WO2019132048A1 - Method for simulating choroidal blood flow - Google Patents

Method for simulating choroidal blood flow Download PDF

Info

Publication number
WO2019132048A1
WO2019132048A1 PCT/KR2017/015428 KR2017015428W WO2019132048A1 WO 2019132048 A1 WO2019132048 A1 WO 2019132048A1 KR 2017015428 W KR2017015428 W KR 2017015428W WO 2019132048 A1 WO2019132048 A1 WO 2019132048A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
blood
blood vessel
group
computer system
Prior art date
Application number
PCT/KR2017/015428
Other languages
French (fr)
Korean (ko)
Inventor
박건형
이지은
이종수
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to PCT/KR2017/015428 priority Critical patent/WO2019132048A1/en
Publication of WO2019132048A1 publication Critical patent/WO2019132048A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons

Definitions

  • the present invention relates to a method for simulating blood flow in intraocular choroidal vessels, which is a major cause of blindness and can resolve anatomical structure and function inconsistency regarding the circulation of choroid, which is known to be a cause of important diseases including macular degeneration.
  • the main part of the eyeball is formed as a layered structure of the retina, and when the intraocular tissues are structurally deformed, it develops as vision loss or severely blindness.
  • the number of patients with macular degeneration has nearly doubled from 7,631 in 2000 to 13,673 in 2004.
  • age-related macular degeneration is the leading cause of blindness in developed countries.
  • Age-related macular degeneration is known to cause bleeding and scarring and severe visual impairment due to the abnormal choroidal neovascularization in the central macula due to the secondary choroidal vascular endothelial cell proliferation associated with choroidal blood flow abnormalities.
  • Choroids are complexly arranged three-dimensionally and have an anastomotic structure that connects blood vessels at various stages, making it difficult to analyze blood flow.
  • the choroidal capillaries are arranged in the form of lobules (lobules), and the choroidal cavernous artery is connected to the central part of the robe.
  • the blood flowing through the small artery circulates through the robe and is discharged through the parietal artery at the edge of the robe, and the blood is collected into the choroidal venous vein and discharged out of the eyeball.
  • choroids Due to this complex structure, details of the etiology and pathology of choroidal blood flow associated with macular degeneration are still poorly known. In particular, choroids are known to receive the most blood flow per unit weight in the human body, and the mechanism of secondary chorioretinal neovascularization due to choroidal ischemia is still unclear.
  • the present invention proposes a blood flow simulation method that can simplify the analysis of choroidal circulation by an electric circuit, and provides a basic framework for future research on choroidal circulation.
  • the present invention has been made to solve the above problems, and it is an object of the present invention to analyze the blood flow volume through the simulation of the choroidal blood flow and to simulate the blood flow volume and blood pressure change of the choroid when abnormal blood vessel abnormality occurs.
  • the method for simulating the choroidal blood flow comprises the steps of: generating a capillary blood bed by designating a size of a choroidal capillary bed, a resistance of the inside and outside of the robule, and a robe internal structure; A second step of specifying an artery, wherein the designated artery is numbered in a group; A third step of specifying a vein, wherein the specified vein is numbered in a group; And a fourth step of analyzing the blood flow and indicating the internal and external blood flow and the blood pressure of the robe.
  • the blood flow analysis is divided into a darker black as the blood flow is smaller and a bright white as the blood flow is larger, and the flow of the blood flow is indicated by an arrow, .
  • the present invention can easily simulate the inner and outer blood flow and blood pressure of the robe by analyzing the choroidal blood flow volume through simulation of the choroidal blood flow.
  • FIG. 1 is a diagram showing a step of analyzing the blood choroid blood flow simulation of the present invention.
  • FIG. 2 is a photograph showing a step of generating a blood vessel bed in a first step (S10) of the present invention.
  • FIG 3 is a photograph showing the blood vessel bed produced in the first step (S10) of the present invention.
  • Fig. 4 is a schematic diagram showing a choroidal blood vessel as an electric circuit model according to the present invention.
  • Fig. 5 is a photograph showing the step of designating the artery in the second step S20 of the present invention.
  • FIG. 6 is a photograph showing a step of specifying a vein in a third step S30 of the present invention.
  • FIG. 7 is an enlarged photograph of a blood vessel bed after the third step (S30) of the present invention is performed.
  • FIG. 9 is a photograph showing blood flow analysis as a fourth step (S40) of the present invention.
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention and the manner of achieving them will become apparent by reference to an embodiment which will be described in detail below with reference to the accompanying drawings.
  • FIG. 1 is a diagram showing a step of simulating an ocular blood vessel flow according to the present invention.
  • the method for simulating the choroidal blood flow of the eye which is performed by a computer or a software on a computer, includes a computer system input unit for inputting the choroidal image data of a patient and generating a blood vessel bed, a blood vessel bed generated by the computer system input unit A computer system control unit for designating an artery and a vein and analyzing the blood flow rate, and a computer system output unit for outputting the blood flow and the blood pressure.
  • the blood flow measurement of the ocular blood vessel is preferably measured by the following steps.
  • the first step S10 creates a blood vessel bed. Specifically, as shown in FIG. 2, it is preferable to designate the size of the blood vessel bed, the inner and outer resistance of the blood vessel, and the inner structure of the robe, thereby generating the blood vessel bed.
  • the size of the blood vessel bed can be specified by dividing into the lengths (Columns) and the widths (Rows).
  • the inner and outer resistance of the ocular blood vessel can be designated as 1 to 16 OMEGA.
  • the robe internal structure can be set as a simple structure, a double structure and a triple structure.
  • a hexagonal blood vessel bed is generated as shown in FIG. 3, and an accurate resistance value is displayed at each point of the generated hexagon. It is preferable that the present invention includes a magnifying glass so that the resistance value displayed at each point of the generated hexagon can be enlarged and displayed.
  • the choroidal blood vessel of Fig. 4 (a) was designed as a blood vessel bed as shown in Fig. 4 (b).
  • Each line of the vascular bed lattice shown in FIG. 4 (b) has a resistivity of 16? Representing a capillary, and the boundary of the generated hexagons is preferably designed to have a resistance of 1? 16 ?.
  • the internal and external resistance of the ocular blood vessel was calculated by assuming that the collecting venous diameter was one to two times the capillary diameter, and the flow resistance was calculated by Poiseuille's equation to the fourth square of the radius of the blood vessel (r 4 ) And inversely proportional.
  • anode supplied to the endarterectomy was placed at the center of the hexagon, and cathodes representing vein discharge were connected to the edge of the hexagon. It was designed based on the results of histological study of choroidal capillary layer.
  • the voltage is set to be arbitrarily set by the user, and the arterioles are set to 50V so that the blood vessels in the choroidal arteries of the human eye and the blood pressure (mmHg) Do.
  • the blood vessel bed is provided so that the user can arbitrarily set the size of the array, and is preferably set to be arranged in a total of 25 or 5 x 5 hexagons as shown in 4 (c).
  • the second step S20 designates an artery in the blood vessel bed generated in the first step S10. Specifically, as shown in Fig. 5, the designated arteries are numbered in groups.
  • the artery pressure of the group designated by the same number is changeable by a user, and that the number designation for grouping the designated arteries is changeable by a user.
  • the number inside the red circle represents the arterial group number, and it is preferable that the arterial pressure is displayed at the upper end of the red circle so as to be identifiable by the user.
  • a vein is assigned to the blood vessel bed generated in the first step S10. Specifically, as shown in Fig. 6, the specified veins are numbered in groups.
  • the vein pressure of the group designated by the same number can be changed by the user, and the number designation for grouping the designated vein can be changed by the user desirable.
  • the number inside the blue circle represents the vein group number, and it is preferable that the number is indicated by the user indicating the vein pressure at the top of the blue circle.
  • a fourth step (S40) the blood flow is analyzed to show the inner and outer blood flow and blood pressure of the blood vessel.
  • FIG. 8 is a photograph showing blood flow analysis in the fourth step (S40).
  • the blood flow analysis of the fourth step S40 may be divided into a darker black as the blood flow is smaller, and a brighter white as the blood flow is larger.
  • the flow of the blood flow is indicated by an arrow, and the blood flow amount is divided according to the thickness.
  • the ocular blood vessel blood flow simulation method according to the present invention was analyzed based on Kirchhoff's current law in which the total of the in-out currents at all points where the currents are merged is always zero.
  • the channel flow of each blood vessel was calculated by current, and the direction and amount of blood flow were represented by arrow and thickness, respectively.
  • the average current of the hexagon was also analyzed.
  • the present invention can easily simulate the blood flow and internal and external blood flow of the choroidal robule by analyzing the blood flow volume through simulation of the choroidal blood flow.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pathology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

