WO2019132002A1 - Electric linear actuator and electric brake device - Google Patents
Electric linear actuator and electric brake device Download PDFInfo
- Publication number
- WO2019132002A1 WO2019132002A1 PCT/JP2018/048466 JP2018048466W WO2019132002A1 WO 2019132002 A1 WO2019132002 A1 WO 2019132002A1 JP 2018048466 W JP2018048466 W JP 2018048466W WO 2019132002 A1 WO2019132002 A1 WO 2019132002A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electric
- power supply
- electric motor
- power
- storage means
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/03—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
- B60R16/033—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/74—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T17/00—Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
- B60T17/18—Safety devices; Monitoring
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P4/00—Arrangements specially adapted for regulating or controlling the speed or torque of electric motors that can be connected to two or more different electric power supplies
Definitions
- the present invention relates to an electric linear actuator and an electric brake device for use in automobiles and the like.
- Patent Document 1 An actuator for an electric brake that uses an electric motor, a linear motion mechanism, and a reduction gear has been proposed.
- Patent Document 2 An electric actuator using a planetary roller mechanism and an electric motor has been proposed.
- An object of the present invention is to provide an electric system that is highly reliable by using storage means as a power source at the time of failure of a power supply device, and can configure a redundant system by means cheaper than providing a plurality of power supply devices for driving a motor.
- a linear actuator and an electric brake device are examples of linear actuators.
- An electric direct acting actuator 1 includes a direct acting actuator body 2 having an electric motor 6 and a direct acting mechanism 7 for converting the rotational output of the electric motor 6 into a linear operation, and a control device for controlling the electric motor 6 3 and is an electric direct acting actuator in which electric power is supplied to the electric motor 6 and the control device 3 from a direct current power supply device 4,
- the control device 3 An arithmetic unit 10 for performing control calculation to control the electric motor 6; Step-down means 13 for operating the arithmetic unit 10 by reducing the voltage of the power supply device 4; Storage means 14 for storing the power output from the step-down means 13;
- the electric storage means 14 is configured to supply power to the electric motor 6 when the power supply capacity of the power supply device 4 determined by either or both of the voltage and current of the power supply device 4 is lower than a predetermined value.
- the discharge control means 12 is configured to supply power to the electric motor 6 when the power supply capacity of the power supply device 4 determined by either or both of the voltage and current of the power supply device 4
- the electric power of the power supply 4 is constantly stored in the storage means 14, and when the power supply 4 fails, that is, it is determined from one or both of the voltage and the current of the power supply 4.
- the storage means 14 and the electric motor 6 are connected by the function of the discharge regulation means 12, and the stored power is stored in the storage means 14.
- the electric motor 6 can be driven.
- the “electric power supply capacity” is, for example, a power supply capacity.
- the “predetermined value” is a value determined by design, and may be a power value, a voltage value or a voltage value.
- the storage means 14 functions as a backup power supply of the computing unit 10.
- the step-down means 13 is constituted by a DC / DC converter or the like, and the discharge regulating means 12 is constituted by an electric circuit component, a part of the arithmetic unit 10 or the like.
- the power control system of the electric motor 6 can be made redundant by the discharge control means 12 and the storage means 14 configured by electric circuit parts, a part of the arithmetic unit 10, etc., the reliability is high.
- a redundant system can be configured by means cheaper than providing a plurality of four.
- the discharge control means 12 A power supply monitoring function unit 19 that determines whether the power supply capacity of the power supply device 4 is higher than a predetermined value based on either or both of the voltage and current of the power supply device 4; Switch means 15 for switching between connection and disconnection of the storage means 14 and the electric motor 6; A switch control function of setting the switch means 15 in the disconnection state when the power supply capacity of the power supply device 4 is higher than the predetermined value, and setting the switch means 15 in the connection state when the power supply capacity is lower than the predetermined value. It may be configured to have the unit 20.
- the power supply monitoring function unit 19 determines the state of the power supply device 4, and based on the determination, the switch control function unit 20 controls the switch means 15 to open and close to supply power from the storage means 14 to the electric motor 6. Since the control is performed, the power feeding from the storage means 14 can be more appropriately controlled according to the state of the power supply 4 such as failure.
- the voltage boosting unit 21 may be provided to boost the voltage of the storage unit 14 and supply the voltage to the computing unit 10.
- the voltage of the storage means 14 decreases as the backup power is consumed, and when the voltage falls below a certain voltage, the arithmetic unit 10 stops its operation, and hence the control device 3 with the electric energy remaining in the storage means 14. Will stop working.
- the voltage boosting means 21 is provided to further boost the voltage of the storage means 14, the electric energy of the storage means 14 can be used up as much as possible.
- the electric power boosted by the boosting unit 21 may be supplied to the electric motor 6 through the switch unit 15.
- the boosting unit 21 can output a voltage for operating the computing unit 10. And can be configured relatively inexpensively and save space.
- the actuator control function unit 17 is configured to limit at least the powering output of the electric motor 6 to be smaller than when the switch unit 15 is in the disconnected state. It is also good.
- the power consumption of the storage means 14 used as the auxiliary power can be reduced. Therefore, for example, when the electric linear actuator 1 is applied to an electric brake device, the brake operation time can be extended.
- the actuator control function unit 17 may further have a function of limiting the regenerative output of the electric motor 6 to be smaller than the power running output.
- the actuator control function unit 17 may further have a function of limiting the regenerative output of the electric motor 6 to be smaller than the power running output.
- the discharge restriction means 12 is a diode which is interposed between a wire for supplying power to the electric motor 6 from the power supply device 4 and the storage means 14 and which interrupts the flow of current from the power supply device 4 to the storage means 14 side. It may be configured of the element 15A. When the diode element 15A is used, the configuration of the discharge restricting means 12 is simplified, and the cost can be further reduced.
- the storage means 14 may be an electric double layer capacitor (EDLC).
- EDLC electric double layer capacitors
- Electric double layer capacitors have the merit of being inexpensive, robust and relatively large in storage capacity, but have the disadvantage of low withstand voltage, so the above disadvantages are small in the configuration used for power for computing unit 10 with low voltage in general. Can be enjoyed effectively.
- An electric brake apparatus includes the electric linear actuator according to any one of the above-described aspects according to the present invention, and a friction material generating a braking force by contacting a brake rotor rotating with a braked member is the linear actuator body. Advance and retreat by 2. As a result, the power supply can be secured for the failure of the power supply device 4 with an inexpensive configuration.
- FIG. 1 shows the normal state of the power supply device
- FIG. 3 shows the state at the time of failure.
- the electric direct acting actuator 1 is composed of a direct acting actuator main body 2 and a control device 3, and is connected to the power supply 4 and the command means 5.
- the electric direct drive actuator 1 is used, for example, in an electric brake device whose example is shown in FIG.
- the power supply device 4 may be, for example, in the case of an electric brake device, a low voltage battery, a high voltage battery, or a step-down DC / DC converter of a mounted vehicle. Further, these may be used in combination or in combination, and a large capacity capacitor may be provided separately.
- the command means 5 is a means for giving a braking command to the control device 3.
- an operation amount detection sensor of a brake device such as a brake pedal etc.
- the command means 5 may be control means provided in a control device (not shown) such as a VCU (vehicle control device) for controlling a device equipped with the electric linear motion actuator 1.
- the electric actuator body 2 includes an electric motor 6, a linear motion mechanism 7 for converting the rotational output of the electric motor 6 into a linear operation, a motor angle sensor 8, and an actuator load sensor 9.
- the electric motor 6 is, for example, a permanent magnet type synchronous motor, and in that case, it is considered to be suitable because it saves space and has high torque and high output, but it may be a reluctance motor or a DC motor with a brush. Alternatively, an induction motor with a starter or the like can be applied to the electric motor 6.
- the linear movement mechanism 7 can use various screw mechanisms such as a planetary roller screw and a ball screw, and various mechanisms for converting rotational input such as a ball ramp mechanism and a rack and pinion mechanism into linear movement.
- the angle sensor 8 is, for example, a resolver or a magnetic encoder, which is considered to be suitable because of its high performance and reliability, but an optical encoder or the like can also be used.
- an angle sensorless estimator (not shown) may be used to estimate the rotor phase from the relationship between the voltage and the current of the electric motor 6 in the control device 3 described later.
- the load sensor 9 can use, for example, a load sensor of a type that detects deformation or strain of a predetermined member due to the action of a linear motion load, which is considered inexpensive and preferable, but without using the load sensor 9
- a sensorless estimation system that estimates the actuator load indirectly by the correlation between the motor rotation angle and the load based on the mechanical rigidity of the linear actuator body 2 or the correlation between the motor current and the load It is also good.
- the braking force can be estimated based on a braking torque sensor or a vehicle acceleration sensor and processed as a value that can correspond to an actuator load.
- the electric brake device shown in FIG. 4 is a friction brake, and is disposed in the vicinity of the brake rotor 31 which rotates in synchronization with a wheel (not shown) which is a braked member of the vehicle equipped with the electric brake device.
- a mechanism may be used which operates the friction material 32 with the electric actuator main body 2 to press the brake rotor 31 using the friction material 32 and generates a braking force by a frictional force.
- the brake rotor 31 and the friction material 32 constitute a brake body 30.
- the rotational output of the electric motor 6 is input to the linear motion input portion of the linear motion mechanism 7 via the reduction gear mechanism 33 formed of a gear train. Each gear of the reduction mechanism 33 can rotate in both directions.
- the control device 3 includes an arithmetic unit 10, a motor driver 11, and peripheral circuits for supplying the arithmetic power to the arithmetic unit 10 for operation.
- Arithmetic unit 10 controls electric motor 6 by controlling motor driver 11 in accordance with a command from command means 5, and is a means having a main role of controlling linear actuator body 2; It consists of a CPU and its control program.
- the motor driver 11 is a unit that converts DC power supplied from the power supply 4 into AC power used to drive the electric motor 6 and performs output control by current control or the like.
- the motor driver 11 is configured as a circuit that controls a voltage according to the ON-OFF duty ratio of the switch element using a half bridge circuit or the like using a switch element such as an FET, for example. It is considered suitable.
- Step-down means 13 The power for operating the computing unit 10 can be obtained, for example, from the power supply device 4 via the step-down means 13 composed of the step-down DC / DC converter shown in this figure.
- a voltage that can be supplied for an electric motor or a control device is about 12 to 48 V, whereas a voltage used for the operation of a general computing unit is about 1.3 to 5 V. Therefore, it is preferable to provide the control device 3 with step-down means 13 such as an inexpensive DC / DC converter for reducing the power supply voltage.
- the step-down means 13 composed of the DC / DC converter is, for example, a CVCC step-down chopper circuit or the like constituted of a capacitor, an inductor, a switch element, a switch control circuit, etc.
- a step-down regulator or the like that lowers the voltage by heat loss or the like.
- a storage means 14 is provided for the output of the step-down means 13 consisting of the DC / DC converter.
- the storage means 14 is used as a backup power source, for example, when the power supply 4 fails due to a disconnection or the like. It is preferable to use, for example, an electric double layer capacitor (EDLC) as the storage means 14 because it is inexpensive, robust and has a large capacity.
- EDLC electric double layer capacitor
- EDLC has a low withstand voltage (about 2.5 V per cell / unit), and it may be difficult to provide the power supply 4 directly as backup means, but the power source of the computing unit 10 of about 5 V at maximum It is relatively easy to provide as.
- the storage means 14 is connected to the highest voltage among the plurality of operating voltages.
- a DC / DC converter (not shown) may be provided to reduce the voltage of Generally, since the power consumption of the computing unit is very small, the additionally provided DC / DC converter may be extremely inexpensive.
- the storage means 14 also serves as a backup for the drive power of the electric motor 6.
- the power supply to the electric motor 6 of the storage means 14 is controlled by the discharge control means 12.
- the discharge control means 12 supplies power from the storage means 14 to the electric motor 6 when the power supply capacity of the power supply device 4 determined by either or both of the voltage and current of the power supply device 4 is lower than a predetermined value.
- It is a means configured to be supplied, and in this embodiment, it is configured by switch means 15 for switching between connection and disconnection, a power control function unit 19 described later, and a switch control function unit 20.
- the switch means 15 is provided between the storage means 14 and the motor driver 11. Thus, the backup can be shared.
