WO2019132190A1 - Ferritic stainless steel with improved orange peel resistance and formability - Google Patents

Ferritic stainless steel with improved orange peel resistance and formability Download PDF

Info

Publication number
WO2019132190A1
WO2019132190A1 PCT/KR2018/011765 KR2018011765W WO2019132190A1 WO 2019132190 A1 WO2019132190 A1 WO 2019132190A1 KR 2018011765 W KR2018011765 W KR 2018011765W WO 2019132190 A1 WO2019132190 A1 WO 2019132190A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferritic stainless
formability
stainless steel
value
present
Prior art date
Application number
PCT/KR2018/011765
Other languages
French (fr)
Korean (ko)
Inventor
이계만
박재석
박미남
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2019132190A1 publication Critical patent/WO2019132190A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel excellent in orange peel resistance and moldability.
  • Ferritic stainless steels are used in a wide range of fields such as home appliances, kitchen appliances, electronic devices, and automobile exhaust systems.
  • ferritic stainless steels are more economical than austenitic stainless steels containing a large amount of Ni, and their use is gradually increasing.
  • ferritic stainless steels have lower elongation than austenitic stainless steels and their applications are limited in order to open up moldability.
  • improvement of refining technology has made it possible to achieve extremely low carbon and nitrogen, and ferritic stainless steels having improved moldability and corrosion resistance by addition of ferrite stabilizing elements such as Ti and Nb have been developed and applied to various fields.
  • Ferritic stainless steels to which ferrite stabilizing elements such as Ti and Nb are added exhibit an orange peel defect during molding compared to austenitic stainless steels or semi- ferritic stainless steels undergoing austenite-ferrite phase transformation during hot rolling.
  • the orange peel defect means a defect which causes unevenness of roughness on the surface when the steel is formed by coarse crystal grains so as to degrade the beautiful surface.
  • Such an orange peel is an object to be removed because it is not aesthetically pleasing, There is a problem that additional cost and time are consumed by removing it through polishing.
  • ferritic stainless steels containing ferrite stabilizing elements such as Ti and Nb due to orange peel defects have limitations in application to household appliances and kitchen appliances where surface quality is important after molding.
  • Embodiments of the present invention provide a ferritic stainless steel having improved orange fill resistance and formability by controlling components, grain size, and texture.
  • ferritic stainless steels having improved orange fill resistance and formability include 0.015 to 0.040% of C, 0.015 to 0.040% of N, 0.01 to 0.40% of Si, 0.01 to 0.40% of Si, 0.001 to 0.020% of S, 0.0001 to 0.010% of Cr, 15 to 22% of Cr, 0.05 to 0.35% of Ti, 0.05 to 0.35% of Nb, 0.005 to 0.05% of Al, And other inevitable impurities, and the ferrite grain size (FGS) is 8.5 or more, and the ⁇ 111> direction index (IPF ⁇ 111 ⁇ ) of the rolling interface pole figure may be 5.0 or more.
  • the ferrite stainless steel having improved orange fill resistance and formability may have a C + N ratio of 0.03 to 0.045%.
  • the ferritic stainless steel having improved orange fill resistance and formability has a Mo content of 1% or less (excluding 0), a Ni content of 1% or less (excluding 0), a Cu content of 3 % Or less (excluding 0) and B: 0.005% or less (excluding 0).
  • the ferrite stainless steel having improved orange fill resistance and formability may have an Rt value of less than 4.0 mm.
  • the Rt value refers to the surface roughness after 90 DEG bending deformation with respect to the vertical direction in the rolling direction.
  • the ferrite stainless steel having improved orange fill resistance and formability may have an average r value of 1.5 or more.
  • the average r value ⁇ r (0) + 2 x r (45) + r (90) ⁇ / 4.
  • the ferritic stainless steel according to the disclosed embodiment controls the grain size and texture, and the formability is improved, and orange peel generation can be suppressed.
  • FIG. 1 is a graph showing the correlation between the grain size (FGS) and the orange fill height according to an embodiment of the present invention.
  • FIG. 2 is a graph showing a correlation between a set index and an average r value according to an embodiment of the present invention.
  • FIG 3 is a graph showing a correlation between a C + N content and a grain size (FGS) according to an embodiment of the present invention.
  • FIG 4 is a graph showing a correlation between the C + N content and the texture index according to an embodiment of the present invention.
  • ferritic stainless steels having improved orange fill resistance and formability include 0.015 to 0.040% of C, 0.015 to 0.040% of N, 0.01 to 0.40% of Si, 0.01 to 0.40% of Si, 0.001 to 0.020% of S, 0.0001 to 0.010% of Cr, 15 to 22% of Cr, 0.05 to 0.35% of Ti, 0.05 to 0.35% of Nb, 0.005 to 0.05% of Al, And other inevitable impurities, and the ferrite grain size (FGS) is 8.5 or more, and the ⁇ 111> direction index (IPF ⁇ 111 ⁇ ) of the rolling interface pole figure may be 5.0 or more.
  • the inventors of the present invention have studied a method for simultaneously improving the orange fill resistance and formability of a ferritic stainless steel and have found that it is necessary to control the grain size and texture as well as controlling the steel composition to an appropriate range And led to the present invention.
  • the orange peel is strongly generated during the forming of the coarse metal sheet, particularly the bending deformation.
  • it can be achieved by securing the orange fill height to 4.0 mm or less.
  • the present inventors evaluated the orange peel with the surface roughness after bending deformation (maximum peak to valley roughness height indicated by Rt).
  • maximum peak to valley roughness height indicated by Rt maximum peak to valley roughness height indicated by Rt.
  • the plastic anisotropy is defined as the width strain / thickness strain (ew / et). The higher the r value, the greater the degree of forming freedom. In general, to have a high r value, .
  • the formability of a ferritic stainless steel is generally expressed by an average r value defined by the following formula (1).
  • x of r means the measurement direction relative to the rolling direction.
  • r (0) is the r value in the 0 degree direction
  • r (45) is the r value in the 45 degree direction
  • r (90 degrees) is the r value in the 90 degree direction.
  • the r values are obtained by applying a 15% deformation to the rolling direction r (0), rolling direction 45 ° r (45 °) and rolling direction 90 ° r (90 °) 2).
  • W0 is plate width before stretching
  • W is plate width after stretching
  • t0 is plate thickness before stretching
  • t is plate thickness after stretching.
  • the average r value is set to 1.5 or more to secure the moldability of the ferritic stainless steel.
  • the r value of the polycrystalline material is determined by the texture of the material.
  • Texture refers to an array having a constant plane and orientation created inside the crystal. This texture can be quantified by measuring the inverse pole figure of the material.
  • the ⁇ 111 > direction of the rolling interface inverse poles shows the texture that improves the r value. Therefore, in the present invention, the case where the texture is evaluated by the ⁇ 111> direction index (IPF ⁇ 111 ⁇ ) of the rolling pole pole figure is explained as an example.
  • ferritic stainless steels having improved orange fill resistance and formability contain 0.015% to 0.040% of C, 0.015% to 0.040% of N, 15% to 22% of Cr, 0.001 to 0.30%, P: 0.005 to 0.020%, S: 0.0001 to 0.005%, the balance Fe and other unavoidable elements Impurities.
  • the content of C and N is 0.015 to 0.040%.
  • Carbon (C) and nitrogen (N) improve the strength of ferritic stainless steels as interstitial solid solution strengthening elements.
  • it is combined with an element such as titanium (Ti) or niobium (Nb) to form carbonitride to inhibit grain growth, which is an indispensable element for improving the orange peel resistance through grain refinement. Therefore, in the present invention, it is preferable to add 0.015% or more.
  • an austenite phase is formed at a high temperature to form acid-labile surface defects such as gold dust, and in addition, there is a problem of lowering the elongation of the material, and the upper limit can be limited to 0.040%.
  • the C + N content is 0.03 to 0.045%.
  • the content of C + N is 0.03% or more.
  • the upper limit of the C + N content can be limited to 0.045%.
  • the C + N content when the C + N content is lower than the lower limit of 0.03%, the crystal grain size is obtained to be FGS 8.5 or lower, so that the orange fill resistance is lowered.
  • the content of C + N when the content of C + N is 0.045% or more, which is the upper limit, the aggregate index is obtained to be 5.0 or less and the formability is lowered. Therefore, in order to obtain a ferritic stainless steel having improved orange peel resistance and formability, the C + N content should be 0.03 to 0.045%.
  • the Cr content is 15 to 22%.
  • Chromium (Cr) is the element which is the largest element among the elements improving the corrosion resistance of stainless steel and is the basic element. It is preferable to add Cr by more than 15% in order to exhibit corrosion resistance. However, if the content is excessive, intergranular corrosion may occur in the ferritic stainless steel containing carbon and nitrogen, and the manufacturing cost may increase, so that the upper limit can be limited to 22%.
  • the content of Ti is 0.05 to 0.35%.
  • Titanium (Ti) is an element that fixes carbon and nitrogen, and forms carbonitride to suppress grain growth. Therefore, it is preferable to add Ti in an amount of 0.05% or more for grain refinement. However, if the content is excessive, there is a problem in the manufacturing process due to Ti inclusions, and there is a problem that the manufacturing cost is increased, so that the upper limit can be limited to 0.35%.
  • the content of Nb is 0.05 to 0.35%.
  • Niobium (Nb) is an element that fixes carbon and nitrogen, and forms carbonitride to suppress grain growth. Therefore, it is preferable that Nb is added in an amount of 0.05% or more for grain refinement. However, when the content thereof is excessive, Laves precipitates are formed to lower moldability and brittle fracture, and the production cost increases, so that the upper limit can be limited to 0.35%.
  • the content of Si is 0.01 to 0.40%.
  • Silicon (Si) is an element which is essentially added for deoxidation.
  • As the element for forming a ferrite phase it is preferable to add 0.01% or more in order to increase the stability of the ferrite phase.
  • the content is excessive, the material is hardened and bonds with oxygen to form inclusions, thereby causing problems such as deterioration of corrosion resistance and surface defects, so that the upper limit can be limited to 0.40%.
  • the content of Al is 0.005 to 0.05%.
  • Aluminum (Al) is an element which is essentially added for deoxidation and can lower the content of oxygen in molten steel, so that it is preferable to add at least 0.005%. However, when the content is excessive, there is a fear that the inclusion is formed by binding with oxygen, so that the corrosion resistance is lowered and the formability is lowered.
  • the upper limit can be limited to 0.05%.
  • the content of Mn is 0.01 to 0.30%.
  • Manganese (Mn) is an element which is essentially added for deoxidation and can lower the content of oxygen in molten steel, so that it is preferable to add Mn of 0.01% or more. However, if the content is excessive, precipitates such as manganese sulfide (MnS) are formed to lower the corrosion resistance, and the upper limit can be limited to 0.30%.
  • the content of P is 0.005 to 0.020%.
  • Phosphorus (P) is an impurity element and because it is a solid solution strengthening element, it is preferable that the content is as small as possible. However, if the content is excessive, the elongation rate should be reduced. Therefore, the content is restricted to 0.020% or less and it is impossible to completely remove it, and the refining cost increases, so it is preferable to control the content to 0.005% or more.
  • the content of S is 0.0001 to 0.005%.
  • S sulfur
  • MnS manganese sulfide
  • the ferritic stainless steel having improved orange fill resistance and formability has a Mo content of 1% or less (excluding 0), a Ni content of 1% or less (excluding 0), a content of Cu of 3% (Excluding 0) and B: 0.005% or less (excluding 0).
  • Molybdenum (Mo) is a strong corrosion resistance improving element, but when it is excessive, the workability is lowered, and the upper limit can be limited to 1%.
  • the content of Ni is 1% or less.
  • Nickel (Ni) is an element which is essentially used for the production of stainless steel.
  • the increase of the Ni content is directly related to the rise of the raw material price, so it needs to be minimized, and the upper limit can be limited to 1%.
  • the content of Cu is 3% or less.
  • Copper (Cu) is an element which improves corrosion resistance, but when it is excessive, workability and weldability are lowered, and the upper limit can be limited to 3%.
  • the content of B is 0.005% or less.
  • Boron (B) segregates in grain boundaries and strengthens the grain boundaries.
  • the content of boron (B) is excessive, the heat processability is lowered, and the upper limit can be limited to 0.005%.
  • the remainder of the present invention is iron (Fe).
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded. These impurities are not specifically mentioned in this specification, as they are known to any person skilled in the art of manufacturing.
  • the ferrite grain size (FGS) of the ferritic stainless steel having improved orange fill resistance and formability satisfying the above-described alloy composition may be 8.5 or more.
  • FIG. 1 is a graph showing the correlation between the grain size (FGS) and the orange fill height according to an embodiment of the present invention. Referring to FIG. 1, it can be seen that the orange fill height decreases as the FGS value increases, that is, as the grain size decreases.
  • the surface roughness (maximum peak to valley roughness height) defined by the present invention indicates the degree of orange peel after 90 ⁇ bending deformation is applied about the vertical direction in the rolling direction. When this value is less than 4.0 mm, the orange peel is reduced to a level that does not cause a visual or tactile problem.
  • carbonitride is formed through the addition of carbon (C) and nitrogen (N) to refine the crystal grains to control the orange fill height to be less than 4.0 mm.
  • the ⁇ 111> direction index (IPF ⁇ 111 ⁇ ) of the rolled region poles of the ferritic stainless steels having improved orange fill resistance and formability satisfying the above alloy composition may be 5.0 or more .
  • FIG. 2 is a graph showing a correlation between a set index and an average r value according to an embodiment of the present invention. Referring to FIG. 2, it can be seen that the average r value increases as the ⁇ 111> direction index (IPF ⁇ 111 ⁇ ) of the rolled region poles increases.
  • intrinsic elements are formed of carbonitride through the addition of titanium (Ti) and niobium (Nb), which are stabilizing elements of ferrite, to develop an aggregate structure to control the average r value to 1.5 or more.
  • Example 1 0.027 0.24 18.3 0.15 0.26 0.0005 0.0005 0.011 0.21 0.034 0.038
  • Example 2 0.019 0.25 18.3 0.16 0.25 0.0005 0.0005 0.021 0.19 0.039 0.040
  • Example 3 0.029 0.24 18.3 0.15 0.43 0.0005 0.0005 0.009 0.23 0.034 0.038
  • Example 4 0.030 0.19 16.5 0.16 0.01 0.0005 0.0005 0.0075 0.22 0.035 0.038 Comparative Example 1 0.065 0.6 16.1 0.01 0.01 0.0005 0.0005 0.03 0.15 0.1 0.095 Comparative Example 2 0.005 0.23 18.4 0.16 0.16 0.0005 0.0005 0.011 0.23 0.021 0.016 Comparative Example 3 0.005 0.2 16.2 0.17 0.01 0.0005 0.0005 0.0075 0.20 0.04 0.013 Comparative Example 4 0.018 0.2 15.8 0.19 0.01 0.0005 0.0005 0.0067 0.
  • the grain size of the cold-rolled annealed steel sheet was determined by the ferrite grain size measurement method specified in JIS G0552.
  • the aggregate texture fraction was measured using Electron Backscatter Diffraction (EBSD) and the area including the entire thickness direction of the sheet material was measured by EBSD data. Respectively.
  • EBSD Electron Backscatter Diffraction
  • the formability is defined by the average plastic anisotropy ratio of the rolled surface
  • the rolled surface reverse pole degree is used as a formability index.
  • the orange peel was subjected to a 90 ° bending deformation about the vertical direction in the rolling direction, and the surface roughness (maximum roughness expressed by Rt: Maximum Peak to Valley Roughness Height).
  • the orange peel height decreases and the ⁇ 111 > direction of the rolling interface poles exhibits a texture that improves the r value. Therefore, in order to improve orange peel resistance and formability, And aggregate organization.
  • the FGS had a grain size of 8.5 or more, and the Rt value was less than 4 mm, and the ⁇ 111> direction index (IPF ⁇ 111 ⁇ ) of the rolling interface pole figure was 5.0 or more r value is 1.5 or more, it can be confirmed that the ferritic stainless steel according to the present invention has both improved moldability and surface characteristics.
  • FIG. 1 is a graph showing the correlation between the grain size (FGS) and the orange fill height according to an embodiment of the present invention. Referring to FIG. 1, it can be seen that the orange fill height decreases as the grain size decreases. That is, in order to obtain a target Rt value of less than 4 mm in the present invention, the FGS should have a grain size of not less than 8.5.
  • the IPF ⁇ 111 ⁇ of Comparative Example 2 was 9.46, and the texture thereof satisfied the range of the present invention, but the grain size (FGS) of 8.1 did not satisfy the range of the present invention.
  • the average r value satisfies 1.5 or more at 1.98, but the orange fill height exceeds 4.0 mm at 4.23 mm, thereby failing to meet the surface property requirement.
  • the IPF ⁇ 111 ⁇ of Comparative Example 3 was 8.31, and the texture of the aggregate satisfied the range of the present invention, but the grain size (FGS) As a result, the average r value was 1.91, which was more than 1.5 but the orange fill height exceeded 4.0 mm at 5.74 mm and thus did not satisfy the surface property requirement.
  • the IPF ⁇ 111 ⁇ of Comparative Example 4 was 7.44, and the texture thereof satisfied the range of the present invention, but the grain size (FGS) of 8.0 did not satisfy the range of the present invention.
  • the average r value was 1.82, which was more than 1.5 but the orange fill height exceeded 4.0 mm at 5.10 mm and thus did not satisfy the surface property requirement.
  • FIG. 2 is a graph showing a correlation between a set index and an average r value according to an embodiment of the present invention.
  • the average r value increases as the ⁇ 111> direction index (IPF ⁇ 111 ⁇ ) of the rolled region poles increases. That is, in order to obtain a desired average r value of 1.5 or more in the present invention, it should have IPF ⁇ 111 ⁇ of 5.0 or more.
  • the grain size (FGS) of Comparative Example 1 was 8.7, which satisfied the range of the present invention, but IPF ⁇ 111 ⁇ was 2.73, and the texture did not satisfy the scope of the present invention.
  • the orange peel height was 2.48 mm and the orange peel height was 4.0 mm or less.
  • the average r value was 0.83, which was less than 1.5, and thus the formability requirement was not satisfied.
  • the grain size (FGS) of Comparative Example 5 was 9.4, which satisfied the range of the present invention, but IPF ⁇ 111 ⁇ was 3.35, and the texture did not satisfy the scope of the present invention.
  • the orange peel height was 3.30 mm and the orange peel height was less than 4.0 mm, but the average r value was 1.22, which was less than 1.5, and thus the formability requirement was not satisfied.
  • the ferrite stainless steel improved in orange peel resistance and formability according to the embodiments of the present invention is applicable to materials for household appliances and kitchen appliances where surface quality is important.

