WO2019131685A1 - Fastening nut - Google Patents

Fastening nut Download PDF

Info

Publication number
WO2019131685A1
WO2019131685A1 PCT/JP2018/047682 JP2018047682W WO2019131685A1 WO 2019131685 A1 WO2019131685 A1 WO 2019131685A1 JP 2018047682 W JP2018047682 W JP 2018047682W WO 2019131685 A1 WO2019131685 A1 WO 2019131685A1
Authority
WO
WIPO (PCT)
Prior art keywords
nut
film
screw
thread
bolt
Prior art date
Application number
PCT/JP2018/047682
Other languages
French (fr)
Japanese (ja)
Inventor
松尾 誠
興明 林田
喜直 岩本
Original Assignee
株式会社松尾工業所
株式会社iMott
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社松尾工業所, 株式会社iMott filed Critical 株式会社松尾工業所
Priority to JP2019562057A priority Critical patent/JP7141622B2/en
Publication of WO2019131685A1 publication Critical patent/WO2019131685A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B31/00Screwed connections specially modified in view of tensile load; Break-bolts
    • F16B31/02Screwed connections specially modified in view of tensile load; Break-bolts for indicating the attainment of a particular tensile load or limiting tensile load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/06Surface treatment of parts furnished with screw-thread, e.g. for preventing seizure or fretting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B37/00Nuts or like thread-engaging members

Definitions

  • the present invention relates to a nut used in bolt and nut fastening, and for the purpose of reducing the load on the fastening meshing first peak thread.
  • the screw fastening part of the conventional method has the smallest cross-sectional area and the largest load sharing due to the application of repeated external load during use on the initial fastening load.
  • the fatigue failure strength is the lowest at the part. It is known that many cracked axial fractures occur at this location.
  • Patent Documents 1 and 3 disclose a bolt characterized in that the bolt thread to be fitted is tapered in the tensile direction of the bolt and the bolt thread is obliquely cut low, and is directed in the axial direction. The intention is to reduce the contact area between the bolt thread and the nut thread sequentially and to equalize the load from the nut thread on the bolt thread to improve the fatigue life. It is stated that this forming process may be performed on the nut, but no description or figure is shown.
  • Patent Document 4 discloses a nut characterized in that one or both of the slope angles of the thread of the nut fitted to the bolt is smaller than the slope angle of the bolt, and It has been disclosed that the contact area of the thread of the nut is reduced to equalize the load applied to the thread and improve the fatigue life.
  • Patent Document 2 discloses a method of manufacturing a bolt in which a threaded portion of a bolt material is formed into a tapered shape in the direction of tensile force application, and subsequently, threading with a uniform valley diameter is performed.
  • Patent Document 5 in a steel bolt in which the pitch of the bolt is smaller than the pitch of the nut, the pitch difference is in the range of 0.5 to 0.8% of the pitch tolerance specified in Japanese Industrial Standard JIS B 0205
  • a steel bolt is disclosed which is characterized in that it is designed to provide offsets, avoiding simultaneous contact of the screw faces, and as the fastening progresses and the screw thread is deformed by stress, the stress transfer position is sequentially
  • a structure is disclosed that travels and receives a full load.
  • Patent Documents 1 to 5 have a problem that the screw shape is out of the standard such as JIS or ISO because they are processed on the screw threads of these bolts and nuts, and these are basically bolts
  • the threading position is made into a dedicated part by the thickness, structure, etc. of the object to be fastened, and it is necessary to apply thread thread forming processing of the bolt to a position which becomes a specific size for each object to be fastened ,
  • These bolts are not versatile.
  • Patent Documents 6 to 8 propose a set of a bolt, a nut and a washer in a high strength nut for friction bonding in relation to the nut side, and Patent Document 6 in the following.
  • a first structural example of this set is described in FIGS. 1 and 2 of the patent document. It is stated that what is important in the set of bolts, nuts and washers is to reduce the variation in torque coefficient, and therefore curved projections are formed on the outer peripheral side of the end face on the washer side of the nut to facilitate penetration into the washer. And a structure in which a receding surface and an annular groove are formed on the inner peripheral portion.
  • the projections formed on the seat surface and the receding surface relieve the stress concentration on the first thread of the screw at the time of fastening, and further the effect is enhanced by the annular groove.
  • the use of an effective lubricant is affected as the bolt axial force is affected by the lubricating performance of the contact portion between the nut and the washer and the lubricating performance between the nut screw and the bolt screw.
  • the curved projections on the nut bearing surface do not apply, and a normal planar bearing surface does not apply, and the structure as a nut, the shape of the annular groove essentially related to the stress concentration relaxation characteristics, in particular There is no description about the depth.
  • the effect of relieving stress concentration is indicated by the magnitude of the variation in torque coefficient, but the intrinsic structure and characteristics of the combination of bolt and nut, which is the effect of lubricant, protrusion, receding surface, or groove Even though it is a relation of Inherently, the variation in torque coefficient is derived from the friction state at the screw thread or bearing surface, the material of the bolt and the hardness, and this is a factor different from the purpose of reducing the load concentration of the first tightening.
  • Patent Document 6 adopts a fastening method and a purpose that is largely different from a normal bolt and a nut fastening method in which fastening is performed while rotating the nut.
  • a convex protrusion is provided on the nut bearing surface to bite into the object to be fastened. It is the part that claims to "improved the nut having the flat surface so far".
  • FIG. 7 of Patent Document 6 A separate part is inserted into the outer periphery of the hexagonal nut, but this separate part is a kind of sleeve-like structure that is fitted to the inner hexagonal nut and can not be rotated relative to the inner hexagonal nut, and on the washer side It is characterized in that a curved projection is provided.
  • the assumed fastening action at the time of fastening is the same as in the first structural example, and the force from the seat surface enters the curved surface-like protrusion of this chevron, and the chevron curved surface-like protrusion deforms the other seat surface Later, it enters the flange portion of the inner nut upper part.
  • Patent Document 7 as a shear delayed fracture preventing nut, in order to make uniform shear stress acting on a screw thread of a bolt and a nut, a rotational parachute gap at the tip of the bolt and a nut A combination of flange lip and nut has been proposed.
  • the longitudinal cross section of the nut of Patent Document 7 is provided with a threadless portion (11 in FIG. 1) on the upper inner diameter side, and an oblique wedge-shaped lip is at the same height as the depth without the thread. It is intruding. For this reason, the height direction dimensions of the inner corner of the recess 11 without screw and the innermost part of the wedge-shaped lip outside the screw ridge are "height of the wedge-shaped lip from the object to be fastened ⁇ ⁇ space without screw It is the height to the bottom of 11 ".
  • patent document 7 states that "the prevention of shear delayed breakage of a bolt" is established at this time, it is necessary to put the wedge-shaped lip to the vicinity of the top of the nut when there is this purpose.
  • Patent Document 8 proposes a nut having a large R (a spherical surface in which the inside is recessed) in a washer and a similar R bearing surface.
  • the washer has a larger outer diameter than the nut, and when the surface of the part to be fastened under the washer is slightly inclined, or when the surface condition is uneven or unstable, tightening the nut against the bolt
  • the structure shows that the washer-like substrate uniformly contacts the nut bearing surface, and fastening can be performed even when the surface of the object to be fastened is unstable.
  • the washer has a larger outer diameter than the nut but no mention is made of the central bore diameter. The effect and structure leading to the reduction of the load on the bottom of the bolt thread in the first engagement are not disclosed, and the purpose is different from the present invention.
  • JP-A-52-79163 JP-A-52-131060 U.S. Pat. No. 4,189,975 JP-A-58-160613 JP 2005-265150 A Unexamined-Japanese-Patent No. 5-288209 Japanese Patent Laid-Open No. 2002-61619 Japanese Patent Application Laid-Open No. 1-182614
  • FIG. 4 is a longitudinal sectional view of a general fastening of a conventional flange nut.
  • the screw threads of the flange nut 1 are substantially uniformly formed according to JIS B 0205 (ISO 724) from the fastening side to the open side.
  • JIS B 0205 ISO 724
  • 1 is a conventional flange nut main body
  • 2 is a bolt
  • 3 is an object to be fastened
  • 8 is a screw thread side of a nut thread
  • 8a is an end face of a screw thread side of a nut thread and a nut bearing surface
  • 9a is the open end face of the nut thread
  • 14 is the nut bearing surface
  • 15 is the conventional thread valley bottom
  • 17 is the outer periphery of the nut
  • 19 is the nut thread.
  • the threaded portion of the bolt 2 is screwed into the threaded portion of the nut 1 to clamp the washer 23 and clamp the object 3 to be fastened.
  • FIG. 4 shows the conventional fastening state, and the nut 1 fastens the object 3 via the washer 23.
  • the bolt 2 penetrates the screw hole from below and is fastened to the nut.
  • Figure 4-1 (a) shows the Mises equivalent stress distribution of the nut (seven screw thread) same as Figure 4 (Maximum of thread valley bottom marked with * on the left side of the first ridge of bolt (No. 1) Indicates where stress is applied and crack axis fracture is likely to occur).
  • the force entered from the nut bearing surface 14 is directed in the direction of pushing up the nearest bolt thread No. 1 and the bolt is most strongly pulling the No. 1 peak by the axial force, so the part * becomes open ing.
  • Fig. 4-2 is a vector diagram of the Mises equivalent stress and shows what kind of force is flowing to the bolt at the maximum principal stress (tensile stress), and Fig. 4-3 also shows the minimum principal stress (compressive stress) at the vector diagram. Indicated here is the flow of force in the nut. Also in this vector diagram, it can be seen that the power is concentrated in the meshing first mountain.
  • FIG. 4-1 (b) shows the Mises equivalent stress distribution map of screw 8 and Figure 4-1 (c) shows the Mises equivalent stress distribution of 9 screw threads, comparing these load sharing ratios with 7 Figure 4-4 (a) (conventional nut (load distribution ratio comparison chart for 7, 8 and 9 threads) is displayed, and a comparison bar graph of these three load distribution ratios is shown in Figure 4-4 (b).
  • the load sharing ratio to mesh 1 is 36.5% at 7 mountains, 34.5% at 8 mountains, 33.4% at 9 mountains
  • the number of screw threads is 7 mountains.
  • 8 mountains and 9 mountains excessive stress is applied to the bolt side meshing first valley thread valley bottom of ⁇ part in Fig. 4-1 (a), (b), (c) This result indicates that the reduction effect of the meshing first peak load is small even if the number of threads of the conventional type nut is increased.
  • the bolt and the bolt are tightened by reducing the load on the first mesh meshing engagement. It is possible to provide a nut that improves the fatigue fracture life of the cracked axis fracture from the bottom of meshed first valley which is the strength weakest part.
  • the present invention provides the following inventions in order to solve the above-mentioned problems. That is, by increasing the load sharing after the third opening side by setting the nut structure to make the flow of the force of the load received by the nut more directed to the open side meshing thread with low load sharing, the meshing can be achieved.
  • a nut having a structure characterized in that load concentration on a first peak is reduced.
  • a convex-shaped space is concentrically formed on the bearing surface on the nut fastening side around the axis of the screw, and the space is connected by a straight line, a curve or a combination thereof.
  • It is a structure in which a space is formed as a shape, and the depth from the bearing surface of the space is L 2 , and the axial length from the first valley bottom of the fully threaded portion of the nut to the bearing surface is L 1 , By forming the space with the depth L 2 of the space as L 1 ⁇ L 2 ⁇ L 1 + length of 5 threads of the screw thread; B.
  • the recess has an inner wall and a curve, straight line, or the like rising perpendicularly from the nut bearing surface
  • a nut having a two-part structure comprising a nut body having a screw shaft portion provided with a screw thread inside and a flange bearing surface portion and a pipe-like nut component having a chamfered bearing surface on at least one end face inner diameter side
  • a shape of a longitudinal sectional view of the nut body is T-shaped, and a length in which a screw shaft portion of the nut body is introduced from the flange seat surface portion of the nut body toward the inner object of the nut component is
  • the hollow pipe-shaped nut component is formed on the outer surface of the screw outer surface so that the incomplete screw part length s + the length of the screw pitch 0.5 or more, and the length of the incomplete screw part s + the screw pitch 5 m or less
  • the T-shaped nut body is disposed so that the lowermost portion of the T-shaped nut body is not in contact with the object, and the uppermost portion
  • Diamond-like carbon (DLC) film BN film, WC film, WC film, CrN film, HfN film, VN film, TiN film, TiCN film, Al 2 O 3 film on both or one side of the contact surface of nut body and nut part ZnO film, SiO 2 film, alumite, metal plating, polymer resin coating, solid lubricating layer, manganese phosphate chemical conversion treatment, carburizing and quenching, nitriding treatment, chromium treatment, or any combination thereof
  • the nut according to any one of (1) to (2).
  • a SiO 2 film, alumite, metal plating, polymer resin coating, solid lubricating layer, manganese phosphate conversion treatment, carburizing and quenching, nitriding treatment, chromiumizing treatment, or a combination thereof is coated (1) to Providing the nut as described in any of (3).
  • the force applied from the nut bearing surface is directed to the open side thread after the third mesh and more load is shared.
  • the load concentration on the meshing first peak can be reduced, and this effect leads to the improvement of the fatigue fracture life of the cracked axis fracture of the bolt valley bottom of the meshing first peak.
  • a nut structure in which "flow of force" is more frequently directed to the third and subsequent open side As a method, changing the external shape and structure of the nut without changing the JIS (ISO) standard of the screw thread shape of the nut, that is, optimizing the structure to obtain the force of the nut It can be directed to the open side screw after the third peak.
  • ISO JIS
  • the above-mentioned screw meshing first ridge is, for example, a screw thread indicated by a symbol 1 shown in a bolt and a nut of the conventional method shown in FIG.
  • the side of the first thread of the nut loads and fastens the side of the first thread of the bolt.
  • the "first thread" of the nut is on the fastening side and the thread is the first fully threaded part having a normal thread shape.
  • the above-mentioned incomplete thread portion is a portion having a length including about one pitch and a chamfer from the start of thread cutting.
  • the position of the first thread of the nut is the first peak of the complete thread.
  • the screw thread of the bolt engaged with the first screw thread of the nut is the first screw thread of the bolt, and the first valley bottom of the bolt is located on the fastening side of the first screw thread of the bolt.
  • the screw shape of the nut of the present invention preferably conforms to that defined in JIS B 0205 (ISO 724). Also, the configuration of the nut of the present invention is also applied to a nut having a thread shape which is widely used conventionally, such as an inch screw, for example, and these are also part of the present invention.
  • the load sharing of the fastening force by the bolt and nut works with the same sharing ratio as the initial tightening as axial force fluctuation not only at the time of initial tightening but also against external load such as vibration where external force is applied to the screw fastening portion. .
  • Nf ⁇ ⁇ r b C
  • Nf The number of cycles of load until fatigue failure
  • ⁇ r Stress amplitude of load
  • b Stress index (generally 3 to 5)
  • C Material constant
  • the number of screw threads of the nut is generally selected, and the number of effective threads is selected to be the same in each aspect of the present invention.
  • the same tightening force and nut strength at the time of tightening are all adopted.
  • the same conditions apply to the nuts having eight threads and nine threads, which are compared with those of the conventional system 7, except for the number of threads.
  • the present invention mode (C) the analysis in the case of 7 threads and the analysis with 8 threads are performed, and the load sharing of the conventional method 7 and 8 is compared respectively.
  • Fig. 4-1 in the conventional method, the internal stress is highest at the first meshing thread (marked by 1 in Fig. 4-1 (a)), and the second ridge (marked by 2 in Fig. 4-1). In the third peak (marked 3 in Fig. 4-1), the stress drops sharply.
  • Fig. 4-4 (a) as the load sharing ratio of all threads
  • Fig. 4-4 (b) shows a comparison of the load sharing ratio in a bar graph.
  • the bar graph of the white frame display For the conclusion of the conventional method 7 mountain, it is shown by the bar graph of the white frame display.
  • FIG. 4-1 It is a longitudinal cross-sectional view which shows an example of the nut of the 1st aspect (A) of this invention.
  • A Cross-sectional view of nut
  • Example of aspect (A) of this invention and the conventional system nut The load share ratio comparison of FIG. 4-1.
  • the longitudinal cross-sectional view which shows an example of the nut of the 3rd aspect (C) of this invention.
  • the numerical comparison table of the load share rate of an example of the nut of the 3rd mode (C) of the present invention and a conventional system.
  • the nut of the present invention is A.
  • a convex-shaped space is concentrically formed on the bearing surface on the nut fastening side around the axis of the screw, and the space is connected by a straight line, a curve or a combination thereof.
  • a space is formed as a shape, the depth from the bearing surface of the space is L 2 , and the axial length from the valley bottom of the first screw of the fully threaded portion of the nut to the bearing surface is L 1 When forming the space, when the depth L 2 of the space is L 1 ⁇ L 2 ⁇ L 1 + length of thread 5 pitches; B.
  • the recess has an inner wall and a curve, straight line, or the like rising perpendicularly from the nut bearing surface
  • a nut having a two-part structure comprising a nut body having a screw shaft portion provided with a screw thread inside and a flange bearing surface portion and a pipe-like nut component having a chamfered bearing surface on at least one end face inner diameter side
  • a shape of a longitudinal sectional view of the nut body is T-shaped, and a length in which a screw shaft portion of the nut body is introduced from the flange seat surface portion of the nut body toward the inner object of the nut component is The hollow pipe-like nut component on the outer surface of the screw outer surface so that the incomplete screw thread length s + the length of the screw pitch 0.5 ridges or more and the length of the incomplete screw threads s + the screw pitch 5 ridges or less In which the bottom of the T-shaped nut body is not in contact with the object, and the top of the nut part is in contact with the f
  • the meshing first peak By forming; By increasing the load sharing after the third peak by making the flow of the force of the load received by the nut more directed to the open side meshing thread with low load sharing, the meshing first peak
  • the present invention is characterized in that it is configured to reduce the maximum load sharing of and reduce the load concentration on the meshing first peak.
  • the nut of the first aspect (A) and the second aspect (B) of the present invention is a one-piece structure, and a convex space is formed toward the open side on the bearing surface of the central portion on the fastening side of the nut
  • the process of forming the concave portion is performed, and the “flow of force” is made to pass through the nut bearing surface and the outer peripheral portion of the nut body, and to be directed to the third and subsequent open side of the screw.
  • the third aspect (C) is a two-part configuration of a nut body and a nut part, in which “flow of force” is directed to the open side of the screw on the third and subsequent sides of the screw using the nut body and the nut part It is. With such a structure, it is possible to provide a nut characterized by having a structure capable of simultaneously reducing the load sharing of both the initial tightening load and the external force load applied to the meshing first peak thread.
  • the screw thread conforms to JIS B 0205 (ISO 724).
  • the length is based on one pitch of a screw, but there are a plurality of bolts and nuts having the same thickness but different in thread pitch, so in this case the thread thickness is not used.
  • the screw pitch is adopted as one reference of the length.
  • the structure of the first aspect (A) is taken up as a representative, and the reduction of the load on the first engagement mesh is described.
  • the first aspect (A) in the shape of a longitudinal cross-sectional view of a nut, a space of an upwardly convex shape connected to a bearing surface on a nut fastening side by a curve, a straight line, or a combination thereof centered on the screw axis.
  • the thickness of the screw shaft portion of the nut having a screw thread inside is not constant because of the structure between the space and the nut screw thread, and the shaft portion thickness connected from P 2 side to P 1 side is P 2 It is also possible to make a gradual change from P 1 to P 1 , and the P 2 side can be made thicker and the P 1 side of the seat surface can be made thinner by a curve, a straight line, or a combination of them.
  • FIG. 1 is a longitudinal sectional view of the nut (a), a plan view (b) seen from the open side of the nut, and a plan view (c) seen from the seat surface
  • 1 being a nut
  • 2 being a bolt
  • 3 being a fastening 4 is a space between the nut bearing surface and the lowermost end of the nut shaft
  • 5 is a convex space above the nut bearing surface
  • 7 is the screw shaft lowermost end
  • 8 is a nut fastening side
  • 9 is a release of the nut
  • the side 9a is a nut open end
  • 14 is a nut bearing surface
  • 17 is an outer peripheral portion of the nut
  • 18 is a screw shaft portion provided with a screw thread inside
  • 19 is a nut screw thread.
  • the force proceeds along the inside of the nut to the curve inside on the outer periphery of the space 5, then enter the bolt through the deepest (P 2 near) the street each thread space 5.
  • P 2 threads 19 nearest from the vicinity in the example of FIG. 1 is the third nut thread.
  • the other forces are transmitted to the fourth, fifth, sixth and seventh.
  • the force toward the open side is transmitted to the other bolt thread, and a large amount of internal stress is applied to the third and subsequent threads.
  • the bolt remains engaged by the axial force and the 1st peak receives the maximum principal stress (tensile stress), but the load sharing of the 1st peak decreases relatively by receiving a lot of force on the open side of the nut .
  • the load on the first meshing engagement between the bolt and the nut is significantly reduced as compared with the structure of the conventional system.
  • FIG. 1 is a view for explaining the relationship of the depth of the space 5 in the first aspect (A) of the present invention, wherein P 1 is the bottom of the first full thread in the screw shank 18 of the nut. located in central, P 2 is located at the deepest portion in the depth direction of the space. Let L 1 and L 2 be distances from the bearing surface 14 of the nut to P 1 and P 2 , respectively.
  • FIG. 1 shows an arbitrary cross section within one thread pitch through the central axis of the nut and as shown in the enlarged view of the nut screw shank 18, the screw inlet at the position of the lowermost part 7 of the screw shank 18.
  • the distance L 1 from the seat surface 14 of the P 1 is the sum over distance dimensions and thread chamfer length and incomplete thread portion length of the gap 4.
  • the point P 1 and the space 5 in the thread root center of the first thread of the seating surface side of the nut thread that is a complete thread portion deepest relationship P 2 in the part is at a distance L 1 and L 2 from the seating surface, to set the dimensions of the L 2> L 1 and becomes L 2.
  • L 1 is one pitch distance when the rotation of 360 degrees because of the screw is changed, L 2 is often a constant numerical by molding.
  • L 2 is preferably at least deeper than L 1 , but the upper limit of depth is suitably L 1 + length of 5 pitches of screw threads.
  • the basic form 1 it is set to P 2 to the position of a length of about 2.4 pitch than P 1.
  • changing the thickness of the screw shaft 18 toward the fastening side or changing the shape from the deepest portion (P 2 ) of the space 5 to the shaft is the same. It is also possible to form in the vicinity of the lowermost portion 7 by the thickness. It is preferable that the shape be integrated with the shape of the space 5 and that a shape of a straight line, a curved line, or a combination thereof be adopted. It is preferable to provide a curve near the lowermost portion 7 to avoid stress concentration.
  • the space 5 having the convex shape is practically used as the space 5 having a shape connected by a smooth curve or a straight line as shown in an example or a modification of the basic form Structure.
  • the upward convex shape may be any shape without departing from the object of the aspect (A) of the present invention, and is included in the invention of the first aspect (A).
  • FIGS. 1-5 (a) and (b) show two modifications to FIG. 1, but mainly the shape of the space 5 and the outer shape in the seat portion are different. In either case, the force entering from the object 3 is passed through the inside of the nut 1 and directed to the open side of the three or more threads engaged with the mating bolt. Shapes having similar effects can be determined according to various conditions such as manufacturing requirements, in addition to the modification shown in FIGS.
  • What is important in the present embodiment (A) is the formation of an upwardly convex space 5 formed on the bearing surface side of the nut.
  • L 2 is set such that L 1 ⁇ L 2 ⁇ L 1 + length of 5 pitches of screw thread is satisfied, and the force passing near P 2 and the force pulled from the bolt
  • the von Mises equivalent stress distribution diagram of Fig. 1-1 corresponding to the aspect (A), the vector diagram of the maximum principal stress (tensile stress) where the flow of force can be seen in Fig. 1-2,
  • the flow of force can be confirmed by the vector diagram of the minimum principal stress (compression stress) in Fig. 1-3.
  • small arrows are closely arranged, the direction shows the direction of force, the length shows the magnitude of force, and the density of the arrangement is the situation where a lot of force flows in each direction at that place Is shown.
  • the von Mises equivalent stress distribution diagram of FIG. 1-1 visualizes the above vector diagram as an overall stress distribution, and is color-coded in black and white four gradations. Focusing on where the direction of the arrow points in the vector diagrams (Fig. 1-2, Fig. 1-3), the points where many forces are facing go to the threads in the nut, but where many are pointing It is No. 3 and No. 4 of the nut thread. It can also be seen that there are also many toward the open side 5, 6 and 7 thread. As for the nut screw thread fastening side, it is transmitted while bending in the direction of No. 2 and then No. 1 so as to wind a vortex from the vicinity of P 2 . In Fig.
  • the bolt thread and the bolt shaft are subjected to an axial force that pulls them toward the fastening side, so from the diagonal thread surface of the nut to the diagonal thread surface of the bolt I can see how I was concentrating and putting power. Since the bolt axial force is directed to the fastening side, the No. 1 thread is subjected to the largest tensile stress, but No. 1 and No. 2 of the nut are bent from around P 2 around the screw shaft 18 It receives more of the small force and the tensile force from the bolt, and it is in a situation where it is pulled to the fastening side in order of strength, such as the nut screws No. 3, No. 2 and No. 1. For this reason, in the case of the No. 1 nut screw, a black color appears to indicate that the internal stress is low. The shape effect of the screw shaft is added here.
  • the force from the nut flows in the direction of the thread ridge after the third peak, and the fastening meshing first peak Reduce the load on The load sharing after the third peak has increased compared to the conventional method, and the power reaches to the seventh peak.
  • the stress large area (white display area) in Fig. 1-1 is narrow and small for the 1st, 2nd, and 3rd thread threads, and dark gray (stress is slightly small for 4th, 5th, 6th and 7th).
  • the vector diagram 4-2 of the maximum principal stress, and the figure 4-3 in the minimum principal stress, in the conventional manner the situation where it is controlled by the force passing through the innermost diameter side of the nut
  • the stress distribution map of FIG. 1-1 of the present invention has a completely different stress distribution, and the aspect (A) of the present invention is such that the flow direction of force is tightened toward the third mesh and thereafter. It is clearly shown to reduce the load on the mesh 1st peak.
  • the load sharing ratio of the meshing first peak in one example of the aspect (A) is 26.3% (conventional method: 35.6%).
  • a comparison chart of this result with that of the conventional method 7 mountain based on the load sharing ratio of each mountain is shown in FIG. 1-4 (a), and a comparison bar graph of this numerical value is shown in FIG. 1-4 (b). From this comparison, it can be read that the load sharing after the third peak is increased and the load sharing of the meshing first peak is reduced in the example of the nut of the mode (A) as compared with the conventional method.
  • each corner of the convex space structure nut in the first aspect (A) the processing of each corner is preferably as follows. It is preferred to use corner shapes which are made with optimal stress concentration relaxation curves for each part location.
  • the stress concentration relaxation curve has, for example, a quadratic curve (simple R, composite R, ellipse, etc.), and a straight line such as an oblique C-cut can also be used.
  • the screw surface conforms to the JIS standard, and the sliding surface has a fine-class finish, and the other surface has an intermediate-class finish or a required surface roughness.
  • the surface roughness be consistent with the surface treatment described later.
  • the nut (B) of the present invention has a rectangular recess on the screw center side of the bearing surface on the fastening member side of the nut in the shape of the longitudinal sectional view of the nut, and the recess rises vertically from the bearing surface It has an inner length and a curve, a straight line, or a corner and an upper surface that combines them, and the axial length from the position of the upper surface is the axial length of the incomplete thread of the nut plus the two pitch lengths of the nut
  • Lb is at least 0.001 times La
  • a recess having a length of 1 time or less and Lh of 0.5 to 5 times the length of La is formed concentrically with the center of the screw.
  • the flow of force entering the nut upon fastening enters from the entire surface of the nut bearing surface in contact with the object, and flows along the wall of the nut recess, It passes near the corner, goes to the vicinity of the central part of the nut, after the third mountain on the open side, and flows widely dispersed in all the screw threads.
  • the tensile stress that enters the nut from the bolt is the largest at the first mesh, the stress applied to the screw thread of the nut during fastening can be shared more by the screw thread side at the open end, It is possible to reduce the load on the first engagement between the nut and the bolt.
  • FIG. 2 is a longitudinal sectional view showing an example of the nut of the second aspect (B) of the present invention, and the nut 1 has a structure having a recess 10 in the lower portion of the inner diameter of the nut.
  • a wall 11 standing vertically from a nut bearing surface 14 in contact with the object 3 to be fastened, and a corner portion 12 having a straight line sandwiched by curves connected thereon (a straight line on this corner 12 is from the fastening side of the nut It is preferable to face the screw valley bottom of the second and subsequent peaks.
  • the recess 10 has an axial length La, which is the sum of the chamfered dimension of the threaded portion of the nut 1 + the axial length s of the incompletely threaded portion and the two pitches of the nut.
  • Lb is 0.001 times or more of La as Lb is the axial length from Lb to the upper surface 13 and Lh is the radial length of the recess 10 from the thread valley bottom 15 of the nut 1 to the inner wall 11 of the recess 10
  • the recess 10 is formed concentrically with the center of the screw, with a length not more than double and Lh being a length not less than 0.5 times and not more than 5 times La.
  • Fig. 2-1 shows a first modification, in which the corner portion 12 of the recess 10 has one stress concentration relaxation curve structure, and the corner portion 12 is connected to the upper surface 13 so as to sequentially chamfer and incompletely screw , Through the thread root 15 to the thread 19.
  • the dimension in the recess is such that the axial length of the incomplete thread portion of the nut 1 + the axial length s of the chamfer plus the length of 2 pitches of the nut is La, and from the bearing surface 14 to the upper surface 13 of the recess 10 Lb is 0.001 times or more and 1 times or less of La when the axial length of L is Lb, and the radial length of the recess 10 to the thread valley bottom 15 of the nut 1 and the inner wall 11 of the recess 10 is Lh.
  • the recess 10 is formed concentrically with the center of the screw with a length Lh of 0.5 to 5 times the length of La. In the modification of FIG. 2-1, Lh is about 1.1 times La.
  • the force flow can be made to flow much from the nut bearing surface 14 through the outer peripheral portion of the nut and to the third and subsequent peaks on the open side.
  • the nut has a simple shape for processing, and has the advantage of easy manufacture including shape confirmation.
  • FIG. 2 A Mises equivalent stress distribution chart of one example of FIG. 2 which is a basic example of the present mode (B) is shown in FIG.
  • the force entering from the nut bearing surface 14 often flows toward the 45 ° diagonal thread in the nut bearing surface. From the point close to the center of the bearing surface 14 toward the screw thread side 45 degrees diagonally parallel to the corner 12 straight line part, the force flowing from the nut thread No. 3 to No. 4 and 45 degrees from the stepped outer periphery of the nut It is seen that the screw heads 5 and 6 head to the screw thread side while leaning to the screw thread side.
  • the force flowing around the corner 12 and flowing horizontally to the first mountain on the fastening side parallel to the upper surface 13 is small.
  • Such a black portion is not found in the conventional nut (FIG. 4-1), and it is considered that the force passing through the corner 12 is flowing on the slightly open side of the black portion.
  • the force spread in the nut will receive the force drawn from the bolt thread when it reaches the thread, but the load on the first meshing tooth as a result of the force being distributed to many threads is conventionally Compared to the scheme is reduced.
  • the ability to direct the force entering from the nut bearing surface 14 to the open side of the nut can be easily controlled as compared with the modification of FIG.
  • the length of the upper surface of the reference numeral 13 in the figure is increased, and the Lh length in the bearing surface is increased to about 2.0 times La, or the inclination of the straight portion of the corner 12 is inclined by more than 45 degrees.
  • the direction of the force can be controlled by optimally combining the elements of the recess, and the load sharing to the meshing first peak can be reduced.
  • the load sharing ratio of the meshing first peak shows a numerical value less than 30%.
  • FIG. 2-3 A bar graph comparing the load sharing rates of the example of FIG. 2 of the mode (B) and the conventional method is shown in FIG. 2-3 (a) and FIG.
  • the black frame display in the bar graph shows a modification of the aspect (B).
  • the load sharing ratio is reduced to 29.6% in the modification of the mode (B) as compared with 35.6% in the conventional method in the meshing first peak.
  • the aspect (B) increases after the third peak.
  • the shape of the open side of the nut of the present embodiment (B) may be a shape that can use a conventional fastening tool, such as a hexagon or a square.
  • the screw has a fine-class finish according to JIS standard
  • the nut seat surface has a fine-class finish
  • the other surface has a rough finish
  • it is preferred to have a co-finish it is more preferred to have a surface that is compatible with the surface treatment.
  • the nut bearing surface 14 and other surfaces all corners preferably have a shape having a stress concentration relaxation curve such as a circular arc, a quadratic curve such as a part of an ellipse, etc. Is desirable.
  • a nut having a two-part structure comprising a nut body having a screw shaft portion provided with a screw thread inside and a flange bearing surface portion and a pipe-like nut component having a chamfered bearing surface on at least one end face inner diameter side
  • a shape of a longitudinal sectional view of the nut body is T-shaped, and a length in which a screw shaft portion of the nut body is introduced from the flange seat surface portion of the nut body toward the inner object of the nut component is
  • the hollow pipe-shaped nut component is formed on the outer surface of the screw outer surface so that the incomplete screw part length s + the length of the screw pitch 0.5 or more, and the length of the incomplete screw part s + the screw pitch 5 m or less
  • the T-shaped nut body is disposed so that the lowermost portion of the T-shaped nut body is not in contact with the object, and the uppermost portion of the nut part is in contact with the flange-like
  • a longitudinal sectional view of a nut according to a third aspect (C) of the present invention is exemplarily shown in FIG.
  • the shape of the longitudinal sectional view of the nut body 1 is substantially T-shaped, and the nut body 1 is integrated with the screw shaft portion provided with a screw thread inside, and at least on the side surface of the flange lower surface portion screw shaft portion 18 of the nut body 1 It has a structure in which a pipe-shaped nut part 6 having a chamfering structure for preventing interference with the shaft part 18 is disposed on one inner diameter side of one side, and the nut main body shaft part 18 is rotatable in the nut part 6
  • the body 1 is screwed with a bolt 2 inside, and contacts and rotates with the nut part 6 at the sliding surface 16.
  • the length from the top surface 22 of the nut part 6 to the bearing surface 14 is from the flange seating surface of the nut body 1 to the top of the screw shaft so that the screw shaft lowermost part 7 of the nut body 1 does not contact the object 3 to be fastened.
  • the structure in which the nut part 6 is in contact with the object 3 is shown longer than the length to the lower part 7.
  • the upper open side outer shape of the nut body 1 can be shaped according to the fastening tool.
  • the thickness of the screw shaft portion 18 in which a screw thread is provided in the axial direction of the nut main body 1 may be constant, or the open side is thick and the object side is narrowed, and further, the length of the shaft portion is halfway It can also be made thinner.
  • the bearing surface 20 of the nut part 6 can be enlarged to reduce the contact pressure at the time of fastening of the nut part 6 and the object 3 to be fastened.
  • the fastening side lowermost surface 7 of the nut body 1 is not in direct contact with the to-be-fastened Since it is in contact with the object 3, the flow of force at the time of fastening is directed to the open side of the nut body 1 via the contact surface 16 between the nut component 6 and the nut body 1 and further directed to each thread. At this time, the force enters the nut body 1 from the nut part 6, but the position thereof is much from the vicinity of the innermost diameter portion of the contact surface 16 where the nut part 6 and the nut body 1 are in contact. Go to the second and subsequent threads and reach the open thread while expanding.
  • the curved portion transitioning from the flange portion of the nut body to the screw shaft portion 18 and the inner diameter side shoulder portion of the nut part 6 desirably have each other even if their shape and size may change.
  • a stress concentration relaxation curve capable of maintaining a non-interfering structure is provided to prevent stress concentration on both the nut body and the nut component.
  • the load sharing situation of the thread changes from the relative relationship of the position of the thread at the axial height of the screw in the screw shank 18 which corresponds to the contact face 16 of the nut part 6 and the nut body 1.
  • L 1 indicates the distance from the point P 1 at the bottom of the fully threaded No. 1 screw valley on the screw thread side of the screw thread 18 of the nut to the nut bearing surface 14.
  • P 1 and the bearing surface of the nut there is a gap 4 and a total length s of the chamfer and the screw imperfection.
  • the number of screw threads of the nut is eight, as an example. This is due to the purpose of improving the rigidity of the nut itself due to the balance of force due to the flow of a large amount of stress on the open side of the nut due to the influence of the screw shaft. As an example, a step or a taper or a combination of these is provided on the outer periphery of the screw shaft portion 18 of the nut body 1. Moreover, in FIG. 3, it is the structure which increased the contact area which the bearing surface 20 of the nut component 6 contacts the to-be-fastened object 3, and the effect of reducing the fastening surface pressure of the bearing surface 20 which the nut component 6 and the to-be-fastened object 3 contact is there.
  • the nut body 1 and the to-be-fastened object 3 make contact at the surface 16 of the flange bearing surface of the nut body 1.
  • the bolt 2 is directed in the direction in which the screw thread comes out from the side of the object to be fastened, and is set to be screwed with the nut body 1.
  • a large amount of force can be flowed after the third thread on the open side thread of the nut main body, and the load reduction in the first mesh can be implemented.
  • Such usage and chamfering shapes are also part of the present invention.
  • the advantages in this case include, in addition to the effects of the aspect (C), reduction in the number of parts, weight reduction, reduction in the amount of projection of the nut, and the like.
  • a nut body having a structure with eight threads is used for FEM analysis of the aspect (C) nut. This is because the rigidity of the nut itself is improved by the flow of a large amount of stress on the open side of the nut under the influence of the screw shaft. According to this, the conventional nut of the comparison standard uses the value of the thread 8 thread.
  • the force entered from the bearing surface 20 of the nut part 6 is black at the lowermost part, and obliquely upward from dark gray to light gray toward the nut main body 1, the nut main body 1 and nut
  • the surface 16 with which the component 6 contacts is white with high compressive stress at the top and bottom, which is the maximum stress, but in this part, the 7 to 8 thread ridges of the nut main body 1 have a white or gray band of high stress facing You can see what you are doing.
  • white and light gray are seen toward the nut shaft portion 18, but this portion is under tensile stress. A white color is visible through this portion to the bottom of the thread between nut threads # 4 and # 3 and # 3 and # 2.
  • FIG. 3-1 of this embodiment (C) A comparison of FIG. 3-1 of this embodiment (C) with FIG. 4-1 by the conventional method reveals that the von Mises equivalent stress distribution map has a completely different appearance.
  • Fig. 4-1 of the conventional method the force is immediately applied to the fastening side No. 1 and most of the forces are transferred by No. 1 and then gradually become smaller as the second and third. It can be seen that they are only sharing.
  • FIG. 3 Comparison of an example of the aspect (C) and the conventional method is shown in FIG. 3 (a) a load sharing ratio, and (b) a bar graph, for performance comparison of the aspect (C) of the present invention and the conventional method.
  • the load sharing ratio of the meshing first peak of this mode (C) is 22.9%, which is far from 34.5% of the conventional system.
  • the load carrying rate in the mode (C) is higher. This comparison is made with both nut threads of eight.
  • the analysis of the modification in the 7th mountain of the aspect (C) of the present invention is shown in the stress distribution map of Miess in FIG. 3-3, and the comparison with the 7th mountain of the conventional method is shown in FIG. Comparative bar graphs are shown in -4 (b).
  • the load sharing ratio of the meshing first peak in this modified example is 24.0%, which is significantly different from 35.6% of the conventional system.
  • both are compared with seven threads.
  • the aspect (C) is found to be correlated between the axial position of the flange bearing surface of the nut body 1 and the position of the screw thread of the nut body (screw shaft portion projection amount), and the amount of force flow to the open side It is suggested that it affects the load sharing of the mesh 1st mountain.
  • the protrusion amount of the nut body shaft 18 is changed, and Fig. 3-1 is different from about 3.5 mountain in Fig. 3-3 and Fig. 3-3 is about 4.3 mountain. There is.
  • the corners of the parts of the third aspect (C) of the present invention (C) and other parts in contact with the corners 20 and the nut body of the nut part 6 are stress concentration relieved It is desirable to provide a curve. Also, the size and shape of these stress concentration relaxation curves can be determined arbitrarily.
  • the surface roughness of the bearing surface 20 of the nut part 6 is fine-finishing, or both the surface 16 where the nut body 1 and the nut part 6 contact are fine-finishing, the surface of the screw is a surface roughness according to JIS, other surface roughness In order to have consistency with the surface treatment to be described later, such as rough finish or co-finishing, it is preferable to set an optimal surface roughness depending on the place.
  • the T-shaped nut structure does not necessarily have to be a strict T-shaped structure, and may have a modified structure without departing from the scope of the invention.
  • it may be a cross structure.
  • the nut body upper part it is also possible for the nut body upper part to have a shape that can use a fastening tool such as a normal hexagon, which is more preferable.
  • the flow of the load force received by the nut as described above is achieved by the open side meshing thread with low load sharing.
  • the load sharing after the third peak as a nut structure that is directed more, it is possible to provide a nut configured to reduce the maximum load sharing of the meshing first peak.
  • the nuts according to the first to third aspects of the present invention can utilize materials conventionally used.
  • materials alloy steels such as mild steel, carbon steel, nickel chromium steel, chromium steel, nickel chromium molybdenum steel, non-ferrous metals such as stainless alloy steel, aluminum alloy, nickel alloy, titanium alloy, resin, ceramic (oxide, nitrided Materials, materials such as objects, carbides, etc. are suitably used.
  • the screw can be formed by the same method as the conventional method, for example, screw forming with a tap, NC (numerical control) lathe, machining center (MC), combined processing machine (combined processing machine of lathe and milling cutter), EDM, or any combination thereof, press plastic working, cold / hot / warm press, forging, casting, injection molding, precision casting, 3D printer processing, molding, MIMS, or for roughing material production It can do by combining them.
  • NC numbererical control
  • MC machining center
  • combined processing machine combined processing machine of lathe and milling cutter
  • the formation of the nut of the first aspect (A) by an NC lathe will be described as an example.
  • the external part is manufactured by cold, warm, hot forging / pressing, cutting, nut former, Swiss type automatic lathe, etc.
  • the space part on the seat side of the nut or concave rectangular rectangular shape is NC lathe, automatic disc, Etc.
  • the nut of the present invention is manufactured by forming a screw thread of a nut using cutting, grinding, cutting tap, and rolling tap in the same manner as forming a conventional screw thread. be able to.
  • a space or a substantially rectangular recess may be formed on the bearing surface side of the nut, and then the outer peripheral shape may be formed.
  • a member can be divided roughly into a member which becomes a nut body and a member which becomes a nut part.
  • the outer shape of the nut and the preparation of the screw lower hole adopt hot press / cold / warm press, forging, cutting, casting, etc., and produce a one-part type nut or a substantially T-shaped shape.
  • the top is formed so that a fastening tool such as a hexagon can be used to facilitate fastening with a normal tool, and a tap is passed through a pilot hole made by cutting, cold / hot forging, casting, etc. Form a mountain / valley.
  • the threaded portion may be formed by turning or grinding.
  • the nut part can be manufactured by cutting a pipe, cold / warm / hot forging, casting, continuous automatic cutting from a round bar with a CNC lathe, etc., or a combination of these. It may be formed by a 3D printer. When it is made of resin or ceramic, a combination of methods such as injection molding, sintering and the like, and cutting and grinding may be performed. The surface roughness of the contact surface of the nut and the nut part can be selected and adopted to reduce the sliding resistance. It can be processed by selecting or combining from a mirror polished surface, a polished surface, a precision cutting surface, a pressing surface with a precision die, micro shot peening, glass bead shot and the like. Also, in the combination of the nut body and the nut part, the nut body rotates while rotating around the screw central axis, so that the fastening object surface and the nut screw central axis are kept perpendicular. It is desirable to make
  • the coefficient of friction ⁇ is also dry ⁇ ⁇ 0.5, and wet ⁇ ⁇ 0 It is known to be .1.
  • the lubricant flows out, the oxide film on the metal surface peels off, and a metal surface appears.
  • a strong pressure contact state where metal bonding occurs on the metal surface is achieved.
  • S-DLC segment-like diamond-like carbon
  • a bolt side thread engaged with at least a bolt on the thread surface of the first thread or part or all of more threads.
  • the screw thread surface preferably includes at least a meshing first screw thread surface, and it is preferable that the DLC film is also formed on the more open side screw.
  • the DLC protective film By forming the DLC protective film, roughening and peeling of the metal surface can be suppressed, the coefficient of friction can be stabilized, and more stable fastening can be achieved.
  • the DLC film is in the form of segments which are divided, for example, in a grid by grooves (S-DLC film).
  • the nut body and the nut component Covering the sliding surface 16 or the surface 14 of the nut part in contact with the object to be fastened with a diamond-like carbon (DLC) film to form a protective film realizes smooth fastening operation and stable fastening.
  • DLC diamond-like carbon
  • the DLC film is in the shape of, for example, a grid divided into segments by a groove without a film (S-DLC film).
  • S-DLC film the groove portion without the film becomes an oil groove, and when the oil is supplied, the seat surface friction coefficient is stabilized, which contributes to the stability of fastening.
  • vapor deposition In order to deposit the DLC film on the surface on which the nut body and the nut component slide, the bearing surface of the nut, and the inner surface of the screw, vapor deposition (CVD or PVD) is preferred. Examples thereof include plasma CVD using a high frequency power as a power source or sputtering such as magnetron sputtering or ion beam sputtering.
  • the film thickness of the DLC film depends on the shape of the nut, the part of the nut, the usage, etc., but is usually 0.01 to 10 ⁇ m, and more preferably 0.5 to 3 ⁇ m.
  • BN film, WC film, CrN film, HfN film, VN film, TiN film, TiCN film, Al 2 O 3 film, ZnO film, SiO 2 film, alumite, metal plating, solid lubricating layer, manganese phosphate conversion treatment It is possible to select any of carburizing and quenching, nitriding, chromizing, polymer resin coating, or a combination thereof. These membranes are effective in realizing smooth fastening operation and stable fastening.
  • metal plating As types of surface film formation or surface treatment, metal plating, polymer resin coating, alumite treatment, vacuum deposition, ion plating, plasma treatment such as PVD, CVD and the like can be suitably applied.
  • surface treatment can be applied to the outer surface of the nut or nut part, and weather resistance improvement, appearance improvement, identification indication provision, decoration, etc. can be appropriately performed.

