WO2019132267A1 - Positive electrode active material precursor for lithium secondary battery, positive electrode active material using same, and lithium secondary battery comprising same - Google Patents

Positive electrode active material precursor for lithium secondary battery, positive electrode active material using same, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2019132267A1
WO2019132267A1 PCT/KR2018/014883 KR2018014883W WO2019132267A1 WO 2019132267 A1 WO2019132267 A1 WO 2019132267A1 KR 2018014883 W KR2018014883 W KR 2018014883W WO 2019132267 A1 WO2019132267 A1 WO 2019132267A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
secondary battery
cathode active
positive electrode
precursor
Prior art date
Application number
PCT/KR2018/014883
Other languages
French (fr)
Korean (ko)
Inventor
김재한
김득수
손승용
김정한
Original Assignee
주식회사 포스코이에스엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180060952A external-priority patent/KR102006244B1/en
Application filed by 주식회사 포스코이에스엠 filed Critical 주식회사 포스코이에스엠
Publication of WO2019132267A1 publication Critical patent/WO2019132267A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material precursor for a lithium secondary battery, a positive electrode active material using the same, and a lithium secondary battery comprising the same.
  • the lithium secondary battery has high energy density, excellent output characteristics, and light weight, and is widely used as an energy storage device for mobile phones and hybrid electric vehicles.
  • the lithium secondary battery is composed of a cathode, a cathode, and an electrolyte, and uses a material capable of intercalating / deintercalating lithium ions in the anode as a cathode active material.
  • cathode active material examples include lithium nickel oxide (LiNiO 2 ), lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMnO 2 ), and the like.
  • Lithium nickel oxide (LiNiO 2 ) has high electric capacity, but has problems such as charge / discharge characteristics, stability, and the like.
  • Lithium cobalt oxide (LiCoO 2 ) has an advantage of being excellent in cycle life and rate capability as well as capacity, and being easy to synthesize. However, it has a high cost of Co, a human hazard, a thermal instability at high temperature It has disadvantages.
  • Mn-based cathode active materials such as LiMn 2 O 4 and LiMnO 2 are easy to synthesize and have a relatively low cost and are superior in thermal stability to other active materials and have a low environmental pollution when overcharged, It has disadvantages.
  • the NCM is a material that has advantages of each of LiCoO 2 , LiNiO 2 and LiMnO 2 as a single component and has been actively studied since it has many advantages in terms of safety, life and cost.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-0083384 discloses a lithium metal composite oxide having a composition of LiNi 1-xy Co x Mn y O 2 , wherein the content of Ni is 75 mol% or more, and the molar content of Mn is not less than the molar amount of Co is used as the cathode active material, the average discharge voltage, the high rate characteristic, and the discharge capacity of the battery are improved. Particularly, when compared to the conventional commercial LiCoO 2 The density is improved.
  • the cathode active material using NCM metal oxide is one of high energy candidate materials because the reversible capacity increases according to the Ni content.
  • shortening the lifetime due to increase in structural instability during repetitive charging / discharging is a problem. Doping techniques for replacing some of the transition metal components with other elements have been attempted.
  • the present invention aims to provide a positive electrode active material precursor having a novel structure having excellent capacity characteristics, rate characteristics and life characteristics, a positive electrode active material using the same, and a lithium secondary battery comprising the same.
  • the precursor of the cathode active material for a secondary battery includes Ni, Mn, Co, M1 and M2, and M1 is at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Wherein at least one of Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh and W is at least one selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Ga, Zr, Nb, Mo, Ru, Rh and W, and M1 and M2 are different from each other.
  • the cathode active material precursor for a secondary battery may include a core and a shell disposed to surround the center portion.
  • the center portion may include M1 as a doping element
  • the surface portion may include M2 as a doping element.
  • the precursor and the cathode active material may contain one or more dissimilar metals, if necessary, (Central portion) or an outer frame portion (surface portion), or by arranging dissimilar metals different from each other in the central portion and the outer frame portion, thereby enhancing performance.
  • the center portion may include a material represented by the following Formula 1, and the surface portion may include a material represented by Formula 2 below.
  • the cathode active material precursor for a secondary battery according to an embodiment of the present invention may be represented by the following chemical formula 3.
  • the cathode active material according to an embodiment of the present invention is divided into a center portion and a surface portion arranged to surround the center portion, the center portion includes M1, and the surface portion may include M2.
  • the positive electrode active material for a secondary battery includes Ni, Mn, Co, M 1 and M 2 and M 1 is at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Wherein at least one of Zn, Ga, Zr, Nb, Mo, Ru, Rh and W is at least one selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zr, Nb, Mo, Ru, Rh and W, and M1 and M2 may be different from each other.
  • the cathode active material according to an embodiment of the present invention can be represented by the following chemical formula (4).
  • M1 and M2 are combinations of at least one of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh,
  • the cathode active material according to an embodiment of the present invention is composed of a plurality of primary particles, and the ratio of the major axis to the minor axis of the primary particles (long axis: short axis) . ≪ / RTI >
  • the ratio (major axis: minor axis) of the major axis to minor axis of the primary particles constituting the central portion is a ratio of the major axis to the minor axis of the primary particles constituting the surface portion Long axis: short axis).
  • the cathode active material according to the embodiment of the present invention includes primary particles in the form of a rod having a major axis to minor axis ratio (major axis: minor axis) of primary particles constituting the surface portion exceeding 1, And may be arranged in a direction toward the center.
  • the rod-shaped primary particles can be arranged in a direction in which the long axis is oriented toward the center of the positive electrode active material.
  • the ratio of the intensity of the 003 peak to the intensity of the 104 peak may be larger than that of the undoped cathode active material.
  • the ratio of the intensity at the peak of 003 to the intensity at the peak of 104 may be 1.75 or more and 1.80 or less.
  • the secondary battery according to an embodiment of the present invention includes a cathode including the cathode active material for the secondary battery, a cathode including the anode active material, a separator interposed between the anode and the cathode, And an electrolyte supported between the anode and the cathode.
  • the precursor according to the embodiment of the present invention is characterized in that one or more dissimilar metals are intensively arranged in the central part or the surface part as required or the dissimilar metals different from each other are arranged in the center or outer part,
  • the electrochemical performance of the cathode active material and the secondary battery including the cathode active material can be enhanced.
  • FIG. 1 schematically illustrates the step of synthesizing a partially doped Li a Ni b Co c Mn d M1 e M2 f O 2 cathode active material by sequentially subjecting M1 and M2 to a partial doping in a precursor step.
  • FIG. 2 is a structural view of a partially doped cathode active material made from a precursor partially doped with a central portion M1 and a surface portion M2.
  • FIG. 3 is a graph showing the growth of a precursor including the precursor diameter D1 during the time of application of M1 and the precursor partial diameter D2 according to the time of application of M2 during synthesis of the precursor of FIG. 2;
  • FIG. 4 (a) is a partially doped precursor section
  • FIG. 4 (b) is a SEM image of a cross-section of a cathode active material.
  • Figure 5 shows the results of SEM images of undoped precursor and partially doped precursors according to Examples 1-3.
  • FIG. 6 is a SEM image of a partially doped precursor section according to Examples 1 to 3.
  • FIG. 6 is a SEM image of a partially doped precursor section according to Examples 1 to 3.
  • FIG. 7 shows SEM images of a non-doped cathode active material and a partially doped cathode active material according to Examples 1 to 3.
  • FIG. 7 shows SEM images of a non-doped cathode active material and a partially doped cathode active material according to Examples 1 to 3.
  • FIG. 9 (a) is a schematic view of a cross-section of a cathode active material doped with W
  • FIG. 9 (b) is a result of SEM image measurement.
  • FIG. 10 (a) is a cross-sectional view of a cathode active material according to Example 1, and FIG. 10 (b) is a result of SEM image measurement.
  • Fig. 11 (a) is a cross-sectional view of a cathode active material according to Example 2
  • Fig. 12 (b) is a SEM image.
  • FIG. 12 (a) is a cross-sectional view of a cathode active material according to Example 3, and FIG. 12 (b) is a result of SEM image measurement.
  • FIG. 13 is a graph showing the results of analysis of DSC peak temperature and calorific value of a non-doped cathode active material, a cathode active material wholly doped with W, and a cathode active material according to Examples 1 to 4.
  • Fig. 14 (a) is a graph showing the relationship between the total amount of NCM metal oxide and the voltage of the positive electrode active material containing 90% Ni according to the capacity of the undoped positive electrode active material, the fully doped positive active material of W and the positive active material of Examples 1 to 3 (B) is a graph showing a change in capacity retention rate according to the number of charge / discharge cycles.
  • FIG. 16 is a graph showing the XRD measurement results of the undoped positive electrode active material and the positive electrode active material according to Examples 1 to 3.
  • FIG. 16 is a graph showing the XRD measurement results of the undoped positive electrode active material and the positive electrode active material according to Examples 1 to 3.
  • FIGS. 1 and 2 are schematic views of a precursor and a cathode active material according to the present invention.
  • the precursor and the cathode active material according to the embodiment of the present invention may be prepared by concentrating one or more different kinds of metals to the center (center part) or the outer part (surface part) of the precursor in the precursor step, Place different dissimilar metals to improve performance.
  • the positive electrode active material precursor for a high nickel-based secondary battery according to an embodiment of the present invention may include a metal hydroxide containing Ni and Co and Mn in an amount of 50 mol% or more, preferably 90 mol% or more.
  • the precursor of the cathode active material includes M1 and M2 as doping elements and M1 is at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Wherein at least one of Ru, Rh, and W is at least one selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, W, and M1 and M2 are different from each other.
  • the cathode active material precursor may include a center portion and a surface portion arranged to surround the center portion, and the center portion may include a doping element M1, and the surface portion may include a doping element M2, and M1 ⁇ M2.
  • the cathode active material precursor according to the present invention generally includes a center portion represented by Formula 1 and a surface portion represented by Formula 2, and may be represented by Formula 3 below.
  • M1 or M2 is preferably W.
  • M1 or M2 when M1 or M2 is W, the diffusion of Li ions in the inside of the positive electrode active material is facilitated, and as a result, Can be improved.
  • the W raw material examples include oxides such as tungsten trioxide (WO 3 ), halides (such as tungsten hexafluoride (WF 6 )), and ammonium salts (ammonium paratungstate [(NH 4 ) 10 H 2 (W 2 O 7 ) 6 ] or ammonium metatungstate [(NH 4 ) 6 H 2 W 12 O 40 ]], and the like.
  • oxides such as tungsten trioxide (WO 3 ), halides (such as tungsten hexafluoride (WF 6 )), and ammonium salts (ammonium paratungstate [(NH 4 ) 10 H 2 (W 2 O 7 ) 6 ] or ammonium metatungstate [(NH 4 ) 6 H 2 W 12 O 40 ]]
  • WO 3 tungsten trioxide
  • halides such as tungsten hexafluoride (WF 6 )
  • ammonium salts ammonium paratungstate [(NH 4 ) 10 H 2
  • the cathode active material for a secondary battery according to an embodiment of the present invention includes Li, Ni, Mn, Co, M1 and M2.
  • the method for producing a cathode active material may include synthesizing an NCM metal oxide precursor, mixing the metal oxide precursor and a Li source, and then subjecting the mixture to a primary heat treatment to produce a cathode active material.
  • the NCM metal oxide precursor for the synthesis of the NCM metal oxide precursor, one species selected from the group consisting of nickel sulfate, nickel nitrate and nickel carbonate; Cobalt sulfate, cobalt nitrate and cobalt carbonate;
  • the SO 4 2- , NH 4 + , NO 3 - , Na + , K + adsorbed on the surface of the precipitated powder is washed several times with distilled water to synthesize a high purity metal oxide precursor.
  • the thus synthesized metal oxide precursor And then dried in an oven at 100 to 200 ° C, preferably 150 ° C for at least 24 hours so that the moisture content is 0.1 wt% or less.
  • the cathode active material may be obtained by homogeneously mixing the dried metal oxide precursor and the Li source and then performing heat treatment for 5 to 30 hours.
  • lithium hydroxide may be lithium hydroxide (LiOH) or the like,
  • lithium salt examples include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCl, and LiI can be used.
  • the heat treatment temperature is preferably 600 to 1000 ° C. If the heat treatment temperature is lower than 600 ° C., there is a fear that the reaction between the Li source and the transition metal hydroxide precursor or the NCM and the transition metal source may not be performed well, The particle size of the active material may be excessively increased and the battery characteristics may be deteriorated.
  • the positive electrode active material includes M1 and M2 doped therein and M1 is at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, At least one of Ru, Rh, and W, and M2 is at least one of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, And W, and M1 and M2 are different from each other.
  • M1 or M2 is W is as described above.
  • the cathode active material may be represented by the following general formula (4).
  • M1 and M2 are combinations of at least one of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh,
  • the cathode active material for the secondary battery is composed of a plurality of primary particles, and the ratio of the major axis to the minor axis of the primary particles (long axis: short axis) is larger than that of the primary particles of the undoped cathode active material or the entirely doped cathode active material (Fig. 8).
  • the ratio (major axis: minor axis) of the major axis to minor axis of the primary particles constituting the central portion is a ratio of the major axis to the minor axis of the primary particles constituting the surface portion Long axis: short axis).
  • the cathode active material for a secondary battery may include primary particles of a rod shape having a major axis to minor axis ratio (major axis: minor axis) of primary particles constituting the surface portion of more than 1, As shown in FIG.
  • the rod-shaped primary particles may have a ratio of major axis to minor axis greater than 1, greater than 1.5, greater than 2, greater than 2.5, greater than 3, greater than 3.5, or greater than 4.
  • the ratio of the intensity at the peak of 003 to the intensity at the peak of 104 may be larger than that in the case of the undoped cathode active material. ).
  • the ratio of the intensity at the peak of 003 to the intensity at the peak of 104 may be 1.75 or more and 1.80 or less (Fig. 16).
  • the center portion and the surface portion of the cathode active material may include different types of primary particles.
