알포세레이트 함량에 미치는 영향을 예측하는 2차 다항 회귀모형(second-order regression model)은 아래의 식과 같다.In detail, the experiment was designed using a central composite circumscribed (CCC) design with a star point at a distance of 1.414 from the center point of the central composite design. The independent variables for the optimal reaction conditions for the production of choline alfoscerate are the reaction temperature (50-55 ° C), the reaction time (3-5 hours), the amount of water in the medium (100-200% of the weight of phosphatidylcholine) 5 to 15% by weight), and the dependent variable was the choline alfoscerate content (wt%) of the reaction product. The experimental range of each independent variable was coded in five stages of +1.414, +1, 0, -1, -1.414, and 27 items including 16 factorial points, 8 axis points, and 3 center points After setting the conditions, enzyme reaction was performed under each condition. The second-order regression model, which predicts the effect of the above four reaction conditions on choline alfoscerate content, is as follows.
Figure PCTKR2018016779-appb-I000003
Figure PCTKR2018016779-appb-I000003
Y는 종속변수, 즉 콜린알포세레이트 함량이었고, Xi는 독립변수로, 온도(Te), 반응시간(RT), 매질 내 물의 양(WC) 및 효소량(En)이었다. Y was the dependent variable, ie, choline alfoscerate content, X i was the independent variable and was the temperature (Te), the reaction time (RT), the amount of water in the medium (WC) and the enzyme amount (En).
상기 반응표면분석법의 실험결과는 Stat-Ease사 (Minneapolis, MN, USA)의 Design Expert 8.0 프로그램을 사용하여 분석하였다. The results of the reaction surface analysis were analyzed using the Design Expert 8.0 program of Stat-Ease (Minneapolis, MN, USA).
반응산물 내 콜린알포세레이트 함량 측정은 상기 실시예 <2-1>과 동일한 방식으로 측정하였으며, 매질 내 물의 양에 따른 반응산물 내 콜린알포세레이트 함량은 반응산물 내 포스파티딜콜린, 리소포스파티딜콜린 및 콜린알포세레이트의 총 함량 대비 백분율로 계산하여 나타내었다.The content of choline alfoscerate in the reaction product was measured in the same manner as in Example <2-1>, and the content of choline alfoscerate in the reaction product according to the amount of water in the medium was measured by using phosphatidylcholine, lysophosphatidylcholine, Calculated as a percentage of the total content of serrate.
그 결과 표 2에서 나타낸 바와 같이, 27개의 반응조건에서 수득된 반응산물의 콜린알포세레이트 함량의 범위는 1.0~100.0 중량%이었다. As a result, as shown in Table 2, the range of the choline alfoscerate content of the reaction product obtained at 27 reaction conditions was 1.0 to 100.0% by weight.
포스파티딜콜린의 노보짐 435 촉매 가수분해 반응에 적용한 central composite circumscribed design과 반응조건별 콜린알포세레이트 생성량Central composite circumscribed design applied to novolac 435 catalytic hydrolysis of phosphatidylcholine and production of choline alfoscerate by reaction conditions
Exp. no.Exp. no. FactorFactor ResponseResponse
Te (℃)Te (占 폚) RT (h)RT (h) WC (wt%)WC (wt%) En (wt%)En (wt%) Choline alfocerate content (wt%)Choline alfocerate content (wt%)
1One 50.050.0 3.03.0 100.0100.0 5.05.0 1.0±0.31.0 ± 0.3
22 55.055.0 3.03.0 100.0100.0 5.05.0 1.5±0.11.5 ± 0.1
33 50.050.0 5.05.0 100.0100.0 5.05.0 18.6±3.718.6 ± 3.7
44 55.055.0 5.05.0 100.0100.0 5.05.0 44.1±3.844.1 ± 3.8
55 50.050.0 3.03.0 100.0100.0 10.010.0 10.4±2.510.4 ± 2.5
66 55.055.0 3.03.0 100.0100.0 10.010.0 23.7±3.623.7 ± 3.6
77 50.050.0 5.05.0 100.0100.0 10.010.0 99.7±0.599.7 ± 0.5
88 55.055.0 5.05.0 100.0100.0 10.010.0 100.0±0.0100.0 0.0
99 50.050.0 3.03.0 200.0200.0 5.05.0 2.2±1.52.2 ± 1.5
1010 55.055.0 3.03.0 200.0200.0 5.05.0 10.9±4.210.9 ± 4.2
1111 50.050.0 5.05.0 200.0200.0 5.05.0 53.9±3 553.9 ± 3 5
1212 55.055.0 5.05.0 200.0200.0 5.05.0 100.0±0.0100.0 0.0
1313 50.050.0 3.03.0 200.0200.0 10.010.0 27.0±2.127.0 ± 2.1
1414 55.055.0 3.03.0 200.0200.0 10.010.0 99.7±0.399.7 ± 0.3
1515 50.050.0 5.05.0 200.0200.0 10.010.0 100.0±0.0100.0 0.0
1616 55.055.0 5.05.0 200.0200.0 10.010.0 100.0±0.0100.0 0.0
1717 49.049.0 4.04.0 150.0150.0 7.57.5 43.8±4.043.8 ± 4.0
1818 56.056.0 4.04.0 150.0150.0 7.57.5 100.0±0.0100.0 0.0
1919 52.552.5 2.62.6 150.0150.0 7.57.5 4.8±1.44.8 ± 1.4
2020 52.552.5 5.45.4 150.0150.0 7.57.5 100.0±0.0100.0 0.0
2121 52.552.5 4.04.0 150.0150.0 4.04.0 7.0±0.47.0 ± 0.4
2222 52.552.5 4.04.0 150.0150.0 11.011.0 100.0±0.0100.0 0.0
2323 52.552.5 4.04.0 79.379.3 7.57.5 19.1±2.319.1 ± 2.3
2424 52.552.5 4.04.0 220.7220.7 7.57.5 99.9±0.199.9 ± 0.1
2525 52.552.5 4.04.0 150.0150.0 7.57.5 91.3±1.091.3 ± 1.0
2626 52.552.5 4.04.0 150.0150.0 7.57.5 99.5±0.199.5 ± 0.1
2727 52.552.5 4.04.0 150.0150.0 7.57.5 99.8±0.199.8 ± 0.1
모든 수치는 평균 ± SD (n = 3)으로 나타냈다.약어: Te, 온도(temperature); RT, 반응시간(reaction time); WC, 매질 내 물의 양(water content); 및 En, 효소량(enzyme loading).All values were expressed as means ± SD (n = 3) Abbreviations: Te, temperature; RT, reaction time; WC, water content in the medium; And En, and enzyme loading.
위의 반응표면 분석 결과를 바탕으로 얻어진 반응온도(Te), 반응시간(RT), 매질 내 물의 양(WC) 및 효소량(En)에 따른 반응산물의 콜린알포세레이트 함량의 2차 다항 회귀모형의 적합성(goodness-of-fit)을 평가하기 위하여 분산분석(Analysis of Variance, ANOVA)을 실시하였다. Second order polynomial regression model of choline alfoscerate content of reaction products according to reaction temperature (Te), reaction time (RT), amount of water (WC) and enzyme amount (En) Analysis of Variance (ANOVA) was performed to evaluate the goodness-of-fit of the test.
그 결과 표 3에서 나타낸 바와 같이, 상기 4개의 반응인자와 콜린알포세레이트 함량의 관계를 나타낸 2차 다항 회귀모형은 0.01% 유의수준에서 통계적으로 유의하였으며 5% 유의수준에서 적합한 것으로 평가되었다. 상기 2차 다항 회귀모형의 적합성을 평가하기 위한 또 다른 지표로 모형식의 결정계수(coefficients of determination)를 산출하였다. 회귀모형이 회귀모형의 도출에 사용된 데이터에 얼마나 잘 맞는지를 나타내는 지표인 결정계수(R2) 값과 조정 결정계수(adjusted R2) 값은 각각 0.8298과 0.7787이었고 회귀모형이 새로운 관찰에 대한 반응을 얼마나 잘 예측하는 지를 나타내는 지표인 예측 결정계수 (Q2) 값은 0.6965이었다. 따라서 회귀모형의 설명력과 예측력 모두 우수한 것으로 평가되었다.As a result, as shown in Table 3, the quadratic polynomial regression model showing the relationship between the four reaction factors and the choline alfoscerate content was statistically significant at the 0.01% significance level and evaluated as appropriate at the 5% significance level. The coefficient of determination of the model was calculated as another index to evaluate the fit of the second polynomial regression model. Regression coefficient indicator decision indicating how well the fit to the data used in the derivation of the regression model (R 2) value and the adjusted coefficient of determination (adjusted R 2) value respectively 0.8298 and 0.7787 were regression model the response to the new observation (Q 2 ), which is an indicator of how well we predicted, is 0.6965. Therefore, the explanatory power and the predictive power of the regression model were evaluated to be excellent.