Abstract

Disclosed is ferritic stainless steel with improved orange peel resistance and formability. Ferritic stainless steel according to one embodiment of the present invention comprises, in weight percentage: 0.015-0.040% of C; 0.015-0.040% of N; 0.01-0.40% of Si; 0.01-0.30% of Mn; 0.005-0.020% of P; 0.0001-0.010% of S; 15-22% of Cr; 0.05-0.35% of Ti; 0.05-0.35% of Nb; 0.005-0.05% of Al; and the balance being Fe and other unavoidable impurities, in which the ferritic grain size (FGS) is 8.5 or more, and the <111> orientation index of the inverse pole figure (IPF {111}) of a rolled surface is 5.0 or more.

Description

오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강Ferritic stainless steel with improved orange fill resistance and formability
본 발명은 오렌지필 저항성과 성형성이 우수한 페라이트계 스테인리스강에 관한 것이다.The present invention relates to a ferritic stainless steel excellent in orange peel resistance and moldability.
페라이트계 스테인리스강은 가전제품, 주방기기, 전자기기, 자동차 배기계 등 넓은 분야에서 사용되고 있다. 특히, 페라이트계 스테인리스강은 다량의 Ni을 첨가하는 오스테나이트계 스테인리스강보다 경제성이 우수하여 점차 그 사용량이 증가하는 추세이다.Ferritic stainless steels are used in a wide range of fields such as home appliances, kitchen appliances, electronic devices, and automobile exhaust systems. In particular, ferritic stainless steels are more economical than austenitic stainless steels containing a large amount of Ni, and their use is gradually increasing.
하지만 페라이트계 스테인리스강은 오스테나이트계 스테인리스강에 비하여 연신율이 낮아 성형성이 열위하여 용도가 한정되는 경우가 있었다. 근래, 정련 기술의 향상에 의하여 극저 탄소·질소화가 가능하게 되었고, Ti이나 Nb 등의 페라이트 안정화 원소의 첨가에 의하여, 성형성과 내식성을 향상시킨 페라이트계 스테인리스강이 개발되어 다양한 분야에 적용되고 있다.However, ferritic stainless steels have lower elongation than austenitic stainless steels and their applications are limited in order to open up moldability. In recent years, improvement of refining technology has made it possible to achieve extremely low carbon and nitrogen, and ferritic stainless steels having improved moldability and corrosion resistance by addition of ferrite stabilizing elements such as Ti and Nb have been developed and applied to various fields.
Ti이나 Nb 등의 페라이트 안정화 원소가 첨가된 페라이트계 스테인리스강은 오스테나이트계 스테인리스강 또는 열간 압연 중에 오스테나이트-페라이트 상변태를 거치는 semi-페라이트계 스테인리스강과 비교할 때, 성형 중 오렌지필(Orange Peel 결함을 유발할 가능성이 높아진다. 여기서 오렌지필 결함이란, 조대한 결정립도에 의하여 강을 성형할 때 표면에 조도의 불균일이 발생하여 미려한 표면을 해치는 결함을 의미한다. 이러한, 오렌지필은 미관상 좋지 않아 제거 대상이며, 이를 연마를 통한 제거하게 되면 추가적인 비용 및 시간이 소모되는 문제점이 있다.Ferritic stainless steels to which ferrite stabilizing elements such as Ti and Nb are added exhibit an orange peel defect during molding compared to austenitic stainless steels or semi- ferritic stainless steels undergoing austenite-ferrite phase transformation during hot rolling. The orange peel defect means a defect which causes unevenness of roughness on the surface when the steel is formed by coarse crystal grains so as to degrade the beautiful surface. Such an orange peel is an object to be removed because it is not aesthetically pleasing, There is a problem that additional cost and time are consumed by removing it through polishing.
따라서, 오렌지필 결함으로 인해 Ti이나 Nb 등의 페라이트 안정화 원소가 첨가된 페라이트계 스테인리스강은 성형 후 표면 품질이 중요시되는 가전제품이나 주방기기 등의 적용에 한계가 있다. Therefore, ferritic stainless steels containing ferrite stabilizing elements such as Ti and Nb due to orange peel defects have limitations in application to household appliances and kitchen appliances where surface quality is important after molding.
본 발명의 실시예들은 성분, 결정립 크기 및 집합조직을 제어하여 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강을 제공하고자 한다.Embodiments of the present invention provide a ferritic stainless steel having improved orange fill resistance and formability by controlling components, grain size, and texture.
본 발명의 일 실시예에 따른 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강에 따르면, 중량%로, C: 0.015 내지 0.040%, N: 0.015 내지 0.040%, Si: 0.01 내지 0.40%, Mn: 0.01 내지 0.30%, P: 0.005 내지 0.020%, S:0.0001 내지 0.010%, Cr: 15 내지 22%, Ti: 0.05 내지 0.35%, Nb: 0.05 내지 0.35%, Al: 0.005 내지 0.05%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 페라이트 결정립 크기(FGS)가 8.5 이상이며, 압연면 역극점도의 <111> 방향 지수(IPF{111})가 5.0 이상일 수 있다.According to an embodiment of the present invention, ferritic stainless steels having improved orange fill resistance and formability include 0.015 to 0.040% of C, 0.015 to 0.040% of N, 0.01 to 0.40% of Si, 0.01 to 0.40% of Si, 0.001 to 0.020% of S, 0.0001 to 0.010% of Cr, 15 to 22% of Cr, 0.05 to 0.35% of Ti, 0.05 to 0.35% of Nb, 0.005 to 0.05% of Al, And other inevitable impurities, and the ferrite grain size (FGS) is 8.5 or more, and the <111> direction index (IPF {111}) of the rolling interface pole figure may be 5.0 or more.
또한, 본 발명의 일 실시예에 따르면, 상기 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강은 C + N이 0.03 내지 0.045% 일 수 있다.According to an embodiment of the present invention, the ferrite stainless steel having improved orange fill resistance and formability may have a C + N ratio of 0.03 to 0.045%.
또한, 본 발명의 일 실시예에 따르면, 상기 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강은 Mo: 1% 이하(0은 제외), Ni: 1% 이하(0은 제외), Cu: 3% 이하(0은 제외) 및 B: 0.005% 이하(0은 제외)로 이루어진 군에서 선택되는 1종 이상의 원소를 더 포함할 수 있다. According to an embodiment of the present invention, the ferritic stainless steel having improved orange fill resistance and formability has a Mo content of 1% or less (excluding 0), a Ni content of 1% or less (excluding 0), a Cu content of 3 % Or less (excluding 0) and B: 0.005% or less (excluding 0).
또한, 본 발명의 일 실시예에 따르면, 상 상기 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강은 Rt 값이 4.0 mm 미만일 수 있다. According to an embodiment of the present invention, the ferrite stainless steel having improved orange fill resistance and formability may have an Rt value of less than 4.0 mm.
여기서 Rt 값은, 압연 방향의 수직 방향을 축으로 90° 벤딩 변형을 가한 후의 표면 거칠기를 의미한다.Here, the Rt value refers to the surface roughness after 90 DEG bending deformation with respect to the vertical direction in the rolling direction.
또한, 본 발명의 일 실시예에 따르면, 상기 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강은 평균 r값이 1.5 이상일 수 있다.According to an embodiment of the present invention, the ferrite stainless steel having improved orange fill resistance and formability may have an average r value of 1.5 or more.
여기서, 평균 r값 = {r(0°)+2×r(45°)+r(90°)}/4 이다.Here, the average r value = {r (0) + 2 x r (45) + r (90)} / 4.
개시된 실시예에 따른 페라이트계 스테인리스강은, 결정립 크기 및 집합조직을 제어하여, 성형성이 향상되고, 오렌지필 발생이 억제될 수 있다.The ferritic stainless steel according to the disclosed embodiment controls the grain size and texture, and the formability is improved, and orange peel generation can be suppressed.
도 1은 본 발명의 실시예에 따른 결정립 크기(FGS)와 오렌지필 높이와의 상관관계를 나타내는 그래프이다.FIG. 1 is a graph showing the correlation between the grain size (FGS) and the orange fill height according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 집합조직 지수와 평균 r값과의 상관관계를 나타내는 그래프이다.FIG. 2 is a graph showing a correlation between a set index and an average r value according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 C+N 함량과 결정립 크기(FGS)와의 상관관계를 나타내는 그래프이다.3 is a graph showing a correlation between a C + N content and a grain size (FGS) according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 C+N 함량과 집합조직 지수와의 상관관계를 나타내는 그래프이다.4 is a graph showing a correlation between the C + N content and the texture index according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강에 따르면, 중량%로, C: 0.015 내지 0.040%, N: 0.015 내지 0.040%, Si: 0.01 내지 0.40%, Mn: 0.01 내지 0.30%, P: 0.005 내지 0.020%, S:0.0001 내지 0.010%, Cr: 15 내지 22%, Ti: 0.05 내지 0.35%, Nb: 0.05 내지 0.35%, Al: 0.005 내지 0.05%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 페라이트 결정립 크기(FGS)가 8.5 이상이며, 압연면 역극점도의 <111> 방향 지수(IPF{111})가 5.0 이상일 수 있다. According to an embodiment of the present invention, ferritic stainless steels having improved orange fill resistance and formability include 0.015 to 0.040% of C, 0.015 to 0.040% of N, 0.01 to 0.40% of Si, 0.01 to 0.40% of Si, 0.001 to 0.020% of S, 0.0001 to 0.010% of Cr, 15 to 22% of Cr, 0.05 to 0.35% of Ti, 0.05 to 0.35% of Nb, 0.005 to 0.05% of Al, And other inevitable impurities, and the ferrite grain size (FGS) is 8.5 or more, and the <111> direction index (IPF {111}) of the rolling interface pole figure may be 5.0 or more.
