WO2019131676A1 - Floating-caliper-type disc brake device - Google Patents

Floating-caliper-type disc brake device Download PDF

Info

Publication number
WO2019131676A1
WO2019131676A1 PCT/JP2018/047652 JP2018047652W WO2019131676A1 WO 2019131676 A1 WO2019131676 A1 WO 2019131676A1 JP 2018047652 W JP2018047652 W JP 2018047652W WO 2019131676 A1 WO2019131676 A1 WO 2019131676A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
brake
brake device
caliper
screw
Prior art date
Application number
PCT/JP2018/047652
Other languages
French (fr)
Japanese (ja)
Inventor
吉川 和宏
Original Assignee
曙ブレーキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曙ブレーキ工業株式会社 filed Critical 曙ブレーキ工業株式会社
Publication of WO2019131676A1 publication Critical patent/WO2019131676A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • F16D55/226Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/38Slack adjusters
    • F16D65/40Slack adjusters mechanical
    • F16D65/52Slack adjusters mechanical self-acting in one direction for adjusting excessive play
    • F16D65/56Slack adjusters mechanical self-acting in one direction for adjusting excessive play with screw-thread and nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms

Definitions

  • the present invention relates to a floating caliper type disk brake device.
  • a disk brake device As a floating caliper type disk brake device for railways, a disk brake device is known in which an adjuster mechanism (a gap adjusting mechanism) is integrally incorporated in a wheel support portion (control wheel holder holding portion) of a caliper arm (patent document 1).
  • This adjuster mechanism keeps the stroke of the piston (pressing member of the pressing mechanism) which is built in the brake supporting member supporting portion and hydraulically driven when the linings of the first brake shoe and the second brake shoe wear out. , And automatically adjust the gap between the control rotor and the disk rotor.
  • a residual pressure is generated in the piston cylinder even at the time of brake release, and a piston pressing force is generated.
  • the term "at the time of brake release” as used herein means releasing the generated hydraulic pressure. Therefore, it is necessary for the above-mentioned adjuster mechanism to overcome the piston pressing force due to the residual pressure in the piston cylinder, and to maintain a predetermined gap between the control wheel and the disk rotor at the time of brake release. Therefore, the adjuster mechanism using the friction spring and the rod as the main components requires a large friction force in its configuration, and has a complicated structure.
  • the present invention has been made in view of the above circumstances, and an object thereof is to maintain a predetermined gap between a controller and a disk rotor by a gap adjusting mechanism having a simple structure and to improve maintainability. It is an object of the present invention to provide a floating caliper type disc brake device that can
  • a support A caliper body slidably supported on the support via a slide pin; A first caliper arm and a second caliper arm formed across the wheels on the caliper body; A first control wheel and a second control wheel held by the control wheel holding portions of the first caliper arm and the second caliper arm, respectively; A pressing mechanism provided in the brake control member holding portion of the first caliper arm for driving the first brake member toward the wheel; A gap adjusting mechanism provided in the brake disc holder holding portion and electrically driven to adjust the gap between the first brake disc and the second brake disc and the disc rotor to a predetermined set value at the time of brake release; Floating caliper type disc brake device with.
  • the gap adjusting mechanism provided in the brake control member holding portion of the first caliper arm is electrically driven by the electric motor. Therefore, by controlling the rotation of the electric motor, the clearances between the first and second control rotors and the disc rotor can be adjusted to predetermined set values, and the clearance adjustment mechanism can be made into a simple structure. it can. In addition, the rotation of the electric motor can be controlled for each gap adjustment mechanism, and the gaps can be returned to the initial position for all calipers collectively or for each optional caliper.
  • the floating caliper type disk brake device It further comprises a holding member configured to slidably hold the first control wheel in the wheel rotational axis direction and disposed at an end of the control wheel holding portion of the first caliper arm,
  • the clearance adjustment mechanism drives the holding member.
  • the first control wheel and the second control wheel which are formed long along the arc of the wheel circumferential direction, are used on both sides of the wheel during braking. Long longitudinal ends are slidably supported by holding members perpendicular to the side of the wheel so as to approach and depart parallel to the side. That is, the first control wheel is held slidably in the wheel rotational axis direction by the holding member as the anchor pin. Therefore, the gap adjusting mechanism is configured to drive the holding member, so that the gap between the first control wheel and the disk rotor can be adjusted in the wheel rotational axis direction.
  • the holding member is supported as the anchor pin so as to be slidable in the wheel rotational axis direction with respect to the anchor block.
  • the anchor block is fixed to the end of the brake control holder of the first caliper arm.
  • the anchor pins are usually preassembled into anchor blocks. Therefore, the pre-assembly of the clearance adjustment mechanism is also possible. Therefore, in this disk brake device, the gap adjusting mechanism is integrated into the anchor block assembly, and the mounting is made the same size as the current product, so that it is possible to select the gap adjusting mechanism as required.
  • the pressing mechanism for driving the first control wheel toward the wheel at the time of braking is hydraulically driven by the hydraulic system device, and the first brake is released at the time of brake release.
  • a gap adjusting mechanism for adjusting the gap between the control wheel and the disk rotor is electrically driven by the electrical system device.
  • the gap adjusting mechanism drives a pressing member of the pressing mechanism that is hydraulically driven.
  • the gap adjusting mechanism for adjusting the gap between the first control wheel and the disk rotor at the time of brake release drives the first control wheel when pressing.
  • the pressing member of the pressing mechanism provided to Specifically, the pressing member is a piston provided in a pressing mechanism hydraulically driven as a service brake. Therefore, the gap adjusting mechanism can apply a stable adjusting force by directly driving the piston of the pressing mechanism that presses the first control wheel.
  • the gap adjusting mechanism includes a cylindrical bottomed cylindrical holding member, a nut rotatably accommodated in the holding member in a relatively non-rotatable manner in the axial direction, and a screw whose front end side is screwed to the nut; It has a spring member which biases the holding member in a direction away from the wheel with respect to the nut, and an electric motor which rotationally drives the screw.
  • the screw when the electric motor is driven to rotate, the screw is rotated.
  • the screw rotates with respect to the nut accommodated non-rotatably relative to the holding member (anchor pin).
  • the nut held in a non-rotatable manner relative to the holding member slides in the wheel rotation axis direction (the direction along the wheel rotation axis) by the rotation of the screw engaged therewith.
  • the holding member drives the first brake element along the wheel rotational axis direction, and the gap between the first brake element and the second brake element and the disc rotor is adjusted.
  • the gap adjusting mechanism is configured of a screw rotationally driven by the electric motor, a nut accommodated in the holding member, and a spring member urging the holding member with respect to the nut in a direction away from the wheel. Therefore, the gap adjusting mechanism can perform the gap adjustment only by controlling the rotation of the electric motor, and a large friction force is not necessary at the time of the gap adjustment, so the disc brake device can always generate a stable braking force. . Further, the spring member biases the holding member against the nut in a direction away from the wheel, so that the remaining pressure acting in the piston cylinder of the hydraulically driven pressing mechanism is directed to the outer surface of the opposing disc rotor. Can resist the pressing member (piston) of the pressing mechanism to be moved. Therefore, by setting the spring constant of the spring member appropriately, it is possible to easily maintain a predetermined gap between the control wheel and the disk rotor.
  • the gap adjusting mechanism includes a cylindrical bottomed cylindrical pressing member, a nut rotatably accommodated in the pressing member in a relatively non-rotatable manner in the axial direction, and a screw having a tip end screwed on the nut; It has a spring member which biases the pressing member in a direction away from the wheel with respect to the nut, and an electric motor which rotationally drives the screw.
  • the screw when the electric motor is rotationally driven, the screw is rotated.
  • the screw rotates with respect to the nut housed non-rotatably relative to the pressing member (piston).
  • the nut held in a relatively non-rotatable manner by the pressing member slides in the wheel rotational axis direction by the rotation of the screw engaged therewith.
  • the pressing member drives the first brake element along the wheel rotational axis direction to adjust the gap between the first brake element and the second brake element and the disc rotor.
  • the gap adjusting mechanism is configured of a screw rotationally driven by the electric motor, a nut accommodated in the pressing member, and a spring member biasing the pressing member in a direction away from the wheel with respect to the nut. Therefore, the gap adjusting mechanism can perform the gap adjustment only by controlling the rotation of the electric motor, and a large friction force is not necessary at the time of the gap adjustment, so the disc brake device can always generate a stable braking force. . Further, the spring member biases the pressing member (piston) in the direction away from the wheel with respect to the nut, whereby the outside of the disc rotor opposed by the residual pressure acting in the piston cylinder of the hydraulically driven pressing mechanism. It is possible to resist the pressing member that is moving toward the side surface. Therefore, by setting the spring constant of the spring member appropriately, it is possible to easily maintain a predetermined gap between the control wheel and the disk rotor.
  • the holding member (anchor pin) is driven back and forth in the wheel rotational axis direction with respect to the anchor block.
  • the first wheel can be moved relative to the outer surface of the disk rotor.
  • the pressing member when the screw is rotationally driven by the electric motor, the pressing member (piston) is driven to move back and forth in the wheel rotational axis direction with respect to the control wheel holder.
  • the first wheel can be moved relative to the outer surface of the disk rotor.
  • the floating caliper type disk brake device According to the floating caliper type disk brake device according to the present invention, it is possible to maintain a predetermined gap between the control rotor and the disk rotor by the gap adjusting mechanism having a simple structure, and to improve maintainability. it can.
  • FIG. 1 is a perspective view of a disc brake device according to a first embodiment of the present invention.
  • FIG. 2 is a side view of the disc brake device shown in FIG. 1 as viewed from the support side.
  • FIG. 3 is a side view in which a portion of the disc brake device shown in FIG. 1 is viewed from the side of the first brake shoe and the second brake shoe.
  • FIG. 4 is an enlarged view of an essential part of FIG. 5 is an exploded perspective view of the second pressing mechanism shown in FIG. 4.
  • FIG. 5 (a) is an exploded perspective view seen from the anchor block side
  • FIG. 5 (b) is a disassembled view seen from the motor unit side It is a perspective view.
  • FIG. 6 is an exploded perspective view of the anchor block shown in FIG. FIG.
  • FIG. 7 is an exploded perspective view of the anchor block shown in FIG.
  • FIG. 8 is a perspective view of a disk brake device according to a second embodiment of the present invention as viewed from the first caliper arm side.
  • FIG. 9 is an exploded perspective view of the disk brake device shown in FIG. 8 as viewed from the second caliper arm side.
  • FIG. 10 is an exploded perspective view of the conventional anchor block shown in FIG.
  • FIG. 11 is an enlarged sectional view of an essential part of a disk brake device according to a third embodiment of the present invention.
  • FIG. 1 is a perspective view of a disc brake device 100 according to a first embodiment of the present invention
  • FIG. 2 is a side view of the disc brake device 100 shown in FIG. 1 viewed from the support 27 side
  • FIG. FIG. 4 is an enlarged view of an essential part of FIG. 3, in which a portion of the disc brake device 100 as viewed from the side of the first brake element 11 and the second brake element 13 is cut away.
  • a floating caliper type disk brake device 100 according to a first embodiment of the present invention will be described by way of example for use in a railway vehicle disk brake.
  • the disc brake device 100 can be suitably used, for example, as a brake device of various industrial drive devices that generate a braking force to a rotating member such as an elevator.
  • the disk brake device 100 includes the support 15, the caliper body 17, the first caliper arm 19 and the second caliper arm 21, the first control wheel 11 and the second control wheel 13, and the pressure.
  • the mechanism 23 and the clearance adjustment mechanism 25 are included as main components.
  • the support 15 is supported by a support 27 coupled to a bogie frame (not shown).
  • the support 15 has an upper cylindrical support 29 and a lower cylindrical support 31.
  • the upper cylindrical support portion 29 and the lower cylindrical support portion 31 each include a slide pin 33.
  • the caliper body 17 is slidably supported by the support 15 via the slide pin 33 along the longitudinal direction (left and right direction in FIG. 2) of the slide pin 33. Furthermore, the caliper body 17 has a first caliper arm 19 and a second caliper arm 21.
  • the first caliper arm 19 and the second caliper arm 21 are formed on the caliper body 17 as parallel bifurcated arms so as to straddle the wheel 35.
  • Each base 37 of the first caliper arm 19 and the second caliper arm 21 is supported on one end side and the other end side of the upper and lower slide pins 33.
  • the first caliper arm 19 and the second caliper arm 21 serve as the control wheel holder 39 and the control wheel holder 41, respectively, on the opposite side of the base 37.
  • the first control wheel 11 and the second control wheel 13 are held by the control wheel holding portion 39 and the control wheel holding portion 41 of the first caliper arm 19 and the second caliper arm 21 via the control wheel guide 48 and the dovetail groove. .
  • the first control wheel 11 and the second control wheel 13 are so-called brake pads, and the control wheel holding portion 39 and the control wheel holding portion 41 are opposed to the outer side surface of the disk rotor 36 attached to both side surfaces of the wheel 35. Attached to each.
  • a structure in which the lining surface of these brake pads presses the disc rotor 36 to perform a braking operation will be described as an example.
  • the disc brake device 100 may be configured to pinch the both sides of the wheel 35 directly for braking.
  • the pressing mechanism 23 and the gap adjusting mechanism 25 independently drive the first control wheel 11 toward the wheel 35 respectively.
  • the pressing mechanism 23 and the gap adjusting mechanism 25 are provided in the wheel control unit 39 of the first caliper arm 19.
  • the pressing mechanism 23 hydraulically drives the first control wheel 11 toward the outer surface of the disk rotor 36.
  • the piston 45 which is a pressing member of the pressing mechanism 23, has its tip end in contact with the brake pad guide 48, receives hydraulic pressure supply through the hydraulic pressure inlet 24 provided in the first caliper arm 19, and is directed to the disc rotor 36 side. By projecting, the first control wheel 11 is pressed against the outer surface of the disk rotor 36.
  • the caliper body 17 is slidably supported by the support 15 along the longitudinal direction (left and right direction in FIG. 2) of the slide pin 33.
  • the first control wheel 11 and the second control wheel 13 held by the control wheel holder holding portion 39 and the control wheel holding portion 41 of the first caliper arm 19 and the second caliper arm 21 via the control wheel guide 48 and the dovetail groove, Disc rotors 36 mounted on both sides of the wheel 35 are pinched from both sides. At this time, the wheel 35 is braked by the frictional force generated with the disk rotor 36.
  • the first brake element 11 and the second brake element 13 are composed of a lining 12 in contact with the disc rotor 36 and a back plate 14 fixed to the back of the lining 12.
  • the back plates 14 are configured to be fitted into the dovetail grooves formed in the control wheel guide 48 from above and below. Furthermore, the back plate 14 of the first control wheel 11 is sandwiched between the holding members 47 as a pair of upper and lower anchor pins, and the falling off from the dovetail groove is prevented.
  • the back plate 14 of the second control wheel 13 whose clearance adjustment mechanism 25 is not configured is sandwiched between a pair of upper and lower anchor blocks 51 (see FIG. 9), and is inserted from the dovetail groove provided in the control wheel holder 41. Fallout is prevented.
  • the gap adjusting mechanism 25 is attached to each of the upper end and the lower end of the control child holding portion 39.
  • the gap adjusting mechanism 25 electrically drives a holding member 47 disposed at an end of the brake support holder 39 of the first caliper arm 19 to hold the first brake shoe 11 slidably in the wheel rotational axis direction. That is, since the holding member 47 of the gap adjusting mechanism 25 in the first embodiment holds the first brake element 11 slidably in the wheel rotational axis direction, the upper and lower ends of the brake disc holding portion 39 in the first caliper arm 19 It is an anchor pin arranged in the section.
  • the holding member 47 is slidable along the wheel rotation axis direction with respect to anchor blocks 49 fixed to the upper and lower end portions of the brake pad holder 39 of the first caliper arm 19.
  • Anchor blocks 49 fixed to the upper and lower end portions of the brake pad holder 39 of the first caliper arm 19.
  • a normal anchor block 51 which does not constitute the clearance adjustment mechanism 25 is provided at the upper and lower end portions of the wheel support holding portion 41 of the second caliper arm 21.
  • the clearance adjustment mechanism 25 adjusts the clearance between the first control wheel 11 and the second control wheel 13 and the disk rotor 36 to a predetermined set value (for example, 6 mm on both sides) at the time of brake release.
  • the clearance adjustment mechanism is provided in the control rod holder 39 of the first caliper arm 19.
  • the clearance adjusting mechanism 25 includes a bottomed cylindrical holding member 47, a nut 53 relatively non-rotatably and axially slidably housed in the holding member, and a screw 55 whose front end side is screwed with the nut 53.
  • a spring member 88 biasing the holding member 47 in a direction away from the wheel 35 with respect to the nut 53, and an electric motor 57 driving the screw 55 as main components.
  • the clearance adjusting mechanism 25 operates so as to keep the moving amount of the piston 45 in the pressing mechanism 23 constant when the linings of the first wheel 11 and the second wheel 13 wear.
