WO2019132139A1 - Method for manufacturing air-circulating type fine dust proof mesh using nano-fiber - Google Patents

Method for manufacturing air-circulating type fine dust proof mesh using nano-fiber Download PDF

Info

Publication number
WO2019132139A1
WO2019132139A1 PCT/KR2018/006821 KR2018006821W WO2019132139A1 WO 2019132139 A1 WO2019132139 A1 WO 2019132139A1 KR 2018006821 W KR2018006821 W KR 2018006821W WO 2019132139 A1 WO2019132139 A1 WO 2019132139A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh
adhesive
nanofibers
release paper
nanofiber
Prior art date
Application number
PCT/KR2018/006821
Other languages
French (fr)
Korean (ko)
Inventor
정상훈
양광웅
Original Assignee
주식회사 티엔솔루션
엔에프테크 주식회사
정상훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티엔솔루션, 엔에프테크 주식회사, 정상훈 filed Critical 주식회사 티엔솔루션
Priority to CN201880000980.1A priority Critical patent/CN110226005B/en
Publication of WO2019132139A1 publication Critical patent/WO2019132139A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M17/00Producing multi-layer textile fabrics
    • D06M17/04Producing multi-layer textile fabrics by applying synthetic resins as adhesives
    • D06M17/10Polyurethanes polyurea
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Definitions