The present invention relates to a method for simulating blood flow with respect to the circulation of choroid that is known as a mechanism of important diseases including macular degeneration, which is a major cause of blindness. The method for simulating choroidal blood flow according to the present invention comprises: a first step of generating a blood vessel bed by specifying a size of the blood vessel bed, a resistance of the inside and outside of a lobule, and an internal structure of the lobule; a second step of specifying arteries, wherein the specified arteries are numbered in a group; a third step of specifying veins, wherein the specified veins are numbered in a group; and a fourth step of analyzing a blood flow rate and indicating the blood flow and blood pressure inside and outside the blood vessels. Furthermore, when the blood vessel bed is generated in the first step, the blood vessel bed has hexagonal lobules formed therein, wherein resistance values inside and outside the lobules may be changed. Moreover, the blood pressure of the arteries of a group specified by the same number may be changed, and the blood pressure of the veins of a group specified by the same number may be changed. In the fourth step, blood flow analysis is conducted so as to represent a darker black color as the blood flow rate is smaller and a bright white color as the blood flow rate is greater, separately, in which the direction of the blood flow is indicated by an arrow, the thickness of the arrow indicating a blood flow rate.

Description

안구 맥락막 혈류 시뮬레이션 방법Simulation of the choroidal blood flow in the eye
본 발명은 실명의 주요 원인이며, 황반변성을 비롯한 중요한 질병의 원인으로 알려진 맥락막의 순환에 관하여 해부학적 구조와 기능의 불일치를 해소할 수 있는 안구내 맥락막 혈관의 혈류 시뮬레이션 방법에 관한 것이다. The present invention relates to a method for simulating blood flow in intraocular choroidal vessels, which is a major cause of blindness and can resolve anatomical structure and function inconsistency regarding the circulation of choroid, which is known to be a cause of important diseases including macular degeneration.
안구는 망막 조직의 주요부분이 층상 구조로 형성되며, 안구 내 조직들이 구조적으로 변형될 경우, 시력 저하나 심하게는 시력 상실로 발전하게 된다. 국민건강보험공단에 따르면, 황반변성 환자수는 2000년 7,631명에서 2004년 1만3,673명으로 2배 가까운 증가세를 보이고 있다. 특히 나이 관련 황반변성은 선진국에서 실명 원인의 1위를 차지하는 질환이다. The main part of the eyeball is formed as a layered structure of the retina, and when the intraocular tissues are structurally deformed, it develops as vision loss or severely blindness. According to the National Health Insurance Corporation, the number of patients with macular degeneration has nearly doubled from 7,631 in 2000 to 13,673 in 2004. In particular, age-related macular degeneration is the leading cause of blindness in developed countries.
나이 관련 황반변성은 맥락막에 혈류 이상에 따른 이차적인 맥락막 혈관 내피세포의 증식에 의해 망막 중심부에 있는 황반에 비정상적인 신생혈관들이 자라나면서 출혈과 반흔을 일으키고 심한 시력손상을 유발하는 질환으로 알려져있다. Age-related macular degeneration is known to cause bleeding and scarring and severe visual impairment due to the abnormal choroidal neovascularization in the central macula due to the secondary choroidal vascular endothelial cell proliferation associated with choroidal blood flow abnormalities.
맥락막은 복잡하게 3차원적으로 배열되고 여러 단계에서 혈관끼리 연결되는 문합구조를 가지고 있어 혈류를 분석하기 매우 어려운 구조를 가지고 있다. 구체적으로 설명하면 맥락막 여러 갈래의 맥락막동맥에 의해 혈류가 공급되며, 맥락막 모세혈관은 로뷸 (lobule, 소엽) 형태로 배열되어 있고, 로뷸의 중심부에 맥락막소동맥이 연결되어 있다. 소동맥을 통하여 유입된 혈액은 로뷸을 순환하고 로뷸 가장자리에 있는 소정맥을 통하여 배출되며, 이 혈액들은 맥락막 또아리 정맥으로 모여 안구밖로 배출된다. Choroids are complexly arranged three-dimensionally and have an anastomotic structure that connects blood vessels at various stages, making it difficult to analyze blood flow. The choroidal capillaries are arranged in the form of lobules (lobules), and the choroidal cavernous artery is connected to the central part of the robe. The blood flowing through the small artery circulates through the robe and is discharged through the parietal artery at the edge of the robe, and the blood is collected into the choroidal venous vein and discharged out of the eyeball.