  • FIG. 5 is an exploded perspective view of the gap adjusting mechanism 25 shown in FIG. 4.
  • FIG. 5 (a) is an exploded perspective view seen from the anchor block 49 side
  • FIG. 5 (b) is seen from the motor unit 59 side. It is a disassembled perspective view.
  • the gap adjusting mechanism 25 according to the first embodiment includes a motor unit 59 and an anchor block 49.
  • the rotation of the drive shaft 58 of the electric motor 57 is decelerated by the reduction gear 61 and the motor unit 59 is output from the output shaft 63.
  • the motor unit 59 is integrally fixed to the anchor block 49 by the fixing screw 65.
  • the motor unit 59 is fixed to the anchor block 49 so as to be non-rotatably coupled to the screw 55 whose output shaft 63 is accommodated in the anchor block 49. That is, the motor unit 59 inputs the driving force of the electric motor 57 to the screw 55 in the anchor block 49 via the output shaft 63.
  • FIGS. 6 and 7 are an exploded perspective view of the anchor block 49 shown in (a) of FIG. 5, and FIG. 7 is an exploded perspective view of the anchor block 49 shown in (b) of FIG.
  • the anchor block 49 has a block body 67.
  • the block main body 67 bolt holes 71 for inserting a pair of bolts 69 for fixing to the brake pad holder 39 are bored.
  • the block main body 67 has a cylindrical portion 73 coaxially accommodating the holding member 47, the nut 53, the screw 55 and the like described above.
  • the anchor block 49 is provided in the cylindrical portion 73 from the side of the control rod holding portion 39, the holding member 47, the retaining ring 77, the heat shield plate 75, the boot 79, the washer 81, the retaining ring 83, the bush 85, the nut 53, the spring member A spring receiver 84, a snap ring 86, a screw 55, a thrust bearing 87, an O-ring 89, a bush 91, and a snap ring 93 are coaxially accommodated.
  • the members such as the holding member 47, the nut 53, and the screw 55 are assembled as shown in FIG.
  • the holding member 47 as an anchor pin is a member that receives a braking torque.
  • the holding member 47 is accommodated in the cylindrical portion 73 of the anchor block 49 fixed to the upper and lower end portions of the control rod holding portion 39 of the first caliper arm 19.
  • the holding member 47 is slidably supported along the wheel rotation axis direction via the bush 85.
  • the gap between the holding member 47 and the cylindrical portion 73 is closed by the boot 79.
  • the tip portion 47a protruding from the fitting holes 48a and 48b is configured to sandwich the back plate 14 from above and below.
  • the holding member 47 is axially slidable.
  • the male screw 55 a of the screw 55 is screwed into the female screw 53 b of the nut 53.
  • the holding member 47 is biased away from the wheel 35 with respect to the nut 53 by a spring member 88 and a spring receiver 84.
  • the spring member 88 and the spring receiver 84 are interposed between the base of the engagement projection 53 a of the nut 53 and the snap ring 86 locked in the holding member 47.
  • the screw 55 housed in the anchor block 49 has a thrust bearing 87 interposed between the flange 55 b and the bottom wall of the cylindrical portion 73. Further, a bush 91 is interposed between the base of the screw 55 penetrating the bottom wall of the cylindrical portion 73 and the bottom wall of the cylindrical portion 73. Further, the base of the screw 55 penetrating the bottom wall of the cylindrical portion 73 is prevented by the retaining ring 93. Therefore, the screw 55 is arranged so as to be rotatable relative to the anchor block 49 and immovable in the wheel rotational axis direction. Then, the base of the screw 55 that penetrates the bottom wall of the cylindrical portion 73 is serrated with the output shaft 63 of the motor unit 59, and is relatively non-rotatably connected.
  • the holding member 47 which is an anchor pin is driven to advance and retract in the wheel rotational axis direction with respect to the anchor block 49.
  • the first control wheel 11 can be moved relative to the outer surface of the disk rotor 36 via the same.
  • the pressing mechanism 23 is hydraulically driven at the time of braking.
  • the first brake element 11 presses the outer surface of the disk rotor 36 of the opposing wheel 35 from the direction along the wheel rotation axis.
  • the first control wheel 11 which has pressed the disk rotor 36 of the wheel 35 receives a reaction force from the disk rotor 36.
  • the reaction force causes the caliper body 17 to move in the direction along the slide pin 33 via the brake control member holding portion 39 and the first caliper arm 19.
  • the second brake 13 held by the brake holder 41 of the second caliper arm 21 presses the outer surface of the disc rotor 36 of the opposing wheel 35.
  • the wheel 35 is braked by being pinched by the first restrictor 11 and the second restrictor 13 from both sides in the wheel rotational axis direction.
  • the holding member 47 of the gap adjusting mechanism 25 connected to the brake disc guide 48 is a spring member 88 when the first brake disc 11 moves in the direction to press the outer surface of the disc rotor 36 by the pressing mechanism 23. It moves toward the wheel 35 together with the first control wheel 11 against the biasing force.
  • the gap adjusting mechanism 25 is appropriately electrically driven in the disk brake device 100 according to the first embodiment.
  • the gap adjustment mechanism 25 provided in the brake pad holder 39 of the first caliper arm 19 rotates the electric motor 57 to rotate the screw 55.
  • the screw 55 rotates, the nut 53 moves along the axial direction of the screw 55 and moves the holding member 47 in the protruding direction.
  • the first brake element 11 presses the outer surface of the disc rotor 36 of the opposing wheel 35 in the wheel rotational axis direction.
  • the first control wheel 11 which has pressed the disk rotor 36 of the wheel 35 receives a reaction force from the disk rotor 36.
  • the reaction force causes the caliper body 17 to move in the direction along the slide pin 33 via the brake control member holding portion 39 and the first caliper arm 19.
  • the second brake 13 held by the brake holder 41 of the second caliper arm 21 abuts on the outer surface of the disk rotor 36 of the opposing wheel 35.
  • the first control wheel 11 and the second control wheel 13 have no gap with respect to the wheel 35.
  • the gap adjustment mechanism 25 can perform the gap adjustment only by controlling the rotation of the electric motor 57.
  • the timing for operating the clearance adjustment mechanism 25 may be any time as long as the brake is released, and may be each time the brake is released immediately after the disc brake device 100 has been actuated, or may be released after a predetermined time has elapsed.
  • the electric motor 57 is reversely rotated to drive the holding member 47 backward with the nut 53. Then, the gap between the first wheel 11 and the second wheel 13 and the outer surface of the disk rotor 36 of the opposite wheel 35 is expanded, and the first wheel 11 and the second wheel 13 are returned to the initial position.
  • the gap adjusting mechanism 25 provided in the brake pad retaining portion 39 of the first caliper arm 19 is electrically driven by the electric motor 57. Therefore, only by controlling the rotation of the electric motor 57, it is possible to adjust the gap between the first brake disc 11 and the second brake disc 13 and the disc rotor 36 to a predetermined set value, and the gap adjusting mechanism 25 is simple. It can be structured. In addition, the rotation of the electric motor 57 can be controlled for each gap adjustment mechanism 25, and all the calipers can be returned to the initial position collectively or collectively for any caliper.
  • the first brake element 11 and the second brake element 13 formed in a long shape along the arc of the wheel circumferential direction are side surfaces of both sides of the wheel 35 at the time of braking.
  • the long longitudinal direction both ends (upper and lower ends) are slidably supported by holding members 47 perpendicular to the side surface of the wheel 35 so as to approach and separate in parallel to the above. That is, the first control wheel 11 is slidably held in the wheel rotational axis direction by the holding member 47 as an anchor pin. Therefore, the gap adjusting mechanism 25 is configured to drive the holding member 47, so that the gap between the first control wheel 11 and the disk rotor 36 can be adjusted in the wheel rotational axis direction.
  • the holding member 47 is supported as an anchor pin so as to be slidable in the wheel rotational axis direction with respect to the anchor block 49.
  • the anchor blocks 49 are fixed to the upper and lower ends of the control rod holder 39 of the first caliper arm 19.
  • An anchor pin 97 for slidably holding the first control wheel 11 in the wheel rotational axis direction is usually preassembled into an anchor block 95 (see FIGS. 9 and 10). Therefore, pre-assembly of the gap adjusting mechanism 25 is also possible. Therefore, in the disc brake device 100, the gap adjusting mechanism 25 is integrated into the anchor block assembly, and the mounting is made the same size as the current product, so that the gap adjusting mechanism 25 can be selected as needed.
  • the pressing mechanism 23 for driving the first brake element 11 toward the wheel 35 at the time of braking is hydraulically driven by the hydraulic system device, and the first brake is released when the brake is released.
  • a gap adjusting mechanism 25 for adjusting the gap between the rotor 11 and the disk rotor 36 is electrically driven by the electrical system device.
  • the screw 55 when the electric motor 57 is rotationally driven, the screw 55 is rotated.
  • the screw 55 rotates with respect to the nut 53 accommodated so as not to be rotatable relative to the holding member 47 (anchor pin).
  • the nut 53 held so as not to be relatively rotatable by the holding member 47 slides in the wheel rotational axis direction by the rotation of the screw 55 engaged with it.
  • the holding member 47 drives the first brake element 11 along the wheel rotational axis direction, and the first brake element 11 and the second brake element 13 and the disc rotor 36 Adjust the gap.
  • the gap adjusting mechanism 25 is a screw 55 rotationally driven by the electric motor 57, a nut 53 accommodated in the holding member 47, and a spring urging the holding member 47 away from the wheel 35 with respect to the nut 53. And a member 88. Therefore, the gap adjusting mechanism 25 can perform the gap adjustment only by controlling the rotation of the electric motor 57, and since the large friction force is not necessary at the time of the gap adjustment, the disc brake device 100 always generates a stable braking force. be able to.
  • the spring member 88 biases the holding member 47 against the nut 53 in a direction away from the wheel 35, so that the disc opposed by the residual pressure acting in the piston cylinder 40 of the hydraulically driven pressing mechanism 23 It is possible to resist the piston 45 of the pressing mechanism 23 which is going to move towards the outer surface of the rotor 36. Therefore, by setting the spring constant of the spring member 88 appropriately, it is possible to easily maintain the predetermined gap between the first control wheel 11 and the second control wheel 13 and the disk rotor 36.
  • the predetermined gap between the first brake disc 11 and the second brake disc 13 and the disc rotor 36 is obtained by the gap adjusting mechanism 25 having a simple structure. While being maintainable, maintainability can be improved.
  • the pair of clearance adjustment mechanisms 25 is provided at the upper end and the lower end of the control rod holder 39, so the first control wheel 11 is against the side surface of the wheel 35. It can be approached and separated with high parallelism.
  • FIG. 8 is a perspective view of the disc brake device 200 according to the second embodiment of the present invention as viewed from the first caliper arm 19 side
  • FIG. 9 is a view of the disc brake device 200 shown in FIG. 8 as viewed from the second caliper arm 21 side. It is a disassembled perspective view.
  • the same components as those of the first embodiment are designated by the same reference numerals and their description will not be repeated.
  • one gap adjusting mechanism 25 is attached only to the upper end of the control / roller holding portion 39. That is, in the disc brake device 200, the clearance adjustment mechanism 25 is not attached to the lower end of the control rod holder 39.
  • an anchor block 95 provided with an anchor pin 97 is attached to the lower end of the control wheel holder 39.
  • the other configuration is the same as that of the disk brake device 100 of the first embodiment.
  • FIG. 10 is an exploded perspective view of the anchor block 95 of the conventional configuration shown in FIG.
  • the anchor block 95 restricts the movement of the wheel holding portion 39 in the wheel rotational direction, which occurs during braking.
  • the anchor block 95 has a block body 99.
  • bolt holes 71 for inserting a pair of bolts 69 for fixing to the brake disc holder holding portion 39 are bored.
  • the block main body 99 has a cylindrical portion 101 coaxially accommodating the anchor pin 97 and the like.
  • the anchor block 95 is, as shown in FIG. 10, in the cylindrical portion 101, from the side of the control rod holding portion, the anchor pin 97, the O ring 103, the retaining ring 105, the heat shield plate 107, the boot 109, the washer 111, the retaining ring A bush 115, a retaining ring 117, an O-ring 119, a closing plate 121, and a cap 123 are coaxially accommodated.
  • the disc brake device 200 since only one gap adjusting mechanism 25 is provided, the disc brake device 200 can be manufactured with a simple structure, light weight, and low cost.
  • FIG. 11 is an enlarged sectional view of an essential part of a disc brake device 300 according to a third embodiment of the present invention.
  • the same components as those of the first embodiment are designated by the same reference numerals and their description will not be repeated.
  • the gap adjusting mechanism 125 electrically drives a piston 129 which is a pressing member of the pressing mechanism 127 hydraulically driven at the time of braking.
  • the clearance adjusting mechanism 125 has a piston 129 which is a bottomed cylindrical pressing member, a nut 53 rotatably accommodated in the piston 129 in a relatively non-rotatable manner in the axial direction, and a nut 53 screwed at the tip end.
  • a screw 55, a spring member 88 urging the piston 129 in a direction away from the wheel 35 with respect to the nut 53, and an electric motor 57 rotating the screw 55 are provided as main components.
  • the gap adjusting mechanism 125 for adjusting the gap between the first brake element 11 and the disc rotor 36 at the time of brake release hydraulically drives the first brake element 11 at the time of braking.
  • the piston 129 of the pressing mechanism 127 provided for the purpose of driving is electrically driven.
  • the motor unit 59 is attached to the rear (rightward in FIG. 11) of the pressing mechanism 127 provided in the brake pad holder 39.
  • the motor unit 59 of the third embodiment is integrally fixed to the brake control member holding portion 39.
  • the motor unit 59 is fixed to the control wheel holder 39, so that the output shaft 63 is non-rotatably connected to the screw 55 in which the output cylinder 63 is accommodated in the piston cylinder 140 of the control wheel holder 39. That is, the motor unit 59 inputs the driving force of the electric motor 57 to the screw 55 in the piston cylinder 140 via the output shaft 63.
  • a piston 129 as a pressing member is a piston of the pressing mechanism 127 hydraulically driven at the time of braking, is accommodated in the piston cylinder 140 of the control child holder 39, and is slidably supported along the wheel rotation axis direction There is.
  • a packing 130 seals the inner circumferential surface of the piston cylinder 140 and the outer circumferential surface of the piston 129.
  • the tip end of the piston 129 projecting from the piston cylinder 140 of the brake control member holding portion 39 is in contact with the brake control device guide 48 and receives the supply of the hydraulic pressure through the hydraulic pressure inlet 24 arranged in the first caliper arm 19 By projecting toward the rotor 36, the first control wheel 11 is pressed against the outer surface of the disk rotor 36.
  • the nut 53 accommodated in the bottomed cylindrical piston 129 is engaged with the spline groove in the piston 129 by engaging a plurality of engagement protrusions 53 a formed on a flange portion protruding from the tip of the outer peripheral portion.
  • the piston 129 is non-rotatable relative to the piston 129 and axially slidable.
  • the piston 129 is biased by a spring member 88 and a spring receiver 84 in a direction away from the wheel 35 with respect to the nut 53.
  • the spring member 88 and the spring receiver 84 are interposed between the base of the engagement projection 53 a of the nut 53 and the snap ring 86 locked in the piston 129.
  • the thrust bearing 87 is interposed between the flange 55 b and the bottom wall of the piston cylinder 140. Further, a bush 91 is interposed between the base of the screw 55 penetrating the bottom wall of the piston cylinder 140 and the bottom wall of the piston cylinder 140. Further, the base of the screw 55 which penetrates the bottom wall of the piston cylinder 140 is prevented by the retaining ring 93. Therefore, the screw 55 is disposed so as to be relatively rotatable with respect to the control rod holder 39 and immovable in the wheel rotational axis direction. Then, the base of the screw 55 which has penetrated the bottom wall of the piston cylinder 140 is serrated with the output shaft 63 of the motor unit 59 so as to be non-rotatably coupled.
  • the piston 55 of the pressing mechanism 127 which is a pressing member, is driven to advance / retract in the wheel rotational axis direction with respect to the control rod holder 39 by the screw 55 being rotationally driven by the electric motor 57.
  • the first control wheel 11 can be moved relative to the outer surface of the disk rotor 36 via the control wheel guide 48.
  • the pressing mechanism 127 is hydraulically driven.
  • the piston 129 moves in the direction approaching the wheel 35 against the biasing force of the spring member 88. Therefore, first, the first brake element 11 presses the outer surface of the disc rotor 36 of the facing wheel 35 from the direction along the wheel rotation axis.
  • the first control wheel 11 which has pressed the disk rotor 36 of the wheel 35 receives a reaction force from the disk rotor 36.
  • the reaction force causes the caliper body 17 to move in the direction along the slide pin 33 via the brake control member holding portion 39 and the first caliper arm 19.
  • the gap adjusting mechanism 125 is appropriately electrically driven in the disk brake device 300 according to the third embodiment.
  • the gap adjustment mechanism 125 provided in the brake pad holder 39 of the first caliper arm 19 rotates the electric motor 57 to rotate the screw 55.