  • the present invention relates to a dustproof mesh manufacturing method, and more particularly, to a dustproof mesh manufacturing method capable of blocking fine dust and preventing damage of nanofibers due to external friction or impact.
  • mesh-type textile products are used to fix various kinds of mesh products to window frames or to use roll screens in order to prevent insects such as worms. These products can not prevent fine dust, which is a serious environmental problem in recent years.
  • nonwoven fabric such as meltblown in dustproof mesh for blocking fine dust, but it is difficult to block ultrafine dusts of PM (Particulate Meter) 2.5 or less.
  • PM Pulfine Meter
  • the visibility to the outside of the window must be ensured, so that the conventional filter nonwoven fabric is not suitable. This visibility problem can be overcome by applying a layer of nanofiber, which is not a nonwoven fabric, onto the mesh.
  • nanofibers are produced mainly by electrospinning with fibers having a diameter of several tens to several hundreds of nanometers. When nanofibers are applied on a mesh, they are not attached to the mesh, have.
  • the nanofiber coating mesh has a problem that it is difficult to use in a place where external force frequently acts.
  • a thin mesh product is laminated on the nanofiber to solve the durability problem of the nanofiber, but this manufacturing method increases the thickness and weight of the product and increases the cost of the raw material.
  • Nanofibers are likely to be damaged.
  • the mesh-lined product can not be free from the problem of deteriorating the appearance of the product and deteriorating the nanofiber protection function when the protective mesh is partially peeled off during long-term use.
  • Another problem to be solved by the present invention is to provide a nano-fiber-reinforced resin composition which can prevent peeling and damage of nanofibers during use by directly coating an adhesive resin on the nanofibers, And to provide a method for manufacturing a circulating fine dust-proofing mesh.
  • Another object of the present invention is to provide a nanofiber which is coated with a coating resin of a continuous pattern pattern on a nanofiber in a cover factor of 35% to 70% And to provide a method of manufacturing an air circulation type fine dust dustproofing mesh.
  • an electrospinning method for fabricating a mesh by spinning nanofibers having a diameter of 500 nm to 700 nm with a mesh having a mesh size of 1 mm to 5 mm at 2 g / m 2 to 5 g / m 2 .
  • the release paper is passed through a first roller for resin transfer so that a coating resin mixed with an adhesive of the first component and an adhesive of the second component is applied in a continuous pattern pattern of 1.5 g / m 2 to 3.5 g / m 2
  • the adhesive of the first component has a greater tendency to contribute to the improvement in flexibility and adhesiveness of the coating resin as compared with the adhesive of the second component
  • the method comprising the steps of: preparing a processed release paper, which has a greater tendency to contribute to improvement in durability and strength of the coating resin as compared with an adhesive;
  • the nanofiber radiating surface of the processed mesh and the coated resin transfer surface of the processed release paper were put in contact with each other and passed through a second roller heated to 90 to 100 ° C under a pressure of 0.4 MPa to 0.8 MPa, ; And removing the release paper from the release paper bonding mesh to produce a dustproof mesh having a cover factor of 35% to 70% of the coating resin.
  • the coating resin may be a coating resin in which the ethylene-vinyl acetate adhesive as the adhesive for the first component and the polyurethane adhesive as the adhesive for the second component are mixed in the range of 80:20 to 60:40.
  • the dustproof mesh manufacturing method may further include aging the release paper bonding mesh at 40 ° C to 50 ° C for 10 hours to 24 hours before the release paper removing step.
  • the electrospinning step comprises spinning the nanofibers through the mesh using a top-down electrospinning device, and alternately spinning the adhesive and the nanofibers a plurality of times to form a nanofiber layer on the top layer, Or a mixture of a 10% to 20% concentration nanofiber polymer solution with a polyurethane adhesive or an acrylic adhesive.
  • the pressure applied to the first roller may be 0.2 MPa to 0.4 MPa.
  • the dustproof mesh, the performance of the ASHRAE STANDARD 52.1, and the dust collection efficiency is 80% or more in accordance with gravimetric method JIS L 1096 2010, an air permeability according to Method A are 150cm 3 / cm 2 / s to about 170cm 3 / cm 2 / s Lt; / RTI >
  • the dust-proof mesh fabricated according to the method of manufacturing an air circulation type dust-free dust-proofing mesh using nanofibers according to the present invention can prevent the nanofibers from being separated from the mesh during use by directly adhering the nanofibers to the mesh, It has excellent advantages.
  • the dustproof mesh fabricated according to the method of manufacturing an air circulation type fine dust dustproofing mesh using nanofibers according to the present invention is formed by coating a coating resin of a continuous pattern pattern on a nanofiber with a cover factor of 35% to 70% Which is superior to the dust-proof mesh of FIG.
  • FIG. 1 is a flowchart illustrating an example of a method for fabricating a fine dust-damping mesh using nanofibers according to a first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of an electrospinning device for performing electrospinning of nanofibers and an adhesive in the method of manufacturing a fine dust-proofing mesh using the nanofibers shown in FIG.
  • 3A is a conceptual diagram showing an example of the structure of a radiation part of an electrospinning device used in a method of manufacturing a fine dust-proofing mesh using nanofibers according to the present invention.
  • Figs. 3B and 3C are enlarged photographs for comparing the adhesive electrospinning result in the electrospinning step according to the present invention with the results of the conventional adhesive spray application. Fig.
  • FIG. 4 is a conceptual view showing an example of a resin coating apparatus for performing resin coating in a method of manufacturing a fine dust-damping mesh using nanofibers according to the present invention.
  • FIG. 5 conceptually shows examples of a pattern engraved on the surface of a first roller for transferring a continuous pattern to a release paper in a resin coating apparatus used in a method of manufacturing a fine dust dustproof mesh using nanofibers according to the present invention.
  • FIG. 6A shows that the pressure applied to the second roller for adhesion of the coating resin in Comparative Example 2 of the present invention is excessive, so that the nanofibers are damaged or peeled off from the mesh.
  • Example 6B is a photograph for comparing washing durability of Example 2 according to the present invention and Comparative Example 2 thereof.
  • FIG. 8B shows a test result of a third party in order to compare the dustproof mesh according to the second embodiment of the present invention with other mass-produced products.
  • FIG 10 is a graph showing a pore size distribution test result of the dustproof mesh example 2 according to the present invention.
  • 11A and 11B show test results of the pollen blocking efficiency of the dustproof mesh example 2 according to the present invention.
  • Figure 12 shows actual photographs of the dustproof mesh fabricated according to the present invention.
  • FIG. 1 is a flowchart illustrating an example of a method for fabricating a fine dust-damping mesh using nanofibers according to a first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a top-down electrospinning device 100 for performing electrospinning of nanofibers in a method of manufacturing an air circulation type fine dust-proofing mesh using nanofibers according to the present invention.
  • 3 is a conceptual diagram showing an example of the structure of the radiation part 120 of the electrospinning device 100 used in the method of manufacturing the air circulation type fine dust dustproof mesh using the nanofibers according to the present invention.
  • FIG. 4 is a conceptual diagram showing an example of a resin coating apparatus 200 for performing resin coating in a method of manufacturing a fine dust-damping mesh using nanofibers according to the present invention.
  • a processed mesh is prepared by spinning nanofibers on a grid-like mesh using an electrospinning apparatus (S100).
  • the diameter of the nanofiber is 500 nm to 700 nm
  • the diameter of the lattice is 1 mm to 5 mm
  • the nanofiber is preferably radiated at 2 g / m 2 to 5 g / m 2 .
  • Nanofibers having diameters ranging from 200 nm to 1000 nm are generally used for the manufacture of dust-proof meshes.
  • nanofibers having a diameter of at least 500 nm are used, whereby the nanofibers themselves have a certain strength, During the process, the amount of nanofibers passing through the mesh is reduced, which is also helpful for uniform nanofiber application.
  • nanofibers having a diameter of 700 nm or less are used because, when nanofibers having a diameter of 700 nm or more are used, fine pores between the nanofibers are increased and the fine dust collecting efficiency can be reduced.
  • the mesh may be one of PVC, PVC coated glass fiber, PP, PET, and Nylon having a thickness of 0.1 mm to 1 mm, and the nanofiber may be one of PVDF, TPU, PAN, PET, and Nylon.
  • the dust collection efficiency of 80% or more according to the ASHRAE STANDARD 52.1 can be achieved even when the dustproof mesh is manufactured using the mesh having a lattice diameter of 1 mm to 5 mm, 1096 2010, according to the method A, 150 cm 3 / cm 2 / s to 170 cm 3 / cm 2 / s.
  • the electrospinning step S100 may be performed by the top-down electrospinning apparatus 100.
  • FIG. 1 is a diagrammatic representation of the electrospinning apparatus 100.
  • the electrospinning device 100 includes a reservoir 110 for storing a nanofiber polymer solution, a radiation unit 120 for emitting a nanofiber polymer solution, and a collector 130 in which a mesh is disposed. A high voltage is applied between the radiation unit 120 and the collector 130.
  • the storage tank 110 may be equipped with a stirring device including a motor M for stirring the nanofiber polymer solution and a propeller.
  • the nanofiber polymer solution stored in the reservoir 110 is pumped by the pump P and radiated to the mesh on the collector 130 through the spinning nozzle 121 of the radiation unit 120, The compressed air is injected. Then, nanofibers are radiated onto the mesh located on the collector 130 to form a layer.
  • the electrospinning apparatus 100 is preferably a system in which temperature and humidity of air are kept constant. This is to control the resin hardening speed in the pipe or injection nozzle due to the inflow of external air.
  • the radiation unit 120 of the electrospinning apparatus 100 of FIG. 2 may have a structure in which the nanofiber radiation module and the adhesive radiation module are alternately disposed along the traveling direction of the mesh.
  • Each of the radiation modules may have a structure in which a plurality of single radiation portions are continuously disposed to cover the entire width of the mesh.
  • the nanofibers are radiated onto the mesh during the movement of the mesh on the collector, and then the adhesive and the nanofiber irradiation are alternately repeated a plurality of times, and the nanofiber layer is radiated on the uppermost layer.
  • the adhesive may be an adhesive in which a solution of a nanofiber polymer solution having a concentration of 10% to 20% is mixed with a polyurethane or acrylic adhesive at a predetermined ratio.
  • the predetermined ratio may be a ratio of 0.5: 1 to 1.5: 1.
  • the reason for mixing the nanofiber polymer solution into the polyurethane or acrylic adhesive during the manufacture of the adhesive is that since the adhesive itself is difficult to be fibrous, the adhesive is fibrous when the adhesive is spun by mixing the nanofibers, So that the nanofibers can be uniformly applied.
  • the process of first performing nanofiber spinning also firstly forms a nanofiber layer on the mesh to prevent the adhesive from escaping under the mesh through the mesh lattice, thus helping to uniformly apply the nanofibers.
  • the single radiating part may have a structure including a spinning nozzle and an air jet opening like the radiating part 120 shown in Fig.
  • the number of single radiating parts in each radiation module may vary depending on the width of the mesh.
  • the number of single radiating parts may be between a few tens and several hundreds depending on the width of the mesh.
  • the present invention not only the nanofibers but also the adhesive are applied on the mesh through electrospinning in the electrospinning step. According to this method, compared with the conventional adhesive spray application method, Adhesion can be much higher.
  • Figs. 3B and 3C are enlarged photographs for comparing the adhesive electrospinning result in the electrospinning step according to the present invention with the results of the conventional adhesive spray application.
  • Fig. in FIG. 3A light brown lines represent nanofibers, black lines represent an adhesive, and black in FIG. 3B represents an adhesive agent at the irregularly agglomerated portion, although it is not visually distinguished by reference.
  • the adhesive electrospun according to the electrospinning of the present invention has a very small diameter and uniformity, and the adhesive mass is also small in size and shaped like a sphere. It can be seen that the diameter of the adhesive is non-uniform and the size of the adhesive mass is very large. According to the present invention, when the nanofibers are spun as well as the nanofibers in the spinning step according to the present invention, adhesion between the nanofibers is more uniform and stronger than that of applying the conventional adhesive by spraying have.
  • a method of manufacturing a dustproof mesh according to the present invention is a method in which a release paper is passed through a first roller 210 for transferring resin to form a coating resin (ex: ethylene-vinyl acetate- the adhesive and the polyurethane-based adhesive is 80: 20 to 60: 40 of the coated resin mixture in the range) to each other is connected to the continuous patterns 1.5g / m 2 to 3.5g / m 2 was transferred to the release paper to produce a release paper processing (S110).
  • a coating resin ex: ethylene-vinyl acetate- the adhesive and the polyurethane-based adhesive is 80: 20 to 60: 40 of the coated resin mixture in the range
  • the coating resin but the adhesive resin are mixed and used as the nano-fiber coating resin because various effects can be expected through the adhesive resin having different characteristics as compared with the simple coating resin.
  • this will be described in detail.
  • a polyurethane-based adhesive rather than a polyurethane-based coating resin is used for coating nanofibers.
  • the adhesive resin has better physical properties such as durability and fastness than a resin for coating, and the fine dust- Compared to nanofiber dust-proof mesh coated with coating resin, it can have stronger advantages from external impact or friction.
  • Ethylene vinyl acetate adhesive improves the flexibility of coating resin by weakening the crystallinity of mixed adhesive, and it can give low temperature property which enables coating treatment at less than 80 °C. Solubility in various solvents due to polar group It can play a role of improving.
  • the dust-proof mesh manufactured according to the present invention can have strong durability even when applied to a sliding (or roll screen) form, not a fixed type.
  • the ethylene-vinyl acetate-based adhesive is mixed with the coating resin in an amount of 60% or more.
  • the ethylene-vinyl acetate-based adhesive is mixed with the coating resin in an amount of 80% or more, flexibility and adhesiveness are increased but it is only weakened by external impact or friction.
  • the ethylene- Coating resin is used.
  • the ethylene-vinyl acetate-based adhesive has a greater tendency to contribute to improvement in flexibility and adhesiveness of the coating resin as compared with the polyurethane-based adhesive, and the polyurethane-based adhesive is superior in durability The tendency to contribute to the improvement of strength is great.
  • the adhesive composition of the coating resin in the present invention is not limited to the above-mentioned examples. That is, in the present invention, a coating resin in which an adhesive of a first component and an adhesive of a second component are mixed is used as a coating resin for nanofibers, wherein the adhesive of the first component is superior to the adhesive of the second component It is preferable that the coating resin has a high tendency to contribute to improvement in flexibility and adhesiveness and that the adhesive of the second component has a strong tendency to contribute to improvement in durability and strength of the coating resin as compared with the adhesive of the first component .
  • a pressure of 0.4 MPa to 0.8 MPa is applied against the nanofiber emission surface of the processed mesh and the coating resin transfer surface of the processed release paper, And then passed through a second roller 230 heated to a temperature of 100-120 ⁇ ⁇ to produce a release paper bonding mesh (S120).
  • a step of drying the release paper to which the coating resin is adhered using the drying apparatus 200 may be further performed before the release paper bonding mesh manufacturing process. After passing through the drying device 220, the solvent may be evaporated and the coating resin may be dried to a suitable viscosity to adhere to the nanofibers.
  • the pressure applied to the second roller 230 to bond the processed mesh and the processed release paper is 0.4 MPa to 0.8 MPa because the pressure applied to the second roller 230 is 0.4 MPa or less
  • the coating resin transferred to the release paper may have weak adhesion to the nanofiber emission surface and the nanofibers may be damaged if the pressure applied to the second roller 230 exceeds 0.8 MPa.
  • the second roller 230 is utilized while being heated to 90 ° C to 100 ° C so that the coating resin can adhere well to the nanofibers.
  • heat of 80 ° C or less is transferred to the actual mesh because the coating resin contains the ethylene-vinyl acetate adhesive as described above, and the coating process can be performed even at a temperature lower than 80 ° C.
  • low-temperature coating is possible, so that it is prevented that the mesh and nanofibers are physically / chemically weakened due to heat, so that the durability of the dust-proofing mesh can be enhanced.
  • the pressure applied to the first roller 210 is preferably in the range of 0.2 MPa to 0.4 MPa, which is a half of the pressure applied to the second roller 230. If the pressure applied to the first roller 210 is the same as the pressure applied to the second roller 230 and the coating resin is transferred to the release paper, it is transferred to the release paper when passing through the second roller 230 Because the coating resin may be difficult to adhere perfectly to nanofibers spun into the mesh.
  • a release paper removing step for manufacturing the coated dustproof mesh is performed (S130). Such a releasing paper removing step may be performed by the separating apparatus 240 as shown in FIG.
  • the release paper bonding mesh can be aged at 40 ° C to 50 ° C for 10 hours to 24 hours. This is because the degree of mixing of the ethylene-vinyl acetate-based adhesive and the polyurethane-based adhesive is increased while the coating resin is aged at a temperature higher than room temperature, so that the coating resin stably adheres to the nanofiber layer.
  • the dustproof mesh finally fabricated has a cover factor of 35% to 70%, which is an area occupied by the coating resin with respect to the entire dustproof mesh area.
  • the cover factor is less than 35%, the nanofiber has an external force or friction If the cover factor exceeds 70%, the pores of the nanofiber may be clogged and the breathability may become too low.
  • the dustproof mesh thus manufactured may have a surface area of at least 150 cm 3 / cm 2 / s to 170 cm 3 / cm 2 / s or more in accordance with JIS L 1096 2010, Method A.
  • FIG. 5 conceptually illustrates examples of patterns engraved on the surface of a first roller 210 for transferring a continuous pattern to a release paper in a resin coating apparatus used in a method of manufacturing a fine dust-proofing mesh using nanofibers according to the present invention .
  • FIG. 5 (a) a hexagonal continuous pattern for transferring a continuous pattern of hexagons connected to each other by a coating resin is formed on the surface of the first roller 210, and FIG. 5 Referring to FIG. 5 (b), the surface of the first roller 210 has a rectangular continuous pattern for transferring a rectangular continuous pattern connected to a coating resin, and FIG. 5 (c) It can be seen that a triangular continuous pattern for transferring a continuous pattern of triangles connected to each other is engraved on the surface of the first roller 210. Meanwhile, in order to transfer the coating resin to the release paper in the continuous pattern, the pattern engraved in the first roller 210 is not limited to the above-described standard patterns, and may be various irregular continuous patterns.
  • the dustproof mesh fabricated according to the present invention is coated with a continuous pattern formed by connecting the resin on the nanofiber, so that the damage and peeling of the nanofiber are prevented so that the durable mesh can be easily cleaned.
  • the coating can be reduced in thickness and weight as compared with conventional products in which meshes are laminated, and more excellent visibility and air permeability can be provided.
  • the nanofiber polymer solution is mixed with the adhesive used in the electrospinning step to promote the fiberization of the adhesive, so that the adhesive is prevented from flowing below the grid of the mesh, so that the nanofibers can be uniformly applied.
  • the manufacturing methods of the embodiments and the comparative examples are as follows.
  • the same raw materials and conditions were applied to the examples and the comparative examples except for the specific points mentioned above.
  • an adhesive composed of a polyurethane-based adhesive and a PVDF (raw material of nanofiber) mixed at a ratio of 1.5: 1.0 was spun onto a latticed mesh (150 g / m 2) and the nanofibers having a diameter of 600 nm were spun Air circulation type fine dust - proof mesh.
  • the coating resin for protecting the mesh after coating nanofibers having a diameter of 600 nm with a mesh size of 150 g / m < 2 > (2.5 g / m < 2 >) was a resin used for an adhesive.
  • the pressure of the first roller 210 designed to have a cupper factor of 55% of the coating resin is set to 0.3 MPa
  • the pressure of the second roller 230 is set to 0.6 MPa
  • the temperature of the second roller 230 is set to 100 .
  • the release paper was separated and the air circulation type micro dust messy mesh using nanofibers was fabricated.
  • Example 1 the diameter of the nanofibers was changed to 300 nm to prepare an air circulating fine dust-proofing mesh.
  • Example 2 the cover factor of the coating resin was changed to 30% to prepare an air circulation type fine dust-proofing mesh.
  • Example 2 the pressure of the second roller 230 was changed to 0.9 MPa to prepare an air circulation type fine dust-proofing mesh.
  • a nonwoven fabric with a diameter of 800 nm and a density of 8.5 g / m 2 was fabricated from polypropylene using a meltblowing apparatus and applied to a dustproof mesh.
  • Table 1 below is a table comparing the coatability and uniformity of Example 1 and Comparative Example 1.
  • Example 1 For reference, the applicability and uniformity of Example 1 and Comparative Example 1 were determined by magnifying and observing at 40X magnification with an optical microscope after nanofiber spinning. Referring to Table 1, Example 1 in which nanofibers having a diameter of 600 nm were both excellent in coating properties and uniformity, but when the nanofibers having a diameter of 300 nm were spun, it was determined that both the uniformity and the application were poor.
  • the nanofiber having a diameter of 500 nm to 700 nm is radiated to fabricate the dust-proofing mesh, the nanofiber having a diameter of less than 500 nm is superior in strength to the nanofiber,
  • the diameter of the nanofibers is limited to 700 nm or less because, when the diameter of the nanofibers is more than 700 nm, the fine pores between the nanofibers become large and the fine dust collecting efficiency may decrease.
  • the fine dust collecting efficiency of a certain level is ensured because the nanofiber layer is not a two-dimensional structure but a complex three-dimensional network structure, Because the degree of reduction of the fine dust collecting efficiency is less than the increase of the micro pore size due to the increase of the nanofiber diameter.
  • Table 2 below is a table comparing dust collection efficiency (i.e., fine dust collection efficiency), air permeability, visibility, and nanofiber durability of Example 2 and Comparative Examples 2 to 4.
  • the evaluation of the physical properties of the samples was carried out by the FITI test institute, the internationally recognized testing institute.
  • the dust collection efficiency was ASHRAE STANDARD 52.1, weight method (unit%), air permeability according to JIS L 1096 2010, method A (unit: ,
  • the visibility was evaluated by the transmittance in a range of 450 nm to 750 nm, which is a monochromatic region in the wavelength range (UV-R) of 250 nm to 2,500 nm.
  • the durability was measured by washing the samples with water at 25 ° C using the shower for the best, and a window frame (50 cm x 50 cm) was formed in a sliding (or roll screen) form, Damage to the nanofibers was checked with an optical microscope to judge whether the durability was good or bad.
  • Example 2 and Comparative Example 2 the cover factor of the coating resin is 55% and 30%.
  • the difference in the dust collecting efficiency, the air permeability, and the visibility is not different between the two, but the difference is good and bad in durability Able to know. That is, the dustproof mesh manufactured according to the present invention can have durability by setting the cover factor of the coating resin to 35% to 70%.
  • Example 2 and Comparative Example 3 the pressure applied to the second roller 230 is 0.6 MPa and 0.9 MPa when the coating resin transferred to the release paper is adhered to the nanofiber emission surface of the mesh.
  • Comparative Example 2 The pressure applied to the nanofibers was so strong that the nanofibers were peeled from the mesh.
  • the dust-proof mesh using the nonwoven fabric made of the existing meltblown has higher air permeability and lower dust collecting efficiency and visibility than the product using the nanofiber according to the present invention Able to know.
  • Example 6A is a photograph for comparing washing durability of Example 1 according to the present invention and Comparative Example 1 thereof.
  • FIG. 6A shows a state in which dust-proof meshes are cleaned 10 times with a shower head as shown above in a state where fine dust is collected in a dust-proof mesh.
  • Table 1 and FIG. 6A it can be seen that the amount and condition of the nanofibers of Example 1 after washing were much larger and better than those of Comparative Example 1 after washing. This means that the diameter (600 nm) of the nanofiber used in Example 1 is twice the diameter (300 nm) of the nanofiber used in Example 1, which means that the nanofiber itself has high durability.
  • FIG. 6B shows that the pressure applied to the second roller 230 for adhesion of the coating resin in Comparative Example 2 of the present invention is excessive, so that the nanofibers are damaged or peeled from the mesh.
  • the pressure of the second roller 230 for adhering the coating resin to the nanofibers can be limited to 0.4 MPa to 0.8 MPa, thereby preventing problems caused by damage due to peeling of the nanofibers.
  • Example 7 shows the result of the fine dust collecting efficiency test of the dustproof mesh example 2 according to the present invention. Referring to FIG. 7, it can be seen that the dust collection efficiency of Example 2 is 81.7%. This indicates that dust collection efficiency of 80% or more can be achieved while using nanofibers having a diameter of 500 nm to 700 nm.
  • FIG. 8A shows a test result of the dustproof mesh embodiment 2 according to the present invention.
  • the value of 170.4 in the second embodiment is very good.
  • the result of this test means that 170.4 cm 3 of air passes per 1 cm 2 per cm 2 when air pressure of 125Pa is applied to a width of 38cm 2 , which can provide sufficient indoor air circulation in everyday life.
  • FIG. 8B shows a test result of a third party in order to compare the dustproof mesh according to the second embodiment of the present invention with other mass-produced products.
  • the above-mentioned products are made of nanofibers having a diameter of 300 nm.
  • the dust-proof mesh manufactured according to the present invention has 170.4 which is much higher than 140.2 of the dust-proof mesh of other companies made of nanofibers having a diameter of 300 nm and made of nanofibers having a diameter of 600 nm Able to know.
  • 9A to 9D show the visibility test results of the dustproof mesh embodiment 2 according to the present invention.
  • the visibility test is a result of testing the light transmittance for a wavelength range of 250 nm to 2,500 nm.
  • the visibility of Example 2 is 45.63%, which is a monochromatic light range of 450 to 750 nm Means an average value of light transmittance.
  • FIGS. 9A to 9D it can be seen that visibility is not significantly different between Example 2 and Comparative Examples. This is because the cover factor of the coating resin of all three samples is at least 30% or more.
  • 10 is a graph showing a pore size distribution test result of the dustproof mesh example 2 according to the present invention.
  • the specific gravity of the pore having a diameter of about 18 ⁇ is the highest at about 18% and 34%, and the specific gravity of the pore having a diameter of 10 ⁇ to 40 ⁇ is more than 60%
  • the dust-proofing mesh according to the present invention uses nanofibers having a diameter of 500 nm to 700 nm, which means that the spreadability and uniformity of the mesh are excellent.
  • FIGS. 11A and 11B show test results of the pollen blocking efficiency of the dustproof mesh example 2 according to the present invention.
  • this test was conducted in Japan 'KAKEN TEST CENTER'. In Korea, there is no established test method for pollen interruption, so we conducted the test through a Japanese institution that has established test standards. This test was usually carried out using pollen of 20um in diameter. Referring to FIGS. 11A and 11B, it can be seen that the pollen blocking efficiency of Example 2 is very high, which is about 97% on average.
  • Figure 12 shows actual photographs of the dustproof mesh fabricated according to the present invention.
  • the coating resin coating the nanofibers may be a regular polygonal continuous pattern such as a hexagon, a continuous pattern of an amorphous shape, and a cover factor Can be controlled in various ways.
  • the dust-proof mesh fabricated according to the method of manufacturing an air circulation type dust-free dust-proofing mesh using the nanofibers according to the present invention is characterized in that the nanofiber is separated from the mesh or the damage of the nanofiber is small, It can be widely used in residential facilities such as general homes and apartments, and various industrial facilities such as factories and buildings because it has the advantage of visibility compared to existing dustproof mesh.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Filtering Materials (AREA)

Abstract

According to the problem to be solved by the present invention, a method for manufacturing a fine dust proof mesh using a nano-fiber coats a mesh to which a nano-fiber is bonded, with a resin by using a special method so as to prevent detachment and damage of the nano-fiber and remarkably reduce a thickness and a weight of a mesh in comparison with an existing product, and enables manufacturing of a fine dust proof mesh having excellent visibility and air permeability.