이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다. The following embodiments are provided to fully convey the spirit of the present invention to a person having ordinary skill in the art to which the present invention belongs. The present invention is not limited to the embodiments shown herein but may be embodied in other forms. For the sake of clarity, the drawings are not drawn to scale, and the size of the elements may be slightly exaggerated to facilitate understanding.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when an element is referred to as "comprising ", it means that it can include other elements as well, without excluding other elements unless specifically stated otherwise.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.The singular forms &quot; a &quot; include plural referents unless the context clearly dictates otherwise.
이하에서는 본 발명에 따른 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 우선 페라이트계 스테인리스강에 대해 설명한 후, 페라이트 스테인리스강의 제조방법에 대해 설명한다. Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings. First, the ferritic stainless steel will be described, and then the ferritic stainless steel will be described.
본 발명자들은 페라이트계 스테인리스강의 오렌지필 저항성과 성형성을 동시에 개선할 수 있는 방안에 대하여 검토한 결과, 강의 조성을 적정범위로 제어하는 것 이외에도, 결정립 크기 및 집합조직을 제어하여야 할 필요가 있다는 사실을 발견하고 본 발명에 이르게 되었다.The inventors of the present invention have studied a method for simultaneously improving the orange fill resistance and formability of a ferritic stainless steel and have found that it is necessary to control the grain size and texture as well as controlling the steel composition to an appropriate range And led to the present invention.
오렌지필은 결정립이 조대한 금속판재의 성형, 특히 벤딩 변형 시 강하게 발생한다. 시각적 또는 촉감적으로도 실용상 문제되지 않는 페라이트계 스테인리스강 표면을 얻기 위해서는 오렌지필 높이를 4.0 mm 이하로 확보함으로써 달성할 수 있다.The orange peel is strongly generated during the forming of the coarse metal sheet, particularly the bending deformation. In order to obtain a ferritic stainless steel surface that does not pose a practical problem visually or tactually, it can be achieved by securing the orange fill height to 4.0 mm or less.
본 발명자들은 벤딩 변형 후의 표면 거칠기 (Rt로 표기되는 최대 거칠기: Maximum Peak to Valley Roughness Height)로 오렌지필을 평가하였다. 이 때 페라이트계 스테인리스 강의 표면 조도에 큰 영향을 주는 리징의 영향을 최소화하기 위하여 압연 방향의 수직 방향을 축으로 90˚벤딩 변형을 하여 오렌지필을 평가한 경우를 예로 설명한다. The present inventors evaluated the orange peel with the surface roughness after bending deformation (maximum peak to valley roughness height indicated by Rt). In this case, in order to minimize the influence of the ridging, which greatly affects the surface roughness of the ferritic stainless steel, an example in which the orange fill is evaluated by performing bending deformation of 90 degrees about the vertical direction in the rolling direction will be described as an example.
소성이방성(r값)은 폭 변형율 / 두께 변형율(ew/et)로 정의되는데, r값이 높을수록 성형 자유도가 증가하게 되며, 일반적으로 높은 r값을 가지기 위하여는 두께변형율 대비 폭변형율이 커야 한다.The plastic anisotropy (r value) is defined as the width strain / thickness strain (ew / et). The higher the r value, the greater the degree of forming freedom. In general, to have a high r value, .
페라이트계 스테인리스강의 성형성은 하기의 식 (1)로 정의되는 평균 r값으로 표현하는 것이 일반적이다.The formability of a ferritic stainless steel is generally expressed by an average r value defined by the following formula (1).
식(1): 평균 r값 = {r(0˚)+2×r(45˚)+r(90˚)}/4(1): average r value = {r (0) + 2 x r (45) + r (90)} / 4
여기서, r(x˚)의 x는 압연방향 대비 측정방향을 의미한다.Here, x of r (x DEG) means the measurement direction relative to the rolling direction.
구체적으로, r(0˚)은 0도 방향의 r값이며, r(45˚)는 45˚방향의 r값이며, r(90˚)은 90˚ 방향의 r값이다.Specifically, r (0) is the r value in the 0 degree direction, r (45) is the r value in the 45 degree direction, and r (90 degrees) is the r value in the 90 degree direction.
상기 r값들은 압연 방향에 대하여 각각 압연 방향 r(0˚), 압연 방향과 45˚방향 r(45˚), 압연 방향과 90˚방향 r(90˚)으로 15% 변형을 부여한 후에 하기 식 (2)을 이용하여 산출하였다.The r values are obtained by applying a 15% deformation to the rolling direction r (0), rolling direction 45 ° r (45 °) and rolling direction 90 ° r (90 °) 2).
식(2): r(x˚) = ln(W0/W) / ln(t0/t)(2): r (x) = ln (W0 / W) / ln (t0 / t)
이 때, W0는 인장 전의 판 폭, W는 인장 후의 판 폭, t0는 인장 전의 판 두께, t는 인장 후의 판 두께이다.In this case, W0 is plate width before stretching, W is plate width after stretching, t0 is plate thickness before stretching, and t is plate thickness after stretching.
상기 r값들은 그 크기가 증가할수록 성형성이 증가하는바, 값이 클수록 유리하다. 본 발명에서는 평균 r값을 1.5 이상으로 하여 페라이트계 스테인리스강의 성형성을 확보하고자 한다.As the r values increase, the formability increases. As the value increases, it is advantageous. In the present invention, the average r value is set to 1.5 or more to secure the moldability of the ferritic stainless steel.
일반적으로, 다결정 재료의 r값은 해당 소재의 집합조직에 의해 결정된다. 집합조직(texture)은 결정 내부에 생성된 일정한 면과 방위를 갖는 배열을 의미한다. 이러한 집합조직은 소재의 역극점도(Inverse Pole Figure) 측정을 통해 정량화될 수 있다. 압연면 역극점도의 <111> 방향은 r값을 향상시키는 집합조직을 나타낸다. 따라서 본 발명에서는 압연면 역극점도의 <111> 방향 지수 (IPF{111})로 집합조직을 평가한 경우를 예로 설명한다. Generally, the r value of the polycrystalline material is determined by the texture of the material. Texture refers to an array having a constant plane and orientation created inside the crystal. This texture can be quantified by measuring the inverse pole figure of the material. The < 111 > direction of the rolling interface inverse poles shows the texture that improves the r value. Therefore, in the present invention, the case where the texture is evaluated by the <111> direction index (IPF {111}) of the rolling pole pole figure is explained as an example.
이하에서는 합금원소 성분계, 결정립 크기 및 집합조직의 제어만으로 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강에 대하여 기술한다.Hereinafter, a ferritic stainless steel having improved orange fill resistance and formability only by controlling the alloy element component, grain size and texture is described.
본 발명의 일 측면에 따른 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강은, 중량%로, C: 0.015 내지 0.040%, N: 0.015 내지 0.040%, Cr: 15 내지 22%, Ti: 0.05 내지 0.35%, Nb: 0.05 내지 0.35%, Si: 0.01 내지 0.40%, Al: 0.005 내지 0.05%, Mn: 0.01 내지 0.30%, P: 0.005 내지 0.020%, S:0.0001 내지 0.005%, 잔부 Fe 및 기타 불가피한 불순물을 포함한다. According to one aspect of the present invention, ferritic stainless steels having improved orange fill resistance and formability contain 0.015% to 0.040% of C, 0.015% to 0.040% of N, 15% to 22% of Cr, 0.001 to 0.30%, P: 0.005 to 0.020%, S: 0.0001 to 0.005%, the balance Fe and other unavoidable elements Impurities.
이하, 본 발명의 실시예에서의 함금성분 함량의 수치 한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.Hereinafter, the reason for limiting the numerical value of the content of the component component in the embodiment of the present invention will be described. Unless otherwise stated, the unit is wt%.
C와 N의 함량은 0.015 내지 0.040%이다.The content of C and N is 0.015 to 0.040%.