  • the screw 55 rotates, the nut 53 moves along the axial direction of the screw 55 and moves the piston 129 in the projecting direction.
  • the first brake element 11 presses the outer surface of the disc rotor 36 of the opposing wheel 35 in the wheel rotational axis direction.
  • the first control wheel 11 which has pressed the disk rotor 36 of the wheel 35 receives a reaction force from the disk rotor 36.
  • the reaction force causes the caliper body 17 to move in the direction along the slide pin 33 via the brake control member holding portion 39 and the first caliper arm 19.
  • the second brake 13 held by the brake holder 41 of the second caliper arm 21 abuts on the outer surface of the disk rotor 36 of the opposing wheel 35.
  • the first control wheel 11 and the second control wheel 13 have no gap with respect to the wheel 35.
  • the gap adjusting mechanism 125 can perform the gap adjustment only by controlling the rotation of the electric motor 57.
  • the electric motor 57 is reversely rotated to drive the piston 129 backward with the nut 53. Then, the gap between the first wheel 11 and the second wheel 13 and the outer surface of the disk rotor 36 of the opposite wheel 35 is expanded, and the first wheel 11 and the second wheel 13 are returned to the initial position.
  • the gap adjusting mechanism 125 for adjusting the gap between the first brake disc 11 and the second brake disc 13 and the disc rotor 36 at the time of brake release is the first brake disc at the time of braking.
  • 11 drives a piston 129 of a pressing mechanism 127 provided for pressing and driving 11. Therefore, the gap adjusting mechanism 125 can apply a stable adjusting force by directly driving the piston 129 of the pressing mechanism 127 that presses the first brake element 11.
  • the screw 55 when the electric motor 57 is rotationally driven, the screw 55 is rotated.
  • the screw 55 rotates with respect to the nut 53 housed non-rotatably with respect to the piston 129.
  • the nut 53 held so as not to be relatively rotatable to the piston 129 slides in the wheel rotational axis direction by the rotation of the screw 55 engaged with it.
  • the piston 129 drives the first brake element 11 along the wheel rotational axis direction by the sliding of the nut 53 in the wheel rotational axis direction, and the gap between the first brake element 11 and the second brake element 13 and the disc rotor 36 Adjust the
  • the gap adjusting mechanism 125 includes a screw 55 rotationally driven by the electric motor 57 and a nut 53 accommodated in the piston 129, and a spring member 88 urging the piston 129 away from the wheel 35 with respect to the nut 53. It consists of Therefore, the clearance adjustment mechanism 125 can perform clearance adjustment only by controlling the rotation of the electric motor 57, and a large friction force is not necessary at the time of clearance adjustment, so the disc brake device 300 always generates a stable braking force. be able to.
  • the spring member 88 biases the piston 129 against the nut 53 in the direction away from the wheel 35, whereby the disc rotor opposed by the residual pressure acting in the piston cylinder 140 of the hydraulically driven pressing mechanism 127.
  • the piston 129 can be resisted to move towards the outer surface of 36. Therefore, by setting the spring constant of the spring member 88 appropriately, it is possible to easily maintain the predetermined gap between the first control wheel 11 and the second control wheel 13 and the disk rotor 36.
  • the clearance adjusting mechanism 125 is a pressing member by the electric motor 57 rotationally driving the screw 55 disposed so as to be relatively rotatable with respect to the control rod holder 39 and immovable in the wheel rotational axis direction.
  • the piston 129 is driven to move forward and backward in the wheel rotational axis direction with respect to the brake control member holding portion 39, and the first brake control member 11 can be moved with respect to the outer surface of the one disk rotor 36.
  • the predetermined gap between the first brake disc 11 and the second brake disc 13 and the disc rotor 36 is obtained by the gap adjusting mechanism 125 having a simple structure. While being maintainable, maintainability can be improved.
  • a floating caliper type disk brake device (300) according to the above [5], which The clearance adjustment mechanism (125) The bottomed cylindrical pressing member (piston 129); A nut (53) accommodated in the pressing member (piston 129) so as to be non-relatively rotatable and axially slidable; A screw (55) whose tip end is screwed to the nut (53); A spring member (88) urging the pressing member (piston 129) away from the wheel (35) with respect to the nut (53); And an electric motor (57) for rotationally driving the screw (55).
  • the clearance adjustment mechanism (125) The bottomed cylindrical pressing member (piston 129); A nut (53) accommodated in the pressing member (piston 129) so as to be non-relatively rotatable and axially slidable; A screw (55) whose tip end is screwed to the nut (53); A spring member (88) urging the pressing member (piston 129) away from the wheel (35) with respect to
  • the present invention is not limited to the embodiments described above, and appropriate modifications, improvements, etc. are possible.
  • the material, shape, size, number, arrangement location, and the like of each component in the embodiment described above are arbitrary and not limited as long as the present invention can be achieved.
  • the present application is also based on Japanese Patent Application (Japanese Patent Application No. 2017-254159) filed on December 28, 2017, the contents of which are incorporated herein by reference.
  • the floating caliper type disk brake device of the present invention it is possible to maintain a predetermined gap between the control rotor and the disk rotor by the gap adjusting mechanism having a simple structure, and to improve maintainability. .

Abstract

A floating-caliper-type disc brake device (100) that comprises: first brake shoes (11) and second brake shoes (13) that are respectively held by brake shoe holding parts (39, 41) of a first caliper arm (19) and a second caliper arm that are formed to straddle a wheel at a caliper body (17) that is slidably supported by a support body (15); pressing mechanisms (23) that drive the first brake shoes (11) toward the wheel; and electrically driven interval adjustment mechanisms (25) that are provided to brake shoe holding parts (39) for adjusting the interval between the first brake shoe (11) and second brake shoe (13) and a disc rotor (36) to a prescribed set value during brake release.

Description

フローティングキャリパタイプのディスクブレーキ装置Floating caliper type disc brake device
 本発明は、フローティングキャリパタイプのディスクブレーキ装置に関する。 The present invention relates to a floating caliper type disk brake device.
 鉄道用のフローティングキャリパタイプのディスクブレーキ装置として、キャリパアームの制輪子支持部(制輪子保持部)に、アジャスタ機構(隙間調整機構)を一体に組み込んだディスクブレーキ装置が知られている(特許文献1参照)。
 このアジャスタ機構は、第1制輪子及び第2制輪子のライニングが摩耗した際、制輪子支持部に内蔵されて油圧駆動されるピストン(押圧機構の押圧部材)のストロークを一定ストロークに保つように、制輪子とディスクロータとの隙間を自動調整するものである。
As a floating caliper type disk brake device for railways, a disk brake device is known in which an adjuster mechanism (a gap adjusting mechanism) is integrally incorporated in a wheel support portion (control wheel holder holding portion) of a caliper arm (patent document 1).
This adjuster mechanism keeps the stroke of the piston (pressing member of the pressing mechanism) which is built in the brake supporting member supporting portion and hydraulically driven when the linings of the first brake shoe and the second brake shoe wear out. , And automatically adjust the gap between the control rotor and the disk rotor.
日本国特開平11-230209号公報Japanese Patent Application Laid-Open No. 11-230209
 油圧駆動される鉄道用のディスクブレーキ装置は、ブレーキ緩解時でもピストンシリンダ内に残圧が発生しており、ピストン押力が発生している。なお、ここでいうブレーキ緩解時とは、発生した油圧を解放することをいう。そこで、上述のアジャスタ機構は、ピストンシリンダ内の残圧によるピストン押力に打ち勝ち、ブレーキ緩解時に制輪子とディスクロータとの間に所定の隙間を維持する必要がある。そのため、フリクションスプリングとロッドを主要な構成として使用しているアジャスタ機構は、その構成上、大きなフリクション力が必要となり、複雑な構造となっている。そして、このフリクション力が、隙間調整時はブレーキ力に対して減力側に働いているため、ディスクブレーキ装置が常に安定したブレーキ力を発生するためには、フリクション力を正確に調整する必要があった。
 また、パッド交換時には、1キャリパずつアジャスタ機構を初期位置に戻す作業が必要となり、メンテナンス性がよくなかった。
In a hydraulically driven railway disc brake device, a residual pressure is generated in the piston cylinder even at the time of brake release, and a piston pressing force is generated. The term "at the time of brake release" as used herein means releasing the generated hydraulic pressure. Therefore, it is necessary for the above-mentioned adjuster mechanism to overcome the piston pressing force due to the residual pressure in the piston cylinder, and to maintain a predetermined gap between the control wheel and the disk rotor at the time of brake release. Therefore, the adjuster mechanism using the friction spring and the rod as the main components requires a large friction force in its configuration, and has a complicated structure. And since this friction force works on the reducing side with respect to the braking force at the time of gap adjustment, in order for the disc brake device to always generate stable braking force, it is necessary to accurately adjust the friction force. there were.
Further, at the time of pad replacement, it is necessary to return the adjuster mechanism to the initial position one by one, and maintenance is not good.
 本発明は上記状況に鑑みてなされたもので、その目的は、簡単な構造の隙間調整機構により制輪子とディスクロータとの間の所定の隙間を維持することができると共に、メンテナンス性を向上させることができるフローティングキャリパタイプのディスクブレーキ装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to maintain a predetermined gap between a controller and a disk rotor by a gap adjusting mechanism having a simple structure and to improve maintainability. It is an object of the present invention to provide a floating caliper type disc brake device that can
 本発明に係る上記目的は、下記構成により達成される。
(1) 支持体と、
 前記支持体にスライドピンを介して摺動自在に支持されたキャリパボディと、
 前記キャリパボディに車輪を跨いで形成された第1キャリパアーム及び第2キャリパアームと、
 前記第1キャリパアーム及び前記第2キャリパアームの制輪子保持部にそれぞれ保持された第1制輪子及び第2制輪子と、
 前記第1制輪子を前記車輪に向けて駆動するために前記第1キャリパアームの前記制輪子保持部に設けられた押圧機構と、
 ブレーキ緩解時に前記第1制輪子及び前記第2制輪子とディスクロータとの隙間を所定の設定値に調整するために前記制輪子保持部に設けられ、電気駆動される、隙間調整機構と、
 を備えるフローティングキャリパタイプのディスクブレーキ装置。
The above object of the present invention is achieved by the following constitution.
(1) a support,
A caliper body slidably supported on the support via a slide pin;
A first caliper arm and a second caliper arm formed across the wheels on the caliper body;
A first control wheel and a second control wheel held by the control wheel holding portions of the first caliper arm and the second caliper arm, respectively;
A pressing mechanism provided in the brake control member holding portion of the first caliper arm for driving the first brake member toward the wheel;
A gap adjusting mechanism provided in the brake disc holder holding portion and electrically driven to adjust the gap between the first brake disc and the second brake disc and the disc rotor to a predetermined set value at the time of brake release;
Floating caliper type disc brake device with.
 上記(1)の構成のフローティングキャリパタイプのディスクブレーキ装置によれば、第1キャリパアームの制輪子保持部に設けられた隙間調整機構は、電動モータにより電気駆動される。そこで、電動モータの回転を制御するだけで、第1制輪子及び第2制輪子とディスクロータとの隙間を所定の設定値に調整することができ、隙間調整機構を簡単な構造とすることができる。また、隙間調整機構毎に電動モータの回転を制御することができ、全キャリパを一括、又は任意のキャリパ毎に隙間を初期位置に戻すことができる。 According to the floating caliper type disk brake device of the above configuration (1), the gap adjusting mechanism provided in the brake control member holding portion of the first caliper arm is electrically driven by the electric motor. Therefore, by controlling the rotation of the electric motor, the clearances between the first and second control rotors and the disc rotor can be adjusted to predetermined set values, and the clearance adjustment mechanism can be made into a simple structure. it can. In addition, the rotation of the electric motor can be controlled for each gap adjustment mechanism, and the gaps can be returned to the initial position for all calipers collectively or for each optional caliper.
(2) 上記(1)に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
 前記第1制輪子を車輪回転軸方向に摺動自在に保持するように構成され且つ前記第1キャリパアームにおける前記制輪子保持部の端部に配置された保持部材をさらに備え、
 前記隙間調整機構が前記保持部材を駆動する。
(2) The floating caliper type disk brake device according to (1) above,
It further comprises a holding member configured to slidably hold the first control wheel in the wheel rotational axis direction and disposed at an end of the control wheel holding portion of the first caliper arm,
The clearance adjustment mechanism drives the holding member.
 上記(2)の構成のフローティングキャリパタイプのディスクブレーキ装置によれば、車輪周方向の円弧に沿って長尺で形成された第1制輪子及び第2制輪子は、制動時、車輪の両側の側面に対して平行に接近離反するように、長尺の長手方向両端が、車輪の側面に垂直な保持部材により摺動自在に支持される。即ち、第1制輪子は、アンカーピンとしての保持部材により車輪回転軸方向に摺動自在に保持される。そこで、隙間調整機構は、この保持部材を駆動するように構成されたことにより、第1制輪子とディスクロータとの隙間を車輪回転軸方向から調整することができる。 According to the floating caliper type disk brake device of the configuration of the above (2), the first control wheel and the second control wheel, which are formed long along the arc of the wheel circumferential direction, are used on both sides of the wheel during braking. Long longitudinal ends are slidably supported by holding members perpendicular to the side of the wheel so as to approach and depart parallel to the side. That is, the first control wheel is held slidably in the wheel rotational axis direction by the holding member as the anchor pin. Therefore, the gap adjusting mechanism is configured to drive the holding member, so that the gap between the first control wheel and the disk rotor can be adjusted in the wheel rotational axis direction.
(3) 上記(2)に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
 前記保持部材が、前記第1キャリパアームの前記制輪子保持部の端部に固定されたアンカブロックに対して車輪回転軸方向に摺動自在に支持される。
(3) The floating caliper type disk brake device according to (2) above,
The holding member is slidably supported in the wheel rotation axis direction with respect to an anchor block fixed to an end portion of the brake pad retaining portion of the first caliper arm.
 上記(3)の構成のフローティングキャリパタイプのディスクブレーキ装置によれば、保持部材が、アンカーピンとしてアンカブロックに対して車輪回転軸方向に摺動自在に支持される。アンカブロックは、第1キャリパアームにおける制輪子保持部の端部に固定される。アンカーピンは、通常、アンカブロックに予備組立体化されている。そこで、隙間調整機構の予備組立体化も同様に可能となる。従って、このディスクブレーキ装置では、隙間調整機構がアンカブロック組立体に集約され、取付けが現行品と同寸法とされることで、必要に応じた隙間調整機構の選定が可能となる。 According to the floating caliper type disk brake device of the above configuration (3), the holding member is supported as the anchor pin so as to be slidable in the wheel rotational axis direction with respect to the anchor block. The anchor block is fixed to the end of the brake control holder of the first caliper arm. The anchor pins are usually preassembled into anchor blocks. Therefore, the pre-assembly of the clearance adjustment mechanism is also possible. Therefore, in this disk brake device, the gap adjusting mechanism is integrated into the anchor block assembly, and the mounting is made the same size as the current product, so that it is possible to select the gap adjusting mechanism as required.
(4) 上記(1)~(3)の何れか1つに記載のフローティングキャリパタイプのディスクブレーキ装置であって、
 前記押圧機構が、油圧駆動される。
(4) The floating caliper type disk brake device according to any one of (1) to (3) above,
The pressing mechanism is hydraulically driven.
 上記(4)の構成のフローティングキャリパタイプのディスクブレーキ装置によれば、制動時に第1制輪子を車輪に向けて駆動するための押圧機構が、油圧系装置により油圧駆動され、ブレーキ緩解時に第1制輪子とディスクロータとの隙間を調整するための隙間調整機構が、電気系装置により電気駆動される。これにより、押圧機構と隙間調整機構とが、同時に作動不良となるリスクを低減させ、ディスクブレーキ装置の信頼性を向上させることができる。 According to the floating caliper type disk brake device of the above configuration (4), the pressing mechanism for driving the first control wheel toward the wheel at the time of braking is hydraulically driven by the hydraulic system device, and the first brake is released at the time of brake release. A gap adjusting mechanism for adjusting the gap between the control wheel and the disk rotor is electrically driven by the electrical system device. As a result, the risk that the pressing mechanism and the gap adjusting mechanism simultaneously malfunction can be reduced, and the reliability of the disk brake device can be improved.
(5) 上記(4)に記載のフローティングキャリパタイプのディスクブレーキ装置であって
 前記隙間調整機構が、油圧駆動される前記押圧機構の押圧部材を駆動する。
(5) In the floating caliper type disk brake device according to (4), the gap adjusting mechanism drives a pressing member of the pressing mechanism that is hydraulically driven.