Description

나노 섬유를 이용한 공기 순환형 미세 먼지 방진 메쉬 제조 방법Manufacturing Method of Air Circulation Type Fine Dust Dustproof Mesh Using Nanofibers
본 발명은 방진 메쉬 제조 방법에 관한 것으로, 보다 상세하게는, 미세먼지를 차단할 수 있고 외부 마찰이나 충격으로 인해 나노 섬유가 손상되는 것을 방지할 수 있는 방진 메쉬 제조 방법에 관한 것이다.The present invention relates to a dustproof mesh manufacturing method, and more particularly, to a dustproof mesh manufacturing method capable of blocking fine dust and preventing damage of nanofibers due to external friction or impact.
일반적으로 메쉬 형태의 섬유 제품은 벌레 등 해충을 막기 위해서 여러 가지 재질의 메쉬 제품을 창문틀에 고정하거나 롤스크린 형태로 사용하는데, 이러한 제품들은 최근 심각한 환경 문제가 되고 있는 미세먼지까지는 막을 수 없다.In general, mesh-type textile products are used to fix various kinds of mesh products to window frames or to use roll screens in order to prevent insects such as worms. These products can not prevent fine dust, which is a serious environmental problem in recent years.
미세 먼지를 차단하기 위한 방진 메쉬에 멜트블로운 등 부직포를 사용해도 되겠지만, PM(Particulate Meter) 2.5 이하의 초미세 먼지는 차단하기 어렵다. 또한 창문에 설치하기 위해서는 창밖으로의 시인성이 보장되어야 하기 때문에 기존의 필터용 부직포는 적합하지 않다. 이러한 시인성 문제는 부직포가 아닌 광투과성이 높은 나노 섬유 레이어를 메쉬 위에 도포함으로써 해소될 수 있다.It is possible to use nonwoven fabric such as meltblown in dustproof mesh for blocking fine dust, but it is difficult to block ultrafine dusts of PM (Particulate Meter) 2.5 or less. In addition, in order to be installed on a window, the visibility to the outside of the window must be ensured, so that the conventional filter nonwoven fabric is not suitable. This visibility problem can be overcome by applying a layer of nanofiber, which is not a nonwoven fabric, onto the mesh.
그러나 나노 섬유는 직경이 수십~수백 나노미터 크기의 섬유로 주로 전기방사를 통해 생산되는데, 나노 섬유는 메쉬 위에 도포할 경우 자체 접착성이 없기 때문에 메쉬에 붙어 있지 못하여 필터 기능을 유지할 수 없는 문제점이 있다.However, nanofibers are produced mainly by electrospinning with fibers having a diameter of several tens to several hundreds of nanometers. When nanofibers are applied on a mesh, they are not attached to the mesh, have.
또한, 나노 섬유는 물리적으로 강도가 매우 낮기 때문에 외부 충격이나 마찰에 의해 쉽게 손상을 입게 되어 제품의 성능이 저하되는 원인이 된다. 즉, 약한 내구성으로 인하여 나노 섬유 도포 메쉬는 외력이 자주 작용하는 곳에 사용하기 어려운 문제점이 있다.In addition, since the nanofiber is physically weak in strength, the nanofiber is easily damaged by external impact or friction, thereby deteriorating the performance of the product. That is, due to the weak durability, the nanofiber coating mesh has a problem that it is difficult to use in a place where external force frequently acts.
일부 제조사에서는 나노 섬유의 내구성 문제를 해결하기 위하여 얇은 메쉬 제품을 나노 섬유 위에 합지하는 경우가 있으나, 이러한 제조방법은 제품의 두께 및 중량을 증가시키며 원료비를 증가시키는 결과를 초래할 뿐만 아니라 메쉬 합지 과정에서 나노 섬유가 손상될 가능성이 높다. 그리고 메쉬가 합지된 제품 또한 장기간 사용시 보호 메쉬가 부분적으로 박리되어 제품의 외관을 손상시키고 나노 섬유 보호기능을 저하시키는 문제점으로부터 자유로울 수 없다.In some manufacturers, a thin mesh product is laminated on the nanofiber to solve the durability problem of the nanofiber, but this manufacturing method increases the thickness and weight of the product and increases the cost of the raw material. In addition, Nanofibers are likely to be damaged. Also, the mesh-lined product can not be free from the problem of deteriorating the appearance of the product and deteriorating the nanofiber protection function when the protective mesh is partially peeled off during long-term use.
이에 본 발명이 해결하고자 하는 기술적 과제는, 먼저 이면지에 코팅 수지를 전사한 다음 이면지의 코팅 수지를 나노 섬유 위에 코팅하는 2단계 코팅 방식을 이용하여, 제조 과정에서 나노 섬유가 메쉬로부터 분리되거나 나노 섬유가 손상되는 것을 최소화할 수 있는, 나노 섬유를 이용한 공기 순환형 미세먼지 방진 메쉬 제조 방법을 제공하는 것이다.SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a nanofiber coating method and a nanofiber coating method, in which a nanofiber is separated from a mesh in a manufacturing process by using a two-step coating method in which a coating resin is first transferred onto a backing paper, And to provide a method of manufacturing an air circulation type micro dust-proofing mesh using nanofibers, which can minimize the damage of the air-circulation type micro dust-proofing mesh.
본 발명이 해결하고자 하는 다른 기술적 과제는, 나노 섬유 위에 접착성 수지를 직접 코팅함으로써 사용 중 나노 섬유의 박리 및 손상을 차단할 수 있고 기존 제품에 비하여 두께 및 중량이 현저히 감소된, 나노 섬유를 이용한 공기 순환형 미세먼지 방진 메쉬 제조 방법을 제공하는 것이다.Another problem to be solved by the present invention is to provide a nano-fiber-reinforced resin composition which can prevent peeling and damage of nanofibers during use by directly coating an adhesive resin on the nanofibers, And to provide a method for manufacturing a circulating fine dust-proofing mesh.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 나노 섬유 위에 연속 무늬 패턴의 코팅 수지를 커버 팩터(cover factor) 35% 내지 70%로 코팅하여 기존의 방진 메쉬에 비하여 및 시인성이 우수한, 나노 섬유를 이용한 공기 순환형 미세먼지 방진 메쉬 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a nanofiber which is coated with a coating resin of a continuous pattern pattern on a nanofiber in a cover factor of 35% to 70% And to provide a method of manufacturing an air circulation type fine dust dustproofing mesh.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not intended to limit the invention to the precise forms disclosed. Other objects, which will be apparent to those skilled in the art, It will be possible.
상기 기술적 과제를 해결하기 위한 직경 500nm 내지 700nm의 나노 섬유를 직경 1mm 내지 5mm의 격자가 형성된 메쉬에 2g/m2 내지 5g/m2로 방사하여 가공된 메쉬를 제조하는 전기 방사 단계; 이형지(release paper)를 수지 전사용 제1 롤러를 통과시켜, 제1 성분의 접착제 및 제2 성분의 접착제가 혼합된 코팅 수지를 서로 연결된 연속 무늬 패턴의 1.5g/m2 내지 3.5g/m2로 상기 이형지에 전사하되, 상기 제1 성분의 접착제는 상기 제2 성분의 접착제에 비하여 상기 코팅 수지에 유연성과 접착성 향상에 기여하는 성향이 크며, 상기 제2 성분의 접착제는 상기 제1 성분의 접착제에 비하여 상기 코팅 수지의 내구성과 강도를 향상에 기여하는 성향이 큰 것을 특징으로 하는, 가공된 이형지를 제조하는 단계; 상기 가공된 메쉬의 나노 섬유 방사면과 상기 가공된 이형지의 코팅 수지 전사면을 맞대어, 0.4MPa 내지 0.8MPa의 압력이 가해지며 90℃ 내지 100℃로 가열된 제2 롤러를 통과시켜, 이형지 접착 메쉬를 제조하는 단계; 및 상기 이형지 접착 메쉬에서 상기 이형지를 제거함으로써, 코팅 수지의 커버 팩터(cover factor)가 35% 내지 70%인 방진 메쉬를 제조하는 이형지 제거 단계를 포함할 수 있다.According to an aspect of the present invention, there is provided an electrospinning method for fabricating a mesh by spinning nanofibers having a diameter of 500 nm to 700 nm with a mesh having a mesh size of 1 mm to 5 mm at 2 g / m 2 to 5 g / m 2 . The release paper is passed through a first roller for resin transfer so that a coating resin mixed with an adhesive of the first component and an adhesive of the second component is applied in a continuous pattern pattern of 1.5 g / m 2 to 3.5 g / m 2 Wherein the adhesive of the first component has a greater tendency to contribute to the improvement in flexibility and adhesiveness of the coating resin as compared with the adhesive of the second component, The method comprising the steps of: preparing a processed release paper, which has a greater tendency to contribute to improvement in durability and strength of the coating resin as compared with an adhesive; The nanofiber radiating surface of the processed mesh and the coated resin transfer surface of the processed release paper were put in contact with each other and passed through a second roller heated to 90 to 100 ° C under a pressure of 0.4 MPa to 0.8 MPa, ; And removing the release paper from the release paper bonding mesh to produce a dustproof mesh having a cover factor of 35% to 70% of the coating resin.
상기 코팅 수지는, 상기 제1 성분의 접착제인 에틸렌 초산 비닐계 접착제와 상기 제2 성분의 접착제인 폴리 우레탄계 접착제가 80:20 내지 60:40 범위로 혼합된 코팅 수지일 수 있다.The coating resin may be a coating resin in which the ethylene-vinyl acetate adhesive as the adhesive for the first component and the polyurethane adhesive as the adhesive for the second component are mixed in the range of 80:20 to 60:40.
상기 방진 메쉬 제조 방법은, 상기 이형지 제거 단계 이전에 상기 이형지 접착 메쉬를 40℃ 내지 50℃에서 10시간 내지 24시간 숙성시키는 단계를 더 포함할 수 있다.The dustproof mesh manufacturing method may further include aging the release paper bonding mesh at 40 ° C to 50 ° C for 10 hours to 24 hours before the release paper removing step.
상기 전기 방사 단계는, 하향식 전기 방사 장치를 이용하여 상기 메쉬에 나노 섬유를 방사한 다음 최상층에는 나노 섬유 레이어가 형성되도록 접착제와 나노 섬유를 교대로 복수 회 방사하는 단계를 포함하되, 상기 접착제는, 폴리 우레탄계 접착제 또는 아크릴계 접착제에 10% 내지 20% 농도의 나노 섬유 폴리머 용액을 혼합한 것일 수 있다.Wherein the electrospinning step comprises spinning the nanofibers through the mesh using a top-down electrospinning device, and alternately spinning the adhesive and the nanofibers a plurality of times to form a nanofiber layer on the top layer, Or a mixture of a 10% to 20% concentration nanofiber polymer solution with a polyurethane adhesive or an acrylic adhesive.
상기 제1 롤러에 가해지는 압력은, 0.2MPa 내지 0.4MPa일 수 있다.The pressure applied to the first roller may be 0.2 MPa to 0.4 MPa.
상기 방진 메쉬는, ASHRAE STANDARD 52.1, 중량법에 따른 분진 포집 효율이 80% 이상이며 JIS L 1096 2010, A법에 따른 공기 투과도는 150cm3/cm2/s 내지 170cm3/cm2/s의 성능을 가질 수 있다.The dustproof mesh, the performance of the ASHRAE STANDARD 52.1, and the dust collection efficiency is 80% or more in accordance with gravimetric method JIS L 1096 2010, an air permeability according to Method A are 150cm 3 / cm 2 / s to about 170cm 3 / cm 2 / s Lt; / RTI >
본 발명에 따른 나노 섬유를 이용한 공기 순환형 미세먼지 방진 메쉬 제조 방법에 따르면, 먼저 이면지에 코팅 수지를 전사한 다음 이면지의 코팅 수지를 나노 섬유 위에 코팅하는 2단계 코팅 방식을 이용하므로 제조 과정에서 나노 섬유가 메쉬로부터 분리되거나 나노 섬유가 손상되는 것을 최소화할 수 있는 효과를 제공할 수 있다.According to the method of manufacturing an air circulation type micro dust-proofing mesh using nanofibers according to the present invention, since a coating resin is first transferred to a back sheet and a coating resin on the back sheet is coated on the nanofibers, The effect of separating the fibers from the mesh or minimizing the damage of the nanofibers can be provided.
본 발명에 따른 나노 섬유를 이용한 공기 순환형 미세먼지 방진 메쉬 제조 방법에 따라 제조된 방진 메쉬는 코팅 수지를 나노 섬유를 메쉬 위에 직접 접착함으로써 사용 중에 나노 섬유가 메쉬로부터 분리되는 것을 방지하여 내구성이 매우 뛰어난 장점을 가진다.The dust-proof mesh fabricated according to the method of manufacturing an air circulation type dust-free dust-proofing mesh using nanofibers according to the present invention can prevent the nanofibers from being separated from the mesh during use by directly adhering the nanofibers to the mesh, It has excellent advantages.
본 발명에 따른 나노 섬유를 이용한 공기 순환형 미세먼지 방진 메쉬 제조 방법에 따라 제조된 방진 메쉬는, 나노 섬유 위에 연속 무늬 패턴의 코팅 수지를 커버 팩터(cover factor) 35% 내지 70%로 코팅하여 기존의 방진 메쉬에 비하여 시인성이 우수한 장점을 가질 수 있다.The dustproof mesh fabricated according to the method of manufacturing an air circulation type fine dust dustproofing mesh using nanofibers according to the present invention is formed by coating a coating resin of a continuous pattern pattern on a nanofiber with a cover factor of 35% to 70% Which is superior to the dust-proof mesh of FIG.
도 1은 본 발명의 제1 실시예에 따른 나노 섬유를 이용한 미세먼지 방진 메쉬 제조 방법의 일예를 나타내는 흐름도이다.FIG. 1 is a flowchart illustrating an example of a method for fabricating a fine dust-damping mesh using nanofibers according to a first embodiment of the present invention.
도 2는 도 1에 도시된 나노 섬유를 이용한 미세먼지 방진 메쉬 제조 방법에서 나노 섬유 및 접착제의 전기방사를 수행하기 위한 전기방사 장치의 개념도이다.2 is a conceptual diagram of an electrospinning device for performing electrospinning of nanofibers and an adhesive in the method of manufacturing a fine dust-proofing mesh using the nanofibers shown in FIG.
도 3a는 본 발명에 따른 나노 섬유를 이용한 미세먼지 방진 메쉬 제조 방법에 이용되는 전기 방사 장치의 방사부의 구조의 일예를 나타내는 개념도이다.3A is a conceptual diagram showing an example of the structure of a radiation part of an electrospinning device used in a method of manufacturing a fine dust-proofing mesh using nanofibers according to the present invention.
도 3b 및 도 3c는 본 발명에서의 전기 방사 단계에서 접착제 전기 방사 결과를 기존의 접착제 스프레이 도포 결과와 비교하기 위한 확대 사진이다. Figs. 3B and 3C are enlarged photographs for comparing the adhesive electrospinning result in the electrospinning step according to the present invention with the results of the conventional adhesive spray application. Fig.
도 4는 본 발명에 따른 나노 섬유를 이용한 미세먼지 방진 메쉬 제조 방법에서 수지 코팅을 수행하기 위한 수지 코팅 장치의 일예를 나타내는 개념도이다.4 is a conceptual view showing an example of a resin coating apparatus for performing resin coating in a method of manufacturing a fine dust-damping mesh using nanofibers according to the present invention.
도 5는 본 발명에 따른 나노 섬유를 이용한 미세먼지 방진 메쉬 제조 방법에 이용되는 수지 코팅 장치에서 연속 무늬 패턴을 이형지에 전사하기 위한 제1 롤러의 표면에 새겨진 패턴의 예들을 개념적으로 나타낸다.FIG. 5 conceptually shows examples of a pattern engraved on the surface of a first roller for transferring a continuous pattern to a release paper in a resin coating apparatus used in a method of manufacturing a fine dust dustproof mesh using nanofibers according to the present invention.
도 6a는 본 발명에 대한 비교예 2에서 코팅 수지 접착을 위하여 제2 롤러에 가해지는 압력이 과하여 나노 섬유가 메쉬로부터 손상 또는 박리된 것을 나타낸다.FIG. 6A shows that the pressure applied to the second roller for adhesion of the coating resin in Comparative Example 2 of the present invention is excessive, so that the nanofibers are damaged or peeled off from the mesh.
도 6b는 본 발명에 따른 실시예 2와 이에 대한 비교예 2의 세척 내구성을 비교하기 위한 사진이다.6B is a photograph for comparing washing durability of Example 2 according to the present invention and Comparative Example 2 thereof.
도 7은 본 발명에 따른 방진 메쉬 실시예 2의 미세 분진 포집 효율 테스트 결과를 나타낸다. 7 shows the result of the fine dust collecting efficiency test of the dustproof mesh example 2 according to the present invention.
도 8a는 본 발명에 따른 방진 메쉬 실시예 2의 테스트 결과를 나타낸다.8A shows a test result of the dustproof mesh embodiment 2 according to the present invention.
도 8b는 본 발명에 따른 방진 메쉬 실시예 2의 를 타사의 양산 제품과 비교하기 위하여 진행한 타사의 테스트 결과를 나타낸다.FIG. 8B shows a test result of a third party in order to compare the dustproof mesh according to the second embodiment of the present invention with other mass-produced products.
도 9a 내지 도 9d는 본 발명에 따른 방진 메쉬 실시예 2의 시인성 테스트 결과를 나타낸다.9A to 9D show the visibility test results of the dustproof mesh embodiment 2 according to the present invention.
도 10은 본 발명에 따른 방진 메쉬 실시예 2의 포어 사이즈 분포(pore size distribution) 테스트 결과를 나타내는 그래프이다.10 is a graph showing a pore size distribution test result of the dustproof mesh example 2 according to the present invention.
도 11a 및 도 11b는 본 발명에 따른 방진 메쉬 실시예 2의 꽃가루 차단 효율에 대한 테스트 결과를 나타낸다.11A and 11B show test results of the pollen blocking efficiency of the dustproof mesh example 2 according to the present invention.
도 12는 본 발명에 따라 제조된 방진 메쉬의 실제 사진들을 나타낸다. Figure 12 shows actual photographs of the dustproof mesh fabricated according to the present invention.
본 발명과 본 발명의 동작상 또는 기능상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.For a better understanding of the present invention, its operational advantages and features, and the objects attained by the practice of the present invention, reference should be made to the accompanying drawings, which form a preferred embodiment of the invention, and the accompanying drawings.