회귀모형의 분산분석Variance analysis of regression model
VariableVariable dfdf SSSS MSMS F-value F -value p-value p-value
Corrected totalCorrected total 2626 47242.3647242.36
Model Model 66 39200.9739200.97 6533.496533.49 16.2516.25 <0.0001<0.0001
ResidualResidual 2020 8041.398041.39 402.07402.07
Lack of fit Lack of fit 1818 7994.867994.86 444.16444.16 19.0919.09 0.05090.0509
Pure error Pure error 22 46.5346.53 23.2623.26
약어: df, 자유도(degree of freedom); SS, 제곱합(sum of squares); 및 MS, 평균제곱(mean square).Abbreviation: df, degree of freedom; SS, sum of squares; And MS, mean square.
앞서 콜린알포세레이트 제조를 위한 포스파티딜콜린의 노보짐 435 촉매 가수분해 반응에 대한 회귀모형의 도출 시 사용된 독립변수들은 후진제거법(backward elimination method)을 이용하여 선택하였다. 즉 본 연구에서 포스파티딜콜린의 가수분해 산물의 콜린알포세레이트 함량에 영향을 미치는 반응인자로 고려된 반응온도(Te), 반응시간(RT), 매질 내 물의 양(WC) 및 효소량(En)의 일차항(linear term)과 이들 인자의 제곱인 이차항(quadratic term), 그리고 이들 인자간의 교차항(interaction term)을 모두 설명변수로 모형에 삽입한 후 가장 유의하지 않은 설명변수를 제외해가면서 최종적으로 모형에는 유의한 설명변수만을 남김으로써 콜린알포세레이트 함량에 대한 회귀모형을 각각 도출하였다. 각각의 회귀모형에서 최종적으로 선택된 독립변수의 계수(coefficients)의 절대값은 종속변수인 콜린알포세레이트 함량에 미치는 상대적인 영향력을 의미한다.The independent variables used in the derivation of the regression model for the novolac 435 catalytic hydrolysis of phosphatidylcholine for the production of choline alfoscerate were selected using the backward elimination method. In the present study, the reaction temperature (Te), the reaction time (RT), the amount of water in the medium (WC) and the amount of enzyme (En) considered as reaction factors affecting the choline alfoscerate content of the hydrolyzed product of phosphatidylcholine The linear term, the quadratic term that is the square of these factors, and the interaction term between these factors are all inserted into the model as explanatory variables. Regression models for choline alfoscerate content were derived by leaving only significant explanatory variables in the model. The absolute value of the coefficients of the finally selected independent variables in each regression model means the relative influence on the dependent variable, choline alfoscerate content.
그 결과 표 4에서 나타낸 바와 같이, 상기 4개의 반응인자 모두 콜린알포세레이트 함량에 유의적인 영향을 미치는 것으로 나타났으며 반응시간(RT; 28.73), 효소량(En; 22.99), 매질 내 물의 양(WC; 15.45) 및 반응온도(Te; 12.33)의 일차항 순으로 큰 양의 계수 값을 가지고 있어 특히 반응시간이 콜린알포세레이트 함량에 대해 가장 큰 설명력을 가지고 있는 변수로 판단되었다. 한편 반응시간(RT*RT; -14.69)과 효소량(WC*WC; -14.14)의 이차항은 5% 수준에서 유의한 설명력을 나타내었으며 음의 계수 값을 가지고 있었다. 반면에 반응온도(Te*Te)와 매질 내 물의 양(WC*WC)의 이차항은 5% 유의수준에서 콜린알포세레이트 함량에 영향을 미치지 않는 것으로 나타났다. 한편 상기 4개의 반응인자 간의 모든 교차항은 5% 수준에서 콜린알포세레이트 함량에 유의적인 영향을 미치지 않는 것으로 나타났다. 이러한 결과는 본 발명에서 조사한 반응온도(50~55℃), 반응시간(3~5시간), 매질 내 물의 양(100~200중량%) 및 효소량(5~15중량%)의 범위에서는 반응시간과 효소량이 증가함에 따라 반응산물 내 콜린알포세레이트 함량이 증가하다가 일정 조건에서 최대값에 도달한 후 다시 그 함량이 감소하는 경향을 나타내는 반면에 반응온도와 매질 내 물의 양의 경우 이들 변수의 값이 증가함에 따라 콜린알포세레이트 함량이 계속 증가한다는 것을 의미한다. As a result, as shown in Table 4, all of the four reaction factors showed a significant effect on the choline alfoscerate content and the reaction time (RT; 28.73), the enzyme amount (En; 22.99) WC; 15.45) and the reaction temperature (Te; 12.33), the reaction time was the most significant variable for the content of choline alfoscerate. The second term of reaction time (RT * RT; -14.69) and enzyme amount (WC * WC; -14.14) showed significant explanatory power at 5% level and negative coefficient value. On the other hand, the quadratic term of the reaction temperature (Te * Te) and the amount of water in the medium (WC * WC) did not affect the choline alfoscerate content at the 5% significance level. On the other hand, all the cross terms between the four response factors did not significantly affect the choline alfoscerate content at the 5% level. These results indicate that when the reaction temperature (50 to 55 ° C), the reaction time (3 to 5 hours), the amount of water in the medium (100 to 200% by weight) and the enzyme amount (5 to 15% And the amount of choline alfoscerate in the reaction product increases with increasing amount of enzyme, while the content tends to decrease again after reaching the maximum value under certain conditions. On the other hand, in case of reaction temperature and water amount in medium, , The choline alfoscerate content is continuously increased.
포스파티딜콜린의 노보짐 435 촉매 가수분해 반응에 대한 2차 회귀모형식Second-order regression model for Novogem 435 catalytic hydrolysis of phosphatidylcholine
EffectEffect CoefficientCoefficient p-value p-value
InterceptIntercept 79.0679.06 <0.0001<0.0001
Linear termLinear term
Te Te 12.3312.33 0.01240.0124
RT RT 28.7328.73 <0.0001<0.0001
WC WC 15.4515.45 0.00260.0026
En En 22.9922.99 <0.0001<0.0001
Quadratic termQuadratic term
RT*RT RT * RT -14.69-14.69 0.03960.0396
En*En En * En -14.14-14.14 0.04680.0468
약어: 자유도(degree of freedom); SS, 제곱합(sum of squares); 및 MS, 평균제곱(mean square).Abbreviation: degree of freedom; SS, sum of squares; And MS, mean square.
본 발명에서 도출된 회귀모형의 타당성을 검증하기 위해 독립변수의 주어진 범위에서 표 2의 27개 반응조건을 제외한 10개의 반응조건을 추가적으로 설정하고 이들 조건에서 얻은 반응산물의 콜린알포세레이트 함량을 회귀모형식을 이용하여 예측한 콜린알포세레이트 함량과 서로 비교하였다. In order to verify the validity of the regression model derived from the present invention, ten reaction conditions other than the 27 reaction conditions in Table 2 were additionally set in a given range of the independent variables, and the content of choline alfoscerate in the reaction products obtained under these conditions was regressed Were compared with the choline alfoscerate content predicted using the parental format.
그 결과 표 5에서 나타낸 바와 같이, 콜린알포세레이트 함량에 대한 회귀모형의 예측 오차(prediction error)는 0.6~61.4%의 범위를 나타내었다. 특히 예측 값이 상대적으로 큰 5~10번 조건에서 얻은 반응산물의 콜린알포세레이트 함량에 대한 예측 오차는 0.6~24.6%로 상대적으로 낮게 나타났다. 본 발명에서 도출한 2차 회귀모형의 용도는 콜린알포세레이트의 생성량을 최대한 증가시키는 최적 반응조건을 확립하는데 있으므로 상기 회귀모형은 타당성을 가지고 있는 것으로 평가되었다.As a result, as shown in Table 5, the prediction error of the regression model for the choline alfoscerate content ranged from 0.6 to 61.4%. Especially, the prediction error of choline alfoscerate content of reaction products obtained at 5 ~ 10 conditions with relatively large predicted values was relatively low as 0.6 ~ 24.6%. The use of the second regression model derived from the present invention establishes an optimal reaction condition that maximizes the amount of choline alfoscerate produced, so the above regression model is evaluated to be valid.