  • the center portion includes primary particles in a bulk form
  • the surface portion includes a plurality of primary particles in the form of a rod
  • the rod form can be arranged in a direction toward the center of the center portion. More specifically, the primary particles of the rod-like form can be arranged in a direction in which the long axis is oriented toward the center of the cathode active material (FIG. 10)
  • a secondary battery includes: a positive electrode including the positive electrode active material; A negative electrode comprising a negative electrode active material; A separation membrane interposed between the anode and the cathode; And an electrolyte supported between the anode and the cathode.
  • the anode can be prepared by coating directly on an aluminum current collector and drying. Or by casting the positive electrode active material composition on a separate support, then peeling the support from the support, and laminating the resulting film on an aluminum current collector.
  • the anode may further include a conductive material and a binder.
  • the conductive material is used for imparting conductivity to the electrode, and can be used without particular limitation as long as it does not cause chemical change and has electronic conductivity.
  • Specific examples include graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
  • the binder serves to improve the adhesion between the positive electrode active material particles or between the positive electrode active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, There may be mentioned polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber or various copolymers thereof. Can be used.
  • the negative electrode can be manufactured by coating the negative electrode active material directly on the copper current collector as in the case of the positive electrode, or by casting on a separate support and laminating the negative electrode active material film peeled off from the support on the copper current collector.
  • the negative electrode active material a material capable of intercalating / deintercalating lithium may be used.
  • a material capable of intercalating / deintercalating lithium may be used.
  • lithium metal, a lithium alloy, coke, artificial graphite, natural graphite, an organic polymer combustible material have.
  • a conductive material and a binder used for the positive electrode may be used for the negative electrode.
  • polyethylene, polypropylene, polyvinylidene fluoride or a multilayer film of two or more thereof may be used.
  • the separator may be a polyethylene / polypropylene double-layer separator , A polyethylene / polypropylene / polyethylene three-layer separator, a polypropylene / polyethylene / polypropylene three-layer separator, etc. may be used.
  • a non-aqueous electrolyte or a known solid electrolyte can be used, and a lithium salt dissolved therein is used.
  • the solvent of the non-aqueous electrolyte is not particularly limited, but cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; Chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate; Esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and?
  • Example 1 Cathode active material precursor in which W is a central portion and Mn is partially doped on a surface portion
  • composition of the precursor was determined by measuring NiSO 4 * 6H 2 O, CoSO 4 * 7H 2 O, and MnSO 4 * H 2 O according to the composition ratios of Ni, Co and Mn shown in Table 1 below and dissolving in distilled water.
  • the dissolved metal hydroxide solution was divided into 50% portions and stored in the respective reservoirs so that the ratios of Formulas 1 and 2 were 1: 1.
  • Each metal aqueous solution was introduced into the reactor using a hose type metering pump. At this time, the metal aqueous solution of the formula (1) was put into the reactor for a certain period of time, and the aqueous metal solution of the formula (2) was introduced into the metal aqueous solution storage tank of the formula (1). The aqueous solution composition of the central metal aqueous solution reservoir containing the M1 raw material was changed to the aqueous metal solution composition of the formula (2) containing the M2 raw material.
  • the ratio of the input flow rate of the chemical formula (2) to the input flow rate of the metal solution of the chemical formula (1) introduced into the reactor is set to 1.0 or more, the reaction is carried out from the metal aqueous solution of the chemical formula (1) A precursor with different M1 and M2 distribution was synthesized. At this time, the reactor reacted with ammonia and caustic soda to precipitate.
  • the precipitated slurry was subjected to washing with water and solid-liquid separation using a filter press, and residual water was removed using a high-pressure fresh air.
  • the solid-liquid separated precursor was dried at 100 to 200 ° C using a fluid bed drier.
  • the dried precursor was mixed with LiOH as a raw material of Li so as to have a Li: metal ratio (based on molar number) of 1.03, and then calcined at a temperature of 700 ° C to 800 ° C under an oxygen (O 2 ) atmosphere at a temperature raising rate of 1.5 ° C / min.
  • the sintered material was pulverized and classified to obtain a cathode active material.
  • the cathode active material of Example 1 is shown in Table 1 below.
  • Example 1 Example 2
  • Example 3 Example 4 Bulk W doping W Core W Shell Zr CoreW Shell W CoreAl Shell Casting Li 1.03 Ni 0.90 Co 0.07 Mn d M1 e1 M2 f1 O 2 M1 Mn W W Mn Zr, W M2 Mn W Mn W W Al
  • Example 2 Cathode active material precursor in which Mn is the central portion and W is partially doped on the surface portion
  • Example 1 was followed except that 0.5 mol% of Mn was used as M1 in the formula (1) and 0.5 mol% of W was used as M2 in the formula (2).
  • Example 3 A positive electrode active material precursor in which (Mn + Zr) was the center portion and W was partially doped on the surface portion
  • Example 1 The procedure of Example 1 is followed except that 0.5 mol% of the combination of (Mn + Zr) as M1 in Formula (1) and 0.5 mol% of W as M2 in Formula (2) are applied.
  • Example 4 Cathode active material precursor in which W is the center part, (Mn + Al) is partially doped on the surface part
  • Example 5 A positive electrode active material precursor in which W is the center portion and (Zr + Mg) is doped on the surface portion
  • Example 1 is followed except that 0.5 mol% of W is used as M1 in the formula (1) and 0.5 mol% of the combination of (Zr + Mg) is used as M2 in the formula (2).
  • Example 6 Cathode active material precursor in which W is the central portion and Ti is doped on the surface portion
  • Example 1 The procedure of Example 1 is followed except that 0.5 mol% of W is used as M1 of Formula 1 and 0.5 mol% of Ti is used as M2 of Formula 2 and the metal aqueous solution ratio of Formulas 1 and 2 is 9: 1.
  • Example 7 Cathode active material precursor in which W is a central portion and V is partially doped on a surface portion
  • Example 1 is followed except that 0.5 mol% of W as M1 in Formula 1 and 0.5 mol% of V as M2 in Formula 2 are applied and the metal aqueous solution ratio of Formulas 1 and 2 is 9: 1.
  • Example 8 Cathode active material precursor in which Zr was the center portion and Al was partially doped on the surface portion
  • Example 1 is followed except that 0.5 mol% of Zr is used as M1 of Formula 1 and 0.5 mol% of Al is used as M2 of Formula 2 and the ratio of the metal aqueous solution of Formulas 1 and 2 is 9: 1.
  • Example 1 is followed except that Mn is applied as M1 and M2 in formulas (1) and (2).
  • Example 1 is followed except that 0.5 mol% of W is applied as M1 and M2 in the formulas (1) and (2).
  • the growth of the precursor was measured according to the treatment time while changing the dopant of the central part and the surface part, and the result is shown in FIG.
  • M1 was applied to form the initial center portion and grown to the precursor diameter (D1). It was confirmed that the size of the precursor was gradually increased by growing the precursor part diameter (D2) while applying M2.
  • the center portion is in a bulk form, and a plurality of surface rods (not shown) are formed on the surface of the cathode active material.
  • rod type primary particles and it was confirmed that the rod shape had a central orientation.
  • FIG. 5 shows SEM images of undoped precursors (Bulk, Comparative Example 1) and partially doped precursors according to Examples 1 to 3, and FIG. 6 shows SEM images of the cross- Respectively.
  • a high-nickel precursor containing 90% of Ni (based on molar amount) based on the total amount of NCM metal oxides was mixed with Li source so that the ratio of Li and NCM metal oxides exceeded 1.0 (based on molar number)
  • the surface reaction proceeded with the aqueous metal solution corresponding to the surface residual Li (PLM mixer application).
  • Comparative Example 1 (Bulk) was Li 1.03 Ni 0.90 Co 0.07 Mn 0.03 O 2 ,
  • Comparative Example 2 (W doping) was performed using Li 1.03 Ni 0.90 Co 0.07 Mn 0.025 W 0.005 O 2 ,
  • Example 1 is Li 1.03 Ni 0.90 Co 0.07 Mn 0.027 W 0.003 O 2
  • Example 2 is Li 1.03 Ni 0.90 Co 0.07 Mn 0.027 W 0.003 O 2
  • Example 3 (ZrC-WS) is represented by Li 1.03 Ni 0.90 Co 0.07 Mn 0.026 Zr 0.001 W 0.003 O 2 .
  • FIG. 9 (a) is a graph showing a cross-section of the anode active material doped with W, and FIG. 9 (b) shows a bulk SEM image.
  • the mixture was homogeneously mixed in a N-methyl-2-pyrrolidone solvent such that the mass ratio of the cathode active material, the dengan black and the binder (PVDF) was 94: 3: 3.
  • the mixture was spread evenly on an aluminum foil, compressed by a roll press, and vacuum dried in a vacuum oven at 100-200 ⁇ for 12 hours to prepare a positive electrode.
  • the cells using the cathode active materials of the examples and comparative examples were charged and discharged twice in the 2.50 to 4.25 V dislocation range, and only the positive electrodes were separated and washed in the cells charged at 4.25 V. Thereafter, it was dried in a 100 ° C drying oven for 10 minutes.
  • the cathode active material was scraped off from the dried anode, and 3 mg was added to the pressure pan. 2 ⁇ of electrolyte was injected, and the temperature was raised to 5 ⁇ / min and the temperature was monitored at 30 ⁇ to 400 ⁇ .
  • Example 2 Example 3
  • Example 4 Bulk W doping W Core W Shell Zr CoreW Shell W CoreAl Shell Casting Li 1.03 Ni 0.90 Co 0.07 Mn d M1 e1 M2 f1 O 2 M1 source, e1 Mn W W Mn Zr, W M2 source, f1 Mn W Mn W W Al DSC Onset Temp. °C 208.3 212.5 210.9 211.6 211.0 216.2 1 st Peak Temp. 220.1 220.5 221.2 221.9 220.5 224.9 Calorific value J / g 1358.1 1276.5 1097.6 1040.9 1161.9 1012.7
  • Example 1 Example 2
  • Example 3 Example 4 Bulk W doping W Core W Shell Zr CoreW Shell W CoreAl Shell Casting Li 1.03 Ni 0.90 Co 0.07 Mn d M1 e1 M2 f1 O 2 M1 source, e1 Mn W W Mn Mn + Zr W M2 source, f1 Mn W Mn W W Al Metal cont.
  • FIG. 16 shows the XRD measurement results of the non-doped cathode active material (Comparative Example 1) and the cathode active material according to Examples 1 to 3 in the case of the cathode active material containing 90% Ni relative to the total amount of NCM metal oxides.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a positive electrode active material precursor for a lithium secondary battery, a positive electrode active material using the same, and a lithium secondary battery comprising the same. Disclosed are: a positive electrode active material precursor for a secondary battery, the precursor containing Ni, Mn, Co, M1, and M2, wherein M1 is at least one of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, and W and M2 is at least one of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, and W, M1 and M2 being different from each other; and a positive electrode active material using the same.

Description

리튬 이차전지용 양극활물질 전구체, 이를 이용한 양극활물질 및 이를 포함하는 리튬 이차전지Cathode active material precursor for lithium secondary battery, cathode active material using the same, and lithium secondary battery comprising the same
본 발명은 리튬 이차전지용 양극활물질 전구체, 이를 이용한 양극활물질 및 이를 포함하는 리튬 이차전지에 관한 발명이다.The present invention relates to a positive electrode active material precursor for a lithium secondary battery, a positive electrode active material using the same, and a lithium secondary battery comprising the same.
리튬 이차전지는 에너지 밀도가 높으며 출력 특성이 우수하고, 경량화가 가능하여 휴대폰단말기, 하이브리드 전기자동차 등 에너지 저장장치로 널리 이용되고 있다. The lithium secondary battery has high energy density, excellent output characteristics, and light weight, and is widely used as an energy storage device for mobile phones and hybrid electric vehicles.
리튬 이차전지는 양극, 음극 및 전해액 등으로 구성되어 있는데, 양극에서 리튬 이온이 인터칼레이션/디인터칼레이션이 가능한 물질을 양극활물질로 사용한다.The lithium secondary battery is composed of a cathode, a cathode, and an electrolyte, and uses a material capable of intercalating / deintercalating lithium ions in the anode as a cathode active material.
이러한 양극활물질로는 니켈산리튬(LiNiO 2), 코발트산리튬(LiCoO 2), 망간산리튬(LiMnO 2)등이 있다. 이중 니켈산리튬(LiNiO 2)은 전기용량이 높으나 충·방전특성, 안정성 등에 문제가 있어서 실용화되지 못하고 있는 실정이다. 코발트산리튬(LiCoO 2)은 용량이 클 뿐만 아니라 사이클 수명과 용량률(rate capability) 특성이 우수하고 합성이 쉽다는 장점을 가지고 있지만, Co의 높은 가격, 인체 유해성, 고온에서의 열적 불안정성 등의 단점을 가지고 있다. LiMn 2O 4, LiMnO 2 등의 Mn계 양극활물질은 합성하기도 쉽고, 값이 비교적 싸며, 과충전시 다른 활물질에 비하여 열적 안정성이 가장 우수하고, 환경에 대한 오염이 낮은 장점이 있지만, 용량이 적다는 단점을 가지고 있다.Examples of such a cathode active material include lithium nickel oxide (LiNiO 2 ), lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMnO 2 ), and the like. Lithium nickel oxide (LiNiO 2 ) has high electric capacity, but has problems such as charge / discharge characteristics, stability, and the like. Lithium cobalt oxide (LiCoO 2 ) has an advantage of being excellent in cycle life and rate capability as well as capacity, and being easy to synthesize. However, it has a high cost of Co, a human hazard, a thermal instability at high temperature It has disadvantages. Mn-based cathode active materials such as LiMn 2 O 4 and LiMnO 2 are easy to synthesize and have a relatively low cost and are superior in thermal stability to other active materials and have a low environmental pollution when overcharged, It has disadvantages.