Abstract

Provided is a nut in which, by moving the fastening force in bolt-nut fastening toward the open side of the nut and increasing the load sharing among the threads from the third thread on, it is possible to reduce the load on the first engaged thread, which bears the maximum load, and extend the fatigue life of the bolt with respect to crack-axis fracturing. A first embodiment of the nut is configured such that, with regard to the shape of the nut in a longitudinal sectional view, a space having a convex shape on the top is formed concentrically, centering on the thread axis, on the fastening-side nut face. The convex space is a structure in which a convex space is formed as a shape connected by straight lines, curved lines, or a combination of both. By forming said space such that, when L2 is the depth of the convex space from the nut face and L1 is the axial-direction length of the nut from the first root of a complete thread portion to the nut face, said convex space depth L2 is in the range of L1 < L2 ≤ L1 + 5 lengths of the thread pitch, more of the stress on the threads of the nut during fastening is moved to the third thread on toward the open side of the nut and load concentration on the first engaged thread of the nut and the bolt is reduced.

Description

締結用ナットTightening nut
 本発明は、ボルト、ナット締結において使用されるナットであって、締結噛合い1山目ねじ山の負荷を低減する目的を持つナットに関するものである。 The present invention relates to a nut used in bolt and nut fastening, and for the purpose of reducing the load on the fastening meshing first peak thread.
 様々な構造物の締結には、ボルトとナットが多く使われ、航空機・自動車・鉄道車両、工作機械・土木機械・農業機械、各種製造装置、橋梁・建築構造物などの多くは、ボルト、ナットによる締結が一般的である。しかし、ボルトが噛合い1山目で破断する事例が多く発生しており、その原因として使用中のボルトの締結噛合い1山目ねじ谷底での亀裂軸破断が指摘されている。ボルトの破断は締結そのものが分断され、その影響の大きさも問題になる。 A lot of bolts and nuts are used to fasten various structures, and many of aircraft, automobile, railway vehicles, machine tools, civil engineering machines, agricultural machines, various manufacturing devices, bridges, building structures, etc. are bolts and nuts. The conclusion is generally made. However, there are many cases in which the bolt breaks at the meshing first peak, and it is pointed out that the crack axial fracture at the bottom of the screwing mesh of the bolt in use is used as the cause. Breaking of the bolt causes the fastening itself to be broken, and the magnitude of the effect also becomes a problem.
 従来方式のねじ締結部には、初期締結負荷の上に、使用時の繰り返しの外力負荷が加わることにより、断面積が最も小さく、負荷分担が最大であるボルトの噛合い1山目のねじ谷底部で疲労破壊強度が最も低くなる。多くの亀裂軸破断がこの場所で発生することが知られている。 The screw fastening part of the conventional method has the smallest cross-sectional area and the largest load sharing due to the application of repeated external load during use on the initial fastening load. The fatigue failure strength is the lowest at the part. It is known that many cracked axial fractures occur at this location.
 これまでは、ボルトが破断することに対してボルト側の材質変更、熱処理などで硬度や引張強度を上げることで破断しにくくするように工夫しているが、この様な破壊靭性値の低い高強度部材のボルトねじ谷底では切り欠き感度の上昇を伴って、負荷の影響を敏感に受けていることも知られている。しかし、この様な工夫をしても従来方式ナットを使用する場合には、噛合い1山目のボルトねじ谷底への負荷集中状態は一向に変わらない。すなわち、ボルト側へのこれまでの硬度、強度向上の改良は、初期締め付け時の静的破壊強度には効果があっても、使用時の外力負荷の影響を受ける時の疲労破壊強度には破壊靱性値の影響で逆効果になることが多い。 Until now, it has been devised to make it hard to break by raising the hardness and tensile strength by material change on the bolt side and heat treatment etc. against breaking of the bolt, but such a high value with a low fracture toughness value It is also known that the bottom of a bolt thread of a strength member is sensitive to the influence of a load with an increase in notch sensitivity. However, even if such a device is used, in the case of using the conventional type nut, the load concentration state to the bottom of the screw thread of the meshing first peak does not change at all. That is, even though the improvement of the hardness and strength improvement to the bolt side so far is effective in the static fracture strength at the time of initial tightening, it is a fracture in the fatigue fracture strength under the influence of external load during use. It is often the opposite effect under the influence of toughness value.
 この実情に対し、ボルト側とナット側を工夫した下記特許文献で例が示されている。特許文献1および3は、嵌合するボルトねじ山を、ボルトの引張方向へ先細状に成形し、ボルトねじ山を斜めに低く加工したことを特徴とするボルトを開示し、軸力方向に向かってボルトねじ山とナットねじ山の接触面積を順次低減し、ボルトねじ山にナットねじ山からかかる負荷を均等化して疲労寿命の改善を図る意図のものが開示されている。この成形加工はナットに対して行ってもよいことが述べられているが、何の説明も図も示されていない。特許文献4には、ボルトに嵌合するナットのねじ山の斜面の角度の一方もしくは両方をボルトの斜面の角度よりも小さくとることを特徴とするナットが開示され、引張方向に向かってボルトとナットのねじ山の接触面積を低減し、ねじ山にかかる荷重の均等化を図り疲労寿命の改善を図ったものが開示されている。 An example is shown by the following patent documents which devised the bolt side and the nut side to this fact. Patent Documents 1 and 3 disclose a bolt characterized in that the bolt thread to be fitted is tapered in the tensile direction of the bolt and the bolt thread is obliquely cut low, and is directed in the axial direction. The intention is to reduce the contact area between the bolt thread and the nut thread sequentially and to equalize the load from the nut thread on the bolt thread to improve the fatigue life. It is stated that this forming process may be performed on the nut, but no description or figure is shown. Patent Document 4 discloses a nut characterized in that one or both of the slope angles of the thread of the nut fitted to the bolt is smaller than the slope angle of the bolt, and It has been disclosed that the contact area of the thread of the nut is reduced to equalize the load applied to the thread and improve the fatigue life.
 特許文献2には、ボルト素材のねじ加工部を引張力作用方向にテーパー状に成形加工し、続いて谷底径が一様のねじ加工を行うボルトの製作方法が開示されている。 Patent Document 2 discloses a method of manufacturing a bolt in which a threaded portion of a bolt material is formed into a tapered shape in the direction of tensile force application, and subsequently, threading with a uniform valley diameter is performed.
 特許文献5には、ボルトのピッチをナットのピッチよりも小さくした鋼製ボルトにおいて、ピッチ差を日本工業規格JIS B 0205に規定されるピッチ公差の0.5~0.8%の範囲で、ずれを設けるように設定していることを特徴とする鋼製ボルトが開示され、ねじ面の接触が同時に起こることを避け、締結が進行し、ねじ山が応力で変形した時に応力伝達位置が順次移動して負荷を全山で受ける構造が開示されている。 In Patent Document 5, in a steel bolt in which the pitch of the bolt is smaller than the pitch of the nut, the pitch difference is in the range of 0.5 to 0.8% of the pitch tolerance specified in Japanese Industrial Standard JIS B 0205 A steel bolt is disclosed which is characterized in that it is designed to provide offsets, avoiding simultaneous contact of the screw faces, and as the fastening progresses and the screw thread is deformed by stress, the stress transfer position is sequentially A structure is disclosed that travels and receives a full load.
 しかしながら、特許文献1~5は、これらのボルトやナットのねじ山に加工を施すこととなるため、ねじ形状がJISやISO等の規格外となる難点があり、さらにこれらは、基本的にボルトを対象にしており、そのねじ山加工位置は被締結物の板厚、構造などで専用部品化され、被締結物ごとに特定の寸法となる位置にボルトのねじ山成形加工を施す必要があり、これらのボルトには汎用性がない。 However, Patent Documents 1 to 5 have a problem that the screw shape is out of the standard such as JIS or ISO because they are processed on the screw threads of these bolts and nuts, and these are basically bolts The threading position is made into a dedicated part by the thickness, structure, etc. of the object to be fastened, and it is necessary to apply thread thread forming processing of the bolt to a position which becomes a specific size for each object to be fastened , These bolts are not versatile.
 これらの特許文献1~5の先行技術は、ボルトのねじ山高さを低くしても各ねじ山の負荷には大きな変化はないため、ボルトの低いねじ山の斜面では、ねじ山同士の接触面積が低下し、高応力が発生することになる。特にねじ噛合い1山目ではナット側の接触面に圧痕傷発生の凹凸塑性変形の可能性があり、ナットが繰り返し使用される用途には圧痕が締結に悪影響を及ぼす恐れがある。 The prior art of these patent documents 1 to 5 does not change the load of each screw thread greatly even if the screw thread height of the bolt is lowered. And high stress will occur. In particular, in the first thread of thread engagement, there is the possibility of uneven plastic deformation on the contact surface on the nut side, and in applications where the nut is used repeatedly, there is a risk that the indentation will adversely affect fastening.
 さらに、特許文献6~8には、ナット側に関して、特許文献6には、摩擦接合用高力ナットにおいて、ボルト、ナット、座金のセットが提案されている。このセットの第1の構造例が、同特許文献の図1、2に記載されている。ボルト、ナット、座金のセットにおいて重要なのがトルク係数のバラつきを小さくすることであると述べ、そのためにナットの座金側の端面の外周部側に座金に喰い込みやすくするための曲面状突起を形成し、内周部に後退面と環状の溝を形成する構造を提案している。座面に形成した突起と後退面によって、締結時におけるねじ部の1つ目のねじ山への応力集中が緩和され、さらに環状の溝によって、さらにその効果が高められると述べている。また、ボルト軸力はナットと座金部の接触部の潤滑性能、及びナットねじ部とボルトねじ部との潤滑性能に影響を受けるとして、効果的な潤滑剤の使用を示唆している。しかし、ナット座面の曲面状の突起が条件であり、通常の平面状座面は適用せず、またナットとしての構造、応力集中の緩和特性に本質的に関係する環状の溝の形状、特にその深さに関する記述がない。応力集中の緩和の効果は、トルク係数のばらつきの大きさで示しているが、潤滑剤、突起、後退面、溝のいずれの効果によるものか、ボルト、ナットの組み合わせの本質的な構造と特性の関係であるにもかかわらず判別できない。本来、トルク係数のバラつきは、ねじ山や座面での摩擦状態やボルト材質・硬度に由来するものであって、ナットが締結1山目の負荷集中を減じる目的とは異なる要素である。 Furthermore, Patent Documents 6 to 8 propose a set of a bolt, a nut and a washer in a high strength nut for friction bonding in relation to the nut side, and Patent Document 6 in the following. A first structural example of this set is described in FIGS. 1 and 2 of the patent document. It is stated that what is important in the set of bolts, nuts and washers is to reduce the variation in torque coefficient, and therefore curved projections are formed on the outer peripheral side of the end face on the washer side of the nut to facilitate penetration into the washer. And a structure in which a receding surface and an annular groove are formed on the inner peripheral portion. It is stated that the projections formed on the seat surface and the receding surface relieve the stress concentration on the first thread of the screw at the time of fastening, and further the effect is enhanced by the annular groove. In addition, it is suggested that the use of an effective lubricant is affected as the bolt axial force is affected by the lubricating performance of the contact portion between the nut and the washer and the lubricating performance between the nut screw and the bolt screw. However, the curved projections on the nut bearing surface do not apply, and a normal planar bearing surface does not apply, and the structure as a nut, the shape of the annular groove essentially related to the stress concentration relaxation characteristics, in particular There is no description about the depth. The effect of relieving stress concentration is indicated by the magnitude of the variation in torque coefficient, but the intrinsic structure and characteristics of the combination of bolt and nut, which is the effect of lubricant, protrusion, receding surface, or groove Even though it is a relation of Inherently, the variation in torque coefficient is derived from the friction state at the screw thread or bearing surface, the material of the bolt and the hardness, and this is a factor different from the purpose of reducing the load concentration of the first tightening.
 この特許文献6のボルト、ナット構造は、ナットを回転させながら締結を進める通常のボルト、ナット締結方式とは大きく異なる目的と締結方法を採用している。ナットが回転しにくいように、ナット座面の摩擦を大きくするため、ナット座面に凸型突起を設け被締結物に食い込ませる方式としているのが特徴で、この点が特許文献6でいう、「これまでの平面の座面を持つナットを改良した」と主張する部分である。 The bolt and nut structure of Patent Document 6 adopts a fastening method and a purpose that is largely different from a normal bolt and a nut fastening method in which fastening is performed while rotating the nut. In order to increase the friction of the nut bearing surface so that the nut is difficult to rotate, it is characterized in that a convex protrusion is provided on the nut bearing surface to bite into the object to be fastened. It is the part that claims to "improved the nut having the flat surface so far".
 また、このナットの第2の構造例が特許文献6の図7に記載されている。六角ナットの外周部に別部品が挿嵌されているが、この別部品は一種のスリーブ状で、内側の六角ナットに嵌合されて内側の六角ナットに対し回転できない構造であり、座金側に曲面状突起を設けているのが特徴である。想定している締結時の締結作用は第1の構造例と同じで、座面からの力はこの山形の曲面状突起部に入り、山形の曲面状突起が相手側の座面を変形させたのちに内側ナット上部のフランジ部に入る。同文献6の図7に示すような薄い上部フランジでは、締結側曲面状突起部を座屈させる力が入ったときに、フランジが開放側に曲がる恐れがある。この方式の「回転させないナット」であれば、フランジの変形はさほど問題にはならないが、ナット座面突起部もフランジも変形してしまうために、この構造のボルト、ナット、座金セットは増し締めも再使用もできない問題がある。 Further, a second structural example of this nut is described in FIG. 7 of Patent Document 6. A separate part is inserted into the outer periphery of the hexagonal nut, but this separate part is a kind of sleeve-like structure that is fitted to the inner hexagonal nut and can not be rotated relative to the inner hexagonal nut, and on the washer side It is characterized in that a curved projection is provided. The assumed fastening action at the time of fastening is the same as in the first structural example, and the force from the seat surface enters the curved surface-like protrusion of this chevron, and the chevron curved surface-like protrusion deforms the other seat surface Later, it enters the flange portion of the inner nut upper part. In the thin upper flange as shown in FIG. 7 of the same document 6, there is a possibility that the flange may be bent to the open side when a force for buckling the fastening side curved surface projection is entered. In this type of “non-rotating nut”, deformation of the flange is not a serious problem, but the nut seat surface projections and the flange will also be deformed, so the bolt, nut and washer set of this structure are additionally tightened There is a problem that can not be reused.
 特許文献7には、剪断遅れ破壊防止機能ナットとして、ボルト、ナットのねじ山に働く剪断応力が一様になるようにするため、ボルトには先端部に回転放物体状の空隙、ナットにはフランジリップ付きナットの組み合わせが提案されている。 In Patent Document 7, as a shear delayed fracture preventing nut, in order to make uniform shear stress acting on a screw thread of a bolt and a nut, a rotational parachute gap at the tip of the bolt and a nut A combination of flange lip and nut has been proposed.
 特許文献7のナットの縦断面には 上部内径側にねじ山がない部分(図1の11)が設けられていて、このねじがない深さと同じ高さのところまで、斜めのくさび型リップが入り込んでいる。このため、ねじがない窪み11の内部コーナーとねじ山外側にあるくさび型リップの最奥部の高さ方向寸法は「くさび型リップの深さの被締結物からの高さ≧ねじのない空間11の底までの高さ」となっている。特許文献7には、この時「ボルトのせん断遅れ破壊防止」が成立するとの記載がされているが、この目的があるとき、くさび型のリップはナットの最上部近傍まで入れる必要があって、このリップによってナットの剛性は不足し、繰返し入る外力負荷に対し、ナット上部の剛性不足が原因となって、ナットのリップ最奥部とボルトの上部の彫り込み(窪み11)最下部を結ぶ線上で破断する恐れが高く、耐久性に疑問がある。 The longitudinal cross section of the nut of Patent Document 7 is provided with a threadless portion (11 in FIG. 1) on the upper inner diameter side, and an oblique wedge-shaped lip is at the same height as the depth without the thread. It is intruding. For this reason, the height direction dimensions of the inner corner of the recess 11 without screw and the innermost part of the wedge-shaped lip outside the screw ridge are "height of the wedge-shaped lip from the object to be fastened ね じ space without screw It is the height to the bottom of 11 ". Although patent document 7 states that "the prevention of shear delayed breakage of a bolt" is established at this time, it is necessary to put the wedge-shaped lip to the vicinity of the top of the nut when there is this purpose. Due to this lip, the rigidity of the nut is insufficient, and the rigidity of the upper part of the nut is insufficient due to the repeated external force load, and the line connecting the lip deepest part of the nut and the engraved lower part of the upper part of the bolt (dent 11) There is a high risk of breakage and there is a question of durability.
 また、特許文献7の図1に示されるボルト8の先端に空間5がある場合、このボルト側ねじ部先端側も軸方向に伸びることが可能であって、特許文献7の図4に示すように力のやり取りが小さくなる。このためJIS(ISO)で規定する軸力を発生・維持できないボルト、ナットになってしまうおそれもある。 Further, when there is a space 5 at the end of the bolt 8 shown in FIG. 1 of Patent Document 7, this bolt side screw portion tip end side can also be axially extended, as shown in FIG. 4 of Patent Document 7 Exchange of power becomes smaller. For this reason, there is also a possibility that it may become a bolt and a nut which can not generate and maintain the axial force specified by JIS (ISO).
 特許文献8には、座金に大きなR(内側が凹んでいる球面)を持ち、ナット座面も同様のRがついたナットが提案されている。座金(ワッシャ)はナットより大きな外径を持ち、座金の下にある被締結部の面が少し傾いたり、面状態が凸凹であったり不安定な場合に、ボルトに対しナットを締めこんだ時、そのナット座面にワッシャ状基材が均一に当たる構造を示しており、被締結物表面が不安定状況でも締結が行えるとしている。しかし、座金はナットより大きな外径を持つが、中心穴径については記載されていない。締結噛み合い1山目のボルトねじ谷底への負荷低減につながる効果や構造については開示されておらず、本発明とは目的が異なるものである。 Patent Document 8 proposes a nut having a large R (a spherical surface in which the inside is recessed) in a washer and a similar R bearing surface. The washer has a larger outer diameter than the nut, and when the surface of the part to be fastened under the washer is slightly inclined, or when the surface condition is uneven or unstable, tightening the nut against the bolt The structure shows that the washer-like substrate uniformly contacts the nut bearing surface, and fastening can be performed even when the surface of the object to be fastened is unstable. However, the washer has a larger outer diameter than the nut but no mention is made of the central bore diameter. The effect and structure leading to the reduction of the load on the bottom of the bolt thread in the first engagement are not disclosed, and the purpose is different from the present invention.
特開昭52-79163号公報JP-A-52-79163 特開昭52-131060号公報JP-A-52-131060 米国特許第4189975号明細書U.S. Pat. No. 4,189,975 特開昭58-160613号公報JP-A-58-160613 特開2005-265150号公報JP 2005-265150 A 特開平5-288209号公報Unexamined-Japanese-Patent No. 5-288209 特開2002-61619号公報Japanese Patent Laid-Open No. 2002-61619 特開平1-182614号公報Japanese Patent Application Laid-Open No. 1-182614
 従来方式のボルト、ナット締結において、ボルトの改良は数多く実施されてきたにもかかわらず、いまだにボルトの噛合い1山目谷底での亀裂軸破断が発生しており、その理由が噛合い1山目への過度の応力集中ということは知られてきた。しかしながらその原因の、応力が噛合い1山目に負荷集中している状況(ナットに入る力がどの様にボルトに流れ込むのか)を調べることが難しかった。 In the conventional method of bolt and nut fastening, although many improvements have been made to the bolt, there is still a crack axial fracture at the bottom of the mesh engagement of the bolt, which is the reason why It has been known that excessive stress concentration on the eyes. However, it was difficult to find out the situation where stress is concentrated on the first meshing area (how the force entering the nut flows into the bolt).
 図4は、従来方式のフランジナットの一般的な締結の縦断面図である。フランジナット1のねじ山は締結側から開放側までJIS B 0205(ISO 724)で規定されるねじ山がほぼ一様に形成されている。図4において、1は従来方式のフランジナット本体、2はボルト、3は被締結物、8はナットのねじ山の締結側、8aはナットのねじ山の締結側の端面及びナット座面、9はナットのねじ山の開放側、9aはナットのねじ山の開放側の端面、14はナット座面、15は従来方式のねじ谷底、17はナットの外周部、19はナットのねじ山を示す。ナット1のねじ部にボルト2のねじ部がねじ込まれワッシャ23を挟み被締結物3を締結する。 FIG. 4 is a longitudinal sectional view of a general fastening of a conventional flange nut. The screw threads of the flange nut 1 are substantially uniformly formed according to JIS B 0205 (ISO 724) from the fastening side to the open side. In FIG. 4, 1 is a conventional flange nut main body, 2 is a bolt, 3 is an object to be fastened, 8 is a screw thread side of a nut thread, 8a is an end face of a screw thread side of a nut thread and a nut bearing surface, Is the open end of the nut thread, 9a is the open end face of the nut thread, 14 is the nut bearing surface, 15 is the conventional thread valley bottom, 17 is the outer periphery of the nut, and 19 is the nut thread. . The threaded portion of the bolt 2 is screwed into the threaded portion of the nut 1 to clamp the washer 23 and clamp the object 3 to be fastened.
 本発明者は、従来方式のボルト、ナットで締結した場合の応力負荷分担を調べた結果、7山の場合の1山目は36.5%分担しており、2山目は20.6%、3山目以後は順次低下していることを見出した。全負荷の1/3以上が噛合い1山目に集中しており、1山目から3山目までで、全負荷の70%以上を分担している(負荷分担率;全体負荷を100%としたときの各ねじ山が負荷を分担する割合、%)。上記のように、図4は従来方式の締結状態を示し、ナット1はワッシャ23を介し被締結物3を締結している。ボルト2は下方からねじ穴を貫通してきてナットと締結する。図4-1(a)に図4と同じナット(7ねじ山)のミーゼス相当応力分布図を示している(ボルトの1山目(番号1)の左側に※マークを付けたねじ谷底に最大応力がかかり、亀裂軸破断が起こりやすい場所を示す)。ナット座面14から入った力が直近のボルトねじ山1番を押し上げる方向に向いていること、ボルトは軸力により1番山を一番強く引張るため、※部は開かれるような状態になっている。図4-2はミーゼス相当応力のベクトル図で最大主応力(引張応力)でボルトにどのような力が流れているかを表し、図4-3に同じくベクトル図で最小主応力(圧縮応力)を示し、ここではナット内の力の流れを表している。このベクトル図においても噛合い1山目に力が集中していることが見て取れる。 As a result of examining the stress load sharing in the case of fastening with a conventional bolt and nut, the inventor of the present invention shares 36.5% of the first peak in the case of 7 mountains and 20.6% of the second peak. After the third peak, I found that it was decreasing gradually. More than one-third of the total load is concentrated in the first mountain, and 70% or more of the total load is shared from the first mountain to the third mountain (load sharing ratio; 100% of the total load) And when each thread share the load,%). As described above, FIG. 4 shows the conventional fastening state, and the nut 1 fastens the object 3 via the washer 23. The bolt 2 penetrates the screw hole from below and is fastened to the nut. Figure 4-1 (a) shows the Mises equivalent stress distribution of the nut (seven screw thread) same as Figure 4 (Maximum of thread valley bottom marked with * on the left side of the first ridge of bolt (No. 1) Indicates where stress is applied and crack axis fracture is likely to occur). The force entered from the nut bearing surface 14 is directed in the direction of pushing up the nearest bolt thread No. 1 and the bolt is most strongly pulling the No. 1 peak by the axial force, so the part * becomes open ing. Fig. 4-2 is a vector diagram of the Mises equivalent stress and shows what kind of force is flowing to the bolt at the maximum principal stress (tensile stress), and Fig. 4-3 also shows the minimum principal stress (compressive stress) at the vector diagram. Indicated here is the flow of force in the nut. Also in this vector diagram, it can be seen that the power is concentrated in the meshing first mountain.
 前記の、噛合い1山目の負荷が大きいことに対して、ナットの負荷分担するねじ山数を増加することで噛合い1山目の負担を下げられないかという案がある。これに対し従来方式ナットの7山の他に8山、9山についても同様の解析を行い負荷分担を調べた結果、開放側に山数が増えた場合の従来方式ナットは、8山ナットの場合の噛合い1山目の負荷は約1%下がり34.5%であり、9山ナットの場合では約2%低減し、噛合い1山目負荷は33.4%になることが確認された。図4-1(b)にねじ8山のミーゼス相当応力分布図、図4-1(c)にねじ山9山のミーゼス相当応力分布図を、さらにこれらの負荷分担率を7山と比較して図4-4(a)(従来方式ナット(7,8,9ねじ山の負荷分担率比較表)に表示し、これらの3つの負荷分担率の比較棒グラフを図4-4(b)に示す。従来方式では、噛合い1山目への負荷分担率は7山で36.5%、8山で34.5%、9山で33.4%である。そしてねじ山数を7山、8山、9山のいずれの場合も図4-1(a),(b),(c)中の※部のボルト側噛合い1山目ねじ谷底には過大な応力がかかっていることを示している。この結果は、従来方式ナットのねじ山数を増加させても、噛合い1山目負荷の低減効果は微々たるものであることを示している。 With respect to the large load on the meshing first peak, it is possible to reduce the load on the meshing first peak by increasing the number of screw threads shared by the nut. On the other hand, the same analysis was conducted on the 8 and 9 peaks in addition to the 7 and 7 conventional nuts, and the load sharing was examined. As a result, when the number of peaks increases on the open side, the conventional nut is 8 nuts. In the case of meshing, the load on the first peak is about 1% down and 34.5%, and in the case of the nut 9, it is confirmed that the load on the first peak is 33.4%. The Figure 4-1 (b) shows the Mises equivalent stress distribution map of screw 8 and Figure 4-1 (c) shows the Mises equivalent stress distribution of 9 screw threads, comparing these load sharing ratios with 7 Figure 4-4 (a) (conventional nut (load distribution ratio comparison chart for 7, 8 and 9 threads) is displayed, and a comparison bar graph of these three load distribution ratios is shown in Figure 4-4 (b). In the conventional method, the load sharing ratio to mesh 1 is 36.5% at 7 mountains, 34.5% at 8 mountains, 33.4% at 9 mountains, and the number of screw threads is 7 mountains. In each case of 8 mountains and 9 mountains, excessive stress is applied to the bolt side meshing first valley thread valley bottom of ※ part in Fig. 4-1 (a), (b), (c) This result indicates that the reduction effect of the meshing first peak load is small even if the number of threads of the conventional type nut is increased.