포스파티딜콜린의 노보짐 435 촉매 가수분해 반응에 대한 2차 회귀모형식을 이용하여 예측한 반응조건별 콜린알포세레이트 생성량과 실제 반응 시 콜린알포세레이트 생성량Production of choline alfoscerate by reaction conditions predicted by the second-order regression model for the catalytic hydrolysis of norbom 435 of phosphatidylcholine and production of choline alfoscerate
Exp. no.Exp. no. FactorFactor ResponseResponse
Te (℃)Te (占 폚) RT (h)RT (h) WC (wt%)WC (wt%) En (wt%)En (wt%) Choline alfocerate content (wt%)Choline alfocerate content (wt%)
ObservedObserved PredictedPredicted %PE% PE
1One 50.350.3 3.13.1 169.3169.3 5.05.0 2.2±0.72.2 ± 0.7 2.12.1 4.64.6
22 51.051.0 3.03.0 121.9121.9 7.07.0 9.4±3.29.4 ± 3.2 14.814.8 58.258.2
33 50.150.1 4.84.8 103.2103.2 5.05.0 20.4±5.320.4 ± 5.3 29.629.6 45.445.4
44 51.551.5 4.94.9 102.9102.9 5.15.1 23.1±7.523.1 ± 7.5 37.237.2 61.461.4
55 54.254.2 4.94.9 100.2100.2 5.05.0 45.3±13.645.3 ± 13.6 48.848.8 7.67.6
66 54.354.3 4.84.8 110.5110.5 5.25.2 50.5±2.550.5 ± 2.5 56.856.8 12.512.5
77 50.350.3 4.94.9 197.2197.2 5.35.3 69.3±4.469.3 ± 4.4 66.066.0 4.84.8
88 50.050.0 3.53.5 198.3198.3 9.99.9 95.0±4.295.0 ± 4.2 71.671.6 24.624.6
99 50.450.4 4.04.0 194.4194.4 8.58.5 98.5±2.298.5 ± 2.2 89.689.6 9.09.0
1010 54.254.2 4.24.2 186.6186.6 7.07.0 100.0±0.0100.0 0.0 99.499.4 0.60.6
모든 수치는 평균 ± SD (n = 3)으로 나타냈다.약어: Te, 온도(temperature); RT, 반응시간(reaction time); WC, 매질 내 물의 양(water content); En, 효소량(enzyme loading); 및 %PE, 백분율 예측오차(percentage prediction error).All values were expressed as means ± SD (n = 3) Abbreviations: Te, temperature; RT, reaction time; WC, water content in the medium; En, enzyme loading; And% PE, and a percentage prediction error.
본 발명에서 도출된 회귀모형을 이용하여 콜린알포세레이트의 생성량을 최대화하는 포스파티딜콜린의 노보짐 435 촉매 가수분해 반응의 최적 반응조건을 설정하였다. Design Expert 8.0 프로그램의 Optimization function을 이용하여 반응산물 내 콜린알포세레이트 함량이 100중량%가 될 것으로 예측되는 반응온도, 반응시간, 매질 내 물의 양, 효소량에 대한 조건 4가지를 도출하였으며 이들 최적조건에서 얻은 반응산물의 콜린알포세레이트 함량을 조사하였다.The optimal reaction conditions for the Novogem 435 catalytic hydrolysis of phosphatidylcholine, which maximizes the production of choline alfoscerate, were established using the regression model derived from the present invention. The optimum conditions for the reaction temperature, reaction time, amount of water in the medium and amount of enzyme in the reaction products were determined. The optimum conditions were determined by using Optimization function of Design Expert 8.0 program. The content of choline alfoscerate in the reaction product obtained in the above experiment was examined.
그 결과 표 6에서 나타낸 바와 같이, 상기 조건 4가지에서 모두 포스파티딜콜린이 완전히 콜린알포세레이트로 전환되는 것을 확인하였다. 효소반응을 산업적으로 이용하는데 있어서 가장 어려운 점은 대부분의 효소촉매가 비싸 경제성이 떨어지는 것이다. 따라서 본 발명의 궁극적인 목표인 콜린알포세레이트의 산업적 제조를 위해서는 상기 가수분해 반응 후 노보짐 435 효소를 회수하여 재사용하는 것이 반드시 필요하다. 상기 노보짐 435 효소의 고정화 담체는 교반 등의 전단력에 의해 파괴되기(ruptured) 쉽고 계면활성제 또는 극성용매에 의해 고정화 담체로부터 효소의 침출이 일어날 가능성이 높다. 따라서 본 발명에 따른 반응조건 중 매질 내 물의 양이 많을수록 상기 노보짐 435의 안정성이 감소하여 반응 후 회수하여 재사용이 어려워지는 문제점이 있어 본 발명에서는 매질 내 물의 양이 상대적으로 적은 4번 조건(반응온도 55.0℃, 반응시간 4.9시간, 매질 내 물의 양 105.9중량%, 효소량 9.4중량%) 또는 이와 유사한 조건(반응온도 55℃, 반응시간 6시간, 매질 내 물의 양 100중량%, 효소량 10중량%)을 콜린알포세레이트의 생성량을 최대화하는 포스파티딜콜린의 노보짐 435 촉매 가수분해 반응의 최적 반응조건으로 설정하였다.As a result, as shown in Table 6, it was confirmed that the phosphatidylcholine completely converted to choline alfoscerate in all of the above conditions. The most difficult thing in industrial use of enzyme reaction is that most enzyme catalysts are expensive and economical. Therefore, in order to industrially produce choline alfoscerate, which is the ultimate goal of the present invention, it is necessary to recover the novoid 435 enzyme after the hydrolysis reaction and reuse it. The immobilized carrier of the Novojim 435 enzyme is easily ruptured by shear force such as stirring and the possibility of leaching of the enzyme from the immobilized carrier by the surfactant or polar solvent is high. Therefore, as the amount of water in the reaction medium according to the present invention increases, the stability of the noborg 435 decreases, which makes it difficult to recover the noborg 435 after the reaction. Therefore, in the present invention, the amount of water in the medium is relatively low (Reaction temperature 55 ° C, reaction time 4.9 hours, amount of water 105.9% by weight in the medium, amount of enzyme 9.4% by weight) or similar conditions (reaction temperature 55 ° C, reaction time 6 hours, amount of water in the medium 100% Was set as the optimal reaction condition for the Novogem 435 catalytic hydrolysis of phosphatidylcholine to maximize the production of choline alfoscerate.
포스파티딜콜린의 노보짐 435 촉매 가수분해 반응에 대한 2차 회귀모형식을 이용하여 도출한 최적 반응조건과 실제 반응 시 콜린알포세레이트 생성량Optimal reaction conditions derived from the second regression model for novolac 435 catalytic hydrolysis of phosphatidylcholine and production of choline alfoscerate
Exp. no.Exp. no. FactorFactor ResponseResponse
Te (℃)Te (占 폚) RT (h)RT (h) WC (wt%)WC (wt%) En (wt%)En (wt%) Choline alfocerate content (wt%)Choline alfocerate content (wt%)
ObservedObserved PredictedPredicted %PE% PE
1One 54.154.1 3.93.9 185.2185.2 8.88.8 100.0±0.0100.0 0.0 100.0100.0 0.00.0
22 55.055.0 5.05.0 199.2199.2 6.26.2 100.0±0.0100.0 0.0 100.0100.0 0.00.0
33 50.050.0 4.44.4 198.7198.7 8.98.9 100.0±0.0100.0 0.0 100.0100.0 0.00.0
44 55.055.0 4.94.9 105.9105.9 9.49.4 100.0±0.0100.0 0.0 100.0100.0 0.00.0
모든 수치는 평균 ± SD (n = 3)으로 나타냈다.약어: Te, 온도(temperature); RT, 반응시간(reaction time); WC, 매질 내 물의 양(water content); En, 효소량(enzyme loading); 및 %PE, 백분율 예측오차(percentage prediction error).All values were expressed as means ± SD (n = 3) Abbreviations: Te, temperature; RT, reaction time; WC, water content in the medium; En, enzyme loading; And% PE, and a percentage prediction error.
<실시예 4> 반응산물로부터 콜린알포세레이트의 분리정제Example 4 Separation of choline alfoscerate from the reaction product Purification
상기 실시예 <3-1>를 통해 설정한 최적 반응조건에서 제조한 대두 포스파티딜콜린의 노보짐 435 촉매 가수분해 반응산물을 반응 후 반응매질을 층 분리하는 과정을 통해 콜린알포세레이트를 분리정제하였다.Choline alfoscerate was isolated and purified by subjecting the crude product of soybean phosphatidylcholine produced by Novojim 435 catalytic hydrolysis reaction product prepared under the optimal reaction conditions set forth in the above Example <3-1> to reaction and then separating the reaction medium.
<4-1> 반응산물의 물 분획물 제조<4-1> Preparation of water fraction of reaction product
본 실험에서는 대두 포스파티딜콜린을 노보짐 435 촉매 하에 가수분해하여 수득된 반응산물로부터 물 분획물을 제조하고 상기 분획물의 콜린알포세레이트 함량을 측정하였다.In this experiment, a water fraction was prepared from the reaction product obtained by hydrolyzing soybean phosphatidylcholine under novolac 435 catalyst, and the choline alfoscerate content of the fraction was measured.