이러한 복잡한 구조로 말미암아 황반변성에 관련된 맥락막혈류에 대한 자세한 병인 및 병의 진행과정에 대하여서는 아직도 거의 알려져 있지 않다. 특히 맥락막은 인체에서 단위 무게당 가장 많은 혈류를 받는 조직으로 알려져 있어 맥락막의 허혈로 인한 이차적신 맥락막신생혈관의 발생 기전은 아직 불명확하다. Due to this complex structure, details of the etiology and pathology of choroidal blood flow associated with macular degeneration are still poorly known. In particular, choroids are known to receive the most blood flow per unit weight in the human body, and the mechanism of secondary chorioretinal neovascularization due to choroidal ischemia is still unclear.
따라서 본 발명은 맥락막 순환을 전기 회로로 단순화 시켜 분석할 수 있는 혈류 시뮬레이션 방법을 제안하여, 맥락막 순환에 대한 향후 연구를 위한 기본 틀을 제공하고자 한다. Therefore, the present invention proposes a blood flow simulation method that can simplify the analysis of choroidal circulation by an electric circuit, and provides a basic framework for future research on choroidal circulation.
본 발명은 상기의 문제점을 해결하기 위해서 안출된 것으로서, 본 발명의 목적은 안구 맥락막 혈류 시뮬레이션을 통해 혈류량을 분석하여 비정상적인 혈관 이상이 발생한 경우 맥락막의 혈류량과 혈압 변화를 단순화시켜 시뮬레이션할 수 있게 한다. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to analyze the blood flow volume through the simulation of the choroidal blood flow and to simulate the blood flow volume and blood pressure change of the choroid when abnormal blood vessel abnormality occurs.
발명이 해결하고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention as set forth in the accompanying drawings. It will be possible.
본 발명에 따른 안구 맥락막 혈류 시뮬레이션 방법은, 맥락막 모세혈관베드의 크기, 로뷸의 내부 및 외부의 저항, 로뷸 내부 구조를 지정하여 모세혈관베드를 생성하는 제1단계; 동맥을 지정하되, 상기 지정된 동맥을 그룹으로 번호를 지정하는 제2단계; 정맥을 지정하되, 상기 지정된 정맥을 그룹으로 번호를 지정하는 제3단계; 혈류량을 분석하여 로뷸의 내부 및 외부 혈류량과 혈압을 나타내는 제4단계;를 포함하는 것을 특징으로 한다.The method for simulating the choroidal blood flow according to the present invention comprises the steps of: generating a capillary blood bed by designating a size of a choroidal capillary bed, a resistance of the inside and outside of the robule, and a robe internal structure; A second step of specifying an artery, wherein the designated artery is numbered in a group; A third step of specifying a vein, wherein the specified vein is numbered in a group; And a fourth step of analyzing the blood flow and indicating the internal and external blood flow and the blood pressure of the robe.
또한, 상기 제1단계의 혈관베드를 생성하면, 육각형의 혈관베드가 생성되고, 상기 생성된 육각형의 각 지점에 정확한 저항값을 변화시킬 수 있도록 구비된다. 또한, 상기 동일한 번호로 지정된 그룹의 동맥압을 변화시킬 수 있도록 구비되고, 상기 동일한 번호로 지정된 그룹의 정맥압을 변화시킬 수 있도록 구하는 것을 특징으로 한다. 상기 제4단계의 혈류량 분석은, 상기 혈류량이 적을수록 어두운 검정으로, 상기 혈류량이 많을수록 밝은 흰색으로 구분하여 나타내고, 상기 혈류의 흐름을 화살표로 표시하되, 굵기에 의해 상기 혈류량을 구분하여 나타내도록 구비된 것을 특징으로 한다. In addition, when the first-stage blood vessel bed is formed, a hexagonal blood vessel bed is generated, and the accurate resistance value can be changed at each point of the generated hexagon. The arterial pressure of the group designated by the same number can be changed so that the vein pressure of the group designated by the same number can be changed. In the fourth step, the blood flow analysis is divided into a darker black as the blood flow is smaller and a bright white as the blood flow is larger, and the flow of the blood flow is indicated by an arrow, .
상기 과제의 해결 수단에 의해, 본 발명은 안구 맥락막 혈류 시뮬레이션을 통해 맥락막 혈류량을 분석하여 로뷸의 내부 및 외부 혈류량과 혈압을 간편하게 시뮬레이션할 수 있다. According to the solution of the above-mentioned problem, the present invention can easily simulate the inner and outer blood flow and blood pressure of the robe by analyzing the choroidal blood flow volume through simulation of the choroidal blood flow.
도 1은 본 발명인 안구 맥락막 혈류 시뮬레이션 분석 단계를 나타내는 도면이다. FIG. 1 is a diagram showing a step of analyzing the blood choroid blood flow simulation of the present invention.