 前記従来方式ナットの噛合い1山目への負荷集中に対し、本発明方式でナットの構造を最適化することにより、ボルト、ナット締結噛合い1山目への負荷を低減させることにより、ボルト強度最弱部である噛合い1山目谷底からの亀裂軸破断の疲労破壊寿命を向上させるナットを提供することができる。 By optimizing the structure of the nut according to the present invention with respect to the load concentration on the meshing first mesh of the conventional type nut, the bolt and the bolt are tightened by reducing the load on the first mesh meshing engagement. It is possible to provide a nut that improves the fatigue fracture life of the cracked axis fracture from the bottom of meshed first valley which is the strength weakest part.
 本発明は、上記の課題を解決するために、以下の発明を提供する。すなわち、ナットが受ける負荷の力の流れを負荷分担の低い開放側の噛合いねじ山により多く向かわせるナット構造とすることにより、開放側3山目以後の負荷分担を増加させることにより、噛合い1山目への負荷集中を低減させるように構成したことを特徴とする構造のナットを提供する。 The present invention provides the following inventions in order to solve the above-mentioned problems. That is, by increasing the load sharing after the third opening side by setting the nut structure to make the flow of the force of the load received by the nut more directed to the open side meshing thread with low load sharing, the meshing can be achieved. A nut having a structure characterized in that load concentration on a first peak is reduced.
(1)締結用のナットであって、
 A.ナットの縦断面図の形状において、ナット締結側の座面にねじの軸を中心に、上に凸形状の空間を同心円状に形成させ、該空間は直線、曲線又はそれらの組み合わせで結ばれた形状として空間を形成させた構造であり、該空間の座面からの深さをL、ナットの完全ねじ部の第1の谷底から該座面までの軸方向長さをLとしたとき、該空間の深さLを、L<L≦L+ねじ山5ピッチの長さの範囲として該空間を形成することにより;
 B.ナットの縦断面図の形状において、ナットの締結部材側の座面のねじ中心側に矩形状の凹部を有する構造であって、該凹部はナット座面から垂直に立ち上がる内壁と曲線、直線またはそれらを組み合わせたコーナー部と上面とを持ち、上面の位置から該ナットの不完全ねじ部の軸方向長さとナットの2ピッチの長さを加えた軸方向長さをLaとし、また該凹部の該座面から該上面までの軸方向長さをLb、ナットのねじ谷底と該凹部の内壁までの該凹部の半径方向の長さをLhとしたとき、LbはLaの0.001倍以上1倍以下の範囲とし、またLhはLaの0.5倍以上5倍以下の範囲として該凹部をねじの中心と同心円状に形成することにより;または
 C.内部にねじ山を設けたねじ軸部およびフランジ座面部を有するナット本体と少なくとも一方の端面内径側に面取り座面を持つパイプ状であるナット部品とにより構成された2部品構成のナットであって、該ナット本体の縦断面図の形状がT字状であり、該ナット本体のフランジ座面部から該ナット部品の内側の被締結物側に向けてナット本体のねじ軸部が入り込む長さを、不完全ねじ部長さs+ねじピッチ0.5山分の長さ以上、不完全ねじ部s+ねじピッチ5山分の長さ以下となるようにねじ外側面外周部に中空パイプ状の該ナット部品を配置した構造であり、該T字形状のナット本体の最下部が被締結物に接しないように、かつ該ナット部品の最上部が該T字形状ナット本体のフランジ状座面に接触し、また該ナット部品の最下部が被締結物に接触するように該ナット部品の長さを設定し、該ナット部品内径面と該ナット本体の外周面はそれぞれ回転自在とし、該ナット本体と該ナット部品をねじの中心と同心円状に形成することにより;
 ナットが受ける負荷の力の流れを負荷分担の低い開放側の噛合いねじ山により多く向かわせるナット構造とすることにより、噛合い3山目以後の負荷分担を増加させることにより、噛合い1山目への負荷集中を低減させるように構成したことを特徴とする構造のナット。
(2)ナットのねじ山表面の少なくともボルトとの噛合い第1ねじ山またはそれ以外のねじ山の一部もしくは全部のボルト側ねじと接する面、またはねじ山の両側の斜面に、ダイヤモンド状炭素(DLC)膜、BN膜、WC膜、CrN膜、HfN膜、VN膜、TiN膜、TiCN膜、Al膜、ZnO膜、SiO膜、アルマイト、金属メッキ、固体潤滑層、リン酸マンガン化成処理、浸炭焼入れ、窒化処理、クロマイズド処理のいずれか、またはこれらの組み合わせを被覆してなる上記(1)に記載のナットを提供する。
(3)ナット本体とナット部品の接触面の双方または片側にダイヤモンド状炭素(DLC)膜、BN膜、WC膜、CrN膜、HfN膜、VN膜、TiN膜、TiCN膜、Al膜、ZnO膜、SiO膜、アルマイト、金属メッキ、高分子樹脂コート、固体潤滑層、リン酸マンガン化成処理、浸炭焼入れ、窒化処理、クロマイズド処理のいずれか、またはこれらの組み合わせを被覆してなる上記(1)~(2)のいずれかに記載のナット。
(4)ナットの被締結物と接する面にダイヤモンド状炭素(DLC)膜、BN膜、WC膜、CrN膜、HfN膜、VN膜、TiN膜、TiCN膜、Al膜、ZnO膜、SiO膜、アルマイト、金属メッキ、高分子樹脂コート、固体潤滑層、リン酸マンガン化成処理、浸炭焼入れ、窒化処理、クロマイズド処理のいずれか、またはこれらの組み合わせを被覆してなる上記(1)~(3)のいずれかに記載のナットを提供する。
(1) It is a nut for fastening,
A. In the shape of the longitudinal sectional view of the nut, a convex-shaped space is concentrically formed on the bearing surface on the nut fastening side around the axis of the screw, and the space is connected by a straight line, a curve or a combination thereof. It is a structure in which a space is formed as a shape, and the depth from the bearing surface of the space is L 2 , and the axial length from the first valley bottom of the fully threaded portion of the nut to the bearing surface is L 1 , By forming the space with the depth L 2 of the space as L 1 <L 2 ≦ L 1 + length of 5 threads of the screw thread;
B. A structure having a rectangular recess on the screw center side of the bearing surface on the fastening member side of the nut in the shape of the longitudinal sectional view of the nut, wherein the recess has an inner wall and a curve, straight line, or the like rising perpendicularly from the nut bearing surface Have a corner portion and an upper surface combined, and from the position of the upper surface the axial length of the incomplete thread portion of the nut plus the length of two pitches of the nut is La, and Assuming that the axial length from the bearing surface to the upper surface is Lb, and the radial length of the recess to the thread valley bottom of the nut and the inner wall of the recess is Lh, Lb is at least 0.001 times the La C. by forming the recess concentrically with the center of the screw in the range of 0.5 to 5 times the range of La and Lh; A nut having a two-part structure comprising a nut body having a screw shaft portion provided with a screw thread inside and a flange bearing surface portion and a pipe-like nut component having a chamfered bearing surface on at least one end face inner diameter side A shape of a longitudinal sectional view of the nut body is T-shaped, and a length in which a screw shaft portion of the nut body is introduced from the flange seat surface portion of the nut body toward the inner object of the nut component is The hollow pipe-shaped nut component is formed on the outer surface of the screw outer surface so that the incomplete screw part length s + the length of the screw pitch 0.5 or more, and the length of the incomplete screw part s + the screw pitch 5 m or less The T-shaped nut body is disposed so that the lowermost portion of the T-shaped nut body is not in contact with the object, and the uppermost portion of the nut part is in contact with the flange-like bearing surface of the T-shaped nut body The lower part of the nut part is tightened The length of the nut part is set so as to contact the object, the inner diameter surface of the nut part and the outer peripheral surface of the nut body are respectively rotatable, and the nut body and the nut part are formed concentrically with the center of the screw By doing;
By increasing the load sharing after the third mesh of meshing by setting the nut structure to make the flow of the force of the load received by the nut more directed to the open side meshing thread with low load sharing, meshing 1 mountain A nut of a structure characterized in that it is configured to reduce load concentration on the eyes.
(2) Engaging with at least a bolt on the screw thread surface of nut Threaded surface of the first screw thread or a part or all of the other screw threads with bolt side screw, or bevel on both sides of screw thread (DLC) film, BN film, WC film, CrN film, HfN film, VN film, TiN film, TiCN film, Al 2 O 3 film, ZnO film, SiO 2 film, alumite, metal plating, solid lubricating layer, phosphoric acid There is provided a nut according to the above (1), which is coated with any of manganese conversion treatment, carburizing and quenching, nitriding treatment, and chromiumizing treatment, or a combination thereof.
(3) Diamond-like carbon (DLC) film, BN film, WC film, WC film, CrN film, HfN film, VN film, TiN film, TiCN film, Al 2 O 3 film on both or one side of the contact surface of nut body and nut part ZnO film, SiO 2 film, alumite, metal plating, polymer resin coating, solid lubricating layer, manganese phosphate chemical conversion treatment, carburizing and quenching, nitriding treatment, chromium treatment, or any combination thereof The nut according to any one of (1) to (2).
(4) A diamond-like carbon (DLC) film, a BN film, a WC film, a CrN film, a HN film, a VN film, a TiN film, a TiCN film, an Al 2 O 3 film, a ZnO film, on the surface of the nut in contact with the object to be fastened. A SiO 2 film, alumite, metal plating, polymer resin coating, solid lubricating layer, manganese phosphate conversion treatment, carburizing and quenching, nitriding treatment, chromiumizing treatment, or a combination thereof is coated (1) to Providing the nut as described in any of (3).
 本発明の態様(A)、(B)、(C)のナットの構造により噛合い3山目以後の開放側ねじ山にナット座面から入る力を多く向け、負荷を多く分担させることで、噛合い1山目への負荷集中を低減することができ、この効果により噛合い1山目のボルト谷底の亀裂軸破断の疲労破壊寿命の向上につながる。 By the structure of the nut according to the aspects (A), (B) and (C) of the present invention, the force applied from the nut bearing surface is directed to the open side thread after the third mesh and more load is shared. The load concentration on the meshing first peak can be reduced, and this effect leads to the improvement of the fatigue fracture life of the cracked axis fracture of the bolt valley bottom of the meshing first peak.
 この効果を得るためには、好適には「力の流れ」を開放側3山目以後に多く向かわせるナット構造とすれば良い。その方法として、ナットのねじ山形状のJIS(ISO)の基準を変えることなくナットの外形形状や構造を変えること、すなわち構造を最適化することで被締結物からナットに入った力をナットの3山目以後の開放側ねじに向かわせることができる。または、ナットを2部品構成とし、力の通る場所の構造を最適化してナットに入る応力を3山目以後の開放側のねじ山に向けることで、噛合いねじ1山目への力の負荷集中の低減を実現させることができる。 In order to obtain this effect, it is preferable to use a nut structure in which "flow of force" is more frequently directed to the third and subsequent open side. As a method, changing the external shape and structure of the nut without changing the JIS (ISO) standard of the screw thread shape of the nut, that is, optimizing the structure to obtain the force of the nut It can be directed to the open side screw after the third peak. Alternatively, by applying a force to the meshing screw 1 peak by setting the nut as a two-piece configuration and optimizing the structure where the force passes and directing the stress entering the nut to the open side thread after the 3rd peak Reduction of concentration can be realized.
 さらに前記(2)~(4)に示すナットへの表面処理を付加することにより、締結時の摩擦低減、ねじ面摺動性向上、表面の耐候性向上が図られ、使用上有用なナットを実現することができる。 Furthermore, by adding the surface treatment to the nut shown in the above (2) to (4), the friction at the time of fastening, the slidability on the screw surface and the weatherability of the surface can be improved. It can be realized.
 上記のねじ噛合い1山目は、例えば図4-1に示す従来方式のボルト、ナットに示される1印のねじ山であり、「第1ねじ山」とする。ナットの第1ねじ山の側面はボルトの第1ねじ山の側面に負荷を与えて締結する。ナットの「第1ねじ山」は、締結側にあり、ねじ部が正常なねじ形状を有している最初の完全ねじ部とする。これに対して、上記の不完全ねじ部は、ねじの切り始めから約1ピッチと面取りを含む長さを持つ部分である。 The above-mentioned screw meshing first ridge is, for example, a screw thread indicated by a symbol 1 shown in a bolt and a nut of the conventional method shown in FIG. The side of the first thread of the nut loads and fastens the side of the first thread of the bolt. The "first thread" of the nut is on the fastening side and the thread is the first fully threaded part having a normal thread shape. On the other hand, the above-mentioned incomplete thread portion is a portion having a length including about one pitch and a chamfer from the start of thread cutting.
 ナットの第1ねじ山の位置は完全ねじ部の最初の1山目である。ボルト側では、ナットの第1ねじ山と噛合うボルトのねじ山がボルトの第1ねじ山となり、ボルトの第1谷底は、ボルトの第1ねじ山の締結側に位置する。 The position of the first thread of the nut is the first peak of the complete thread. On the bolt side, the screw thread of the bolt engaged with the first screw thread of the nut is the first screw thread of the bolt, and the first valley bottom of the bolt is located on the fastening side of the first screw thread of the bolt.
 本発明のナットのねじ形状は、好適にはJIS B 0205(ISO 724)に規定されているものに準拠している。また、本発明のナットの構成は、例えばインチねじなど、従来から広く使用されているねじ形状を持つナットにおいても適用され、これらも本発明の一部である。 The screw shape of the nut of the present invention preferably conforms to that defined in JIS B 0205 (ISO 724). Also, the configuration of the nut of the present invention is also applied to a nut having a thread shape which is widely used conventionally, such as an inch screw, for example, and these are also part of the present invention.
 ボルト、ナットによる締結力の負荷分担は、初期締付け時だけでなく、ねじ締結部へ外部から力がかかる振動などの外力負荷に対しても軸力変動として初期締付け時と同じ分担率で作用する。特に負荷の厳しい第1ねじ山への負荷分担を低減しておくことは、同じ負荷分担率で合算される外力負荷(変動軸力負荷)を受ける噛合い1山目ボルトねじ谷底の疲労破壊強度の向上に効果がある。 The load sharing of the fastening force by the bolt and nut works with the same sharing ratio as the initial tightening as axial force fluctuation not only at the time of initial tightening but also against external load such as vibration where external force is applied to the screw fastening portion. . In particular, it is necessary to reduce the load sharing to the first thread where the load is severe, because the fatigue fracture strength of the meshing first peak bolt thread valley bottom subjected to external force load (fluctuating axial load) combined at the same load sharing rate Is effective in improving
 ボルト、ナット締結部の破壊はボルトの噛合い1山目谷底で亀裂軸破断として発生することが多いが、疲労破壊強度の向上の効果があるとする初期締結負荷の低減がどの様に効果を発揮するのかを説明する。ボルトの疲労試験結果より求められるS-N線図は、疲労破壊寿命(繰り返し数Nf)と外力負荷(応力振幅σr)の関係を示すものであるが、一般的に次の実験式で示すことができる。
     Nf・σr=C
           ここで Nf:疲労破壊するまでの負荷の繰り返し数
               σr:負荷の応力振幅
                b:応力指数(一般的に3~5)
                C:材料定数
ここで示すように、締結噛合い1山目のボルトねじ谷底への負荷を下げておくことは外力負荷(σr)分担を下げることにつながり、下がった負荷の応力振幅のb(一般に3~5)乗分 繰返し数Nf を大きくできる効果につながる。
Although fracture of bolt and nut joints often occurs as cracked axis fracture at the bottom of meshing 1 of the bolt, there is an effect of reducing the initial joint load which is considered to be effective in improving fatigue fracture strength. Explain what it will do. The SN diagram determined from the fatigue test results for bolts shows the relationship between fatigue fracture life (repetition number Nf) and external load (stress amplitude σr), but in general, it should be shown by the following experimental formula Can.
Nf · σr b = C
Where Nf: The number of cycles of load until fatigue failure σr: Stress amplitude of load b: Stress index (generally 3 to 5)
C: Material constant As shown here, lowering the load on the bottom of the bolt thread bottom of the fastening meshing leads to reducing the external force load (σr) sharing, and the stress amplitude b of the lowered load (b ( In general, it leads to the effect that the number of repetitions Nf can be increased by 3 to 5).
 一般的に物質内を伝わる力を直接見ることはできないので、物質内の力の状態、流れ方を予測する方法として有限要素解析が有用である。従来方式のボルト、ナット締結における各ねじ山負荷を分析するため、有限要素法(FEM:Finite Element Method)を活用したCAE(Computer Added Engineering)手法により、ねじ締結部のシミュレーション解析を実施し、従来方式ナットのミーゼス相当応力分布を図4-1(a),(b),(c)に示す。また、本発明の態様(A)、(B)、(C)についても同様の解析を行っている。 In general, it is not possible to directly view the force transmitted in a substance, so finite element analysis is useful as a method of predicting the state of the force in the substance and the flow direction. In order to analyze each screw thread load in bolt and nut fastening of the conventional method, simulation analysis of the screw fastening part is carried out by CAE (Computer Added Engineering) method using FEM (Finite Element Method), The von Mises equivalent stress distribution of the method nut is shown in Figures 4-1 (a), (b) and (c). Further, the same analysis is performed on the aspects (A), (B) and (C) of the present invention.
 本解析を行う上で、ナットのねじ山の数は一般的なものとして、有効ねじ山数7を選択し、本発明の各態様においても同様としている。締結時の締結力、ナット強度も総て同一の条件を採用している。また、従来方式7山と比較するねじ山数8山,9山のナットについてもねじ山数以外は同条件としている。
 本発明態様(C)ではねじ山数7山の場合の解析とねじ山数を8山とした解析を行い、それぞれ従来方式7山、8山の負荷分担を比較をしている。
In conducting this analysis, the number of screw threads of the nut is generally selected, and the number of effective threads is selected to be the same in each aspect of the present invention. The same tightening force and nut strength at the time of tightening are all adopted. The same conditions apply to the nuts having eight threads and nine threads, which are compared with those of the conventional system 7, except for the number of threads.
In the present invention mode (C), the analysis in the case of 7 threads and the analysis with 8 threads are performed, and the load sharing of the conventional method 7 and 8 is compared respectively.
 図4-1に示すように、従来方式では、ねじ噛合い1山目(図4-1(a)の1印)が最も内部応力が高く、2山目(図4-1の2印)、3山目(図4-1の3印)では応力は急激に低下する。この状況を全ねじ山の負荷分担率として図4-4(a)に示し、負荷分担率の比較を棒グラフで表したものを図4-4(b)に示す。従来方式7山の締結に対しては白枠表示の棒グラフで示す。この場合、1山目に全負荷の35.6%が掛かり、2山目では20.6%、3山目では14.4%であり、この3山目までの負荷分担は実に70%以上に達する。4山目以降はそれぞれのねじ山の負荷分担率は約11~4%以下に過ぎない。ボルト1山目の谷底部(図4-1(a)の※印)は高応力となり、従来方式のナットを使用する場合に発生するボルトの亀裂軸破断は、この噛合い1山目のボルトねじ谷底から発生することが多い。 As shown in Fig. 4-1, in the conventional method, the internal stress is highest at the first meshing thread (marked by 1 in Fig. 4-1 (a)), and the second ridge (marked by 2 in Fig. 4-1). In the third peak (marked 3 in Fig. 4-1), the stress drops sharply. This situation is shown in Fig. 4-4 (a) as the load sharing ratio of all threads, and Fig. 4-4 (b) shows a comparison of the load sharing ratio in a bar graph. For the conclusion of the conventional method 7 mountain, it is shown by the bar graph of the white frame display. In this case, 35.6% of the total load is applied to the first mountain, 20.6% for the second mountain and 14.4% for the third mountain, and the load sharing up to the third mountain is actually 70% or more Reaching The load sharing ratio of each thread is only about 11 to 4% or less after the fourth peak. The bottom of the first peak of the bolt (* mark in Fig. 4-1 (a)) is highly stressed, and the crack axial fracture of the bolt that occurs when using the conventional type nut is the bolt of this first mesh. It often occurs from the bottom of the thread.
本発明の第1の態様(A)のナットの一例を示す縦断面図である。(a)ナットの断面図、(b)ナット開放側から見た平面図、(c)ナット座面側から見た平面図の例。It is a longitudinal cross-sectional view which shows an example of the nut of the 1st aspect (A) of this invention. (A) Cross-sectional view of nut, (b) Top view seen from nut open side, (c) Example of top view seen from nut seat surface side. 本発明の第1の態様(A)のナットの一例のミーゼス相当応力分布図。The Mises equivalent stress distribution figure of an example of the nut of 1st aspect (A) of this invention. 本発明の第1の態様(A)のナットの一例の最大主応力(引張応力)のベクトル図。The vector diagram of the maximum principal stress (tensile stress) of an example of the nut of the 1st aspect (A) of this invention. 本発明の第1の態様(A)のナットの一例の最小主応力(圧縮応力)のベクトル図。The vector figure of the minimum principal stress (compression stress) of an example of the nut of the 1st aspect (A) of this invention. 本発明の態様(A)の一例と従来方式ナット図4-1の負荷分担率比較。Example of aspect (A) of this invention and the conventional system nut The load share ratio comparison of FIG. 4-1. 本発明の態様(A)の一例と従来方式ナット図4-1の棒グラフ。Bar graph of an example of the embodiment (A) of the present invention and a conventional nut FIG. 本発明の第1の態様(A)の変形例縦断面図を示す。The modification longitudinal cross-sectional view of a 1st aspect (A) of this invention is shown. 本発明の第1の態様(A)の変形例縦断面図を示す。The modification longitudinal cross-sectional view of a 1st aspect (A) of this invention is shown. 本発明の第2の態様(B)のナットの基本形の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the basic form of the nut of the 2nd aspect (B) of this invention. 本発明の第2の態様(B)の変形例の縦断面図。The longitudinal cross-sectional view of the modification of the 2nd aspect (B) of this invention. 本発明の第2の態様(B)他の変形例のミーゼス相当応力分布図。Miess corresponding stress distribution figure of the 2nd mode (B) other modifications of the present invention. 本発明の第2の態様(B)他の変形例。2nd aspect (B) other modification of this invention. 本発明の第2の態様(B)他の変形例。2nd aspect (B) other modification of this invention. 本発明の第3の態様(C)のナットの一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the nut of the 3rd aspect (C) of this invention. 本発明の第3の態様(C)のナットの一例のミーゼス相当応力分布図。The Mises equivalent stress distribution figure of an example of the nut of the 3rd aspect (C) of this invention. 本発明の第3の態様(C)のナットの一例と従来方式との負荷分担率の数値比較表。The numerical comparison table of the load share rate of an example of the nut of the 3rd mode (C) of the present invention, and a conventional system. 本発明の第3の態様(C)のナットの一例と従来方式との比較の棒グラフ。The bar graph of the example of the nut of the 3rd aspect (C) of this invention, and comparison with a conventional system. 本発明の第3の態様(C)のナットの変形例のミーゼス相当応力分布図。The Mises equivalent stress distribution figure of the modification of the nut of the 3rd aspect (C) of this invention. 本発明の第3の態様(C)のナットの変形例と従来方式との負荷分担率の数値比較表。The numerical comparison table of the load share rate of the modification of the nut of the 3rd mode (C) of the present invention, and a conventional system. 本発明の第3の態様(C)のナットの変形例と従来方式との比較の棒グラフ。The bar graph of the modification of the nut of the 3rd aspect (C) of this invention, and comparison with a conventional system. 従来方式のフランジナットの縦断面図(a)、上からの平面図(b)、および下からの平面図(c)。The longitudinal cross-sectional view (a) of the flange nut of a conventional system, the top view from the top (b), and the top view from the bottom (c). ねじ山数7山の従来方式のナットのミーゼス相当応力分布図。Mises equivalent stress distribution map of the conventional method nut of seven screw threads. ねじ山数8山の従来方式のナットのミーゼス相当応力分布図。Miess equivalent stress distribution figure of the conventional type nut of eight screw threads. ねじ山数9山の従来方式のナットのミーゼス相当応力分布図。Mises equivalent stress distribution map of the nut of the conventional system with a screw thread number nine. ねじ山数7山の従来方式のナットの最大主応力(引張応力)のベクトル図。The vector diagram of the maximum principal stress (tensile stress) of the conventional type nut of seven-thread number thread pile. ねじ山数7山の従来方式のナットの最小主応力(圧縮応力)のベクトル図。The vector diagram of the minimum principal stress (compression stress) of the conventional type nut of seven-thread number thread pile. 従来方式のナットの負荷分担率数値表。Conventional load share numerical value table of nut. 従来方式のナットの負荷分担率の棒グラフ。Bar chart of conventional nut load share.
 本発明のナットは、
 A.ナットの縦断面図の形状において、ナット締結側の座面にねじの軸を中心に、上に凸形状の空間を同心円状に形成させ、該空間は直線、曲線又はそれらの組み合わせで結ばれた形状として空間を形成させた構造であり、該空間の座面からの深さをL、ナットの完全ねじ部の第1ねじの谷底から該座面までの軸方向長さをLとしたとき、該空間の深さLを、L<L≦L+ねじ山5ピッチの長さの範囲として該空間を形成することにより;
 B.ナットの縦断面図の形状において、ナットの締結部材側の座面のねじ中心側に矩形状の凹部を有する構造であって、該凹部はナット座面から垂直に立ち上がる内壁と曲線、直線またはそれらを組み合わせたコーナー部と上面とを持ち、上面の位置から該ナットの不完全ねじ部の軸方向長さとナットの2ピッチの長さを加えた軸方向長さをLaとし、また該凹部の該座面から該上面までの軸方向長さをLb、ナットのねじ谷底と該凹部の内壁までの該凹部の半径方向の長さをLhとしたとき、LbはLaの0.001倍以上1倍以下の範囲とし、またLhはLaの0.5倍以上5倍以下の範囲として該凹部をねじの中心と同心円状に形成することにより;または
 C.内部にねじ山を設けたねじ軸部およびフランジ座面部を有するナット本体と少なくとも一方の端面内径側に面取り座面を持つパイプ状であるナット部品とにより構成された2部品構成のナットであって、該ナット本体の縦断面図の形状がT字状であり、該ナット本体のフランジ座面部から該ナット部品の内側の被締結物側に向けてナット本体のねじ軸部が入り込む長さを、不完全ねじ部長さs+ねじピッチ0.5山分の長さ以上、不完全ねじ部長さs+ねじピッチ5山分の長さ以下となるようにねじ外側面外周部に中空パイプ状の該ナット部品を配置した構造であり、該T字形状のナット本体の最下部が被締結物に接しないように、かつ該ナット部品の最上部が該T字形状ナット本体のフランジ状座面に接触し、また該ナット部品の最下部が被締結物に接触するように該ナット部品の長さを設定し、該ナット部品内径面と該ナット本体の外周面はそれぞれ回転自在とし、該ナット本体と該ナット部品をねじの中心と同心円状に形成することにより;
ナットが受ける負荷の力の流れを、負荷分担の低い開放側の噛合いねじ山により多く向かわせるナット構造とすることで、3山目以後の負荷分担を増加させることにより、噛合い1山目の最大負荷分担を低減させ、噛合い1山目への負荷集中を低減させるように構成したことを特徴とする。この特徴によって噛合い1山目への負荷の低減によりボルト疲労強度最弱部である噛合い1山目谷底からの亀裂軸破断の疲労破壊寿命を向上させることができる。
The nut of the present invention is
A. In the shape of the longitudinal sectional view of the nut, a convex-shaped space is concentrically formed on the bearing surface on the nut fastening side around the axis of the screw, and the space is connected by a straight line, a curve or a combination thereof. A space is formed as a shape, the depth from the bearing surface of the space is L 2 , and the axial length from the valley bottom of the first screw of the fully threaded portion of the nut to the bearing surface is L 1 When forming the space, when the depth L 2 of the space is L 1 <L 2 ≦ L 1 + length of thread 5 pitches;