자세하게는, 대두 포스파티딜콜린 4g을 회분식 반응기(15cm×5cm i.d.)에 넣고 반응매질로 물과 헥산의 혼합용매 20mL(헥산 16mL + 물 4mL), 노보짐 435 0.4g(기질무게의 10%)를 첨가한 후 반응온도 55℃에서 600rpm의 속도로 교반하면서 6시간 반응시켰다. 반응온도는 반응기의 물 재킷에 연결된 항온 순환 수조에 의하여 일정하게 유지하였다. 반응 종료 후 반응산물을 여과지가 깔린 부흐너깔때기에 넣고 감압 여과하여 노보짐 435 효소를 제거한 반응산물을 얻었다. 반응기 내에 남아 있는 반응산물은 추가로 물 20mL로 상기 부흐너깔때기에 씻어 넣고 여과하였다. 여과 후 반응산물을 분액깔대기에 넣고 추가로 물 20mL과 헥산 20mL을 넣은 후 상온에서 30분 동안 정치하여 반응매질을 헥산층과 물층으로 분리하였다. 이 때 기질이 가수분해되면서 생성된 유리지방산은 헥산층에 존재하고 콜린알포세레이트는 물층에 용해되어 있기 때문에 상기 물층을 회수하여 회전식 감압 농축기를 이용하여 40℃에서 건조하여 콜린알포세레이트의 정제물(물 분획물)을 제조하였다.Specifically, 4 g of soybean phosphatidylcholine was placed in a batch reactor (15 cm × 5 cm id), 20 mL of a mixed solvent of water and hexane (16 mL of hexane + 4 mL of water) and 0.4 g of Novogym 435 (10% of substrate weight) The reaction was carried out at a reaction temperature of 55 ° C at 600 rpm for 6 hours with stirring. The reaction temperature was kept constant by a constant temperature circulating water bath connected to the water jacket of the reactor. After completion of the reaction, the reaction product was placed in a Buchner funnel with a filter paper, and filtration under reduced pressure was conducted to obtain a reaction product from which novoid 435 enzyme was removed. The remaining reaction product in the reactor was further washed with 20 mL of water into the Buchner funnel and filtered. After filtration, the reaction product was put into a separatory funnel, and further, 20 mL of water and 20 mL of hexane were added, and the mixture was allowed to stand at room temperature for 30 minutes, and the reaction medium was separated into a hexane layer and a water layer. At this time, since the free fatty acid generated by the hydrolysis of the substrate is present in the hexane layer and the choline alfoscerate is dissolved in the water layer, the water layer is recovered and dried at 40 ° C using a rotary vacuum concentrator to purify the choline alpocellate Water (water fraction) was prepared.
대두 포스파티딜콜린의 반응산물로부터 수득된 물 분획물 내 포스파티딜콜린, 리소포스파티딜콜린 및 콜린알포세레이트 함량 측정은 상기 실시예 <2-1>과 동일한 방식으로 측정하였으며, 각 성분의 함량은 상기 물 분획물 내 포스파티딜콜린, 리소포스파티딜콜린 및 콜린알포세레이트의 총 함량 대비 백분율로 나타내었다.The content of phosphatidylcholine, lysophosphatidylcholine and choline alfoscerate in the water fraction obtained from the reaction product of soybean phosphatidylcholine was measured in the same manner as in Example <2-1>, and the content of each component was measured by phosphatidylcholine, Phosphatidylcholine and choline alfoscerate as a percentage of the total content.
그 결과 도 5에서 나타낸 바와 같이, 대두 포스파티딜콜린의 반응산물로부터 수득된 물 분획물에서는 상기 반응산물에 존재했던 유리지방산이 거의 완전히 제거된 것을 확인하였다.As a result, as shown in Fig. 5, it was confirmed that the free fatty acid present in the reaction product was almost completely removed from the water fraction obtained from the reaction product of soybean phosphatidylcholine.
그 결과 표 7에서 나타낸 바와 같이, 대두 포스파티딜콜린의 반응산물에서 수득된 물 분획물의 수율은 원료 기질인 대두 포스파티딜콜린콜린의 무게 대비 31.8중량%이었으며 상기 물 분획물의 콜린알포세레이트 함량은 98.6중량%이었다. As a result, as shown in Table 7, the yield of the water fraction obtained from the reaction product of soybean phosphatidylcholine was 31.8% by weight with respect to the weight of soybean phosphatidylcholine choline as a raw material substrate and the choline alfoscerate content of the water fraction was 98.6% by weight.
대두 포스파티딜콜린의 노보짐 435 가수분해 반응산물로부터 수득된 물 분획물의 수율 및 콜린알포세레이트 함량The yield of the water fraction obtained from the Novogam 435 hydrolysis product of soybean phosphatidylcholine and the choline alfoscerate content
ProductsProducts Product yield (wt% of substrate)Product yield (wt% of substrate) Choline alfocerate content (wt%)Choline alfocerate content (wt%)
Water-soluble fractionWater-soluble fraction 31.8±5.631.8 ± 5.6 98.6±0.398.6 ± 0.3
모든 수치는 평균 ± SD (n = 3)으로 나타냈다.All values were expressed as mean ± SD (n = 3).
<< 실시예Example 5> 대두 레시틴으로부터 분별 대두 레시틴 제조 5> Preparation of fractionated soybean lecithin from soybean lecithin
<5-1> 대두 레시틴의 화학적 조성<5-1> Chemical Composition of Soybean Lecithin
본 발명에서 원료로 이용한 대두 레시틴의 화학적 조성은 하기 표 8에서 자세히 나타내었다. 상기 대두 레시틴의 글리세로인지질(glycerophospholipids)을 포함한 총 지방질 함량은 ~90중량%이었다. 총 인지질 함량은 ~45중량%이었고 이 중 포스파티딜콜린(phosphatidylcholine, PC)의 함량이 ~15중량%로 가장 높았고 포스파티딜이노시톨(phosphatidylinositol, PI; ~11중량%), 포스파티딜에탄올아민(phosphatidylethanolamine, PE; ~9중량%). 포스파티딘산(phosphatidic acid, PA; ~4중량%)의 순으로 함량이 높았다. 중성지질 등 인지질 외 지방질의 함량은 ~45중량%이었다.The chemical composition of soybean lecithin used as a raw material in the present invention is shown in detail in Table 8 below. The total lipid content including the glycerophospholipids of the soybean lecithin was ~90 wt%. The content of phosphatidylcholine (PC) was the highest at ~ 15 wt%, and the content of phosphatidylinositol (PI; ~ 11 wt%), phosphatidylethanolamine (PE; weight%). And phosphatidic acid (PA: ~ 4% by weight). The content of lipids other than phospholipids such as neutral lipids was ~ 45 wt%.
대두 레시틴의 화학적 조성Chemical composition of soybean lecithin
ComponentComponent Content (wt%)Content (wt%)
FatsFats 90.090.0
Phospholipids Phospholipids 44.544.5
Phosphatidylcholine (PC)  Phosphatidylcholine (PC) 14.814.8
Lysophosphatidylcholine (LPC)  Lysophosphatidylcholine (LPC) 1.01.0
Phosphatidylinositol (PI)  Phosphatidylinositol (PI) 10.810.8
Lysophosphatidylinositol (LPI)  Lysophosphatidylinositol (LPI) 0.30.3
Phosphatidylserine (sodium salt) (PS)  Phosphatidylserine (sodium salt) (PS) 0.30.3
Phosphatidylethanolamine (PE)  Phosphatidylethanolamine (PE) 8.88.8
Lysophosphatidylethanolamine (LPE)  Lysophosphatidylethanolamine (LPE) 0.30.3
N-acyl phosphatidylethanolamine  N-acyl phosphatidylethanolamine 1.91.9
Phosphatidylglycerol (PG)  Phosphatidylglycerol (PG) 0.50.5
Diphosphatidylglycerol (DPG)  Diphosphatidylglycerol (DPG) 0.60.6
Phosphatidic acid (PA)  Phosphatidic acid (PA) 4.34.3
Lysophosphatidic acid (LPA)  Lysophosphatidic acid (LPA) 0.20.2
Other phospholipids  Other phospholipids 0.80.8
Other fats including triacylglycerols Other fats including triacylglycerols 45.545.5
CarbohydratesCarbohydrates 5.05.0
AshAsh 4.54.5
<5-2> 분별 대두 레시틴 제조<5-2> Preparation of fractionated soybean lecithin
본 연구진의 선행연구에서 물과 헥산의 혼합 반응매질에서 레시틴을 가수분해하여 콜린알포세레이트를 생성하기 위해서는 레시틴 내 중성지질을 제거해야 한다는 사실을 확인하였다. 이에 본 발명에서는 원료기질인 대두 레시틴의 반응 적합성을 향상시키기 위하여 중성지질을 효과적으로 제거할 수 있는 분획조건을 확립하였다.In our previous study, we confirmed that neutral lipids in lecithin should be removed in order to hydrolyze lecithin to produce choline alfoscerate in a mixed reaction medium of water and hexane. Accordingly, in order to improve the suitability of soybean lecithin, which is a raw material substrate, in the present invention, fractionation conditions capable of effectively removing neutral lipids were established.
상기 대두 레시틴 10g에 에탄올 25mL을 넣고 65℃에서 600rpm의 속도로 1시간동안 교반한 후 원심분리(2,200×g, 15분)하여 상등액을 얻었다. 회전식 감압 농축기에서 상등액의 에탄올을 제거하여 콜린알포세레이트 제조를 위한 효소반응에 적합한 분별 대두 레시틴(대두 레시틴의 에탄올 분획물)을 제조하였다. 상기 분획 조건에서 제조한 분별 대두 레시틴은 중성지질이 완전히 제거되었음을 확인하였다. 수득된 분별 대두 레시틴의 수율은 대두 레시틴 무게 대비 ~48중량%이었다. 수득된 분별 대두 레시틴은 사용 전까지 4℃에서 냉장 보관하였다.To 10 g of the soybean lecithin, 25 mL of ethanol was added, and the mixture was stirred at 65 ° C at 600 rpm for 1 hour, followed by centrifugation (2,200 × g, 15 minutes) to obtain a supernatant. Ethanol was removed from the supernatant in a rotary vacuum concentrator to prepare fractionated soybean lecithin (ethanol fraction of soy lecithin) suitable for enzyme reaction for the production of choline alfoscerate. The fractionated soybean lecithin prepared under the above fractionation conditions was confirmed to have completely removed the neutral lipids. The yield of the obtained fractionated soybean lecithin was ~ 48 wt% based on the weight of soybean lecithin. The obtained fractionated soybean lecithin was refrigerated at 4 ° C until use.