- ⁇ Switching Means 15> By controlling the opening and closing of the switch means 15, for example, the storage means 14 and the electric motor 6 are disconnected when the power supply device 4 is normal, and the storage means 14 is disconnected when the power supply device 6 fails. By connecting the electric motor 6 and the electric motor 6, the electric motor 6 can be driven by the electric power of the storage means 14 when the power supply 4 fails. At this time, although the drive voltage of the electric motor 6 is lowered, the function of limiting the output of the electric motor 6 is often provided in order to suppress the power consumption of the backup power source when performing redundant control. Can be tolerated.
- the switch means 15 may be, for example, a switch circuit including a transistor circuit such as an FET and a transistor control circuit. In this case, it is considered preferable that the disconnection and connection of the circuit can be arbitrarily performed and the loss of the switch function is reduced.
- the computing unit 10 includes an actuator control function unit 17, a state estimation function 18, a power supply monitoring function 19, and a switch control function unit 20.
- the actuator control function unit 17 is a function unit that controls the electric motor 6 and controls the linear actuator body 2 as described above, and, for example, determines a feedback value that can correspond to the braking force based on a predetermined target braking force. It is configured as a control system that calculates a motor operation amount to converge to the value of. The control calculation may appropriately configure feedback control, feed forward control, or a control system using both of them. Alternatively, an empirical method such as fuzzy control may be used to learn an appropriate operation amount from the response to the input pattern.
- the actuator control function unit 17 can have a function of limiting the operation amount of the electric motor 6 or the output of the electric motor 6 to any operation amount or output. For example, when the output of the power supply device 4 is limited, it is necessary to limit the amount of operation of the electric motor according to the limitation. At this time, in the case where the electric motor 6 is driven by the power supply device 4 and in the case where the electric motor 6 is driven by the storage unit 14, it is preferable to set different limiting amounts. Generally, the capacity of the storage means 14 which is a backup power supply instead of the power supply device 4 can be relatively smaller than that of the power supply device 4, and the voltage of the storage means 14 is lower than that of the power supply device 4 as described above. By applying the different limiting amounts, it is possible to suppress the power consumption of the storage means 14 and to improve the control stability.
- the state estimation function unit 18 corresponds to each sensor output, for example, the output load of the linear actuator body 2 estimated from the output of the load sensor 9 or the motor angle or angular velocity of the electric motor 6 estimated from the output of the angle sensor 8. It has a function to estimate the state quantity. Alternatively, for example, as described above, it may be a means having a sensorless control function which substitutes a sensor output not directly corresponding.
- the power supply monitoring function unit 19 may be provided with, for example, a voltage detection means 16 for detecting the voltage of the control device 3 as shown in this figure, and may determine the power supply capability of the power supply 4 based on the value of the detection voltage. . As a result, it is possible to diagnose, for example, a voltage drop due to a decrease in electric energy of the battery or capacitor that constitutes the power supply device 4. Alternatively, a function (not shown) for detecting the supply current from the power supply device 4 may be provided, and the power supply capability of the power supply device 4 may be determined by voltage fluctuation when a predetermined current flows. .
- the power supply monitoring function unit 19 additionally has, for example, an integrated power supply monitoring function such as a battery manager at the upper level, and the computing unit 10 receives a diagnosis result diagnosed based on% SOC etc. in addition to the voltage and current.
- the functional unit may diagnose the state of the power supply based on the content of the examination.
- the switch control function unit 20 is a unit having a function of changing the connection state of the storage unit 14 and the motor driver 11 of the electric motor 6 based on the diagnosis result of the power supply monitoring function unit 19.
- FIG. 2 shows an operation execution example of the computing unit 10 regarding the use of the storage means 14.
- the power supply monitoring function unit 19 determines whether the power supply 4 is normal. In this case, if the power supply capacity of the power supply device 4 is higher than a predetermined value than either one or both of the voltage and current of the power supply device 4, it is determined that it is normal.
- the predetermined value is a value determined by design, and is, for example, a voltage value, a current value, or a power value.
- step S2 If the power supply 4 is not normal, the storage means 14 and the electric motor 6 are electrically connected in step S2. Specifically, the switch control function unit 20 turns on the switch means 15 (the state of FIG. 3), and the electric storage means 14 energizes the motor driver 11.
- step S3 an actuator control calculation is performed to derive a motor operation amount required for control. This process is performed by the actuator control function unit 17.
- step S4 it is determined whether the operation amount of the electric motor 6 exceeds the predetermined value U1.
- the limit value U1 of the operation amount is a value appropriately determined by design, and may be, for example, a value that changes according to the motor angular velocity or the like, or different values may be applied for power running and regeneration of the electric motor 6. .
- the operation amount of the electric motor 6 may be, for example, either one or both of a motor current and a motor voltage.
- step S6 the amount of operation of the electric motor is output by the clutch control function unit 17. If the electric motor operation amount exceeds the predetermined value U1, the electric motor operation amount is limited to U1 in step S5, and then the restricted electric motor operation amount (predetermined value U1) is set in step S6.
- the actuator control function unit 17 outputs.
- step S1 When it is determined in step S1 whether or not the power supply 4 is normal, if the power supply 4 is normal, the storage means 14 and the electric motor 6 are electrically disconnected in step S7. Specifically, the switch control function unit 20 turns off the switch unit 15 to cut off the connection between the storage unit 14 and the motor driver 11.
- step S8 an actuator control calculation is performed to derive a motor operation amount necessary for control.
- the calculation and derivation are performed by the actuator control function unit 17.
- step S9 it is determined whether the operation amount of the electric motor 6 exceeds the predetermined value U2.
- the predetermined value U2 is a value appropriately determined by design
- the estimated value U2 is larger than the predetermined value U1 used in the step S4, for example, when the motor angular velocity and the like have the same condition (U1 ⁇ U2) It is preferred to use the values given in
- the actuator control function unit 17 outputs the motor operation amount in step S6. If the motor operation amount exceeds the predetermined value U2, the electric motor operation amount is limited to the predetermined value U2 in step S10, and the restricted motor operation amount (predetermined value U2) is determined in step S6. Output.
- the motor-driven linear motion actuator of this configuration when the power of the power supply 4 is constantly stored in the storage means 14 and the power supply 4 fails, that is, the voltage of the power supply 4 and When the power supply capacity of the power supply device 4 determined by one or both of the currents is lower than a predetermined value, the storage means 14 and the electric motor 6 are connected by the function of the discharge regulation means 12 to store the electricity.
- the electric motor 6 can be driven by the power stored in the means 14.
- the storage means 14 functions as a backup power supply of the computing unit 10.
- the step-down means 13 is constituted by a DC / DC converter or the like, and the discharge regulating means 12 is constituted by an electric circuit part, a part of the arithmetic unit 10 or the like.
- the power supply system of the electric motor 6 can be made redundant by the discharge control means 12 and the storage means 14 which are constituted by electric circuit parts, a part of the arithmetic unit 10, etc.
- the storage means 14 using EDLC
- a redundant system can be configured at lower cost than providing a plurality of power supply devices 4 for driving the motor.
- the actuator control function unit 17 limits at least the powering output of the electric motor 6 to be smaller as compared with the case where the switch unit 15 is disconnected, The power consumption of the storage means 14 used as the auxiliary power can be reduced. Therefore, for example, when the electric linear actuator 1 is applied to an electric brake device, the brake operation time can be extended.
- the storage means 14 uses an electric double layer capacitor
- the electric double layer capacitor has the merit of being inexpensive, robust and having a relatively large storage capacity, but has the disadvantage of a low withstand voltage, so an arithmetic unit with a low voltage is generally used.
- the above demerit is small, and the merit can be effectively enjoyed.
- the electric brake device of this embodiment uses the electric linear actuator 1 according to this embodiment, it is possible to secure the power source for the failure of the power source device 4 with an inexpensive configuration.
- FIG. 5 shows a second embodiment of the present invention.
- This embodiment shows an example in which a boosting means 21 comprising a boosting DC / DC converter is further provided to the first embodiment shown in FIG.
- the voltage of the storage means 14 decreases as the backup power is consumed, and the arithmetic unit 10 stops its operation when it falls below a certain voltage, so that the electric energy remains in the storage means 14. Even in the second state, the control device 3 stops its operation.
- the output voltage of the boosting means 21 composed of a boosting DC / DC converter can be a voltage substantially equal to the output of the step-down DC / DC converter.
- the other configurations and effects of this embodiment are the same as those of the first embodiment shown in FIG.
- FIG. 6 shows a third embodiment in which the output of the boosting means 21 composed of a boosting DC / DC converter is used only for the computing unit 10 with respect to the embodiment of FIG.
- the driving voltage of the electric motor 6 decreases with the discharge of the storage means 14, but the boosting means 21 formed of a boosting DC / DC converter can output the power for operating the arithmetic unit 10. It can be configured relatively inexpensively and space saving.
- the other configurations and effects of this embodiment are the same as those of the first embodiment shown in FIG.
- FIG. 7 shows a fourth embodiment of the present invention.
- the example of the same figure shows the example which uses the diode element 15A instead of the said switch means 15 as a means to comprise the discharge control means 12.
- FIG. 7 shows the example which uses the diode element 15A instead of the said switch means 15 as a means to comprise the discharge control means 12.
- FIG. 7 shows the example which uses the diode element 15A instead of the said switch means 15 as a means to comprise the discharge control means 12.
- the backflow prevention means may be, for example, one that can arbitrarily disconnect and connect the control device 3 by another switch means, or may be one that completely prevents backflow by a diode element or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Braking Systems And Boosters (AREA)
- Valves And Accessory Devices For Braking Systems (AREA)
- Control Of Electric Motors In General (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Provided is an electric linear actuator in which a power storage means is used as a power source when there is a fault in a power supply device, making it possible to constitute a highly reliable redundant system using a means that is less expensive than providing a plurality of power supply devices. A control device (3) for controlling a linear actuator body (2) is provided with, in addition to an arithmetic unit (10) for performing control computation for controlling an electric motor (6), a step-down means (13) for reducing the voltage of a power supply device (4) and operating the arithmetic unit (10), and a power storage means (14). The control device (3) also has a discharge restriction means (12) configured to supply electric power from the power storage means (14) to the electric motor (6) if the electricity supply capability of the power supply device (4) is lower than a prescribed value.
Description
本出願は、2017年12月29日出願の特願2017-255123の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
This application claims the priority of Japanese Patent Application No. 2017-255123 filed on Dec. 29, 2017, which is incorporated by reference in its entirety.
この発明は、自動車等に用いられる電動式直動アクチュエータおよび電動ブレーキ装置に関する。
BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to an electric linear actuator and an electric brake device for use in automobiles and the like.
電動モータ、直動機構、および減速機を使用した電動ブレーキ用アクチュエータが提案されている(特許文献1)。また、遊星ローラ機構、電動モータ、を使用した電動アクチュエータが提案されている(特許文献2)。
An actuator for an electric brake that uses an electric motor, a linear motion mechanism, and a reduction gear has been proposed (Patent Document 1). In addition, an electric actuator using a planetary roller mechanism and an electric motor has been proposed (Patent Document 2).
特許文献1,2の電動式直動アクチュエータにおいて、例えば電動ブレーキ装置を構成する場合、電動ブレーキ装置が失陥し車両が停止不可となる状態を回避するために、極めて強固な冗長系が求められる場合がある。特に、電動ブレーキ装置の駆動に用いる電源について、失陥時にもブレーキを作動させられる必要が生じる場合がある。前記の対策として、電動ブレーキ装置のモータ駆動用の電源装置を複数設ける場合、前記電源装置のコストや搭載スペースが問題となる場合がある。
In the electric linear actuators described in Patent Documents 1 and 2, for example, when an electric brake device is configured, a very strong redundant system is required to avoid a state in which the electric brake device fails and the vehicle can not be stopped. There is a case. In particular, with regard to the power source used to drive the electric brake device, it may be necessary to operate the brake also at the time of failure. In the case where a plurality of power supply devices for driving the motor of the electric brake device are provided as the measure, the cost and the mounting space of the power supply device may be a problem.