B. A structure having a rectangular recess on the screw center side of the bearing surface on the fastening member side of the nut in the shape of the longitudinal sectional view of the nut, wherein the recess has an inner wall and a curve, straight line, or the like rising perpendicularly from the nut bearing surface Have a corner portion and an upper surface combined, and from the position of the upper surface the axial length of the incomplete thread portion of the nut plus the length of two pitches of the nut is La, and Assuming that the axial length from the bearing surface to the upper surface is Lb, and the radial length of the recess to the thread valley bottom of the nut and the inner wall of the recess is Lh, Lb is at least 0.001 times the La C. by forming the recess concentrically with the center of the screw in the range of 0.5 to 5 times the range of La and Lh; A nut having a two-part structure comprising a nut body having a screw shaft portion provided with a screw thread inside and a flange bearing surface portion and a pipe-like nut component having a chamfered bearing surface on at least one end face inner diameter side A shape of a longitudinal sectional view of the nut body is T-shaped, and a length in which a screw shaft portion of the nut body is introduced from the flange seat surface portion of the nut body toward the inner object of the nut component is The hollow pipe-like nut component on the outer surface of the screw outer surface so that the incomplete screw thread length s + the length of the screw pitch 0.5 ridges or more and the length of the incomplete screw threads s + the screw pitch 5 ridges or less In which the bottom of the T-shaped nut body is not in contact with the object, and the top of the nut part is in contact with the flange-like bearing surface of the T-shaped nut body, Also, the bottom of the nut part The length of the nut part is set so as to contact the fastener, and the inner diameter surface of the nut part and the outer peripheral surface of the nut body are respectively rotatable so that the nut body and the nut part are concentric with the center of the screw. By forming;
By increasing the load sharing after the third peak by making the flow of the force of the load received by the nut more directed to the open side meshing thread with low load sharing, the meshing first peak The present invention is characterized in that it is configured to reduce the maximum load sharing of and reduce the load concentration on the meshing first peak. By this feature, by reducing the load on the meshing first peak, it is possible to improve the fatigue fracture life of the cracked axis fracture from the meshing first valley bottom which is the bolt fatigue strength weakest part.
 本発明の第1の態様(A)および第2の態様(B)のナットは、1部品構造であり、ナットの締結側の中央部の座面に、開放側に向かって凸状空間形成や凹部形成の加工を施して、「力の流れ」をナット座面及びナット本体の外周部を通し、ねじの開放側3山目以後に向かわせたものである。第3の態様(C)は、ナット本体とナット部品の2部品構成であり、ナット本体とナット部品を使って「力の流れ」をナットのねじの開放側3山目以後に向かわせたものである。この様な構造とすることで噛合い1山目ねじ山にかかる初期締付け負荷と外力負荷の両方の負荷分担を同時に低減させる構造を持つことを特徴とするナットを提供しうる。 The nut of the first aspect (A) and the second aspect (B) of the present invention is a one-piece structure, and a convex space is formed toward the open side on the bearing surface of the central portion on the fastening side of the nut The process of forming the concave portion is performed, and the “flow of force” is made to pass through the nut bearing surface and the outer peripheral portion of the nut body, and to be directed to the third and subsequent open side of the screw. The third aspect (C) is a two-part configuration of a nut body and a nut part, in which “flow of force” is directed to the open side of the screw on the third and subsequent sides of the screw using the nut body and the nut part It is. With such a structure, it is possible to provide a nut characterized by having a structure capable of simultaneously reducing the load sharing of both the initial tightening load and the external force load applied to the meshing first peak thread.
 本発明の各態様の説明において、ねじ山に関してはJIS B 0205(ISO 724)に準拠している。 In the description of each aspect of the present invention, the screw thread conforms to JIS B 0205 (ISO 724).
 また本発明ではねじの1ピッチを長さの基準としているが、これはボルト、ナットは同じ太さであってもねじピッチが異なるものが複数存在しているため、ここではねじ太さではなく、ねじピッチを長さの1つの基準として採用している。 Further, in the present invention, the length is based on one pitch of a screw, but there are a plurality of bolts and nuts having the same thickness but different in thread pitch, so in this case the thread thickness is not used. The screw pitch is adopted as one reference of the length.
 以下に、第1の態様(A)の構造を代表して取り上げて締結噛合い1山目への負荷の低減について述べる。
 第1の態様(A)は、ナットの縦断面図の形状において、ナット締結側の座面にねじの軸を中心に、曲線、直線またはそれらの組み合わせで結ばれた、上に凸形状の空間を同心円状に形成させた構造であり、該凸空間の座面からの深さをL、ナットの完全ねじ部の第1ねじの谷底から該座面までの軸方向長さをLとしたとき、該空間の深さLを、L<L≦L+ねじ山5ピッチの長さの範囲として該空間を形成することにより、締結時のナットのねじ山にかかる応力を開放側3山目以降のねじ山により多く向かわせて従来方式比で多くの負荷分担をさせ、ナットとボルトの締結噛合い1山目への負荷集中を低減するように構成したことを特徴とする。ここで、該空間とナットねじ山の間にある構造で内部にねじ山を持つナットのねじ軸部の太さを一定ではなく、P側からP側に繋がる軸部太さがPからPに暫次変化することも可能であって曲線、直線又はそれらの組み合わせとした形状により、P側を太く、座面側のP側を細くすることができる。
In the following, the structure of the first aspect (A) is taken up as a representative, and the reduction of the load on the first engagement mesh is described.
In the first aspect (A), in the shape of a longitudinal cross-sectional view of a nut, a space of an upwardly convex shape connected to a bearing surface on a nut fastening side by a curve, a straight line, or a combination thereof centered on the screw axis. Are concentrically formed, and the depth from the bearing surface of the convex space is L 2 , and the axial length from the bottom of the first screw of the fully threaded portion of the nut to the bearing surface is L 1 when the depth L 2 of the space, by forming a said space as the length range of L 1 <L 2 ≦ L 1 + screw thread 5 pitches, such the threads of the fastening when the nut stress It is characterized in that it makes more load sharing by the screw thread on the open side 3rd mountain and subsequent ones to share a lot of load in comparison with the conventional method, and reduces the concentration of load on the 1st mesh. Do. Here, the thickness of the screw shaft portion of the nut having a screw thread inside is not constant because of the structure between the space and the nut screw thread, and the shaft portion thickness connected from P 2 side to P 1 side is P 2 It is also possible to make a gradual change from P 1 to P 1 , and the P 2 side can be made thicker and the P 1 side of the seat surface can be made thinner by a curve, a straight line, or a combination of them.
 第1の態様(A)のナットの一例の縦断面図を図1に示す。図1は、ナットの縦断面図(a)とナット開放側から見た平面図(b)および座面から見た平面図(c)であり、1がナット、2がボルト、3が被締結物、4がナット座面とナット軸部最下端間の空隙、5がナット座面内の上に凸形状の空間、7がねじ軸部最下端、8がナット締結側、9がナットの開放側、9aがナット開放端、14がナット座面、17がナットの外周部、18が内部にねじ山を設けたネジ軸部、19がナットねじ山である。 The longitudinal cross-sectional view of an example of the nut of a 1st aspect (A) is shown in FIG. FIG. 1 is a longitudinal sectional view of the nut (a), a plan view (b) seen from the open side of the nut, and a plan view (c) seen from the seat surface, 1 being a nut, 2 being a bolt, 3 being a fastening 4 is a space between the nut bearing surface and the lowermost end of the nut shaft, 5 is a convex space above the nut bearing surface, 7 is the screw shaft lowermost end, 8 is a nut fastening side, 9 is a release of the nut The side 9a is a nut open end, 14 is a nut bearing surface, 17 is an outer peripheral portion of the nut, 18 is a screw shaft portion provided with a screw thread inside, and 19 is a nut screw thread.
 締結の状況について図1を参照しながら説明する。ボルト2、ナット1で被締結物3を締結する場合、ナットの座面側中央部のねじ軸部最下端7は空隙4があるために締結時に座面からの力はねじ軸部18には直接にはかからない。空間5の外周側にあるナット座面14が、被締結物3に接しているために、締結時の被締結物3からの力は、被締結物3と接するナット座面14でやり取りされる。締結力は被締結物3からナット座面14に入り、ナット内部を通りナットのねじ山19に伝わる。この時、力はナットの内部を空間5の外周にある曲線内部に沿うように進み、その後、空間5の最深部(P近傍)を通り各ねじ山を経由してボルトに入る。P近傍から一番近いねじ山19は 図1の例では3番目のナットねじ山である。そのほかの力は4番目、5番目、6番目、7番目にも伝わっていく。このように開放側に向かった力はその相手のボルトねじ山に伝わり、内部応力を3山目以後のねじ山で多く負担している。ボルトは軸力によって噛合い1山目が最大主応力(引張応力)を受けることに変わりがないがナットの開放側で多くの力を受けることにより、1山目は相対的に負荷分担が下がる。またナットねじ軸部18の形状効果もあいまって、ボルト、ナットの噛合い1山目の負荷は従来方式の構造と比較して格段に下がる。このように開放側のねじ山3番目以後に力を向けることにより、噛合い1山目への負荷を低減することができる。 The fastening situation will be described with reference to FIG. When fastening the object 3 with the bolt 2 and the nut 1, the lowermost end 7 of the screw shaft at the central part of the bearing surface side of the nut has the air gap 4 and the force from the bearing surface It does not take place directly. Since the nut bearing surface 14 on the outer peripheral side of the space 5 is in contact with the to-be-fastened object 3, the force from the to-be-fastened object 3 at the time of fastening is exchanged at the nut bearing surface 14 in contact with the to-be-fastened object 3 . The fastening force enters the nut bearing surface 14 from the object 3 and passes through the inside of the nut to the thread 19 of the nut. At this time, the force proceeds along the inside of the nut to the curve inside on the outer periphery of the space 5, then enter the bolt through the deepest (P 2 near) the street each thread space 5. P 2 threads 19 nearest from the vicinity in the example of FIG. 1 is the third nut thread. The other forces are transmitted to the fourth, fifth, sixth and seventh. Thus, the force toward the open side is transmitted to the other bolt thread, and a large amount of internal stress is applied to the third and subsequent threads. The bolt remains engaged by the axial force and the 1st peak receives the maximum principal stress (tensile stress), but the load sharing of the 1st peak decreases relatively by receiving a lot of force on the open side of the nut . Further, combined with the shape effect of the nut screw shaft portion 18, the load on the first meshing engagement between the bolt and the nut is significantly reduced as compared with the structure of the conventional system. By thus directing the force to the open side thread third and later, the load on the meshing first peak can be reduced.
 図1は、本発明の第1の態様(A)における空間5の深さの関係を説明する図であり、Pはナットのねじ軸部18にある第1の山の完全ねじ部の谷底中央に位置し、Pは空間の奥行方向の最深部に位置する。ナットの座面14からP,Pまでの距離をそれぞれL,Lとする。 FIG. 1 is a view for explaining the relationship of the depth of the space 5 in the first aspect (A) of the present invention, wherein P 1 is the bottom of the first full thread in the screw shank 18 of the nut. located in central, P 2 is located at the deepest portion in the depth direction of the space. Let L 1 and L 2 be distances from the bearing surface 14 of the nut to P 1 and P 2 , respectively.
 図1は、ナットの中心軸を通り、ねじ山1ピッチ内の任意の1断面を示し、ナットねじ軸部18の拡大図に示す通り、ねじ軸部18の最下部7の位置にあるねじ入口には加工された面取りがあり、続いてねじの切り始めから約1ピッチの不完全ねじ部があり、その奥に完全ねじ部が繋がっている。Pはねじ1回転(360度回転)中で位置が変化するためLの座面からの距離はねじピッチ1山分+面取り長さの影響を受ける。従ってPの座面14からの距離Lは、空隙4の寸法とねじ部面取り長さと不完全ねじ部長さの合計以上の距離となる。 FIG. 1 shows an arbitrary cross section within one thread pitch through the central axis of the nut and as shown in the enlarged view of the nut screw shank 18, the screw inlet at the position of the lowermost part 7 of the screw shank 18. There is a chamfer that has been machined, and then there is an incomplete thread portion of about 1 pitch from the start of thread cutting, and a complete thread portion is connected behind it. P 1 screw 1 rotation distance from the seating surface of the L 1 to change position (360 degree rotation) in the affected thread pitch one peak + the chamfer length. Thus the distance L 1 from the seat surface 14 of the P 1 is the sum over distance dimensions and thread chamfer length and incomplete thread portion length of the gap 4.
 なお、上記態様(A)において、図1に示すように、完全ねじ部になっているナットねじ山の座面側の第1ねじ山のねじ谷中央にあるポイントPと空間5の最奥部にあるPの関係は、座面からの距離LとLにおいて、L>LとなるLの寸法を設定する。Lは、ねじにあるため360度の回転をすると1ピッチ分距離が変化するが、Lは成形加工により一定の数値となることが多い。このため、Lは少なくともLより深くするのが好適であるが、深さ上限はL+ねじ山5ピッチ分の長さとするのが適切である。図1の基本形の一例ではPより約2.4ピッチ分の長さの位置にPを設定している。 In the above embodiments (A), as shown in FIG. 1, the point P 1 and the space 5 in the thread root center of the first thread of the seating surface side of the nut thread that is a complete thread portion deepest relationship P 2 in the part is at a distance L 1 and L 2 from the seating surface, to set the dimensions of the L 2> L 1 and becomes L 2. L 1 is one pitch distance when the rotation of 360 degrees because of the screw is changed, L 2 is often a constant numerical by molding. For this reason, L 2 is preferably at least deeper than L 1 , but the upper limit of depth is suitably L 1 + length of 5 pitches of screw threads. In one example of the basic form 1 it is set to P 2 to the position of a length of about 2.4 pitch than P 1.
 上記態様(A)において、ねじ軸部18の太さを締結側に向かって太さを変化させることも、または空間5の最奥部(P)から軸部に形状が変わったところから同じ太さで最下部7近傍まで形成することも可能である。その形状は空間5の形状と一体化させ、直線、曲線、またはその組み合わせの形状を採用することが好適である。最下部7近傍には応力集中を避ける曲線を設けることが好適である。 In the embodiment (A), changing the thickness of the screw shaft 18 toward the fastening side or changing the shape from the deepest portion (P 2 ) of the space 5 to the shaft is the same. It is also possible to form in the vicinity of the lowermost portion 7 by the thickness. It is preferable that the shape be integrated with the shape of the space 5 and that a shape of a straight line, a curved line, or a combination thereof be adopted. It is preferable to provide a curve near the lowermost portion 7 to avoid stress concentration.
 上に凸形状の空間を設ける加工の容易化を考慮し、上に凸形状の空間5は基本形の一例や変形例に示すように滑らかな曲線又は直線で結ばれた形状を持つ空間5が実用的構造である。上に凸形状は、本発明の態様(A)の目的を逸脱しない限り任意の形状とすることができ、第1の態様(A)の発明に含まれる。図1-5の(a),(b)は図1に対する2つの変形例であるが、主に空間5の形状と座面部内外形が異なるものである。いずれも被締結物3から入る力をナット1内部を通し、相手ボルトとの噛合いねじ山の3山以後の開放側に力を向けるものである。変形例である図1-5以外にも同様の効果を持つ形状を、製造上の要件などの諸条件によって決定することができる。 Considering the ease of processing in which the convex shape space is provided on the upper side, the space 5 having the convex shape is practically used as the space 5 having a shape connected by a smooth curve or a straight line as shown in an example or a modification of the basic form Structure. The upward convex shape may be any shape without departing from the object of the aspect (A) of the present invention, and is included in the invention of the first aspect (A). FIGS. 1-5 (a) and (b) show two modifications to FIG. 1, but mainly the shape of the space 5 and the outer shape in the seat portion are different. In either case, the force entering from the object 3 is passed through the inside of the nut 1 and directed to the open side of the three or more threads engaged with the mating bolt. Shapes having similar effects can be determined according to various conditions such as manufacturing requirements, in addition to the modification shown in FIGS.
 本態様(A)において重要なことはナットの座面側に形成する上に凸形状の空間5の形成である。特にその深さの選択であり、L<L≦L+ねじ山5ピッチ分の長さが成立するようにLを設定し、P近傍を通る力とボルトから引っ張られる力に対応できる強度を持つ構造のナット形状を実現すれば多くの力の流れを開放側3番目以後のねじ山に向かわせることが可能となり、噛合い1山目への負荷を低減することができる。 What is important in the present embodiment (A) is the formation of an upwardly convex space 5 formed on the bearing surface side of the nut. In particular, it is a selection of the depth, and L 2 is set such that L 1 <L 2 ≦ L 1 + length of 5 pitches of screw thread is satisfied, and the force passing near P 2 and the force pulled from the bolt By realizing a nut shape of a structure having a corresponding strength, it is possible to direct a large flow of force to the third and subsequent threads on the open side, and the load on the meshing first peak can be reduced.
 一般に、力が平板の外部からある1点に加わると、力はその場所から内部に大きさに比例して広がること、力は最短経路を通ること、力が曲がる時でも急角度では曲がらないこと、力は通りやすいところを通ること、力は空間を通らないことなどが知られている。ミーゼス相当応力分布、ベクトル図においてもこの力の伝わり方の特徴が明確に読み取れるものである。 In general, when a force is applied to a certain point from the outside of a flat plate, the force spreads in proportion to the size from the location to the inside, the force travels the shortest path, and the force does not bend at a steep angle even when it bends. It is known that power passes through easily accessible places and that power does not pass through space. The characteristics of how this force is transmitted can be clearly read also in the Mises equivalent stress distribution and the vector diagram.
 この力の伝わり方を基にして、態様(A)に対応する図1-1のミーゼス相当応力分布図、図1-2の力の流れが見られる最大主応力(引張応力)のベクトル図,図1-3の最小主応力(圧縮応力)のベクトル図により力の流れが確認できる。特にベクトル図では小さな矢印がびっしり並んでおり、その向きは力の方向を示し、長さは力の大きさを示し、並び方の粗密はその場所で多くの力がそれぞれの方向に向かって流れる状況を示している。 Based on how this force is transmitted, the von Mises equivalent stress distribution diagram of Fig. 1-1 corresponding to the aspect (A), the vector diagram of the maximum principal stress (tensile stress) where the flow of force can be seen in Fig. 1-2, The flow of force can be confirmed by the vector diagram of the minimum principal stress (compression stress) in Fig. 1-3. Especially in the vector diagram, small arrows are closely arranged, the direction shows the direction of force, the length shows the magnitude of force, and the density of the arrangement is the situation where a lot of force flows in each direction at that place Is shown.
 図1-1のミーゼス相当応力分布図は上記ベクトル図を全体的な応力分布として可視化し、白黒四階調で色分けしたものである。ベクトル図(図1-2,図1-3)において矢の方向がどこを向いているかに注目すると、多くの力の向く先がナット内をねじ山に向かうが、その多くが向いているところがナットねじ山の3番、4番である。それより開放側の5,6,7番ねじ山に向かうものも多いことも見て取れる。ナットねじ山締結側については、P近傍から渦を巻くように2番、次いで1番の方向に曲がりながら伝わっている。図1-2ではボルトねじ部とボルト軸部を締結側に引張る軸力を受けているため、ナットの斜めのねじ面からボルトの斜めのねじ面に(それも強く押し付けられている片側の面に)集中して力がかかっている様子が見える。ボルト軸力が締結側に向かっているため、ねじ山1番が一番大きな引張応力を受けているが、ナットのねじ山1番、2番はねじ軸部18周囲でP近傍から曲がってきた小さな力とボルトからの引張の力の方を多く受けており、ナットねじ3番、2番、1番と強さ順に締結側に引張られている状況となっている。このため、ナットねじ1番に至っては内部応力が低いことを示す黒色が表れている。ここにはねじ軸部の形状効果が付加されている。 The von Mises equivalent stress distribution diagram of FIG. 1-1 visualizes the above vector diagram as an overall stress distribution, and is color-coded in black and white four gradations. Focusing on where the direction of the arrow points in the vector diagrams (Fig. 1-2, Fig. 1-3), the points where many forces are facing go to the threads in the nut, but where many are pointing It is No. 3 and No. 4 of the nut thread. It can also be seen that there are also many toward the open side 5, 6 and 7 thread. As for the nut screw thread fastening side, it is transmitted while bending in the direction of No. 2 and then No. 1 so as to wind a vortex from the vicinity of P 2 . In Fig. 1-2, the bolt thread and the bolt shaft are subjected to an axial force that pulls them toward the fastening side, so from the diagonal thread surface of the nut to the diagonal thread surface of the bolt I can see how I was concentrating and putting power. Since the bolt axial force is directed to the fastening side, the No. 1 thread is subjected to the largest tensile stress, but No. 1 and No. 2 of the nut are bent from around P 2 around the screw shaft 18 It receives more of the small force and the tensile force from the bolt, and it is in a situation where it is pulled to the fastening side in order of strength, such as the nut screws No. 3, No. 2 and No. 1. For this reason, in the case of the No. 1 nut screw, a black color appears to indicate that the internal stress is low. The shape effect of the screw shaft is added here.
 図1-1、図1-2、図1-3に表されている変形例の解析図において、ナットからの力は3山目以後のねじ山方向に向かって流れ、締結噛合い1山目の負荷を低減している。3山目以降の負荷分担は従来方式に比較して増加しており、7山目まで力が及んでいる。特に図1-1の応力大の領域(白色表示領域)は1,2,3番ねじ山では狭く、小さくなっており、4番、5番、6番,7番では暗いグレー(応力やや小さい)が広い領域に表れている。 In the analysis diagram of the modified example shown in FIG. 1-1, FIG. 1-2, and FIG. 1-3, the force from the nut flows in the direction of the thread ridge after the third peak, and the fastening meshing first peak Reduce the load on The load sharing after the third peak has increased compared to the conventional method, and the power reaches to the seventh peak. In particular, the stress large area (white display area) in Fig. 1-1 is narrow and small for the 1st, 2nd, and 3rd thread threads, and dark gray (stress is slightly small for 4th, 5th, 6th and 7th). ) Appear in a wide area.
 従来方式における同様の図4-1、最大主応力のベクトル図4-2、最小主応力の図4-3に見られるように、従来方式ではナットの最内径側を通る力に支配された状況であることに対し、本発明の図1-1の応力分布図は、まったく異なる応力分布となっており、本発明の態様(A)は力の流れる方向を締結噛合い3山目以後に向け、噛合い1山目への負荷を低減することが明確に示されている。 As seen in the same figure 4-1 in the conventional method, the vector diagram 4-2 of the maximum principal stress, and the figure 4-3 in the minimum principal stress, in the conventional manner, the situation where it is controlled by the force passing through the innermost diameter side of the nut In contrast to this, the stress distribution map of FIG. 1-1 of the present invention has a completely different stress distribution, and the aspect (A) of the present invention is such that the flow direction of force is tightened toward the third mesh and thereafter. It is clearly shown to reduce the load on the mesh 1st peak.
 これらの結果、態様(A)の一例での噛合い1山目の負荷分担率は26.3%となっている(従来方式:35.6%)。この結果を各山の負荷分担率の基準とした従来方式7山のものとの比較表を図1-4(a)に、この数値の比較棒グラフを図1-4(b)に示す。この比較を見ると、態様(A)のナットの一例は従来方式に比較して3山目以後の負荷分担が増加し、噛合い1山目の負荷分担が低減していることが読み取れる。 As a result of these, the load sharing ratio of the meshing first peak in one example of the aspect (A) is 26.3% (conventional method: 35.6%). A comparison chart of this result with that of the conventional method 7 mountain based on the load sharing ratio of each mountain is shown in FIG. 1-4 (a), and a comparison bar graph of this numerical value is shown in FIG. 1-4 (b). From this comparison, it can be read that the load sharing after the third peak is increased and the load sharing of the meshing first peak is reduced in the example of the nut of the mode (A) as compared with the conventional method.
 第1の態様(A)における凸空間構造ナットの各コーナー部に関して、各コーナーの処理は好適には次のようなものとする。部材の場所ごとに最適な応力集中緩和曲線で作られるコーナー部形状を使用することが好ましい。応力集中緩和曲線は、例えば 2次曲線(単純R、複合R,楕円など)があり、更に斜めCカットなど直線も用いることができる。 Regarding each corner of the convex space structure nut in the first aspect (A), the processing of each corner is preferably as follows. It is preferred to use corner shapes which are made with optimal stress concentration relaxation curves for each part location. The stress concentration relaxation curve has, for example, a quadratic curve (simple R, composite R, ellipse, etc.), and a straight line such as an oblique C-cut can also be used.
 また、第1の態様(A)において、ナットの表面粗さについて、ねじ面はJIS規定に準じ、摺動する面は精級仕上げ、その他の面は中級仕上げ又は必要な面粗度でよいものとするが、後述する表面処理と整合する表面粗さが望ましい。 In the first aspect (A), with regard to the surface roughness of the nut, the screw surface conforms to the JIS standard, and the sliding surface has a fine-class finish, and the other surface has an intermediate-class finish or a required surface roughness. However, it is desirable that the surface roughness be consistent with the surface treatment described later.
 次いで、本発明の第2の態様(B)のナットについて説明する。
 本発明のナット(B)は、ナットの縦断面図の形状において、ナットの締結部材側の座面のねじ中心側に矩形状の凹部を有する構造であって、凹部は座面から垂直に立ち上がる内壁と曲線、直線、またはそれらを組み合わせたコーナー部と上面とを持ち、上面の位置からナットの不完全ねじ部の軸方向長さとナットの2ピッチの長さを加えた軸方向長さをLaとし、また凹部の座面から上面までの軸方向長さをLb、ナットのねじ谷底と凹部の内壁までの凹部の半径方向の長さをLhとしたとき、LbはLaの0.001倍以上1倍以下の長さとし、またLhはLaの0.5倍以上5倍以下の長さとした凹部をねじの中心と同心円状に形成することを特徴とする。
Next, the nut of the second aspect (B) of the present invention will be described.