탄소(C)와 질소(N)는 침입형 고용강화 원소로서 페라이트계 스테인리스 강의 강도를 향상시킨다. 뿐만 아니라 티타늄(Ti) 또는 니오븀(Nb)과 같은 원소와 결합하여 탄질화물을 형성하여 결정립 성장을 억제하기 때문에 결정립 미세화를 통한 오렌지필 저항성 향상을 위해 꼭 필요한 원소이다. 따라서 본 발명에서는 0.015%이상 첨가하는 것이 바람직하다. 다만 그 함량이 과다할 경우, 고온에서 오스테나이트 상을 형성시켜 Gold Dust 등 산세성 표면 결함을 형성시킬 뿐만 아니라 소재의 연신율을 저하시키는 문제가 있는 바, 그 상한을 0.040%로 한정할 수 있다.Carbon (C) and nitrogen (N) improve the strength of ferritic stainless steels as interstitial solid solution strengthening elements. In addition, it is combined with an element such as titanium (Ti) or niobium (Nb) to form carbonitride to inhibit grain growth, which is an indispensable element for improving the orange peel resistance through grain refinement. Therefore, in the present invention, it is preferable to add 0.015% or more. However, when the content is excessive, an austenite phase is formed at a high temperature to form acid-labile surface defects such as gold dust, and in addition, there is a problem of lowering the elongation of the material, and the upper limit can be limited to 0.040%.
바람직하게, C+N 함량은 0.03 내지 0.045% 이다. Preferably, the C + N content is 0.03 to 0.045%.
C와 N의 하한을 고려하여 C+N의 함량은 0.03% 이상이다. 다만, C+N이 과도하게 첨가되면 성형성에 유리한 집합조직 발달을 억제하여 r값을 감소시키므로 그 함량을 제한할 필요성이 있다. 따라서 본 발명에서는 C+N 함량의 상한을 0.045% 로 제한할 수 있다.Considering the lower limit of C and N, the content of C + N is 0.03% or more. However, if C + N is excessively added, it is necessary to limit the content of r, because the r value is decreased by suppressing the development of aggregate tissue favorable for moldability. Therefore, in the present invention, the upper limit of the C + N content can be limited to 0.045%.
구체적으로 C+N 함량이 하한인 0.03% 미만인 경우, 결정립 크기가 FGS 8.5 이하로 얻어지므로 오렌지필 저항성이 저하된다. 반면, C+N 함량이 상한인 0.045% 이상인 경우, 집합조직 지수가 5.0 이하로 얻어져서 성형성이 저하된다. 따라서, 오렌지필 저항성과 성형성을 모두 향상시킨 페라이트계 스테인리스 강을 얻기 위해서는 C+N 함량이 0.03 내지 0.045% 확보되어야 한다.Specifically, when the C + N content is lower than the lower limit of 0.03%, the crystal grain size is obtained to be FGS 8.5 or lower, so that the orange fill resistance is lowered. On the other hand, when the content of C + N is 0.045% or more, which is the upper limit, the aggregate index is obtained to be 5.0 or less and the formability is lowered. Therefore, in order to obtain a ferritic stainless steel having improved orange peel resistance and formability, the C + N content should be 0.03 to 0.045%.
Cr의 함량은 15 내지 22%이다.The Cr content is 15 to 22%.
크롬(Cr)은 스테인리스강의 내식성 향상 원소 중 가장 많이 함유되어 기본이 되는 원소로, 내식성의 발현을 위해서는 15% 이상 첨가하는 것이 바람직하다. 다만, 그 함량이 과다할 경우, 탄소 및 질소가 함유된 페라이트계 스테인리스강에 입계 부식이 발생할 우려가 있으며, 제조원가가 상승하는 문제가 있는 바, 그 상한을 22%로 한정할 수 있다.Chromium (Cr) is the element which is the largest element among the elements improving the corrosion resistance of stainless steel and is the basic element. It is preferable to add Cr by more than 15% in order to exhibit corrosion resistance. However, if the content is excessive, intergranular corrosion may occur in the ferritic stainless steel containing carbon and nitrogen, and the manufacturing cost may increase, so that the upper limit can be limited to 22%.
Ti의 함량은 0.05 내지 0.35%이다. The content of Ti is 0.05 to 0.35%.
티타늄(Ti)은 탄소 및 질소를 고정하는 원소로서, 탄질화물을 형성하여 결정립 성장을 억제하므로, 결정립 미세화를 위해 0.05% 이상 첨가하는 것이 바람직하다. 다만, 그 함량이 과다할 경우, Ti 개재물에 의해 제조 공정상의 어려움이 있으며, 제조원가가 상승하는 문제가 있는 바, 그 상한을 0.35%로 한정할 수 있다.Titanium (Ti) is an element that fixes carbon and nitrogen, and forms carbonitride to suppress grain growth. Therefore, it is preferable to add Ti in an amount of 0.05% or more for grain refinement. However, if the content is excessive, there is a problem in the manufacturing process due to Ti inclusions, and there is a problem that the manufacturing cost is increased, so that the upper limit can be limited to 0.35%.
Nb의 함량은 0.05 내지 0.35%이다. The content of Nb is 0.05 to 0.35%.
니오븀(Nb)은 탄소 및 질소를 고정하는 원소로서, 탄질화물을 형성하여 결정립 성장을 억제하므로, 결정립 미세화를 위해 0.05% 이상 첨가하는 것이 바람직하다. 다만, 그 함량이 과다할 경우, Laves 석출물을 형성하여 성형성의 저하 및 취성파괴를 일으키며, 제조원가가 상승하는 문제가 있는 바, 그 상한을 0.35%로 한정할 수 있다.Niobium (Nb) is an element that fixes carbon and nitrogen, and forms carbonitride to suppress grain growth. Therefore, it is preferable that Nb is added in an amount of 0.05% or more for grain refinement. However, when the content thereof is excessive, Laves precipitates are formed to lower moldability and brittle fracture, and the production cost increases, so that the upper limit can be limited to 0.35%.
Si의 함량은 0.01 내지 0.40%이다.The content of Si is 0.01 to 0.40%.
규소(Si)는 탈산을 위해 필수적으로 첨가되는 원소로, 페라이트 상형성 원소로 페라이트 상의 안정성을 높이는 바, 0.01%이상 첨가하는 것이 바람직하다. 다만, 그 함량이 과도한 경우, 소재가 경질화되고 산소와 결합하여 개재물을 형성하여 내식성의 저하 및 표면 결함 등의 문제점이 발생할 수 있는 바, 그 상한을 0.40%로 한정할 수 있다.Silicon (Si) is an element which is essentially added for deoxidation. As the element for forming a ferrite phase, it is preferable to add 0.01% or more in order to increase the stability of the ferrite phase. However, when the content is excessive, the material is hardened and bonds with oxygen to form inclusions, thereby causing problems such as deterioration of corrosion resistance and surface defects, so that the upper limit can be limited to 0.40%.
Al의 함량은 0.005 내지 0.05%이다.The content of Al is 0.005 to 0.05%.
알루미늄(Al)은 탈산을 위해 필수적으로 첨가되는 원소로서, 용강 중 산소의 함량을 낮출 수 있어 0.005% 이상 첨가하는 것이 바람직하다. 다만, 그 함량이 과다할 경우, 산소와 결합하여 개재물을 형성하여 내식성이 저하될 우려가 있으며, 성형성이 저하되는 문제가 있는 바, 그 상한을 0.05%로 한정할 수 있다.Aluminum (Al) is an element which is essentially added for deoxidation and can lower the content of oxygen in molten steel, so that it is preferable to add at least 0.005%. However, when the content is excessive, there is a fear that the inclusion is formed by binding with oxygen, so that the corrosion resistance is lowered and the formability is lowered. The upper limit can be limited to 0.05%.
Mn의 함량은 0.01 내지 0.30%이다.The content of Mn is 0.01 to 0.30%.
망간(Mn)은 탈산을 위해 필수적으로 첨가되는 원소로서, 용강 중 산소의 함량을 낮출 수 있어 0.01% 이상 첨가하는 것이 바람직하다. 다만, 그 함량이 과다할 경우, 황화망간(MnS)등의 석출물을 형성하여 내식성을 저하시키는 바, 그 상한을 0.30%로 한정할 수 있다.Manganese (Mn) is an element which is essentially added for deoxidation and can lower the content of oxygen in molten steel, so that it is preferable to add Mn of 0.01% or more. However, if the content is excessive, precipitates such as manganese sulfide (MnS) are formed to lower the corrosion resistance, and the upper limit can be limited to 0.30%.
P의 함량은 0.005 내지 0.020%이다.The content of P is 0.005 to 0.020%.
인(P)는 불순물 원소이며, 고용 강화 원소이기 때문에 그 함량이 가능한 적을수록 바람직하다. 다만 그 함량이 과다할 경우 연신율을 열위하게 한다. 따라서 0.020% 이하로 함량을 제한하며, 완전히 제거하기에는 불가능하고, 정련 비용이 증가하므로 0.005% 이상으로 관리하는 것이 바람직하다.Phosphorus (P) is an impurity element and because it is a solid solution strengthening element, it is preferable that the content is as small as possible. However, if the content is excessive, the elongation rate should be reduced. Therefore, the content is restricted to 0.020% or less and it is impossible to completely remove it, and the refining cost increases, so it is preferable to control the content to 0.005% or more.
S의 함량은 0.0001 내지 0.005%이다.The content of S is 0.0001 to 0.005%.
황(S)은 황화망간(MnS) 석출물 등을 형성하여 열간 가공성과 내식성을 저하시키므로 그 함량이 가능한 적을수록 바람직하다. 따라서 0.005% 이하로 함량을 제한하며, 완전히 제거하기에는 불가능하고, 정련 비용이 증가하므로 0.0001% 이상으로 관리하는 것이 바람직하다. Sulfur (S) forms manganese sulfide (MnS) precipitate or the like to lower hot workability and corrosion resistance, so the smaller the content, the better. Therefore, the content is restricted to 0.005% or less, and it is impossible to completely remove it, and the refining cost increases, so it is preferable to control the content to 0.0001% or more.
또한 본 발명의 일 실시예에 따른 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강은, Mo: 1% 이하(0은 제외), Ni: 1% 이하(0은 제외), Cu: 3% 이하(0은 제외) 및 B: 0.005% 이하(0은 제외)로 이루어진 군에서 선택되는 1종 이상의 원소를 더 포함할 수 있다.In addition, the ferritic stainless steel having improved orange fill resistance and formability according to an embodiment of the present invention has a Mo content of 1% or less (excluding 0), a Ni content of 1% or less (excluding 0), a content of Cu of 3% (Excluding 0) and B: 0.005% or less (excluding 0).