<< 실시예Example 6> 대두 레시틴 및 분별 대두 레시틴의 지방산 조성 분석 6> Fatty acid composition analysis of soybean lecithin and fractionated soybean lecithin
상기 실시예 5를 통해 수득한 분별 대두 레시틴과 원료 대두 레시틴의 지방산 조성은 하기 표 9에 자세히 나타내었다.The fatty acid compositions of the fractionated soybean lecithin and the raw soybean lecithin obtained in Example 5 are shown in Table 9 below.
대두 레시틴과 분별 대두 레시틴의 지방산 조성Fatty acid composition of soybean lecithin and fractionated soybean lecithin
Fatty acidFatty acid Soy lecithin (mol%)Soy lecithin (mol%) Ethanol-soluble fraction of soy lecithin (mol%)Ethanol-soluble fraction of soy lecithin (mol%)
16:016: 0 18.9±0.118.9 ± 0.1 16.5±0.116.5 ± 0.1
16:1n-716: 1n-7 0.2±0.00.2 ± 0.0 0.1±0.00.1 ± 0.0
18:018: 0 3.3±0.03.3 ± 0.0 3.1±0.03.1 ± 0.0
18:1n-918: 1n-9 21.6±0.021.6 ± 0.0 23.3±0.123.3 ± 0.1
18:2n-618: 2n-6 50.8±0.050.8 ± 0.0 51.4±0.051.4 ± 0.0
18:3n-318: 3n-3 5.0±0.05.0 ± 0.0 5.2±0.05.2 ± 0.0
20:020: 0 0.2±0.00.2 ± 0.0 0.2±0.00.2 ± 0.0
20:120: 1 0.2±0.00.2 ± 0.0 0.2±0.00.2 ± 0.0
Total SFATotal SFA 22.4±0.122.4 ± 0.1 19.8±0.119.8 ± 0.1
Total USFATotal USFA 77.6±0.177.6 ± 0.1 80.2±0.180.2 ± 0.1
모든 수치는 평균 ± SD (n = 2)으로 나타냈다.약어: SFA, 포화지방산(saturated fatty acids); 및 USFA, 불포화지방산(unsaturated fatty acids).All values were expressed as mean ± SD (n = 2). Abbreviations: SFA, saturated fatty acids; And USFA, unsaturated fatty acids.
상기 표 9에서 나타낸 바와 같이, 분별 대두 레시틴의 주요 지방산은 51.4몰%의 리놀레산(18:2n-6), 23.3몰%의 올레산(18:1n-9) 및 16.5몰%의 팔미트산(16:0)이었으며 총 불포화지방산의 함량은 80.2몰%이었다.As shown in Table 9, the major fatty acids of the fractionated soybean lecithin were 51.4 mol% linoleic acid (18: 2n-6), 23.3 mol% oleic acid (18: 1 n-9) and 16.5 mol% palmitic acid : 0) and the total unsaturated fatty acid content was 80.2 mol%.
<< 실시예Example 7> 기질의 반응 적합성 평가 7> Evaluation of reaction suitability of substrate
상기 실시예 <5-2>를 통해 제조한 분별 대두 레시틴과 상업용 대두 포스파티딜콜린을 각각 기질로 하고 물과 헥산의 혼합용매를 반응매질로 하여 노보짐 435 촉매 가수분해 반응 시 콜린알포세레이트의 생성량을 비교 평가하였다.The amount of choline alfoscerate produced in the Novogam 435 catalytic hydrolysis reaction was determined by using the fractionated soybean lecithin and the commercial soybean phosphatidylcholine prepared in Example <5-2> as the substrate and the mixed solvent of water and hexane as the reaction medium, Respectively.
자세하게는, 대두 포스파티딜콜린 또는 분별 대두 레시틴 4g을 회분식 반응기(15cm×5cm i.d.)에 넣고 반응매질로 물과 헥산의 혼합용매 20mL(헥산 16mL + 물 4mL), 노보짐 435 0.4g(기질무게의 10%)를 첨가한 후 반응온도 55℃에서 600rpm의 속도로 교반하였다. 반응온도는 반응기의 물 재킷에 연결된 항온 순환 수조에 의하여 일정하게 유지하였다. 반응시간은 최소 2시간에서 12시간으로 설정하였고 반응산물의 시료는 반응시간 0, 2, 4, 6, 8, 10, 12시간에서 각각 0.2mL씩 취하였다.Specifically, 4 g of soybean phosphatidylcholine or fractionated soybean lecithin was placed in a batch reactor (15 cm × 5 cm id), and 20 mL of a mixed solvent of water and hexane (16 mL of hexane + 4 mL of water) and 0.4 g of Novogym 435 ) Was added thereto, followed by stirring at a reaction temperature of 55 ° C at a speed of 600 rpm. The reaction temperature was kept constant by a constant temperature circulating water bath connected to the water jacket of the reactor. The reaction time was set at least 2 hours to 12 hours. The reaction product samples were taken at 0.2, 0.2, and 0.2 hours at reaction times 0, 2, 4, 6, 8, 10, and 12 hours, respectively.
한편, 기질의 종류에 따른 반응산물 내 콜린알포세레이트 함량을 측정을 위해, 효소반응에 의해 생성된 반응산물 내 포스파티딜콜린, 리소포스파티딜콜린 및 콜린알포세레이트 함량을 액체크로마토그래피를 이용하여 분석하였다.On the other hand, in order to determine the content of choline alfoscerate in the reaction product depending on the type of substrate, the content of phosphatidylcholine, lysophosphatidylcholine and choline alfoscerate in the reaction product produced by the enzyme reaction was analyzed by liquid chromatography.
효소반응에 의해 생성된 반응산물 0.2mL에 클로로포름/메탄올(1:2, v/v) 2mL을 가하고 0.45μm syringe filter (13mm)로 여과하여 효소를 제거하였다. 질소 기류 하에 용매를 제거하고 액체 크로마토그래피의 이동상으로 사용한 93 v/v% 메탄올 0.2mL에 1mg/mL의 농도로 녹인 후 0.45μm syringe filter (13mm)로 여과한 후 액체크로마토그래프(JASCO Corp., Tokyo, Japan)에 주입하여 분석을 실시하였다. 칼럼으로 LiChrosorb Si 60 column (250mm × 4mm i.d., 5μm particle size, Merck, Darmstadt, Germany)을 사용하였고 증기화 광산란 검출기(Evaporative Light Scattering Detector, ELSD)를 이용하여 검출하였다. 시료 주입량은 20μL, 이동상의 유속은 1mL/분이었다. ELSD의 drift tube 온도는 60℃이었으며 질소는 1.5L/분의 유속으로 공급하였다.2 mL of chloroform / methanol (1: 2, v / v) was added to 0.2 mL of the reaction product produced by the enzyme reaction, and the enzyme was removed by filtration with a 0.45 μm syringe filter (13 mm). The solvent was removed under a nitrogen stream and the solution was dissolved in 0.2 mL of 93 v / v% methanol used as a mobile phase of liquid chromatography. The resulting solution was filtered with a 0.45 μm syringe filter (13 mm), and then filtered through a liquid chromatograph (JASCO Corp., Tokyo, Japan). A LiChrosorb Si 60 column (250 mm × 4 mm i.d., 5 μm particle size, Merck, Darmstadt, Germany) was used as a column and detected using an evaporative light scattering detector (ELSD). The sample injection amount was 20 μL and the flow rate of the mobile phase was 1 mL / min. The drift tube temperature of ELSD was 60 ° C and nitrogen was supplied at a flow rate of 1.5 L / min.