이에 니켈-코발트-망간(Nickel-Cobalt-Manganese)이 혼합된 3성분계 양극활물질인 층상구조의 복합금속산화물(이하 'NCM'이라 한다), LiNi xCo yMn zO 2(여기서 0 < x, y, z < 1, x + y + z = 1)에 대한 연구가 진행되었다. 상기 NCM은 단일성분인 LiCoO 2, LiNiO 2 및 LiMnO 2 각각의 장점을 지닌 재료로서 안전성과 수명 및 가격측면에서 많은 이점이 있기 때문에 활발하게 연구되고 있는 재료이다. A layered composite metal oxide (hereinafter referred to as 'NCM'), LiNi x Co y Mn z O 2 (where 0 < x, y, z < 1, x + y + z = 1). The NCM is a material that has advantages of each of LiCoO 2 , LiNiO 2 and LiMnO 2 as a single component and has been actively studied since it has many advantages in terms of safety, life and cost.
NCM은 Ni 함량이 높아질수록 배터리 용량이 높아지고, Co 비중을 낮춰 원가를 줄이는 장점이 있다. 특허문헌 1(국내 특허출원공개 제2007-0083384호)은 LiNi 1-x-yCo xMn yO 2 조성의 리튬 금속 복합산화물에 대해 기재하고 있고, 상기 Ni의 함량이 리튬을 제외한 금속원소 총량 대비 75 mol%이상이고, Mn의 몰 함량이 Co의 몰 함량 이상인 조성의 물질을 양극활물질로 사용할 경우, 전지의 평균 방전전압, 고율특성, 방전용량이 향상되며, 특히, 기존의 상용 LiCoO 2에 비해 에너지밀도가 향상된다고 기재하고 있다.The higher the Ni content, the higher the capacity of the battery, and the lower the Co weight, the lower the cost. Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-0083384) discloses a lithium metal composite oxide having a composition of LiNi 1-xy Co x Mn y O 2 , wherein the content of Ni is 75 mol% or more, and the molar content of Mn is not less than the molar amount of Co is used as the cathode active material, the average discharge voltage, the high rate characteristic, and the discharge capacity of the battery are improved. Particularly, when compared to the conventional commercial LiCoO 2 The density is improved.
이렇듯 NCM 금속산화물을 이용한 양극활물질은 Ni 함량에 따라 가역용량이 증가하기 때문에 고에너지 후보 소재 중 하나이지만, 반복적인 충/방전 과정 동안 구조적 불안정성의 증가로 인한 수명단축이 문제로 제기되고 있다, 이를 해결하기 위하여 전이금속 성분 중 일부 물질을 다른 원소로 치환하는 도핑(doping) 기술이 많이 시도되고 있다.As described above, the cathode active material using NCM metal oxide is one of high energy candidate materials because the reversible capacity increases according to the Ni content. However, shortening the lifetime due to increase in structural instability during repetitive charging / discharging is a problem. Doping techniques for replacing some of the transition metal components with other elements have been attempted.
본 발명은 용량특성, 율특성, 수명특성이 우수한 새로운 구조의 양극활물질 전구체, 이를 이용한 양극활물질 및 이를 포함하는 리튬 이차전지를 제공하는 것을 목적으로 한다. The present invention aims to provide a positive electrode active material precursor having a novel structure having excellent capacity characteristics, rate characteristics and life characteristics, a positive electrode active material using the same, and a lithium secondary battery comprising the same.
본 발명의 실시예를 따르는 이차전지용 양극활물질 전구체는, Ni, Mn, Co, M1 및 M2를 포함하고, 상기 M1은 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 어느 하나이고, 상기 M2는 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 어느 하나이고, M1 및 M2는 서로 다른 것이다. The precursor of the cathode active material for a secondary battery according to an embodiment of the present invention includes Ni, Mn, Co, M1 and M2, and M1 is at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Wherein at least one of Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh and W is at least one selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Ga, Zr, Nb, Mo, Ru, Rh and W, and M1 and M2 are different from each other.
본 발명의 실시예를 따르는 이차전지용 양극활물질 전구체는, 중심부(core) 및 상기 중심부를 감싸도록 배치된 표면부(shell)를 포함할 수 있고, 상기 중심부는 도핑원소로서 M1을 포함할 수 있고, 상기 표면부는 도핑원소로서 M2를 포함할 수 있다. The cathode active material precursor for a secondary battery according to an embodiment of the present invention may include a core and a shell disposed to surround the center portion. The center portion may include M1 as a doping element, The surface portion may include M2 as a doping element.
일반적으로 전구체 및 양극활물질에서 미량의 도펀트(Dopant)가 입자의 내부에 고르게 분포하는데 반해 본 발명의 실시예를 따르는 전구체 및 양극활물질은 필요에 따라 하나 및 그 이상의 이종금속을 전구체 단계에서 전구체의 중심(중심부)이나 외곽부(표면부)에 집중적으로 배치하거나 중심부나 외곽부에 서로 상이한 이종금속을 배치하여 성능을 높이는 것을 특징으로 한다. Generally, in the precursor and the cathode active material, a small amount of dopant is uniformly distributed inside the particles, whereas the precursor and the cathode active material according to the embodiment of the present invention may contain one or more dissimilar metals, if necessary, (Central portion) or an outer frame portion (surface portion), or by arranging dissimilar metals different from each other in the central portion and the outer frame portion, thereby enhancing performance.
본 발명의 실시예를 따르는 이차전지용 양극활물질 전구체에 있어서, 상기 중심부는 하기 화학식 1로 표시되는 물질을 포함할 수 있고, 상기 표면부는 하기 화학식 2로 표시되는 물질을 포함할 수 있다.In the cathode active material precursor for a secondary battery according to an embodiment of the present invention, the center portion may include a material represented by the following Formula 1, and the surface portion may include a material represented by Formula 2 below.
[화학식 1] Ni b1Co c1Mn d1M1 e(OH) 2 ???????? Ni b1 Co c1 Mn d1 M1 e (OH) 2 ?????
[화학식 2] Ni b2Co c2Mn d2M2 f(OH) 2 ???????? Ni b2 Co c2 Mn d2 M2 f (OH) 2 ?????
(상기 화학식 1 및 2에서, b1+c1+d1+e=1.0, b2+c2+d2+f=1.0, b1>0.5, b2>0.5 이고, M1 및 M2는 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 1종 이상의 조합일 수 있으며(적어도 하나 이상을 포함할 수 있으며) M1≠M2임)M1 and M2 are Mg, Al, Si, Ca, Ti (where b1 + c1 + d1 + e = 1.0, b2 + c2 + d2 + f = 1.0, b1> 0.5, b2> (May include at least one or more) of at least one of V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, being)
본 발명의 실시예를 따르는 이차전지용 양극활물질 전구체는 아래 화학식 3으로 표시될 수 있다. The cathode active material precursor for a secondary battery according to an embodiment of the present invention may be represented by the following chemical formula 3.
[화학식 3] xNi b1Co c1Mn d1M1 e(OH) 2 +yNi b2Co c2Mn d2M2 f(OH) 2 [Chemical Formula 3] xNi Mn b1 Co c1 d1 M1 e (OH) 2 + Co yNi b2 c2 d2 M2 f Mn (OH) 2
(상기 화학식 3에서 x+y=1.0 이고 x≥0.5 임)(X + y = 1.0 and x? 0.5 in Formula 3)
본 발명의 실시예를 따르는 양극활물질은 중심부 및 상기 중심부를 감싸도록 배치된 표면부로 구분되고, 상기 중심부는 M1을 포함하고, 상기 표면부는 M2를 포함할 수 있다. The cathode active material according to an embodiment of the present invention is divided into a center portion and a surface portion arranged to surround the center portion, the center portion includes M1, and the surface portion may include M2.
본 발명의 실시예를 따르는 이차전지용 양극활물질은 Ni, Mn, Co, M1 및 M2를 포함하고, 상기 M1은 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 어느 하나이고, 상기 M2는 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 어느 하나이고, M1 및 M2는 서로 다른 것일 수 있다. The positive electrode active material for a secondary battery according to an embodiment of the present invention includes Ni, Mn, Co, M 1 and M 2 and M 1 is at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Wherein at least one of Zn, Ga, Zr, Nb, Mo, Ru, Rh and W is at least one selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zr, Nb, Mo, Ru, Rh and W, and M1 and M2 may be different from each other.
본 발명의 실시예를 따르는 양극활물질은 하기 화학식 4로 표시될 수 있다. The cathode active material according to an embodiment of the present invention can be represented by the following chemical formula (4).
[화학식 4] Li aNi bCo cMn dM1 e1M2 f1O 2 [Chemical Formula 4] Li a Ni b Co c Mn d e1 M1 f1 M2 O 2
(상기 화학식 4에서 1.0≤a≤1.1, b>0.5, b+c+d+e1+f1=1.0, M1≠M2이고, B + c + d + e1 + f1 = 1.0, M1? M2 in the formula (4)
M1 및 M2는 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 1종 이상의 조합이고,M1 and M2 are combinations of at least one of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh,
상기 e1 및 f1는 각각 상기 화학식 1 및 2에서, e, f에 중심부 및 표면부의 몰분율 x, y를 적용한 값을 의미하며, e1=xe 및 f1=yf으로 표현될 수 있음.) E1 and f1 denote the values obtained by applying the mole fractions x and y of the center portion and the surface portion to e and f in Formulas 1 and 2, respectively, and can be expressed by e1 = xe and f1 = yf.
본 발명의 실시예를 따르는 양극활물질은 복수개의 1차 입자로 구성되며, 상기 1차 입자의 장축 대 단축의 비(장축:단축)는 도핑되지 않은 양극활물질 또는 전체 도핑된 양극활물질의 1차 입자의 경우보다 클 수 있다. The cathode active material according to an embodiment of the present invention is composed of a plurality of primary particles, and the ratio of the major axis to the minor axis of the primary particles (long axis: short axis) . &Lt; / RTI &gt;
상기 이차전지용 양극활물질은 복수개의 1차 입자로 구성되며, 상기 중심부를 구성하는 1차 입자의 장축 대 단축의 비(장축:단축)는 상기 표면부를 구성하는 1차 입자의 장축 대 단축의 비(장축:단축)보다 작은 것일 수 있다. The ratio (major axis: minor axis) of the major axis to minor axis of the primary particles constituting the central portion is a ratio of the major axis to the minor axis of the primary particles constituting the surface portion Long axis: short axis).
본 발명의 실시예를 따르는 양극활물질은 상기 표면부를 구성하는 1차 입자의 장축 대 단축의 비(장축:단축)가 1을 초과하는 로드 형태의 1차 입자를 포함하고, 상기 로드 형태는 중심부의 중심을 향하는 방향으로 배열될 수 있다. 상기 로드 형태의 1차 입자는 장축이 양극활물질의 중심을 향하는 방향으로 배열되어 배치될 수 있다. The cathode active material according to the embodiment of the present invention includes primary particles in the form of a rod having a major axis to minor axis ratio (major axis: minor axis) of primary particles constituting the surface portion exceeding 1, And may be arranged in a direction toward the center. The rod-shaped primary particles can be arranged in a direction in which the long axis is oriented toward the center of the positive electrode active material.
본 발명의 실시예를 따르는 상기 이차전지용 양극활물질의 X-선 회절분석시 003피크의 강도 대 104 피크의 강도의 비는 도핑되지 않은 양극활물질의 경우보다 클 수 있다. In the X-ray diffraction analysis of the cathode active material for a secondary battery according to an embodiment of the present invention, the ratio of the intensity of the 003 peak to the intensity of the 104 peak may be larger than that of the undoped cathode active material.
본 발명의 실시예를 따르는 상기 이차전지용 양극활물질의 X-선 회절분석시 003피크의 강도 대 104 피크의 강도의 비는 1.75 이상 1.80 이하일 수 있다. In the X-ray diffraction analysis of the cathode active material for a secondary battery according to an embodiment of the present invention, the ratio of the intensity at the peak of 003 to the intensity at the peak of 104 may be 1.75 or more and 1.80 or less.
본 발명의 실시예를 따르는 이차전지는 상기 이차전지용 양극활물질을 포함하는 양극, 음극활물질을 포함하는 음극, 상기 양극과 음극 사이에 개재된 분리막; 및 양극과 음극 사이에 담지된 전해질을 포함한다. The secondary battery according to an embodiment of the present invention includes a cathode including the cathode active material for the secondary battery, a cathode including the anode active material, a separator interposed between the anode and the cathode, And an electrolyte supported between the anode and the cathode.
본 발명의 실시예를 따르는 전구체는 중심부나 표면부에 필요에 따라 하나 및 그 이상의 이종금속을 집중적으로 배치하거나 중심이나 외곽부에 서로 상이한 이종금속을 배치하는 것을 특징으로 하며, 이와 같은 전구체로 제조된 양극활물질 및 이를 포함하는 이차 전지의 전기 화학적 성능을 높일 수 있다. The precursor according to the embodiment of the present invention is characterized in that one or more dissimilar metals are intensively arranged in the central part or the surface part as required or the dissimilar metals different from each other are arranged in the center or outer part, The electrochemical performance of the cathode active material and the secondary battery including the cathode active material can be enhanced.
도 1은 전구체 단계에서 M1과 M2를 순차적으로 부분도핑 처리함으로써, 부분 도핑된 Li aNi bCo cMn dM1 eM2 fO 2 양극활물질을 합성하는 단계를 도식으로 나타낸 것이다.FIG. 1 schematically illustrates the step of synthesizing a partially doped Li a Ni b Co c Mn d M1 e M2 f O 2 cathode active material by sequentially subjecting M1 and M2 to a partial doping in a precursor step.
도 2는 중심부가 M1, 표면부가 M2로 부분 도핑된 전구체로 제조된 부분 도핑된 양극활물질의 구조도이다.2 is a structural view of a partially doped cathode active material made from a precursor partially doped with a central portion M1 and a surface portion M2.
도 3은 도 2의 전구체 합성시, M1을 적용하는 시간에 따른 전구체 직경(D1)과 M2를 추가 적용하는 시간에 따른 전구체 부분 직경(D2)을 포함한 전구체의 성장 변화를 나타낸 그래프이다.FIG. 3 is a graph showing the growth of a precursor including the precursor diameter D1 during the time of application of M1 and the precursor partial diameter D2 according to the time of application of M2 during synthesis of the precursor of FIG. 2;
도 4(a)는 부분 도핑된 전구체 단면, (b)는 이를 이용한 양극활물질 단면의 SEM 이미지를 측정한 결과이다.FIG. 4 (a) is a partially doped precursor section, and FIG. 4 (b) is a SEM image of a cross-section of a cathode active material.