몰리브덴(Mo)는 강력한 내식성 향상 원소이나, 그 함량이 과다할 경우, 가공성이 저하되는 문제가 있어, 그 상한을 1%로 한정할 수 있다.Molybdenum (Mo) is a strong corrosion resistance improving element, but when it is excessive, the workability is lowered, and the upper limit can be limited to 1%.
Ni 의 함량은 1% 이하이다.The content of Ni is 1% or less.
니켈(Ni)은 스테인리스강의 제조를 위하여 필수적으로 사용되는 원소로서, Ni함량의 증가는 원료 가격의 상승과 직결되므로 최소화할 필요가 있어, 그 상한을 1%로 한정할 수 있다.Nickel (Ni) is an element which is essentially used for the production of stainless steel. The increase of the Ni content is directly related to the rise of the raw material price, so it needs to be minimized, and the upper limit can be limited to 1%.
Cu 의 함량은 3% 이하이다.The content of Cu is 3% or less.
구리(Cu)는 내식성을 향상시키는 원소이나, 그 함량이 과다할 경우, 가공성 및 용접성이 저하되는 문제가 있어, 그 상한을 3%로 한정할 수 있다.Copper (Cu) is an element which improves corrosion resistance, but when it is excessive, workability and weldability are lowered, and the upper limit can be limited to 3%.
B 의 함량은 0.005% 이하이다.The content of B is 0.005% or less.
보론(B)은 입계에 편석되어 입계를 강화시키는 원소이지만 그 함량이 과다할 경우, 열가가공성을 저하시키는 바, 그 상한을 0.005%로 한정할 수 있다.Boron (B) segregates in grain boundaries and strengthens the grain boundaries. However, when the content of boron (B) is excessive, the heat processability is lowered, and the upper limit can be limited to 0.005%.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remainder of the present invention is iron (Fe). However, in the ordinary manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded. These impurities are not specifically mentioned in this specification, as they are known to any person skilled in the art of manufacturing.
또한 본 발명의 일 실시예에 따르면, 전술한 합금조성을 만족하는 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강의 결정립크기(Ferrite Grain Size, FGS)는 8.5 이상일 수 있다.According to an embodiment of the present invention, the ferrite grain size (FGS) of the ferritic stainless steel having improved orange fill resistance and formability satisfying the above-described alloy composition may be 8.5 or more.
도 1은 본 발명의 실시예에 따른 결정립 크기(FGS)와 오렌지필 높이와의 상관관계를 나타내는 그래프이다. 도 1을 참조하면, FGS 값이 커질수록 즉, 결정립 크기가 감소할수록 오렌지필 높이가 감소함을 확인할 수 있다.FIG. 1 is a graph showing the correlation between the grain size (FGS) and the orange fill height according to an embodiment of the present invention. Referring to FIG. 1, it can be seen that the orange fill height decreases as the FGS value increases, that is, as the grain size decreases.
본 발명에서 규정하는 표면 거칠기(Rt로 표기되는 최대 거칠기: Maximum Peak to Valley Roughness Height)는 압연 방향의 수직 방향을 축으로 90° 벤딩 변형을 가한 후의 오렌지필의 정도를 나타낸다. 이 값을 4.0 mm 미만으로 하면, 시각적 또는 촉감적으로 문제되지 않는 수준으로 오렌지필은 저감된다. 본 발명에서는 탄소(C)와 질소(N) 첨가를 통해 탄질화물을 형성하여 결정립을 미세화하여 오렌지필 높이를 4.0 mm 미만으로 제어하고자 하였다. The surface roughness (maximum peak to valley roughness height) defined by the present invention indicates the degree of orange peel after 90 占 bending deformation is applied about the vertical direction in the rolling direction. When this value is less than 4.0 mm, the orange peel is reduced to a level that does not cause a visual or tactile problem. In the present invention, carbonitride is formed through the addition of carbon (C) and nitrogen (N) to refine the crystal grains to control the orange fill height to be less than 4.0 mm.
또한 본 발명의 일 실시예에 따르면, 전술한 합금조성을 만족하는 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강의 압연면 역극점도의 <111> 방향 지수(IPF{111})는 5.0 이상일 수 있다.According to an embodiment of the present invention, the <111> direction index (IPF {111}) of the rolled region poles of the ferritic stainless steels having improved orange fill resistance and formability satisfying the above alloy composition may be 5.0 or more .
도 2는 본 발명의 실시예에 따른 집합조직 지수와 평균 r값과의 상관관계를 나타내는 그래프이다. 도 2를 참조하면, 압연면 역극점도의 <111> 방향 지수 (IPF{111})가 증가할수록 평균 r값이 증가함을 확인할 수 있다.FIG. 2 is a graph showing a correlation between a set index and an average r value according to an embodiment of the present invention. Referring to FIG. 2, it can be seen that the average r value increases as the <111> direction index (IPF {111}) of the rolled region poles increases.
본 발명에서는 페라이트 안정화 원소인 티타늄(Ti)과 니오븀(Nb) 첨가를 통해 침입형 원소를 탄질화물로 형성하여 집합조직을 발달시켜 평균 r값을 1.5 이상으로 제어하고자 하였다.In the present invention, intrinsic elements are formed of carbonitride through the addition of titanium (Ti) and niobium (Nb), which are stabilizing elements of ferrite, to develop an aggregate structure to control the average r value to 1.5 or more.
평균 r값이 1.5 이상인 경우에는 딥드로잉 가공성을 향상시킬 수 있음을 확인하였다.It was confirmed that the deep drawing workability can be improved when the average r value is 1.5 or more.
이하, 본 발명의 바람직한 실시예를 통해 보다 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in more detail.
실시예Example
상업 생산되는 페라이트계 스테인리스강의 생산 조건에 따라 최종 제품을 생산하는 실험을 실시하였으며, 하기 [표 1]과 같이 조성된 페라이트계 스테인리스강을 250㎜ 두께의 주물편으로 용제하였다. 제조된 주물편을 열간 압연하여 3 내지 6 ㎜ 두께의 열간압연 강판을 제조하였다. 열간압연 강판을 산세한 후, 냉간압연, 최종소둔 처리하여 0.4 내지 1.2 ㎜ 두께의 냉연소둔 강판을 제조하였다. Experiments were conducted to produce final products according to the production conditions of commercially produced ferritic stainless steels, and ferritic stainless steels as shown in Table 1 were melted into 250 mm thick castings. The cast pieces were hot-rolled to prepare hot-rolled steel sheets having a thickness of 3 to 6 mm. The hot-rolled steel sheet was pickled, cold-rolled, and finally annealed to produce a cold-rolled annealed steel sheet having a thickness of 0.4 to 1.2 mm.
중량%weight% CC MnMn CrCr TiTi NbNb PP SS NN SiSi AlAl C+NC + N
실시예 1Example 1 0.0270.027 0.240.24 18.318.3 0.150.15 0.260.26 0.00050.0005 0.00050.0005 0.0110.011 0.210.21 0.0340.034 0.0380.038
실시예 2Example 2 0.0190.019 0.250.25 18.318.3 0.160.16 0.250.25 0.00050.0005 0.00050.0005 0.0210.021 0.190.19 0.0390.039 0.0400.040
실시예 3Example 3 0.0290.029 0.240.24 18.318.3 0.150.15 0.430.43 0.00050.0005 0.00050.0005 0.0090.009 0.230.23 0.0340.034 0.0380.038
실시예 4Example 4 0.0300.030 0.190.19 16.516.5 0.160.16 0.010.01 0.00050.0005 0.00050.0005 0.00750.0075 0.220.22 0.0350.035 0.0380.038
비교예 1Comparative Example 1 0.0650.065 0.60.6 16.116.1 0.010.01 0.010.01 0.00050.0005 0.00050.0005 0.030.03 0.150.15 0.10.1 0.0950.095
비교예 2Comparative Example 2 0.0050.005 0.230.23 18.418.4 0.160.16 0.160.16 0.00050.0005 0.00050.0005 0.0110.011 0.230.23 0.0210.021 0.0160.016
비교예 3Comparative Example 3 0.0050.005 0.20.2 16.216.2 0.170.17 0.010.01 0.00050.0005 0.00050.0005 0.00750.0075 0.200.20 0.040.04 0.0130.013
비교예 4Comparative Example 4 0.0180.018 0.20.2 15.815.8 0.190.19 0.010.01 0.00050.0005 0.00050.0005 0.00670.0067 0.220.22 0.0350.035 0.0250.025
비교예 5Comparative Example 5 0.0450.045 0.20.2 16.316.3 0.180.18 0.010.01 0.00050.0005 0.00050.0005 0.00750.0075 0.200.20 0.0410.041 0.0530.053
냉연소둔 강판의 결정 입경은 JISG0552에서 규정하는 페라이트 입경 측정법에 의하여 구하였다.The grain size of the cold-rolled annealed steel sheet was determined by the ferrite grain size measurement method specified in JIS G0552.
또한, 판재 단면의 전체 두께 방향을 포함하는 면적을 후방산란전자 회절법 (EBSD, Electron Backscatter Diffraction)을 활용하여 집합조직 분율을 측정하였으며, EBSD 데이터로부터 역극점도(IPF) 계산을 통해 집합조직을 정량화하였다. 본 발명에서는 압연면의 평균적인 소성이방성비로 성형성을 규정하므로 압연면 역극점도를 성형성 지표로 활용하였다. In addition, the aggregate texture fraction was measured using Electron Backscatter Diffraction (EBSD) and the area including the entire thickness direction of the sheet material was measured by EBSD data. Respectively. In the present invention, since the formability is defined by the average plastic anisotropy ratio of the rolled surface, the rolled surface reverse pole degree is used as a formability index.