The nut (B) of the present invention has a rectangular recess on the screw center side of the bearing surface on the fastening member side of the nut in the shape of the longitudinal sectional view of the nut, and the recess rises vertically from the bearing surface It has an inner length and a curve, a straight line, or a corner and an upper surface that combines them, and the axial length from the position of the upper surface is the axial length of the incomplete thread of the nut plus the two pitch lengths of the nut When the axial length of the recess from the bearing surface to the upper surface is Lb, and the radial length of the recess to the bottom of the screw thread of the nut and the inner wall of the recess is Lh, Lb is at least 0.001 times La A recess having a length of 1 time or less and Lh of 0.5 to 5 times the length of La is formed concentrically with the center of the screw.
 ナットの座面部分にこのように凹部を設けて形成することにより、締結時にナットに入る力の流れは、被締結物に接するナット座面の全面から入り、ナット凹部の壁に沿って流れ、コーナー近傍を通り、ナットの中央部付近を開放側の3番目山以後に向かい、全てのねじ山に広く分散して流れることとなる。ボルトからナットに入る引張応力が噛合い1山目で最大であることは変わりがないが、締結時のナットのねじ山にかかる応力を開放端側のねじ山側により多く分担させることができるため、ナットとボルトの締結噛合い1山目への負荷を低減することができる。 By forming the recess in the bearing surface portion of the nut in this manner, the flow of force entering the nut upon fastening enters from the entire surface of the nut bearing surface in contact with the object, and flows along the wall of the nut recess, It passes near the corner, goes to the vicinity of the central part of the nut, after the third mountain on the open side, and flows widely dispersed in all the screw threads. Although the tensile stress that enters the nut from the bolt is the largest at the first mesh, the stress applied to the screw thread of the nut during fastening can be shared more by the screw thread side at the open end, It is possible to reduce the load on the first engagement between the nut and the bolt.
 本発明態様(B)について図面を用いて説明する。図2は、本発明の第2の態様(B)のナットの一例を示す縦断面図であり、ナット1は、ナット内径下部に凹部10を持つ構造である。凹部10には、被締結物3に接するナット座面14から垂直に立ち上がる壁11、その上に繋がる曲線に挟まれた直線を持つコーナー部12(このコーナー12にある直線はナットの締結側から2山目以降のねじ谷底を向くことが好ましい。図2は2山目谷底を向いている例を示す。)、そしてコーナー部12から繋がる上面13があって、上面13の最内径ねじ側には開放側に順次面取り加工部と不完全ねじ部があり、ねじ山19に至る線で構成される開放空間である。凹部10の寸法は、ナット1のねじ部面取り寸法+不完全ねじ部の軸方向長さsとナットの2ピッチの長さを加えた軸方向長さをLaとし、また凹部10の座面14から上面13までの軸方向長さをLb、ナット1のねじ谷底15と凹部10の内壁11までの凹部10の半径方向の長さをLhとしたとき、LbはLaの0.001倍以上1倍以下の長さとし、またLhはLaの0.5倍以上5倍以下の長さとして、凹部10をねじの中心と同心円状に形成する。 The present invention mode (B) will be described with reference to the drawings. FIG. 2 is a longitudinal sectional view showing an example of the nut of the second aspect (B) of the present invention, and the nut 1 has a structure having a recess 10 in the lower portion of the inner diameter of the nut. In the recess 10, a wall 11 standing vertically from a nut bearing surface 14 in contact with the object 3 to be fastened, and a corner portion 12 having a straight line sandwiched by curves connected thereon (a straight line on this corner 12 is from the fastening side of the nut It is preferable to face the screw valley bottom of the second and subsequent peaks. Fig. 2 shows an example facing the second valley bottom), and there is the upper surface 13 connected from the corner 12 and the innermost screw side of the upper surface 13 Is an open space composed of a line leading to the thread 19 having a chamfered portion and an incomplete thread portion sequentially on the open side. The recess 10 has an axial length La, which is the sum of the chamfered dimension of the threaded portion of the nut 1 + the axial length s of the incompletely threaded portion and the two pitches of the nut. Lb is 0.001 times or more of La as Lb is the axial length from Lb to the upper surface 13 and Lh is the radial length of the recess 10 from the thread valley bottom 15 of the nut 1 to the inner wall 11 of the recess 10 The recess 10 is formed concentrically with the center of the screw, with a length not more than double and Lh being a length not less than 0.5 times and not more than 5 times La.
 本発明の第2の態様(B)には、様々の変形例があり得る。図2-1がその第1の変形例であって、凹部10のコーナー部12が1つの応力集中緩和曲線構造であって、コーナー部12が上面13に繋がって、順次面取り、ねじ不完全部、ねじ谷底15を経て、ねじ山19へ至る構造である。凹部における寸法は、ナット1の不完全ねじ部+面取りの軸方向長さsとナットの2ピッチの長さを加えた軸方向長さをLaとし、また凹部10の座面14から上面13までの軸方向長さをLb、ナット1のねじ谷底15と該凹部10の内壁11までの凹部10の半径方向の長さをLhとしたとき、LbはLaの0.001倍以上1倍以下の長さとし、またLhはLaの0.5倍以上5倍以下の長さとして、凹部10をねじの中心と同心円状に形成する。図2-1の変形例においてLhはLaの約1.1倍の場合である。本構造とすることによって、力の流れはナット座面14からの力がナットの外周部分を流れ、開放側の3山目以後に多く向かわせることができる。またナットは加工には単純な形状であり、形状確認を含め製作容易の利点がある。 Various modifications can be made to the second aspect (B) of the present invention. Fig. 2-1 shows a first modification, in which the corner portion 12 of the recess 10 has one stress concentration relaxation curve structure, and the corner portion 12 is connected to the upper surface 13 so as to sequentially chamfer and incompletely screw , Through the thread root 15 to the thread 19. The dimension in the recess is such that the axial length of the incomplete thread portion of the nut 1 + the axial length s of the chamfer plus the length of 2 pitches of the nut is La, and from the bearing surface 14 to the upper surface 13 of the recess 10 Lb is 0.001 times or more and 1 times or less of La when the axial length of L is Lb, and the radial length of the recess 10 to the thread valley bottom 15 of the nut 1 and the inner wall 11 of the recess 10 is Lh. The recess 10 is formed concentrically with the center of the screw with a length Lh of 0.5 to 5 times the length of La. In the modification of FIG. 2-1, Lh is about 1.1 times La. By adopting this structure, the force flow can be made to flow much from the nut bearing surface 14 through the outer peripheral portion of the nut and to the third and subsequent peaks on the open side. In addition, the nut has a simple shape for processing, and has the advantage of easy manufacture including shape confirmation.
 本態様(B)の基本例である図2の一例のミーゼス相当応力分布図を図2-2に示す。図2-2のミーゼス相当応力分布を注意深くみると、ナット座面14から入った力はナット座面内を斜め45度方向ねじ山に向かって流れるものが多い。座面14中央に近いところからコーナー12直線部にほぼ平行に斜め45度程度ねじ山側に向いて、ナットねじ山3番から4番に流れる力と、ナット外周の段付き付近から斜め45度程度ねじ山側に傾いたままねじ山5、6番目に向かうものが見られる。コーナー12を回りこんで上面13に平行な水平方向に締結側の1山目に流れる力は少ない。ナットのねじ山1番のねじ山の後方(ナット内部)に応力小の黒色が大きく表れている。この様な黒色部分は従来方式ナット(図4-1)には見られないもので、この黒色部分の少し開放側をコーナー12を通った力が流れていると考えられる。ナットの中で広がった力はねじ山に至ったところでボルトねじ山から引っ張られる力を受けることとなるが、多くのねじ山に力が分散された結果として噛合い1山目にかかる負荷は従来方式と比較して低減されている。 A Mises equivalent stress distribution chart of one example of FIG. 2 which is a basic example of the present mode (B) is shown in FIG. If the Mises equivalent stress distribution in FIG. 2-2 is carefully examined, the force entering from the nut bearing surface 14 often flows toward the 45 ° diagonal thread in the nut bearing surface. From the point close to the center of the bearing surface 14 toward the screw thread side 45 degrees diagonally parallel to the corner 12 straight line part, the force flowing from the nut thread No. 3 to No. 4 and 45 degrees from the stepped outer periphery of the nut It is seen that the screw heads 5 and 6 head to the screw thread side while leaning to the screw thread side. The force flowing around the corner 12 and flowing horizontally to the first mountain on the fastening side parallel to the upper surface 13 is small. A small black stress appears in the rear of the No. 1 thread of the nut (inside the nut). Such a black portion is not found in the conventional nut (FIG. 4-1), and it is considered that the force passing through the corner 12 is flowing on the slightly open side of the black portion. The force spread in the nut will receive the force drawn from the bolt thread when it reaches the thread, but the load on the first meshing tooth as a result of the force being distributed to many threads is conventionally Compared to the scheme is reduced.
 図2に示す本態様(B)の基本例において、ナット座面14から入る力をナットの開放側に向ける能力を図2-1の変形例に比較して制御しやすくできる。例えば図中符号13の上面の長さを長くして、座面内のLh長さをLaの2.0倍程度と長くしたり、コーナー12の直線部の傾きを45度より大きく傾け開放側を向くようにしたり、壁11の長さが少し短くなる構造とすることなどが変化の要素である。この様に、凹部の各要素を最適に組み合わせることで力の向きを制御することができて、噛合い1山目への負荷分担を低減できる。図示はしていないが、本態様(B)の他の変形例の場合でも噛合い1山目の負荷分担率は30%を下回る数値を示す。 In the basic example of this mode (B) shown in FIG. 2, the ability to direct the force entering from the nut bearing surface 14 to the open side of the nut can be easily controlled as compared with the modification of FIG. For example, the length of the upper surface of the reference numeral 13 in the figure is increased, and the Lh length in the bearing surface is increased to about 2.0 times La, or the inclination of the straight portion of the corner 12 is inclined by more than 45 degrees. And a structure in which the length of the wall 11 is slightly shortened. Thus, the direction of the force can be controlled by optimally combining the elements of the recess, and the load sharing to the meshing first peak can be reduced. Although not shown, even in the case of the other modified example of the aspect (B), the load sharing ratio of the meshing first peak shows a numerical value less than 30%.
 態様(B)の図2の一例の場合と従来方式の負荷分担率を図2-3(a)に、従来方式ナットと比較した棒グラフを図2-3(b)に示す。棒グラフで黒枠表示が態様(B)の変形例を示す。ちなみに負荷分担率は噛合い1山目では従来方式35.6%に対し、態様(B)の一変形例では29.6%と低減している。3山目以後は態様(B)の方が増加している。 A bar graph comparing the load sharing rates of the example of FIG. 2 of the mode (B) and the conventional method is shown in FIG. 2-3 (a) and FIG. The black frame display in the bar graph shows a modification of the aspect (B). By the way, the load sharing ratio is reduced to 29.6% in the modification of the mode (B) as compared with 35.6% in the conventional method in the meshing first peak. The aspect (B) increases after the third peak.
 また、本態様(B)のナットの開放側の形状は例えば六角形や四角形など、従来からある締結工具を使用できる形状であってもよい。 In addition, the shape of the open side of the nut of the present embodiment (B) may be a shape that can use a conventional fastening tool, such as a hexagon or a square.
 またナット座面14あるいは凹部10の壁面11、コーナー部12、上面13に関して、表面粗さは、ねじはJIS規定に準拠する精級仕上げ、ナット座面は精級仕上げ、その他の面は粗仕上げまたは並仕上げとするのが好適であるが、表面処理と整合する表面とすることがさらに好適である。 With regard to surface roughness of wall surface 11, corner 12 and top surface 13 of nut bearing surface 14 or recess 10, the screw has a fine-class finish according to JIS standard, the nut seat surface has a fine-class finish, and the other surface has a rough finish Alternatively, although it is preferred to have a co-finish, it is more preferred to have a surface that is compatible with the surface treatment.
 凹部10、ナット座面14、その他の表面にあるコーナー部に関し、すべてのコーナー部には、好適には円弧、楕円の一部などの2次曲線などの応力集中緩和曲線を有する形状であることが望ましい。 With regard to the corners on the recess 10, the nut bearing surface 14 and other surfaces, all corners preferably have a shape having a stress concentration relaxation curve such as a circular arc, a quadratic curve such as a part of an ellipse, etc. Is desirable.
 次いで、本発明の第3の態様(C)について説明する。
 C.内部にねじ山を設けたねじ軸部およびフランジ座面部を有するナット本体と少なくとも一方の端面内径側に面取り座面を持つパイプ状であるナット部品とにより構成された2部品構成のナットであって、該ナット本体の縦断面図の形状がT字状であり、該ナット本体のフランジ座面部から該ナット部品の内側の被締結物側に向けてナット本体のねじ軸部が入り込む長さを、不完全ねじ部長さs+ねじピッチ0.5山分の長さ以上、不完全ねじ部s+ねじピッチ5山分の長さ以下となるようにねじ外側面外周部に中空パイプ状の該ナット部品を配置した構造であり、該T字形状のナット本体の最下部が被締結物に接しないように、かつ該ナット部品の最上部が該T字形状ナット本体のフランジ状座面に接触し、また該ナット部品の最下部が被締結物に接触するように該ナット部品の長さを設定し、該ナット部品内径面と該ナット本体の外周面はそれぞれ回転自在とし、該ナット本体と該ナット部品をねじの中心と同心円状に形成することにより;
 締結時のナットのねじ山にかかる応力を開放側のねじ山3山目以後により多く向かわせてナットとボルトの締結噛合い1山目への負荷集中を低減するように構成したことを特徴とする。
Next, the third aspect (C) of the present invention will be described.
C. A nut having a two-part structure comprising a nut body having a screw shaft portion provided with a screw thread inside and a flange bearing surface portion and a pipe-like nut component having a chamfered bearing surface on at least one end face inner diameter side A shape of a longitudinal sectional view of the nut body is T-shaped, and a length in which a screw shaft portion of the nut body is introduced from the flange seat surface portion of the nut body toward the inner object of the nut component is The hollow pipe-shaped nut component is formed on the outer surface of the screw outer surface so that the incomplete screw part length s + the length of the screw pitch 0.5 or more, and the length of the incomplete screw part s + the screw pitch 5 m or less The T-shaped nut body is disposed so that the lowermost portion of the T-shaped nut body is not in contact with the object, and the uppermost portion of the nut part is in contact with the flange-like bearing surface of the T-shaped nut body The lower part of the nut part is tightened The length of the nut part is set so as to contact the object, the inner diameter surface of the nut part and the outer peripheral surface of the nut body are respectively rotatable, and the nut body and the nut part are formed concentrically with the center of the screw By doing;
It is characterized in that the stress applied to the screw thread of the nut at the time of fastening is more directed to the screw thread on the open side and after the third thread on the open side to reduce the load concentration on the first engagement between the nut and the bolt. Do.
 本発明の第3の態様(C)のナットの縦断面図を図3に例示的に示す。ナット本体1の縦断面図の形状が略T字状で、ナット本体1は内部にねじ山を設けたねじ軸部と一体化しており、ナット本体1のフランジ下面部ねじ軸部18側面に少なくとも一方の片側内径側に軸部18と干渉しないための面取り構造を持つパイプ状のナット部品6を配置した構造であり、ナット本体軸部18はナット部品6の中で回転自在であって、ナット本体1は内部にボルト2を捻じ込み、ナット部品6とは摺動面16で接触、回転摺動する。ナット本体1のねじ軸部最下部7が被締結物3に接しないように、ナット部品6の最上面22から座面14までの長さをナット本体1のフランジ座面からねじ軸部の最下部7までの長さより長くして、ナット部品6が被締結物3と接する構造を示している。ナット本体1の上方開放側外形は締結工具に合わせた形状とすることができる。ナット本体1の軸方向に内部にねじ山が設けられたねじ軸部18の太さは一定でもよく、または開放側を太く、被締結物側を細くすること、さらに軸部の長さの途中からさらに細くすることもできる。また、図3のようにナット部品6の座面20を拡大し、ナット部品6と被締結物3の締結時の面圧を下げることもできる。 A longitudinal sectional view of a nut according to a third aspect (C) of the present invention is exemplarily shown in FIG. The shape of the longitudinal sectional view of the nut body 1 is substantially T-shaped, and the nut body 1 is integrated with the screw shaft portion provided with a screw thread inside, and at least on the side surface of the flange lower surface portion screw shaft portion 18 of the nut body 1 It has a structure in which a pipe-shaped nut part 6 having a chamfering structure for preventing interference with the shaft part 18 is disposed on one inner diameter side of one side, and the nut main body shaft part 18 is rotatable in the nut part 6 The body 1 is screwed with a bolt 2 inside, and contacts and rotates with the nut part 6 at the sliding surface 16. The length from the top surface 22 of the nut part 6 to the bearing surface 14 is from the flange seating surface of the nut body 1 to the top of the screw shaft so that the screw shaft lowermost part 7 of the nut body 1 does not contact the object 3 to be fastened. The structure in which the nut part 6 is in contact with the object 3 is shown longer than the length to the lower part 7. The upper open side outer shape of the nut body 1 can be shaped according to the fastening tool. The thickness of the screw shaft portion 18 in which a screw thread is provided in the axial direction of the nut main body 1 may be constant, or the open side is thick and the object side is narrowed, and further, the length of the shaft portion is halfway It can also be made thinner. Further, as shown in FIG. 3, the bearing surface 20 of the nut part 6 can be enlarged to reduce the contact pressure at the time of fastening of the nut part 6 and the object 3 to be fastened.
 ボルト2とナット本体1及びナット部品6により被締結物3を締結する場合、ナット本体1の締結側最下面7は直接被締結物3に接しないで、ナット部品6の座面20が被締結物3に接しているため、締結時の力の流れが、ナット部品6とナット本体1との接触面16を介してナット本体1の開放側に向かい、さらに各ねじ山に向かう。この時、力はナット部品6からナット本体1に入るが、その位置はナット部品6とナット本体1が触れている接触面16の最内径部近傍から多く入り、ナット本体1内をねじ山3番目以後のねじ山に向かい、広がりながら開放側のねじ山に達する。 When fastening the to-be-fastened object 3 by the bolt 2 and the nut body 1 and the nut part 6, the fastening side lowermost surface 7 of the nut body 1 is not in direct contact with the to-be-fastened Since it is in contact with the object 3, the flow of force at the time of fastening is directed to the open side of the nut body 1 via the contact surface 16 between the nut component 6 and the nut body 1 and further directed to each thread. At this time, the force enters the nut body 1 from the nut part 6, but the position thereof is much from the vicinity of the innermost diameter portion of the contact surface 16 where the nut part 6 and the nut body 1 are in contact. Go to the second and subsequent threads and reach the open thread while expanding.
 図3に示すように、ナット本体のフランジ部からねじ軸部18に移行する曲線部分とナット部品6の内径側肩部には、望ましくはそれぞれ形状や大きさが変わることがあっても互いが干渉しない構造を維持できる応力集中緩和曲線を持たせ、ナット本体、ナット部品双方に応力集中をさせない構造とする。ねじ山の負荷分担状況は、ナット部品6とナット本体1の触れ合う面16に対応するねじ軸部18内にあるねじの軸方向高さにあるねじ山の位置の相対的な関係から変化する。 As shown in FIG. 3, the curved portion transitioning from the flange portion of the nut body to the screw shaft portion 18 and the inner diameter side shoulder portion of the nut part 6 desirably have each other even if their shape and size may change. A stress concentration relaxation curve capable of maintaining a non-interfering structure is provided to prevent stress concentration on both the nut body and the nut component. The load sharing situation of the thread changes from the relative relationship of the position of the thread at the axial height of the screw in the screw shank 18 which corresponds to the contact face 16 of the nut part 6 and the nut body 1.
 本態様(C)ではナット本体1の開放側に近いナットねじ山に力を向けることが可能であって、どのように負荷を分担させるかは、ナット1の強度、材質、ナット部品6の強度、材質、それらの形状から決めることができる。ナット部品6とナット本体1が接触する面16の高さにあるLは、L+ねじ山0.5ピッチ分の長さ≦L≦L+ねじ山5ピッチの長さの範囲内が望ましい。 In this aspect (C), it is possible to direct the force to the nut thread close to the open side of the nut body 1, and how to share the load is the strength of the nut 1, the material, and the strength of the nut part 6. , It can be decided from the material and their shape. L 2 at the height of the surface 16 where the nut part 6 and the nut body 1 contact is in the range of L 1 + length of 0.5 thread pitch ≦ L 2 ≦ L 1 + length of 5 threads pitch The inside is desirable.
 ここで、Lは、図3にあるように、ナットのねじ軸部18のねじ山の締結側にある完全ねじ1番のねじ谷底にある点Pからナット座面14までの距離を示し、Pとナット座面の間には、空隙4とねじ面取りとねじ不完全部の合計の長さsがあることとする。ナット部品6の軸方向長さ、空隙4の長さ、ねじ軸部18突出量を調整することで、ナット本体1のねじ軸部18の最下端7が被締結物3に触れることがない構造とすることができる。 Here, as shown in FIG. 3, L 1 indicates the distance from the point P 1 at the bottom of the fully threaded No. 1 screw valley on the screw thread side of the screw thread 18 of the nut to the nut bearing surface 14. , P 1 and the bearing surface of the nut, there is a gap 4 and a total length s of the chamfer and the screw imperfection. A structure in which the lowermost end 7 of the screw shaft portion 18 of the nut main body 1 does not touch the object 3 by adjusting the axial length of the nut part 6, the length of the air gap 4 and the projection amount of the screw shaft portion 18 It can be done.
 図3は、一例としてナットのねじ山の数を8山としている。これはねじ軸部の影響によりナットの開放側に多くの応力が流れることによる力のバランス上ナット自体の剛性向上目的によるものである。ナット本体1のねじ軸部18外周に一例として段又はテーパー又はこれらを組み合わせた形状を設けた構造である。また、図3ではナット部品6の座面20が被締結物3と接触する接触面積を増やした構造であり、ナット部品6と被締結物3が接する座面20の締結面圧を下げる効果がある。 In FIG. 3, the number of screw threads of the nut is eight, as an example. This is due to the purpose of improving the rigidity of the nut itself due to the balance of force due to the flow of a large amount of stress on the open side of the nut due to the influence of the screw shaft. As an example, a step or a taper or a combination of these is provided on the outer periphery of the screw shaft portion 18 of the nut body 1. Moreover, in FIG. 3, it is the structure which increased the contact area which the bearing surface 20 of the nut component 6 contacts the to-be-fastened object 3, and the effect of reducing the fastening surface pressure of the bearing surface 20 which the nut component 6 and the to-be-fastened object 3 contact is there.
 本態様(C)には変形例が多くあるが、使用方法に関するものがある(図示はしていない)。ナット部品6を被締結物3と置き換えて、ナット本体1を被締結物3から出てくるボルト2に直接螺合し、被締結物3を締結することができる変形(使用実施)例がある。この変形例の場合、被締結物3のねじ穴をナット本体1のねじ軸部18が回転自在に入る構造として、さらに被締結物3に設ける穴の入口は図3に示すようなナット部品6の大きな応力集中緩和曲線またはそれと同等効果を持つ構造とすることで、ナット本体1をボルト2を介して直接被締結物3と締結することができる。ナット本体1と被締結物3はナット本体1のフランジ座面の面16で接触する。このような場合、ボルト2は図3に示すように被締結物側からねじ山が出てくる方向を向いていて、ナット本体1と螺合するよう設定する。このような変形例においてもナット本体の開放側ねじ山3山目以後に力を多く流せ、噛合い1山目の負荷低減を実施できる。この様な使用方法、面取り形状も本発明の一部である。この場合の利点は、態様(C)の効果に加え、部品点数の削減、軽量化、ナット突出量削減などが挙げられる。 There are many variations of the present aspect (C), but there is one relating to a method of use (not shown). There is a modified (use implementation) example in which the nut part 6 is replaced with the object 3 to be fastened, the nut body 1 is directly screwed on the bolt 2 coming out of the object 3 and the object 3 can be fastened. . In this modification, the screw shaft portion 18 of the nut body 1 is rotatably inserted into the screw hole of the object 3 to be fastened, and the hole inlet provided on the object 3 is a nut part 6 as shown in FIG. The nut main body 1 can be fastened directly to the fastened object 3 via the bolt 2 by setting it as a structure having a large stress concentration relaxation curve or an equivalent effect thereof. The nut body 1 and the to-be-fastened object 3 make contact at the surface 16 of the flange bearing surface of the nut body 1. In such a case, as shown in FIG. 3, the bolt 2 is directed in the direction in which the screw thread comes out from the side of the object to be fastened, and is set to be screwed with the nut body 1. Also in such a modification, a large amount of force can be flowed after the third thread on the open side thread of the nut main body, and the load reduction in the first mesh can be implemented. Such usage and chamfering shapes are also part of the present invention. The advantages in this case include, in addition to the effects of the aspect (C), reduction in the number of parts, weight reduction, reduction in the amount of projection of the nut, and the like.
 本態様(C)のミーゼス相当応力分布図を図3-1に示す。ここでは、態様(C)ナットのFEM解析にはねじ山を8山にした構造のナット本体を使用している。これはねじ軸部の影響によりナットの開放側に多くの応力が流れることによるナット自体の剛性向上によるものである。これに従い、比較の基準の従来方式ナットはねじ8山の数値を使用する。 The von Mises equivalent stress distribution of this embodiment (C) is shown in FIG. Here, a nut body having a structure with eight threads is used for FEM analysis of the aspect (C) nut. This is because the rigidity of the nut itself is improved by the flow of a large amount of stress on the open side of the nut under the influence of the screw shaft. According to this, the conventional nut of the comparison standard uses the value of the thread 8 thread.
 図3-1のミーゼス相当応力分布図では、応力の大きさを四段階色調で色分けしており、白色が応力大、黒色が応力小を示し、中間の明るいグレーは応力やや大、暗いグレーがやや小を表している。 In the Mises equivalent stress distribution chart in Figure 3-1, the magnitude of the stress is color-coded in the four-step color, white indicates high stress, black indicates low stress, middle light gray indicates stress somewhat large, dark gray It represents a little small.