도 2는 본 발명의 제1단계(S10)에서 혈관베드를 생성하는 단계를 나타낸 사진이다. 2 is a photograph showing a step of generating a blood vessel bed in a first step (S10) of the present invention.
도 3은 본 발명의 제1단계(S10)에서 생성한 혈관베드를 나타내는 사진이다. 3 is a photograph showing the blood vessel bed produced in the first step (S10) of the present invention.
도 4는 본 발명에 의해 맥락막 혈관을 전기 회로 모델로 나타낸 개략도이다. Fig. 4 is a schematic diagram showing a choroidal blood vessel as an electric circuit model according to the present invention. Fig.
도 5는 본 발명의 제2단계(S20)에서 동맥을 지정하는 단계를 나타내는 사진이다. Fig. 5 is a photograph showing the step of designating the artery in the second step S20 of the present invention.
도 6은 본 발명의 제3단계(S30)에서 정맥을 지정하는 단계를 나타내는 사진이다. 6 is a photograph showing a step of specifying a vein in a third step S30 of the present invention.
도 7은 본 발명의 제3단계(S30)를 실시한 뒤 혈관베드를 확대하여 나타낸 사진이다. FIG. 7 is an enlarged photograph of a blood vessel bed after the third step (S30) of the present invention is performed.
도 8은 본 발명의 제4단계(S40)를 실시하는 단계를 나타내는 사진이다. 8 is a photograph showing the step of performing the fourth step (S40) of the present invention.
도 9는 본 발명의 제4단계(S40)인 혈류량 분석을 나타내는 사진이다. 9 is a photograph showing blood flow analysis as a fourth step (S40) of the present invention.
도 10은 본 발명의 제4단계(S40)을 확대하여 나타낸 사진이다. 10 is an enlarged photograph of the fourth step (S40) of the present invention.
이상과 같은 본 발명에 대한 해결하려는 과제, 과제의 해결 수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 일실시예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 일실시예를 참조하면 명확해질 것이다.The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention and the manner of achieving them will become apparent by reference to an embodiment which will be described in detail below with reference to the accompanying drawings.
먼저, 도 1은 본 발명인 안구 혈관 혈류 시뮬레이션 단계를 나타내는 도면이다. 본 발명인 안구 맥락막 혈류 시뮬레이션 방법은 전산처리장치 또는 컴퓨터 상의 소프트웨어에 의해 수행되는 것으로, 환자의 안구 맥락막 이미지 데이터를 입력하여 혈관 베드를 생성하는 컴퓨터 시스템 입력부, 상기 컴퓨터 시스템 입력부에 의해 생성된 혈관베드에 동맥과 정맥을 지정하고 혈류량을 분석하는 컴퓨터 시스템 제어부 및 상기 혈류량과 혈압을 출력하여 나타내는 컴퓨터 시스템 출력부에 의해 수행된다. 상기 안구 혈관의 혈류량 측정은 하기의 단계로 측정되는 것이 바람직하다. First, FIG. 1 is a diagram showing a step of simulating an ocular blood vessel flow according to the present invention. The method for simulating the choroidal blood flow of the eye, which is performed by a computer or a software on a computer, includes a computer system input unit for inputting the choroidal image data of a patient and generating a blood vessel bed, a blood vessel bed generated by the computer system input unit A computer system control unit for designating an artery and a vein and analyzing the blood flow rate, and a computer system output unit for outputting the blood flow and the blood pressure. The blood flow measurement of the ocular blood vessel is preferably measured by the following steps.
먼저, 제1단계(S10)는 혈관베드를 생성한다. 구체적으로, 도 2에 나타난 바와 같이, 혈관베드의 크기, 혈관의 내부 및 외부의 저항, 로뷸 내부 구조를 지정하여 혈관베드를 생성하는 것이 바람직하다. First, the first step S10 creates a blood vessel bed. Specifically, as shown in FIG. 2, it is preferable to designate the size of the blood vessel bed, the inner and outer resistance of the blood vessel, and the inner structure of the robe, thereby generating the blood vessel bed.
상기 혈관베드의 크기는 길이(Columns)와 너비(Rows)로 구분하여 지정할 수 있다. 또한, 안구 혈관의 내부 및 외부 저항은 1 내지 16Ω으로 지정할 수 있다. 또한, 로뷸 내부 구조는 심플(simple)구조, 더블(double) 및 트리플(triple) 구조로 설정할 수 있다. The size of the blood vessel bed can be specified by dividing into the lengths (Columns) and the widths (Rows). In addition, the inner and outer resistance of the ocular blood vessel can be designated as 1 to 16 OMEGA. In addition, the robe internal structure can be set as a simple structure, a double structure and a triple structure.