도 5은 도핑되지 않은 전구체와 실시예 1 내지 3을 따르는 부분 도핑된 전구체의 SEM 이미지를 측정한 결과이다.Figure 5 shows the results of SEM images of undoped precursor and partially doped precursors according to Examples 1-3.
도 6은 실시예 1 내지 3을 따르는 부분 도핑된 전구체 단면의 SEM 이미지를 측정한 결과이다.6 is a SEM image of a partially doped precursor section according to Examples 1 to 3. FIG.
도 7은 도핑되지 않은 양극활물질과 실시예 1 내지 3을 따르는 부분 도핑된 양극활물질의 SEM 이미지를 측정한 결과이다.FIG. 7 shows SEM images of a non-doped cathode active material and a partially doped cathode active material according to Examples 1 to 3. FIG.
도 8는 도핑되지 않은 양극활물질, W로 전체 도핑된 양극활물질 및 실시예 1 내지 3을 따르는 부분 도핑된 양극활물질의 SEM 이미지를 측정한 결과이다.8 is a result of measurement of SEM images of the undoped cathode active material, the cathode active material fully doped with W, and the partially doped cathode active material according to Examples 1 to 3.
도 9(a)는 W로 전체 도핑된 양극활물질 단면의 구성도, (b)는 SEM 이미지를 측정한 결과이다. FIG. 9 (a) is a schematic view of a cross-section of a cathode active material doped with W, and FIG. 9 (b) is a result of SEM image measurement.
도 10(a)은 실시예 1을 따르는 양극활물질 단면의 구성도, (b)는 SEM 이미지를 측정한 결과이다.10 (a) is a cross-sectional view of a cathode active material according to Example 1, and FIG. 10 (b) is a result of SEM image measurement.
도 11(a)는 실시예 2를 따르는 양극활물질 단면의 구성도, (b)는 SEM 이미지를 측정한 결과이다.Fig. 11 (a) is a cross-sectional view of a cathode active material according to Example 2, and Fig. 12 (b) is a SEM image.
도 12(a)는 실시예 3을 따르는 양극활물질 단면의 구성도, (b)는 SEM 이미지를 측정한 결과이다.12 (a) is a cross-sectional view of a cathode active material according to Example 3, and FIG. 12 (b) is a result of SEM image measurement.
도 13은 도핑되지 않은 양극활물질, W로 전체 도핑된 양극활물질 및 실시예 1 내지 4를 따르는 양극활물질의 DSC peak 온도 및 발열량의 분석결과를 나타낸 그래프이다.13 is a graph showing the results of analysis of DSC peak temperature and calorific value of a non-doped cathode active material, a cathode active material wholly doped with W, and a cathode active material according to Examples 1 to 4.
도 14(a)는 NCM 금속산화물 총량 대비 Ni이 90% 함유된 양극활물질의 경우, 도핑되지 않은 양극활물질, W로 전체 도핑된 양극활물질 및 실시예 1 내지 3을 따르는 양극활물질의 용량에 따른 전압의 변화를 나타낸 그래프이고, (b)는 충방전 사이클 수에 따른 용량유지율의 변화를 나타낸 그래프이다. Fig. 14 (a) is a graph showing the relationship between the total amount of NCM metal oxide and the voltage of the positive electrode active material containing 90% Ni according to the capacity of the undoped positive electrode active material, the fully doped positive active material of W and the positive active material of Examples 1 to 3 (B) is a graph showing a change in capacity retention rate according to the number of charge / discharge cycles.
도 15(a)는 NCM 금속산화물 총량 대비 Ni이 90% 함유된 양극활물질의 경우, 도핑되지 않은 양극활물질 및 실시예 3 내지 4를 따르는 양극활물질의 용량에 따른 전압의 변화를 나타낸 그래프이고, (b)는 충방전 사이클 수에 따른 용량유지율의 변화를 나타낸 그래프이다. 15 (a) is a graph showing changes in voltage depending on the capacity of a non-doped cathode active material and a cathode active material according to Examples 3 to 4 in the case of a cathode active material containing 90% of Ni relative to the total amount of NCM metal oxides, b) is a graph showing a change in capacity retention rate according to the number of charge / discharge cycles.
도 16은 도핑되지 않은 양극활물질 및 실시예 1 내지 3을 따르는 양극활물질의 XRD 측정 결과를 나타낸 그래프이다. 16 is a graph showing the XRD measurement results of the undoped positive electrode active material and the positive electrode active material according to Examples 1 to 3. FIG.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다. Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for illustrating the present invention, and thus the scope of the present invention is not construed as being limited by these embodiments.
도 1 및 도 2에 본 발명에 따르는 전구체 및 양극활물질의 모식도를 나타내었다. FIGS. 1 and 2 are schematic views of a precursor and a cathode active material according to the present invention.
일반적으로 전구체 및 양극활물질에서 미량의 도펀트(Dopant)가 입자의 내부에 고르게 분포한다. 그러나, 본 발명의 실시예를 따르는 전구체 및 양극활물질은 필요에 따라 하나 및 그 이상의 이종금속을 전구체 단계에서 전구체의 중심(중심부)이나 외곽부(표면부)에 집중적으로 배치하거나 중심이나 외곽부에 서로 상이한 이종금속을 배치하여 성능을 높인다. Generally, a small amount of dopant is uniformly distributed in the inside of the particles in the precursor and the cathode active material. However, the precursor and the cathode active material according to the embodiment of the present invention may be prepared by concentrating one or more different kinds of metals to the center (center part) or the outer part (surface part) of the precursor in the precursor step, Place different dissimilar metals to improve performance.
본 발명의 실시예를 따르는 고니켈계 이차전지용 양극활물질 전구체는 Ni가 50 mol% 이상, 바람직하게는 90 mol% 이상이며 Co 및 Mn을 포함하는 금속 수산화물을 포함할 수 있다. The positive electrode active material precursor for a high nickel-based secondary battery according to an embodiment of the present invention may include a metal hydroxide containing Ni and Co and Mn in an amount of 50 mol% or more, preferably 90 mol% or more.
상기 양극활물질 전구체는 도핑 원소로 M1 및 M2를 포함하고, 상기 M1은 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 어느 하나이고, 상기 M2는 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 어느 하나이고, M1 및 M2는 서로 다른 것이다.The precursor of the cathode active material includes M1 and M2 as doping elements and M1 is at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Wherein at least one of Ru, Rh, and W is at least one selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, W, and M1 and M2 are different from each other.
상기 양극활물질 전구체는 중심부 및 상기 중심부를 감싸도록 배치된 표면부를 포함할 수 있고, 상기 중심부는 도핑원소 M1을 포함할 수 있고, 상기 표면부는 도핑원소 M2를 포함할 수 있으며, M1≠M2이다.The cathode active material precursor may include a center portion and a surface portion arranged to surround the center portion, and the center portion may include a doping element M1, and the surface portion may include a doping element M2, and M1 ≠ M2.
[화학식 1] Ni b1Co c1Mn d1M1 e(OH) 2 ???????? Ni b1 Co c1 Mn d1 M1 e (OH) 2 ?????
[화학식 2] Ni b2Co c2Mn d2M2 f(OH) 2 ???????? Ni b2 Co c2 Mn d2 M2 f (OH) 2 ?????
본 발명의 실시예를 따르는 양극활물질 전구체는 상기 화학식 1 로 표시되는 중심부와 화학식 2로 표시되는 표면부를 포함할 수 있으며, b1+c1+d1+e=1.0, b2+c2+d2+f=1.0, b1>0.5, b2>0.5 이고, M1 및 M2는 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 1종 이상의 조합일 수 있으며, M1≠M2이다.The cathode active material precursor according to an embodiment of the present invention may include a center portion represented by Formula 1 and a surface portion represented by Formula 2, where b1 + c1 + d1 + e = 1.0, b2 + c2 + d2 + f = 1.0 , M1 and M2 are Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W, and M1? M2.
또한, 상기 화학식 1 및 화학식 2에서, b1 = b2, c1 = c2, d1 = d2일 수 있다.In the above formulas (1) and (2), b1 = b2, c1 = c2, d1 = d2.
또한, 상기 화학식 1 및 화학식 2에서, e=f일 수 있다. In the above formulas (1) and (2), e = f.
본 발명에 의한 양극활물질 전구체는 전체적으로 상기 화학식 1 로 표시되는 중심부와 화학식 2로 표시되는 표면부를 포함하며, 아래 화학식 3으로 표시할 수 있다. The cathode active material precursor according to the present invention generally includes a center portion represented by Formula 1 and a surface portion represented by Formula 2, and may be represented by Formula 3 below.
[화학식 3] xNi b1Co c1Mn d1M1 e(OH) 2 +yNi b2Co c2Mn d2M2 f(OH) 2 [Chemical Formula 3] xNi Mn b1 Co c1 d1 M1 e (OH) 2 + Co yNi b2 c2 d2 M2 f Mn (OH) 2
상기 화학식 3으로 표시되는 이차전지용 양극활물질 전구체에 있어서, x 는 전체 양극활물질 전구체 조성 중 중심부의 몰비, y는 전체 양극활물질 조성 중 표면부의 몰비를 나타내고, x+y=1.0, x≥0.5의 조건을 만족한다. X is the molar ratio of the center part of the total cathode active material precursor composition and y is the molar ratio of the surface part of the total cathode active material composition and x + y = 1.0, x? 0.5 .
또한 바람직하게는 상기 화학식 1 또는 2에 있어서, b1>0.8, 더욱 바람직하게는 b1≥0.9 일 수 있다. Further, preferably, in the above formula (1) or (2), b1> 0.8, more preferably b1≥0.9.
또한 바람직하게는 상기 화학식 1 또는 2에 있어서, b2>0.8 바람직하게는 b2≥0.9 일 수 있다. Also preferably, in the above formula (1) or (2), b2> 0.8, preferably b2≥0.9.
본 발명의 실시예를 따르는 양극활물질 전구체는 구체적으로는 The cathode active material precursor according to the embodiment of the present invention specifically includes
0.5[Ni 0.90Co 0.07Mn 0.02W 0.01(OH) 2] + 0.5[Ni 0.90Co 0.07Mn 0.03(OH) 2], 0.5 [Ni 0.90 Co 0.07 Mn 0.02 W 0.01 (OH) 2 ] + 0.5 [Ni 0.90 Co 0.07 Mn 0.03 (OH) 2 ]
0.5[Ni 0.90Co 0.07Mn 0.03(OH) 2] + 0.5[Ni 0.90Co 0.07Mn 0. 02W 0.01(OH) 2] 또는0.5 [Ni 0.90 Co 0.07 Mn 0.03 (OH) 2 ] + 0.5 [Ni 0.90 Co 0.07 Mn 0 . 02 W 0.01 (OH) 2 ] or
0.5[Ni 0.90Co 0.07Mn 0.02Zr 0.01(OH) 2] + 0.5[Ni 0.90Co 0.07Mn 0.02W 0.01(OH) 2] 으로 표시될 수 있다.0.5 [Ni 0.90 Co 0.07 Mn 0.02 Zr 0.01 (OH) 2 ] + 0.5 [Ni 0.90 Co 0.07 Mn 0.02 W 0.01 (OH) 2 ].
본 발명의 실시예를 따르는 고니켈계 이차전지용 양극활물질 전구체에 있어서, M1 또는 M2는 W인 것이 바람직하다. 본 발명의 실시예를 따르는 고니켈계 이차전지용 양극활물질 전구체에 있어서, M1 또는 M2는 W인 경우, 이후 양극활물질 결정 내부에서의 Li 이온의 확산이 용이해지고, 그 결과로 전지의 출력특성이 더욱 향상될 수 있다. In the positive electrode active material precursor for a high nickel-based secondary battery according to an embodiment of the present invention, M1 or M2 is preferably W. In the positive electrode active material precursor for a high nickel-based secondary battery according to an embodiment of the present invention, when M1 or M2 is W, the diffusion of Li ions in the inside of the positive electrode active material is facilitated, and as a result, Can be improved.
상기 W 원료물질로는 산화물(예를 들면, 텅스텐 트리옥사이드 (WO 3) 등), 할로겐화물(예를 들면, 텅스텐 헥사플루오라이드(WF 6) 등), 또는 암모늄염(암모늄 파라텅스테이트[(NH 4) 10H 2(W 2O 7) 6] 또는 암모늄 메타텅스테이트 [(NH 4) 6H 2W 12O 40] 등) 등이 사용될 수 있으며, 이들 중 1종 또는 2종 이상의 혼합물이 사용될 수 있다.Examples of the W raw material include oxides such as tungsten trioxide (WO 3 ), halides (such as tungsten hexafluoride (WF 6 )), and ammonium salts (ammonium paratungstate [(NH 4 ) 10 H 2 (W 2 O 7 ) 6 ] or ammonium metatungstate [(NH 4 ) 6 H 2 W 12 O 40 ]], and the like. .
본 발명의 실시예를 따르는 이차전지용 양극활물질은, Li, Ni, Mn, Co, M1 및 M2를 포함한다. The cathode active material for a secondary battery according to an embodiment of the present invention includes Li, Ni, Mn, Co, M1 and M2.
본 발명의 실시예에서, 양극활물질 제조방법은, NCM 금속산화물 전구체를 합성하는 단계, 상기 금속산화물 전구체와 Li 공급원을 혼합한 후 1차 열처리하여 양극활물질을 제조하는 단계를 포함할 수 있다. In an embodiment of the present invention, the method for producing a cathode active material may include synthesizing an NCM metal oxide precursor, mixing the metal oxide precursor and a Li source, and then subjecting the mixture to a primary heat treatment to produce a cathode active material.