この発明の目的は、蓄電手段を電源装置の失陥時の電力源とすることで、信頼性が高く、モータ駆動用の電源装置を複数設けるよりも安価な手段で冗長系を構成できる電動式直動アクチュエータおよび電動ブレーキ装置を提供することである。
An object of the present invention is to provide an electric system that is highly reliable by using storage means as a power source at the time of failure of a power supply device, and can configure a redundant system by means cheaper than providing a plurality of power supply devices for driving a motor. A linear actuator and an electric brake device.
以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。
Hereinafter, in order to facilitate understanding, for convenience, reference will be made to the reference numerals of the embodiments.
この発明の電動式直動アクチュエータ1は、電動モータ6およびこの電動モータ6の回転出力を直線動作に変換する直動機構7を有する直動アクチュエータ本体2と、前記電動モータ6を制御する制御装置3とを備え、直流の電源装置4から前記電動モータ6および前記制御装置3に電力が供給される電動式直動アクチュエータであって、
前記制御装置3が、
前記電動モータ6を制御する制御演算を行う演算器10と、
前記電源装置4の電圧を低下させて前記演算器10を動作させる降圧手段13と、
前記降圧手段13が出力した電力を蓄える蓄電手段14と、
前記電源装置4の電圧および電流のいずれか一方または両方より定まる前記電源装置4の電気供給能力が所定値よりも低い場合に前記蓄電手段14から前記電動モータ6に電力を供給させるように構成された放電規制手段12とを有する。 An electricdirect acting actuator 1 according to the present invention includes a direct acting actuator body 2 having an electric motor 6 and a direct acting mechanism 7 for converting the rotational output of the electric motor 6 into a linear operation, and a control device for controlling the electric motor 6 3 and is an electric direct acting actuator in which electric power is supplied to the electric motor 6 and the control device 3 from a direct current power supply device 4,
Thecontrol device 3
Anarithmetic unit 10 for performing control calculation to control the electric motor 6;
Step-down means 13 for operating thearithmetic unit 10 by reducing the voltage of the power supply device 4;
Storage means 14 for storing the power output from the step-down means 13;
The electric storage means 14 is configured to supply power to theelectric motor 6 when the power supply capacity of the power supply device 4 determined by either or both of the voltage and current of the power supply device 4 is lower than a predetermined value. And the discharge control means 12.
前記制御装置3が、
前記電動モータ6を制御する制御演算を行う演算器10と、
前記電源装置4の電圧を低下させて前記演算器10を動作させる降圧手段13と、
前記降圧手段13が出力した電力を蓄える蓄電手段14と、
前記電源装置4の電圧および電流のいずれか一方または両方より定まる前記電源装置4の電気供給能力が所定値よりも低い場合に前記蓄電手段14から前記電動モータ6に電力を供給させるように構成された放電規制手段12とを有する。 An electric
The
An
Step-down means 13 for operating the
Storage means 14 for storing the power output from the step-
The electric storage means 14 is configured to supply power to the
この構成によると、常時は電源装置4の電力を蓄電手段14に蓄電しておき、前記電源装置4が失陥したとき、すなわち前記電源装置4の電圧および電流のいずれか一方または両方より定まる前記電源装置4の電気供給能力が所定値よりも低いときは、前記放電規制手段12の機能により、前記蓄電手段14と電動モータ6とを接続し、前記蓄電手段14に蓄電しておいた電力で前記電動モータ6を駆動することができる。前記「電気供給能力」は、例えば電力供給能力である。前記「所定値」は設計により定められる値であり、電力値であっても、電圧値または電圧値であってもよい。前記蓄電手段14は、前記演算器10のバックアップ電源として機能する。前記降圧手段13はDC/DCコンバータ等により構成され、前記放電規制手段12は電気回路部品や前記演算器10の一部等で構成される。
According to this configuration, the electric power of the power supply 4 is constantly stored in the storage means 14, and when the power supply 4 fails, that is, it is determined from one or both of the voltage and the current of the power supply 4. When the power supply capacity of the power supply device 4 is lower than a predetermined value, the storage means 14 and the electric motor 6 are connected by the function of the discharge regulation means 12, and the stored power is stored in the storage means 14. The electric motor 6 can be driven. The “electric power supply capacity” is, for example, a power supply capacity. The “predetermined value” is a value determined by design, and may be a power value, a voltage value or a voltage value. The storage means 14 functions as a backup power supply of the computing unit 10. The step-down means 13 is constituted by a DC / DC converter or the like, and the discharge regulating means 12 is constituted by an electric circuit component, a part of the arithmetic unit 10 or the like.
このように、電気回路部品や前記演算器10の一部等で構成される放電規制手段12と蓄電手段14とで電動モータ6の電源系の冗長化が図れるため、信頼性が高く、電源装置4を複数設けるよりも安価な手段で冗長系を構成することができる。
As described above, since the power control system of the electric motor 6 can be made redundant by the discharge control means 12 and the storage means 14 configured by electric circuit parts, a part of the arithmetic unit 10, etc., the reliability is high. A redundant system can be configured by means cheaper than providing a plurality of four.
前記放電規制手段12が、
前記電源装置4の電圧および電流のいずれか一方または両方より前記電源装置4の電気供給能力が所定値よりも高いか否かを判断する電源監視機能部19と、
前記蓄電手段14と前記電動モータ6との接続および切断を切り替えるスイッチ手段15と、
前記電源装置4の電気供給能力が前記所定値より高い場合に前記スイッチ手段15を切断状態とし、前記電気供給能力が前記所定値より低下した場合に前記スイッチ手段15を接続状態とするスイッチ制御機能部20とを有する構成であってもよい。 The discharge control means 12
A power supplymonitoring function unit 19 that determines whether the power supply capacity of the power supply device 4 is higher than a predetermined value based on either or both of the voltage and current of the power supply device 4;
Switch means 15 for switching between connection and disconnection of the storage means 14 and theelectric motor 6;
A switch control function of setting the switch means 15 in the disconnection state when the power supply capacity of thepower supply device 4 is higher than the predetermined value, and setting the switch means 15 in the connection state when the power supply capacity is lower than the predetermined value. It may be configured to have the unit 20.
前記電源装置4の電圧および電流のいずれか一方または両方より前記電源装置4の電気供給能力が所定値よりも高いか否かを判断する電源監視機能部19と、
前記蓄電手段14と前記電動モータ6との接続および切断を切り替えるスイッチ手段15と、
前記電源装置4の電気供給能力が前記所定値より高い場合に前記スイッチ手段15を切断状態とし、前記電気供給能力が前記所定値より低下した場合に前記スイッチ手段15を接続状態とするスイッチ制御機能部20とを有する構成であってもよい。 The discharge control means 12
A power supply
Switch means 15 for switching between connection and disconnection of the storage means 14 and the
A switch control function of setting the switch means 15 in the disconnection state when the power supply capacity of the
この構成の場合、電源監視機能部19が電源装置4の状態を判断し、その判断に基づいてスイッチ制御機能部20によりスイッチ手段15を開閉制御し、蓄電手段14から電動モータ6への給電の制御を行うため、蓄電手段14からの給電を、電源装置4の失陥等の状態に応じてより適切に制御することができる。
In the case of this configuration, the power supply monitoring function unit 19 determines the state of the power supply device 4, and based on the determination, the switch control function unit 20 controls the switch means 15 to open and close to supply power from the storage means 14 to the electric motor 6. Since the control is performed, the power feeding from the storage means 14 can be more appropriately controlled according to the state of the power supply 4 such as failure.
この構成の場合に、前記蓄電手段14の電圧を昇圧して前記演算器10に供給する昇圧手段21を備えていてもよい。
In the case of this configuration, the voltage boosting unit 21 may be provided to boost the voltage of the storage unit 14 and supply the voltage to the computing unit 10.
前記蓄電手段14の電圧はバックアップ電力を消費するに従って低下していき、ある電圧を下回った場合に演算器10が動作を停止し、そのため、蓄電手段14に電気エネルギーが残った状態で制御装置3が動作を停止する。これに対して、前記昇圧手段21を設けて蓄電手段14の電圧をさらに昇圧すると、可能な限り蓄電手段14の電気エネルギーを使い切ることができる。
The voltage of the storage means 14 decreases as the backup power is consumed, and when the voltage falls below a certain voltage, the arithmetic unit 10 stops its operation, and hence the control device 3 with the electric energy remaining in the storage means 14. Will stop working. On the other hand, when the voltage boosting means 21 is provided to further boost the voltage of the storage means 14, the electric energy of the storage means 14 can be used up as much as possible.
前記昇圧手段21を設ける場合に、前記昇圧手段21の昇圧された電力を、前記スイッチ手段15を介して前記電動モータ6に供給するようにしてもよい。
When the boosting unit 21 is provided, the electric power boosted by the boosting unit 21 may be supplied to the electric motor 6 through the switch unit 15.
この場合、電動モータ6の必要な電圧による駆動を確保することができる。なお、前記昇圧手段21の出力を、電動モータ6の駆動に用いずに前記演算器10のみに用いるようにした場合は、前記昇圧手段21が演算器10を動作させる電圧を出力できるもので足り、比較的安価でかつ省スペースに構成することができる。
In this case, driving by the required voltage of the electric motor 6 can be secured. When the output of the boosting unit 21 is used only for the computing unit 10 without using it for driving the electric motor 6, the boosting unit 21 can output a voltage for operating the computing unit 10. And can be configured relatively inexpensively and save space.
前記スイッチ手段15が接続されているときに、前記スイッチ手段15が切断状態である場合と比較して前記電動モータ6の少なくとも力行出力が小さくなるよう制限するアクチュエータ制御機能部17を有していてもよい。
When the switch unit 15 is connected, the actuator control function unit 17 is configured to limit at least the powering output of the electric motor 6 to be smaller than when the switch unit 15 is in the disconnected state. It is also good.
この構成の場合、補助電力として用いる蓄電手段14の消費電力を軽減できる。そのため、例えばこの電動式直動アクチュエータ1を電動ブレーキ装置に適用した場合に、そのブレーキ動作時間を延長することができる。
In this configuration, the power consumption of the storage means 14 used as the auxiliary power can be reduced. Therefore, for example, when the electric linear actuator 1 is applied to an electric brake device, the brake operation time can be extended.
この構成の場合に、前記アクチュエータ制御機能部17が、さらに前記電動モータ6の回生出力を力行出力よりも小さく制限する機能を有していてもよい。例えば昇圧回路等を用いる場合等において、回生電力については十分な吸収ができない可能性があるため、回生出力をゼロまたは十分に小さな値に制限することが好ましい。
In the case of this configuration, the actuator control function unit 17 may further have a function of limiting the regenerative output of the electric motor 6 to be smaller than the power running output. For example, in the case where a booster circuit or the like is used, it is preferable to limit the regenerative output to zero or a sufficiently small value because there is a possibility that the regenerative power can not be sufficiently absorbed.
前記放電規制手段12が、前記電源装置4から前記電動モータ6に給電する配線と前記蓄電手段14との間に介在し前記電源装置4から前記蓄電手段14側への電流の流れを遮断するダイオード素子15Aで構成されていてもよい。ダイオード素子15Aを用いた場合、前記放電規制手段12の構成が簡素となり、よりコストを低下させることができる。
The discharge restriction means 12 is a diode which is interposed between a wire for supplying power to the electric motor 6 from the power supply device 4 and the storage means 14 and which interrupts the flow of current from the power supply device 4 to the storage means 14 side. It may be configured of the element 15A. When the diode element 15A is used, the configuration of the discharge restricting means 12 is simplified, and the cost can be further reduced.
前記蓄電手段14が電気二重層キャパシタ(EDLC)であってもよい。電気二重層キャパシタは、安価で堅牢かつ蓄電容量が比較的大きいメリットがある反面、耐圧が低いデメリットがあるため、一般に電圧の低い演算器10用の電力に用いる構成においては前記デメリットが小さく、メリットを効果的に享受することができる。
The storage means 14 may be an electric double layer capacitor (EDLC). Electric double layer capacitors have the merit of being inexpensive, robust and relatively large in storage capacity, but have the disadvantage of low withstand voltage, so the above disadvantages are small in the configuration used for power for computing unit 10 with low voltage in general. Can be enjoyed effectively.