 上記(5)の構成のフローティングキャリパタイプのディスクブレーキ装置によれば、ブレーキ緩解時に第1制輪子とディスクロータとの隙間を調整するための隙間調整機構が、制動時に第1制輪子を押圧駆動するために設けられている押圧機構の押圧部材を駆動する。具体的には、この押圧部材は、サービスブレーキとして油圧駆動される押圧機構に設けられているピストンである。従って、隙間調整機構は、第1制輪子を押圧する押圧機構のピストンをダイレクトに駆動することにより、安定した調整力を印加することができる。 According to the floating caliper type disk brake device of the above configuration (5), the gap adjusting mechanism for adjusting the gap between the first control wheel and the disk rotor at the time of brake release drives the first control wheel when pressing. Drive the pressing member of the pressing mechanism provided to Specifically, the pressing member is a piston provided in a pressing mechanism hydraulically driven as a service brake. Therefore, the gap adjusting mechanism can apply a stable adjusting force by directly driving the piston of the pressing mechanism that presses the first control wheel.
(6) 上記(3)に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
 前記隙間調整機構が、有底筒状の前記保持部材と、前記保持部材内に相対回転不能かつ軸方向に摺動自在に収容されたナットと、先端側が前記ナットに螺合されたスクリューと、前記ナットに対して前記保持部材を前記車輪から離れる方向に付勢するばね部材と、前記スクリューを回転駆動する電動モータと、を備える。
(6) The floating caliper type disk brake device according to (3) above,
The gap adjusting mechanism includes a cylindrical bottomed cylindrical holding member, a nut rotatably accommodated in the holding member in a relatively non-rotatable manner in the axial direction, and a screw whose front end side is screwed to the nut; It has a spring member which biases the holding member in a direction away from the wheel with respect to the nut, and an electric motor which rotationally drives the screw.
 上記(6)の構成のフローティングキャリパタイプのディスクブレーキ装置によれば、電動モータが回転駆動されると、スクリューが回転する。スクリューは、保持部材(アンカーピン)に対して相対回転不能に収容されたナットに対して回転する。保持部材に相対回転不能に保持されたナットは、螺合するスクリューが回転することにより、車輪回転軸方向(車輪回転軸に沿う方向)に摺動する。このナットの車輪回転軸方向の摺動により、保持部材が第1制輪子を車輪回転軸方向に沿って駆動し、第1制輪子及び第2制輪子とディスクロータとの隙間を調整する。
 即ち、隙間調整機構は、電動モータに回転駆動されるスクリューと、保持部材に収容されたナットと、ナットに対して保持部材を車輪から離れる方向に付勢するばね部材とで構成される。そこで、隙間調整機構は、電動モータの回転を制御するだけで隙間調整を行うことができ、隙間調整時に大きなフリクション力が必要なくなるため、ディスクブレーキ装置は常に安定したブレーキ力を発生することができる。
 また、ばね部材が保持部材をナットに対して車輪から離れる方向に付勢することで、油圧駆動される押圧機構のピストンシリンダ内に作用している残圧により対向するディスクロータの外側面に向けて移動しようとする押圧機構の押圧部材(ピストン)に抗することができる。そこで、ばね部材のばね定数を適宜設定するだけで、制輪子とディスクロータとの間の所定の隙間を容易に維持することができる。
According to the floating caliper type disk brake device of the above configuration (6), when the electric motor is driven to rotate, the screw is rotated. The screw rotates with respect to the nut accommodated non-rotatably relative to the holding member (anchor pin). The nut held in a non-rotatable manner relative to the holding member slides in the wheel rotation axis direction (the direction along the wheel rotation axis) by the rotation of the screw engaged therewith. By the sliding of the nut in the wheel rotational axis direction, the holding member drives the first brake element along the wheel rotational axis direction, and the gap between the first brake element and the second brake element and the disc rotor is adjusted.
That is, the gap adjusting mechanism is configured of a screw rotationally driven by the electric motor, a nut accommodated in the holding member, and a spring member urging the holding member with respect to the nut in a direction away from the wheel. Therefore, the gap adjusting mechanism can perform the gap adjustment only by controlling the rotation of the electric motor, and a large friction force is not necessary at the time of the gap adjustment, so the disc brake device can always generate a stable braking force. .
Further, the spring member biases the holding member against the nut in a direction away from the wheel, so that the remaining pressure acting in the piston cylinder of the hydraulically driven pressing mechanism is directed to the outer surface of the opposing disc rotor. Can resist the pressing member (piston) of the pressing mechanism to be moved. Therefore, by setting the spring constant of the spring member appropriately, it is possible to easily maintain a predetermined gap between the control wheel and the disk rotor.
(7) 上記(5)に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
 前記隙間調整機構が、有底筒状の前記押圧部材と、前記押圧部材内に相対回転不能かつ軸方向に摺動自在に収容されたナットと、先端側が前記ナットに螺合されたスクリューと、前記ナットに対して前記押圧部材を前記車輪から離れる方向に付勢するばね部材と、前記スクリューを回転駆動する電動モータと、を備える。
(7) The floating caliper type disk brake device according to (5) above,
The gap adjusting mechanism includes a cylindrical bottomed cylindrical pressing member, a nut rotatably accommodated in the pressing member in a relatively non-rotatable manner in the axial direction, and a screw having a tip end screwed on the nut; It has a spring member which biases the pressing member in a direction away from the wheel with respect to the nut, and an electric motor which rotationally drives the screw.
 上記(7)の構成のフローティングキャリパタイプのディスクブレーキ装置によれば、電動モータが回転駆動されると、スクリューが回転する。スクリューは、押圧部材(ピストン)に対して相対回転不能に収容されたナットに対して回転する。押圧部材に相対回転不能に保持されたナットは、螺合するスクリューが回転することにより、車輪回転軸方向に摺動する。このナットの車輪回転軸方向の摺動により、押圧部材が第1制輪子を車輪回転軸方向に沿って駆動し、第1制輪子及び第2制輪子とディスクロータとの隙間を調整する。
 即ち、隙間調整機構は、電動モータに回転駆動されるスクリューと押圧部材に収容されたナットと、ナットに対して押圧部材を車輪から離れる方向に付勢するばね部材とで構成される。そこで、隙間調整機構は、電動モータの回転を制御するだけで隙間調整を行うことができ、隙間調整時に大きなフリクション力が必要なくなるため、ディスクブレーキ装置は常に安定したブレーキ力を発生することができる。
 また、ばね部材が押圧部材(ピストン)をナットに対して車輪から離れる方向に付勢することで、油圧駆動される押圧機構のピストンシリンダ内に作用している残圧により対向するディスクロータの外側面に向けて移動しようとする押圧部材に抗することができる。そこで、ばね部材のばね定数を適宜設定するだけで、制輪子とディスクロータとの間の所定の隙間を容易に維持することができる。
According to the floating caliper type disk brake device of the above configuration (7), when the electric motor is rotationally driven, the screw is rotated. The screw rotates with respect to the nut housed non-rotatably relative to the pressing member (piston). The nut held in a relatively non-rotatable manner by the pressing member slides in the wheel rotational axis direction by the rotation of the screw engaged therewith. By the sliding of the nut in the wheel rotational axis direction, the pressing member drives the first brake element along the wheel rotational axis direction to adjust the gap between the first brake element and the second brake element and the disc rotor.
That is, the gap adjusting mechanism is configured of a screw rotationally driven by the electric motor, a nut accommodated in the pressing member, and a spring member biasing the pressing member in a direction away from the wheel with respect to the nut. Therefore, the gap adjusting mechanism can perform the gap adjustment only by controlling the rotation of the electric motor, and a large friction force is not necessary at the time of the gap adjustment, so the disc brake device can always generate a stable braking force. .
Further, the spring member biases the pressing member (piston) in the direction away from the wheel with respect to the nut, whereby the outside of the disc rotor opposed by the residual pressure acting in the piston cylinder of the hydraulically driven pressing mechanism. It is possible to resist the pressing member that is moving toward the side surface. Therefore, by setting the spring constant of the spring member appropriately, it is possible to easily maintain a predetermined gap between the control wheel and the disk rotor.
(8) 上記(6)に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
 前記スクリューが、前記アンカブロックに対して相対回転可能かつ車輪回転軸方向に移動不能に配置される。
(8) The floating caliper type disk brake device according to (6) above,
The screw is disposed so as to be rotatable relative to the anchor block and immovable in the wheel rotation axis direction.
 上記(8)の構成のフローティングキャリパタイプのディスクブレーキ装置によれば、スクリューが電動モータにより回転駆動されることにより、保持部材(アンカーピン)がアンカブロックに対して車輪回転軸方向に進退駆動され、第1制輪子をディスクロータの外側面に対して移動させることができる。 According to the floating caliper type disk brake device of the above configuration (8), when the screw is rotationally driven by the electric motor, the holding member (anchor pin) is driven back and forth in the wheel rotational axis direction with respect to the anchor block. The first wheel can be moved relative to the outer surface of the disk rotor.
(9)上記(7)に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
 前記スクリューが、前記制輪子保持部に対して相対回転可能かつ車輪回転軸方向に移動不能に配置される。
(9) The floating caliper type disk brake device according to (7) above,
The screw is disposed so as to be relatively rotatable with respect to the wheel holding portion and immovable in the wheel rotational axis direction.
 上記(9)の構成のフローティングキャリパタイプのディスクブレーキ装置によれば、スクリューが電動モータにより回転駆動されることにより、押圧部材(ピストン)が制輪子保持部に対して車輪回転軸方向に進退駆動され、第1制輪子をディスクロータの外側面に対して移動させることができる。 According to the floating caliper type disk brake device of the above configuration (9), when the screw is rotationally driven by the electric motor, the pressing member (piston) is driven to move back and forth in the wheel rotational axis direction with respect to the control wheel holder. The first wheel can be moved relative to the outer surface of the disk rotor.
 本発明に係るフローティングキャリパタイプのディスクブレーキ装置によれば、簡単な構造の隙間調整機構により制輪子とディスクロータとの間の所定の隙間を維持することができると共に、メンテナンス性を向上させることができる。 According to the floating caliper type disk brake device according to the present invention, it is possible to maintain a predetermined gap between the control rotor and the disk rotor by the gap adjusting mechanism having a simple structure, and to improve maintainability. it can.
 以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための形態(以下、「実施形態」という。)を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。 The present invention has been briefly described above. Furthermore, the details of the present invention will be further clarified by reading the modes for carrying out the invention described below (hereinafter referred to as "embodiments") with reference to the attached drawings. .
図1は、本発明の第1実施形態に係るディスクブレーキ装置の斜視図である。FIG. 1 is a perspective view of a disc brake device according to a first embodiment of the present invention. 図2は、図1に示したディスクブレーキ装置をサポート側から見た側面図である。FIG. 2 is a side view of the disc brake device shown in FIG. 1 as viewed from the support side. 図3は、図1に示したディスクブレーキ装置を第1制輪子及び第2制輪子の側から見た一部分を切り欠いた側面図である。FIG. 3 is a side view in which a portion of the disc brake device shown in FIG. 1 is viewed from the side of the first brake shoe and the second brake shoe. 図4は、図3の要部拡大図である。FIG. 4 is an enlarged view of an essential part of FIG. 図5は図4に示した第2押圧機構の分解斜視図であり、図5の(a)はアンカブロック側から見た分解斜視図、図5の(b)はモータユニット側から見た分解斜視図である。5 is an exploded perspective view of the second pressing mechanism shown in FIG. 4. FIG. 5 (a) is an exploded perspective view seen from the anchor block side, and FIG. 5 (b) is a disassembled view seen from the motor unit side It is a perspective view. 図6は、図5の(a)に示したアンカブロックの分解斜視図である。FIG. 6 is an exploded perspective view of the anchor block shown in FIG. 図7は、図5の(b)に示したアンカブロックの分解斜視図である。FIG. 7 is an exploded perspective view of the anchor block shown in FIG. 図8は、本発明の第2実施形態に係るディスクブレーキ装置を第1キャリパアーム側から見た斜視図である。FIG. 8 is a perspective view of a disk brake device according to a second embodiment of the present invention as viewed from the first caliper arm side. 図9は、図8に示したディスクブレーキ装置を第2キャリパアーム側から見た分解斜視図である。FIG. 9 is an exploded perspective view of the disk brake device shown in FIG. 8 as viewed from the second caliper arm side. 図10は、図9に示した従来構成のアンカブロックの分解斜視図である。FIG. 10 is an exploded perspective view of the conventional anchor block shown in FIG. 図11は、本発明の第3実施形態に係るディスクブレーキ装置の要部拡大断面図である。FIG. 11 is an enlarged sectional view of an essential part of a disk brake device according to a third embodiment of the present invention.
 以下、本発明に係る実施形態を、図面を参照して説明する。
[第1実施形態]
 先ず、本発明の第1実施形態を説明する。
 図1は本発明の第1実施形態に係るディスクブレーキ装置100の斜視図、図2は図1に示したディスクブレーキ装置100をサポート27側から見た側面図、図3は図1に示したディスクブレーキ装置100を第1制輪子11及び第2制輪子13の側から見た一部分を切り欠いた側面図、図4は図3の要部拡大図である。
 本発明の第1実施形態に係るフローティングキャリパタイプのディスクブレーキ装置100を、鉄道車両用ディスクブレーキに用いられる場合を例に説明する。この他、ディスクブレーキ装置100は、例えばエレベータ等、回転部材に対して制動力を発生させる種々の産業用駆動装置のブレーキ装置にも好適に用いることができるものである。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
First Embodiment
First, a first embodiment of the present invention will be described.
1 is a perspective view of a disc brake device 100 according to a first embodiment of the present invention, FIG. 2 is a side view of the disc brake device 100 shown in FIG. 1 viewed from the support 27 side, and FIG. FIG. 4 is an enlarged view of an essential part of FIG. 3, in which a portion of the disc brake device 100 as viewed from the side of the first brake element 11 and the second brake element 13 is cut away.
A floating caliper type disk brake device 100 according to a first embodiment of the present invention will be described by way of example for use in a railway vehicle disk brake. In addition to this, the disc brake device 100 can be suitably used, for example, as a brake device of various industrial drive devices that generate a braking force to a rotating member such as an elevator.
 本第1実施形態に係るディスクブレーキ装置100は、支持体15と、キャリパボディ17と、第1キャリパアーム19及び第2キャリパアーム21と、第1制輪子11及び第2制輪子13と、押圧機構23と、隙間調整機構25と、を主要な構成部材として有する。 The disk brake device 100 according to the first embodiment includes the support 15, the caliper body 17, the first caliper arm 19 and the second caliper arm 21, the first control wheel 11 and the second control wheel 13, and the pressure. The mechanism 23 and the clearance adjustment mechanism 25 are included as main components.
 支持体15は、図示しない台車枠に結合されたサポート27に支持される。支持体15は、上段筒状支持部29及び下段筒状支持部31を有する。上段筒状支持部29及び下段筒状支持部31は、それぞれがスライドピン33を備える。 The support 15 is supported by a support 27 coupled to a bogie frame (not shown). The support 15 has an upper cylindrical support 29 and a lower cylindrical support 31. The upper cylindrical support portion 29 and the lower cylindrical support portion 31 each include a slide pin 33.
 キャリパボディ17は、支持体15にスライドピン33を介して、スライドピン33の長手方向(図2の左右方向)に沿って摺動自在に支持される。更に、キャリパボディ17は、第1キャリパアーム19及び第2キャリパアーム21を有する。 The caliper body 17 is slidably supported by the support 15 via the slide pin 33 along the longitudinal direction (left and right direction in FIG. 2) of the slide pin 33. Furthermore, the caliper body 17 has a first caliper arm 19 and a second caliper arm 21.
 第1キャリパアーム19及び第2キャリパアーム21は、車輪35を跨ぐように、それぞれ平行な二股の腕部としてキャリパボディ17に形成される。第1キャリパアーム19及び第2キャリパアーム21は、それぞれの基部37が、上下一対のスライドピン33の一端側と、他端側とに支持される。第1キャリパアーム19及び第2キャリパアーム21は、基部37の反対側がそれぞれ制輪子保持部39及び制輪子保持部41となる。 The first caliper arm 19 and the second caliper arm 21 are formed on the caliper body 17 as parallel bifurcated arms so as to straddle the wheel 35. Each base 37 of the first caliper arm 19 and the second caliper arm 21 is supported on one end side and the other end side of the upper and lower slide pins 33. The first caliper arm 19 and the second caliper arm 21 serve as the control wheel holder 39 and the control wheel holder 41, respectively, on the opposite side of the base 37.
 第1制輪子11及び第2制輪子13は、第1キャリパアーム19及び第2キャリパアーム21の制輪子保持部39及び制輪子保持部41に制輪子ガイド48及びアリ溝を介して保持される。第1制輪子11及び第2制輪子13は、所謂ブレーキパッドであり、車輪35の両側面に取り付けられたディスクロータ36の外側面に対向するように制輪子保持部39及び制輪子保持部41にそれぞれ取り付けられる。なお、本第1実施形態では、これらブレーキパッドのライニング面が、ディスクロータ36を押圧してブレーキ動作を行う構造を例に説明する。勿論、ディスクブレーキ装置100は、車輪35の両側面を直接挟圧して制動する構成であってもよい。 The first control wheel 11 and the second control wheel 13 are held by the control wheel holding portion 39 and the control wheel holding portion 41 of the first caliper arm 19 and the second caliper arm 21 via the control wheel guide 48 and the dovetail groove. . The first control wheel 11 and the second control wheel 13 are so-called brake pads, and the control wheel holding portion 39 and the control wheel holding portion 41 are opposed to the outer side surface of the disk rotor 36 attached to both side surfaces of the wheel 35. Attached to each. In the first embodiment, a structure in which the lining surface of these brake pads presses the disc rotor 36 to perform a braking operation will be described as an example. Of course, the disc brake device 100 may be configured to pinch the both sides of the wheel 35 directly for braking.