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낼 수 있다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Like reference numerals in the drawings denote like elements.
도 1은 본 발명의 제1 실시예에 따른 나노 섬유를 이용한 미세먼지 방진 메쉬 제조 방법의 일예를 나타내는 흐름도이다. 도 2는 본 발명에 따른 나노 섬유를 이용한 공기 순환형 미세먼지 방진 메쉬 제조 방법에서 나노 섬유 전기 방사를 수행하기 위한 하향식 전기방사 장치(100)의 개념도이다. 도 3은 본 발명에 따른 나노 섬유를 이용한 공기 순환형 미세먼지 방진 메쉬 제조 방법에 이용되는 전기 방사 장치(100)의 방사부(120)의 구조의 일예를 나타내는 개념도이다. 도 4는 본 발명에 따른 나노 섬유를 이용한 미세먼지 방진 메쉬 제조 방법에서 수지 코팅을 수행하기 위한 수지 코팅 장치(200)의 일예를 나타내는 개념도이다.FIG. 1 is a flowchart illustrating an example of a method for fabricating a fine dust-damping mesh using nanofibers according to a first embodiment of the present invention. FIG. 2 is a conceptual diagram of a top-down electrospinning device 100 for performing electrospinning of nanofibers in a method of manufacturing an air circulation type fine dust-proofing mesh using nanofibers according to the present invention. 3 is a conceptual diagram showing an example of the structure of the radiation part 120 of the electrospinning device 100 used in the method of manufacturing the air circulation type fine dust dustproof mesh using the nanofibers according to the present invention. FIG. 4 is a conceptual diagram showing an example of a resin coating apparatus 200 for performing resin coating in a method of manufacturing a fine dust-damping mesh using nanofibers according to the present invention.
먼저, 전기 방사 장치를 이용하여 격자형의 메쉬(mesh) 위에 나노 섬유를 방사하여 가공된 메쉬를 제조한다(S100). 여기서, 나노 섬유의 직경은 500nm 내지 700nm이고 격자의 직경은 1mm 내지 5mm이며, 나노 섬유는 2g/m2 내지 5g/m2로 방사됨이 바람직하다.First, a processed mesh is prepared by spinning nanofibers on a grid-like mesh using an electrospinning apparatus (S100). Here, the diameter of the nanofiber is 500 nm to 700 nm, the diameter of the lattice is 1 mm to 5 mm, and the nanofiber is preferably radiated at 2 g / m 2 to 5 g / m 2 .
보통 방진 메쉬의 제조에는 직경 200nm 내지 1000nm까지의 나노 섬유가 이용되는데, 본 발명에서는 적어도 직경 500nm 이상의 나노 섬유를 이용하는데, 이로 인하여 나노 섬유 자체에 일정한 강도가 담보되며 메쉬 위에 나노 섬유를 직접 방사하는 과정에서 나노 섬유가 메쉬 사이로 빠져 나가는 양이 감소되어 균일한 나노 섬유 도포에도 도움이 된다.Nanofibers having diameters ranging from 200 nm to 1000 nm are generally used for the manufacture of dust-proof meshes. In the present invention, nanofibers having a diameter of at least 500 nm are used, whereby the nanofibers themselves have a certain strength, During the process, the amount of nanofibers passing through the mesh is reduced, which is also helpful for uniform nanofiber application.
한편, 본 발명에서는 직경 700nm 이하의 나노 섬유를 이용하는데 이는 직경 700nm 이상의 나노 섬유를 이용할 경우 나노 섬유 사이의 미세 기공이 커져 미세 먼지 포집 효율이 감소될 수 있기 때문이다. 그리고 메쉬는 0.1mm 내지 1mm 두께의 PVC, PVC 코팅 유리섬유, PP, PET, Nylon 중 하나의 재질일 수 있고, 나노 섬유는 PVDF, TPU, PAN, PET, Nylon 중 하나의 재질일 수 있다.Meanwhile, in the present invention, nanofibers having a diameter of 700 nm or less are used because, when nanofibers having a diameter of 700 nm or more are used, fine pores between the nanofibers are increased and the fine dust collecting efficiency can be reduced. The mesh may be one of PVC, PVC coated glass fiber, PP, PET, and Nylon having a thickness of 0.1 mm to 1 mm, and the nanofiber may be one of PVDF, TPU, PAN, PET, and Nylon.
이러한 나노 섬유 직경 제한으로 인하여 본 발명에 따르면, 격자 직경이 1mm 내지 5mm인 메쉬를 이용하여 방진 메쉬를 제조한 경우에도 ASHRAE STANDARD 52.1, 중량법에 따른 분진 포집 효율 80% 이상을 구현할 수 있고, JIS L 1096 2010, A법에 따른 150cm3/cm2/s 내지 170cm3/cm2/s의 우수한 를 구현할 수 있다.According to the present invention, due to the limitation of the diameter of the nanofibers, the dust collection efficiency of 80% or more according to the ASHRAE STANDARD 52.1 can be achieved even when the dustproof mesh is manufactured using the mesh having a lattice diameter of 1 mm to 5 mm, 1096 2010, according to the method A, 150 cm 3 / cm 2 / s to 170 cm 3 / cm 2 / s.
도 2를 참조하면, 상기 전기방사 단계(S100)는 하향식 전기방사 장치(100)에 의하여 이루어질 수 있다.Referring to FIG. 2, the electrospinning step S100 may be performed by the top-down electrospinning apparatus 100. FIG.
상기 전기방사 장치(100)는 나노 섬유 폴리머 용액이 저장되는 저장조(110), 나노 섬유 폴리머 용액이 방사되는 방사부(120), 및 메쉬가 배치되는 콜렉터(130, collector)를 포함한다. 상기 방사부(120) 및 상기 콜렉터(130) 사이에는 고압(High Voltage)이 가해진다. The electrospinning device 100 includes a reservoir 110 for storing a nanofiber polymer solution, a radiation unit 120 for emitting a nanofiber polymer solution, and a collector 130 in which a mesh is disposed. A high voltage is applied between the radiation unit 120 and the collector 130.
상기 저장조(110)에는 나노 섬유 폴리머 용액의 교반을 위한 모터(M)와 프로펠러로 구성된 교반장치가 구비될 수 있다. 상기 저장조(110)에 저장된 나노 섬유 폴리머 용액은 펌프(P)에 의하여 펌핑되어 상기 방사부(120)의 방사 노즐(121)을 통하여 상기 콜렉터(130) 위의 메쉬로 방사되며 에어분사구(122)로는 압축공기가 분사된다. 그러면, 상기 콜렉터(130) 위에 위치한 메쉬 위에 나노 섬유가 방사되어 레이어가 형성된다. 한편, 상기 전기방사 장치(100)는 공기의 온도와 습도가 일정하게 유지되는 시스템임이 바람직하다. 이는 외부 공기 유입으로 인한 배관이나 분사 노즐에서 수지 경화 속도를 조절하기 위함이다.The storage tank 110 may be equipped with a stirring device including a motor M for stirring the nanofiber polymer solution and a propeller. The nanofiber polymer solution stored in the reservoir 110 is pumped by the pump P and radiated to the mesh on the collector 130 through the spinning nozzle 121 of the radiation unit 120, The compressed air is injected. Then, nanofibers are radiated onto the mesh located on the collector 130 to form a layer. Meanwhile, the electrospinning apparatus 100 is preferably a system in which temperature and humidity of air are kept constant. This is to control the resin hardening speed in the pipe or injection nozzle due to the inflow of external air.
한편, 도 3을 참조하면, 도 2의 전기방사 장치(100)의 방사부(120)는 나노 섬유 방사 모듈과 접착제 방사 모듈이 메쉬의 진행 방향으로 따라 교대로 배치된 구조를 가질 수 있다. 상기 방사 모듈들 각각은 메쉬의 폭 전체를 커버하도록 복수의 단일 방사부가 연속적으로 배치된 구조를 가질 수 있다.Referring to FIG. 3, the radiation unit 120 of the electrospinning apparatus 100 of FIG. 2 may have a structure in which the nanofiber radiation module and the adhesive radiation module are alternately disposed along the traveling direction of the mesh. Each of the radiation modules may have a structure in which a plurality of single radiation portions are continuously disposed to cover the entire width of the mesh.
이러한 방사부(120)의 구조에 의하여 콜렉터 위를 메쉬가 이동하는 도중에 메쉬 위로 나노 섬유를 방사한 다음 접착제와 나노 섬유 방사가 교대로 복수 회 이루어지되, 최상층에는 나노 섬유 레이어가 방사된다. 접착제는 폴리 우레탄계 또는 아크릴계의 접착제에 10% 내지 20% 농도의 나노 섬유 폴리머 용액을 소정 비율로 혼합한 접착제일 수 있다. 상기 소정의 비율은 0.5:1 내지 1.5:1 비율일 수 있다.According to the structure of the radiation unit 120, the nanofibers are radiated onto the mesh during the movement of the mesh on the collector, and then the adhesive and the nanofiber irradiation are alternately repeated a plurality of times, and the nanofiber layer is radiated on the uppermost layer. The adhesive may be an adhesive in which a solution of a nanofiber polymer solution having a concentration of 10% to 20% is mixed with a polyurethane or acrylic adhesive at a predetermined ratio. The predetermined ratio may be a ratio of 0.5: 1 to 1.5: 1.
접착제 제조 시에 폴리 우레탄계 또는 아크릴계 접착제에 나노 섬유 폴리머 용액을 혼합하는 이유는 접착제 자체적으로는 섬유화가 어렵기 때문에, 나노 섬유를 섞어줌으로써 접착제 방사 시에 접착제가 섬유화되어 접착제가 메쉬 아래로 빠져나가는 것을 방지하여 나노 섬유가 균일하게 도포될 수 있도록 하기 위함이다. 나노 섬유 방사를 먼저 수행하는 과정 역시 먼저 메쉬 위에 나노 섬유 레이어를 형성함으로써 접착제가 메쉬의 격자를 통하여 메쉬 아래로 빠져나가는 것을 방지하여 나노 섬유를 균일하게 도포되는데 도움을 준다.The reason for mixing the nanofiber polymer solution into the polyurethane or acrylic adhesive during the manufacture of the adhesive is that since the adhesive itself is difficult to be fibrous, the adhesive is fibrous when the adhesive is spun by mixing the nanofibers, So that the nanofibers can be uniformly applied. The process of first performing nanofiber spinning also firstly forms a nanofiber layer on the mesh to prevent the adhesive from escaping under the mesh through the mesh lattice, thus helping to uniformly apply the nanofibers.
단일 방사부는 도 2에 도시된 방사부(120)와 같이 방사 노즐과 에어분사구를 포함하는 구조를 가질 수 있다. 한편, 각 방사 모듈에서 단일 방사부의 개수는 메쉬의 폭에 따라 가변적일 수 있다. 예컨대, 단일 방사부의 개수는 메쉬의 폭에 따라 수십개에서 수백개 사이일 수 있다.The single radiating part may have a structure including a spinning nozzle and an air jet opening like the radiating part 120 shown in Fig. On the other hand, the number of single radiating parts in each radiation module may vary depending on the width of the mesh. For example, the number of single radiating parts may be between a few tens and several hundreds depending on the width of the mesh.
이상에서 도 3a를 참조하여 살펴본 바와 같이, 본 발명에서는 전기 방사 단계에서 나노 섬유 뿐만 아니라 접착제 역시 전기 방사를 통하여 메쉬 위에 도포하는데, 이러한 방식에 따를 경우 기존의 접착제 스프레이 도포 방식에 비하여 나노 섬유 사이의 접착력이 훨씬 높을 수 있다.As described above with reference to FIG. 3A, in the present invention, not only the nanofibers but also the adhesive are applied on the mesh through electrospinning in the electrospinning step. According to this method, compared with the conventional adhesive spray application method, Adhesion can be much higher.
도 3b 및 도 3c는 본 발명에서의 전기 방사 단계에서 접착제 전기 방사 결과를 기존의 접착제 스프레이 도포 결과와 비교하기 위한 확대 사진이다. 참고로 시각적으로 명확히 구별되지는 않으나, 도 3a에서는 연한 갈색 선들은 나노 섬유를 나타내고 검은색 선들은 접착제를 나타내며, 도 3b에서는 검은색으로 비정형적으로 덩어리진 부분이 접착제를 나타낸다.Figs. 3B and 3C are enlarged photographs for comparing the adhesive electrospinning result in the electrospinning step according to the present invention with the results of the conventional adhesive spray application. Fig. In FIG. 3A, light brown lines represent nanofibers, black lines represent an adhesive, and black in FIG. 3B represents an adhesive agent at the irregularly agglomerated portion, although it is not visually distinguished by reference.
도 3b 및 도 3c를 참조하면, 본 발명에 따른 접착제 전기 방사에 따라 전기 방사된 접착제는 직경이 매우 얇으면서도 균일하며 접착제 덩어리 역시 크기가 작으면서도 구형에 가까운 모양으로 형성되는 것을 알 수 있으며, 기존의 접착제 스프레이 도포 시에는 접착제의 직경이 굵으면서도 비균일하며 접착제 덩어리의 크기가 매우 큰 것을 알 수 있다. 이러한 차이에 따르면, 본 발명에 따라 나노 섬유 방사 단계에서 나노 섬유 뿐만 아니라 접착제도 전기 방사할 경우에는 기존의 접착제를 스프레이로 도포하는 것에 비하여 나노 섬유들 사이의 접착력이 더 고르면서도 더 강하게 발현될 수 있다.Referring to FIGS. 3B and 3C, it can be seen that the adhesive electrospun according to the electrospinning of the present invention has a very small diameter and uniformity, and the adhesive mass is also small in size and shaped like a sphere. It can be seen that the diameter of the adhesive is non-uniform and the size of the adhesive mass is very large. According to the present invention, when the nanofibers are spun as well as the nanofibers in the spinning step according to the present invention, adhesion between the nanofibers is more uniform and stronger than that of applying the conventional adhesive by spraying have.
다시 도 1을 참조하면, 본 발명에 따른 방진 메쉬 제조 방법은 이형지(release paper)를 수지 전사용 제1 롤러(210)를 통과시켜, 이종의 접착제를 혼합한 코팅 수지(ex: 에틸렌 초산 비닐계 접착제와 폴리 우레탄계 접착제가 80:20 내지 60:40 범위로 혼합된 코팅 수지)를 서로 연결된 연속 무늬 패턴으로 1.5g/m2 내지 3.5g/m2로 상기 이형지에 전사하여 가공된 이형지를 제조하는 단계를 포함한다(S110).1, a method of manufacturing a dustproof mesh according to the present invention is a method in which a release paper is passed through a first roller 210 for transferring resin to form a coating resin (ex: ethylene-vinyl acetate- the adhesive and the polyurethane-based adhesive is 80: 20 to 60: 40 of the coated resin mixture in the range) to each other is connected to the continuous patterns 1.5g / m 2 to 3.5g / m 2 was transferred to the release paper to produce a release paper processing (S110).
본 발명에서는 코팅 수지가 아니라 접착 수지를 혼합하여 나노 섬유 코팅 수지로 이용하는데, 이는 단순한 코팅 수지를 이용하는 것에 비하여 각기 다른 특성을 갖는 접착 수지를 통하여 다양한 효과를 기대할 수 있기 때문이다. 이하에서는 이에 대해 보다 상세히 살펴 본다.In the present invention, not the coating resin but the adhesive resin are mixed and used as the nano-fiber coating resin because various effects can be expected through the adhesive resin having different characteristics as compared with the simple coating resin. Hereinafter, this will be described in detail.
먼저, 폴리 우레탄계 코팅 수지가 아닌 폴리 우레탄계 접착제가 나노 섬유의 코팅에 이용되는데 이는 접착 수지가 코팅용 수지에 비하여 내구성이나 견뢰도 등 물리적 특성이 더 우수하여, 본 발명에 따라 제조된 미세먼지 방진 메쉬는 코팅용 수지로 코팅된 나노 섬유 방진 메쉬에 비하여 외부의 충격이나 마찰로부터 더 강한 장점을 가질 수 있다.First, a polyurethane-based adhesive rather than a polyurethane-based coating resin is used for coating nanofibers. This is because the adhesive resin has better physical properties such as durability and fastness than a resin for coating, and the fine dust- Compared to nanofiber dust-proof mesh coated with coating resin, it can have stronger advantages from external impact or friction.
그리고 에틸렌 초산 비닐계 접착제는 혼합 접착제의 결정성을 약화시켜 코팅 수지의 유연성을 증가시킴과 동시에 80℃ 미만에서 코팅 처리를 가능케 하는 저온물성을 부여할 수 있으며 극성기로 인하여 여러 가지 용매에 대한 용해성을 향상시키는 역할을 할 수 있다. 여기서, 에틸렌 초산 비닐계 접착제 코팅 수지에 의한 유연성 증가로 인하여, 본 발명에 따라 제조된 방진 메쉬는 고정형이 아니라 슬라이딩(또는 롤 스크린) 형태에 적용할 경우에도 강한 내구성을 가질 수 있다.Ethylene vinyl acetate adhesive improves the flexibility of coating resin by weakening the crystallinity of mixed adhesive, and it can give low temperature property which enables coating treatment at less than 80 ℃. Solubility in various solvents due to polar group It can play a role of improving. Here, due to the increase in flexibility due to the ethylene-vinyl acetate-based adhesive coating resin, the dust-proof mesh manufactured according to the present invention can have strong durability even when applied to a sliding (or roll screen) form, not a fixed type.
이러한 특성은 에틸렌 초산 비닐계 접착제가 코팅 수지에 60% 이상 혼합되는 충분히 발현될 수 있다. 반면 에틸렌 초산 비닐계 접착제가 코팅 수지에 80% 이상 혼합되는 경우에는 유연성이나 접착성은 증가되나 외부의 충격이나 마찰에 약해질 수 밖에 없어 본 발명에서는 에틸렌 초산 비닐계 접착제가 60% 내지 80% 혼합된 코팅 수지를 이용한다.This property can be sufficiently expressed that the ethylene-vinyl acetate-based adhesive is mixed with the coating resin in an amount of 60% or more. On the other hand, when the ethylene-vinyl acetate-based adhesive is mixed with the coating resin in an amount of 80% or more, flexibility and adhesiveness are increased but it is only weakened by external impact or friction. In the present invention, the ethylene- Coating resin is used.
한편, 상기 에틸렌 초산 비닐계 접착제는 상기 폴리 우레탄계 접착제에 비하여 상기 코팅 수지에 유연성과 접착성 향상에 기여하는 성향이 크며, 상기 폴리 우레탄계 접착제는 상기 에틸렌 초산 비닐계 접착제에 비하여 상기 코팅 수지의 내구성과 강도를 향상에 기여하는 성향이 크다.On the other hand, the ethylene-vinyl acetate-based adhesive has a greater tendency to contribute to improvement in flexibility and adhesiveness of the coating resin as compared with the polyurethane-based adhesive, and the polyurethane-based adhesive is superior in durability The tendency to contribute to the improvement of strength is great.