오렌지 필은, 압연 방향을 길이 방향으로 하여 30 mm x 100 mm 로 시험편을 채취하고 압연 방향의 수직 방향을 축으로하여 90° 벤딩 변형을 부여한 후, 표면 거칠기 (Rt로 표기되는 최대 거칠기: Maximum Peak to Valley Roughness Height)를 측정하여 평가하였다.The orange peel was subjected to a 90 ° bending deformation about the vertical direction in the rolling direction, and the surface roughness (maximum roughness expressed by Rt: Maximum Peak to Valley Roughness Height).
FGSFGS IPF{111} IPF {111} 오렌지필 높이(mm)Orange Fill Height (mm) R-barR-bar
실시예 1Example 1 8.78.7 7.957.95 3.493.49 1.911.91
실시예 2Example 2 8.78.7 8.778.77 3.533.53 1.881.88
실시예 3Example 3 9.09.0 5.965.96 3.433.43 1.641.64
실시예 4Example 4 8.98.9 6.566.56 3.903.90 1.471.47
비교예 1Comparative Example 1 9.79.7 2.732.73 2.482.48 0.830.83
비교예 2Comparative Example 2 8.18.1 9.469.46 4.234.23 1.981.98
비교예 3Comparative Example 3 7.07.0 8.318.31 5.745.74 1.911.91
비교예 4Comparative Example 4 8.08.0 7.447.44 5.105.10 1.821.82
비교예 5Comparative Example 5 9.49.4 3.353.35 3.303.30 1.221.22
전술한 바와 같이 결정립 크기가 감소할수록 오렌지필 높이가 감소하고, 압연면 역극점도의 <111> 방향은 r값을 향상시키는 집합조직을 나타내므로, 오렌지필 저항성과 성형성을 개선시키기 위해서는 결정립 크기 및 집합조직을 제어하여야 한다.As described above, as the grain size decreases, the orange peel height decreases and the < 111 > direction of the rolling interface poles exhibits a texture that improves the r value. Therefore, in order to improve orange peel resistance and formability, And aggregate organization.
상기 실시예들의 경우 비교예들과 비교하여 FGS로 8.5 이상의 결정립 크기를 가져 Rt 값이 4 mm 미만이고, 압연면 역극점도의 <111> 방향 지수(IPF{111})가 5.0 이상으로 나타나 평균 r값이 1.5 이상인 바, 본 발명에 따른 페라이트계 스테인리스강은 성형성과 표면특성이 모두 향상됨을 확인할 수 있다.As compared with the comparative examples, the FGS had a grain size of 8.5 or more, and the Rt value was less than 4 mm, and the <111> direction index (IPF {111}) of the rolling interface pole figure was 5.0 or more r value is 1.5 or more, it can be confirmed that the ferritic stainless steel according to the present invention has both improved moldability and surface characteristics.
도 1은 본 발명의 실시예에 따른 결정립 크기(FGS)와 오렌지필 높이와의 상관관계를 나타내는 그래프이다. 도 1을 참조하면, 결정립 크기가 감소할수록 오렌지필 높이가 감소함을 확인할 수 있다. 즉, 본 발명에서 목적하는 Rt 값을 4 mm 미만으로 얻기 위해서는, FGS로 8.5 이상의 결정립 크기를 가져야 한다.FIG. 1 is a graph showing the correlation between the grain size (FGS) and the orange fill height according to an embodiment of the present invention. Referring to FIG. 1, it can be seen that the orange fill height decreases as the grain size decreases. That is, in order to obtain a target Rt value of less than 4 mm in the present invention, the FGS should have a grain size of not less than 8.5.
이에 비해, 비교예 2 내지 비교예 4 에서는 C+N 함량의 하한에 미달하여, 오렌지필 높이는 4.0mm 을 초과하였다.On the other hand, in Comparative Examples 2 to 4, the lower limit of the C + N content was less than the lower limit, and the orange fill height exceeded 4.0 mm.
구체적으로, 비교예 2의 IPF{111} 는 9.46으로 집합조직은 본 발명의 범위를 만족하지만, 결정립 크기(FGS)는 8.1로 본 발명의 범위를 만족시키지 못하였다. 그 결과 평균 r값이 1.98로 1.5 이상을 만족하지만, 오렌지필 높이가 4.23 mm로 4.0 mm 를 초과하였으며, 이에 따라 표면특성 요구조건을 충족하지 못하였다.Specifically, the IPF {111} of Comparative Example 2 was 9.46, and the texture thereof satisfied the range of the present invention, but the grain size (FGS) of 8.1 did not satisfy the range of the present invention. As a result, the average r value satisfies 1.5 or more at 1.98, but the orange fill height exceeds 4.0 mm at 4.23 mm, thereby failing to meet the surface property requirement.
표 2 및 도 1을 참조하면, 비교예 3의 IPF{111} 는 8.31로 집합조직은 본 발명의 범위를 만족하지만, 결정립 크기(FGS)는 7.0으로 본 발명의 범위를 만족시키지 못하였다. 그 결과 평균 r값이 1.91로 1.5 이상을 만족하지만, 오렌지필 높이가 5.74 mm로 4.0 mm 를 초과하였으며, 이에 따라 표면특성 요구조건을 충족하지 못하였다.Referring to Table 2 and FIG. 1, the IPF {111} of Comparative Example 3 was 8.31, and the texture of the aggregate satisfied the range of the present invention, but the grain size (FGS) As a result, the average r value was 1.91, which was more than 1.5 but the orange fill height exceeded 4.0 mm at 5.74 mm and thus did not satisfy the surface property requirement.
표 2 및 도 1을 참조하면, 비교예 4의 IPF{111} 는 7.44로 집합조직은 본 발명의 범위를 만족하지만, 결정립 크기(FGS)는 8.0으로 본 발명의 범위를 만족시키지 못하였다. 그 결과 평균 r값이 1.82로 1.5 이상을 만족하지만, 오렌지필 높이가 5.10 mm로 4.0 mm 를 초과하였으며, 이에 따라 표면특성 요구조건을 충족하지 못하였다. Referring to Table 2 and FIG. 1, the IPF {111} of Comparative Example 4 was 7.44, and the texture thereof satisfied the range of the present invention, but the grain size (FGS) of 8.0 did not satisfy the range of the present invention. As a result, the average r value was 1.82, which was more than 1.5 but the orange fill height exceeded 4.0 mm at 5.10 mm and thus did not satisfy the surface property requirement.
도 2는 본 발명의 실시예에 따른 집합조직 지수와 평균 r값과의 상관관계를 나타내는 그래프이다. 도 2를 참조하면, 압연면 역극점도의 <111> 방향지수 (IPF{111})가 증가할수록 평균 r값이 증가함을 확인할 수 있다. 즉, 본 발명에 서 목적하는 평균 r값을 1.5 이상으로 얻기 위해서는 5.0 이상의 IPF{111}을 가져야 한다. FIG. 2 is a graph showing a correlation between a set index and an average r value according to an embodiment of the present invention. Referring to FIG. 2, it can be seen that the average r value increases as the <111> direction index (IPF {111} ) of the rolled region poles increases. That is, in order to obtain a desired average r value of 1.5 or more in the present invention, it should have IPF {111} of 5.0 or more.
한편, 비교예 1 및 비교예 5 에서는 C+N 함량의 상한을 초과하여, 성형성에 유리한 집합조직 발달이 억제되어 r값은 1.5에 미달하였다.On the other hand, in Comparative Example 1 and Comparative Example 5, the upper limit of the C + N content exceeded, and the texture development favorable for moldability was suppressed, and the r value was less than 1.5.
구체적으로, 비교예 1의 결정립 크기(FGS)는 8.7로 본 발명의 범위를 만족하지만, IPF{111} 는 2.73으로 집합조직은 본 발명의 범위를 만족시키지 못하였다. 그 결과 오렌지필 높이가 2.48 mm로 4.0 mm 이하의 오렌지필 높이를 갖지만, 평균 r값이 0.83으로 1.5에 미치지 못하였으며, 이에 따라 성형성 요구조건을 충족하지 못하였다.Specifically, the grain size (FGS) of Comparative Example 1 was 8.7, which satisfied the range of the present invention, but IPF {111} was 2.73, and the texture did not satisfy the scope of the present invention. As a result, the orange peel height was 2.48 mm and the orange peel height was 4.0 mm or less. However, the average r value was 0.83, which was less than 1.5, and thus the formability requirement was not satisfied.
표 2 및 도 2를 참조하면, 비교예 5의 결정립 크기(FGS)는 9.4로 본 발명의 범위를 만족하지만, IPF{111} 는 3.35로 집합조직은 본 발명의 범위를 만족시키지 못하였다. 그 결과 오렌지필 높이가 3.30 mm로 4.0 mm 이하의 오렌지필 높이를 갖지만, 평균 r값이 1.22으로 1.5에 미치지 못하였으며, 이에 따라 성형성 요구조건을 충족하지 못하였다.Referring to Table 2 and FIG. 2, the grain size (FGS) of Comparative Example 5 was 9.4, which satisfied the range of the present invention, but IPF {111} was 3.35, and the texture did not satisfy the scope of the present invention. As a result, the orange peel height was 3.30 mm and the orange peel height was less than 4.0 mm, but the average r value was 1.22, which was less than 1.5, and thus the formability requirement was not satisfied.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited thereto. Those skilled in the art will readily obviate modifications and variations within the spirit and scope of the appended claims. It will be understood that various changes and modifications may be made therein without departing from the spirit and scope of the invention.
본 발명의 실시예들에 따른 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강은 표면 품질이 중요시되는 가전제품이나 주방기기용 소재에 적용 가능하다.The ferrite stainless steel improved in orange peel resistance and formability according to the embodiments of the present invention is applicable to materials for household appliances and kitchen appliances where surface quality is important.