상기 제1단계(S10)의 혈관베드를 생성하면, 도 3에 나타난 바와 같이, 육각형의 혈관베드가 생성되고, 상기 생성된 육각형의 각 지점에 정확한 저항값이 표시되도록 구비된다. 본 발명은 확대경을 구비하고 있어 상기 생성된 육각형의 각 지점에 나타난 저항값은 따로 확대되어 나타낼 수 있도록 구비하는 것이 바람직하다. When the blood vessel bed of the first step S10 is generated, a hexagonal blood vessel bed is generated as shown in FIG. 3, and an accurate resistance value is displayed at each point of the generated hexagon. It is preferable that the present invention includes a magnifying glass so that the resistance value displayed at each point of the generated hexagon can be enlarged and displayed.
또한, 도 4(a)의 맥락막 혈관을 도 4(b)에 나타난 바와 같이 혈관베드로 설계하였다. 상기 도 4(b)에 나타난 혈관베드 격자의 각 라인은 모세관을 나타내는 16Ω의 저항을 가지며, 상기 생성된 육각형의 경계는 1 내지 16Ω의 저항을 가지도록 설계되는 것이 바람직하다. 또한, 도 4(b)에 나타난 바와 같이, 혈관 로뷸(lobule)을 나타내기 위해 삼각형으로 구성된 내부 그리드가 있는 이중층 육각형으로 설계되는 것이 바람직하다. 로뷸 내부 구조는 심플(simple)의 경우 1개층 육각형, 더블(double)의 경우 2개층 육각형, 그리고 트리플(triple)의 경우 3개층 육각형으로 변경하여 설정할 수 있는 것이 바람직하다.The choroidal blood vessel of Fig. 4 (a) was designed as a blood vessel bed as shown in Fig. 4 (b). Each line of the vascular bed lattice shown in FIG. 4 (b) has a resistivity of 16? Representing a capillary, and the boundary of the generated hexagons is preferably designed to have a resistance of 1? 16 ?. Also, as shown in Fig. 4 (b), it is desirable to design a double-layered hexagon with an internal grid of triangles to represent blood vessel lobules. It is preferable that the internal structure of the robe can be changed to a one-layer hexagonal shape for a simple shape, a two-layer hexagonal shape for a double shape, and a three-layer hexagonal shape for a triple shape.
또한, 상기 안구 혈관의 내부 및 외부 저항은 집합세정맥 직경이 모세관 직경의 1 내지 2배인 것으로 추정하여 계산하였고, 유동 저항은 포이즐 방정식(Poiseuille's equation)에 의해 혈관 반경의 네제곱(r4)에 반비례하는 것을 추정하여 계산하였다. In addition, the internal and external resistance of the ocular blood vessel was calculated by assuming that the collecting venous diameter was one to two times the capillary diameter, and the flow resistance was calculated by Poiseuille's equation to the fourth square of the radius of the blood vessel (r 4 ) And inversely proportional.
또한, 상기 혈관베드의 설계에서 말단 세동맥에 공급하는 양극(anode)은 상기 육각형의 중심에 놓였고, 정맥 배출을 나타내는 음극(cathodes)은 상기 육각형의 모서리에 연결되도록 구비되었다. 이는 맥락막 모세혈관층의 조직학적 연구 결과에 바탕을 두고 설계하였다.Also, in the design of the vascular bed, an anode supplied to the endarterectomy was placed at the center of the hexagon, and cathodes representing vein discharge were connected to the edge of the hexagon. It was designed based on the results of histological study of choroidal capillary layer.
또한, 상기 혈관베드의 설계에서 전압은 사용자가 임의로 설정할 수 있도록 구비되며, 인체의 안구 맥락막 소동맥 및 소정맥 내 혈압(mmHg)와 일치하도록 상기 세동맥은 50V로 설정하고, 세정맥은 10V로 설정되는 것이 바람직하다. In the design of the blood vessel bed, the voltage is set to be arbitrarily set by the user, and the arterioles are set to 50V so that the blood vessels in the choroidal arteries of the human eye and the blood pressure (mmHg) Do.
상기 혈관베드는, 사용자가 배열의 크기를 임의로 설정할 수 있도록 구비되며, 4(c)에 나타난 바와 같이, 전체 25개 또는 5 X 5 육각형으로 배열되도록 설정되는 것이 바람직하다. The blood vessel bed is provided so that the user can arbitrarily set the size of the array, and is preferably set to be arranged in a total of 25 or 5 x 5 hexagons as shown in 4 (c).
다음으로, 제2단계(S20)는 상기 제1단계(S10)에서 생성한 혈관베드에 동맥을 지정한다. 구체적으로, 도 5에 나타난 바와 같이, 상기 지정된 동맥을 그룹으로 번호를 지정한다. Next, the second step S20 designates an artery in the blood vessel bed generated in the first step S10. Specifically, as shown in Fig. 5, the designated arteries are numbered in groups.
또한, 상기 동일한 번호로 지정된 그룹의 동맥압은 사용자에 의해 변경 가능하도록 구비되고, 상기 지정된 동맥을 그룹화 하기 위한 번호 지정은 사용자에 의해 변경 가능하도록 구비되는 것이 바람직하다. It is preferable that the artery pressure of the group designated by the same number is changeable by a user, and that the number designation for grouping the designated arteries is changeable by a user.