그러나 본 발명에서의 코팅 수지의 접착제 배합이 상술한 예로 한정되는 것은 아니다. 즉, 본 발명에서는 나노 섬유에 대한 코팅 수지로 제1 성분의 접착제 및 제2 성분의 접착제가 혼합된 코팅 수지를 이용하는 것을 특징으로 하되, 상기 제1 성분의 접착제는 상기 제2 성분의 접착제에 비하여 상기 코팅 수지에 유연성과 접착성 향상에 기여하는 성향이 크며, 상기 제2 성분의 접착제는 상기 제1 성분의 접착제에 비하여 상기 코팅 수지의 내구성과 강도를 향상에 기여하는 성향이 강한 것임이 바람직하다.However, the adhesive composition of the coating resin in the present invention is not limited to the above-mentioned examples. That is, in the present invention, a coating resin in which an adhesive of a first component and an adhesive of a second component are mixed is used as a coating resin for nanofibers, wherein the adhesive of the first component is superior to the adhesive of the second component It is preferable that the coating resin has a high tendency to contribute to improvement in flexibility and adhesiveness and that the adhesive of the second component has a strong tendency to contribute to improvement in durability and strength of the coating resin as compared with the adhesive of the first component .
이형지 제조 과정(S110)에 따라 가공된 이형지가 제조된 다음에는, 상기 가공된 메쉬의 나노 섬유 방사면과 상기 가공된 이형지의 코팅 수지 전사면을 맞대어, 0.4MPa 내지 0.8MPa의 압력이 가해지며 90℃ 내지 100℃로 가열된 제2 롤러(230)를 통과시켜 이형지 접착 메쉬를 제조한다(S120). 한편, 본 발명에서는 도 4에 도시된 바와 같이 상기 이형지 접착 메쉬 제조 과정 이전에 코팅 수지가 접착된 이형지를 건조 장치(200)를 이용하여 건조하는 단계가 더 수행될 수 있다. 상기 건조 장치(220)를 통과하면 용매가 증발되고 코팅 수지는 나노 섬유에 접착되기 적절한 점도로 건조될 수 있다.After the finished release paper is produced according to the release paper manufacturing process (S110), a pressure of 0.4 MPa to 0.8 MPa is applied against the nanofiber emission surface of the processed mesh and the coating resin transfer surface of the processed release paper, And then passed through a second roller 230 heated to a temperature of 100-120 占 폚 to produce a release paper bonding mesh (S120). In the present invention, as shown in FIG. 4, a step of drying the release paper to which the coating resin is adhered using the drying apparatus 200 may be further performed before the release paper bonding mesh manufacturing process. After passing through the drying device 220, the solvent may be evaporated and the coating resin may be dried to a suitable viscosity to adhere to the nanofibers.
본 발명에서 상기 가공된 메쉬와 상기 가공된 이형지를 접착시키기 위하여 제2 롤러(230)에 가해지는 압력이 0.4MPa 내지 0.8MPa인 이유는, 제2 롤러(230)에 가해지는 압력이 0.4MPa 이하인 경우에는 이형지에 전사된 코팅 수지가 나노 섬유 방사면에 대한 접착력이 약할 수 있고, 제2 롤러(230)에 가해지는 압력이 0.8MPa를 넘으면 나노 섬유의 손상이 발생할 수 있기 때문이다.In the present invention, the pressure applied to the second roller 230 to bond the processed mesh and the processed release paper is 0.4 MPa to 0.8 MPa because the pressure applied to the second roller 230 is 0.4 MPa or less The coating resin transferred to the release paper may have weak adhesion to the nanofiber emission surface and the nanofibers may be damaged if the pressure applied to the second roller 230 exceeds 0.8 MPa.
상기 제2 롤러(230)는 코팅 수지가 나노 섬유에 잘 접착될 수 있도록 90℃ 내지 100℃로 가열된 상태에서 활용된다. 그러면 실제 메쉬에는 80℃ 이하의 열이 전달되는데 이는 앞서 살펴본 바와 같이 코팅 수지에 에틸렌 초산 비닐계 접착제가 함유되어 있어 80℃ 미만의 저온에서도 코팅 처리가 가능하기 때문이다. 이와 같이, 본 발명에서는 저온 코팅이 가능한데, 이로 인하여 열로 인하여 메쉬 및 나노 섬유가 물리/화학적으로 약해지는 것이 방지되어 방진 메쉬의 내구성이 높아질 수 있다.The second roller 230 is utilized while being heated to 90 ° C to 100 ° C so that the coating resin can adhere well to the nanofibers. In this case, heat of 80 ° C or less is transferred to the actual mesh because the coating resin contains the ethylene-vinyl acetate adhesive as described above, and the coating process can be performed even at a temperature lower than 80 ° C. As described above, in the present invention, low-temperature coating is possible, so that it is prevented that the mesh and nanofibers are physically / chemically weakened due to heat, so that the durability of the dust-proofing mesh can be enhanced.
한편, 상기 제1 롤러(210)에 가해지는 압력은 0.2MPa 내지 0.4MPa로 상기 제2 롤러(230)에 가해지는 압력의 1/2 범위인 것이 바람직하다. 왜냐하면, 상기 제1 롤러(210)에 상기 제2 롤러(230)에 가해지는 압력과 동일한 압력을 가하여 코팅 수지를 이형지에 전사하는 경우에는 상기 제2 롤러(230)를 통과할 때 이형지에 전사된 코팅 수지가 메쉬에 방사된 나노 섬유에 완벽하게 접착되기 어려울 수 있기 때문이다.The pressure applied to the first roller 210 is preferably in the range of 0.2 MPa to 0.4 MPa, which is a half of the pressure applied to the second roller 230. If the pressure applied to the first roller 210 is the same as the pressure applied to the second roller 230 and the coating resin is transferred to the release paper, it is transferred to the release paper when passing through the second roller 230 Because the coating resin may be difficult to adhere perfectly to nanofibers spun into the mesh.
상기 이형지 접착 메쉬가 제조된 다음에는, 상기 이형지 접착 메쉬를 10 시간 가량 숙성시킨 다음, 상기 이형지 접착 메쉬로부터 이형지를 제거하여 코팅 수지가 연속 무늬 패턴으로, 커버 팩터 35% 내지 70%로 나노 섬유 위에 코팅된 방진 메쉬를 제조하는 이형지 제거 단계가 수행된다(S130). 이러한 이형지 제거 단계는 도 4에 도시된 바와 같이 분리 장치(240)에 의하여 이루어질 수 있다.After the releasing paper bonding mesh was prepared, the releasing paper bonding mesh was aged for about 10 hours, and then the releasing paper was removed from the releasing paper bonding mesh so that the coating resin was coated on the nano fiber with a cover factor of 35% to 70% A release paper removing step for manufacturing the coated dustproof mesh is performed (S130). Such a releasing paper removing step may be performed by the separating apparatus 240 as shown in FIG.
한편, 상기 이형지 접착 메쉬의 숙성은 40℃ 내지 50℃에서 10시간 내지 24시간동안 이루어질 수 있다. 이는 상온 이상의 온도에서 코팅 수지가 숙성되면서 에틸렌 초산 비닐계 접착제와 폴리 우레탄계 접착제의 혼합도가 높아져 코팅 수지가 안정적으로 나노 섬유 레이어에 접착되도록 하기 위함이다.Meanwhile, the release paper bonding mesh can be aged at 40 ° C to 50 ° C for 10 hours to 24 hours. This is because the degree of mixing of the ethylene-vinyl acetate-based adhesive and the polyurethane-based adhesive is increased while the coating resin is aged at a temperature higher than room temperature, so that the coating resin stably adheres to the nanofiber layer.
한편, 최종적으로 제조된 방진 메쉬는 전체 방진 메쉬 면적에 대하여 코팅 수지가 차지하는 면적인 커버 팩터가 35% 내지 70%인데, 이는 커버 팩터가 35% 미만인 경우에는 나노 섬유가 외부의 힘이나 마찰이 과도하게 노출되어 손상될 가능성이 높기 때문이며 커버 팩터가 70%를 넘게 되면 나노 섬유의 기공이 막혀 통기성이 지나치게 낮아질 수 있기 때문이다. 이렇게 제조된 방진 메쉬는 JIS L 1096 2010, A법에 따른 적어도 150cm3/cm2/s 내지 170cm3/cm2/s 이상의 를 가질 수 있다.Meanwhile, the dustproof mesh finally fabricated has a cover factor of 35% to 70%, which is an area occupied by the coating resin with respect to the entire dustproof mesh area. When the cover factor is less than 35%, the nanofiber has an external force or friction If the cover factor exceeds 70%, the pores of the nanofiber may be clogged and the breathability may become too low. The dustproof mesh thus manufactured may have a surface area of at least 150 cm 3 / cm 2 / s to 170 cm 3 / cm 2 / s or more in accordance with JIS L 1096 2010, Method A.
이상에서 살펴본 바와 같이, 본 발명에 따른 나노 섬유를 이용한 공기 순환형 미세 먼지 방진 메쉬 제조 방법은 나노 섬유에 코팅 수지를 직접적으로 코팅할 경우 나노 섬유가 손상되는 단점을 극복하기 위하여, 이형지에 코팅 수지를 먼저 전사한 다음 이형지의 코팅 수지를 메쉬의 나노 섬유 방사면에 접착시키는 2 단계 코팅 방식을 적용함으로써 코팅 과정에서 나노 섬유가 메쉬로부터 분리되거나 손상되는 것을 최소화시킬 수 있는 장점을 가진다.As described above, in order to overcome the disadvantage that the nanofibers are damaged when the coating resin is directly coated on the nanofibers, the method of manufacturing the air circulation type micro dust- And then the coating resin of the release paper is adhered to the nanofiber emission surface of the mesh, thereby minimizing separation or damage of the nanofibers from the mesh during the coating process.
도 5는 본 발명에 따른 나노 섬유를 이용한 미세먼지 방진 메쉬 제조 방법에 이용되는 수지 코팅 장치에서 연속 무늬 패턴을 이형지에 전사하기 위한 제1 롤러(210)의 표면에 새겨진 패턴의 예들을 개념적으로 나타낸다.5 conceptually illustrates examples of patterns engraved on the surface of a first roller 210 for transferring a continuous pattern to a release paper in a resin coating apparatus used in a method of manufacturing a fine dust-proofing mesh using nanofibers according to the present invention .
도 5의 (a)를 참조하면 상기 제1 롤러(210)의 표면에는 이형지에 코팅 수지를 서로 연결된 육각형의 연속 무늬를 전사하기 위한 육각형 연속 무늬가 새겨져 있는 것을 알 수 있고, 도 5의 (b)를 참조하면 상기 제1 롤러(210)의 표면에는 이형지를 코팅 수지를 서로 연결된 사각형의 연속 무늬를 전사하기 위한 사각형 연속 무늬가 새겨져 있는 것을 알 수 있고, 도 5의 (c)를 참조하면 상기 제1 롤러(210)의 표면에는 서로 연결된 삼각형의 연속 무늬를 전사하기 위한 삼각형 연속 무늬가 새겨져 있는 것을 알 수 있다. 한편, 이형지에 코팅 수지를 연속 무늬 패턴으로 전사하기 위하여 상기 제1 롤러(210)에 새겨진 무늬가 상술한 정형화된 예들로 한정되는 것은 아니며 다양한 비정형의 연속 무늬일 수도 있다.5 (a), a hexagonal continuous pattern for transferring a continuous pattern of hexagons connected to each other by a coating resin is formed on the surface of the first roller 210, and FIG. 5 Referring to FIG. 5 (b), the surface of the first roller 210 has a rectangular continuous pattern for transferring a rectangular continuous pattern connected to a coating resin, and FIG. 5 (c) It can be seen that a triangular continuous pattern for transferring a continuous pattern of triangles connected to each other is engraved on the surface of the first roller 210. Meanwhile, in order to transfer the coating resin to the release paper in the continuous pattern, the pattern engraved in the first roller 210 is not limited to the above-described standard patterns, and may be various irregular continuous patterns.
본 발명에 따라 제조된 방진 메쉬는, 나노 섬유 위에 수지가 서로 연결된 연속 무늬로 코팅되어 있으므로 나노 섬유의 손상과 박리가 방지되어 내구성이 강하고 세척이 용이하면서도, 나노 섬유가 접착된 메쉬에 직접 수지를 코팅함으로써 메쉬를 합지하는 기존 제품에 비하여 두께 및 중량이 감소될 수 있고 보다 뛰어난 시인성과 공기 투과도를 제공할 수 있다.The dustproof mesh fabricated according to the present invention is coated with a continuous pattern formed by connecting the resin on the nanofiber, so that the damage and peeling of the nanofiber are prevented so that the durable mesh can be easily cleaned. The coating can be reduced in thickness and weight as compared with conventional products in which meshes are laminated, and more excellent visibility and air permeability can be provided.
한편, 이상에서 도 1 내지 도 5를 참조하여 살펴본 내용들 중에서 접착제와 관련된 본 발명의 특징 또는 장점을 정리하면 아래와 같다.The characteristics or advantages of the present invention related to the adhesive among the contents discussed above with reference to FIGS. 1 to 5 are summarized as follows.
① 본 발명에서는 전기 방사 단계에서 나노 섬유 뿐만 아니라 접착제도 전기 방사로 도포함으로써, 기본의 접착제 스프레이 도포 방식에 비하여 나노 섬유들이 사이의 접착력이 균일하면서도 강할 수 있다.(1) In the present invention, by applying not only nanofibers but also adhesives by electrospinning, adhesion between nanofibers can be uniform and stronger than that of a basic adhesive spray coating method.
② 본 발명에서는 전기 방사 단계에서 이용되는 접착제에 나노 섬유 폴리머 용액을 혼합하여 방사하여 접착제의 섬유화를 촉진함으로써 접착제가 메쉬의 격자 아래로 흘러내는 것이 방지되어 나노 섬유가 균일하게 도포될 수 있다.(2) In the present invention, the nanofiber polymer solution is mixed with the adhesive used in the electrospinning step to promote the fiberization of the adhesive, so that the adhesive is prevented from flowing below the grid of the mesh, so that the nanofibers can be uniformly applied.
③ 본 발명에서는 코팅용 수지에 비하여 내구성이 강한접작제를 이용하여 나노 섬유를 코팅함으로써 코팅용 수지로 코팅된 경우에 비하여 외부의 마찰이나 충격으로부터 보다 강한 내구성을 제공함과 동시에 나노 섬유의 일부만을 코팅하므로 보다 나은 통기성과 시인성을 제공할 수 있다.(3) In the present invention, by coating a nanofiber with a durable coupling agent as compared with a resin for coating, it provides stronger durability against external friction or impact, as compared with the case of coating with a coating resin, It is possible to provide better ventilation and visibility.
이하에서는 본 발명에 따라 제조된 방진 메쉬의 실시예들과 다양한 비교예들의 성능을 비교/분석하여 본 발명에 따라 제조된 방진 메쉬의 특징에 대해 구체적으로 살펴본다.Hereinafter, characteristics of the dustproof mesh manufactured according to the present invention will be described in detail by comparing / analyzing the performance of the dustproof mesh manufactured according to the present invention and various comparative examples.
먼저, 실시예들과 비교예들의 제조 방법은 다음과 같다. 참고로 실시예들 및 비교예들에 대해서는 구체적으로 언급한 점 이외에는 서로 동일한 원료 및 조건이 적용되었다.First, the manufacturing methods of the embodiments and the comparative examples are as follows. For reference, the same raw materials and conditions were applied to the examples and the comparative examples except for the specific points mentioned above.
<실시예1>&Lt; Example 1 >
전기 방사 단계에서 격자형 메쉬(150g/㎡)에 폴리 우레탄 성분의 접착제와 나노 섬유의 원료인 PVDF를 1.5:1.0 비율로 혼합한 접착제를 방사하고, 직경 600nm의 나노 섬유를 방사(또는 도포)하여 공기 순환형 미세 먼지 방진 메쉬를 제조하였다.In the electrospinning step, an adhesive composed of a polyurethane-based adhesive and a PVDF (raw material of nanofiber) mixed at a ratio of 1.5: 1.0 was spun onto a latticed mesh (150 g / m 2) and the nanofibers having a diameter of 600 nm were spun Air circulation type fine dust - proof mesh.
<실시예 2> &Lt; Example 2 >
격자형 메쉬(150g/㎡)에 직경 600nm의 나노 섬유를 2.5g/㎡로 도포한 후 메쉬를 보호하기 위한 코팅 수지는 접착제용으로 사용되는 수지로 에틸렌 초산 비닐계와 폴리 우레탄계를 70:30의 범위로 혼합한 접착제를 사용하였다. 코팅 수지의 커퍼 팩터가 55%가 되도록 디자인된 제1 롤러(210)의 압력을 0.3MPa로, 제2 롤러(230)의 압력을 0.6MPa로 설정하고 제2 롤러(230)를 온도를 100℃로 가열하였으며, 이형지 접착 메쉬는 50℃에서 12시간 숙성한 후에 이형지를 분리하여 나노 섬유를 이용한 공기 순환형 미세 먼지 방진 메쉬를 제작하였다.The coating resin for protecting the mesh after coating nanofibers having a diameter of 600 nm with a mesh size of 150 g / m &lt; 2 &gt; (2.5 g / m &lt; 2 &gt;) was a resin used for an adhesive. Ethylene vinyl acetate- Were used. The pressure of the first roller 210 designed to have a cupper factor of 55% of the coating resin is set to 0.3 MPa, the pressure of the second roller 230 is set to 0.6 MPa and the temperature of the second roller 230 is set to 100 . After drying at 50 ℃ for 12 hours, the release paper was separated and the air circulation type micro dust messy mesh using nanofibers was fabricated.
<비교예 1>&Lt; Comparative Example 1 &
실시예 1에서 나노 섬유의 직경을 300nm로 변경하여 공기 순환형 미세 먼지 방진 메쉬를 제조하였다.In Example 1, the diameter of the nanofibers was changed to 300 nm to prepare an air circulating fine dust-proofing mesh.
<비교예 2>&Lt; Comparative Example 2 &
실시예 2에서 코팅 수지의 커버 팩터를 30%로 변경하여 공기 순환형 미세 먼지 방진 메쉬를 제조 하였다.In Example 2, the cover factor of the coating resin was changed to 30% to prepare an air circulation type fine dust-proofing mesh.
<비교예 3>&Lt; Comparative Example 3 &
실시예 2에서 제 2롤러(230)의 압력을 0.9MPa로 변경하여 공기 순환형 미세 먼지 방진 메쉬를 제조하였다.In Example 2, the pressure of the second roller 230 was changed to 0.9 MPa to prepare an air circulation type fine dust-proofing mesh.
<비교예 4>&Lt; Comparative Example 4 &