 本第1実施形態に係る押圧機構23及び隙間調整機構25は、第1制輪子11を車輪35に向けてそれぞれ独立して駆動する。押圧機構23及び隙間調整機構25は、第1キャリパアーム19の制輪子保持部39に設けられている。
 押圧機構23は、第1制輪子11をディスクロータ36の外側面に向けて油圧駆動するものである。押圧機構23の押圧部材であるピストン45は、先端が制輪子ガイド48に当接しており、第1キャリパアーム19に配設された油圧導入口24を通じて油圧の供給を受けてディスクロータ36側に突出することにより、第1制輪子11をディスクロータ36の外側面に押し付ける。キャリパボディ17は、支持体15にスライドピン33の長手方向(図2の左右方向)に沿って摺動自在に支持されている。第1キャリパアーム19及び第2キャリパアーム21の制輪子保持部39及び制輪子保持部41に制輪子ガイド48及びアリ溝を介して保持された第1制輪子11及び第2制輪子13は、車輪35の両側面に取り付けられたディスクロータ36を両側から挟み込む。このときディスクロータ36との間に生じる摩擦力により車輪35が制動される。
The pressing mechanism 23 and the gap adjusting mechanism 25 according to the first embodiment independently drive the first control wheel 11 toward the wheel 35 respectively. The pressing mechanism 23 and the gap adjusting mechanism 25 are provided in the wheel control unit 39 of the first caliper arm 19.
The pressing mechanism 23 hydraulically drives the first control wheel 11 toward the outer surface of the disk rotor 36. The piston 45, which is a pressing member of the pressing mechanism 23, has its tip end in contact with the brake pad guide 48, receives hydraulic pressure supply through the hydraulic pressure inlet 24 provided in the first caliper arm 19, and is directed to the disc rotor 36 side. By projecting, the first control wheel 11 is pressed against the outer surface of the disk rotor 36. The caliper body 17 is slidably supported by the support 15 along the longitudinal direction (left and right direction in FIG. 2) of the slide pin 33. The first control wheel 11 and the second control wheel 13 held by the control wheel holder holding portion 39 and the control wheel holding portion 41 of the first caliper arm 19 and the second caliper arm 21 via the control wheel guide 48 and the dovetail groove, Disc rotors 36 mounted on both sides of the wheel 35 are pinched from both sides. At this time, the wheel 35 is braked by the frictional force generated with the disk rotor 36.
 第1制輪子11及び第2制輪子13は、ディスクロータ36と当接するライニング12と、ライニング12の背面に固定された裏板14とから構成される。これら裏板14は、制輪子ガイド48に形成されたアリ溝に上下方向から嵌まり込むように構成されている。
 更に、第1制輪子11の裏板14は、上下一対のアンカーピンとしての保持部材47の間に挟み込まれ、アリ溝からの抜け落ちが防止される。なお、隙間調整機構25が構成されない第2制輪子13の裏板14は、上下一対のアンカブロック51(図9参照)の間に挟み込まれ、制輪子保持部41に設けられたアリ溝からの抜け落ちが防止される。
The first brake element 11 and the second brake element 13 are composed of a lining 12 in contact with the disc rotor 36 and a back plate 14 fixed to the back of the lining 12. The back plates 14 are configured to be fitted into the dovetail grooves formed in the control wheel guide 48 from above and below.
Furthermore, the back plate 14 of the first control wheel 11 is sandwiched between the holding members 47 as a pair of upper and lower anchor pins, and the falling off from the dovetail groove is prevented. The back plate 14 of the second control wheel 13 whose clearance adjustment mechanism 25 is not configured is sandwiched between a pair of upper and lower anchor blocks 51 (see FIG. 9), and is inserted from the dovetail groove provided in the control wheel holder 41. Fallout is prevented.
 本第1実施形態に係る隙間調整機構25は、制輪子保持部39の上端と下端のそれぞれに取り付けられる。隙間調整機構25は、第1制輪子11を車輪回転軸方向に摺動自在に保持するため第1キャリパアーム19における制輪子保持部39の端部に配置された保持部材47を電気駆動する。即ち、本第1実施形態における隙間調整機構25の保持部材47は、第1制輪子11を車輪回転軸方向に摺動自在に保持するため第1キャリパアーム19における制輪子保持部39の上下両端部に配置されたアンカーピンである。 The gap adjusting mechanism 25 according to the first embodiment is attached to each of the upper end and the lower end of the control child holding portion 39. The gap adjusting mechanism 25 electrically drives a holding member 47 disposed at an end of the brake support holder 39 of the first caliper arm 19 to hold the first brake shoe 11 slidably in the wheel rotational axis direction. That is, since the holding member 47 of the gap adjusting mechanism 25 in the first embodiment holds the first brake element 11 slidably in the wheel rotational axis direction, the upper and lower ends of the brake disc holding portion 39 in the first caliper arm 19 It is an anchor pin arranged in the section.
 図3及び図4に示すように、保持部材47は、第1キャリパアーム19の制輪子保持部39の上下両端部に固定されたアンカブロック49に対して車輪回転軸方向に沿って摺動自在に支持される。なお、第2キャリパアーム21の制輪子保持部41の上下両端部には、隙間調整機構25を構成しない通常のアンカブロック51が設けられる。 As shown in FIGS. 3 and 4, the holding member 47 is slidable along the wheel rotation axis direction with respect to anchor blocks 49 fixed to the upper and lower end portions of the brake pad holder 39 of the first caliper arm 19. Supported by A normal anchor block 51 which does not constitute the clearance adjustment mechanism 25 is provided at the upper and lower end portions of the wheel support holding portion 41 of the second caliper arm 21.
 本第1実施形態に係る隙間調整機構25は、ブレーキ緩解時に第1制輪子11及び第2制輪子13とディスクロータ36との隙間を所定の設定値(例えば、両側で6mm)に調整するために、第1キャリパアーム19の制輪子保持部39に設けられた隙間調整機構である。この隙間調整機構25は、有底筒状の保持部材47と、保持部材内に相対回転不能かつ軸方向に摺動自在に収容されたナット53と、先端側がナット53に螺合されたスクリュー55と、ナット53に対して保持部材47を車輪35から離れる方向に付勢するばね部材88と、スクリュー55を回転駆動する電動モータ57と、を主要な構成部材として備える。隙間調整機構25は、第1制輪子11及び第2制輪子13のライニングが摩耗した際に、押圧機構23におけるピストン45の移動量を一定に保つように作動する。 The clearance adjustment mechanism 25 according to the first embodiment adjusts the clearance between the first control wheel 11 and the second control wheel 13 and the disk rotor 36 to a predetermined set value (for example, 6 mm on both sides) at the time of brake release. The clearance adjustment mechanism is provided in the control rod holder 39 of the first caliper arm 19. The clearance adjusting mechanism 25 includes a bottomed cylindrical holding member 47, a nut 53 relatively non-rotatably and axially slidably housed in the holding member, and a screw 55 whose front end side is screwed with the nut 53. A spring member 88 biasing the holding member 47 in a direction away from the wheel 35 with respect to the nut 53, and an electric motor 57 driving the screw 55 as main components. The clearance adjusting mechanism 25 operates so as to keep the moving amount of the piston 45 in the pressing mechanism 23 constant when the linings of the first wheel 11 and the second wheel 13 wear.
 図5は図4に示した隙間調整機構25の分解斜視図であり、図5の(a)はアンカブロック49側から見た分解斜視図、図5の(b)はモータユニット59側から見た分解斜視図である。
 本第1実施形態の隙間調整機構25は、モータユニット59と、アンカブロック49とからなる。モータユニット59は、電動モータ57の駆動軸58の回転が減速機61により減速されて、出力軸63から出力される。モータユニット59は、固定ネジ65によりアンカブロック49と一体固定される。モータユニット59は、アンカブロック49に固定されることにより、出力軸63がアンカブロック49内に収容されたスクリュー55に、相対回転不能に連結される。即ち、モータユニット59は、電動モータ57の駆動力を、出力軸63を介してアンカブロック49内のスクリュー55に入力する。
5 is an exploded perspective view of the gap adjusting mechanism 25 shown in FIG. 4. FIG. 5 (a) is an exploded perspective view seen from the anchor block 49 side, and FIG. 5 (b) is seen from the motor unit 59 side. It is a disassembled perspective view.
The gap adjusting mechanism 25 according to the first embodiment includes a motor unit 59 and an anchor block 49. The rotation of the drive shaft 58 of the electric motor 57 is decelerated by the reduction gear 61 and the motor unit 59 is output from the output shaft 63. The motor unit 59 is integrally fixed to the anchor block 49 by the fixing screw 65. The motor unit 59 is fixed to the anchor block 49 so as to be non-rotatably coupled to the screw 55 whose output shaft 63 is accommodated in the anchor block 49. That is, the motor unit 59 inputs the driving force of the electric motor 57 to the screw 55 in the anchor block 49 via the output shaft 63.
 図6は図5の(a)に示したアンカブロック49の分解斜視図、図7は図5の(b)に示したアンカブロック49の分解斜視図である。
 図6及び図7に示すように、アンカブロック49は、ブロック本体67を有する。ブロック本体67には、制輪子保持部39に固定するための一対のボルト69を挿通するためのボルト穴71が穿設される。また、ブロック本体67は、上述の保持部材47、ナット53、スクリュー55等を同軸に収容する円筒部73を有する。
6 is an exploded perspective view of the anchor block 49 shown in (a) of FIG. 5, and FIG. 7 is an exploded perspective view of the anchor block 49 shown in (b) of FIG.
As shown in FIGS. 6 and 7, the anchor block 49 has a block body 67. In the block main body 67, bolt holes 71 for inserting a pair of bolts 69 for fixing to the brake pad holder 39 are bored. Further, the block main body 67 has a cylindrical portion 73 coaxially accommodating the holding member 47, the nut 53, the screw 55 and the like described above.
 アンカブロック49は、円筒部73内に、制輪子保持部39側から、保持部材47、止め輪77、遮熱板75、ブーツ79、ワッシャ81、止め輪83、ブッシュ85、ナット53、ばね部材88、ばね受け84、止め輪86、スクリュー55、スラストベアリング87、Oリング89、ブッシュ91、止め輪93が同軸に収容されている。これら保持部材47、ナット53、スクリュー55等の諸部材は、図4に示すように組み付けられる。 The anchor block 49 is provided in the cylindrical portion 73 from the side of the control rod holding portion 39, the holding member 47, the retaining ring 77, the heat shield plate 75, the boot 79, the washer 81, the retaining ring 83, the bush 85, the nut 53, the spring member A spring receiver 84, a snap ring 86, a screw 55, a thrust bearing 87, an O-ring 89, a bush 91, and a snap ring 93 are coaxially accommodated. The members such as the holding member 47, the nut 53, and the screw 55 are assembled as shown in FIG.
 アンカーピンとしての保持部材47は、制動トルクを受ける部材である。保持部材47は、第1キャリパアーム19の制輪子保持部39の上下両端部に固定されたアンカブロック49の円筒部73内に収容される。保持部材47は、ブッシュ85を介して車輪回転軸方向に沿って摺動自在に支持されている。保持部材47と円筒部73の間の隙間は、ブーツ79により閉鎖されている。 The holding member 47 as an anchor pin is a member that receives a braking torque. The holding member 47 is accommodated in the cylindrical portion 73 of the anchor block 49 fixed to the upper and lower end portions of the control rod holding portion 39 of the first caliper arm 19. The holding member 47 is slidably supported along the wheel rotation axis direction via the bush 85. The gap between the holding member 47 and the cylindrical portion 73 is closed by the boot 79.
 アンカブロック49の円筒部73から突出した保持部材47の先端部47aは、ライニング12の背面に当接する。また、保持部材47の先端部側の外周に凹設された首部47bは、制輪子ガイド48に形成された嵌合穴48a,48bに嵌合して制輪子ガイド48に対して固定される。嵌合穴48a,48bから突出した先端部47aは、裏板14を上下から挟み込むように構成されている。 The tip end portion 47 a of the holding member 47 protruding from the cylindrical portion 73 of the anchor block 49 abuts on the back surface of the lining 12. Further, the neck portion 47 b recessed on the outer periphery on the tip end side of the holding member 47 is fitted to the fitting holes 48 a and 48 b formed in the brake control device 48 and fixed to the brake control device 48. The tip portion 47a protruding from the fitting holes 48a and 48b is configured to sandwich the back plate 14 from above and below.
 有底筒状の保持部材47内に収容されたナット53は、外周部先端に突設されたフランジ部に形成された複数の係合突起53aが保持部材47内のスプライン溝47cに係合することで、保持部材47に対して相対回転不能かつ軸方向に摺動自在とされている。また、ナット53の雌ねじ53bには、スクリュー55の雄ねじ55aが螺合される。
 保持部材47は、ばね部材88及びばね受け84によって、ナット53に対して車輪35から離れる方向に付勢されている。ばね部材88及びばね受け84は、ナット53の係合突起53aの基部と保持部材47内に係止された止め輪86との間に介装される。
In the nut 53 accommodated in the bottomed cylindrical holding member 47, a plurality of engaging projections 53a formed on a flange portion protruding from the tip of the outer peripheral portion engage with the spline grooves 47c in the holding member 47. Thus, relative rotation to the holding member 47 is not possible, and the holding member 47 is axially slidable. Further, the male screw 55 a of the screw 55 is screwed into the female screw 53 b of the nut 53.
The holding member 47 is biased away from the wheel 35 with respect to the nut 53 by a spring member 88 and a spring receiver 84. The spring member 88 and the spring receiver 84 are interposed between the base of the engagement projection 53 a of the nut 53 and the snap ring 86 locked in the holding member 47.
 アンカブロック49内に収容されたスクリュー55は、フランジ部55bと円筒部73の底壁との間にスラストベアリング87が介装されている。また、円筒部73の底壁を貫通したスクリュー55の基部と円筒部73の底壁との間には、ブッシュ91が介装されている。更に、円筒部73の底壁を貫通したスクリュー55の基部は、止め輪93により抜け止めされている。従って、スクリュー55は、アンカブロック49に対して相対回転可能かつ車輪回転軸方向に移動不能に配置されている。そして、円筒部73の底壁を貫通したスクリュー55の基部は、モータユニット59の出力軸63にセレーション嵌合されて相対回転不能に連結される。 The screw 55 housed in the anchor block 49 has a thrust bearing 87 interposed between the flange 55 b and the bottom wall of the cylindrical portion 73. Further, a bush 91 is interposed between the base of the screw 55 penetrating the bottom wall of the cylindrical portion 73 and the bottom wall of the cylindrical portion 73. Further, the base of the screw 55 penetrating the bottom wall of the cylindrical portion 73 is prevented by the retaining ring 93. Therefore, the screw 55 is arranged so as to be rotatable relative to the anchor block 49 and immovable in the wheel rotational axis direction. Then, the base of the screw 55 that penetrates the bottom wall of the cylindrical portion 73 is serrated with the output shaft 63 of the motor unit 59, and is relatively non-rotatably connected.
 即ち、隙間調整機構25は、スクリュー55が電動モータ57により回転駆動されることにより、アンカーピンである保持部材47がアンカブロック49に対して車輪回転軸方向に進退駆動され、制輪子ガイド48を介して第1制輪子11をディスクロータ36の外側面に対して移動させることができる。 That is, in the clearance adjustment mechanism 25, when the screw 55 is rotationally driven by the electric motor 57, the holding member 47 which is an anchor pin is driven to advance and retract in the wheel rotational axis direction with respect to the anchor block 49. The first control wheel 11 can be moved relative to the outer surface of the disk rotor 36 via the same.
 次に、上記した構成の作用を説明する。
 本第1実施形態に係るフローティングキャリパタイプのディスクブレーキ装置100では、制動時、押圧機構23が油圧駆動される。押圧機構23が駆動されると、先ず、第1制輪子11が、対向する車輪35のディスクロータ36の外側面を車輪回転軸に沿う方向から押圧する。車輪35のディスクロータ36を押圧した第1制輪子11は、このディスクロータ36からの反力を受ける。この反力は、制輪子保持部39及び第1キャリパアーム19を介してキャリパボディ17をスライドピン33に沿う方向へ移動させる。キャリパボディ17が移動すると、第2キャリパアーム21の制輪子保持部41に保持されている第2制輪子13が、対向する車輪35のディスクロータ36の外側面を押圧する。その結果、車輪35は、車輪回転軸方向の両側から第1制輪子11と第2制輪子13とに挟まれて制動される。なお、押圧機構23により第1制輪子11がディスクロータ36の外側面を押圧する方向へ移動する際、制輪子ガイド48に連結されている隙間調整機構25の保持部材47は、ばね部材88の付勢力に抗して第1制輪子11と一緒に車輪35に近づく方向へ移動する。
Next, the operation of the above configuration will be described.