この発明の電動ブレーキ装置は、この発明の上記いずれかの構成の電動式直動アクチュエータを備え、被制動部材と共に回転するブレーキロータに接触して制動力を発生させる摩擦材を前記直動アクチュエータ本体2により進退させる。これにより、電源装置4の失陥に対する電源確保が安価な構成で行える。
An electric brake apparatus according to the present invention includes the electric linear actuator according to any one of the above-described aspects according to the present invention, and a friction material generating a braking force by contacting a brake rotor rotating with a braked member is the linear actuator body. Advance and retreat by 2. As a result, the power supply can be secured for the failure of the power supply device 4 with an inexpensive configuration.
請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
Any combination of the at least two configurations disclosed in the claims and / or the description and / or the drawings is included in the present invention. In particular, any combination of two or more of the claims is included in the present invention.
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る電動式直動アクチュエータの概念構成を示すブロック図である。
図1の電動式直動アクチュエータの動作例を示す流れ図である。
図1の電動式直動アクチュエータの電源装置失陥時の状態を示すブロック図である。
図1の電動式直動アクチュエータを用いた電動ブレーキ装置の一例を示す説明図である。
この発明の第2の実施形態に係る電動式直動アクチュエータの概念構成を示すブロック図である。
この発明の第3の実施形態に係る電動式直動アクチュエータの概念構成を示すブロック図である。
この発明の第4の実施形態に係る電動式直動アクチュエータの概念構成を示すブロック図である。
The invention will be more clearly understood from the following description of the preferred embodiments with reference to the accompanying drawings. However, the embodiments and the drawings are for the purpose of illustration and description only and are not to be taken as limiting the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in multiple drawings indicate the same or corresponding parts.
It is a block diagram showing a conceptual composition of an electric direct-acting actuator concerning a 1st embodiment of this invention. It is a flowchart which shows the operation example of the electrically driven linear actuator of FIG. It is a block diagram which shows the state at the time of power supply device failure of the electrically driven linear actuator of FIG. It is explanatory drawing which shows an example of the electrically-driven brake device using the electrically driven direct-acting actuator of FIG. It is a block diagram showing a conceptual composition of an electric direct-acting actuator concerning a 2nd embodiment of this invention. It is a block diagram showing a conceptual composition of an electric direct-acting actuator concerning a 3rd embodiment of this invention. It is a block diagram showing a conceptual composition of an electric direct-acting actuator concerning a 4th embodiment of this invention.
この発明の第1の実施形態を図1ないし図4と共に説明する。図1は電源装置の正常状態を、図3は失陥時の状態をそれぞれ示す。この電動式直動アクチュエータ1は、直動アクチュエータ本体2と、制御装置3とで構成され、電源装置4および指令手段5に接続される。この電動式直動アクチュエータ1は、例えば図4に一例を示す電動ブレーキ装置に用いられる。
A first embodiment of the present invention will be described in conjunction with FIGS. FIG. 1 shows the normal state of the power supply device, and FIG. 3 shows the state at the time of failure. The electric direct acting actuator 1 is composed of a direct acting actuator main body 2 and a control device 3, and is connected to the power supply 4 and the command means 5. The electric direct drive actuator 1 is used, for example, in an electric brake device whose example is shown in FIG.
図1において、電源装置4は、例えば電動ブレーキ装置の場合、搭載車両の低圧バッテリや、高圧バッテリ、または降圧DC/DCコンバータであってもよい。また、これらの併用あるいは併設等であってもよく、別途大容量キャパシタ等が設けられていてもよい。
In FIG. 1, the power supply device 4 may be, for example, in the case of an electric brake device, a low voltage battery, a high voltage battery, or a step-down DC / DC converter of a mounted vehicle. Further, these may be used in combination or in combination, and a large capacity capacitor may be provided separately.
指令手段5は、制御装置3に制動指令を与える手段であり、例えばこの電動式直動アクチュエータ1を電動ブレーキ装置に用いる場合、ブレーキペダル等のブレーキ装置(図示せず)の操作量検出センサ等からなる。指令手段5は、この電動式直動アクチュエータ1を装備する機器を制御するVCU(車両制御装置)等の制御装置(図示せず)に設けられた制御手段であってもよい。
The command means 5 is a means for giving a braking command to the control device 3. For example, when the electric linear actuator 1 is used for an electric brake device, an operation amount detection sensor of a brake device (not shown) such as a brake pedal etc. It consists of The command means 5 may be control means provided in a control device (not shown) such as a VCU (vehicle control device) for controlling a device equipped with the electric linear motion actuator 1.
<<電動アクチュエータ本体2について>>
電動アクチュエータ本体2は、電動モータ6と、この電動モータ6の回転出力を直線動作に変換する直動機構7と、モータ角度センサ8と、アクチュエータ荷重センサ9とを備える。 << About the electric actuatormain body 2 >>
Theelectric actuator body 2 includes an electric motor 6, a linear motion mechanism 7 for converting the rotational output of the electric motor 6 into a linear operation, a motor angle sensor 8, and an actuator load sensor 9.
電動アクチュエータ本体2は、電動モータ6と、この電動モータ6の回転出力を直線動作に変換する直動機構7と、モータ角度センサ8と、アクチュエータ荷重センサ9とを備える。 << About the electric actuator
The
電動モータ6は、例えば永久磁石式同期モータとされ、その場合、省スペースで高トルク・高出力となり好適と考えられるが、リラクタンスモータやブラシ付DCモータ等であってもよい。電動モータ6は、あるいは、スタータ付誘導モータ等を適用することもできる。
The electric motor 6 is, for example, a permanent magnet type synchronous motor, and in that case, it is considered to be suitable because it saves space and has high torque and high output, but it may be a reluctance motor or a DC motor with a brush. Alternatively, an induction motor with a starter or the like can be applied to the electric motor 6.
直動機構7は、遊星ローラねじ、ボールねじ等の各種ねじ機構や、ボールランプ機構、ラック・ピニオン機構等の回転入力を直動に変換する各種機構を用いることができる。
The linear movement mechanism 7 can use various screw mechanisms such as a planetary roller screw and a ball screw, and various mechanisms for converting rotational input such as a ball ramp mechanism and a rack and pinion mechanism into linear movement.
角度センサ8は、例えばレゾルバや磁気エンコーダ等が用いられ、これにより高性能かつ信頼性が高く好適と考えられるが、光学式のエンコーダ等を用いることもできる。あるいは、角度センサ8を設けずに、後述する制御装置3において前記電動モータ6の電圧と電流との関係等から回転子位相を推定する角度センサレス推定器(図示せず)を用いてもよい。
The angle sensor 8 is, for example, a resolver or a magnetic encoder, which is considered to be suitable because of its high performance and reliability, but an optical encoder or the like can also be used. Alternatively, without providing the angle sensor 8, an angle sensorless estimator (not shown) may be used to estimate the rotor phase from the relationship between the voltage and the current of the electric motor 6 in the control device 3 described later.
荷重センサ9は、例えば直動荷重の作用による所定部材の変形や歪を検出する形式の荷重センサを用いることができ、これにより安価で好適と考えられるが、荷重センサ9を用いずに、後述する制御装置3に、例えば直動アクチュエータ本体2の機械剛性に基づくモータ回転角度と荷重との相関や、モータ電流と荷重との相関により間接的にアクチュエータ荷重を推定するセンサレス推定系を構成してもよい。あるいは、例えば電動ブレーキ装置を構成する場合は、制動トルクセンサや車両加速度センサに基づいてブレーキ力を推定し、アクチュエータ荷重に相当し得る値として処理することもできる。
The load sensor 9 can use, for example, a load sensor of a type that detects deformation or strain of a predetermined member due to the action of a linear motion load, which is considered inexpensive and preferable, but without using the load sensor 9 In the control device 3, for example, a sensorless estimation system that estimates the actuator load indirectly by the correlation between the motor rotation angle and the load based on the mechanical rigidity of the linear actuator body 2 or the correlation between the motor current and the load It is also good. Alternatively, for example, when configuring an electric brake device, the braking force can be estimated based on a braking torque sensor or a vehicle acceleration sensor and processed as a value that can correspond to an actuator load.
<<電動ブレーキ装置について>>
図4に示す電動ブレーキ装置は、摩擦ブレーキであり、電動ブレーキ装置搭載車両の被制動部材である車輪(図示せず)と同期して回転するブレーキロータ31と、このブレーキロータ31の近傍に配置された摩擦材32とを用いて、前記摩擦材32を前記電動アクチュエータ本体2により操作してブレーキロータ31に押圧し、摩擦力によって制動力を発生させる機構を用いることができる。ブレーキロータ31と摩擦材32とでブレーキ本体30が構成される。同図の例では、電動モータ6の回転出力は、ギヤ列からなる減速機構33を介して直動機構7の直動入力部に入力される。なお、減速機構33の各歯車は、両方向に回転可能である。 << About the electric brake system >>
The electric brake device shown in FIG. 4 is a friction brake, and is disposed in the vicinity of thebrake rotor 31 which rotates in synchronization with a wheel (not shown) which is a braked member of the vehicle equipped with the electric brake device. A mechanism may be used which operates the friction material 32 with the electric actuator main body 2 to press the brake rotor 31 using the friction material 32 and generates a braking force by a frictional force. The brake rotor 31 and the friction material 32 constitute a brake body 30. In the example of the figure, the rotational output of the electric motor 6 is input to the linear motion input portion of the linear motion mechanism 7 via the reduction gear mechanism 33 formed of a gear train. Each gear of the reduction mechanism 33 can rotate in both directions.
図4に示す電動ブレーキ装置は、摩擦ブレーキであり、電動ブレーキ装置搭載車両の被制動部材である車輪(図示せず)と同期して回転するブレーキロータ31と、このブレーキロータ31の近傍に配置された摩擦材32とを用いて、前記摩擦材32を前記電動アクチュエータ本体2により操作してブレーキロータ31に押圧し、摩擦力によって制動力を発生させる機構を用いることができる。ブレーキロータ31と摩擦材32とでブレーキ本体30が構成される。同図の例では、電動モータ6の回転出力は、ギヤ列からなる減速機構33を介して直動機構7の直動入力部に入力される。なお、減速機構33の各歯車は、両方向に回転可能である。 << About the electric brake system >>
The electric brake device shown in FIG. 4 is a friction brake, and is disposed in the vicinity of the
<<制御装置3の構成>>
制御装置3は、演算器10と、モータドライバ11と、演算器10に動作用の電力を供給する周辺回路とを備える。 << Configuration ofControl Device 3 >>
Thecontrol device 3 includes an arithmetic unit 10, a motor driver 11, and peripheral circuits for supplying the arithmetic power to the arithmetic unit 10 for operation.
制御装置3は、演算器10と、モータドライバ11と、演算器10に動作用の電力を供給する周辺回路とを備える。 << Configuration of
The
演算器10は、指令手段5からの指令に応じてモータドライバ11を制御することで、電動モータ6を制御し、直動アクチュエータ本体2を制御することを主な役割とする手段であり、例えばCPUとその制御プログラムとからなる。
Arithmetic unit 10 controls electric motor 6 by controlling motor driver 11 in accordance with a command from command means 5, and is a means having a main role of controlling linear actuator body 2; It consists of a CPU and its control program.
<制御装置3の構成>
モータドライバ11は、電源装置4から供給される直流電力を電動モータ6の駆動に用いる交流電力に変換すると共に、その電流制御等による出力制御を行う手段である。モータドライバ11は、例えばFET等のスイッチ素子を用いたハーフブリッジ回路等を用いて、前記スイッチ素子のON-OFFデューティ比により電圧を制御する回路として構成されており、この構成とするが安価で好適と考えられる。 <Configuration ofControl Device 3>
Themotor driver 11 is a unit that converts DC power supplied from the power supply 4 into AC power used to drive the electric motor 6 and performs output control by current control or the like. The motor driver 11 is configured as a circuit that controls a voltage according to the ON-OFF duty ratio of the switch element using a half bridge circuit or the like using a switch element such as an FET, for example. It is considered suitable.