상기와 같은 방법으로 측정된 반응산물 내 콜린알포세레이트 함량은 반응산물 내 포스파티딜콜린, 리소포스파티딜콜린 및 콜린알포세레이트의 총 함량 대비 백분율로 계산하여 반응시간에 따른 함수로 나타내었다. 다만 분별 대두 레시틴에는 포스파티딜콜린(PC) 외에도 포스파티딜이노시톨(PI), 포스파티딜에탄올아민(PE) 등의 글리세로인지질(glycerophospholipids, GPL)이 함께 존재하며 상기 글리세로인지질 종들은 모두 상기 액체크로마토그래피에서 포스파티딜콜린과 분리되지 않고 동일한 시간에 용출되었다. 또한 분별 대두 레시틴의 가수분해 반응에 의해서 상기 글리세로인지질 종들로부터 생성되는 리소포스파티딜이노시톨(LPI), 리소포스파티딜에탄올아민(LPE) 등의 리소글리세로인지질(lysoglycerophospholipids, LPL)과 L-α-글리세릴포스포릴이노시톨(L-α-glycerylphosphorylinositol), L-α-글리세릴포스포릴에탄올아민(L-α-glycerylphosphorylethanolamine) 등의 글리세로포스포디에스터(glycerophosphodiesters, GD)는 각각 리소포스파티딜콜린과 콜린알포세레이트와 분리되지 않고 동일한 시간에 용출되었다, 따라서 분별 대두 레시틴을 기질로 이용 시 수득되는 반응산물에서는 총 글리세로인지질 함량(포스파티딜콜린 함량 포함), 총 리소글리세로인지질 함량(리소포스파티딜콜린 함량 포함) 및 총 글리세로포스포디에스터 함량(콜린알포세레이트 함량 포함)을 측정하였으며, 각 성분의 함량은 반응산물 내 글리세로인지질, 리소글리세로인지질 및 글리세로포스포디에스터의 총 함량 대비 백분율로 계산하여 반응시간에 따른 함수로 나타내었다. The content of choline alfoscerate in the reaction product measured by the above method was calculated as a function of the reaction time as a percentage of the total content of phosphatidylcholine, lysophosphatidylcholine and choline alfoscerate in the reaction product. However, glycerophospholipids (GPL) such as phosphatidylinositol (PI) and phosphatidylethanolamine (PE) are present in the fractionated soybean lecithin in addition to phosphatidylcholine (PC), and the glycerophospholipid species are all produced by phosphatidylcholine It was eluted at the same time without separation. Lysoglycerophospholipids (LPL) such as lysophosphatidylinositol (LPI), lysophosphatidyl ethanolamine (LPE), and the like, which are produced from the glycerophospholipid species by the hydrolysis reaction of fractionated soybean lecithin and L- Glycerophosphodiesters (GD) such as L-α-glycerylphosphorylinositol and L-α-glycerylphosphorylethanolamine are known as lysophosphatidylcholine and choline alfoscerate The total amount of phospholipids (including phosphatidylcholine), the total phospholipid content (including phospholipid content), and the total glycerol content (including phospholipid content) in the reaction products obtained using the fractionated soybean lecithin as a substrate. The phosphodiester content (including choline alfoscerate content) was measured and the content of each component The content was expressed as a function of the reaction time as a percentage of the total content of glycerophospholipid, lithoglycerol phospholipid and glycerophosphoester in the reaction product.
그 결과 도 8에서 나타낸 바와 같이, 반응시간 2시간 이전에는 분별 대두 레시틴의 가수분해 반응에 의한 콜린알포세레이트를 포함한 글리세로포스포디에스터의 생성량(20.0중량%)이 대두 포스파티딜콜린의 가수분해 반응에 의한 콜린알포세레이트의 생성량(3.7중량%)보다 높았다. 이러한 결과는 분별 대두 레시틴이 대두 포스파티딜콜린보다 유화력이 커서 분별 대두 레시틴이 반응매질인 물과 헥산의 혼합용매에 더 잘 용해 또는 분산되어 노보짐 435에 의한 가수분해가 더 빨리 일어나기 때문에 나타난 것으로 판단되었다. 하지만 반응시간 4시간 이후에는 대두 포스파티딜콜린의 가수분해 속도가 분별 대두 레시틴의 가수분해 속도보다 더 높았다. 특히 대두 포스파티딜콜린은 반응시간 6시간 이후에 완전히 콜린알포세레이트로 전환되는데 반해, 분별 대두 레시틴을 기질로 사용하는 경우에는 반응시간 8시간 이후에 글리세로인지질(포스파티딜콜린을 포함)이 완전히 글리세로포스포디에스터(콜린알포세레이트 포함)로 전환되는 것을 확인하였다.As a result, as shown in FIG. 8, the production amount of glycerophosphoester (20.0 wt%) including choline alfoscerate by the hydrolysis reaction of the fractionated soybean lecithin before the reaction time of 2 hours before the hydrolysis reaction of soybean phosphatidylcholine Was higher than that of choline alfoscerate (3.7% by weight). These results indicate that fractionated soybean lecithin is more emulsifying than soybean phosphatidylcholine, and that the fractionated soybean lecithin is more soluble or dispersed in the reaction mixture of water and hexane, resulting in faster hydrolysis by Novogym 435. However, the rate of hydrolysis of soybean phosphatidylcholine was higher than that of fractionated soybean lecithin after 4 hours of reaction. Especially, soybean phosphatidylcholine is completely converted to choline alfoscerate after 6 hours of reaction, whereas when fractionated soybean lecithin is used as a substrate, glycerophospholipid (including phosphatidylcholine) is completely dissolved in glycerophosphate Ester (including choline alfoscerate).
한편 도 8에서 나타낸 바와 같이, 분별 대두 레시틴으로부터 수득된 반응산물에는 글리세로포스포디에스터(콜린알포세레이트를 포함)와 유리지방산 외에도 3종의 미지(unknown) 성분(1번, 2번 및 3번 피크)이 함께 존재하는 것을 확인하였다. 상기 3종의 미지 성분 중 2개(1번 및 2번 피크)는 원료기질인 분별 대두 레시틴에도 함유되어 있으며 다른 1개(3번 피크)는 반응 중 생성되는 것으로 판단되었다.On the other hand, as shown in Fig. 8, the reaction products obtained from the fractionated soybean lecithin contained three kinds of unknown components (1, 2, and 3 in addition to glycerophosphoester (including choline alfoselate) Peak) were present together. Two of the three unknown components (peaks 1 and 2) were also contained in the fractionated soybean lecithin as a raw material substrate and one (peak 3) was determined to be produced during the reaction.
<< 실시예Example 8>  8> 반응산물로부터From the reaction product 콜린알포세레이트Choline alfoscerate  And 글리세로포스포디에스터의Glycerophosphodiester 분리정제 Separation purification
선행 연구를 통해 설정한 최적 반응조건에서 제조한 분별 대두 레시틴의 노보짐 435 촉매 가수분해 반응산물을 반응 후 반응매질을 층 분리하는 과정을 통해 글리세로포스포디에스터(콜린알포세레이트 포함)를 분리정제하였다.The glycerophosphoester (including choline alfoscerate) was separated from the reaction medium after the reaction by reacting the Novogem 435 catalytic hydrolysis product of the fractionated soybean lecithin prepared under the optimum conditions set up in the previous study Lt; / RTI &gt;
<8-1> <8-1> 반응산물의Of the reaction product  water 분획물Fraction 제조 Produce
본 실험에서는 분별 대두 레시틴을 노보짐 435 촉매 하에 가수분해하여 수득된 반응산물로부터 물 분획물을 제조하고 상기 분획물의 글리세로포스포디에스터(콜린알포세레이트 포함) 함량을 측정하였다.In this experiment, a water fraction was prepared from the reaction product obtained by hydrolyzing fractionated soybean lecithin under Novogem 435 catalyst, and the content of glycerophosphoester (including choline alfoscerate) of the fraction was measured.
자세하게는, 분별 대두 레시틴 4g을 회분식 반응기(15cm×5cm i.d.)에 넣고 반응매질로 물과 헥산의 혼합용매 20mL(헥산 16mL + 물 4mL), 노보짐 435 0.4g(기질무게의 10%)를 첨가한 후 반응온도 55℃에서 600rpm의 속도로 교반하면서 8시간 반응시켰다. 반응온도는 반응기의 물 재킷에 연결된 항온 순환 수조에 의하여 일정하게 유지하였다. 반응 종료 후 수득된 반응산물은 4~23℃에서 하룻밤 동안 정치하였다. 다음 반응산물을 여과지가 깔린 부흐너깔때기에 넣고 감압 여과하여 노보짐 435 효소를 제거한 반응산물을 얻었다. 반응기 내에 남아 있는 반응산물은 추가로 물 20mL로 상기 부흐너깔때기에 씻어 넣고 여과하였다. 여과 후 반응산물을 분액깔대기에 넣고 추가로 물 20mL과 헥산 20mL을 넣은 후 상온에서 30분 동안 정치하여 반응매질을 헥산층과 물층으로 분리하였다. 이 때 기질이 가수분해되면서 생성된 유리지방산은 헥산층에 존재하고 콜린알포세레이트를 포함한 글리세로포스포디에스터는 물층에 용해되어 있기 때문에 상기 물층을 회수하여 회전식 감압 농축기를 이용하여 40℃에서 건조하여 글리세로포스포디에스터(콜린알포세레이트 포함)의 정제물(물 분획물)을 제조하였다. Specifically, 4 g of fractionated soybean lecithin was placed in a batch reactor (15 cm × 5 cm id), 20 mL of a mixed solvent of water and hexane (16 mL of hexane + 4 mL of water) and 0.4 g of Novogym 435 (10% of substrate weight) , And the mixture was reacted at a reaction temperature of 55 ° C at 600 rpm for 8 hours with stirring. The reaction temperature was kept constant by a constant temperature circulating water bath connected to the water jacket of the reactor. After completion of the reaction, the obtained reaction product was allowed to stand overnight at 4 to 23 ° C. The following reaction product was placed in a Buchner funnel with a filter paper and filtered under reduced pressure to obtain a reaction product in which novoid 435 enzyme was removed. The remaining reaction product in the reactor was further washed with 20 mL of water into the Buchner funnel and filtered. After filtration, the reaction product was put into a separatory funnel, and further, 20 mL of water and 20 mL of hexane were added, and the mixture was allowed to stand at room temperature for 30 minutes, and the reaction medium was separated into a hexane layer and a water layer. Since the free fatty acid generated by hydrolysis of the substrate is present in the hexane layer and the glycerophosphoester including choline alfoscerate is dissolved in the water layer, the water layer is recovered and dried using a rotary vacuum concentrator at 40 ° C To give a purified product (water fraction) of glycerophosphoester (including choline alfoscerate).