도 5에 나타난 바와 같이, 붉은 원 내부의 번호는 동맥 그룹 번호를 나타낸 것이고, 상기 붉은 원 상단에 상기 동맥압을 나타내어 사용자에 의해 식별 가능하도록 구비되는 것이 바람직하다. As shown in FIG. 5, the number inside the red circle represents the arterial group number, and it is preferable that the arterial pressure is displayed at the upper end of the red circle so as to be identifiable by the user.
다음으로, 제3단계(S30)는 상기 제1단계(S10)에서 생성한 혈관베드에 정맥을 지정한다. 구체적으로, 도 6에 나타난 바와 같이, 상기 지정한 정맥을 그룹으로 번호를 지정한다. Next, in a third step S30, a vein is assigned to the blood vessel bed generated in the first step S10. Specifically, as shown in Fig. 6, the specified veins are numbered in groups.
상기 제2단계(S20)의 동맥 지정과 마찬가지로, 상기 동일한 번호로 지정된 그룹의 정맥압은 사용자에 의해 변경 가능하도록 구비되고, 상기 지정된 정맥을 그룹화 하기 위한 번호 지정은 사용자에 의해 변경 가능하도록 구비되는 것이 바람직하다. As in the arterial designation in the second step S20, the vein pressure of the group designated by the same number can be changed by the user, and the number designation for grouping the designated vein can be changed by the user desirable.
도 6에 나타난 바와 같이, 파란 원 내부의 번호는 정맥 그룹 번호를 나타낸 것이고, 상기 파란 원 상단에 상기 정맥압을 나타내어 사용자에 의해 식별 가능하도록 구비되는 것이 바람직하다. As shown in FIG. 6, the number inside the blue circle represents the vein group number, and it is preferable that the number is indicated by the user indicating the vein pressure at the top of the blue circle.
다음으로, 제4단계(S40)는 혈류량을 분석하여 혈관의 내부 및 외부 혈류량과 혈압을 나타낸다. Next, in a fourth step (S40), the blood flow is analyzed to show the inner and outer blood flow and blood pressure of the blood vessel.
도 8은 상기 제4단계(S40)에서 혈류량 분석을 실시하는 것을 나타낸 사진이다. FIG. 8 is a photograph showing blood flow analysis in the fourth step (S40).
상기 제4단계(S40)의 혈류량 분석은, 도 9에 나타난 바와 같이, 상기 혈류량이 적을수록 어두운 검정으로, 상기 혈류량이 많을수록 밝은 흰색으로 구분하여 나타낼 수 있다. As shown in FIG. 9, the blood flow analysis of the fourth step S40 may be divided into a darker black as the blood flow is smaller, and a brighter white as the blood flow is larger.
또한, 도 9에 나타난 바와 같이, 상기 혈류의 흐름을 화살표로 표시하되, 굵기에 의해 상기 혈류량을 구분하여 나타내도록 구비된 것이 바람직하다. Further, as shown in FIG. 9, it is preferable that the flow of the blood flow is indicated by an arrow, and the blood flow amount is divided according to the thickness.
본 발명에 의한 안구 혈관 혈류 시뮬레이션 방법은 전류가 합류하는 모든 지점에서 인-아웃 전류의 총계가 항상 0이 되는 키르히호프법칙(Kirchhoff's current law)을 바탕으로 분석되었다. 또한, 각 혈관의 채널 흐름은 전류로 계산되었고, 혈류 흐름의 방향과 양은 화살표와 두께로 각각 나타내었다. 상기 육각형의 평균 전류도 분석되었다. The ocular blood vessel blood flow simulation method according to the present invention was analyzed based on Kirchhoff's current law in which the total of the in-out currents at all points where the currents are merged is always zero. In addition, the channel flow of each blood vessel was calculated by current, and the direction and amount of blood flow were represented by arrow and thickness, respectively. The average current of the hexagon was also analyzed.
상기 과제의 해결 수단에 의해, 본 발명은 안구 맥락막 혈류 시뮬레이션을 통해 혈류량을 분석하여 맥락막 로뷸의 내부 및 외부 혈류량과 혈압을 간편하게 시뮬레이션할 수 있다. According to the solution of the above problem, the present invention can easily simulate the blood flow and internal and external blood flow of the choroidal robule by analyzing the blood flow volume through simulation of the choroidal blood flow.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As described above, it is to be understood that the technical structure of the present invention can be embodied in other specific forms without departing from the spirit and essential characteristics of the present invention.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, it should be understood that the above-described embodiments are to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than the foregoing description, All changes or modifications that come within the scope of the equivalent concept are to be construed as being included within the scope of the present invention.