モータドライバ11は、電源装置4から供給される直流電力を電動モータ6の駆動に用いる交流電力に変換すると共に、その電流制御等による出力制御を行う手段である。モータドライバ11は、例えばFET等のスイッチ素子を用いたハーフブリッジ回路等を用いて、前記スイッチ素子のON-OFFデューティ比により電圧を制御する回路として構成されており、この構成とするが安価で好適と考えられる。 <Configuration of
The
<電源装置4、降圧手段13>
演算器10を動作させる電力は、例えば電源装置4から、本図に示す降圧型DC/DCコンバータからなる降圧手段13を介して得ることができる。一般に、例えば電動ブレーキ装置において、電動モータや制御装置用に供給され得る電圧は12~48V程度であるのに対し、一般的な演算器の動作に用いる電圧は1.3~5V程度である。よって、電源電圧を低下させる安価なDC/DCコンバータ等の降圧手段13を制御装置3に設けることが好ましい。前記DC/DCコンバータからなる降圧手段13は、例えばキャパシタ、インダクタ、スイッチ素子、スイッチ制御回路、等により構成されるCVCC降圧チョッパ回路等とされ、これにより、安価で高効率であり好適と考えられるが、その他熱損失等により電圧を降下させる降圧レギュレータ等を用いることもできる。 <Power supply device 4, Step-down means 13>
The power for operating thecomputing unit 10 can be obtained, for example, from the power supply device 4 via the step-down means 13 composed of the step-down DC / DC converter shown in this figure. Generally, for example, in an electric brake system, a voltage that can be supplied for an electric motor or a control device is about 12 to 48 V, whereas a voltage used for the operation of a general computing unit is about 1.3 to 5 V. Therefore, it is preferable to provide the control device 3 with step-down means 13 such as an inexpensive DC / DC converter for reducing the power supply voltage. The step-down means 13 composed of the DC / DC converter is, for example, a CVCC step-down chopper circuit or the like constituted of a capacitor, an inductor, a switch element, a switch control circuit, etc. However, it is also possible to use a step-down regulator or the like that lowers the voltage by heat loss or the like.
演算器10を動作させる電力は、例えば電源装置4から、本図に示す降圧型DC/DCコンバータからなる降圧手段13を介して得ることができる。一般に、例えば電動ブレーキ装置において、電動モータや制御装置用に供給され得る電圧は12~48V程度であるのに対し、一般的な演算器の動作に用いる電圧は1.3~5V程度である。よって、電源電圧を低下させる安価なDC/DCコンバータ等の降圧手段13を制御装置3に設けることが好ましい。前記DC/DCコンバータからなる降圧手段13は、例えばキャパシタ、インダクタ、スイッチ素子、スイッチ制御回路、等により構成されるCVCC降圧チョッパ回路等とされ、これにより、安価で高効率であり好適と考えられるが、その他熱損失等により電圧を降下させる降圧レギュレータ等を用いることもできる。 <
The power for operating the
<蓄電手段14>
前記DC/DCコンバータからなる降圧手段13の出力に対して、蓄電手段14が設けられている。前記蓄電手段14は、例えば断線等により電源装置4が失陥した場合等において、バックアップ電力源として用いられる。前記蓄電手段14は、例えば電気二重層キャパシタ(EDLC)を用いることが、安価、堅牢でかつ容量が大きいため好ましい。一般に、EDLCは耐圧が低く(1セル/ユニット当たり約2.5V程度)、前記電源装置4に直接バックアップ手段として設けることは困難な場合があるが、最大で5V程度の演算器10の電力源として設ける場合は比較的容易である。また、例えば演算器10が1.3Vおよび5V等の複数の電圧により動作するものである場合、例えば前記複数の動作電圧のうち最も電圧の高い個所に蓄電手段14を接続し、さらに蓄電手段14の電圧を低下させるDC/DCコンバータ(図示せず)を設ける構造としてもよい。一般に、演算器の消費電力は非常に軽微であるため、前記追加で設けるDC/DCコンバータは極めて安価なものでもよい。 <Storage means 14>
A storage means 14 is provided for the output of the step-down means 13 consisting of the DC / DC converter. The storage means 14 is used as a backup power source, for example, when thepower supply 4 fails due to a disconnection or the like. It is preferable to use, for example, an electric double layer capacitor (EDLC) as the storage means 14 because it is inexpensive, robust and has a large capacity. Generally, EDLC has a low withstand voltage (about 2.5 V per cell / unit), and it may be difficult to provide the power supply 4 directly as backup means, but the power source of the computing unit 10 of about 5 V at maximum It is relatively easy to provide as. Further, for example, when the computing unit 10 is operated by a plurality of voltages such as 1.3 V and 5 V, for example, the storage means 14 is connected to the highest voltage among the plurality of operating voltages. A DC / DC converter (not shown) may be provided to reduce the voltage of Generally, since the power consumption of the computing unit is very small, the additionally provided DC / DC converter may be extremely inexpensive.
前記DC/DCコンバータからなる降圧手段13の出力に対して、蓄電手段14が設けられている。前記蓄電手段14は、例えば断線等により電源装置4が失陥した場合等において、バックアップ電力源として用いられる。前記蓄電手段14は、例えば電気二重層キャパシタ(EDLC)を用いることが、安価、堅牢でかつ容量が大きいため好ましい。一般に、EDLCは耐圧が低く(1セル/ユニット当たり約2.5V程度)、前記電源装置4に直接バックアップ手段として設けることは困難な場合があるが、最大で5V程度の演算器10の電力源として設ける場合は比較的容易である。また、例えば演算器10が1.3Vおよび5V等の複数の電圧により動作するものである場合、例えば前記複数の動作電圧のうち最も電圧の高い個所に蓄電手段14を接続し、さらに蓄電手段14の電圧を低下させるDC/DCコンバータ(図示せず)を設ける構造としてもよい。一般に、演算器の消費電力は非常に軽微であるため、前記追加で設けるDC/DCコンバータは極めて安価なものでもよい。 <Storage means 14>
A storage means 14 is provided for the output of the step-down means 13 consisting of the DC / DC converter. The storage means 14 is used as a backup power source, for example, when the
<放電規制手段12>
前記蓄電手段14は、電動モータ6の駆動電力のバックアップを兼用する。前記蓄電手段14の電動モータ6への電力供給は、放電規制手段12により制御される。放電規制手段12は、前記電源装置4の電圧および電流のいずれか一方または両方より定まる前記電源装置4の電気供給能力が所定値よりも低い場合に前記蓄電手段14から前記電動モータ6に電力を供給させるように構成された手段であり、この実施形態では接続および切断を切り替えるスイッチ手段15と、後に説明する電源監機能部19と、スイッチ制御機能部20とで構成される。スイッチ手段15は、蓄電手段14とモータドライバ11との間に設けられている。これにより、前記バックアップの兼用が達成できる。 <Discharge control means 12>
The storage means 14 also serves as a backup for the drive power of theelectric motor 6. The power supply to the electric motor 6 of the storage means 14 is controlled by the discharge control means 12. The discharge control means 12 supplies power from the storage means 14 to the electric motor 6 when the power supply capacity of the power supply device 4 determined by either or both of the voltage and current of the power supply device 4 is lower than a predetermined value. It is a means configured to be supplied, and in this embodiment, it is configured by switch means 15 for switching between connection and disconnection, a power control function unit 19 described later, and a switch control function unit 20. The switch means 15 is provided between the storage means 14 and the motor driver 11. Thus, the backup can be shared.
前記蓄電手段14は、電動モータ6の駆動電力のバックアップを兼用する。前記蓄電手段14の電動モータ6への電力供給は、放電規制手段12により制御される。放電規制手段12は、前記電源装置4の電圧および電流のいずれか一方または両方より定まる前記電源装置4の電気供給能力が所定値よりも低い場合に前記蓄電手段14から前記電動モータ6に電力を供給させるように構成された手段であり、この実施形態では接続および切断を切り替えるスイッチ手段15と、後に説明する電源監機能部19と、スイッチ制御機能部20とで構成される。スイッチ手段15は、蓄電手段14とモータドライバ11との間に設けられている。これにより、前記バックアップの兼用が達成できる。 <Discharge control means 12>
The storage means 14 also serves as a backup for the drive power of the
<スイッチ手段15>
前記スイッチ手段15の開閉を制御することで、例えば、電源装置4が正常である状態においては蓄電手段14と電動モータ6とを切断し、前記電源装置6が失陥した際には蓄電手段14と電動モータ6とを接続することで、電源装置4が失陥した際には蓄電手段14の電力により電動モータ6を駆動することができる。このとき、電動モータ6の駆動電圧は低下するが、冗長制御を行う際にはバックアップ電力源の消費電力を抑えるために電動モータ6出力を制限する機能を設ける場合が多いため、駆動電圧の低下を許容することができる。 <Switching Means 15>
By controlling the opening and closing of the switch means 15, for example, the storage means 14 and theelectric motor 6 are disconnected when the power supply device 4 is normal, and the storage means 14 is disconnected when the power supply device 6 fails. By connecting the electric motor 6 and the electric motor 6, the electric motor 6 can be driven by the electric power of the storage means 14 when the power supply 4 fails. At this time, although the drive voltage of the electric motor 6 is lowered, the function of limiting the output of the electric motor 6 is often provided in order to suppress the power consumption of the backup power source when performing redundant control. Can be tolerated.
前記スイッチ手段15の開閉を制御することで、例えば、電源装置4が正常である状態においては蓄電手段14と電動モータ6とを切断し、前記電源装置6が失陥した際には蓄電手段14と電動モータ6とを接続することで、電源装置4が失陥した際には蓄電手段14の電力により電動モータ6を駆動することができる。このとき、電動モータ6の駆動電圧は低下するが、冗長制御を行う際にはバックアップ電力源の消費電力を抑えるために電動モータ6出力を制限する機能を設ける場合が多いため、駆動電圧の低下を許容することができる。 <Switching Means 15>
By controlling the opening and closing of the switch means 15, for example, the storage means 14 and the
前記スイッチ手段15は、例えばFET等のトランジスタ回路およびトランジスタ制御回路からなるスイッチ回路としてもよい。この場合、回路の切断および接続が任意に実行でき、かつスイッチ機能の損失が少なくなる点が好適と考えられる。
The switch means 15 may be, for example, a switch circuit including a transistor circuit such as an FET and a transistor control circuit. In this case, it is considered preferable that the disconnection and connection of the circuit can be arbitrarily performed and the loss of the switch function is reduced.
<演算器10、アクチュエータ制御機能部17>
演算器10は、アクチュエータ制御機能部17と、状態推定機能18と、電源監視機能19と、スイッチ制御機能部20とを備える。 <Operatingunit 10, actuator control function unit 17>
Thecomputing unit 10 includes an actuator control function unit 17, a state estimation function 18, a power supply monitoring function 19, and a switch control function unit 20.
演算器10は、アクチュエータ制御機能部17と、状態推定機能18と、電源監視機能19と、スイッチ制御機能部20とを備える。 <Operating
The
アクチュエータ制御機能部17は、前述のように電動モータ6を制御し、直動アクチュエータ本体2を制御する機能部であり、例えば所定の目標ブレーキ力に基づいてブレーキ力に相当し得るフィードバック値を所定の値に収束させるモータ操作量を演算する制御系として構成される。前記制御演算は、フィードバック制御やフィードフォワード制御、あるいはこれらを併用する制御系を適宜構成してもよい。あるいは、入力パターンに対する応答から適切な操作量を学習する、例えばファジィ制御のような経験的手法を用いてもよい。
The actuator control function unit 17 is a function unit that controls the electric motor 6 and controls the linear actuator body 2 as described above, and, for example, determines a feedback value that can correspond to the braking force based on a predetermined target braking force. It is configured as a control system that calculates a motor operation amount to converge to the value of. The control calculation may appropriately configure feedback control, feed forward control, or a control system using both of them. Alternatively, an empirical method such as fuzzy control may be used to learn an appropriate operation amount from the response to the input pattern.