분별 대두 레시틴의 반응산물로부터 수득된 물 분획물 내 총 글리세로인지질 함량(포스파티딜콜린 함량 포함), 총 리소글리세로인지질 함량(리소포스파티딜콜린 함량 포함) 및 총 글리세로포스포디에스터 함량(콜린알포세레이트 함량 포함) 측정은 상기 실시예 7과 동일한 방식으로 측정하였으며, 각 성분의 함량은 상기 물 분획물 내 글리세로인지질, 리소글리세로인지질 및 글리세로포스포디에스터의 총 함량 대비 백분율로 나타내었다. The total glycerol content (including phosphatidylcholine content), the total lithoglycerol phospholipid content (including lysophosphatidylcholine content) and the total glycerophosphoester content (including choline alfoscerate content) in the water fraction obtained from the reaction product of fractionated soybean lecithin ) Was measured in the same manner as in Example 7, and the content of each component was expressed as a percentage of the total content of glycerophospholipid, lithoglycerophospholipid and glycerophosphoester in the water fraction.
그 결과 도 8에서 나타낸 바와 같이, 분별 대두 레시틴의 반응산물로부터 수득된 물 분획물에서는 상기 반응산물에 존재했던 유리지방산의 대부분이 제거되었으나 함께 존재했던 3종의 미지(unknown) 성분(1번, 2번 및 3번 피크)은 제거되지 않고 잔존하였으며 특히 2번 성분의 상대적인 함량이 증가하는 것을 확인하였다.As a result, as shown in Fig. 8, in the water fraction obtained from the reaction product of the fractionated soybean lecithin, most of the free fatty acids present in the reaction product were removed, but the three unknown components (1, 2 And No. 3 peaks) remained unremoved and the relative content of component 2 was increased.
그 결과 표 10에서 나타낸 바와 같이, 분별 대두 레시틴의 반응산물에서 수득된 물 분획물의 수율은 원료 기질인 분별 대두 레시틴의 무게 대비 12.0중량%이었으며 상기 물 분획물의 콜린알포세레이트를 포함한 글리세로포스포디에스터 함량은 52.4중량%이었다.As a result, as shown in Table 10, the yield of the water fraction obtained in the reaction product of the fractionated soybean lecithin was 12.0% by weight based on the weight of the fractionated soybean lecithin as the raw material substrate, and the glycerophosphate The ester content was 52.4 wt%.
분별 대두 레시틴의 노보짐 435 가수분해 반응산물로부터 수득된 물 분획물의 수율 및 글리세로포스포디에스터(콜린알포세레이트 포함) 함량The yield of the water fraction obtained from the Novogem 435 hydrolysis reaction product of the fractionated soybean lecithin and the content of glycerophosphoester (including choline alpocerate)
ProductsProducts Product yield (wt% of substrate)Product yield (wt% of substrate) Content of glycerophosphodiesters including choline alfocerate (wt%)Content of glycerophosphodiesters including choline alfocerate (wt%)
Water-soluble fractionWater-soluble fraction 12.0±0.412.0 + - 0.4 52.4±1.352.4 ± 1.3
모든 수치는 평균 ± SD (n = 3)으로 나타냈다.All values were expressed as mean ± SD (n = 3).
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.The present invention has been described with reference to the preferred embodiments. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Therefore, the disclosed embodiments should be considered in an illustrative rather than a restrictive sense. The scope of the present invention is defined by the appended claims rather than by the foregoing description, and all differences within the scope of equivalents thereof should be construed as being included in the present invention.

Claims (25)

1) 포스파티딜콜린에 물과 헥산의 혼합용매 및 리파아제 효소를 첨가한 후 가수분해 반응시키는 단계;1) adding a mixed solvent of water and hexane and a lipase enzyme to phosphatidylcholine, and hydrolyzing the phosphatidylcholine;
2) 상기 반응물로부터 리파아제 효소를 제거하는 단계;2) removing the lipase enzyme from the reaction product;
3) 상기 2) 단계 반응물을 층 분리하는 단계; 및3) separating the reactants in step 2); And
4) 상기 층 분리된 반응물로부터 물층을 회수하여 물 분획물을 수득하는 단계를 포함하는 콜린알포세레이트 제조방법.4) recovering the water layer from the layered reactant to obtain a water fraction.
제1항에 있어서, 상기 리파아제는 sn-위치 비특이성 리파아제인 것을 특징으로 하는 콜린알포세레이트 제조방법.2. The method of claim 1, wherein the lipase is a sn-position nonspecific lipase.
제2항에 있어서, 상기 리파아제는 칸디다 안타르크티카 리파아제 B(Candida antarctica lipase B)인 것을 특징으로 하는 콜린알포세레이트 제조방법.3. The method of claim 2, wherein the lipase is Candida antarctica lipase B. 3. The method according to claim 2, wherein the lipase is Candida antarctica lipase B.
제3항에 있어서, 상기 리파아제는 다공성 음이온 수지(macroporous anionic resin)를 고정화 담체로 사용한 칸디다 안타르크티카 리파아제 B인 것을 특징으로 하는 콜린알포세레이트 제조방법.[4] The method of claim 3, wherein the lipase is Candida antarctica lipase B using a macroporous anionic resin as an immobilization carrier.
제1항에 있어서, 상기 물과 헥산의 혼합용매 내 물의 양은 포스파티딜콜린 중량 대비 20 내지 400 중량%인 것을 특징으로 하는 콜린알포세레이트 제조방법.The method for producing choline alfoscerate according to claim 1, wherein the amount of water in the mixed solvent of water and hexane is 20 to 400% by weight based on the weight of phosphatidylcholine.
제1항에 있어서, 상기 리파아제 효소량은 포스파티딜콜린 중량 대비 5 내지 15 중량%인 것을 특징으로 하는 콜린알포세레이트 제조방법.The method according to claim 1, wherein the amount of the lipase enzyme is 5 to 15% by weight based on the weight of phosphatidylcholine.
제1항에 있어서, 상기 가수분해 반응은 50 내지 55℃에서 2 내지 12시간 동안 반응시키는 것을 특징으로 하는 콜린알포세레이트 제조방법. The method for producing choline alfoscerate according to claim 1, wherein the hydrolysis reaction is carried out at 50 to 55 ° C for 2 to 12 hours.
제1항에 있어서, 상기 가수분해 반응은 상기 물과 헥산의 혼합용매 내 물의 양은 포스파티딜콜린 중량 대비 100 내지 200 중량%이고, 상기 리파아제 효소량은 포스파티딜콜린 중량 대비 5 내지 10 중량%이며, 50 내지 55℃에서 3 내지 6시간 동안 반응시키는 것을 특징으로 하는 콜린알포세레이트 제조방법. The method according to claim 1, wherein the amount of water in the mixed solvent of water and hexane is 100 to 200% by weight based on the weight of phosphatidylcholine, the amount of the lipase enzyme is 5 to 10% by weight based on the weight of phosphatidylcholine, Wherein the reaction is carried out for 3 to 6 hours.
제1항에 있어서, 상기 3) 단계는 1 : 1 부피비의 물 및 헥산을 추가로 첨가하여 층 분리하는 단계를 더 포함하는 것을 특징으로 하는 콜린알포세레이트 제조방법. [3] The method of claim 1, wherein the step 3) further comprises the step of further separating by adding water and hexane in a volume ratio of 1: 1.
제1항에 있어서, 상기 4) 단계의 물 분획물을 수득하는 단계는 헥산층에 존재하는 유리지방산을 제거하기 위한 것을 특징으로 하는 콜린알포세레이트 제조방법.The method of claim 1, wherein the step of obtaining the water fraction of step 4) is for removing free fatty acid present in the hexane layer.
1) 레시틴에 에탄올을 첨가하고, 에탄올 분획물을 수득하여 분별 레시틴을 제조하는 단계; 1) adding ethanol to lecithin and obtaining an ethanol fraction to prepare fractionated lecithin;
2) 상기 제조된 분별 레시틴에 물과 헥산의 혼합용매 및 리파아제 효소를 첨가한 후 가수분해 반응시키는 단계;2) adding a mixed solvent of water and hexane and a lipase enzyme to the prepared fractionated lecithin, and hydrolyzing the fraction;
3) 상기 반응물로부터 리파아제 효소를 제거하는 단계;3) removing the lipase enzyme from the reaction product;
4) 상기 3) 단계 반응물을 층 분리하는 단계; 및4) separating the reaction product of step 3); And
5) 상기 층 분리된 반응물로부터 물층을 회수하여 물 분획물을 수득하는 단계를 포함하는 콜린알포세레이트 제조방법.5) recovering the water layer from the layered reactant to obtain a water fraction.