Claims (5)

  1. 중량%로, C: 0.015 내지 0.040%, N: 0.015 내지 0.040%, Si: 0.01 내지 0.40%, Mn: 0.01 내지 0.30%, P: 0.005 내지 0.020%, S: 0.0001 내지 0.010%, Cr: 15 내지 22%, Ti: 0.05 내지 0.35%, Nb: 0.05 내지 0.35%, Al: 0.005 내지 0.05%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,0.001 to 0.020% of P, 0.0001 to 0.010% of S, 0.0001 to 0.010% of Cr, 0.01 to 0.20% of Cr, 0.01 to 0.40% of Cr, 0.015 to 0.040% of C, 0.015 to 0.040% , 0.05 to 0.35% of Ti, 0.05 to 0.35% of Nb, 0.005 to 0.05% of Al, the balance Fe and other unavoidable impurities,
    페라이트 결정립 크기(FGS)가 8.5 이상이며, 압연면 역극점도의 <111> 방향 지수 (IPF{111})가 5.0 이상인 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강.A ferritic stainless steel having a ferrite grain size (FGS) of not less than 8.5 and an orange fill resistance of not less than 5.0 in the <111> direction index (IPF {111}) of the rolling interface pole point and improved formability.
  2. 제1항에 있어서,The method according to claim 1,
    C + N은 0.03 내지 0.045%인 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강.C + N is 0.03 to 0.045%, and the orange fill resistance and formability of the ferritic stainless steel are improved.
  3. 제1항에 있어서,The method according to claim 1,
    Mo: 1% 이하(0은 제외), Ni: 1% 이하(0은 제외), Cu: 3% 이하(0은 제외) 및 B: 0.005% 이하(0은 제외)로 이루어진 군에서 선택되는 1종 이상의 원소를 더 포함하는 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강.Mo: not more than 1% (excluding 0), Ni: not more than 1% (excluding 0), Cu: not more than 3% (excluding 0) and B: not more than 0.005% A ferritic stainless steel having improved orange fill resistance and formability, further containing at least two elements.
  4. 제1항에 있어서,The method according to claim 1,
    Rt 값이 4.0 mm 미만인 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강.Ferritic stainless steel with improved Rt value of less than 4.0 mm and orange fill resistance and formability.
    (여기서 Rt 값은, 압연 방향의 수직 방향을 축으로 90° 벤딩 변형을 가한 후의 표면 거칠기를 의미한다.)(Here, the Rt value refers to the surface roughness after 90 DEG bending deformation with respect to the vertical direction in the rolling direction.)
  5. 제1항에 있어서,The method according to claim 1,
    평균 r값이 1.5 이상인 오렌지필 저항성과 성형성이 향상된 페라이트계 스테인리스강.Ferritic stainless steel with improved orange fill resistance and formability with an average r value of 1.5 or higher.
    (여기서, 평균 r값 = {r(0°)+2×r(45°)+r(90°)}/4 이다.)(Where the average r value is {r (0) + 2 x r (45) + r (90)} / 4.
PCT/KR2018/011765 2017-12-26 2018-10-05 Ferritic stainless steel with improved orange peel resistance and formability WO2019132190A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0179150 2017-12-26
KR1020170179150A KR20190077723A (en) 2017-12-26 2017-12-26 Ferritic stainless steel with improved orange peel resistance and formability