먼저 NCM 금속산화물 전구체의 합성을 위해서는, 니켈 황산염, 니켈 질산염 및 니켈 탄산염으로 이루어진 군에서 선택된 1종; 코발트 황산염, 코발트 질산염 및 코발트 탄산염으로 이루어진 그룹에서 선택된 1종; 그리고 망간 황산염, 망간 질산염 및 망간 탄산염으로 이루어진 그룹에서 선택된 1 종을 일정 몰농도로 녹여서 수용액을 제조한 후, NaOH, NH 4OH 및 KOH로 이루어진 그룹에서 선택된 1종 이상의 염기를 이용하여 pH 10 ~ 12 범위에서 수산화물의 형태로 침전시킬 수 있다.First, for the synthesis of the NCM metal oxide precursor, one species selected from the group consisting of nickel sulfate, nickel nitrate and nickel carbonate; Cobalt sulfate, cobalt nitrate and cobalt carbonate; The aqueous solution is prepared by dissolving one selected from the group consisting of manganese sulfate, manganese nitrate, and manganese carbonate at a constant molar concentration, and then, by using at least one base selected from the group consisting of NaOH, NH 4 OH, and KOH, Lt; RTI ID = 0.0 &gt; 12, &lt; / RTI &gt;
이렇게 침전된 분말의 표면에 흡착되어 있는 SO 4 2-, NH 4 + , NO 3 - , Na + , K + 등을 증류수를 이용하여 수차례 세정하여 고순도의 금속산화물 전구체를 합성한다. 이렇게 합성된 금속산화물 전구체를 100 내지 200℃, 바람직하게는 150℃의 오븐에서 24시간 이상 건조하여 수분 함유량이 0.1 wt% 이하가 되도록 할 수 있다.The SO 4 2- , NH 4 + , NO 3 - , Na + , K + adsorbed on the surface of the precipitated powder is washed several times with distilled water to synthesize a high purity metal oxide precursor. The thus synthesized metal oxide precursor And then dried in an oven at 100 to 200 ° C, preferably 150 ° C for at least 24 hours so that the moisture content is 0.1 wt% or less.
그 다음 단계로서 양극활물질을 얻기 위해서는, 건조가 완료된 금속산화물 전구체와 Li 공급원을 균질하게 혼합한 후, 5 ~ 30시간 동안 열처리하여 상기 양극활물질을 얻을 수 있다.In order to obtain the cathode active material as the next step, the cathode active material may be obtained by homogeneously mixing the dried metal oxide precursor and the Li source and then performing heat treatment for 5 to 30 hours.
상기 Li 공급원으로, 리튬의 수산화물로는 수산화리튬(LiOH) 등이 가능하고, As the Li source, lithium hydroxide may be lithium hydroxide (LiOH) or the like,
리튬염으로는 LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3SO 3, Li(CF 3SO 2) 2N, LiC 4F 9SO 3, LiSbF 6, LiAlO 4, LiAlCl 4, LiCl, 및 LiI로 이루어진 군에서 선택된 1종 이상이 가능하다.Examples of the lithium salt include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCl, and LiI can be used.
상기 열처리 온도는 600 ~ 1000℃ 인 것이 바람직하며, 상기 열처리 온도가 600℃ 미만일 경우 Li 공급원과 전이금속 수산화물 전구체 또는 NCM과 전이금속 공급원 간의 반응이 잘 이루어지지 않을 우려가 있고, 반면 1000℃를 초과할 경우 활물질의 입자 사이즈가 너무 증가하여 전지 특성이 감소하는 문제가 발생할 수 있다.The heat treatment temperature is preferably 600 to 1000 ° C. If the heat treatment temperature is lower than 600 ° C., there is a fear that the reaction between the Li source and the transition metal hydroxide precursor or the NCM and the transition metal source may not be performed well, The particle size of the active material may be excessively increased and the battery characteristics may be deteriorated.
상기 양극활물질은 그 내부에 도핑된 M1 및 M2를 포함하고, 상기 M1은 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 어느 하나이고, 상기 M2는 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 어느 하나이고, M1 및 M2는 서로 다른 것이다. The positive electrode active material includes M1 and M2 doped therein and M1 is at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, At least one of Ru, Rh, and W, and M2 is at least one of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, And W, and M1 and M2 are different from each other.
M1 또는 M2가 W인 경우는 위에 서술한 바와 같다.The case where M1 or M2 is W is as described above.
상기 양극활물질은, 하기 화학식 4로 표시될 수 있다. The cathode active material may be represented by the following general formula (4).
[화학식 4] Li aNi bCo cMn dM1 e1M2 f1O 2 [Chemical Formula 4] Li a Ni b Co c Mn d e1 M1 f1 M2 O 2
상기 화학식 4에서 1.0≤a≤1.1, b>0.5, b+c+d+e1+f1=1.0, M1≠M2이고, B? 0.5, b + c + d + e1 + f1 = 1.0, M1? M2 in the formula (4)
M1 및 M2는 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 1종 이상의 조합이고,M1 and M2 are combinations of at least one of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh,
상기 e1 및 f1는 각각 상기 화학식 1 및 2에서, e, f에 대하여 전구체 전체에서 중심부와 표면부의 몰분율 x, y를 적용한 값을 의미하며, e1=xe 및 f1=yf으로 표현될 수 있다. E1 and f1 denote the values of the mole fractions x and y of the center portion and the surface portion in the entire precursor with respect to e and f in Formulas 1 and 2, respectively, and e1 = xe and f1 = yf.
또한 바람직하게는 상기 화학식 4의 b값에 대하여 b>0.8, 더욱 바람직하게는 b≥0.9 일 수 있다. 상기 Ni 함량이 높아질수록 배터리 용량이 높아지고, Co 비중을 낮춰 원가를 줄이는 장점이 있다.Further, it is preferable that b> 0.8 and more preferably b≥0.9 with respect to the b value of the above formula (4). The higher the Ni content is, the higher the battery capacity is, and the Co weight is reduced to reduce the cost.
상기 이차전지용 양극활물질은 복수개의 1차 입자로 구성되며, 상기 1차 입자의 장축 대 단축의 비(장축:단축)는 도핑되지 않은 양극활물질 또는 전체 도핑된 양극활물질의 1차 입자의 경우보다 클 수 있다(도 8.).The cathode active material for the secondary battery is composed of a plurality of primary particles, and the ratio of the major axis to the minor axis of the primary particles (long axis: short axis) is larger than that of the primary particles of the undoped cathode active material or the entirely doped cathode active material (Fig. 8).
상기 이차전지용 양극활물질은 복수개의 1차 입자로 구성되며, 상기 중심부를 구성하는 1차 입자의 장축 대 단축의 비(장축:단축)는 상기 표면부를 구성하는 1차 입자의 장축 대 단축의 비(장축:단축)보다 작을 수 있다. The ratio (major axis: minor axis) of the major axis to minor axis of the primary particles constituting the central portion is a ratio of the major axis to the minor axis of the primary particles constituting the surface portion Long axis: short axis).
상기 이차전지용 양극활물질은 상기 표면부를 구성하는 1차 입자의 장축 대 단축의 비(장축:단축)가 1 초과인 로드 형태의 1차 입자를 포함할 수 있고, 상기 로드 형태는 중심부의 중심을 향하는 방향으로 배열되어 배치될 수 있다. 상기 로드 형태의 1차 입자는 장축 대 단축의 비가 1을 초과, 1.5를 초과, 2를 초과, 2.5를 초과, 3을 초과, 3.5를 초과 또는 4를 초과하는 것일 수 있다. The cathode active material for a secondary battery may include primary particles of a rod shape having a major axis to minor axis ratio (major axis: minor axis) of primary particles constituting the surface portion of more than 1, As shown in FIG. The rod-shaped primary particles may have a ratio of major axis to minor axis greater than 1, greater than 1.5, greater than 2, greater than 2.5, greater than 3, greater than 3.5, or greater than 4.
상기 이차전지용 양극활물질의 X-선 회절분석시 003피크의 강도 대 104피크의 강도의 비(003 피크의 강도 : 104 피크의 강도)는 도핑되지 않은 양극활물질의 경우보다 클 수 있다(도 16.).In the X-ray diffraction analysis of the cathode active material for the secondary battery, the ratio of the intensity at the peak of 003 to the intensity at the peak of 104 (the intensity at the peak of 003: the intensity at the peak of 104) may be larger than that in the case of the undoped cathode active material. ).
또한, 상기 이차전지용 양극활물질의 X-선 회절분석시 003피크의 강도 대 104 피크의 강도의 비는 1.75 이상 1.80 이하일 수 있다(도 16.). In the X-ray diffraction analysis of the cathode active material for the secondary battery, the ratio of the intensity at the peak of 003 to the intensity at the peak of 104 may be 1.75 or more and 1.80 or less (Fig. 16).
상기 양극활물질의 중심부와 표면부는 서로 다른 형태의 1차 입자를 포함할 수 있다. 상기 중심부는 벌크(bulk) 형태의 1차 입자를 포함하고, 상기 표면부는 복수의 로드(rod) 형태의 1차 입자를 포함하고, 상기 로드 형태는 중심부의 중심을 향하는 방향으로 배열될 수 있다. 보다 상세하게는 상기 로드 형태의 1차 입자는 장축이 양극활물질의 중심을 향하는 방향으로 배열되어 배치될 수 있다(도 10.) The center portion and the surface portion of the cathode active material may include different types of primary particles. The center portion includes primary particles in a bulk form, the surface portion includes a plurality of primary particles in the form of a rod, and the rod form can be arranged in a direction toward the center of the center portion. More specifically, the primary particles of the rod-like form can be arranged in a direction in which the long axis is oriented toward the center of the cathode active material (FIG. 10)
본 발명의 실시예를 따르는 이차전지는 상기 양극활물질을 포함하는 양극; 음극활물질을 포함하는 음극; 상기 양극과 음극 사이에 개재된 분리막; 및 양극과 음극 사이에 담지된 전해질을 포함한다. A secondary battery according to an embodiment of the present invention includes: a positive electrode including the positive electrode active material; A negative electrode comprising a negative electrode active material; A separation membrane interposed between the anode and the cathode; And an electrolyte supported between the anode and the cathode.
상기 양극은 알루미늄 집전체 상에 직접 코팅 및 건조하여 제조할 수 있다. 또는 상기 양극활물질 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 알루미늄 집전체 상에 라미네이션하여 제조할 수 있다.The anode can be prepared by coating directly on an aluminum current collector and drying. Or by casting the positive electrode active material composition on a separate support, then peeling the support from the support, and laminating the resulting film on an aluminum current collector.
상기 양극은 도전재 및 바인더를 더 포함할 수 있다.The anode may further include a conductive material and a binder.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용 가능하다. 구체적인 예로는 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.The conductive material is used for imparting conductivity to the electrode, and can be used without particular limitation as long as it does not cause chemical change and has electronic conductivity. Specific examples include graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
상기 바인더는 양극활물질 입자들 간 또는 양극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드 (PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필 셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.The binder serves to improve the adhesion between the positive electrode active material particles or between the positive electrode active material and the current collector. Specific examples include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, There may be mentioned polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber or various copolymers thereof. Can be used.
상기 음극은 양극과 마찬가지로 음극활물질을 구리 집전체에 직접 코팅하여 제조할 수 있고, 또는 별도의 지지체 상에 캐스팅하고 이 지지체로부터 박리시킨 음극활물질 필름을 구리 집전체에 라미네이션하여 제조할 수 있다.The negative electrode can be manufactured by coating the negative electrode active material directly on the copper current collector as in the case of the positive electrode, or by casting on a separate support and laminating the negative electrode active material film peeled off from the support on the copper current collector.
상기 음극활물질로는 리튬을 인터칼레이션/디인터칼레이션할 수 있는 재료가 사용되고, 예컨대, 리튬 금속이나 리튬 합금, 코크스, 인조 흑연, 천연 흑연, 유기 고분자 화합물 연소체, 탄소 섬유 등을 사용할 수 있다. 또한 상기 음극에는 양극에 사용되는 도전재 및 바인더가 사용될 수 있다.As the negative electrode active material, a material capable of intercalating / deintercalating lithium may be used. For example, lithium metal, a lithium alloy, coke, artificial graphite, natural graphite, an organic polymer combustible material, have. Also, a conductive material and a binder used for the positive electrode may be used for the negative electrode.
상기 분리막은 리튬 이차전지에서 통상적으로 사용되는 것이라면 모두 다 사용가능하며, 예를 들면 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있다.For example, polyethylene, polypropylene, polyvinylidene fluoride or a multilayer film of two or more thereof may be used. The separator may be a polyethylene / polypropylene double-layer separator , A polyethylene / polypropylene / polyethylene three-layer separator, a polypropylene / polyethylene / polypropylene three-layer separator, etc. may be used.
상기 전해질로는 비수성 전해질 또는 공지된 고체 전해질 등이 사용 가능하며, 리튬염이 용해된 것을 사용한다. 상기 비수성 전해질의 용매는 특별히 한정되는 것은 아니지만, 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트 등의 환상 카보네이트; 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트 등의 쇄상 카보네이트; 아세트산메틸, 아세트산에틸, 아세트산프로필, 프로피온산메틸, 프로피온산에틸, γ-부티로락톤 등의 에스테르류; 1,2-디메톡시에탄, 1,2-디에톡시에탄, 테트라히드로푸란, 1,2-디옥산, 2-메틸테트라히드로푸란 등의 에테르류; 아세토니트릴 등의 니트릴류; 디메틸포름아미드 등의 아미드류 등을 사용할 수 있다. 이들을 단독 또는 복수개 조합하여 사용할 수 있으며, 바람직하게는 환상 카보네이트와 쇄상 카보네이트와의 혼합 용매를 사용할 수 있다.As the electrolyte, a non-aqueous electrolyte or a known solid electrolyte can be used, and a lithium salt dissolved therein is used. The solvent of the non-aqueous electrolyte is not particularly limited, but cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; Chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate; Esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and? -Butyrolactone; Ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane and 2-methyltetrahydrofuran; Nitriles such as acetonitrile; Amides such as dimethylformamide and the like can be used. These solvents may be used singly or in combination of two or more, and a mixed solvent of cyclic carbonate and chain carbonate may be preferably used.