멜트브로운 설비를 이용하여 폴리프로필렌을 원료로 하여 800nm 직경으로 8.5g/m2의 부직포를 제조하여 방진 메쉬에 적용하였다.A nonwoven fabric with a diameter of 800 nm and a density of 8.5 g / m 2 was fabricated from polypropylene using a meltblowing apparatus and applied to a dustproof mesh.
아래의 표 1은 실시예 1과 비교예 1의 도포성 및 균일성을 비교한 표이다.Table 1 below is a table comparing the coatability and uniformity of Example 1 and Comparative Example 1. [
구분division 도포성Application property 포성균일성Bubble uniformity
실시예 1Example 1 양호Good 양호Good
비교예 1Comparative Example 1 불량(다수의 홀 발생)Bad (multiple holes occur) 불량(30% 불균일)Bad (30% uneven)
참고로 실시예 1 및 비교예 1의 도포성과 균일성은 나노 섬유 방사 후 광학 현미경으로 40배율로 확대하여 관찰하는 방법으로 판단하였다. 표 1을 참조하면 600nm 직경의 나노 섬유를 방사한 실시예 1의 경우에는 도포성 및 균일성이 모두 양호하나 300nm 직경의 나노 섬유를 방사한 경우에는 도포성과 균일성이 모두 불량한 것으로 판단되었다. 이는 본 발명에서는 직경 500nm 내지 700nm의 나노 섬유를 방사하여 방진 메쉬를 제조하므로 직경 500nm 미만의 나노 섬유를 이용하는 경우에 비하여 방사된 나노 섬유의 강도 자체가 우수할 뿐만 아니라 도포성과 균일성 역시 우수한 것을 의미한다.그리고 본 발명에서는 나노 섬유의 직경이 700nm 이하로 제한되는데, 이는 나노 섬유의 직경이 700nm를 넘는 경우에는 나노 섬유 사이의 미세 기공이 커져 미세 먼지 포집 효율이 저하될 수 있기 때문이다. 한편, 본 발명에서는 나노 섬유의 직경이 500nm를 넘더라도 일정 수준 이상의 미세 먼지 포집 효율이 담보되는데, 이는 방사된 나노 섬유 레이어는 2차원 구조가 아니라 복잡한 3차원 망상 구조를 가져 나노 섬유 직경 증가로 인한 미세 먼지 포집 효율 감소 정도가 나노 섬유 직경 증가로 인한 미세 기공 사이즈 증가 정도에 비하여 덜하기 때문이다.For reference, the applicability and uniformity of Example 1 and Comparative Example 1 were determined by magnifying and observing at 40X magnification with an optical microscope after nanofiber spinning. Referring to Table 1, Example 1 in which nanofibers having a diameter of 600 nm were both excellent in coating properties and uniformity, but when the nanofibers having a diameter of 300 nm were spun, it was determined that both the uniformity and the application were poor. In the present invention, since the nanofiber having a diameter of 500 nm to 700 nm is radiated to fabricate the dust-proofing mesh, the nanofiber having a diameter of less than 500 nm is superior in strength to the nanofiber, In the present invention, the diameter of the nanofibers is limited to 700 nm or less because, when the diameter of the nanofibers is more than 700 nm, the fine pores between the nanofibers become large and the fine dust collecting efficiency may decrease. Meanwhile, in the present invention, even if the diameter of the nanofiber exceeds 500 nm, the fine dust collecting efficiency of a certain level is ensured because the nanofiber layer is not a two-dimensional structure but a complex three-dimensional network structure, Because the degree of reduction of the fine dust collecting efficiency is less than the increase of the micro pore size due to the increase of the nanofiber diameter.
아래의 표 2는 실시예 2와 비교예 2 내지 비교예 4의 분진 포집 효율(즉, 미세 먼지 표집 효율), 공기 투과도, 시인성 및 나노 섬유 내구성을 비교한 표이다.Table 2 below is a table comparing dust collection efficiency (i.e., fine dust collection efficiency), air permeability, visibility, and nanofiber durability of Example 2 and Comparative Examples 2 to 4.
구분division 분진포집효율Dust collection efficiency 공기 투과도Air permeability 시인성Visibility 나노 섬유 내구성Nanofiber durability
실시예 1Example 1 81.781.7 171171 45.6345.63 양호Good
실시예 2Example 2 80.580.5 170170 47.5447.54 불량Bad
실시예 3Example 3 65.765.7 182182 44.0244.02 불량Bad
실시예 4Example 4 54.554.5 250.6250.6 23.5023.50 비교대상 아님Not comparable
참고로 시료들의 물성적 평가는 국제공인시험기관인 FITI 시험 연구원에서 진행 하였으며 분진 포집 효율은 ASHRAE STANDARD 52.1, 중량법(단위 %), 공기 투과도는 JIS L 1096 2010, A법(단위: ㎤㎠/s)로, 시인성은 wavelength range(UV-R) 250nm 내지 2,500nm의 범위 중 단색광 영역인 450nm 내지 750nm 영역대의 투과율로 평가하였다. 이하에서는 각 평가 항목의 단위는 생략한다.내구성은 가장용 샤워기를 이용하여 25℃ 온도의 물로 시료들을 세척하였으며, 슬라이딩(또는 롤스크린) 형태로 창틀(50cm x 50cm)을 제작하여 500회 슬라이딩 반복 후 나노 섬유의 손상을 광학 현미경으로 체크하여 내구성에 대한 양호/불량을 판단하였다.For the reference, the evaluation of the physical properties of the samples was carried out by the FITI test institute, the internationally recognized testing institute. The dust collection efficiency was ASHRAE STANDARD 52.1, weight method (unit%), air permeability according to JIS L 1096 2010, method A (unit: , And the visibility was evaluated by the transmittance in a range of 450 nm to 750 nm, which is a monochromatic region in the wavelength range (UV-R) of 250 nm to 2,500 nm. The durability was measured by washing the samples with water at 25 ° C using the shower for the best, and a window frame (50 cm x 50 cm) was formed in a sliding (or roll screen) form, Damage to the nanofibers was checked with an optical microscope to judge whether the durability was good or bad.
실시예 2와 비교예 2는 코팅 수지의 커버 팩터 55%와 30%로 차이가 있는데, 양자는 분진포집 효율, 공기 투과도, 시인성에서는 별 차이가 없으나, 내구성에서는 양호와 불량으로 큰 차이를 보이는 것을 알 수 있다. 즉, 본 발명에 따라 제조된 방진 메쉬는 코팅 수지의 커버 팩터를 35% 내지 70%로 하여 내구성을 가질 수 있다.In Example 2 and Comparative Example 2, the cover factor of the coating resin is 55% and 30%. The difference in the dust collecting efficiency, the air permeability, and the visibility is not different between the two, but the difference is good and bad in durability Able to know. That is, the dustproof mesh manufactured according to the present invention can have durability by setting the cover factor of the coating resin to 35% to 70%.
실시예 2와 비교예 3은 이형지에 전사된 코팅 수지를 메쉬의 나노 섬유 방사면에 접착시킬 때 제2 롤러(230)에 가해지는 압력이 0.6MPa와 0.9MPa로 차이가 있는데, 비교예 2에서는 나노 섬유에 가해지는 압력이 강하여 나노 섬유가 메쉬로부터 박리되는 현상이 발생하였다.In Example 2 and Comparative Example 3, the pressure applied to the second roller 230 is 0.6 MPa and 0.9 MPa when the coating resin transferred to the release paper is adhered to the nanofiber emission surface of the mesh. In Comparative Example 2 The pressure applied to the nanofibers was so strong that the nanofibers were peeled from the mesh.
실시예 1과 비교예 4를 비교하면, 기존의 멜트브로운으로 제작한 부직포를 이용한 방진 메쉬는 나노 섬유를 이용한 본 발명에 따른 제품에 비하여 공기 투과도는 높은 반면 분진 포집 효율과 시인성이 훨씬 낮은 것을 알 수 있다.Comparing Example 1 with Comparative Example 4, the dust-proof mesh using the nonwoven fabric made of the existing meltblown has higher air permeability and lower dust collecting efficiency and visibility than the product using the nanofiber according to the present invention Able to know.
도 6a는 본 발명에 따른 실시예 1와 이에 대한 비교예 1의 세척 내구성를 비교하기 위한 사진이다.6A is a photograph for comparing washing durability of Example 1 according to the present invention and Comparative Example 1 thereof.
참고로 도 6a의 사진은 방진 메쉬에 미세 먼지가 집진된 상태에서 앞서 살펴본 바와 같이 가장용 샤워기로 방진 메쉬를 10회 세척한 상태를 나타낸다. 표 1 및 도 6a를 참조하면, 세척 후 실시예 1의 나노 섬유의 양과 상태가 세척 후 비교예 1에 비하여 훨씬 많고 양호한 것을 알 수 있다. 이는 실시예 1에 사용된 나노 섬유의 직경(600nm)이 실시예 1에 사용된 나노 섬유의 직경(300nm)의 2배에 달해 나노 섬유 자체의 내구성이 높은 것을 의미한다.6A shows a state in which dust-proof meshes are cleaned 10 times with a shower head as shown above in a state where fine dust is collected in a dust-proof mesh. Referring to Table 1 and FIG. 6A, it can be seen that the amount and condition of the nanofibers of Example 1 after washing were much larger and better than those of Comparative Example 1 after washing. This means that the diameter (600 nm) of the nanofiber used in Example 1 is twice the diameter (300 nm) of the nanofiber used in Example 1, which means that the nanofiber itself has high durability.
도 6b는 본 발명에 대한 비교예 2에서 코팅 수지 접착을 위하여 제2 롤러(230)에 가해지는 압력이 과하여 나노 섬유가 메쉬로부터 손상 또는 박리된 것을 나타낸다.FIG. 6B shows that the pressure applied to the second roller 230 for adhesion of the coating resin in Comparative Example 2 of the present invention is excessive, so that the nanofibers are damaged or peeled from the mesh.
표 2 및 도 6b를 참조하면, 비교예 2에서는 나노 섬유 박리가 발생하므로, 분집 포집 효율이 81.7%인 실시예 2에 비하여 65.7%로 낮고, 박리된 부분으로 인한 와 시인성은 높아지나 나노 섬유의 내구성은 낮아진 것을 알 수 있다. 이와 같이, 본 발명에서는 나노 섬유에 코팅 수지를 접착시키는 제2 롤러(230)의 압력을 0.4MPa 내지 0.8MPa로 한정하여 나노 섬유 박리로 손상으로 인한 문제점이 발생하는 것을 방지할 수 있다.Referring to Table 2 and FIG. 6B, since nanofiber peeling occurs in Comparative Example 2, the visibility due to the peeled portion is as high as 65.7% as compared with Example 2 where the aggregation collection efficiency is 81.7% The durability is lowered. As described above, according to the present invention, the pressure of the second roller 230 for adhering the coating resin to the nanofibers can be limited to 0.4 MPa to 0.8 MPa, thereby preventing problems caused by damage due to peeling of the nanofibers.
도 7은 본 발명에 따른 방진 메쉬 실시예 2의 미세 분진 포집 효율 테스트 결과를 나타낸다. 도 7을 참조하면 실시예 2의 분진 포집 효율은 81.7%인 것을 알 수 있다. 이는 본 발명에서는 직경 500nm 내지 700nm의 나노 섬유를 이용하면서도 80% 이상의 높은 분진 포집 효율을 구현할 수 있음을 나타낸다.7 shows the result of the fine dust collecting efficiency test of the dustproof mesh example 2 according to the present invention. Referring to FIG. 7, it can be seen that the dust collection efficiency of Example 2 is 81.7%. This indicates that dust collection efficiency of 80% or more can be achieved while using nanofibers having a diameter of 500 nm to 700 nm.
도 8a는 본 발명에 따른 방진 메쉬 실시예 2의 테스트 결과를 나타낸다. 도 8a를 참조하면 실시예 2의 는 170.4로 매우 양호한 것을 알 수 있다. 본 테스트 결과는 38cm2 넓이에 125Pa 압력의 공기를 가할 때 cm2당 1초에 170.4cm3의 공기가 통과하는 것을 의미하는 것인데, 이 정도의 이면 일상 생활에서 실내 공기 순환이 충분히 이루어질 수 있다.8A shows a test result of the dustproof mesh embodiment 2 according to the present invention. Referring to FIG. 8A, the value of 170.4 in the second embodiment is very good. The result of this test means that 170.4 cm 3 of air passes per 1 cm 2 per cm 2 when air pressure of 125Pa is applied to a width of 38cm 2 , which can provide sufficient indoor air circulation in everyday life.
도 8b는 본 발명에 따른 방진 메쉬 실시예 2의 를 타사의 양산 제품과 비교하기 위하여 진행한 타사의 테스트 결과를 나타낸다. 참고로 상기 타사의 제품은 300nm 대의 직경을 갖는 나노 섬유로 제작되었다.FIG. 8B shows a test result of a third party in order to compare the dustproof mesh according to the second embodiment of the present invention with other mass-produced products. For reference, the above-mentioned products are made of nanofibers having a diameter of 300 nm.
도 8a 및 도 8b를 참조하면, 본 발명에 따라 제조된 방진 메쉬는 직경 600nm의 나노 섬유로 제작되어 300nm 대의 직경을 갖는 나노 섬유로 제조된 타사의 방진 메쉬의 140.2보다 훨씬 높은 170.4의 를 갖는 것을 알 수 있다.8A and 8B, the dust-proof mesh manufactured according to the present invention has 170.4 which is much higher than 140.2 of the dust-proof mesh of other companies made of nanofibers having a diameter of 300 nm and made of nanofibers having a diameter of 600 nm Able to know.
도 9a 내지 도 9d는 본 발명에 따른 방진 메쉬 실시예 2의 시인성 테스트 결과를 나타낸다. 도 9a 내지 도 9d를 참조하면 시인성 테스트는 250nm 내지 2,500nm의 파장 영역에 대한 광투과율을 테스트한 결과이며, 표 2에서 실시예 2의 시인성 45.63%는 단색광영역인 450nm 내지 750nm의 파장 영역에 대한 광투과율의 평균값을 의미한다. 표 2 및 도 9a 내지 도 9d를 참조하면 실시예 2와 비교예들의 경우 시인성은 크게 차이가 없는 것을 알 수 있다. 이는 세 가지 시료 모두 코팅 수지의 커버 팩터가 적어도 30% 이상이기 때문이다.9A to 9D show the visibility test results of the dustproof mesh embodiment 2 according to the present invention. 9A to 9D, the visibility test is a result of testing the light transmittance for a wavelength range of 250 nm to 2,500 nm. In Table 2, the visibility of Example 2 is 45.63%, which is a monochromatic light range of 450 to 750 nm Means an average value of light transmittance. Referring to Table 2 and FIGS. 9A to 9D, it can be seen that visibility is not significantly different between Example 2 and Comparative Examples. This is because the cover factor of the coating resin of all three samples is at least 30% or more.
도 10은 본 발명에 따른 방진 메쉬 실시예 2의 포어 사이즈 분포(pore size distribution) 테스트 결과를 나타내는 그래프이다. 도 10을 참조하면, 실시예 2의 표면 및 이면 모두, 직경이 약 18um인 포어(pore)의 비중이 각각 약 18% 및 34%로 가장 높으며 직경 10um 내지 40um의 포어의 비중이 60%를 넘는 것을 알 수 있는데, 이는 본 발명에 따른 방진 메쉬는 직경 500nm 내지 700nm의 나노 섬유를 이용하므로 메쉬에 대한 도포성 및 균일성이 매우 우수한 것을 의미한다.10 is a graph showing a pore size distribution test result of the dustproof mesh example 2 according to the present invention. 10, the specific gravity of the pore having a diameter of about 18 탆 is the highest at about 18% and 34%, and the specific gravity of the pore having a diameter of 10 탆 to 40 탆 is more than 60% This means that the dust-proofing mesh according to the present invention uses nanofibers having a diameter of 500 nm to 700 nm, which means that the spreadability and uniformity of the mesh are excellent.
도 11a 및 도 11b는 본 발명에 따른 방진 메쉬 실시예 2의 꽃가루 차단 효율에 대한 테스트 결과를 나타낸다. 참고로 본 테스트는 일본의 'KAKEN TEST CENTER'에서 이루어졌는데, 국내에는 꽃가루 차단에 대한 확립된 테스트 방법이 없어 테스트 기준을 확립하고 있는 일본 기관을 통하여 테스트를 수행하였다. 본 테스트는 보통 꽃가루 사이즈가 20um 대인 적송석의 화분을 이용하여 수행되었다. 도 11a 및 도 11b를 참조하면, 실시예 2의 꽃가루 차단 효율이 평균 약 97%로 매우 높은 것을 알 수 있다.11A and 11B show test results of the pollen blocking efficiency of the dustproof mesh example 2 according to the present invention. For reference, this test was conducted in Japan 'KAKEN TEST CENTER'. In Korea, there is no established test method for pollen interruption, so we conducted the test through a Japanese institution that has established test standards. This test was usually carried out using pollen of 20um in diameter. Referring to FIGS. 11A and 11B, it can be seen that the pollen blocking efficiency of Example 2 is very high, which is about 97% on average.
도 12는 본 발명에 따라 제조된 방진 메쉬의 실제 사진들을 나타낸다. 도 12를 참조하면, 본 발명에 따르면 나노 섬유를 코팅하는 코팅 수지는 육각형과 같은 정형화된 다각형의 연속 무늬일 수도 있고 비정형 도형의 연속 무늬일 수도 있으며, 메쉬 면적에서 코팅 수지가 차지하는 면적인 커버 팩터 역시 다양하게 조절될 수 있음을 알 수 있다.Figure 12 shows actual photographs of the dustproof mesh fabricated according to the present invention. 12, according to the present invention, the coating resin coating the nanofibers may be a regular polygonal continuous pattern such as a hexagon, a continuous pattern of an amorphous shape, and a cover factor Can be controlled in various ways.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. While the invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. This is possible.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined by the equivalents of the claims, as well as the claims.
본 발명에 따른 나노 섬유를 이용한 공기 순환형 미세 먼지 방진 메쉬 제조 방법에 따라 제조된 방진 메쉬는, 제조 과정에서 나노 섬유가 메쉬로부터 분리되거나 나노 섬유가 손상되는 정도가 미미하며, 내구성이 매우 뛰어나며, 기존의 방진 메쉬에 비하여 시인성이 우수한 장점을 가지므로, 일반가정이나 아파트 등의 주거시설이나 공장이나 빌딩 등 다양한 산업시설 등에 널리 이용될 수 있다.The dust-proof mesh fabricated according to the method of manufacturing an air circulation type dust-free dust-proofing mesh using the nanofibers according to the present invention is characterized in that the nanofiber is separated from the mesh or the damage of the nanofiber is small, It can be widely used in residential facilities such as general homes and apartments, and various industrial facilities such as factories and buildings because it has the advantage of visibility compared to existing dustproof mesh.