Claims (4)

  1. 환자의 안구 맥락막 이미지 데이터를 컴퓨터 시스템 입력부에 입력한 뒤, 상기 컴퓨터 시스템의 입력부에 의해 상기 안구 맥락막 혈관베드의 크기, 로뷸의 내부 및 외부의 저항, 로뷸 내부 구조를 지정하여 혈관베드를 생성하는 제1단계;A method of generating a blood vessel bed by inputting a patient's choroidal image data into a computer system input unit and designating the size of the choroidal vascular bed, the internal and external resistance of the robe, Stage 1;
    상기 컴퓨터 시스템 입력부에서 생성된 혈관베드에 컴퓨터 시스템 제어부에 의해 동맥을 지정하되, 상기 지정된 동맥을 그룹으로 번호를 지정하는 제2단계;A second step of assigning an artery to a blood vessel bed generated by the computer system input unit by a computer system control unit, and numbering the designated artery into a group;
    상기 컴퓨터 시스템 제어부에 의해 지정된 동맥에 상기 컴퓨터 시스템 제어부에 의해 정맥을 지정하되, 상기 지정된 정맥을 그룹으로 번호를 지정하는 제3단계;A third step of assigning a vein to the artery designated by the computer system control unit by the computer system control unit, and numbering the designated vein into a group;
    상기 컴퓨터 시스템 제어부를 이용하여 혈류량을 분석하여 로뷸의 내부 및 외부 혈류량과 혈압을 컴퓨터 시스템 출력부에 나타내는 제4단계;를 포함하는 안구 맥락막 혈류 시뮬레이션 방법.And a fourth step of analyzing the blood flow volume using the computer system control unit and displaying the internal and external blood flow and the blood pressure of the robe on the computer system output unit.
  2. 제1항의 상기 동맥 지정에서,In the arterial designation of claim 1,
    상기 동일한 번호로 지정된 그룹의 동맥압을 변화시킬 수 있도록 구비된 안구 맥락막 혈류 시뮬레이션 방법.And the arterial pressure of the group designated by the same number can be changed.
  3. 제1항의 상기 정맥 지정에서,In the vein designation of claim 1,
    상기 동일한 번호로 지정된 그룹의 정맥압을 변화시킬 수 있도록 구비된 안구 맥락막 혈류 시뮬레이션 방법.And the venous pressure of the group designated by the same number can be changed.
  4. 제1항에 있어서,The method according to claim 1,
    상기 제4단계의 혈류량 분석은,In the fourth step,
    상기 혈류량이 적을수록 어두운 검정으로, 상기 혈류량이 많을수록 밝은 흰색으로 구분하여 나타내고,The smaller the blood flow is, the darker the blood is, and the larger the blood flow is,
    상기 혈류의 흐름을 화살표로 표시하되, 굵기에 의해 상기 혈류량을 구분하여 나타내도록 구비된 안구 맥락막 혈류 시뮬레이션 방법.Wherein the flow of the blood flow is indicated by an arrow, and the blood flow amount is divided according to a thickness of the blood flow.
PCT/KR2017/015428 2017-12-26 2017-12-26 Method for simulating choroidal blood flow WO2019132048A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/015428 WO2019132048A1 (en) 2017-12-26 2017-12-26 Method for simulating choroidal blood flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/015428 WO2019132048A1 (en) 2017-12-26 2017-12-26 Method for simulating choroidal blood flow