In the floating caliper type disk brake device 100 according to the first embodiment, the pressing mechanism 23 is hydraulically driven at the time of braking. When the pressing mechanism 23 is driven, first, the first brake element 11 presses the outer surface of the disk rotor 36 of the opposing wheel 35 from the direction along the wheel rotation axis. The first control wheel 11 which has pressed the disk rotor 36 of the wheel 35 receives a reaction force from the disk rotor 36. The reaction force causes the caliper body 17 to move in the direction along the slide pin 33 via the brake control member holding portion 39 and the first caliper arm 19. When the caliper body 17 moves, the second brake 13 held by the brake holder 41 of the second caliper arm 21 presses the outer surface of the disc rotor 36 of the opposing wheel 35. As a result, the wheel 35 is braked by being pinched by the first restrictor 11 and the second restrictor 13 from both sides in the wheel rotational axis direction. The holding member 47 of the gap adjusting mechanism 25 connected to the brake disc guide 48 is a spring member 88 when the first brake disc 11 moves in the direction to press the outer surface of the disc rotor 36 by the pressing mechanism 23. It moves toward the wheel 35 together with the first control wheel 11 against the biasing force.
 一方、ブレーキ緩解時、本第1実施形態に係るディスクブレーキ装置100では、隙間調整機構25が適宜電気駆動される。第1キャリパアーム19の制輪子保持部39に設けられた隙間調整機構25は、駆動されると電動モータ57が回転駆動され、スクリュー55を回転する。スクリュー55が回転すると、ナット53は、スクリュー55の軸線方向に沿って移動し、保持部材47を突出方向に移動させる。 On the other hand, at the time of brake release, the gap adjusting mechanism 25 is appropriately electrically driven in the disk brake device 100 according to the first embodiment. When driven, the gap adjustment mechanism 25 provided in the brake pad holder 39 of the first caliper arm 19 rotates the electric motor 57 to rotate the screw 55. When the screw 55 rotates, the nut 53 moves along the axial direction of the screw 55 and moves the holding member 47 in the protruding direction.
 保持部材47が突出すると、先ず、押圧機構23の場合と同様に、第1制輪子11が、対向する車輪35のディスクロータ36の外側面を車輪回転軸方向から押圧する。車輪35のディスクロータ36を押圧した第1制輪子11は、このディスクロータ36からの反力を受ける。この反力は、制輪子保持部39及び第1キャリパアーム19を介してキャリパボディ17をスライドピン33に沿う方向へ移動させる。キャリパボディ17が移動すると、第2キャリパアーム21の制輪子保持部41に保持されている第2制輪子13が、対向する車輪35のディスクロータ36の外側面に当接する。その結果、第1制輪子11と第2制輪子13は、車輪35に対する隙間がなくなる。 When the holding member 47 protrudes, first, as in the case of the pressing mechanism 23, the first brake element 11 presses the outer surface of the disc rotor 36 of the opposing wheel 35 in the wheel rotational axis direction. The first control wheel 11 which has pressed the disk rotor 36 of the wheel 35 receives a reaction force from the disk rotor 36. The reaction force causes the caliper body 17 to move in the direction along the slide pin 33 via the brake control member holding portion 39 and the first caliper arm 19. When the caliper body 17 moves, the second brake 13 held by the brake holder 41 of the second caliper arm 21 abuts on the outer surface of the disk rotor 36 of the opposing wheel 35. As a result, the first control wheel 11 and the second control wheel 13 have no gap with respect to the wheel 35.
 そして、第1制輪子11と第2制輪子13が対向する車輪35のディスクロータ36の外側面に当接すると、電動モータ57の駆動が停止される。ナット53の雌ねじ53bとスクリュー55の雄ねじ55aとは、非可逆ねじで螺合しているので、ナット53に第1制輪子11から押圧力が作用した際、スクリュー55が回転させられることはない。 When the first brake element 11 and the second brake element 13 abut against the outer surface of the disc rotor 36 of the facing wheel 35, the drive of the electric motor 57 is stopped. The female screw 53b of the nut 53 and the male screw 55a of the screw 55 are screwed with each other by a nonreversible screw, and therefore, when a pressing force is applied to the nut 53 from the first control wheel 11, the screw 55 is not rotated. .
 この状態から電動モータ57が所定量逆回転されると、後退駆動された第1制輪子11は、対向する車輪35のディスクロータ36の外側面との間に所定の隙間を開けることができる。従って、隙間調整機構25は、電動モータ57の回転を制御するだけで隙間調整を行うことができる。なお、隙間調整機構25を作動させるタイミングは、ブレーキ緩解時であればいつでもよく、ディスクブレーキ装置100がブレーキ作動した直後のブレーキ緩解時毎でも、所定時間経過後のブレーキ緩解時でもよい。 In this state, when the electric motor 57 is reversely rotated by a predetermined amount, the first brake element 11 driven backward can open a predetermined gap between the opposing wheel 35 and the outer surface of the disk rotor 36. Therefore, the gap adjustment mechanism 25 can perform the gap adjustment only by controlling the rotation of the electric motor 57. The timing for operating the clearance adjustment mechanism 25 may be any time as long as the brake is released, and may be each time the brake is released immediately after the disc brake device 100 has been actuated, or may be released after a predetermined time has elapsed.
 また、パッド交換時に隙間調整機構25を初期位置に戻す場合は、電動モータ57を逆回転させてナット53と共に保持部材47を後退駆動する。すると、第1制輪子11及び第2制輪子13は、対向する車輪35のディスクロータ36の外側面との間の隙間が広がって初期位置に戻される。 When the gap adjusting mechanism 25 is returned to the initial position at the time of pad replacement, the electric motor 57 is reversely rotated to drive the holding member 47 backward with the nut 53. Then, the gap between the first wheel 11 and the second wheel 13 and the outer surface of the disk rotor 36 of the opposite wheel 35 is expanded, and the first wheel 11 and the second wheel 13 are returned to the initial position.
 本第1実施形態のディスクブレーキ装置100では、第1キャリパアーム19の制輪子保持部39に設けられた隙間調整機構25は、電動モータ57により電気駆動される。そこで、電動モータ57の回転を制御するだけで、第1制輪子11及び第2制輪子13とディスクロータ36との隙間を所定の設定値に調整することができ、隙間調整機構25を簡単な構造とすることができる。また、隙間調整機構25毎に電動モータ57の回転を制御することができ、全キャリパを一括、又は任意のキャリパ毎に隙間を初期位置に戻すことができる。 In the disk brake device 100 according to the first embodiment, the gap adjusting mechanism 25 provided in the brake pad retaining portion 39 of the first caliper arm 19 is electrically driven by the electric motor 57. Therefore, only by controlling the rotation of the electric motor 57, it is possible to adjust the gap between the first brake disc 11 and the second brake disc 13 and the disc rotor 36 to a predetermined set value, and the gap adjusting mechanism 25 is simple. It can be structured. In addition, the rotation of the electric motor 57 can be controlled for each gap adjustment mechanism 25, and all the calipers can be returned to the initial position collectively or collectively for any caliper.
 また、本第1実施形態のディスクブレーキ装置100では、車輪周方向の円弧に沿って長尺で形成された第1制輪子11及び第2制輪子13は、制動時、車輪35の両側の側面に対して平行に接近離反するように、長尺の長手方向両端(上下両端)が、車輪35の側面に垂直な保持部材47により摺動自在に支持される。即ち、第1制輪子11は、アンカーピンとしての保持部材47により車輪回転軸方向に摺動自在に保持される。そこで、隙間調整機構25は、この保持部材47を駆動するように構成されたことにより、第1制輪子11とディスクロータ36との隙間を車輪回転軸方向から調整することができる。 Further, in the disk brake device 100 of the first embodiment, the first brake element 11 and the second brake element 13 formed in a long shape along the arc of the wheel circumferential direction are side surfaces of both sides of the wheel 35 at the time of braking. The long longitudinal direction both ends (upper and lower ends) are slidably supported by holding members 47 perpendicular to the side surface of the wheel 35 so as to approach and separate in parallel to the above. That is, the first control wheel 11 is slidably held in the wheel rotational axis direction by the holding member 47 as an anchor pin. Therefore, the gap adjusting mechanism 25 is configured to drive the holding member 47, so that the gap between the first control wheel 11 and the disk rotor 36 can be adjusted in the wheel rotational axis direction.
 また、本第1実施形態のディスクブレーキ装置100では、保持部材47が、アンカーピンとしてアンカブロック49に対して車輪回転軸方向に摺動自在に支持される。アンカブロック49は、第1キャリパアーム19における制輪子保持部39の上下両端部に固定される。第1制輪子11を車輪回転軸方向に摺動自在に保持するためのアンカーピン97は、通常、アンカブロック95に予備組立体化されている(図9,図10参照)。そこで、隙間調整機構25の予備組立体化も同様に可能となる。従って、このディスクブレーキ装置100では、隙間調整機構25がアンカブロック組立体に集約され、取付けが現行品と同寸法とされることで、必要に応じた隙間調整機構25の選定が可能となる。 Further, in the disk brake device 100 of the first embodiment, the holding member 47 is supported as an anchor pin so as to be slidable in the wheel rotational axis direction with respect to the anchor block 49. The anchor blocks 49 are fixed to the upper and lower ends of the control rod holder 39 of the first caliper arm 19. An anchor pin 97 for slidably holding the first control wheel 11 in the wheel rotational axis direction is usually preassembled into an anchor block 95 (see FIGS. 9 and 10). Therefore, pre-assembly of the gap adjusting mechanism 25 is also possible. Therefore, in the disc brake device 100, the gap adjusting mechanism 25 is integrated into the anchor block assembly, and the mounting is made the same size as the current product, so that the gap adjusting mechanism 25 can be selected as needed.
 また、本第1実施形態のディスクブレーキ装置100では、制動時に第1制輪子11を車輪35に向けて駆動するための押圧機構23が、油圧系装置により油圧駆動され、ブレーキ緩解時に第1制輪子11とディスクロータ36との隙間を調整するための隙間調整機構25が、電気系装置により電気駆動される。これにより、押圧機構23と隙間調整機構25とは、同時に作動不良となるリスクを低減させ、ディスクブレーキ装置100の信頼性を向上させることができる。 Further, in the disk brake device 100 of the first embodiment, the pressing mechanism 23 for driving the first brake element 11 toward the wheel 35 at the time of braking is hydraulically driven by the hydraulic system device, and the first brake is released when the brake is released. A gap adjusting mechanism 25 for adjusting the gap between the rotor 11 and the disk rotor 36 is electrically driven by the electrical system device. Thereby, the pressing mechanism 23 and the gap adjusting mechanism 25 can reduce the risk of malfunction at the same time, and improve the reliability of the disc brake device 100.
 また、本第1実施形態のディスクブレーキ装置100では、電動モータ57が回転駆動されると、スクリュー55が回転する。スクリュー55は、保持部材47(アンカーピン)に対して相対回転不能に収容されたナット53に対して回転する。保持部材47に相対回転不能に保持されたナット53は、螺合するスクリュー55が回転することにより、車輪回転軸方向に摺動する。このナット53の車輪回転軸方向の摺動により、保持部材47が第1制輪子11を車輪回転軸方向に沿って駆動し、第1制輪子11及び第2制輪子13とディスクロータ36との隙間を調整する。 Further, in the disk brake device 100 of the first embodiment, when the electric motor 57 is rotationally driven, the screw 55 is rotated. The screw 55 rotates with respect to the nut 53 accommodated so as not to be rotatable relative to the holding member 47 (anchor pin). The nut 53 held so as not to be relatively rotatable by the holding member 47 slides in the wheel rotational axis direction by the rotation of the screw 55 engaged with it. By the sliding of the nut 53 in the wheel rotational axis direction, the holding member 47 drives the first brake element 11 along the wheel rotational axis direction, and the first brake element 11 and the second brake element 13 and the disc rotor 36 Adjust the gap.
 即ち、隙間調整機構25は、電動モータ57に回転駆動されるスクリュー55と、保持部材47に収容されたナット53と、ナット53に対して保持部材47を車輪35から離れる方向に付勢するばね部材88とで構成される。そこで、隙間調整機構25は、電動モータ57の回転を制御するだけで隙間調整を行うことができ、隙間調整時に大きなフリクション力が必要なくなるため、ディスクブレーキ装置100は常に安定したブレーキ力を発生することができる。 That is, the gap adjusting mechanism 25 is a screw 55 rotationally driven by the electric motor 57, a nut 53 accommodated in the holding member 47, and a spring urging the holding member 47 away from the wheel 35 with respect to the nut 53. And a member 88. Therefore, the gap adjusting mechanism 25 can perform the gap adjustment only by controlling the rotation of the electric motor 57, and since the large friction force is not necessary at the time of the gap adjustment, the disc brake device 100 always generates a stable braking force. be able to.
 また、ばね部材88が保持部材47をナット53に対して車輪35から離れる方向に付勢することで、油圧駆動される押圧機構23のピストンシリンダ40内に作用している残圧により対向するディスクロータ36の外側面に向けて移動しようとする押圧機構23のピストン45に抗することができる。そこで、ばね部材88のばね定数を適宜設定するだけで、第1制輪子11及び第2制輪子13とディスクロータ36との間の所定の隙間を容易に維持することができる。 In addition, the spring member 88 biases the holding member 47 against the nut 53 in a direction away from the wheel 35, so that the disc opposed by the residual pressure acting in the piston cylinder 40 of the hydraulically driven pressing mechanism 23 It is possible to resist the piston 45 of the pressing mechanism 23 which is going to move towards the outer surface of the rotor 36. Therefore, by setting the spring constant of the spring member 88 appropriately, it is possible to easily maintain the predetermined gap between the first control wheel 11 and the second control wheel 13 and the disk rotor 36.
 このように、本第1実施形態のディスクブレーキ装置100によれば、簡単な構造の隙間調整機構25により第1制輪子11及び第2制輪子13とディスクロータ36との間の所定の隙間を維持することができると共に、メンテナンス性を向上させることができる。 As described above, according to the disk brake device 100 of the first embodiment, the predetermined gap between the first brake disc 11 and the second brake disc 13 and the disc rotor 36 is obtained by the gap adjusting mechanism 25 having a simple structure. While being maintainable, maintainability can be improved.
 更に、本第1実施形態のディスクブレーキ装置100では、一対の隙間調整機構25を、制輪子保持部39の上端と下端とに設けたので、第1制輪子11を車輪35の側面に対して高い平行度で接近離反させることができる。 Furthermore, in the disk brake device 100 according to the first embodiment, the pair of clearance adjustment mechanisms 25 is provided at the upper end and the lower end of the control rod holder 39, so the first control wheel 11 is against the side surface of the wheel 35. It can be approached and separated with high parallelism.
[第2実施形態]
 次に、本発明の第2実施形態を説明する。
 図8は本発明の第2実施形態に係るディスクブレーキ装置200を第1キャリパアーム19側から見た斜視図、図9は図8に示したディスクブレーキ装置200を第2キャリパアーム21側から見た分解斜視図である。なお、第2実施形態においては第1実施形態の構成と同一の構成には同一の符号を付し重複する説明は省略する。
Second Embodiment
Next, a second embodiment of the present invention will be described.
8 is a perspective view of the disc brake device 200 according to the second embodiment of the present invention as viewed from the first caliper arm 19 side, and FIG. 9 is a view of the disc brake device 200 shown in FIG. 8 as viewed from the second caliper arm 21 side. It is a disassembled perspective view. In the second embodiment, the same components as those of the first embodiment are designated by the same reference numerals and their description will not be repeated.
 本第2実施形態に係るディスクブレーキ装置200は、図8及び図9に示すように、隙間調整機構25が、制輪子保持部39の上端のみに一つ取り付けられるものである。即ち、ディスクブレーキ装置200は、制輪子保持部39の下端には、隙間調整機構25が取り付けられていない。ディスクブレーキ装置200では、制輪子保持部39の下端に、アンカーピン97を備えたアンカブロック95が取り付けられる。その他の構成は、第1実施形態のディスクブレーキ装置100と同様である。 In the disk brake device 200 according to the second embodiment, as shown in FIGS. 8 and 9, one gap adjusting mechanism 25 is attached only to the upper end of the control / roller holding portion 39. That is, in the disc brake device 200, the clearance adjustment mechanism 25 is not attached to the lower end of the control rod holder 39. In the disc brake device 200, an anchor block 95 provided with an anchor pin 97 is attached to the lower end of the control wheel holder 39. The other configuration is the same as that of the disk brake device 100 of the first embodiment.