また、アクチュエータ制御機能部17は、電動モータ6の操作量または電動モータ6の出力を任意の操作量または出力に制限する機能を有するものとすることができる。例えば電源装置4の出力に制限がある場合、前記制限に応じた電動モータ操作量に制限する必要がある。このとき、前記の電源装置4により電動モータ6を駆動する場合と、蓄電手段14により電動モータ6を駆動する場合とにおいて、それぞれ異なる前記制限量とすることが好ましい。一般に、電源装置4に代わるバックアップ電源である蓄電手段14の容量は電源装置4より比較的小さくなり得るため、また前記の通り蓄電手段14の電圧は電源装置4より低いことで電動モータ6の出力が低下する為、前記のそれぞれ異なる制限量を適用することで、蓄電手段14の消費電力を抑え、かつ制御安定性を向上することができる。
Further, the actuator control function unit 17 can have a function of limiting the operation amount of the electric motor 6 or the output of the electric motor 6 to any operation amount or output. For example, when the output of the power supply device 4 is limited, it is necessary to limit the amount of operation of the electric motor according to the limitation. At this time, in the case where the electric motor 6 is driven by the power supply device 4 and in the case where the electric motor 6 is driven by the storage unit 14, it is preferable to set different limiting amounts. Generally, the capacity of the storage means 14 which is a backup power supply instead of the power supply device 4 can be relatively smaller than that of the power supply device 4, and the voltage of the storage means 14 is lower than that of the power supply device 4 as described above. By applying the different limiting amounts, it is possible to suppress the power consumption of the storage means 14 and to improve the control stability.
<状態推定機能部18>
状態推定機能部18は、例えば荷重センサ9の出力から推定する直動アクチュエータ本体2の出力荷重や、角度センサ8の出力から推定する電動モータ6のモータ角度や角速度等、各センサ出力に対応する状態量を推定する機能を有する。もしくは、例えば前記のような、直接対応しないセンサ出力等を代用したセンサレス制御機能を持つ手段であってもよい。 <StateEstimation Function Unit 18>
The stateestimation function unit 18 corresponds to each sensor output, for example, the output load of the linear actuator body 2 estimated from the output of the load sensor 9 or the motor angle or angular velocity of the electric motor 6 estimated from the output of the angle sensor 8. It has a function to estimate the state quantity. Alternatively, for example, as described above, it may be a means having a sensorless control function which substitutes a sensor output not directly corresponding.
状態推定機能部18は、例えば荷重センサ9の出力から推定する直動アクチュエータ本体2の出力荷重や、角度センサ8の出力から推定する電動モータ6のモータ角度や角速度等、各センサ出力に対応する状態量を推定する機能を有する。もしくは、例えば前記のような、直接対応しないセンサ出力等を代用したセンサレス制御機能を持つ手段であってもよい。 <State
The state
<電源監視機能部19>
電源監視機能部19は、例えば本図のように制御装置3の電圧を検出する電圧検出手段16を設け、前記検出電圧の値によって電源装置4の電力供給能力を判断する機能であってもよい。これにより、例えば電源装置4を構成するバッテリやキャパシタの電気エネルギー低下による電圧降下を診断することができる。もしくは、電源装置4からの供給電流を併せて検出する手段(図示せず)を設け、所定の電流を流した場合の電圧変動によって電源装置4の電力供給能力を判断する機能であってもよい。これにより、例えば電源装置4を構成するバッテリやキャパシタの劣化に伴う内部抵抗増加を診断することができる。電源監視機能部19は、その他に、例えば上位にバッテリマネージャ等の統合電源監視機能を有し、前記電圧や電流の他に%SOC等に基づいて診断される診断結果を演算器10が受信し、前記受診内容に基づいて電源の状態を診断する機能部とすることもできる。 <Power supplymonitoring function unit 19>
The power supplymonitoring function unit 19 may be provided with, for example, a voltage detection means 16 for detecting the voltage of the control device 3 as shown in this figure, and may determine the power supply capability of the power supply 4 based on the value of the detection voltage. . As a result, it is possible to diagnose, for example, a voltage drop due to a decrease in electric energy of the battery or capacitor that constitutes the power supply device 4. Alternatively, a function (not shown) for detecting the supply current from the power supply device 4 may be provided, and the power supply capability of the power supply device 4 may be determined by voltage fluctuation when a predetermined current flows. . As a result, it is possible to diagnose, for example, an increase in internal resistance due to the deterioration of the battery or capacitor that constitutes the power supply device 4. The power supply monitoring function unit 19 additionally has, for example, an integrated power supply monitoring function such as a battery manager at the upper level, and the computing unit 10 receives a diagnosis result diagnosed based on% SOC etc. in addition to the voltage and current. The functional unit may diagnose the state of the power supply based on the content of the examination.
電源監視機能部19は、例えば本図のように制御装置3の電圧を検出する電圧検出手段16を設け、前記検出電圧の値によって電源装置4の電力供給能力を判断する機能であってもよい。これにより、例えば電源装置4を構成するバッテリやキャパシタの電気エネルギー低下による電圧降下を診断することができる。もしくは、電源装置4からの供給電流を併せて検出する手段(図示せず)を設け、所定の電流を流した場合の電圧変動によって電源装置4の電力供給能力を判断する機能であってもよい。これにより、例えば電源装置4を構成するバッテリやキャパシタの劣化に伴う内部抵抗増加を診断することができる。電源監視機能部19は、その他に、例えば上位にバッテリマネージャ等の統合電源監視機能を有し、前記電圧や電流の他に%SOC等に基づいて診断される診断結果を演算器10が受信し、前記受診内容に基づいて電源の状態を診断する機能部とすることもできる。 <Power supply
The power supply
<スイッチ制御機能部20>
スイッチ制御機能部20は、前記電源監視機能部19の診断結果に基づいて、蓄電手段14と電動モータ6のモータドライバ11との接続状態を変更する機能を有する手段である。 <SwitchControl Function Unit 20>
The switchcontrol function unit 20 is a unit having a function of changing the connection state of the storage unit 14 and the motor driver 11 of the electric motor 6 based on the diagnosis result of the power supply monitoring function unit 19.
スイッチ制御機能部20は、前記電源監視機能部19の診断結果に基づいて、蓄電手段14と電動モータ6のモータドライバ11との接続状態を変更する機能を有する手段である。 <Switch
The switch
<動作フロー>
図2は、蓄電手段14の使用に関する演算器10の動作実行例を示す。
ステップS1にて、電源装置4が正常であるかを、電源監視機能部19が判断する。この場合に、電源装置4の電圧および電流のいずれか一方または両方より前記電源装置4の電気供給能力が所定値よりも高い場合は正常であり、低い場合は正常ではないとと判断する。前記所定値は、設計により定められる値であり、例えば電圧値、または電流値、または電力値とされる。 <Operation flow>
FIG. 2 shows an operation execution example of thecomputing unit 10 regarding the use of the storage means 14.
In step S1, the power supplymonitoring function unit 19 determines whether the power supply 4 is normal. In this case, if the power supply capacity of the power supply device 4 is higher than a predetermined value than either one or both of the voltage and current of the power supply device 4, it is determined that it is normal. The predetermined value is a value determined by design, and is, for example, a voltage value, a current value, or a power value.
図2は、蓄電手段14の使用に関する演算器10の動作実行例を示す。
ステップS1にて、電源装置4が正常であるかを、電源監視機能部19が判断する。この場合に、電源装置4の電圧および電流のいずれか一方または両方より前記電源装置4の電気供給能力が所定値よりも高い場合は正常であり、低い場合は正常ではないとと判断する。前記所定値は、設計により定められる値であり、例えば電圧値、または電流値、または電力値とされる。 <Operation flow>
FIG. 2 shows an operation execution example of the
In step S1, the power supply
電源装置4が正常ではない場合、ステップS2にて、蓄電手段14と電動モータ6を電気的に接続する。具体的には、スイッチ制御機能部20によりスイッチ手段15をオンにし(図3の状態)、蓄電手段14からモータドライバ11に通電する。
If the power supply 4 is not normal, the storage means 14 and the electric motor 6 are electrically connected in step S2. Specifically, the switch control function unit 20 turns on the switch means 15 (the state of FIG. 3), and the electric storage means 14 energizes the motor driver 11.
この後、ステップS3にて、アクチュエータ制御演算を行い、制御に必要となるモータ操作量を導出する。この処理はアクチュエータ制御機能部17が行う。
Thereafter, at step S3, an actuator control calculation is performed to derive a motor operation amount required for control. This process is performed by the actuator control function unit 17.
ステップS4にて、電動モータ6の操作量が所定値U1を上回っているかを判断する。なお図2は、トルクや運動の向きによる符号や、力行回生による符号等は考慮せず、大きさを制限する概念を示すものとする。また、前記操作量の制限値U1は、適宜設計により定められる値であり、例えばモータ角速度等に応じて変化する値としてもよく、電動モータ6の力行・回生で異なる値を適用してもよい。この時、電動モータ6の操作量は、例えばモータ電流や、モータ電圧のいずれか一方または両方であってもよい。
In step S4, it is determined whether the operation amount of the electric motor 6 exceeds the predetermined value U1. Note that FIG. 2 shows a concept of limiting the size without considering the sign according to the direction of the torque or the motion, the sign due to the powering regeneration, and the like. Further, the limit value U1 of the operation amount is a value appropriately determined by design, and may be, for example, a value that changes according to the motor angular velocity or the like, or different values may be applied for power running and regeneration of the electric motor 6. . At this time, the operation amount of the electric motor 6 may be, for example, either one or both of a motor current and a motor voltage.
電動モータ操作量が所定値U1を上回っていない場合は、ステップS6で、その電動モータ操作量をクチュエータ制御機能部17が出力する。電動モータ操作量が所定値U1を上回っている場合は、ステップS5にて、電動モータ操作量をU1に制限した上で、ステップS6で、その制限された電動モータ操作量(所定値U1)をアクチュエータ制御機能部17が出力する。
If the amount of operation of the electric motor does not exceed the predetermined value U1, then in step S6, the amount of operation of the electric motor is output by the clutch control function unit 17. If the electric motor operation amount exceeds the predetermined value U1, the electric motor operation amount is limited to U1 in step S5, and then the restricted electric motor operation amount (predetermined value U1) is set in step S6. The actuator control function unit 17 outputs.
ステップS1にて、電源装置4が正常であるかを判断したときに、電源装置4が正常である場合は、ステップS7にて蓄電手段14と電動モータ6を電気的に切断する。具体的には、スイッチ制御機能部20により、スイッチ手段15をオフにし、蓄電手段14とモータドライバ11との接続を遮断する。
When it is determined in step S1 whether or not the power supply 4 is normal, if the power supply 4 is normal, the storage means 14 and the electric motor 6 are electrically disconnected in step S7. Specifically, the switch control function unit 20 turns off the switch unit 15 to cut off the connection between the storage unit 14 and the motor driver 11.
ステップS8にて、アクチュエータ制御演算を行い、制御に必要となるモータ操作量を導出する。この演算および導出は、アクチュエータ制御機能部17が行う。
In step S8, an actuator control calculation is performed to derive a motor operation amount necessary for control. The calculation and derivation are performed by the actuator control function unit 17.
ステップS9にて、電動モータ6の操作量が所定値U2を上回っているかを判断する。所定値U2は設計により適宜定められる値であるが、この推定値U2は、例えばモータ角速度等が同一条件である場合において、前記ステップS4において用いた所定値U1よりも大きい関係(U1<U2)にある値を用いることが好ましい。
In step S9, it is determined whether the operation amount of the electric motor 6 exceeds the predetermined value U2. Although the predetermined value U2 is a value appropriately determined by design, the estimated value U2 is larger than the predetermined value U1 used in the step S4, for example, when the motor angular velocity and the like have the same condition (U1 <U2) It is preferred to use the values given in
モータ操作量が所定値U2を上回っていない場合は、ステップS6で、そのモータ操作量をアクチュエータ制御機能部17が出力する。モータ操作量が所定値U2を上回っている場合は、ステップS10にて、電動モータ操作量を所定値U2に制限したうえで、その制限されたモータ操作量(所定値U2)をステップS6にて出力する。
If the motor operation amount does not exceed the predetermined value U2, the actuator control function unit 17 outputs the motor operation amount in step S6. If the motor operation amount exceeds the predetermined value U2, the electric motor operation amount is limited to the predetermined value U2 in step S10, and the restricted motor operation amount (predetermined value U2) is determined in step S6. Output.