 図3-1の概要として、ナット部品6の座面20から入った力は最下部では黒色であり、上に向かって暗いグレーから明るいグレーに斜めにナット本体1に向かい、ナット本体1とナット部品6が接触する面16上下で高圧縮応力を示す白色となり、最大の応力となっているが、この部分ではナット本体1のねじ山7~8番目に白やグレーの帯状の高応力が向いていることも見える。また、ナット本体1に入った直後にナット軸部18に向かって白と明るいグレーが見えているが、この部分は引張応力を受けている。この部分を通してナットねじ山4番と3番の間、3番と2番の間のねじ谷底へ向かう白色が見える。また、ねじ山3番付近が一番多くの力を通しているように見える。さらにナット側1番では内部に黒色が見え、この1山目部分は応力が小さいことを示している。改めて全体を眺めるとねじ軸部にあるナット1のねじ山1,2,3番はボルトから引張られる力を受けている。ナットからボルトに伝わる力はボルトねじ山3番が大きく、4,5,6,7、8番まで力が掛かっていて、7、8番にも暗いグレーが見えている。ボルト側を見ればねじ山近傍で1~3番目までは白色が小さくみられるが4,5番にも淡いグレーが出ている。さらにボルトねじ山の8番まですべての長さにわたって暗いグレーが広がっている。この様にボルト内部に広く応力が拡張している様子が見られる。ナットには力が方向を持って広がっていく様子が見えている。 As an outline of FIG. 3-1, the force entered from the bearing surface 20 of the nut part 6 is black at the lowermost part, and obliquely upward from dark gray to light gray toward the nut main body 1, the nut main body 1 and nut The surface 16 with which the component 6 contacts is white with high compressive stress at the top and bottom, which is the maximum stress, but in this part, the 7 to 8 thread ridges of the nut main body 1 have a white or gray band of high stress facing You can see what you are doing. Further, immediately after entering the nut body 1, white and light gray are seen toward the nut shaft portion 18, but this portion is under tensile stress. A white color is visible through this portion to the bottom of the thread between nut threads # 4 and # 3 and # 3 and # 2. In addition, it seems that the vicinity of No. 3 thread is passing the most power. Furthermore, at the nut side No. 1, black color appears inside, which indicates that the first ridge portion has small stress. Looking again at the whole, the screw threads 1, 2 and 3 of the nut 1 at the screw shaft portion receive a force that can be pulled from the bolt. The force transmitted from the nut to the bolt is large at No. 3 of the screw thread, is applied to the fourth, fifth, sixth, seventh, and eighth, and a dark gray is also visible at the seventh and eighth. Looking at the bolt side, white is small in the first to third areas near the screw thread, but light gray appears in the fourth and fifth. In addition, the dark gray is spread over the entire length up to the bolt thread No. 8. It can be seen that stress is widely spread inside the bolt in this manner. I can see how the force spreads in the direction of the nut.
 この態様(C)の図3-1と従来方式による図4-1を見比べると、ミーゼス相当応力分布図は全く異なる様相になっていることが読み取れる。従来方式の図4-1では締結側1番に直ぐに力が向かい、力の多くを1番で受け渡しをして、次いで2番目、3番目と順次小さくなっていき、開放側ねじ山は小さな負荷分担しかしていないことが見られる。 A comparison of FIG. 3-1 of this embodiment (C) with FIG. 4-1 by the conventional method reveals that the von Mises equivalent stress distribution map has a completely different appearance. In Fig. 4-1 of the conventional method, the force is immediately applied to the fastening side No. 1 and most of the forces are transferred by No. 1 and then gradually become smaller as the second and third. It can be seen that they are only sharing.
 本発明の態様(C)と従来方式の性能比較のために態様(C)の一例と従来方式の比較を図3-2(a)負荷分担率,(b)棒グラフに示す。ここで本態様(C)の噛合い1山目の負荷分担率は22.9%であり、従来方式の34.5%とはかけ離れた数値となっている。3山目以後の数値では態様(C)の方の負荷負担率が高くなっている。この比較は双方のナットねじ山数8山で行っている。 Comparison of an example of the aspect (C) and the conventional method is shown in FIG. 3 (a) a load sharing ratio, and (b) a bar graph, for performance comparison of the aspect (C) of the present invention and the conventional method. Here, the load sharing ratio of the meshing first peak of this mode (C) is 22.9%, which is far from 34.5% of the conventional system. In the third and subsequent figures, the load carrying rate in the mode (C) is higher. This comparison is made with both nut threads of eight.
 本発明の態様(C)の7山での変形例の解析を図3-3のミーゼス相当応力分布図に、従来方式7山との比較を図3-4(a)比較数値表、図3-4(b)で比較棒グラフをそれぞれ示す。この変形例での噛合い1山目の負荷分担率は24.0%であり、従来方式の35.6%とは大きく異なることを示している。ここでは双方ともねじ山数7山で比較している。 The analysis of the modification in the 7th mountain of the aspect (C) of the present invention is shown in the stress distribution map of Miess in FIG. 3-3, and the comparison with the 7th mountain of the conventional method is shown in FIG. Comparative bar graphs are shown in -4 (b). The load sharing ratio of the meshing first peak in this modified example is 24.0%, which is significantly different from 35.6% of the conventional system. Here, both are compared with seven threads.
 この様に態様(C)は、ナット本体1のフランジ座面の軸方向の位置とナット本体のねじ山の位置(ねじ軸部突出量)に相関がみられ、開放側への力の流れ量の大きさ、ひいては噛合い1山目の負荷分担に影響を及ぼすことを示唆している。ちなみに図3-1と図3-3ではナット本体軸部18の突出量が変わっており、図3-1は3.5山程度に対し、図3-3では4.3山程度と異なっている。 Thus, the aspect (C) is found to be correlated between the axial position of the flange bearing surface of the nut body 1 and the position of the screw thread of the nut body (screw shaft portion projection amount), and the amount of force flow to the open side It is suggested that it affects the load sharing of the mesh 1st mountain. By the way, in Fig. 3-1 and Fig. 3-3, the protrusion amount of the nut body shaft 18 is changed, and Fig. 3-1 is different from about 3.5 mountain in Fig. 3-3 and Fig. 3-3 is about 4.3 mountain. There is.
 本発明の第3の態様(C)の各部品のコーナー部や他と接触する部分は、応力集中を避けるため、ナット部品6の座面20側コーナーやナット本体と接する部分などは応力集中緩和曲線を設けることが望ましい。また、これら応力集中緩和曲線の大きさ、形状は任意に決定することが可能である。 In order to avoid stress concentration, the corners of the parts of the third aspect (C) of the present invention (C) and other parts in contact with the corners 20 and the nut body of the nut part 6 are stress concentration relieved It is desirable to provide a curve. Also, the size and shape of these stress concentration relaxation curves can be determined arbitrarily.
 ナット部品6の座面20の表面粗さは精級仕上げ、あるいはナット本体1とナット部品6が接する面16は双方とも精級仕上げ、ねじ面はJIS規定の面粗度、その他の表面粗さは、粗仕上げまたは並仕上げとするなど、後述する表面処理との整合性をもつように、場所により最適な面粗度とするのが好適である。 The surface roughness of the bearing surface 20 of the nut part 6 is fine-finishing, or both the surface 16 where the nut body 1 and the nut part 6 contact are fine-finishing, the surface of the screw is a surface roughness according to JIS, other surface roughness In order to have consistency with the surface treatment to be described later, such as rough finish or co-finishing, it is preferable to set an optimal surface roughness depending on the place.
 T字状ナット構造は、必ずしも厳密なT字状構造でなくてもよく、主旨を逸脱しない限り、変形構造はあり得る。例えば十字構造であってもよい。また、ナット本体上部が通常の六角形などの締結工具を使える形状を持っていることも可能であり、より好適である。 The T-shaped nut structure does not necessarily have to be a strict T-shaped structure, and may have a modified structure without departing from the scope of the invention. For example, it may be a cross structure. Moreover, it is also possible for the nut body upper part to have a shape that can use a fastening tool such as a normal hexagon, which is more preferable.
 本発明においては、態様が(A),(B),(C)と異なっていても、上記のようにナットが受ける負荷の力の流れを、負荷分担の低い開放側の噛合いねじ山により多く向かわせるナット構造として、3山目以後の負荷分担を増加させることにより、噛合い1山目の最大負荷分担を低減させるように構成したナットを提供することができる。これにより、噛合い1山目への負荷の低減により、ボルトの噛合い1山目谷底からの亀裂軸破断を起こす疲労破壊寿命を延長させる目的を達成することができる。 In the present invention, even if the aspect is different from (A), (B) and (C), the flow of the load force received by the nut as described above is achieved by the open side meshing thread with low load sharing. By increasing the load sharing after the third peak as a nut structure that is directed more, it is possible to provide a nut configured to reduce the maximum load sharing of the meshing first peak. Thereby, by reducing the load on the meshing first peak, it is possible to achieve the purpose of extending the fatigue fracture life that causes the crack axial fracture from the meshing first bottom of the bolt meshing.
 本発明の第1~第3態様のナットは、従来から用いられてきた材料を利用することができる。材料としては、軟鋼、炭素鋼、ニッケルクロム鋼、クロム鋼、ニッケルクロムモリブデン鋼等の合金鋼、ステンレス合金鋼、アルミ合金、ニッケル合金、チタン合金等の非鉄金属、樹脂、セラミック(酸化物、窒化物、炭化物等)等の材質、材料が好適に使用される。 The nuts according to the first to third aspects of the present invention can utilize materials conventionally used. As materials, alloy steels such as mild steel, carbon steel, nickel chromium steel, chromium steel, nickel chromium molybdenum steel, non-ferrous metals such as stainless alloy steel, aluminum alloy, nickel alloy, titanium alloy, resin, ceramic (oxide, nitrided Materials, materials such as objects, carbides, etc. are suitably used.
 ねじの形成は従来と同様の工法を採用することができて、例えば、タップによるねじ成形加工、NC(数値制御)旋盤、マシニングセンター(MC)、複合加工機(旋盤とフライスの複合加工機)、放電加工、のいずれかまたはこれらの組み合わせ、粗材製作にはプレス塑性加工、冷間・熱間・温間プレス加工、鍛造、鋳造、射出成型、精密鋳造、3Dプリンタ加工、モールディング、MIMS、あるいはそれらを組み合わせて行うことができる。ねじ山寸法、強度に関しては、各国の工業規格(日本においてはJIS B0205:2001,JIS B0216:1987,JIS B1051:2000等)に規定された形状等を採用できる。 The screw can be formed by the same method as the conventional method, for example, screw forming with a tap, NC (numerical control) lathe, machining center (MC), combined processing machine (combined processing machine of lathe and milling cutter), EDM, or any combination thereof, press plastic working, cold / hot / warm press, forging, casting, injection molding, precision casting, 3D printer processing, molding, MIMS, or for roughing material production It can do by combining them. With respect to the thread size and strength, shapes and the like defined in industrial standards of each country (in Japan, JIS B 0205: 2001, JIS B 0 216: 1987, JIS B 1051: 2000, etc.) can be adopted.
 一例として、NC旋盤による第1の態様(A)のナットの形成について説明する。外形部は冷間・温間・熱間鍛造/プレス、切削、ナットフォーマー、スイス型自動旋盤などで製作し、ナットの座側側の空間部や略矩形の凹型をNC旋盤、自動盤、等の加工機により形成した後、従来のナットのねじ山形成と同様に切削加工、研削加工、切削タップ、転造タップを用いてナットのねじ山を形成することで本発明のナットを作製することができる。あるいは、作製順序を変えて、同様の装置でタップを用いてねじ山を形成した後に、ナットの座面側に空間や略矩形の凹部を形成し、その後に外周形状を形成しても良い。 The formation of the nut of the first aspect (A) by an NC lathe will be described as an example. The external part is manufactured by cold, warm, hot forging / pressing, cutting, nut former, Swiss type automatic lathe, etc. The space part on the seat side of the nut or concave rectangular rectangular shape is NC lathe, automatic disc, Etc. Then, the nut of the present invention is manufactured by forming a screw thread of a nut using cutting, grinding, cutting tap, and rolling tap in the same manner as forming a conventional screw thread. be able to. Alternatively, after changing the manufacturing order and forming a screw thread with a similar device using a tap, a space or a substantially rectangular recess may be formed on the bearing surface side of the nut, and then the outer peripheral shape may be formed.
 他の態様のナットの製造法もほぼ同じようになるが、例を挙げれば、部材はナット本体になる部材とナット部品になる部材に大別できる。ナットの外形及びねじ下穴の製作は、熱間/冷間/温間プレス、鍛造、切削、鋳造などを採用し、1部品型ナットや略T字状形状を作製する。通常の工具で締結作業がしやすいように六角形などの締結工具を使えるように最頭部を形成し、切削や冷間/熱間鍛造、鋳造などで作った下穴にタップを通し、ねじ山/谷を形成する。ねじ部は旋削、研削加工を施して形成しても良い。ナット部品はパイプの切断、冷間/温間/熱間鍛造、鋳造、CNC旋盤による丸棒からの連続自動切削、など、もしくはこれらの組み合わせにより製作することができる。3Dプリンタによる成形でも良い。樹脂やセラミックスなどで作る場合は射出成型、焼結などと切削、研削などの工法の組み合わせを行っても良い。ナットとナット部品が接する面の面粗度は摺動抵抗を少なくするものを選択、採用しうる。鏡面研磨面、研磨面、精密切削面、精密金型によるプレス面、マイクロショットピーニング、ガラスビーズショットなどから選択もしくは組み合わせで加工できる。また、ナット本体とナット部品の組み合わせで、ねじ中心軸周りにナット本体が回転しながら締結を進めるため、被締結物面とナットねじ中心軸が垂直に保たれるように、ナット本体とナット部品の製作を行うことが望ましい。 Although the manufacturing method of the nut of another mode becomes substantially the same, if an example is given, a member can be divided roughly into a member which becomes a nut body and a member which becomes a nut part. The outer shape of the nut and the preparation of the screw lower hole adopt hot press / cold / warm press, forging, cutting, casting, etc., and produce a one-part type nut or a substantially T-shaped shape. The top is formed so that a fastening tool such as a hexagon can be used to facilitate fastening with a normal tool, and a tap is passed through a pilot hole made by cutting, cold / hot forging, casting, etc. Form a mountain / valley. The threaded portion may be formed by turning or grinding. The nut part can be manufactured by cutting a pipe, cold / warm / hot forging, casting, continuous automatic cutting from a round bar with a CNC lathe, etc., or a combination of these. It may be formed by a 3D printer. When it is made of resin or ceramic, a combination of methods such as injection molding, sintering and the like, and cutting and grinding may be performed. The surface roughness of the contact surface of the nut and the nut part can be selected and adopted to reduce the sliding resistance. It can be processed by selecting or combining from a mirror polished surface, a polished surface, a precision cutting surface, a pressing surface with a precision die, micro shot peening, glass bead shot and the like. Also, in the combination of the nut body and the nut part, the nut body rotates while rotating around the screw central axis, so that the fastening object surface and the nut screw central axis are kept perpendicular. It is desirable to make
 ナットとボルトが締結開始する以前の表面は、例えば、材質が金属の場合、削り、研磨などの面粗度を持ち、摩擦係数μも、ドライ時μ≒0.5、ウェット時でμ≒0.1であることは知られている。しかし、締結開始後、隙間が無くなり基材が強く圧着された時、潤滑剤は流出し、金属表面の酸化膜は剥離し、金属地肌が現れる。この時、特にドライ環境では金属表面で金属結合が起きるような強い圧接状態になっている。この場合、ねじ山の摩擦係数が元のままであるとは想定しにくく、摩擦係数が非線形的に上昇し、双方のねじ山が凝着する大きさまで達することがありえる。 For example, when the material is metal, the surface before the nut and the bolt start to be tightened has a surface roughness such as shaving and polishing, the coefficient of friction μ is also dry μ μ 0.5, and wet μ μ 0 It is known to be .1. However, after the start of fastening, when the gap disappears and the base material is strongly pressure-bonded, the lubricant flows out, the oxide film on the metal surface peels off, and a metal surface appears. At this time, particularly in a dry environment, a strong pressure contact state where metal bonding occurs on the metal surface is achieved. In this case, it is difficult to assume that the friction coefficient of the screw thread is the same as it is, and it is possible that the friction coefficient rises non-linearly and reaches a size where both threads adhere.
 ダイヤモンド状炭素膜であって、膜がついていない溝部で細分化され、摺動面に設けた膜が分割されている機能を持つセグメント構造ダイヤモンド状炭素(S-DLC)膜がこの様な圧力を受けながら接する基材間に成膜されている場合、膜が存在している限り、摩擦係数(μ≒0.15)が変化することなく基材同士が擦りあう状態を維持できる。この密着耐久性は、本発明者らによる多くの実験で示されている。ナットの締結側のねじ山にS-DLC膜がある場合、少なくとも締結噛合い第1ねじ山にS-DLC膜がある場合、摩擦係数の上昇の影響は少ない。 A segment-like diamond-like carbon (S-DLC) film having a diamond-like carbon film which has a function of being divided into grooves not having a film and having a film provided on a sliding surface divided. When the film is formed between the substrates that are in contact with each other while receiving, as long as the film is present, it is possible to maintain the substrates rubbing together without changing the coefficient of friction (μ ≒ 0.15). The adhesion durability is shown in many experiments by the present inventors. In the case where there is an S-DLC film on the screw thread on the fastening side of the nut, the effect of the increase in the coefficient of friction is small when at least the S-DLC film on the screw engaging first thread is present.
 本発明の第1~3の態様(A)~(C)に係るナットにおいて、ねじ山表面の少なくともボルトとの噛合い第1ねじ山またはそれ以上のねじ山の一部もしくは全部のボルト側ねじと接する面、またはねじ山の両側の斜面に、ダイヤモンド状炭素(DLC)膜、BN膜、WC膜、CrN膜、HfN膜、VN膜、TiN膜、TiCN膜、Al膜、ZnO膜、SiO膜、アルマイト、金属メッキ、固体潤滑剤、リン酸マンガン化成処理、浸炭焼入れ、窒化処理、クロマイズド処理のいずれか、またはこれらを組み合わせた被膜を被覆して保護膜を形成するのが、スムーズな締結作動上および安定な締結を実現する上でさらに好適である。ねじ山表面は少なくとも噛合い第1ねじ山表面を含む、より開放側のねじにもDLC膜の成膜が施されていることが好ましい。DLC保護膜を形成することにより、金属表面の荒れ、剥離を抑制し、摩擦係数を安定化させ、より安定した締結をもたらし得る。好適には、DLC膜は、溝により、例えば碁盤目状に分割されたセグメント状である(S-DLC膜)。 In the nut according to any one of the first to third aspects (A) to (C) of the present invention, a bolt side thread engaged with at least a bolt on the thread surface of the first thread or part or all of more threads. Diamond-like carbon (DLC) film, BN film, WC film, WN film, CrN film, HfN film, VN film, TiN film, TiCN film, Al 2 O 3 film, ZnO film on the surface in contact with the surface or slopes on both sides of the screw thread SiO 2 film, alumite, metal plating, solid lubricant, manganese phosphate conversion treatment, carburizing and quenching, nitriding treatment, nitriding treatment, any combination of these, or a combination of these to form a protective film, It is further suitable for achieving smooth fastening operation and stable fastening. The screw thread surface preferably includes at least a meshing first screw thread surface, and it is preferable that the DLC film is also formed on the more open side screw. By forming the DLC protective film, roughening and peeling of the metal surface can be suppressed, the coefficient of friction can be stabilized, and more stable fastening can be achieved. Preferably, the DLC film is in the form of segments which are divided, for example, in a grid by grooves (S-DLC film).
 また本発明の第1~2の態様(A),(B)はナットの被締結物と接する座面14を、あるいは、第3の態様(C)に係るナットにおいて、ナット本体とナット部品が摺動する面16、あるいは被締結物と接するナット部品の面14をダイヤモンド状炭素(DLC)膜で被覆して保護膜を形成するのが、スムーズな締結作動上および安定な締結を実現する上でさらに好適である。摺動面にDLC保護膜を形成することにより、金属表面の荒れ、剥離を抑制し、摩擦係数を安定化させ、より安定した締結をもたらし得る。好適には、DLC膜は、膜がない溝により、例えば碁盤目状に分割されたセグメント状である(S-DLC膜)。S-DLC膜であれば被膜のない溝部は油溝となり、給油された場合には座面摩擦係数の安定が図られ、締結の安定に寄与する。 Further, in the first and second aspects (A) and (B) of the present invention, in the nut according to the third aspect (C), the nut body and the nut component Covering the sliding surface 16 or the surface 14 of the nut part in contact with the object to be fastened with a diamond-like carbon (DLC) film to form a protective film realizes smooth fastening operation and stable fastening. Are further preferred. By forming the DLC protective film on the sliding surface, roughening and peeling of the metal surface can be suppressed, the coefficient of friction can be stabilized, and more stable fastening can be achieved. Preferably, the DLC film is in the shape of, for example, a grid divided into segments by a groove without a film (S-DLC film). In the case of the S-DLC film, the groove portion without the film becomes an oil groove, and when the oil is supplied, the seat surface friction coefficient is stabilized, which contributes to the stability of fastening.
 前記のナット本体とナット部品が摺動する面、ナットの座面、ねじ内面にDLC膜を堆積するためには、気相堆積法(CVD又はPVD法)が好適であり、たとえば直流、交流もしくは高周波等を電源とするプラズマCVDまたはマグネトロンスパッタもしくはイオンビームスパッタ等のスパッタ法が挙げられる。DLC膜の膜厚は、ナット、ナット部品の形状、使用用途等に依存するが、通常0.01~10μmであり、更に望ましくは0.5~3μmである。 In order to deposit the DLC film on the surface on which the nut body and the nut component slide, the bearing surface of the nut, and the inner surface of the screw, vapor deposition (CVD or PVD) is preferred. Examples thereof include plasma CVD using a high frequency power as a power source or sputtering such as magnetron sputtering or ion beam sputtering. The film thickness of the DLC film depends on the shape of the nut, the part of the nut, the usage, etc., but is usually 0.01 to 10 μm, and more preferably 0.5 to 3 μm.
 ねじ山表面、ナット、ナット部品、もしくはワッシャが相互に接触する部分、あるいは被締結物と接する面(座面)にダイヤモンド状炭素膜を成膜する効用を述べたが、ダイヤモンド状炭素膜に限定するものでなく、摩擦抵抗の低減、あるいは摩擦抵抗の変化を低減する目的で他の材料を選択することができる。例えば、BN膜、WC膜、CrN膜、HfN膜、VN膜、TiN膜、TiCN膜、Al膜、ZnO膜、SiO膜、アルマイト、金属メッキ、固体潤滑層、リン酸マンガン化成処理、浸炭焼入れ、窒化処理、クロマイズド処理、高分子樹脂コートのいずれか、またはたはこれらを組み合わせたものを選択することができる。これらの膜によって、スムーズな締結作動および安定な締結を実現する上で効果がある。 Although the effect of forming a diamond-like carbon film on the screw thread surface, the nut, the nut part, or the part where washers contact each other or on the surface (seating surface) in contact with the object to be fastened has been described Other materials can be selected for the purpose of reducing the frictional resistance or reducing the change in the frictional resistance. For example, BN film, WC film, CrN film, HfN film, VN film, TiN film, TiCN film, Al 2 O 3 film, ZnO film, SiO 2 film, alumite, metal plating, solid lubricating layer, manganese phosphate conversion treatment It is possible to select any of carburizing and quenching, nitriding, chromizing, polymer resin coating, or a combination thereof. These membranes are effective in realizing smooth fastening operation and stable fastening.
 表面膜形成あるいは表面処理の種類としては、金属メッキ、高分子樹脂コート、アルマイト処理、真空蒸着、イオンプレーティング、PVD,CVDなどのプラズマ処理などを好適に適用することができる。 As types of surface film formation or surface treatment, metal plating, polymer resin coating, alumite treatment, vacuum deposition, ion plating, plasma treatment such as PVD, CVD and the like can be suitably applied.
 また、ナットやナット部品の外表面に表面処理を施し、耐候性向上、外観向上、識別表示付与、加飾、などを適宜行うことができる。 In addition, surface treatment can be applied to the outer surface of the nut or nut part, and weather resistance improvement, appearance improvement, identification indication provision, decoration, etc. can be appropriately performed.
 本発明によれば、ボルト、ナット締結において最大負荷を分担する噛合い1山目の負荷を下げることができ、ボルトの噛合い1山目谷底からの亀裂軸破断の疲労強度を向上させることができる特徴を持つ構造のナットを提供できる。 According to the present invention, it is possible to reduce the load on the meshing first peak that shares the maximum load in bolt and nut fastening, and to improve the fatigue strength of the crack axial fracture from the meshing first root of the bolt mesh. Can provide a nut having a feature that can be
 1  ナット、ナット本体
 2  ボルト
 3  被締結物
 4  ナット座面14又はナット部品6の最下部20と、ねじ軸部最下端7の間の空隙
 5  凸状空間 (ねじ軸部の背面曲線などを含む)
 6  ナット部品
 7  ねじ軸部最下端
 8  ナットの締結側方向
 8a  ナットの締結座面
 9  ナットの開放側方向
 9a  ナットの開放端
 10  ナット内の凹部
 11  ナット内の壁面(凹部の壁)
 12  ナット凹部内のコーナー部
 13  ナット凹部の上面
 14  ナットの座面
 15  ナットねじ谷底
 16  ナット本体とナット部品が接触する面(摺動面)
 17  ナット本体の外周部
 18  ナット本体のねじ軸部
 19  ナット本体のねじ山
 20  ナット部品6の最下部
 21  ナット本体1の外周部
 22  ナット部品の最上部
 23  ワッシャ
 24  ナット本体のねじ軸部にあるPがナット部品に入る最短長さ(s+0.5ピッチの長さ)
 25  ナット本体のねじ軸部にあるPがナット部品に入る最長長さ(s+5ピッチの長さ)
 P  ナットねじの締結側1山目の完全ねじ部の谷底に位置するポイント
 P  ナットの凸状空間の最奥部に位置するポイント
 L  ナット座面14からPまでの距離
 L  ナット座面14からPまでの距離
 P  ナットねじ1山のピッチ
 La  ナットのねじピッチ2山分と不完全ねじ部(面取りを含む)長さsの合計長さ
 Lb  ナット座面14からナット座面内の上面13までの長さ
 Lh  ナット座面内の壁面11とねじ谷底15の間の長さ
 s  面取り長さとねじ不完全部長さの合計長さ
DESCRIPTION OF SYMBOLS 1 Nut, nut main body 2 bolt 3 to-be-fastened object 4 Air gap between lowermost part 20 of nut bearing surface 14 or nut part 6 and lower end 7 of screw shaft 5 convex space (including back curve of screw shaft etc. )
6 Nut parts 7 Screw shaft lower end 8 Nut fastening side direction 8a Nut fastening seat surface 9 Nut opening side direction 9a Nut open end 10 Recess in nut 11 Wall inside recess (wall of recess)
12 Corner portion in recess of nut 13 Upper surface of nut recess 14 Bearing surface of nut 15 Nut screw valley bottom 16 Surface where nut body and nut parts contact (sliding surface)
17 outer periphery of nut body 18 screw shaft of nut body 19 screw thread of nut body 20 lowermost portion of nut part 6 outer periphery of nut body 1 22 top of nut part 23 washer 24 located on screw shaft of nut body The shortest length that P 1 enters the nut part (s + 0.5 pitch length)
25 The maximum length (Pt of s + 5 pitch) that P 1 on the screw shaft of the nut body enters the nut part
P 1 distance L 2 nuts from point L 1 nut bearing surface 14 located at the innermost part of the convex space point P 2 nuts located valley of the complete thread portion of the fastening-side one peak th nut screw to P 1 thread pitch two-peak fraction and an incomplete thread portion of the distance P nut screw one peak pitch La nuts from the seating surface 14 to P 2 (including the chamfered) nut bearing surface from the total length Lb nut bearing surface 14 of length s Length to inner top surface 13 Lh Length between wall surface 11 and thread root 15 in nut bearing surface s Total length of chamfer length and thread imperfection length