Claims (6)

  1. 직경 500nm 내지 700nm의 나노 섬유를 직경 1mm 내지 5mm의 격자가 형성된 메쉬에 2g/m2 내지 5g/m2로 방사하여 가공된 메쉬를 제조하는 전기 방사 단계;An electrospinning step of spinning nanofibers having a diameter of 500 nm to 700 nm with a mesh having a mesh of 1 mm to 5 mm in diameter at 2 g / m 2 to 5 g / m 2 to produce a processed mesh;
    이형지(release paper)를 수지 전사용 제1 롤러를 통과시켜, 제1 성분의 접착제 및 제2 성분의 접착제가 혼합된 코팅 수지를 1.5g/m2 내지 3.5g/m2로 서로 연결된 연속 무늬 패턴으로 상기 이형지에 전사하되, 상기 제1 성분의 접착제는 상기 제2 성분의 접착제에 비하여 상기 코팅 수지에 유연성과 접착성 향상에 기여하는 성향이 크며, 상기 제2 성분의 접착제는 상기 제1 성분의 접착제에 비하여 상기 코팅 수지의 내구성과 강도를 향상에 기여하는 성향이 큰 것을 특징으로 하는, 가공된 이형지를 제조하는 단계;Release paper (release paper) the resin transfer is passed through the first roller, the first component of the adhesive and a second component of the adhesive mixture is coated with resin to 1.5g / m 2 to 3.5g / m consecutive patterns are connected to each other by two Wherein the adhesive of the first component has a greater tendency to contribute to improvement in flexibility and adhesiveness of the coating resin as compared with the adhesive of the second component, The method comprising the steps of: preparing a processed release paper, which has a greater tendency to contribute to improvement in durability and strength of the coating resin as compared with an adhesive;
    상기 가공된 메쉬의 나노 섬유 방사면과 상기 가공된 이형지의 코팅 수지 전사면을 맞대어, 0.4MPa 내지 0.8MPa의 압력이 가해지며 90℃ 내지 100℃로 가열된 제2 롤러를 통과시켜, 이형지 접착 메쉬를 제조하는 단계; 및The nanofiber radiating surface of the processed mesh and the coated resin transfer surface of the processed release paper were put in contact with each other and passed through a second roller heated to 90 to 100 ° C under a pressure of 0.4 MPa to 0.8 MPa, ; And
    상기 이형지 접착 메쉬에서 상기 이형지를 제거함으로써, 코팅 수지의 커버 팩터(cover factor)가 35% 내지 70%인 방진 메쉬를 제조하는 이형지 제거 단계를 포함하는, 나노 섬유를 이용한 공기 순환형 미세 먼지 방진 메쉬 제조 방법.And a release paper removing step of removing the release paper from the release paper bonding mesh to produce a dustproof mesh having a cover factor of 35% to 70% of the coating resin, wherein the air release type micro dust- Gt;
  2. 제1항에 있어서, 상기 코팅 수지는,The method according to claim 1,
    상기 제1 성분의 접착제인 에틸렌 초산 비닐계 접착제와 상기 제2 성분의 접착제인 폴리 우레탄계 접착제가 80:20 내지 60:40 범위로 혼합된 코팅 수지인 것을 특징으로 하는, 나노 섬유를 이용한 공기 순환형 미세 먼지 방진 메쉬 제조 방법.Characterized in that the ethylene-vinyl acetate adhesive as the adhesive for the first component and the polyurethane adhesive as the adhesive for the second component are mixed in the range of 80:20 to 60:40. Method of manufacturing fine dust - proof mesh.
  3. 제1항에 있어서, 상기 방진 메쉬 제조 방법은,The dustproof mesh manufacturing method according to claim 1,
    상기 이형지 제거 단계 이전에 상기 이형지 접착 메쉬를 40℃ 내지 50℃에서 10시간 내지 24시간 숙성시키는 단계를 더 포함하는 것을 특징으로 하는, 나노 섬유를 이용한 공기 순환형 미세 먼지 방진 메쉬 제조 방법.The method of claim 1, further comprising aging the release paper bonding mesh at 40 ° C to 50 ° C for 10 hours to 24 hours prior to the step of removing the release paper.
  4. 제1항에 있어서, 상기 전기 방사 단계는,The method according to claim 1,
    하향식 전기 방사 장치를 이용하여 상기 메쉬에 나노 섬유를 방사한 다음 최상층에는 나노 섬유 레이어가 형성되도록 접착제와 나노 섬유를 교대로 복수 회 방사하는 단계를 포함하되,A step of spinning the nanofibers through the mesh using a top-down electrospinning device and alternately spinning the adhesive and the nanofibers a plurality of times so as to form a nanofiber layer on the top layer,
    상기 접착제는,Preferably,
    폴리 우레탄계 접착제 또는 아크릴계 접착제에 10% 내지 20% 농도의 나노 섬유 폴리머 용액을 혼합한 것을 특징으로 하는, 나노 섬유를 이용한 공기 순환형 미세 먼지 방진 메쉬 제조 방법.A method for manufacturing an air circulation type micro dust-proofing mesh using nanofibers, which comprises mixing a solution of a nanofiber polymer at a concentration of 10% to 20% in a polyurethane adhesive or an acrylic adhesive.
  5. 제1항에 있어서, 상기 제1 롤러에 가해지는 압력은,The method of claim 1, wherein the pressure applied to the first roller
    0.2MPa 내지 0.4MPa인 것을 특징으로 하는, 나노 섬유를 이용한 공기 순환형 미세 먼지 방진 메쉬 제조 방법.Wherein the air-circulation type fine dust-proofing mesh is manufactured by using a nanofiber.
  6. 제1항에 있어서, 상기 방진 메쉬는,[2] The method of claim 1,
    ASHRAE STANDARD 52.1, 중량법에 따른 분진 포집 효율이 80% 이상이며 JIS L 1096 2010, A법에 따른 공기 투과도는 150cm3/cm2/s 내지 170cm3/cm2/s인 것을 특징으로 하는, 나노 섬유를 이용한 공기 순환형 미세 먼지 방진 메쉬 제조 방법.ASHRAE STANDARD 52.1, the dust collecting efficiency according to the gravimetric method is 80% or more, and the air permeability according to JIS L 1096 2010, Method A is 150 cm 3 / cm 2 / s to 170 cm 3 / cm 2 / s. A method for fabricating an air circulation type micro dust -
PCT/KR2018/006821 2017-05-08 2018-06-18 Method for manufacturing air-circulating type fine dust proof mesh using nano-fiber WO2019132139A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880000980.1A CN110226005B (en) 2017-05-08 2018-06-18 Method for manufacturing air circulation type fine dust-proof net by utilizing nano fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20170057246 2017-05-08
KR1020170180040A KR101829175B1 (en) 2017-05-08 2017-12-26 manufacturing method of air circulation type dustproof mesh for blocking fine dust using nano-fiber
KR10-2017-0180040 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019132139A1 true WO2019132139A1 (en) 2019-07-04