 図10は図9に示した従来構成のアンカブロック95の分解斜視図である。
 アンカブロック95は、アンカーピン97が、制動時に生じる制輪子保持部39の車輪回転方向の移動を規制する。アンカブロック95は、ブロック本体99を有する。ブロック本体99には、制輪子保持部39に固定するための一対のボルト69を挿通するボルト穴71が穿設される。また、ブロック本体99は、アンカーピン97等を同軸に収容する円筒部101を有する。
FIG. 10 is an exploded perspective view of the anchor block 95 of the conventional configuration shown in FIG.
The anchor block 95 restricts the movement of the wheel holding portion 39 in the wheel rotational direction, which occurs during braking. The anchor block 95 has a block body 99. In the block main body 99, bolt holes 71 for inserting a pair of bolts 69 for fixing to the brake disc holder holding portion 39 are bored. Further, the block main body 99 has a cylindrical portion 101 coaxially accommodating the anchor pin 97 and the like.
 アンカブロック95は、図10に示すように、円筒部101内に、制輪子保持部側から、アンカーピン97、Oリング103、止め輪105、遮熱板107、ブーツ109、ワッシャ111、止め輪113、ブッシュ115、止め輪117、Oリング119、塞ぎ板121、キャップ123を同軸に収容している。 The anchor block 95 is, as shown in FIG. 10, in the cylindrical portion 101, from the side of the control rod holding portion, the anchor pin 97, the O ring 103, the retaining ring 105, the heat shield plate 107, the boot 109, the washer 111, the retaining ring A bush 115, a retaining ring 117, an O-ring 119, a closing plate 121, and a cap 123 are coaxially accommodated.
 この第2実施形態に係るディスクブレーキ装置200によれば、一つの隙間調整機構25のみを備えるので、簡素な構造で、軽量、かつ、安価に製作することができる。 According to the disc brake device 200 according to the second embodiment, since only one gap adjusting mechanism 25 is provided, the disc brake device 200 can be manufactured with a simple structure, light weight, and low cost.
[第3実施形態]
 次に、本発明の第3実施形態を説明する。
 図11は本発明の第3実施形態に係るディスクブレーキ装置300の要部拡大断面図である。おな、第3実施形態においては第1実施形態の構成と同一の構成には同一の符号を付し重複する説明は省略する。
 本第3実施形態に係るディスクブレーキ装置300は、図11に示すように、隙間調整機構125が、制動時に油圧駆動される押圧機構127の押圧部材であるピストン129を電気駆動するものである。
Third Embodiment
Next, a third embodiment of the present invention will be described.
FIG. 11 is an enlarged sectional view of an essential part of a disc brake device 300 according to a third embodiment of the present invention. In the third embodiment, the same components as those of the first embodiment are designated by the same reference numerals and their description will not be repeated.
In the disk brake device 300 according to the third embodiment, as shown in FIG. 11, the gap adjusting mechanism 125 electrically drives a piston 129 which is a pressing member of the pressing mechanism 127 hydraulically driven at the time of braking.
 隙間調整機構125は、有底筒状の押圧部材であるピストン129と、ピストン129内に相対回転不能かつ軸方向に摺動自在に収容されたナット53と、先端側がナット53に螺合されたスクリュー55と、ナット53に対してピストン129を車輪35から離れる方向に付勢するばね部材88と、スクリュー55を回転駆動する電動モータ57と、を主要な構成部材として備える。 The clearance adjusting mechanism 125 has a piston 129 which is a bottomed cylindrical pressing member, a nut 53 rotatably accommodated in the piston 129 in a relatively non-rotatable manner in the axial direction, and a nut 53 screwed at the tip end. A screw 55, a spring member 88 urging the piston 129 in a direction away from the wheel 35 with respect to the nut 53, and an electric motor 57 rotating the screw 55 are provided as main components.
 本第3実施形態に係るディスクブレーキ装置300では、ブレーキ緩解時に第1制輪子11とディスクロータ36との隙間を調整するための隙間調整機構125が、制動時に第1制輪子11を油圧駆動するために設けられている押圧機構127のピストン129を電気駆動する。
 隙間調整機構125では、モータユニット59が、制輪子保持部39に設けられた押圧機構127の後方(図11中、右方)に取り付けられる。本第3実施形態のモータユニット59は、制輪子保持部39に一体固定される。モータユニット59は、制輪子保持部39に固定されることにより、出力軸63が制輪子保持部39のピストンシリンダ140内に収容されたスクリュー55に、相対回転不能に連結される。即ち、モータユニット59は、電動モータ57の駆動力を、出力軸63を介してピストンシリンダ140内のスクリュー55に入力する。
In the disc brake device 300 according to the third embodiment, the gap adjusting mechanism 125 for adjusting the gap between the first brake element 11 and the disc rotor 36 at the time of brake release hydraulically drives the first brake element 11 at the time of braking. The piston 129 of the pressing mechanism 127 provided for the purpose of driving is electrically driven.
In the gap adjusting mechanism 125, the motor unit 59 is attached to the rear (rightward in FIG. 11) of the pressing mechanism 127 provided in the brake pad holder 39. The motor unit 59 of the third embodiment is integrally fixed to the brake control member holding portion 39. The motor unit 59 is fixed to the control wheel holder 39, so that the output shaft 63 is non-rotatably connected to the screw 55 in which the output cylinder 63 is accommodated in the piston cylinder 140 of the control wheel holder 39. That is, the motor unit 59 inputs the driving force of the electric motor 57 to the screw 55 in the piston cylinder 140 via the output shaft 63.
 押圧部材としてのピストン129は、制動時に油圧駆動される押圧機構127のピストンであり、制輪子保持部39のピストンシリンダ140内に収容され、車輪回転軸方向に沿って摺動自在に支持されている。ピストンシリンダ140の内周面とピストン129の外周面との間は、パッキン130により封止されている。 A piston 129 as a pressing member is a piston of the pressing mechanism 127 hydraulically driven at the time of braking, is accommodated in the piston cylinder 140 of the control child holder 39, and is slidably supported along the wheel rotation axis direction There is. A packing 130 seals the inner circumferential surface of the piston cylinder 140 and the outer circumferential surface of the piston 129.
 制輪子保持部39のピストンシリンダ140から突出したピストン129の先端は、制輪子ガイド48に当接しており、第1キャリパアーム19に配設された油圧導入口24を通じて油圧の供給を受けてディスクロータ36側に突出することにより、第1制輪子11をディスクロータ36の外側面に押し付ける。 The tip end of the piston 129 projecting from the piston cylinder 140 of the brake control member holding portion 39 is in contact with the brake control device guide 48 and receives the supply of the hydraulic pressure through the hydraulic pressure inlet 24 arranged in the first caliper arm 19 By projecting toward the rotor 36, the first control wheel 11 is pressed against the outer surface of the disk rotor 36.
 有底筒状のピストン129内に収容されたナット53は、外周部先端に突設されたフランジ部に形成された複数の係合突起53aがピストン129内のスプライン溝に係合することで、ピストン129に対して相対回転不能かつ軸方向に摺動自在とされている。
 そして、ピストン129は、ばね部材88及びばね受け84によって、ナット53に対して車輪35から離れる方向に付勢されている。ばね部材88及びばね受け84は、ナット53の係合突起53aの基部とピストン129内に係止された止め輪86との間に介装される。
The nut 53 accommodated in the bottomed cylindrical piston 129 is engaged with the spline groove in the piston 129 by engaging a plurality of engagement protrusions 53 a formed on a flange portion protruding from the tip of the outer peripheral portion. The piston 129 is non-rotatable relative to the piston 129 and axially slidable.
The piston 129 is biased by a spring member 88 and a spring receiver 84 in a direction away from the wheel 35 with respect to the nut 53. The spring member 88 and the spring receiver 84 are interposed between the base of the engagement projection 53 a of the nut 53 and the snap ring 86 locked in the piston 129.
 ピストンシリンダ140内に収容されたスクリュー55は、フランジ部55bとピストンシリンダ140の底壁との間にスラストベアリング87が介装されている。また、ピストンシリンダ140の底壁を貫通したスクリュー55の基部とピストンシリンダ140の底壁との間には、ブッシュ91が介装されている。更に、ピストンシリンダ140の底壁を貫通したスクリュー55の基部は、止め輪93により抜け止めされている。従って、スクリュー55は、制輪子保持部39に対して相対回転可能かつ車輪回転軸方向に移動不能に配置されている。そして、ピストンシリンダ140の底壁を貫通したスクリュー55の基部は、モータユニット59の出力軸63にセレーション嵌合されて相対回転不能に連結される。 The thrust bearing 87 is interposed between the flange 55 b and the bottom wall of the piston cylinder 140. Further, a bush 91 is interposed between the base of the screw 55 penetrating the bottom wall of the piston cylinder 140 and the bottom wall of the piston cylinder 140. Further, the base of the screw 55 which penetrates the bottom wall of the piston cylinder 140 is prevented by the retaining ring 93. Therefore, the screw 55 is disposed so as to be relatively rotatable with respect to the control rod holder 39 and immovable in the wheel rotational axis direction. Then, the base of the screw 55 which has penetrated the bottom wall of the piston cylinder 140 is serrated with the output shaft 63 of the motor unit 59 so as to be non-rotatably coupled.
 即ち、隙間調整機構125は、スクリュー55が電動モータ57により回転駆動されることにより、押圧部材である押圧機構127のピストン129が制輪子保持部39に対して車輪回転軸方向に進退駆動され、制輪子ガイド48を介して第1制輪子11をディスクロータ36の外側面に対して移動させることができる。 That is, in the clearance adjustment mechanism 125, the piston 55 of the pressing mechanism 127, which is a pressing member, is driven to advance / retract in the wheel rotational axis direction with respect to the control rod holder 39 by the screw 55 being rotationally driven by the electric motor 57. The first control wheel 11 can be moved relative to the outer surface of the disk rotor 36 via the control wheel guide 48.
 次に、上記した構成の作用を説明する。
 本第3実施形態に係るフローティングキャリパタイプのディスクブレーキ装置300では、制動時、押圧機構127が油圧駆動される。押圧機構127が駆動されると、ピストン129は、ばね部材88の付勢力に抗して車輪35に近づく方向へ移動する。そこで、先ず、第1制輪子11が、対向する車輪35のディスクロータ36の外側面を車輪回転軸に沿う方向から押圧する。車輪35のディスクロータ36を押圧した第1制輪子11は、このディスクロータ36からの反力を受ける。この反力は、制輪子保持部39及び第1キャリパアーム19を介してキャリパボディ17をスライドピン33に沿う方向へ移動させる。キャリパボディ17が移動すると、第2キャリパアーム21の制輪子保持部41に保持されている第2制輪子13が、対向する車輪35のディスクロータ36の外側面を押圧する。その結果、車輪35は、車輪回転軸方向の両側から第1制輪子11と第2制輪子13とに挟まれて制動される。
Next, the operation of the above configuration will be described.
In the floating caliper type disk brake device 300 according to the third embodiment, at the time of braking, the pressing mechanism 127 is hydraulically driven. When the pressing mechanism 127 is driven, the piston 129 moves in the direction approaching the wheel 35 against the biasing force of the spring member 88. Therefore, first, the first brake element 11 presses the outer surface of the disc rotor 36 of the facing wheel 35 from the direction along the wheel rotation axis. The first control wheel 11 which has pressed the disk rotor 36 of the wheel 35 receives a reaction force from the disk rotor 36. The reaction force causes the caliper body 17 to move in the direction along the slide pin 33 via the brake control member holding portion 39 and the first caliper arm 19. When the caliper body 17 moves, the second brake 13 held by the brake holder 41 of the second caliper arm 21 presses the outer surface of the disc rotor 36 of the opposing wheel 35. As a result, the wheel 35 is braked by being pinched by the first restrictor 11 and the second restrictor 13 from both sides in the wheel rotational axis direction.
 一方、ブレーキ緩解時、本第3実施形態に係るディスクブレーキ装置300では、隙間調整機構125が適宜電気駆動される。第1キャリパアーム19の制輪子保持部39に設けられた隙間調整機構125は、駆動されると電動モータ57が回転駆動され、スクリュー55を回転する。スクリュー55が回転すると、ナット53は、スクリュー55の軸線方向に沿って移動し、ピストン129を突出方向に移動させる。 On the other hand, at the time of brake release, the gap adjusting mechanism 125 is appropriately electrically driven in the disk brake device 300 according to the third embodiment. When driven, the gap adjustment mechanism 125 provided in the brake pad holder 39 of the first caliper arm 19 rotates the electric motor 57 to rotate the screw 55. When the screw 55 rotates, the nut 53 moves along the axial direction of the screw 55 and moves the piston 129 in the projecting direction.
 ピストン129が突出すると、先ず、押圧機構127の場合と同様に、第1制輪子11が、対向する車輪35のディスクロータ36の外側面を車輪回転軸方向から押圧する。車輪35のディスクロータ36を押圧した第1制輪子11は、このディスクロータ36からの反力を受ける。この反力は、制輪子保持部39及び第1キャリパアーム19を介してキャリパボディ17をスライドピン33に沿う方向へ移動させる。キャリパボディ17が移動すると、第2キャリパアーム21の制輪子保持部41に保持されている第2制輪子13が、対向する車輪35のディスクロータ36の外側面に当接する。その結果、第1制輪子11と第2制輪子13は、車輪35に対する隙間がなくなる。 When the piston 129 projects, first, as in the case of the pressing mechanism 127, the first brake element 11 presses the outer surface of the disc rotor 36 of the opposing wheel 35 in the wheel rotational axis direction. The first control wheel 11 which has pressed the disk rotor 36 of the wheel 35 receives a reaction force from the disk rotor 36. The reaction force causes the caliper body 17 to move in the direction along the slide pin 33 via the brake control member holding portion 39 and the first caliper arm 19. When the caliper body 17 moves, the second brake 13 held by the brake holder 41 of the second caliper arm 21 abuts on the outer surface of the disk rotor 36 of the opposing wheel 35. As a result, the first control wheel 11 and the second control wheel 13 have no gap with respect to the wheel 35.
 そして、第1制輪子11と第2制輪子13が対向する車輪35のディスクロータ36の外側面に当接すると、電動モータ57の駆動が停止される。ナット53の雌ねじ53bとスクリュー55の雄ねじ55aとは、非可逆ねじで螺合しているので、ナット53に第1制輪子11から押圧力が作用した際、スクリュー55が回転させられることはない。 When the first brake element 11 and the second brake element 13 abut against the outer surface of the disc rotor 36 of the facing wheel 35, the drive of the electric motor 57 is stopped. The female screw 53b of the nut 53 and the male screw 55a of the screw 55 are screwed with each other by a nonreversible screw, and therefore, when a pressing force is applied to the nut 53 from the first control wheel 11, the screw 55 is not rotated. .
 この状態から電動モータ57が所定量逆回転されると、ナット53と共に後退駆動されたピストン129の先端は、対向する車輪35のディスクロータ36の外側面との間に所定の隙間を開けることができる。従って、隙間調整機構125は、電動モータ57の回転を制御するだけで隙間調整を行うことができる。 When the electric motor 57 is reversely rotated by a predetermined amount from this state, the tip of the piston 129 driven backward with the nut 53 opens a predetermined gap between the opposite wheel 35 and the outer surface of the disk rotor 36 it can. Therefore, the gap adjusting mechanism 125 can perform the gap adjustment only by controlling the rotation of the electric motor 57.
 また、パッド交換時に隙間調整機構125を初期位置に戻す場合は、電動モータ57を逆回転させてナット53と共にピストン129を後退駆動する。すると、第1制輪子11及び第2制輪子13は、対向する車輪35のディスクロータ36の外側面との間の隙間が広がって初期位置に戻される。 Further, when the gap adjustment mechanism 125 is returned to the initial position at the time of pad replacement, the electric motor 57 is reversely rotated to drive the piston 129 backward with the nut 53. Then, the gap between the first wheel 11 and the second wheel 13 and the outer surface of the disk rotor 36 of the opposite wheel 35 is expanded, and the first wheel 11 and the second wheel 13 are returned to the initial position.
 本第3実施形態のディスクブレーキ装置300では、ブレーキ緩解時に第1制輪子11及び第2制輪子13とディスクロータ36との隙間を調整するための隙間調整機構125が、制動時に第1制輪子11を押圧駆動するために設けられている押圧機構127のピストン129を駆動する。従って、隙間調整機構125は、第1制輪子11を押圧する押圧機構127のピストン129をダイレクトに駆動することにより、安定した調整力を印加することができる。 In the disc brake device 300 according to the third embodiment, the gap adjusting mechanism 125 for adjusting the gap between the first brake disc 11 and the second brake disc 13 and the disc rotor 36 at the time of brake release is the first brake disc at the time of braking. 11 drives a piston 129 of a pressing mechanism 127 provided for pressing and driving 11. Therefore, the gap adjusting mechanism 125 can apply a stable adjusting force by directly driving the piston 129 of the pressing mechanism 127 that presses the first brake element 11.