제11항에 있어서, 상기 분별 레시틴을 제조하는 단계는 레시틴에 에탄올을 첨가하고 60 내지 65℃에서 10분 내지 1시간 동안 교반한 후, 원심분리하여 얻은 상등액에서 에탄올을 제거하여 에탄올 분획물을 수득하는 것을 특징으로 하는 콜린알포세레이트 제조방법.12. The method of claim 11, wherein the fractionated lecithin is prepared by adding ethanol to lecithin, stirring at 60 to 65 DEG C for 10 minutes to 1 hour, and then removing ethanol from the supernatant obtained by centrifugation to obtain an ethanol fraction &Lt; / RTI &gt;
제11항에 있어서, 상기 분별 레시틴은 중성지질에 제거된 것을 특징으로 하는 콜린알포세레이트 제조방법.12. The method of claim 11, wherein the fractionated lecithin is removed in neutral lipid.
제11항에 있어서, 상기 리파아제는 sn-위치 비특이성 리파아제인 것을 특징으로 하는 콜린알포세레이트 제조방법.12. The method of claim 11, wherein the lipase is a sn-position nonspecific lipase.
제14항에 있어서, 상기 리파아제는 칸디다 안타르크티카 리파아제 B(Candida antarctica lipase B)인 것을 특징으로 하는 콜린알포세레이트 제조방법.15. The method of claim 14, wherein the lipase is Candida antarctica lipase B. 15. The method of claim 14, wherein the lipase is Candida antarctica lipase B.
제15항에 있어서, 상기 리파아제는 다공성 음이온 수지(macroporous anionic resin)를 고정화 담체로 사용한 칸디다 안타르크티카 리파아제 B인 것을 특징으로 하는 콜린알포세레이트 제조방법.16. The method according to claim 15, wherein the lipase is Candida antarctica lipase B using a macroporous anionic resin as an immobilization carrier.
제11항에 있어서, 상기 물과 헥산의 혼합용매 내 물의 양은 포스파티딜콜린 중량 대비 20 내지 200 중량%인 것을 특징으로 하는 콜린알포세레이트 제조방법.12. The method of claim 11, wherein the amount of water in the mixed solvent of water and hexane is 20 to 200% by weight based on the weight of phosphatidylcholine.
제11항에 있어서, 상기 리파아제 효소량은 포스파티딜콜린 중량 대비 5 내지 15 중량%인 것을 특징으로 하는 콜린알포세레이트 제조방법.12. The method of claim 11, wherein the amount of the lipase enzyme is 5 to 15% by weight based on the weight of phosphatidylcholine.
제11항에 있어서, 상기 가수분해 반응은 50 내지 55℃에서 2 내지 12시간 동안 반응시키는 것을 특징으로 하는 콜린알포세레이트 제조방법. 12. The method according to claim 11, wherein the hydrolysis reaction is carried out at 50 to 55 DEG C for 2 to 12 hours.
제11항에 있어서, 상기 4) 단계는 1 : 1 부피비의 물 및 헥산을 추가로 첨가하여 층 분리하는 단계를 더 포함하는 것을 특징으로 하는 콜린알포세레이트 제조방법. [12] The method of claim 11, wherein the step 4) further comprises the step of adding water and hexane in a volume ratio of 1: 1 to separate the choline alfoscerate.
제11항에 있어서, 상기 5) 단계의 물 분획물을 수득하는 단계는 헥산층에 존재하는 유리지방산을 제거하기 위한 것을 특징으로 하는 콜린알포세레이트 제조방법.12. The method of claim 11, wherein the step of obtaining the water fraction of step 5) is for removing free fatty acid present in the hexane layer.
제11항에 있어서, 상기 5) 단계의 물 분획물에는 콜린알포세레이트가 포함된 글리세로포스포디에스터가 함유된 것을 특징으로 하는 콜린알포세레이트 제조방법.12. The method according to claim 11, wherein the water fraction in step 5) contains glycerophosphodiester containing choline alfoscerate.
제1항 내지 제22항 중 어느 한 항에 있어서, 상기 콜린알포세레이트는 식품원료로 이용가능한 것을 특징으로 하는 콜린알포세레이트 제조방법.23. The process according to any one of claims 1 to 22, wherein the choline alfoscerate is available as a food raw material.
제1항 내지 제22항 중 어느 한 항의 방법으로 제조된 식품원료로 이용가능한 콜린알포세레이트.22. A choline alfoscerate which can be used as a food raw material produced by the method of any one of claims 1 to 22.
제24항에 따른 콜린알포세레이트를 유효성분으로 함유하는 인지기능 개선용 건강기능식품.A health functional food for improving cognitive function comprising choline alfoscerate according to claim 24 as an active ingredient.
PCT/KR2018/016779 2017-12-28 2018-12-27 Method for preparing choline alfoscerate, usable as food raw material, from phosphatidylcholine or lecithin WO2019132549A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020170182418A KR101995643B1 (en) 2017-12-28 2017-12-28 Manufacturing method of food-grade choline alfocerate from lecithin
KR1020170182417A KR101995642B1 (en) 2017-12-28 2017-12-28 Manufacturing method of food-grade choline alfocerate from phosphatidylcholine
KR10-2017-0182418 2017-12-28
KR10-2017-0182417 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019132549A1 true WO2019132549A1 (en) 2019-07-04

Family

ID=67063996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016779 WO2019132549A1 (en) 2017-12-28 2018-12-27 Method for preparing choline alfoscerate, usable as food raw material, from phosphatidylcholine or lecithin

Country Status (1)

Country Link
WO (1) WO2019132549A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050227945A1 (en) * 2004-04-09 2005-10-13 Cargill, Incorporated Enzymatic modification of lecithin
KR20060102880A (en) * 2005-03-25 2006-09-28 주식회사 고센바이오텍 Fabrication method of lecithin with high processing property
US20120244583A1 (en) * 2011-03-24 2012-09-27 Yuanfa Liu Method for Preparing High Purity L-alpha Glycerylphosphorylcholine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050227945A1 (en) * 2004-04-09 2005-10-13 Cargill, Incorporated Enzymatic modification of lecithin
KR20060102880A (en) * 2005-03-25 2006-09-28 주식회사 고센바이오텍 Fabrication method of lecithin with high processing property
US20120244583A1 (en) * 2011-03-24 2012-09-27 Yuanfa Liu Method for Preparing High Purity L-alpha Glycerylphosphorylcholine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAEZA-JIMENEZ, RAMIRO ET AL.: "Enzyme-catalysed Hydrolysis of Phosphatidylcholine for the Production of Lysophosphatidylcholine", J. CHEM. TECHNOL. BIOTECHNOL., vol. 88, no. 10, 2013, pages 1859 - 1863, XP055624189, [retrieved on 20130307] *
BANG, HYO-JEONG ET AL.: "Phospholipase A1-catalyzed Hydrolysis of Soy Phosphatidylcholine to Prepare L-alpha-glycerylphosphorylcholine in Organic-aqueous Media", FOOD CHEMISTRY, vol. 190, 2016, pages 201 - 206, XP055624185, [retrieved on 20150520] *

Similar Documents

Publication Publication Date Title
US5521080A (en) Phospholipase A1, process for its preparation
Comfurius et al. The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography
JP4933432B2 (en) New phospholipid processing agent
KR930009511B1 (en) Process for producing gliceride in presense of lipases
JP3853464B2 (en) Production method of plant lysolecithin
EP1740708B1 (en) Enzymatic production of hydrolyzed lecithin products
KR100941899B1 (en) Astaxanthin medium-chain fatty acid ester, process for producing the same and composition containing the ester
JP6230601B2 (en) Lipases in short-chain esterification of fatty acids
EP1005517A1 (en) Process for producing diglycerides
JP5118651B2 (en) Novel lipases and their use
KR101995643B1 (en) Manufacturing method of food-grade choline alfocerate from lecithin
US8530208B2 (en) Method for producing phospholipid
EP1890706B1 (en) Process for the preparation and isolation of phosphatides
WO2019132549A1 (en) Method for preparing choline alfoscerate, usable as food raw material, from phosphatidylcholine or lecithin
KR101995642B1 (en) Manufacturing method of food-grade choline alfocerate from phosphatidylcholine
ITPD20010031A1 (en) PROCEDURE FOR THE PREPARATION OF PURE PHOSPHATIDES AND THEIR USE IN THE COSMETIC, PHARMACEUTICAL AND FOOD FIELDS.
AU659126B2 (en) Phospholipid composition, fat and oil composition containing the same and process for producing phosphatidic acids
Kishimura et al. Isolation and characteristics of phospholipase A2 from the pyloric ceca of the starfish Asterina pectinifera
WO2013022320A2 (en) Amphipathic peptide-lipase conjugate having advanced lipase activity and use thereof
US8637278B2 (en) Method for the enzymatic production of emulsifiers containing mono- and diacylglycerides
WO2023106793A1 (en) Method for producing high-purity triglyceride derivatives containing high content of eicosapentaenoic acid (epa)
KR20110003993A (en) Method for reducing saturated fat acid and oil compound reduced saturated fat acid
JP2006232699A (en) Method for producing cerebroside-containing extract
JPS6248390A (en) Method of purifying phospholipid
AU2007205762A1 (en) Process for the production of phospholipids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895234

Country of ref document: EP

Kind code of ref document: A1