Claims (4)

  1.  締結用のナットであって、
     A.ナットの縦断面図の形状において、ナット締結側の座面にねじの軸を中心に、上に凸形状の空間を同心円状に形成させ、該空間は直線、曲線又はそれらの組み合わせで結ばれた形状として空間を形成させた構造であり、該空間の座面からの深さをL、ナットの完全ねじ部の第1ねじの谷底から該座面までの軸方向長さをLとしたとき、該空間の深さLを、L<L≦L+ねじ山5ピッチの長さの範囲として該空間を形成することにより;
     B.ナットの縦断面図の形状において、ナットの締結部材側の座面のねじ中心側に矩形状の凹部を有する構造であって、該凹部はナット座面から垂直に立ち上がる内壁と曲線、直線またはそれらを組み合わせたコーナー部と上面とを持ち、上面の位置から該ナットの不完全ねじ部の軸方向長さとナットの2ピッチの長さを加えた軸方向長さをLaとし、また該凹部の該座面から該上面までの軸方向長さをLb、ナットのねじ谷底と該凹部の内壁までの該凹部の半径方向の長さをLhとしたとき、LbはLaの0.001倍以上1倍以下の範囲とし、またLhはLaの0.5倍以上5倍以下の範囲として該凹部をねじの中心と同心円状に形成することにより;または
     C.内部にねじ山を設けたねじ軸部およびフランジ座面部を有するナット本体と少なくとも一方の端面内径側に面取り座面を持つパイプ状であるナット部品とにより構成された2部品構成のナットであって、該ナット本体の縦断面図の形状がT字状であり、該ナット本体のフランジ座面部から該ナット部品の内側の被締結物側に向けてナット本体のねじ軸部が入り込む長さを、不完全ねじ部長さs+ねじピッチ0.5山分の長さ以上、不完全ねじ部s+ねじピッチ5山分の長さ以下となるようにねじ外側面外周部に中空パイプ状の該ナット部品を配置した構造であり、該T字形状のナット本体の最下部が被締結物に接しないように、かつ該ナット部品の最上部が該T字形状ナット本体のフランジ状座面に接触し、また該ナット部品の最下部が被締結物に接触するように該ナット部品の長さを設定し、該ナット部品内径面と該ナット本体の外周面はそれぞれ回転自在とし、該ナット本体と該ナット部品をねじの中心と同心円状に形成することにより;
     ナットが受ける負荷の力の流れを、負荷分担の低い開放側の噛合いねじ山により多く向かわせるナット構造とすることにより、噛合い1山目の最大負荷分担を低減させ、噛合い3山目以後の負荷分担を増加させることにより、噛合い1山目への負荷集中を低減させるように構成したことを特徴とするナット。
    It is a nut for fastening,
    A. In the shape of the longitudinal sectional view of the nut, a convex-shaped space is concentrically formed on the bearing surface on the nut fastening side around the axis of the screw, and the space is connected by a straight line, a curve or a combination thereof. A space is formed as a shape, the depth from the bearing surface of the space is L 2 , and the axial length from the valley bottom of the first screw of the fully threaded portion of the nut to the bearing surface is L 1 When forming the space, when the depth L 2 of the space is L 1 <L 2 ≦ L 1 + length of thread 5 pitches;
    B. A structure having a rectangular recess on the screw center side of the bearing surface on the fastening member side of the nut in the shape of the longitudinal sectional view of the nut, wherein the recess has an inner wall and a curve, straight line, or the like rising perpendicularly from the nut bearing surface Have a corner portion and an upper surface combined, and from the position of the upper surface the axial length of the incomplete thread portion of the nut plus the length of two pitches of the nut is La, and Assuming that the axial length from the bearing surface to the upper surface is Lb, and the radial length of the recess to the thread valley bottom of the nut and the inner wall of the recess is Lh, Lb is at least 0.001 times the La C. by forming the recess concentrically with the center of the screw in the range of 0.5 to 5 times the range of La and Lh; A nut having a two-part structure comprising a nut body having a screw shaft portion provided with a screw thread inside and a flange bearing surface portion and a pipe-like nut component having a chamfered bearing surface on at least one end face inner diameter side A shape of a longitudinal sectional view of the nut body is T-shaped, and a length in which a screw shaft portion of the nut body is introduced from the flange seat surface portion of the nut body toward the inner object of the nut component is The hollow pipe-shaped nut component is formed on the outer surface of the screw outer surface so that the incomplete screw part length s + the length of the screw pitch 0.5 or more, and the length of the incomplete screw part s + the screw pitch 5 m or less The T-shaped nut body is disposed so that the lowermost portion of the T-shaped nut body is not in contact with the object, and the uppermost portion of the nut part is in contact with the flange-like bearing surface of the T-shaped nut body The lower part of the nut part is tightened The length of the nut part is set so as to contact the object, the inner diameter surface of the nut part and the outer peripheral surface of the nut body are respectively rotatable, and the nut body and the nut part are formed concentrically with the center of the screw By doing;
    The maximum load sharing of the meshing 1st peak is reduced by setting it as the nut structure which makes the flow of the load force received by the nut face more toward the open side meshing thread with low load sharing, meshing 3rd mesh A nut characterized in that the load concentration on the meshing first peak is reduced by increasing the subsequent load sharing.
  2.  ナットのねじ山表面の少なくともボルトとの噛合い第1ねじ山またはそれ以外のねじ山の一部もしくは全部のボルト側ねじと接する面、またはねじ山の両側の斜面に、ダイヤモンド状炭素(DLC)膜、BN膜、WC膜、CrN膜、HfN膜、VN膜、TiN膜、TiCN膜、Al膜、ZnO膜、SiO膜、アルマイト、金属メッキ、固体潤滑層、リン酸マンガン化成処理、浸炭焼入れ、窒化処理、クロマイズド処理のいずれか、またはこれらの組み合わせた被膜を被覆してなる請求項1に記載のナット。         Diamond-like carbon (DLC) on the surface of the screw thread surface of the nut that engages with at least the bolt and the surface that contacts the bolt side screw of the first screw thread or other threads or some or all of the screw threads Film, BN film, WC film, CrN film, HfN film, VN film, TiN film, TiCN film, Al 2 O 3 film, ZnO film, SiO 2 film, alumite, metal plating, solid lubricating layer, manganese phosphate conversion treatment The nut according to claim 1, wherein the nut is formed by coating any of a carburizing and quenching treatment, a nitriding treatment, and a chromiumizing treatment, or a combination thereof.
  3.  ナットとナット部品の接触摺動面にダイヤモンド状炭素(DLC)膜、BN膜、WC膜、CrN膜、HfN膜、VN膜、TiN膜、TiCN膜、Al膜、ZnO膜、SiO膜、アルマイト、金属メッキ、固体潤滑層、リン酸マンガン化成処理、浸炭焼入れ、窒化処理、クロマイズド処理、高分子樹脂コートのいずれか、またはこれらの組み合わせた被膜を被覆してなる請求項1または2に記載のナット。 Diamond-like carbon (DLC) film, BN film, WC film, CrN film, HfN film, VN film, TiN film, TiCN film, Al 2 O 3 film, ZnO film, SiO 2 on contact sliding surfaces of nuts and nut parts A film, alumite, metal plating, solid lubricating layer, manganese phosphate conversion treatment, carburizing and quenching, nitriding treatment, chromization treatment, polymer resin coating, or a combination of these films is coated. Nuts described in.
  4.  ナット部品の座面、ナットと被締結物が接触するナット座面にダイヤモンド状炭素(DLC)膜、BN膜、WC膜、CrN膜、HfN膜、VN膜、TiN膜、TiCN膜、Al膜、ZnO膜、SiO膜、アルマイト、金属メッキ、高分子樹脂コート、固体潤滑層、リン酸マンガン化成処理、浸炭焼入れ、窒化処理、クロマイズド処理のいずれか、またはこれらの組み合わせた被膜を被覆してなる請求項1~3のいずれか1項に記載のナット。 A diamond-like carbon (DLC) film, a BN film, a WC film, a CrN film, a HN film, a VN film, a TiN film, a TiCN film, an Al 2 O film on a bearing surface of a nut part or on a bearing surface of a nut 3 film, ZnO film, SiO 2 film, alumite, metal plating, polymer resin coating, solid lubricating layer, manganese phosphate conversion treatment, carburizing and quenching, nitriding treatment, chromium treatment or any combination of these films The nut according to any one of claims 1 to 3, wherein
PCT/JP2018/047682 2017-12-25 2018-12-25 Fastening nut WO2019131685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019562057A JP7141622B2 (en) 2017-12-25 2018-12-25 fastening nut