Publications (1)

Publication Number Publication Date
WO2019132048A1 true WO2019132048A1 (en) 2019-07-04

Family

ID=67067605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015428 WO2019132048A1 (en) 2017-12-26 2017-12-26 Method for simulating choroidal blood flow

Country Status (1)

Country Link
WO (1) WO2019132048A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012021307A2 (en) * 2010-08-12 2012-02-16 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
KR20150000450A (en) * 2011-08-26 2015-01-02 이비엠 가부시키가이샤 Blood-vessel bloodstream simulation system, method therefor, and computer software program
WO2015017571A1 (en) * 2013-07-30 2015-02-05 Heartflow, Inc. Method and system for modeling blood flow with boundary conditions for optimized diagnostic performance
KR20160026808A (en) * 2014-08-29 2016-03-09 강원대학교산학협력단 Method for determining patient-specific blood vessel information
KR20170133391A (en) * 2015-04-02 2017-12-05 하트플로우, 인크. System and method for predicting perfusion deficiency from physiological, anatomical, and patient characteristics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012021307A2 (en) * 2010-08-12 2012-02-16 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
KR20150000450A (en) * 2011-08-26 2015-01-02 이비엠 가부시키가이샤 Blood-vessel bloodstream simulation system, method therefor, and computer software program
WO2015017571A1 (en) * 2013-07-30 2015-02-05 Heartflow, Inc. Method and system for modeling blood flow with boundary conditions for optimized diagnostic performance
KR20160026808A (en) * 2014-08-29 2016-03-09 강원대학교산학협력단 Method for determining patient-specific blood vessel information
KR20170133391A (en) * 2015-04-02 2017-12-05 하트플로우, 인크. System and method for predicting perfusion deficiency from physiological, anatomical, and patient characteristics

Similar Documents

Publication Publication Date Title
Prentašić et al. Diabetic retinopathy image database (DRiDB): a new database for diabetic retinopathy screening programs research
Esterman Functional scoring of the binocular field
Wiedman et al. High-altitude retinopathy and altitude illness
CN107007352B (en) Method and system for the modeling of patient-specific blood flow
CN107799165A (en) A kind of psychological assessment method based on virtual reality technology
Yen et al. Retinal detachment associated with AIDS-related cytomegalovirus retinitis: risk factors in a resource-limited setting
CN112957005A (en) Automatic identification and laser photocoagulation region recommendation algorithm for fundus contrast image non-perfusion region
WO2019132048A1 (en) Method for simulating choroidal blood flow
Wu et al. Deep learning-based risk classification and auxiliary diagnosis of macular edema
KR101813812B1 (en) Method of simulation for choroidal blood flow
CN113920077A (en) Method for training fundus image segmentation model and arteriovenous segmentation method
Ruengkitpinyo et al. An automatic glaucoma screening algorithm using cup-to-disc ratio and ISNT rule with support vector machine
RU2683758C1 (en) Automated analysis system for angiographic images of human eyeground
EP3328271A1 (en) Method and device for noninvasively determining vital parameters of a living organism
KR102198816B1 (en) objective eight constitutions diagnosis system and method
CN211633227U (en) Novel electronic visual chart
CN114048687A (en) Myopia and high myopia prediction model and application thereof
DE102007011467A1 (en) Evaluation of a physical stress test
Grewal Visual function in aging and age-related macular degeneration including subretinal drusenoid deposits
Lakshminanarayanan et al. The fractal dimension in retinal pathology
TWI780879B (en) System of measuring mrd1 value and method thereof
EP2818098B1 (en) Analysis method
KR20150103679A (en) Uses of bacopa monnieri extract
CN110875094B (en) Healthy lifestyle motivation method and system for diabetes and storage device
Satheesh Estimation of Diabetic Retinopathy from Retinal Images Using Artificial Neural Network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936232

Country of ref document: EP

Kind code of ref document: A1