<作用、効果>
この構成の電動式直動アクチュエータによると、このように、常時は電源装置4の電力を蓄電手段14に蓄電しておき、前記電源装置4が失陥したとき、すなわち前記電源装置4の電圧および電流のいずれか一方または両方より定まる前記電源装置4の電気供給能力が所定値よりも低いときは、前記放電規制手段12の機能により、前記蓄電手段14と電動モータ6とを接続し、前記蓄電手段14に蓄電しておいた電力で前記電動モータ6を駆動することができる。前記蓄電手段14は、前記演算器10のバックアップ電源として機能する。前記降圧手段13はDC/DCコンバータ等により、前記放電規制手段12は電気回路部品や前記演算器10の一部等で構成される。 <Action, effect>
Thus, according to the motor-driven linear motion actuator of this configuration, when the power of thepower supply 4 is constantly stored in the storage means 14 and the power supply 4 fails, that is, the voltage of the power supply 4 and When the power supply capacity of the power supply device 4 determined by one or both of the currents is lower than a predetermined value, the storage means 14 and the electric motor 6 are connected by the function of the discharge regulation means 12 to store the electricity. The electric motor 6 can be driven by the power stored in the means 14. The storage means 14 functions as a backup power supply of the computing unit 10. The step-down means 13 is constituted by a DC / DC converter or the like, and the discharge regulating means 12 is constituted by an electric circuit part, a part of the arithmetic unit 10 or the like.
この構成の電動式直動アクチュエータによると、このように、常時は電源装置4の電力を蓄電手段14に蓄電しておき、前記電源装置4が失陥したとき、すなわち前記電源装置4の電圧および電流のいずれか一方または両方より定まる前記電源装置4の電気供給能力が所定値よりも低いときは、前記放電規制手段12の機能により、前記蓄電手段14と電動モータ6とを接続し、前記蓄電手段14に蓄電しておいた電力で前記電動モータ6を駆動することができる。前記蓄電手段14は、前記演算器10のバックアップ電源として機能する。前記降圧手段13はDC/DCコンバータ等により、前記放電規制手段12は電気回路部品や前記演算器10の一部等で構成される。 <Action, effect>
Thus, according to the motor-driven linear motion actuator of this configuration, when the power of the
このように、電気回路部品や前記演算器10の一部等で構成される放電規制手段12と蓄電手段14とで電動モータ6の電源系の冗長化が図れるため、安価な電気二重層キャパシタ(EDLC)を用いた蓄電手段14を失陥時の電力源とすることで、モータ駆動用の電源装置4を複数設けるよりも安価に冗長系を構成できる。
As described above, since the power supply system of the electric motor 6 can be made redundant by the discharge control means 12 and the storage means 14 which are constituted by electric circuit parts, a part of the arithmetic unit 10, etc. By using the storage means 14 using EDLC) as a power source at the time of failure, a redundant system can be configured at lower cost than providing a plurality of power supply devices 4 for driving the motor.
前記アクチュエータ制御機能部17は、前記スイッチ手段15が接続されているときに、前記スイッチ手段15が切断されている場合と比較して前記電動モータ6の少なくとも力行出力が小さくなるよう制限するため、補助電力として用いる蓄電手段14の消費電力を軽減できる。そのため、例えばこの電動式直動アクチュエータ1を電動ブレーキ装置に適用した場合に、そのブレーキ動作時間を延長することができる。
When the switch unit 15 is connected, the actuator control function unit 17 limits at least the powering output of the electric motor 6 to be smaller as compared with the case where the switch unit 15 is disconnected, The power consumption of the storage means 14 used as the auxiliary power can be reduced. Therefore, for example, when the electric linear actuator 1 is applied to an electric brake device, the brake operation time can be extended.
前記蓄電手段14は、電気二重層キャパシタを用いているが、電気二重層キャパシタは安価で堅牢かつ蓄電容量が比較的大きいメリットがある反面、耐圧が低いデメリットがあるため、一般に電圧の低い演算器10用の電力に用いるこの実施形態の構成においては前記デメリットが小さく、メリットを効果的に享受することができる。
Although the storage means 14 uses an electric double layer capacitor, the electric double layer capacitor has the merit of being inexpensive, robust and having a relatively large storage capacity, but has the disadvantage of a low withstand voltage, so an arithmetic unit with a low voltage is generally used. In the configuration of this embodiment used for the power for 10, the above demerit is small, and the merit can be effectively enjoyed.
また、この実施形態の電動ブレーキ装置は、この実施形態に係る電動式直動アクチュエータ1を用いているため、電源装置4の失陥に対する電源確保が安価な構成で行える。
Further, since the electric brake device of this embodiment uses the electric linear actuator 1 according to this embodiment, it is possible to secure the power source for the failure of the power source device 4 with an inexpensive configuration.
<他の実施形態>
図5はこの発明の第2の実施形態を示す。この実施形態は、図1に示す第1の実施形態に対して、昇圧DC/DCコンバータからなる昇圧手段21をさらに設ける例を示す。図1の実施形態において、前記蓄電手段14の電圧はバックアップ電力を消費するに従って低下していき、ある電圧を下回った場合に演算器10が動作を停止する為、蓄電手段14に電気エネルギーが残った状態であっても制御装置3が動作を停止する。これに対して、図5の実施形態においては、蓄電手段14の電圧をさらに昇圧するため、可能な限り蓄電手段14の電気エネルギーを使い切ることができる。なお、昇圧DC/DCコンバータからなる昇圧手段21の出力電圧は、前記降圧DC/DCコンバータの出力と概ね等しい電圧とすることができる。この実施形態におけるその他の構成、効果は、図1に示した第1の実施形態と同様である。 Other Embodiments
FIG. 5 shows a second embodiment of the present invention. This embodiment shows an example in which a boostingmeans 21 comprising a boosting DC / DC converter is further provided to the first embodiment shown in FIG. In the embodiment of FIG. 1, the voltage of the storage means 14 decreases as the backup power is consumed, and the arithmetic unit 10 stops its operation when it falls below a certain voltage, so that the electric energy remains in the storage means 14. Even in the second state, the control device 3 stops its operation. On the other hand, in the embodiment of FIG. 5, since the voltage of the storage means 14 is further boosted, the electric energy of the storage means 14 can be used up as much as possible. The output voltage of the boosting means 21 composed of a boosting DC / DC converter can be a voltage substantially equal to the output of the step-down DC / DC converter. The other configurations and effects of this embodiment are the same as those of the first embodiment shown in FIG.
図5はこの発明の第2の実施形態を示す。この実施形態は、図1に示す第1の実施形態に対して、昇圧DC/DCコンバータからなる昇圧手段21をさらに設ける例を示す。図1の実施形態において、前記蓄電手段14の電圧はバックアップ電力を消費するに従って低下していき、ある電圧を下回った場合に演算器10が動作を停止する為、蓄電手段14に電気エネルギーが残った状態であっても制御装置3が動作を停止する。これに対して、図5の実施形態においては、蓄電手段14の電圧をさらに昇圧するため、可能な限り蓄電手段14の電気エネルギーを使い切ることができる。なお、昇圧DC/DCコンバータからなる昇圧手段21の出力電圧は、前記降圧DC/DCコンバータの出力と概ね等しい電圧とすることができる。この実施形態におけるその他の構成、効果は、図1に示した第1の実施形態と同様である。 Other Embodiments
FIG. 5 shows a second embodiment of the present invention. This embodiment shows an example in which a boosting
<さらに他の実施形態>
図6は、図5の実施形態に対して、昇圧DC/DCコンバータからなる昇圧手段21の出力を演算器10に対してのみ使用する第3の実施形態を示す。図5の例と比較して、蓄電手段14の放電に伴い電動モータ6の駆動電圧は低下するが、昇圧DC/DCコンバータからなる昇圧手段21は、演算器10を動作させる電力が出力可能であればよく、比較的安価かつ省スペースに構成することができる。この実施形態におけるその他の構成、効果は、図1に示した第1の実施形態と同様である。 Further Embodiment
FIG. 6 shows a third embodiment in which the output of the boosting means 21 composed of a boosting DC / DC converter is used only for thecomputing unit 10 with respect to the embodiment of FIG. Compared to the example of FIG. 5, the driving voltage of the electric motor 6 decreases with the discharge of the storage means 14, but the boosting means 21 formed of a boosting DC / DC converter can output the power for operating the arithmetic unit 10. It can be configured relatively inexpensively and space saving. The other configurations and effects of this embodiment are the same as those of the first embodiment shown in FIG.
図6は、図5の実施形態に対して、昇圧DC/DCコンバータからなる昇圧手段21の出力を演算器10に対してのみ使用する第3の実施形態を示す。図5の例と比較して、蓄電手段14の放電に伴い電動モータ6の駆動電圧は低下するが、昇圧DC/DCコンバータからなる昇圧手段21は、演算器10を動作させる電力が出力可能であればよく、比較的安価かつ省スペースに構成することができる。この実施形態におけるその他の構成、効果は、図1に示した第1の実施形態と同様である。 Further Embodiment
FIG. 6 shows a third embodiment in which the output of the boosting means 21 composed of a boosting DC / DC converter is used only for the
<さらに他の実施形態>
図7は、この発明の第4の実施形態を示す。同図の例は、放電規制手段12を構成する手段として、前記スイッチ手段15の代わりにダイオード素子15Aを用いる例を示す。この場合、例えば電源装置4の電圧が蓄電手段14の電圧より高い場合はダイオードの通電方向の指向性により蓄電装置14から電動モータ6への電力が遮断され、電源装置4の電圧が低下した際には蓄電装置14から電動モータ6へ電力が通電するよう配置することができる。ダイオード素子15Aを用いる場合、低コストに実装可能である点が好適と考えられる。 Further Embodiment
FIG. 7 shows a fourth embodiment of the present invention. The example of the same figure shows the example which uses thediode element 15A instead of the said switch means 15 as a means to comprise the discharge control means 12. FIG. In this case, for example, when the voltage of the power supply device 4 is higher than the voltage of the storage means 14, the power from the storage device 14 to the electric motor 6 is cut off by the directivity of the conduction direction of the diode and the voltage of the power supply device 4 is lowered. Can be arranged such that power is supplied from the storage device 14 to the electric motor 6. In the case of using the diode element 15A, it is considered preferable that the diode element 15A can be mounted at low cost.
図7は、この発明の第4の実施形態を示す。同図の例は、放電規制手段12を構成する手段として、前記スイッチ手段15の代わりにダイオード素子15Aを用いる例を示す。この場合、例えば電源装置4の電圧が蓄電手段14の電圧より高い場合はダイオードの通電方向の指向性により蓄電装置14から電動モータ6への電力が遮断され、電源装置4の電圧が低下した際には蓄電装置14から電動モータ6へ電力が通電するよう配置することができる。ダイオード素子15Aを用いる場合、低コストに実装可能である点が好適と考えられる。 Further Embodiment
FIG. 7 shows a fourth embodiment of the present invention. The example of the same figure shows the example which uses the
なお、この実施形態の場合、前記第1の実施形態における前記アクチュエータ制御機能部17、電源監機能部19、および状態推定機能部18は設けられているが、スイッチ制御機能部20は設けられない。この実施形態におけるその他の構成、効果は、図1に示した第1の実施形態と同様である。
In the case of this embodiment, although the actuator control function unit 17, the power control function unit 19, and the state estimation function unit 18 in the first embodiment are provided, the switch control function unit 20 is not provided. . The other configurations and effects of this embodiment are the same as those of the first embodiment shown in FIG.
<発明全般>
なお、この明細書に添付の図面における各機能ブロックは、あくまで機能を説明する上で便宜上設けているものであり、実装する上で必ずしも本図の機能ごとに分割されている必要はなく、必要に応じて複数のブロックを統合あるいは一つのブロックを分割した機能となるよう実装してもよい。 <General invention>
Each functional block in the drawings attached to this specification is provided for convenience in describing the function to the last, and is not necessarily divided for each function of this figure in mounting, and it is necessary. It may be implemented so that it becomes a function which unified a plurality of blocks according to or divided one block.
なお、この明細書に添付の図面における各機能ブロックは、あくまで機能を説明する上で便宜上設けているものであり、実装する上で必ずしも本図の機能ごとに分割されている必要はなく、必要に応じて複数のブロックを統合あるいは一つのブロックを分割した機能となるよう実装してもよい。 <General invention>
Each functional block in the drawings attached to this specification is provided for convenience in describing the function to the last, and is not necessarily divided for each function of this figure in mounting, and it is necessary. It may be implemented so that it becomes a function which unified a plurality of blocks according to or divided one block.