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/046471 2017-12-25
JP2017046471 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019131685A1 true WO2019131685A1 (en) 2019-07-04

Family

ID=67063729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047682 WO2019131685A1 (en) 2017-12-25 2018-12-25 Fastening nut

Country Status (2)

Country Link
JP (1) JP7141622B2 (en)
WO (1) WO2019131685A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS465709Y1 (en) * 1967-03-17 1971-03-01
JPS57177922A (en) * 1981-04-24 1982-11-01 Toshiba Corp Bolt
JPS5945320U (en) * 1982-09-20 1984-03-26 新日本製鐵株式会社 Fastening nut
JPS59166010U (en) * 1983-04-22 1984-11-07 新日本製鐵株式会社 Natsuto
JPS61136013A (en) * 1984-12-06 1986-06-23 株式会社 佐賀鉄工所 Locking structure of washer
US5927921A (en) * 1997-11-11 1999-07-27 Sps Technologies, Inc. Enhanced fatigue nut
JP2003004016A (en) * 2001-06-22 2003-01-08 Sumitomo Metals (Kokura) Ltd High tensile bolt, nut, and washer
JP2005282668A (en) * 2004-03-29 2005-10-13 Rikogaku Shinkokai Fastening tool member with fastening sliding face covered with hard coating, fastener mounted therewith and fastening tool member manufacturing method
JP2010209714A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Double link type piston crank mechanism for internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303308A (en) * 1988-05-31 1989-12-07 Tsukiboshi Seisakusho:Kk Locknut
JP4344927B2 (en) 2003-12-24 2009-10-14 住友金属工業株式会社 Fastening member, method for fastening wheel and brake disc, and wheel with disc for railcar
US9708912B2 (en) 2014-10-30 2017-07-18 Siemens Energy, Inc. Turbine rotor nut and bolt arrangement with improved fatigue resistance under centrifugal load

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS465709Y1 (en) * 1967-03-17 1971-03-01
JPS57177922A (en) * 1981-04-24 1982-11-01 Toshiba Corp Bolt
JPS5945320U (en) * 1982-09-20 1984-03-26 新日本製鐵株式会社 Fastening nut
JPS59166010U (en) * 1983-04-22 1984-11-07 新日本製鐵株式会社 Natsuto
JPS61136013A (en) * 1984-12-06 1986-06-23 株式会社 佐賀鉄工所 Locking structure of washer
US5927921A (en) * 1997-11-11 1999-07-27 Sps Technologies, Inc. Enhanced fatigue nut
JP2003004016A (en) * 2001-06-22 2003-01-08 Sumitomo Metals (Kokura) Ltd High tensile bolt, nut, and washer
JP2005282668A (en) * 2004-03-29 2005-10-13 Rikogaku Shinkokai Fastening tool member with fastening sliding face covered with hard coating, fastener mounted therewith and fastening tool member manufacturing method
JP2010209714A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Double link type piston crank mechanism for internal combustion engine

Also Published As

Publication number Publication date
JPWO2019131685A1 (en) 2021-02-04
JP7141622B2 (en) 2022-09-26

Similar Documents

Publication Publication Date Title
US8506227B2 (en) Thread forming screw thread and corresponding thread roll die
US9033624B2 (en) Screw tap and method for the production of a screw tap
US3918345A (en) Thread forming fasteners
US2437638A (en) Stud and installation thereof
US9194416B2 (en) Self-drilling screw and use thereof
US8899898B2 (en) Screw method for forming a screw thread
US20140335345A1 (en) Corrosion-resistant screw, use of a screw of this type in a corrosive environment, and method for the fabrication of a screw of this type
US4097168A (en) Prestressed connection and fastener therefor
Pereira et al. Study of the internal thread process with cut and form taps according to secondary characteristics of the process
US10221880B2 (en) Drilling screw
WO2019131685A1 (en) Fastening nut
JP4787533B2 (en) Tap
US4012884A (en) Prestressed connection and fastener therefor
JP2007292131A (en) Screw with female screw forming function
TW201928221A (en) Fastening screw nut characterized by reducing the load of the first tooth sharing the maximum load of the fastening engagement and by prolonging the fatigue failure life of the crack and the shaft breakage of the screw bolt
JP7285523B2 (en) Fastening structure using tapping screws
JP2008275062A (en) High-hardness screw made of aluminum alloy
WO2018088913A1 (en) Lock washer
TW202223250A (en) Zn-ni as a coating layer on self-drilling screws of austenitic stainless steel
WO2020261605A1 (en) Washer fastening structure
CN114952182B (en) Internal thread step-by-step cold extrusion process
Heiler Cold thread Forming–the chipless alternative for high resistant internal threads
EP4071371A1 (en) Self-drilling self-tapping fastener
CN220600189U (en) Self-tapping self-drilling screw with small drill tail and connecting structure
RU26019U1 (en) THREAD-FORMING ROD PRODUCT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895711

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019562057

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895711

Country of ref document: EP

Kind code of ref document: A1