<실시예> 전구체 및 활물질의 제조 EXAMPLES Preparation of Precursors and Active Materials
실시예 1 - W가 중심부, Mn이 표면부에 부분 도핑된 양극활물질 전구체Example 1 - Cathode active material precursor in which W is a central portion and Mn is partially doped on a surface portion
운전 체적 기준 100L 반응기에 대하여 반응온도 50.0 ±5.0 ℃, 교반속도 300 ±50 RPM, NH 3 : Metal 비율(몰수 기준) 1.0 ±0.5, NaOH : Metal 비율(몰수 기준) 2.0 ±0.5 기준하에서, 몰수를 기준으로 Ni 90%, Co 7% 및 Mn 3% 으로 조성되어 있는 전구체의 중심에 W가 부분 도핑된 중심입도 16.0 ±1.0㎛의 도핑된 전구체를 합성하였다.Operation based on volume reaction temperature with respect to the 100L reactor 50.0 ± 5.0 ℃, stirring rate 300 ± 50 RPM, NH 3: the Metal ratio (mole basis) in the 2.0 ± 0.5 standard, number of moles: Metal ratio (mole basis) 1.0 ± 0.5, NaOH Based on the results, a doped precursor with a core particle size of 16.0 ± 1.0μm was synthesized by partially doping W at the center of a precursor composed of Ni 90%, Co 7% and Mn 3%.
전구체의 조성은 하기 표 1의 Ni, Co 및 Mn의 조성비에 따라 NiSO 4*6H 2O, CoSO 4*7H 2O, MnSO 4*H 2O를 계량한 후 증류수에 용해시켰다. 용해된 금속 수산화물 용액을 50%씩 구분하여 화학식 1 및 2의 비가 1:1이 되도록 각각의 저장조에 저장하였다. The composition of the precursor was determined by measuring NiSO 4 * 6H 2 O, CoSO 4 * 7H 2 O, and MnSO 4 * H 2 O according to the composition ratios of Ni, Co and Mn shown in Table 1 below and dissolving in distilled water. The dissolved metal hydroxide solution was divided into 50% portions and stored in the respective reservoirs so that the ratios of Formulas 1 and 2 were 1: 1.
중심부 형성을 위한 화학식 1의 M1으로 W 0.5mol%를, 표면부 형성을 위한 화학식 2의 M2로 Mn 0.5mol%를 첨가하였다. 이때 W 원료로는 (NH 4) 6H 2W 12O 40*xH 2O , Mn 원료로는 MnSO 4*H 2O를 사용하였다.0.5 mol% of W was added to M1 of the formula (1) for forming the center portion, and 0.5 mol% of Mn was added to M2 of the formula (2) for forming the surface portion. At this time, (NH 4 ) 6 H 2 W 12 O 40 * xH 2 O was used as a raw material of W, and MnSO 4 * H 2 O was used as a raw material of Mn.
각각의 금속 수용액에 대하여 호스타입 정량펌프를 사용하여 반응기로 투입하였다. 이 때 화학식 1의 금속 수용액을 반응기에 일정시간 투입 후 화학식 2의 금속 수용액을 화학식 1의 금속수용액 저장조에 투입하였다. M1 원료를 포함하는 중심부 금속 수용액 저장조의 수용액 조성이 M2 원료를 포함하는 화학식 2의 금속 수용액 조성으로 변화되었다. Each metal aqueous solution was introduced into the reactor using a hose type metering pump. At this time, the metal aqueous solution of the formula (1) was put into the reactor for a certain period of time, and the aqueous metal solution of the formula (2) was introduced into the metal aqueous solution storage tank of the formula (1). The aqueous solution composition of the central metal aqueous solution reservoir containing the M1 raw material was changed to the aqueous metal solution composition of the formula (2) containing the M2 raw material.
상기의 반응기로 투입되는 화학식 1의 금속수용액의 투입유량 대비 화학식 2의 투입유량의 비는 1.0이상으로 설정, 화학식 1의 금속 수용액으로부터 반응을 진행하여 화학식 2의 금속 수용액으로 반응을 종료하여 중심부로부터 M1 및 M2의 분포를 달리하는 전구체를 합성하였다. 이때 반응기에서 암모니아, 가성소다와 함께 반응하여 침전되었다.The ratio of the input flow rate of the chemical formula (2) to the input flow rate of the metal solution of the chemical formula (1) introduced into the reactor is set to 1.0 or more, the reaction is carried out from the metal aqueous solution of the chemical formula (1) A precursor with different M1 and M2 distribution was synthesized. At this time, the reactor reacted with ammonia and caustic soda to precipitate.
침전된 슬러리는 압력 여과기(filter press)를 이용하여 수세 및 고액 분리를 하고, 고압의 프레시 에어(Fresh Air)를 이용하여 잔여 수분을 제거하였다. 고액 분리된 전구체는 유동층 건조기를 이용하여 100 내지 200℃ 로 건조하였다. The precipitated slurry was subjected to washing with water and solid-liquid separation using a filter press, and residual water was removed using a high-pressure fresh air. The solid-liquid separated precursor was dried at 100 to 200 ° C using a fluid bed drier.
건조된 전구체는 Li 원료로서 LiOH를 Li: Metal 비율(몰수기준) 1.03이 되도록 혼합한 후 산소(O 2)분위기하에서 소성 온도 700℃ 내지 800℃ 조건에서 승온 속도 1.5℃/min로 소성하였다.The dried precursor was mixed with LiOH as a raw material of Li so as to have a Li: metal ratio (based on molar number) of 1.03, and then calcined at a temperature of 700 ° C to 800 ° C under an oxygen (O 2 ) atmosphere at a temperature raising rate of 1.5 ° C / min.
소결된 물질을 분쇄 분급하여 양극활물질을 얻었다. 실시예 1의 양극활물질은 하기의 표 1과 같다.The sintered material was pulverized and classified to obtain a cathode active material. The cathode active material of Example 1 is shown in Table 1 below.
구 분division 비교예 1Comparative Example 1 비교예 2Comparative Example 2 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4
BulkBulk W dopingW doping W CoreW Core W ShellW Shell Zr CoreW ShellZr CoreW Shell W CoreAl ShellW CoreAl Shell
주조성Casting Li 1.03Ni 0.90Co 0.07Mn dM1 e1M2 f1O 2 Li 1.03 Ni 0.90 Co 0.07 Mn d M1 e1 M2 f1 O 2
M1 M1 MnMn WW WW MnMn Zr,Zr, WW
M2 M2 MnMn WW MnMn WW WW AlAl
실시예 2 - Mn이 중심부, W가 표면부에 부분 도핑된 양극활물질 전구체Example 2 - Cathode active material precursor in which Mn is the central portion and W is partially doped on the surface portion
화학식 1의 M1으로서 Mn 0.5mol%, 화학식 2의 M2로서 W 0.5mol%을 적용함을 제외하고 실시예 1을 따른다.Example 1 was followed except that 0.5 mol% of Mn was used as M1 in the formula (1) and 0.5 mol% of W was used as M2 in the formula (2).
실시예 3 - (Mn+Zr)이 중심부, W가 표면부에 부분 도핑된 양극활물질 전구체Example 3 - A positive electrode active material precursor in which (Mn + Zr) was the center portion and W was partially doped on the surface portion
화학식 1의 M1으로서 (Mn+Zr)의 조합 0.5mol%, 화학식 2의 M2로서 W 0.5mol%을 적용함을 제외하고 실시예 1을 따른다.The procedure of Example 1 is followed except that 0.5 mol% of the combination of (Mn + Zr) as M1 in Formula (1) and 0.5 mol% of W as M2 in Formula (2) are applied.
실시예 4 - W가 중심부, (Mn+Al)이 표면부에 부분 도핑된 양극활물질 전구체Example 4 - Cathode active material precursor in which W is the center part, (Mn + Al) is partially doped on the surface part
화학식 1의 M1으로서 W 0.5mol%, 화학식 2의 M2로서 (Mn+Al)의 조합 0.5mol%을 적용하고, 화학식 1 및 2의 금속수용액 비를 7:3으로 적용함을 제외하고 실시예 1을 따른다.Except that 0.5 mol% of W as M1 of Formula 1 and 0.5 mol% of a combination of (Mn + Al) as M2 of Formula 2 were applied and the metal aqueous solution ratio of Formulas 1 and 2 was 7: 3. .
실시예 5 - W가 중심부, (Zr+Mg)가 표면부에 도핑된 양극활물질 전구체Example 5 - A positive electrode active material precursor in which W is the center portion and (Zr + Mg) is doped on the surface portion
화학식 1의 M1으로서 W 0.5mol%, 화학식 2의 M2로서 (Zr+Mg)의 조합 0.5mol%을 적용함을 제외하고 실시예 1을 따른다.Example 1 is followed except that 0.5 mol% of W is used as M1 in the formula (1) and 0.5 mol% of the combination of (Zr + Mg) is used as M2 in the formula (2).
실시예 6 - W가 중심부, Ti가 표면부에 도핑된 양극활물질 전구체Example 6 - Cathode active material precursor in which W is the central portion and Ti is doped on the surface portion
화학식 1의 M1으로서 W 0.5mol%, 화학식 2의 M2로서 Ti 0.5mol%을 적용하고, 화학식 1 및 2의 금속수용액 비를 9:1로 적용함을 제외하고 실시예 1을 따른다.The procedure of Example 1 is followed except that 0.5 mol% of W is used as M1 of Formula 1 and 0.5 mol% of Ti is used as M2 of Formula 2 and the metal aqueous solution ratio of Formulas 1 and 2 is 9: 1.
실시예 7 - W가 중심부, V가 표면부에 부분 도핑된 양극활물질 전구체Example 7 - Cathode active material precursor in which W is a central portion and V is partially doped on a surface portion
화학식 1의 M1으로서 W 0.5mol%, 화학식 2의 M2로서 V 0.5mol%을 적용하고, 화학식 1 및 2의 금속수용액 비를 9:1로 함을 제외하고 실시예 1을 따른다.Example 1 is followed except that 0.5 mol% of W as M1 in Formula 1 and 0.5 mol% of V as M2 in Formula 2 are applied and the metal aqueous solution ratio of Formulas 1 and 2 is 9: 1.
실시예 8 - Zr이 중심부, Al이 표면부에 부분 도핑된 양극활물질 전구체Example 8 - Cathode active material precursor in which Zr was the center portion and Al was partially doped on the surface portion
화학식 1의 M1으로서 Zr 0.5mol%, 화학식 2의 M2로서 Al 0.5mol%을 적용하고, 화학식 1 및 2의 금속수용액 비를 9:1로 함을 제외하고 실시예 1을 따른다.Example 1 is followed except that 0.5 mol% of Zr is used as M1 of Formula 1 and 0.5 mol% of Al is used as M2 of Formula 2 and the ratio of the metal aqueous solution of Formulas 1 and 2 is 9: 1.
비교예 1 - 도핑되지 않은 Bulk형 양극활물질 전구체Comparative Example 1 - An undoped bulk cathode active material precursor
화학식 1 및 2의 M1 및 M2로서 Mn으로 적용함을 제외하고 실시예 1을 따른다.Example 1 is followed except that Mn is applied as M1 and M2 in formulas (1) and (2).
비교예 2 - W가 전구체 전체에 도핑된 양극활물질 전구체Comparative Example 2 - A positive electrode active material precursor in which W was doped in the entire precursor
화학식 1 및 2의 M1 및 M2로서 W 0.5mol% 적용함을 제외하고, 실시예 1을 따른다.Example 1 is followed except that 0.5 mol% of W is applied as M1 and M2 in the formulas (1) and (2).
<실험예 1> 부분 도핑된 전구체 및 이를 이용한 양극활물질의 성장 측정<Experimental Example 1> Measurement of growth of partially doped precursor and cathode active material using the same
중심부와 표면부의 도펀트를 다르게 하면서 처리시간에 따른 전구체의 성장 변화를 측정하고 그 결과를 도 3에 나타내었다. The growth of the precursor was measured according to the treatment time while changing the dopant of the central part and the surface part, and the result is shown in FIG.
도 3에서 초기 중심부 형성을 위해 M1을 적용하여 전구체 직경(D1)까지 성장시킨 후, M2를 적용하면서 전구체 부분 직경(D2)이 성장하여 전구체의 크기가 점점 증가함을 확인할 수 있었다.In FIG. 3, M1 was applied to form the initial center portion and grown to the precursor diameter (D1). It was confirmed that the size of the precursor was gradually increased by growing the precursor part diameter (D2) while applying M2.
<실험예 2> 전구체 및 양극활물질의 SEM 측정<Experimental Example 2> SEM measurement of precursor and cathode active material
중심부가 M1, 표면부가 M2로 부분 도핑된 전구체를 이용한 양극활물질 단면의 SEM 이미지를 측정한 결과에서, 도면 4(b)에서 보는 바와 같이 중심부는 벌크(bulk) 형태이며, 표면부 복수의 로드(rod)형태의 1차 입자를 포함하고, 상기 로드 형태는 중심부로 배향성이 있음을 확인할 수 있었다.As shown in FIG. 4 (b), the center portion is in a bulk form, and a plurality of surface rods (not shown) are formed on the surface of the cathode active material. rod type primary particles, and it was confirmed that the rod shape had a central orientation.
도 5에 도핑되지 않은 전구체(Bulk, 비교예1)와 실시예 1 내지 3을 따르는 부분 도핑된 전구체의 SEM 이미지를 측정한 결과를 나타내었고, 도 6에 이의 단면의 SEM 이미지를 측정한 결과를 나타내었다.FIG. 5 shows SEM images of undoped precursors (Bulk, Comparative Example 1) and partially doped precursors according to Examples 1 to 3, and FIG. 6 shows SEM images of the cross- Respectively.