また、電源装置4のショートモード故障等の対策として、制御装置3から電源装置4への電力の逆流を防止する手段を設けてもよい。前記逆流防止手段は、例えば別のスイッチ手段により制御装置3を任意に切断・接続できるものであってもよく、ダイオード素子等で完全に逆流を防止するものであってもよい。
Further, as a measure against a short mode failure or the like of the power supply device 4, means may be provided to prevent the backflow of power from the control device 3 to the power supply device 4. The backflow prevention means may be, for example, one that can arbitrarily disconnect and connect the control device 3 by another switch means, or may be one that completely prevents backflow by a diode element or the like.
また、前記サーミスタ等の他センサ類や冗長系等の図示外の構成については、必要に応じて適宜設けられるものとする。
In addition, regarding the configuration of the other sensors such as the thermistor and the like, the redundant system, and the like, which are not illustrated, are appropriately provided as needed.
以上、実施例に基づいて本発明を実施するための形態を説明したが、ここで開示した実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
As mentioned above, although the form for implementing this invention based on the Example was demonstrated, the embodiment disclosed here is an illustration and restrictive at no points. The scope of the present invention is indicated not by the above description but by the claims, and is intended to include all the modifications within the meaning and scope equivalent to the claims.
1…電動式直動アクチュエータ
2…直動アクチュエータ本体
3…制御装置
4…電源装置
5…指令手段
6…電動モータ
7…直動機構
8…モータ角度センサ
9…荷重センサ
10…演算器
11…モータドライバ
12…放電規制手段
13…降圧手段
14…蓄電手段
15…スイッチ手段
15…ダイオード素子
17…アクチュエータ制御機能部
18…状態推定機能部
19…電源監機能部
20…スイッチ制御機能部
21…昇圧手段
31…ブレーキロータ
32…摩擦材
30…ブレーキ本体 DESCRIPTION OFSYMBOLS 1 ... Motor-operated linear motion actuator 2 ... Linear motion actuator main body 3 ... Control apparatus 4 ... Power supply device 5 ... Command means 6 ... Electric motor 7 ... Linear motion mechanism 8 ... Motor angle sensor 9 ... Load sensor 10 ... Arithmetic unit 11 ... Motor Driver 12 ... Discharge regulation means 13 ... Step-down means 14 ... Storage means 15 ... Switch means 15 ... Diode element 17 ... Actuator control function unit 18 ... State estimation function unit 19 ... Power control function unit 20 ... Switch control function unit 21 ... Boosting means 31 ... brake rotor 32 ... friction material 30 ... brake main body
2…直動アクチュエータ本体
3…制御装置
4…電源装置
5…指令手段
6…電動モータ
7…直動機構
8…モータ角度センサ
9…荷重センサ
10…演算器
11…モータドライバ
12…放電規制手段
13…降圧手段
14…蓄電手段
15…スイッチ手段
15…ダイオード素子
17…アクチュエータ制御機能部
18…状態推定機能部
19…電源監機能部
20…スイッチ制御機能部
21…昇圧手段
31…ブレーキロータ
32…摩擦材
30…ブレーキ本体 DESCRIPTION OF
Claims (9)
- 電動モータおよびこの電動モータの回転出力を直線動作に変換する直動機構を有する直動アクチュエータ本体と、前記電動モータを制御する制御装置とを備え、直流の電源装置から前記電動モータおよび前記制御装置に電力が供給される電動式直動アクチュエータであって、
前記制御装置が、
前記電動モータを制御する制御演算を行う演算器と、
前記電源装置の電圧を低下させて前記演算器を動作させる降圧手段と、
前記降圧手段で降圧された電力を蓄える蓄電手段と、
前記電源装置の電圧および電流のいずれか一方または両方より定まる前記電源装置の電気供給能力が所定値よりも低い場合に前記蓄電手段から前記電動モータに電力を供給させるように構成された放電規制手段とを有する、
電動式直動アクチュエータ。 An electric motor and a direct acting actuator body having a linear motion mechanism for converting the rotational output of the electric motor into a linear motion, and a control device for controlling the electric motor, from a DC power source device to the electric motor and the control device An electric linear actuator with power supplied to the
The controller
An arithmetic unit that performs control calculation to control the electric motor;
Step-down means for operating the arithmetic unit by reducing the voltage of the power supply device;
A storage means for storing the power reduced by the step-down means;
A discharge control means configured to supply power to the electric motor from the storage means when the power supply capacity of the power supply determined by either or both of the voltage and current of the power supply is lower than a predetermined value. And
Electric linear actuator. - 請求項1に記載の電動式直動アクチュエータにおいて、前記放電規制手段が、
前記電源装置の電圧および電流のいずれか一方または両方より前記電源装置の電気供給能力が所定値よりも高いか否かを判断する電源監視機能部と、
前記蓄電手段と前記電動モータとの接続および切断を切り替えるスイッチ手段と、
前記電源装置の電気供給能力が前記所定値より高い場合に前記スイッチ手段を切断状態とし、前記電気供給能力が前記所定値より低下した場合に前記スイッチ手段を接続状態とするスイッチ制御機能部とを有する、
電動式直動アクチュエータ。 The electric linear actuator according to claim 1, wherein the discharge restricting means is
A power supply monitoring function unit that determines whether the power supply capacity of the power supply device is higher than a predetermined value based on either or both of the voltage and current of the power supply device;
Switch means for switching between connection and disconnection of the storage means and the electric motor;
A switch control function unit which brings the switch means into a disconnection state when the power supply capacity of the power supply device is higher than the predetermined value, and brings the switch means into a connection state when the power supply capacity falls below the predetermined value; Have,
Electric linear actuator. - 請求項2に記載の電動式直動アクチュエータにおいて、前記蓄電手段の電圧を昇圧して前記演算器に供給する昇圧手段を備える電動式直動アクチュエータ。 The electric direct acting actuator according to claim 2, further comprising: pressure boosting means for boosting the voltage of the storage means and supplying the pressure to the computing unit.
- 請求項3に記載の電動式直動アクチュエータにおいて、前記昇圧手段の昇圧された電力を、前記スイッチ手段を介して前記電動モータに供給する電動式直動アクチュエータ。 The electric direct acting actuator according to claim 3, wherein the electric power boosted by the pressure raising means is supplied to the electric motor via the switch means.
- 請求項2ないし請求項4のいずれか1項に記載の電動式直動アクチュエータにおいて、前記スイッチ手段が接続されているときに、前記スイッチ手段が切断状態である場合と比較して前記電動モータの少なくとも力行出力が小さくなるよう制限するアクチュエータ制御機能部を有する電動式直動アクチュエータ。 The electric linear actuator according to any one of claims 2 to 4, wherein, when the switch means is connected, the electric motor is compared with a case where the switch means is in a disconnected state. An electric direct-acting actuator having an actuator control function portion for limiting at least a power running output to be small.
- 請求項5に記載の電動式直動アクチュエータにおいて、前記アクチュエータ制御機能部が、さらに前記電動モータの回生出力を力行出力よりも小さく制限する機能を有する電動式直動アクチュエータ。 The electric direct acting actuator according to claim 5, wherein the actuator control function unit further has a function of restricting a regenerative output of the electric motor to be smaller than a power running output.
- 請求項1に記載の電動式直動アクチュエータにおいて、前記放電規制手段が、前記電源装置から前記電動モータに給電する配線と前記蓄電手段との間に介在し前記電源装置から前記蓄電手段側への電流の流れを遮断するダイオード素子で構成された電動式直動アクチュエータ。 The electric linear motion actuator according to claim 1, wherein the discharge restricting means is interposed between a wire for supplying power to the electric motor from the power supply device and the storage means, and is connected to the storage means from the power supply device. An electric linear actuator consisting of a diode element that blocks the flow of current.
- 請求項1ないし請求項7のいずれか1項に記載の電動式直動アクチュエータにおいて、前記蓄電手段が電気二重層キャパシタである電動式直動アクチュエータ。 The electric direct-acting actuator according to any one of claims 1 to 7, wherein the storage means is an electric double layer capacitor.
- 請求項1ないし請求項7のいずれか1項に記載の電動式直動アクチュエータを備え、被制動部材と共に回転する回転部材に接触して制動力を発生させる摩擦材を前記直動アクチュエータ本体により進退させる電動ブレーキ装置。 A friction material provided with the electric linear motion actuator according to any one of claims 1 to 7 and generating a braking force by coming into contact with a rotating member rotated with a braked member is advanced and retracted by the linear motion actuator main body Electric brake system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-255123 | 2017-12-29 | ||
JP2017255123A JP7066408B2 (en) | 2017-12-29 | 2017-12-29 | Electric linear actuator and electric brake device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019132002A1 true WO2019132002A1 (en) | 2019-07-04 |
Family
ID=67067578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/048466 WO2019132002A1 (en) | 2017-12-29 | 2018-12-28 | Electric linear actuator and electric brake device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7066408B2 (en) |
WO (1) | WO2019132002A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112550254B (en) * | 2019-09-10 | 2022-11-15 | 瀚德万安(上海)电控制动系统有限公司 | Electromechanical brake system and control method thereof |
JP7487750B2 (en) | 2022-02-25 | 2024-05-21 | トヨタ自動車株式会社 | In-vehicle systems and vehicles |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001010482A (en) * | 1999-06-24 | 2001-01-16 | Akebono Brake Ind Co Ltd | Control circuit for dynamo-electric brake |
JP2010016964A (en) * | 2008-07-03 | 2010-01-21 | Daifuku Co Ltd | Power supply facility |
JP2015515251A (en) * | 2012-04-23 | 2015-05-21 | オートリブ ディベロップメント エービー | Drive device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5333348B2 (en) | 2010-06-04 | 2013-11-06 | トヨタ自動車株式会社 | Vehicle power conversion device and vehicle including the same |
JP2015073353A (en) * | 2013-10-02 | 2015-04-16 | トヨタ自動車株式会社 | Power conversion unit for electric vehicle |
JP6508138B2 (en) | 2016-06-24 | 2019-05-08 | トヨタ自動車株式会社 | Power converter for electric vehicle |
-
2017
- 2017-12-29 JP JP2017255123A patent/JP7066408B2/en active Active
-
2018
- 2018-12-28 WO PCT/JP2018/048466 patent/WO2019132002A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001010482A (en) * | 1999-06-24 | 2001-01-16 | Akebono Brake Ind Co Ltd | Control circuit for dynamo-electric brake |
JP2010016964A (en) * | 2008-07-03 | 2010-01-21 | Daifuku Co Ltd | Power supply facility |
JP2015515251A (en) * | 2012-04-23 | 2015-05-21 | オートリブ ディベロップメント エービー | Drive device |
Also Published As
Publication number | Publication date |
---|---|
JP7066408B2 (en) | 2022-05-13 |
JP2019122123A (en) | 2019-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6313152B2 (en) | Electric brake device | |
CN101472779B (en) | Electric power steering apparatus and method for controlling the electric power steering apparatus | |
CN108372850B (en) | Vehicle brake system | |
JP6313127B2 (en) | Electric brake device and electric brake device system | |
US20150166032A1 (en) | Electronic parking brake system and control method thereof | |
WO2017026472A1 (en) | Electric brake system | |
JP5674086B2 (en) | Hybrid construction machine | |
JP5024618B2 (en) | Electric motor control device and electric booster | |
WO2019132002A1 (en) | Electric linear actuator and electric brake device | |
JP4984320B2 (en) | Power supply control device and power supply control method | |
US11001166B2 (en) | Electric brake apparatus and electric brake system | |
WO2018139387A1 (en) | Electric linear actuator and electric brake device | |
JP6267474B2 (en) | Electric vehicle power conversion system | |
JP4894565B2 (en) | Power supply control device and power supply control method | |
JP2009131110A (en) | Power supply unit | |
WO2018062087A1 (en) | Electric brake device | |
JP2010133236A (en) | Hybrid construction machine | |
JP2005224011A (en) | Booster | |
JP7480681B2 (en) | Vacuum pumps and vacuum pump controllers | |
JP6986903B2 (en) | Electric linear actuator and electric brake device | |
JP2007295663A (en) | Motor-driven power steering device | |
JP2024035556A (en) | electric brake device | |
JP4627330B2 (en) | Electric motor control device | |
JP2024005861A (en) | Motor drive device and vehicle control device | |
JP2023057297A (en) | Load drive device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18895720 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18895720 Country of ref document: EP Kind code of ref document: A1 |