Family

ID=61229608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006821 WO2019132139A1 (en) 2017-05-08 2018-06-18 Method for manufacturing air-circulating type fine dust proof mesh using nano-fiber

Country Status (3)

Country Link
KR (1) KR101829175B1 (en)
CN (1) CN110226005B (en)
WO (1) WO2019132139A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112430370A (en) * 2020-11-02 2021-03-02 同济大学 High-strength flame-retardant covering soil dust screen prepared from waste PVC, method and application

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101829175B1 (en) * 2017-05-08 2018-02-14 양광웅 manufacturing method of air circulation type dustproof mesh for blocking fine dust using nano-fiber
KR102010953B1 (en) * 2019-04-10 2019-08-14 주식회사 티엔솔루션 nano-fiber composite mesh for blocking ultra-fine dust having high air permeability
KR102112672B1 (en) 2019-05-20 2020-05-21 주식회사 투반산업 Dustproof screen with enhanced durability for nano fiber layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3703811B2 (en) * 2003-02-28 2005-10-05 株式会社ヤマガタグラビヤ Filter and manufacturing method thereof
KR20090111234A (en) * 2008-04-21 2009-10-26 (주)에프티이앤이 The surface treating method of nano fiber membrane
KR20090129050A (en) * 2008-06-12 2009-12-16 코오롱패션머티리얼 (주) Water-proof and moisture-permeable fabric comprising nanofiber web
KR20140110295A (en) * 2013-03-07 2014-09-17 (주)에프티이앤이 The method for promoting abrasion-durability of surface of nano fiber membrane using paper coated with silicon
KR101668395B1 (en) * 2016-05-31 2016-10-21 주식회사 아담스컴퍼니 Filter with Nano Fiber and Manufacturing Thereof
KR101829175B1 (en) * 2017-05-08 2018-02-14 양광웅 manufacturing method of air circulation type dustproof mesh for blocking fine dust using nano-fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536579A (en) * 2016-01-29 2016-05-04 天津工业大学 Preparation method of asymmetric porous membrane based on electrostatic spinning technology
CN106048901B (en) * 2016-06-12 2018-04-17 东华大学 The compound window screening of three dimensional tortuous nanofiber and its electrospinning process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3703811B2 (en) * 2003-02-28 2005-10-05 株式会社ヤマガタグラビヤ Filter and manufacturing method thereof
KR20090111234A (en) * 2008-04-21 2009-10-26 (주)에프티이앤이 The surface treating method of nano fiber membrane
KR20090129050A (en) * 2008-06-12 2009-12-16 코오롱패션머티리얼 (주) Water-proof and moisture-permeable fabric comprising nanofiber web
KR20140110295A (en) * 2013-03-07 2014-09-17 (주)에프티이앤이 The method for promoting abrasion-durability of surface of nano fiber membrane using paper coated with silicon
KR101668395B1 (en) * 2016-05-31 2016-10-21 주식회사 아담스컴퍼니 Filter with Nano Fiber and Manufacturing Thereof
KR101829175B1 (en) * 2017-05-08 2018-02-14 양광웅 manufacturing method of air circulation type dustproof mesh for blocking fine dust using nano-fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112430370A (en) * 2020-11-02 2021-03-02 同济大学 High-strength flame-retardant covering soil dust screen prepared from waste PVC, method and application
CN112430370B (en) * 2020-11-02 2022-02-18 同济大学 High-strength flame-retardant covering soil dust screen prepared from waste PVC, method and application

Also Published As

Publication number Publication date
CN110226005B (en) 2020-05-08
CN110226005A (en) 2019-09-10
KR101829175B1 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
WO2019132139A1 (en) Method for manufacturing air-circulating type fine dust proof mesh using nano-fiber
WO2019177289A1 (en) Multilayer planar filter having visible light transmittance and high durability, for blocking fine particles by simultaneously applying electrostatic collection and physical collection, and manufacturing method therefor
WO2021045561A1 (en) Vibration-proof net for blocking fine dust
KR101668395B1 (en) Filter with Nano Fiber and Manufacturing Thereof
WO2017209536A1 (en) Filter medium, method for manufacturing same, and filter module comprising same
WO2022145604A1 (en) Washable fine dust filter module using nanofibers
JP5607531B2 (en) Articles and methods for masking or protecting a substrate
WO2017026876A1 (en) Nanofiber for filter medium, filter medium comprising same, method for producing same, and filter unit comprising same
WO2021015554A1 (en) Filter medium and composite filter including same
CN107177934B (en) High-light-transmission dustproof screen window material and preparation method of screen window
WO2017065564A1 (en) Liquid drug-filtering filter medium, method for producing same, and liquid drug-filtering filter module comprising same
KR20200033669A (en) Filter media for electret filter comprising nano fiber sheet and manufacturing methode of the same
WO2017111317A1 (en) Cartridge filter using nanofiber composite fiber yarn and method for manufacturing same
WO2018110965A1 (en) Filter medium, method for manufacturing same and filter unit comprising same
WO2019017750A1 (en) Filter medium, manufacturing method therefor, and filter unit comprising same
EP2735350B1 (en) P84-nanofibre, nanofibrous nonwoven and filter medium for the separation of particulates from gases
KR102129418B1 (en) Filter for blocking fine dust with nano fiber and preparing method same
WO2018110990A1 (en) Filter medium, method for manufacturing same and filter unit comprising same
JP2021511208A (en) Filtration material
WO2018226076A2 (en) Filter medium, manufacturing method therefor, and filter unit including same
KR20100023155A (en) Filter for removing a white corpuscle and method of manufacturing the same
KR20100024123A (en) Sheet of wall papers having moisture absorption
WO2022271000A1 (en) Air-cleaning filter and manufacturing method therefor
WO2020116871A1 (en) Heat-sealable waterproof film structure having double dot layer, and manufacturing method therefor
US20220281208A1 (en) Laminated fabric structure and method for fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897724

Country of ref document: EP

Kind code of ref document: A1