<실험예 3> SEM 측정 결과<Experimental Example 3> SEM measurement results
NCM 금속산화물 총량 대비 Ni 가 90%(몰수 기준) 함유된 고니켈계 전구체에 Li 공급원을 Li과 NCM 금속산화물의 비가 1.0(몰수 기준)을 초과하도록 혼합하여 1차 열처리를 진행한 후, 1차 열처리제품에 대하여 표면 잔류 Li에 해당하는 금속수용액을 표면 반응 진행하였다(PLM mixer 적용).A high-nickel precursor containing 90% of Ni (based on molar amount) based on the total amount of NCM metal oxides was mixed with Li source so that the ratio of Li and NCM metal oxides exceeded 1.0 (based on molar number) For the heat-treated product, the surface reaction proceeded with the aqueous metal solution corresponding to the surface residual Li (PLM mixer application).
다음, 2차 열처리를 진행하여 표면 잔류 Li이 M2 공급원과 반응을 통하여 2중층 구조의 고니켈계 층상계 양극활물질이 완성되었다.    Next, the secondary heat treatment was carried out, and the surface residual Li reacted with the M2 source to form a high nickel layered cathode active material having a double layer structure.
도 7 및 도 8에서 7 and 8
비교예 1 (Bulk)은 Li 1.03Ni 0.90Co 0.07Mn 0.03O 2, Comparative Example 1 (Bulk) was Li 1.03 Ni 0.90 Co 0.07 Mn 0.03 O 2 ,
비교예 2 (W doping)은 Li 1.03Ni 0.90Co 0.07Mn 0.025W 0.005O 2,Comparative Example 2 (W doping) was performed using Li 1.03 Ni 0.90 Co 0.07 Mn 0.025 W 0.005 O 2 ,
실시예 1 (WC)는 Li 1.03Ni 0.90Co 0.07Mn 0.027W 0.003O 2 Example 1 (WC) is Li 1.03 Ni 0.90 Co 0.07 Mn 0.027 W 0.003 O 2
실시예 2 (WS)는 Li 1.03Ni 0.90Co 0.07Mn 0.027W 0.003O 2 Example 2 (WS) is Li 1.03 Ni 0.90 Co 0.07 Mn 0.027 W 0.003 O 2
실시예 3 (ZrC-WS)는 Li 1.03Ni 0.90Co 0.07Mn 0.026Zr 0.001W 0.003O 2 로 표시된다.Example 3 (ZrC-WS) is represented by Li 1.03 Ni 0.90 Co 0.07 Mn 0.026 Zr 0.001 W 0.003 O 2 .
도 7 및 도 8의 도핑되지 않은 양극활물질(Bulk, 비교예 1), W로 전체 도핑된 양극활물질(W doping, 비교예 2)와 실시예 1 내지 3을 따르는 부분 도핑된 양극활물질의 SEM 이미지를 측정한 결과에서, 양극활물질의 표면은 쌀알 모양의 결정입자 형태를 보여주었다. SEM image of the undoped positive electrode active material (Bulk, Comparative Example 1) of FIGS. 7 and 8, the partially doped positive electrode active material (W doping, Comparative Example 2) and the partially doped positive electrode active material of Examples 1 to 3 , The surface of the cathode active material showed a grain shape of rice grains.
또한, 도핑되지 않은 양극활물질 및 W로 전체 도핑된 양극활물질의 경우에는 장축과 단축의 비가 크지 않으나, 중심부와 표면부가 다른 도핑 원소로 부분 도핑된 실시예 1 내지 3을 따르는 양극활물질의 경우에는 장축과 단축의 비가 1.0을 초과하는 것을 확인할 수 있었다.In the case of the positive electrode active material according to Examples 1 to 3 in which the ratio of the long axis to the short axis is not large in the case of the undoped positive electrode active material and the positive electrode active material wholly doped with W but the core portion and the surface portion are partially doped with other doping elements, And the short axis ratio exceeded 1.0.
도 9(a)의 W로 전체 도핑된 양극활물질 단면의 조성도, (b)는 SEM 이미지를 측정한 결과에서, 단면 전체가 벌크 형태(Bulk type)으로 되어 있음을 확인할 수 있었다. FIG. 9 (a) is a graph showing a cross-section of the anode active material doped with W, and FIG. 9 (b) shows a bulk SEM image.
도 10(a)(b)에서 실시예 1, 도 11(a)(b)에서 실시예 2, 도 12(a)(b)에서 실시예 3을 따르는 부분 도핑된 양극활물질 단면은 중심부는 벌크(bulk) 형태로 되어 있으나, 표면부는 복수의 로드(rod)형태가 중심부의 중심을 향하는 방향으로 배열된 형태로 되어 있음을 확인할 수 있었다. The partially doped cathode active material cross section according to Example 3 in Example 2, Fig. 12 (a) and (b) in Fig. 10 (a) it is confirmed that the surface portion is in the form of a plurality of rod shapes arranged in the direction toward the center of the center portion.
<제조예> 전지의 제조 &Lt; Preparation Example > Preparation of battery
상기에서 제조된 양극활물질과 도전재(Denka black), 바인더(PVDF)의 질량비가 94:3:3가 되도록 N-메틸-2피롤리돈 용매에서 균일하게 혼합하였다. 상기의 혼합물을 알루미늄 호일에 고르게 도포한 후 롤프레스에서 압착하고 100 내지 200℃ 진공오븐에서 12시간 진공 건조하여 양극을 제조하였다. 상대 전극으로 Li-metal을 사용하고, 전해액으로 에틸렌카보네이트(EC):에틸메틸카보네이트(EMC) = 1:2인 혼합용매에 1몰의 LiPF 6 용액을 사용하여 통상적인 제조방법에 따라 반쪽 전지(half coin cell)를 제조하였다.The mixture was homogeneously mixed in a N-methyl-2-pyrrolidone solvent such that the mass ratio of the cathode active material, the dengan black and the binder (PVDF) was 94: 3: 3. The mixture was spread evenly on an aluminum foil, compressed by a roll press, and vacuum dried in a vacuum oven at 100-200 캜 for 12 hours to prepare a positive electrode. Li-metal was used as a counter electrode, and 1 mol of LiPF 6 solution was added to a mixed solvent of ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 2 as an electrolytic solution. half coin cell).
<실험예 4> 전지 특성 측정 - DSC 분석결과<Experimental Example 4> Measurement of cell characteristics - DSC analysis
상기에서 실시예 및 비교예의 양극활물질을 사용한 셀을 2.50 ~ 4.25V 전위영역에서 2회 충방전 후 4.25V 충전상태의 셀에서 양극만을 분리, 세척하였다. 그 후 100℃ 건조오븐에서 10분간 건조하였다. 건조된 양극에서 양극활물질을 긁어내어 내압팬에 3 mg을 넣고 2㎕의 전해액을 주입, 5℃/min으로 승온하여 30℃ ~ 400℃까지 스캔하며 발열반응이 일어나는 온도를 관찰하였다.The cells using the cathode active materials of the examples and comparative examples were charged and discharged twice in the 2.50 to 4.25 V dislocation range, and only the positive electrodes were separated and washed in the cells charged at 4.25 V. Thereafter, it was dried in a 100 ° C drying oven for 10 minutes. The cathode active material was scraped off from the dried anode, and 3 mg was added to the pressure pan. 2 의 of electrolyte was injected, and the temperature was raised to 5 캜 / min and the temperature was monitored at 30 캜 to 400 캜.
도 13과 표 2는 도핑되지 않은 양극활물질(비교예 1), W로 전체 도핑된 양극활물질(비교예 2)및 실시예 1 내지 4를 따르는 양극활물질의 온도에 따른 발열량의 DSC 분석결과를 나타낸 것이다. 13 and Table 2 show the results of DSC analysis of calorific value according to the temperature of the undoped cathode active material (Comparative Example 1), the cathode active material doped with W (Comparative Example 2), and the cathode active material according to Examples 1 to 4 will be.
비교예 1, 2의 양극활물질은 실시예 1 내지 4의 양극활물질에 비해 높은 발열량을 보여줌을 확인할 수 있었다. It was confirmed that the cathode active materials of Comparative Examples 1 and 2 exhibited a higher calorific value than the cathode active materials of Examples 1 to 4.
구 분division 비교예 1Comparative Example 1 비교예 2Comparative Example 2 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4
BulkBulk W dopingW doping W CoreW Core W ShellW Shell Zr CoreW ShellZr CoreW Shell W CoreAl ShellW CoreAl Shell
주조성Casting Li 1.03Ni 0.90Co 0.07Mn dM1 e1M2 f1O 2 Li 1.03 Ni 0.90 Co 0.07 Mn d M1 e1 M2 f1 O 2
M1 source, e1M1 source, e1 MnMn WW WW MnMn Zr,Zr, WW
M2 source, f1M2 source, f1 MnMn WW MnMn WW WW AlAl
DSCDSC Onset Temp.Onset Temp. 208.3208.3 212.5212.5 210.9210.9 211.6211.6 211.0211.0 216.2216.2
1 st Peak Temp.1 st Peak Temp. 220.1220.1 220.5220.5 221.2221.2 221.9221.9 220.5220.5 224.9224.9
발열량Calorific value J/gJ / g 1358.11358.1 1276.51276.5 1097.61097.6 1040.91040.9 1161.91161.9 1012.71012.7
<실험예 5> 전기화학적 특성<Experimental Example 5> Electrochemical characteristics
도 14, 15 및 표 3은 도핑되지 않은 양극활물질(Bulk) 및 W로 전체 도핑된 양극활물질(W doping)과 실시예 1 내지 4를 따르는 부분 도핑된 양극활물질을 포함하는 전지의 전기화학적 특성을 실험한 결과를 나타낸 것이다. 14, 15 and Table 3 show the electrochemical characteristics of a battery including a non-doped positive electrode active material (Bulk) and a partially doped positive active material (W doping) with W and a partially doped positive active material according to Examples 1 to 4 The results of the experiment are shown.
하기 표 3을 참조하면, 도핑되지 않은 양극활물질 및 W로 전체 도핑된 양극활물질(W doping)보다 실시 예 1 내지 4의 양극활물질의 전기화학적 특성이 우수한 것으로 확인되었다. Referring to the following Table 3, it was confirmed that the electrochemical characteristics of the cathode active materials of Examples 1 to 4 were superior to those of the undoped cathode active material and the W-doped cathode active material (W doping).
구 분division 비교예 1Comparative Example 1 비교예 2Comparative Example 2 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4
BulkBulk W dopingW doping W CoreW Core W ShellW Shell Zr CoreW ShellZr CoreW Shell W CoreAl ShellW CoreAl Shell
주조성Casting Li 1.03Ni 0.90Co 0.07Mn dM1 e1M2 f1O 2 Li 1.03 Ni 0.90 Co 0.07 Mn d M1 e1 M2 f1 O 2
M1 source, e1M1 source, e1 MnMn WW WW MnMn Mn+ZrMn + Zr WW
M2 source, f1M2 source, f1 MnMn WW MnMn WW WW AlAl
Metal cont.Metal cont. NiNi mol%mol% 89.989.9 90.390.3 89.989.9 90.090.0 89.789.7 90.290.2
CoCo 7.17.1 6.96.9 7.37.3 7.27.2 7.37.3 7.17.1
MnMn 3.03.0 2.82.8 2.82.8 2.82.8 3.03.0 2.72.7
AlAl ppmppm -- -- -- -- -- 467467
ZrZr -- -- -- -- 403403 --
WW -- 6,1606,160 4,1404,140 3,3103,310 3,5403,540 5,3705,370
ElectrochemicalTest(2.50-4.25V)Electrochemical Test (2.50-4.25V) Char.Char. mAh/gmAh / g 235.9235.9 236.0236.0 236.8236.8 238.2238.2 229.1229.1 235.7235.7
Dischar.Dischar. 216.9216.9 217.5217.5 220.6220.6 223.5223.5 214.4214.4 212.3212.3
Eff.Eff. %% 91.991.9 92.292.2 93.193.1 93.893.8 93.693.6 90.190.1
1.0/0.1C1.0 / 0.1C %% 91.391.3 90.390.3 91.091.0 91.191.1 93.993.9 89.589.5
Cycle(50/1)Cycle (50/1) %% 92.692.6 96.496.4 97.797.7 96.896.8 97.997.9 98.698.6
도 14(a)(b)의 도핑되지 않은 양극활물질(비교예 1), W로 전체 도핑된 양극활물질(비교예 2) 및 실시예 1 내지 3을 따르는 양극활물질의 전기화학적 특성 결과에서, Ni이 90% 함유된 양극활물질의 경우, 용량에 따른 전압의 변화는 차이가 없으나, 충방전 사이클 수에 따르는 용량유지율은 비교예 1과 비교예 2 보다 실시예 1 내지 3의 양극활물질이 더 크다는 것을 확인할 수 있었다. As a result of electrochemical characteristics of the undoped cathode active material (Comparative Example 1), the cathode active material doped with W (Comparative Example 2), and the cathode active material according to Examples 1 to 3 in FIGS. 14A and 14B, Ni In the case of 90% of the positive electrode active material, there was no difference in the voltage depending on the capacity, but the capacity retention ratio according to the number of charging and discharging cycles was larger than that of Comparative Examples 1 and 2 in Examples 1 to 3 I could confirm.
도 15(a)(b)에서 비교예 1과 비교하여 실시예 3과 4를 따르는 양극활물질은 용량에 따른 전압의 변화는 차이가 없으나, 충방전 사이클 수에 따르는 용량유지율은 비교예 1 보다 실시예 3 및 실시 예 4의 양극활물질의 경우가 더 크고, 특히 실시예 3의 용량유지율이 가장 크다는 것을 확인할 수 있었다.15 (a) and 15 (b), there was no difference in the voltage change depending on the capacity of the cathode active material according to Examples 3 and 4 as compared with Comparative Example 1, but the capacity retention rate according to the number of charge / It was confirmed that the cathode active material of Example 3 and Example 4 was larger, and in particular, the capacity retention ratio of Example 3 was the largest.