Publications (1)

Publication Number Publication Date
WO2019132190A1 true WO2019132190A1 (en) 2019-07-04

Family

ID=67064185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011765 WO2019132190A1 (en) 2017-12-26 2018-10-05 Ferritic stainless steel with improved orange peel resistance and formability

Country Status (2)

Country Link
KR (1) KR20190077723A (en)
WO (1) WO2019132190A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144342A (en) * 1998-01-30 2000-05-26 Sumitomo Metal Ind Ltd Ferritic stainless steel and ferritic stainless steel slab excellent in formability
KR20010043930A (en) * 1999-03-30 2001-05-25 에모또 간지 Ferritic stainless steel sheet having excellent formability
JP2003073782A (en) * 2001-08-31 2003-03-12 Kawasaki Steel Corp Ferritic stainless steel sheet superior in deep drawability
KR20080079178A (en) * 2007-02-26 2008-08-29 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 The ferritic stainless steel plate having low orange peel and exhibiting excellent formability, and method for producing the same
KR20100020446A (en) * 2008-08-12 2010-02-22 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel sheet causing little orange peel due to working and production method therefor
JP2017186665A (en) * 2016-03-30 2017-10-12 日新製鋼株式会社 Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND MANUFACTURING METHOD THEREFOR

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144342A (en) * 1998-01-30 2000-05-26 Sumitomo Metal Ind Ltd Ferritic stainless steel and ferritic stainless steel slab excellent in formability
KR20010043930A (en) * 1999-03-30 2001-05-25 에모또 간지 Ferritic stainless steel sheet having excellent formability
JP2003073782A (en) * 2001-08-31 2003-03-12 Kawasaki Steel Corp Ferritic stainless steel sheet superior in deep drawability
KR20080079178A (en) * 2007-02-26 2008-08-29 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 The ferritic stainless steel plate having low orange peel and exhibiting excellent formability, and method for producing the same
KR20100020446A (en) * 2008-08-12 2010-02-22 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel sheet causing little orange peel due to working and production method therefor
JP2017186665A (en) * 2016-03-30 2017-10-12 日新製鋼株式会社 Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND MANUFACTURING METHOD THEREFOR

Also Published As

Publication number Publication date
KR20190077723A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2020101227A1 (en) Nonmagnetic austenitic stainless steel and manufacturing method therefor
WO2011081350A2 (en) High strength steel sheet having excellent resistance to post weld heat treatment and method for manufacturing same
KR20060115625A (en) Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same
JP5376927B2 (en) Manufacturing method of high proportional limit steel plate with excellent bending workability
WO2019117430A1 (en) Ferritic stainless steel having excellent high-temperature oxidation resistance, and manufacturing method therefor
WO2017111251A1 (en) Austenitic stainless steel with improved creep-resistant properties and tensile strength and method for producing same
CN104619874B (en) The excellent ferrite series stainless steel plate of molding processibility
WO2014003271A1 (en) Low chrome and ferrite-based stainless steel having improved corrosion resistance and anti-ridging properties
WO2019039715A1 (en) Austenitic stainless steel having excellent workability and anti-aging crack resistance and drawing product using same
WO2016105092A1 (en) Ferrite-based stainless steel and method for manufacturing same
WO2020130279A1 (en) High-strength stainless steel
WO2019132190A1 (en) Ferritic stainless steel with improved orange peel resistance and formability
TW202142701A (en) Low carbon steel sheet and method of manufacturing the same
WO2019112142A1 (en) High-hardness austenitic stainless steel having excellent corrosion resistance
WO2019117432A1 (en) Ferrite-based stainless steel having excellent impact toughness, and method for producing same
JP2006299374A (en) Ferritic stainless steel sheet superior in corrosion resistance and anti-ridging property, and manufacturing method therefor
CN102712983B (en) Cold-rolled steel plate and method for producing same
WO2017209431A1 (en) Austenitic stainless steel having improved corrosion-resistance and workability and method for producing same
KR101695758B1 (en) Ferritic stainless steel and method of manufacturing the same
WO2021125564A1 (en) High-strength ferritic stainless steel for clamp, and manufacturing method therefor
JP4715530B2 (en) Method for producing Cr-containing steel sheet excellent in high-temperature strength and toughness, and Cr-containing steel sheet
EP3851552A1 (en) High-strength ferritic stainless steel for clamp and method for manufacturing same
KR20180018908A (en) Duplex stainless steel having low content of ni and method of manufacturing the same
WO2020130257A1 (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing same
WO2017111437A1 (en) Lean duplex stainless steel and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893996

Country of ref document: EP

Kind code of ref document: A1