<실험예 6> 양극활물질의 XRD 분석 결과<Experimental Example 6> XRD analysis of the cathode active material
NCM 금속산화물 총량 대비 Ni이 90% 함유된 양극활물질의 경우, 도핑되지 않은 양극활물질(비교예 1) 및 실시예 1 내지 3을 따르는 양극활물질의 XRD 측정 결과를 도 16에 나타내었다. FIG. 16 shows the XRD measurement results of the non-doped cathode active material (Comparative Example 1) and the cathode active material according to Examples 1 to 3 in the case of the cathode active material containing 90% Ni relative to the total amount of NCM metal oxides.
도 16에서 도핑되지 않은 양극활물질과 비교하여 부분 도핑된 제품에 이상 결정이 확인되지 않음을 확인할 수 있었다.It was confirmed that an abnormal crystal was not confirmed in the partially doped product as compared with the non-doped cathode active material in FIG.
또한, 하기 표 4에서 도핑되지 않은 양극활물질과 비교하여 부분 도핑된 제품의 XRD 측정값의 (003 피크 강도)/(104 피크 강도) 비율이 증가하는 것을 알 수 있고, R factor 값은 유사한 것을 확인할 수 있었다. It can also be seen that the (003 peak intensity) / (104 peak intensity) ratio of the XRD measurement of the partially doped product increases as compared to the undoped cathode active material in Table 4, and the R factor values are similar I could.
구분division 비교예Comparative Example 비교예Comparative Example 비교예Comparative Example 실시예 Example
BareBare WCWC WSWS ZrC-WSZrC-WS
a-axisa-axis 2.87132.8713 2.87172.8717 2.87252.8725 2.87172.8717
c-axisc-axis 14.193314.1933 14.193414.1934 14.1934 14.1934 14.190514.1905
003/104 (height)003/104 (height) 1.73931.7393 1.80581.8058 1.73941.7394 1.78811.7881
R factorR factor 0.420.42 0.430.43 0.430.43 0.430.43

Claims (12)

  1. Ni, Mn, Co, M1 및 M2를 포함하고, Ni, Mn, Co, M1 and M2,
    상기 M1은 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 어느 하나이고,Wherein M1 is at least one of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh,
    상기 M2는 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 어느 하나이고,M2 is at least one of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh,
    M1 및 M2는 서로 다른 것인,Lt; RTI ID = 0.0 &gt; M1 &lt; / RTI &
    이차전지용 양극활물질 전구체. Cathode active material precursor for secondary battery.
  2. 제 1 항에 있어서,The method according to claim 1,
    상기 이차전지용 양극활물질 전구체는 중심부 및 상기 중심부를 감싸도록 배치된 표면부로 구분되고,Wherein the cathode active material precursor for the secondary battery is divided into a center portion and a surface portion arranged to surround the center portion,
    상기 중심부는 M1을 포함하고, Said central portion comprising M1,
    상기 표면부는 M2를 포함하는,Wherein the surface portion comprises M2.
    이차전지용 양극활물질 전구체.Cathode active material precursor for secondary battery.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 중심부는 하기 화학식 1로 표시되는 물질을 포함하고, Wherein the central portion comprises a material represented by the following Formula 1,
    상기 표면부는 하기 화학식 2로 표시되는 물질을 포함하는,Wherein the surface portion comprises a material represented by the following Formula 2:
    이차전지용 양극활물질 전구체:Cathode active material precursor for secondary battery:
    [화학식 1] Ni b1Co c1Mn d1M1 e(OH) 2 ???????? Ni b1 Co c1 Mn d1 M1 e (OH) 2 ?????
    [화학식 2] Ni b2Co c2Mn d2M2 f(OH) 2 ???????? Ni b2 Co c2 Mn d2 M2 f (OH) 2 ?????
    (상기 화학식 1 및 2에서 b1+c1+d1+e=1.0, b2+c2+d2+f=1.0, b1>0.5, b2>0.5이고, M1≠M2 임).(B1 + c1 + d1 + e = 1.0, b2 + c2 + d2 + f = 1.0, b1> 0.5, b2> 0.5 and M1? M2 in the above formulas 1 and 2).
  4. 제 3 항에 있어서,The method of claim 3,
    상기 이차전지용 양극활물질 전구체는 아래 화학식 3으로 표시되는 것인 Wherein the cathode active material precursor for the secondary battery is represented by the following Chemical Formula 3
    이차전지용 양극활물질 전구체:Cathode active material precursor for secondary battery:
    [화학식 3] xNi b1Co c1Mn d1M1 e(OH) 2 +yNi b2Co c2Mn d2M2 f(OH) 2 [Chemical Formula 3] xNi Mn b1 Co c1 d1 M1 e (OH) 2 + Co yNi b2 c2 d2 M2 f Mn (OH) 2
    (상기 화학식 3에서 x+y=1.0 이고 x≥0.5 임).(X + y = 1.0 and x? 0.5 in Formula 3).
  5. Ni, Mn, Co, M1 및 M2를 포함하고, Ni, Mn, Co, M1 and M2,
    상기 M1은 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 어느 하나이고,Wherein M1 is at least one of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh,
    상기 M2는 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 어느 하나이고,M2 is at least one of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh,
    M1 및 M2는 서로 다른 것인,Lt; RTI ID = 0.0 &gt; M1 &lt; / RTI &
    이차전지용 양극활물질. Cathode active material for secondary battery.
  6. 제 5 항에 있어서,6. The method of claim 5,
    상기 이차전지용 양극활물질은 하기 화학식 4로 표시되는 것인, Wherein the cathode active material for the secondary battery is represented by the following formula (4)
    이차전지용 양극활물질:Cathode active material for secondary battery:
    [화학식 4] Li aNi bCo cMn dM1 e1M2 f1O 2 [Chemical Formula 4] Li a Ni b Co c Mn d e1 M1 f1 M2 O 2
    (상기 화학식 4에서 1.0≤a≤1.1, b>0.5, b+c+d+e1+f1=1.0, M1≠M2이고, B + c + d + e1 + f1 = 1.0, M1? M2 in the formula (4)
    M1 및 M2는 Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru, Rh, W 중 적어도 1종 이상의 조합).M1 and M2 are combinations of at least one of Mg, Al, Si, Ca, Ti, V, Mn, Co, Ni, Cr, Fe, Zn, Ga, Zr, Nb, Mo, Ru,
  7. 제 5 항에 있어서,6. The method of claim 5,
    상기 이차전지용 양극활물질은 중심부 및 상기 중심부를 감싸도록 배치된 표면부로 구분되고,The cathode active material for a secondary battery is divided into a central portion and a surface portion arranged to surround the central portion,
    상기 중심부는 M1을 포함하고, Said central portion comprising M1,
    상기 표면부는 M2를 포함하는,Wherein the surface portion comprises M2.
    이차전지용 양극활물질.Cathode active material for secondary battery.
  8. 제 5 항에 있어서,6. The method of claim 5,
    상기 이차전지용 양극활물질은 복수개의 1차 입자로 구성되며, The cathode active material for a secondary battery is composed of a plurality of primary particles,
    상기 1차 입자의 장축 대 단축의 비(장축:단축)는 도핑되지 않은 양극활물질 또는 전체가 동일한 원소로 도핑된 양극활물질의 1차 입자의 경우보다 큰, The ratio (major axis: minor axis) of the major axis to minor axis of the primary particles is larger than that of the primary particles of the undoped positive electrode active material or the positive electrode active material doped with the same element as the whole,
    이차전지용 양극활물질.Cathode active material for secondary battery.
  9. 제 7 항에 있어서,8. The method of claim 7,
    상기 중심부를 구성하는 1차 입자의 장축 대 단축의 비는 상기 표면부를 구성하는 1차 입자의 장축 대 단축의 비보다 작은 것인 The ratio of the major axis to the minor axis of the primary particles constituting the central portion is smaller than the ratio of the major axis to the minor axis of the primary particles constituting the surface portion
    이차전지용 양극활물질.Cathode active material for secondary battery.
  10. 제 7 항에 있어서,8. The method of claim 7,
    상기 표면부를 구성하는 1차 입자의 장축 대 단축의 비가 1 초과인 로드 형태의 1차 입자를 포함하고,And a primary particle of a rod type having a ratio of major axis to minor axis of primary particles constituting the surface portion of more than 1,
    상기 로드 형태는 중심부의 중심을 향하는 방향으로 배열된,The rod shape is arranged in the direction toward the center of the center portion,
    이차전지용 양극활물질.Cathode active material for secondary battery.
  11. 제 5 항에 있어서,6. The method of claim 5,
    상기 이차전지용 양극활물질의 X-선 회절분석시 003피크의 강도 대 104피크의 강도의 비는 1.75 이상 1.80 이하인 것인 Ray diffraction analysis of the positive electrode active material for a secondary battery, the ratio of the intensity at the peak of 003 to the intensity at the peak of 104 is 1.75 or more and 1.80 or less
    이차전지용 양극활물질.Cathode active material for secondary battery.
  12. 제 5 항의 이차전지용 양극활물질을 포함하는 양극;A positive electrode comprising the positive electrode active material for a secondary battery of claim 5;
    음극활물질을 포함하는 음극;A negative electrode comprising a negative electrode active material;
    상기 양극과 음극 사이에 개재된 분리막; 및A separation membrane interposed between the anode and the cathode; And
    양극과 음극 사이에 담지된 전해질을 포함하는,And an electrolyte supported between the anode and the cathode,
    이차전지.Secondary battery.
PCT/KR2018/014883 2017-12-29 2018-11-28 Positive electrode active material precursor for lithium secondary battery, positive electrode active material using same, and lithium secondary battery comprising same WO2019132267A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170183291 2017-12-29
KR10-2017-0183291 2017-12-29
KR1020180060952A KR102006244B1 (en) 2017-12-29 2018-05-29 Precursor for lithium secondary battery positive active material, positive active material using the same, and lithium secondary battery comprising the same
KR10-2018-0060952 2018-05-29

Publications (1)

Publication Number Publication Date
WO2019132267A1 true WO2019132267A1 (en) 2019-07-04

Family

ID=67064001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014883 WO2019132267A1 (en) 2017-12-29 2018-11-28 Positive electrode active material precursor for lithium secondary battery, positive electrode active material using same, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2019132267A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993230A (en) * 2021-05-20 2021-06-18 浙江帕瓦新能源股份有限公司 Gallium phase doping and gallium oxide and titanium gallium lithium phosphate modified precursor, positive electrode material and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015230A (en) * 2013-06-06 2015-01-22 株式会社Gsユアサ Active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and power storage device
KR20160128978A (en) * 2014-01-29 2016-11-08 주식회사 엘 앤 에프 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20160149162A (en) * 2015-06-17 2016-12-27 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same, and secondary battery comprising the same
KR20170063415A (en) * 2015-11-30 2017-06-08 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
KR20170142393A (en) * 2016-06-17 2017-12-28 주식회사 엘지화학 Positive Electrode Active Material Particle Comprising Core Having Lithium Cobalt-based Oxide and Shell Having Lithium Nickel-based Oxide and Method of Manufacturing the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015230A (en) * 2013-06-06 2015-01-22 株式会社Gsユアサ Active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and power storage device
KR20160128978A (en) * 2014-01-29 2016-11-08 주식회사 엘 앤 에프 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20160149162A (en) * 2015-06-17 2016-12-27 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same, and secondary battery comprising the same
KR20170063415A (en) * 2015-11-30 2017-06-08 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
KR20170142393A (en) * 2016-06-17 2017-12-28 주식회사 엘지화학 Positive Electrode Active Material Particle Comprising Core Having Lithium Cobalt-based Oxide and Shell Having Lithium Nickel-based Oxide and Method of Manufacturing the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112993230A (en) * 2021-05-20 2021-06-18 浙江帕瓦新能源股份有限公司 Gallium phase doping and gallium oxide and titanium gallium lithium phosphate modified precursor, positive electrode material and preparation method

Similar Documents

Publication Publication Date Title
WO2019221497A1 (en) Cathode active material for secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2020106024A1 (en) Positive electrode active material for lithium secondary battery and preparation method therefor
WO2019235885A1 (en) Cathode active material for secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2017057900A1 (en) Cathode active material for secondary battery and secondary battery comprising same
WO2018101808A1 (en) Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
WO2016204563A1 (en) Cathode active material for secondary battery, preparation method therefor, and secondary battery comprising same
WO2014119973A1 (en) Anode active material for lithium secondary battery, method for fabricating same, and lithium secondary battery using same
WO2019088340A1 (en) Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery comprising same
WO2018101807A1 (en) Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
WO2019078399A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, electrode comprising same, and lithium secondary battery comprising said electrode
WO2019103363A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019078503A1 (en) Cathode material for lithium secondary battery, fabrication method therefor, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2020055198A1 (en) Method for manufacturing positive electrode material for lithium secondary battery, and positive electrode material for lithium secondary battery manufactured by same
WO2018160023A1 (en) Cathode active material for lithium secondary battery, production method therefor, and lithium secondary battery comprising same
WO2020111543A1 (en) Octahedral lithium manganese-based positive electrode active material, and positive electrode and lithium secondary battery including same
WO2019212321A1 (en) Method for cleaning positive electrode active material, positive electrode active material manufacturing method comprising same, and positive electrode active material manufactured by same
WO2019103461A2 (en) Cathode active material precursor, manufacturing method therefor, and cathode active material, cathode and secondary battery manufactured by using same
WO2019059647A2 (en) Positive electrode material for lithium secondary battery, method for manufacturing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
WO2020111898A1 (en) Method for producing positive electrode active material precursor for lithium secondary battery
WO2019004602A1 (en) Method for manufacturing cathode active material precursor for lithium secondary battery
WO2021187963A1 (en) Method for preparing cathode active material precursor for lithium secondary battery, cathode active material precursor, cathode active material prepared using same, cathode, and lithium secondary battery
WO2022039576A1 (en) Cathode active material preparation method
WO2022154603A1 (en) Positive electrode active material for lithium secondary battery, method for manufacturing same, and positive electrode and lithium secondary battery comprising same
WO2022114872A1 (en) Cathode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2021141463A1 (en) Method for preparing cathode active material for lithium secondary battery, cathode for lithium secondary battery, comprising cathode active material prepared by preparation method, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897039

Country of ref document: EP

Kind code of ref document: A1