 本第3実施形態のディスクブレーキ装置300は、電動モータ57が回転駆動されると、スクリュー55が回転する。スクリュー55は、ピストン129に対して相対回転不能に収容されたナット53に対して回転する。ピストン129に相対回転不能に保持されたナット53は、螺合するスクリュー55が回転することにより、車輪回転軸方向に摺動する。このナット53の車輪回転軸方向の摺動により、ピストン129が第1制輪子11を車輪回転軸方向に沿って駆動し、第1制輪子11及び第2制輪子13とディスクロータ36との隙間を調整する。 In the disc brake device 300 of the third embodiment, when the electric motor 57 is rotationally driven, the screw 55 is rotated. The screw 55 rotates with respect to the nut 53 housed non-rotatably with respect to the piston 129. The nut 53 held so as not to be relatively rotatable to the piston 129 slides in the wheel rotational axis direction by the rotation of the screw 55 engaged with it. The piston 129 drives the first brake element 11 along the wheel rotational axis direction by the sliding of the nut 53 in the wheel rotational axis direction, and the gap between the first brake element 11 and the second brake element 13 and the disc rotor 36 Adjust the
 即ち、隙間調整機構125は、電動モータ57に回転駆動されるスクリュー55とピストン129に収容されたナット53と、ナット53に対してピストン129を車輪35から離れる方向に付勢するばね部材88とで構成される。そこで、隙間調整機構125は、電動モータ57の回転を制御するだけで隙間調整を行うことができ、隙間調整時に大きなフリクション力が必要なくなるため、ディスクブレーキ装置300は常に安定したブレーキ力を発生することができる。 That is, the gap adjusting mechanism 125 includes a screw 55 rotationally driven by the electric motor 57 and a nut 53 accommodated in the piston 129, and a spring member 88 urging the piston 129 away from the wheel 35 with respect to the nut 53. It consists of Therefore, the clearance adjustment mechanism 125 can perform clearance adjustment only by controlling the rotation of the electric motor 57, and a large friction force is not necessary at the time of clearance adjustment, so the disc brake device 300 always generates a stable braking force. be able to.
 また、ばね部材88がピストン129をナット53に対して車輪35から離れる方向に付勢することで、油圧駆動される押圧機構127のピストンシリンダ140内に作用している残圧により対向するディスクロータ36の外側面に向けて移動しようとするピストン129に抗することができる。そこで、ばね部材88のばね定数を適宜設定するだけで、第1制輪子11及び第2制輪子13とディスクロータ36との間の所定の隙間を容易に維持することができる。 In addition, the spring member 88 biases the piston 129 against the nut 53 in the direction away from the wheel 35, whereby the disc rotor opposed by the residual pressure acting in the piston cylinder 140 of the hydraulically driven pressing mechanism 127. The piston 129 can be resisted to move towards the outer surface of 36. Therefore, by setting the spring constant of the spring member 88 appropriately, it is possible to easily maintain the predetermined gap between the first control wheel 11 and the second control wheel 13 and the disk rotor 36.
 即ち、隙間調整機構125は、制輪子保持部39に対して相対回転可能かつ車輪回転軸方向に移動不能に配置されたスクリュー55が、電動モータ57により回転駆動されることにより、押圧部材であるピストン129が制輪子保持部39に対して車輪回転軸方向に進退駆動され、第1制輪子11を1ディスクロータ36の外側面に対して移動させることができる。 That is, the clearance adjusting mechanism 125 is a pressing member by the electric motor 57 rotationally driving the screw 55 disposed so as to be relatively rotatable with respect to the control rod holder 39 and immovable in the wheel rotational axis direction. The piston 129 is driven to move forward and backward in the wheel rotational axis direction with respect to the brake control member holding portion 39, and the first brake control member 11 can be moved with respect to the outer surface of the one disk rotor 36.
 このように、本第3実施形態のディスクブレーキ装置300によれば、簡単な構造の隙間調整機構125により第1制輪子11及び第2制輪子13とディスクロータ36との間の所定の隙間を維持することができると共に、メンテナンス性を向上させることができる。 As described above, according to the disk brake device 300 of the third embodiment, the predetermined gap between the first brake disc 11 and the second brake disc 13 and the disc rotor 36 is obtained by the gap adjusting mechanism 125 having a simple structure. While being maintainable, maintainability can be improved.
 ここで、上述した本発明に係るフローティングキャリパタイプのディスクブレーキ装置の実施形態の特徴をそれぞれ以下に簡潔に纏めて列記する。
 [1] 支持体(15)と、
 前記支持体(15)にスライドピン(33)を介して摺動自在に支持されたキャリパボディ(17)と、
 前記キャリパボディ(17)に車輪(35)を跨いで形成された第1キャリパアーム(19)及び第2キャリパアーム(21)と、
 前記第1キャリパアーム(19)及び前記第2キャリパアーム(21)の制輪子保持部(39,41)にそれぞれ保持された第1制輪子(11)及び第2制輪子(13)と、
 前記第1制輪子(11)を前記車輪(35)に向けて駆動するために前記第1キャリパアーム(19)の前記制輪子保持部(39)に設けられた押圧機構(23,127)と、
 ブレーキ緩解時に前記第1制輪子(11)及び前記第2制輪子(13)とディスクロータ(36)との隙間を所定の設定値に調整するために前記制輪子保持部に設けられ、電気駆動される、隙間調整機構(25,125)と、
 を備えるフローティングキャリパタイプのディスクブレーキ装置(100,200,300)。
[2] 上記[1]に記載のフローティングキャリパタイプのディスクブレーキ装置(100,200)であって、
 前記第1制輪子(11)を車輪回転軸方向に摺動自在に保持するため前記第1キャリパアーム(19)における前記制輪子保持部(39)の端部に配置された保持部材(47)をさらに備え、
 前記隙間調整機構(25)が前記保持部材(47)を駆動する。
[3] 上記[2]に記載のフローティングキャリパタイプのディスクブレーキ装置(100,200)であって、
 前記保持部材(47)が、前記第1キャリパアーム(19)の前記制輪子保持部(39)の端部に固定されたアンカブロック(49)に対して車輪回転軸方向に摺動自在に支持される。
[4] 上記[1]~[3]の何れか1つに記載のフローティングキャリパタイプのディスクブレーキ装置(100,200,300)であって、
 前記押圧機構(23,127)が、油圧駆動される。
[5] 上記[4]に記載のフローティングキャリパタイプのディスクブレーキ装置(300)であって、
 前記隙間調整機構(125)が、油圧駆動される前記押圧機構(127)の押圧部材(ピストン129)を駆動する。
[6] 上記[2]または[3]に記載のフローティングキャリパタイプのディスクブレーキ装置(100,200)であって、
 前記隙間調整機構(25)が、
 有底筒状の前記保持部材(47)と、
 前記保持部材(47)内に相対回転不能かつ軸方向に摺動自在に収容されたナット(53)と、
 先端側が前記ナット(53)に螺合されたスクリュー(55)と、 前記ナット(53)に対して前記保持部材(47)を前記車輪(35)から離れる方向に付勢するばね部材(88)と、
 前記スクリュー(55)を回転駆動する電動モータ(57)と、を備える。
[7] 上記[5]に記載のフローティングキャリパタイプのディスクブレーキ装置(300)であって、
 前記隙間調整機構(125)が、
 有底筒状の前記押圧部材(ピストン129)と、
 前記押圧部材(ピストン129)内に相対回転不能かつ軸方向に摺動自在に収容されたナット(53)と、
 先端側が前記ナット(53)に螺合されたスクリュー(55)と、
 前記ナット(53)に対して前記押圧部材(ピストン129)を前記車輪(35)から離れる方向に付勢するばね部材(88)と、
 前記スクリュー(55)を回転駆動する電動モータ(57)と、を備える。
[8] 上記[6]に記載のフローティングキャリパタイプのディスクブレーキ装置(100,200)であって、
 前記スクリュー(55)が、
 前記アンカブロック(49)に対して相対回転可能かつ車輪回転軸方向に移動不能に配置される。
[9] 上記[7]に記載のフローティングキャリパタイプのディスクブレーキ装置(300)であって、
 前記スクリュー(55)が、
 前記制輪子保持部(39)に対して相対回転可能かつ車輪回転軸方向に移動不能に配置される。
Here, the features of the embodiments of the floating caliper type disk brake device according to the present invention described above will be briefly summarized and listed below.
[1] a support (15),
A caliper body (17) slidably supported on the support (15) via a slide pin (33);
A first caliper arm (19) and a second caliper arm (21) formed on the caliper body (17) across the wheel (35);
A first control wheel (11) and a second control wheel (13) respectively held by the control wheel holding portions (39, 41) of the first caliper arm (19) and the second caliper arm (21);
And a pressing mechanism (23, 127) provided on the brake support portion (39) of the first caliper arm (19) to drive the first brake (11) toward the wheel (35) ,
Electric drive provided on the control wheel holding portion to adjust the gap between the first control wheel (11) and the second control wheel (13) and the disc rotor (36) to a predetermined set value at the time of brake release Clearance adjustment mechanism (25, 125), and
Floating caliper type disc brake device (100, 200, 300).
[2] The floating caliper type disk brake device (100, 200) according to the above [1], which
A holding member (47) disposed at an end of the brake support (39) of the first caliper arm (19) to hold the first brake (11) slidably in the wheel rotational axis direction. And further
The gap adjusting mechanism (25) drives the holding member (47).
[3] A floating caliper type disk brake device (100, 200) according to the above [2], which
The holding member (47) is slidably supported in the wheel rotational axis direction with respect to an anchor block (49) fixed to an end of the brake disc holding portion (39) of the first caliper arm (19) Be done.
[4] The floating caliper type disk brake device (100, 200, 300) according to any one of the above [1] to [3], which
The pressing mechanism (23, 127) is hydraulically driven.
[5] A floating caliper type disk brake device (300) according to the above [4], which
The clearance adjusting mechanism (125) drives a pressing member (piston 129) of the pressing mechanism (127) hydraulically driven.
[6] The floating caliper type disk brake device (100, 200) according to the above [2] or [3], which
The gap adjusting mechanism (25)
The bottomed cylindrical holding member (47);
A nut (53) accommodated in the holding member (47) so as to be relatively non-rotatable and axially slidable;
A screw (55) whose front end side is screwed into the nut (53); and a spring member (88) urging the holding member (47) away from the wheel (35) with respect to the nut (53). When,
And an electric motor (57) for rotationally driving the screw (55).
[7] A floating caliper type disk brake device (300) according to the above [5], which
The clearance adjustment mechanism (125)
The bottomed cylindrical pressing member (piston 129);
A nut (53) accommodated in the pressing member (piston 129) so as to be non-relatively rotatable and axially slidable;
A screw (55) whose tip end is screwed to the nut (53);
A spring member (88) urging the pressing member (piston 129) away from the wheel (35) with respect to the nut (53);
And an electric motor (57) for rotationally driving the screw (55).
[8] The floating caliper type disk brake device (100, 200) according to the above [6], which
The screw (55) is
It is disposed so as to be rotatable relative to the anchor block (49) and immovable in the wheel rotational axis direction.
[9] A floating caliper type disk brake device (300) according to the above [7], which
The screw (55) is
It is arranged so as to be relatively rotatable with respect to the control wheel holder (39) and immovable in the wheel rotational axis direction.
 なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。
 また、本出願は、2017年12月28日出願の日本特許出願(特願2017-254159)に基づくものであり、その内容はここに参照として取り込まれる。
The present invention is not limited to the embodiments described above, and appropriate modifications, improvements, etc. are possible. In addition, the material, shape, size, number, arrangement location, and the like of each component in the embodiment described above are arbitrary and not limited as long as the present invention can be achieved.
The present application is also based on Japanese Patent Application (Japanese Patent Application No. 2017-254159) filed on December 28, 2017, the contents of which are incorporated herein by reference.
 本発明のフローティングキャリパタイプのディスクブレーキ装置によれば、簡単な構造の隙間調整機構により制輪子とディスクロータとの間の所定の隙間を維持することができると共に、メンテナンス性を向上させることができる。 According to the floating caliper type disk brake device of the present invention, it is possible to maintain a predetermined gap between the control rotor and the disk rotor by the gap adjusting mechanism having a simple structure, and to improve maintainability. .
11…第1制輪子
13…第2制輪子
15…支持体
17…キャリパボディ
19…第1キャリパアーム
21…第2キャリパアーム
23…押圧機構
25…隙間調整機構
33…スライドピン
35…車輪
39…制輪子保持部
47…保持部材
49…アンカブロック
53…ナット
55…スクリュー
57…電動モータ
100…ディスクブレーキ装置
11 ... 1st control wheel 13 ... 2nd control wheel 15 ... Support body 17 ... Caliper body 19 ... 1st caliper arm 21 ... 2nd caliper arm 23 ... Pressing mechanism 25 ... Clearance adjusting mechanism 33 ... Slide pin 35 ... Wheel 39 ... Control wheel holding portion 47 ... holding member 49 ... anchor block 53 ... nut 55 ... screw 57 ... electric motor 100 ... disc brake device

Claims (9)

  1.  支持体と、
     前記支持体にスライドピンを介して摺動自在に支持されたキャリパボディと、
     前記キャリパボディに車輪を跨いで形成された第1キャリパアーム及び第2キャリパアームと、
     前記第1キャリパアーム及び前記第2キャリパアームの制輪子保持部にそれぞれ保持された第1制輪子及び第2制輪子と、
     前記第1制輪子を前記車輪に向けて駆動するために前記第1キャリパアームの前記制輪子保持部に設けられた押圧機構と、
     ブレーキ緩解時に前記第1制輪子及び前記第2制輪子とディスクロータとの隙間を所定の設定値に調整するために前記制輪子保持部に設けられ、電気駆動される隙間調整機構と、
     を備えるフローティングキャリパタイプのディスクブレーキ装置。
    A support,
    A caliper body slidably supported on the support via a slide pin;
    A first caliper arm and a second caliper arm formed across the wheels on the caliper body;
    A first control wheel and a second control wheel held by the control wheel holding portions of the first caliper arm and the second caliper arm, respectively;
    A pressing mechanism provided in the brake control member holding portion of the first caliper arm for driving the first brake member toward the wheel;
    A gap adjusting mechanism provided in the brake disc holder holding portion for adjusting the gap between the first brake disc and the second brake disc and the disc rotor to a predetermined set value at the time of brake release;
    Floating caliper type disc brake device with.
  2.  請求項1に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
     前記第1制輪子を車輪回転軸方向に摺動自在に保持するように構成され且つ前記第1キャリパアームにおける前記制輪子保持部の端部に配置された保持部材をさらに備え、
     前記隙間調整機構が前記保持部材を駆動する。
    The floating caliper type disk brake device according to claim 1, wherein
    It further comprises a holding member configured to slidably hold the first control wheel in the wheel rotational axis direction and disposed at an end of the control wheel holding portion of the first caliper arm,
    The clearance adjustment mechanism drives the holding member.
  3.  請求項2に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
     前記保持部材が、前記第1キャリパアームの前記制輪子保持部の端部に固定されたアンカブロックに対して車輪回転軸方向に摺動自在に支持される。
    The floating caliper type disk brake device according to claim 2, wherein
    The holding member is slidably supported in the wheel rotation axis direction with respect to an anchor block fixed to an end portion of the brake pad retaining portion of the first caliper arm.
  4.  請求項1~請求項3の何れか1項に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
     前記押圧機構が、油圧駆動される。
    A floating caliper type disk brake device according to any one of claims 1 to 3, wherein
    The pressing mechanism is hydraulically driven.
  5.  請求項4に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
     前記隙間調整機構が、油圧駆動される前記押圧機構の押圧部材を駆動する。
    The floating caliper type disk brake device according to claim 4, wherein
    The clearance adjusting mechanism drives a pressing member of the pressing mechanism that is hydraulically driven.
  6.  請求項3に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
     前記隙間調整機構が、
     有底筒状の前記保持部材と、
     前記保持部材内に相対回転不能かつ軸方向に摺動自在に収容されたナットと、
     先端側が前記ナットに螺合されたスクリューと、
     前記ナットに対して前記保持部材を前記車輪から離れる方向に付勢するばね部材と、
     前記スクリューを回転駆動する電動モータと、を備える。
    The floating caliper type disk brake device according to claim 3, wherein
    The clearance adjustment mechanism
    The bottomed cylindrical holding member;
    A nut rotatably accommodated in the holding member so as to be relatively non-rotatable and axially slidable;
    A screw whose tip end is screwed to the nut;
    A spring member urging the holding member away from the wheel with respect to the nut;
    And an electric motor for rotationally driving the screw.
  7.  請求項5に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
     前記隙間調整機構が、
     有底筒状の前記押圧部材と、
     前記押圧部材内に相対回転不能かつ軸方向に摺動自在に収容されたナットと、
     先端側が前記ナットに螺合されたスクリューと、
     前記ナットに対して前記押圧部材を前記車輪から離れる方向に付勢するばね部材と、
     前記スクリューを回転駆動する電動モータと、を備える。
    The floating caliper type disk brake device according to claim 5, wherein
    The clearance adjustment mechanism
    The bottomed cylindrical pressing member;
    A nut rotatably accommodated in the pressing member in a relatively non-rotatable manner in the axial direction;
    A screw whose tip end is screwed to the nut;
    A spring member urging the pressing member away from the wheel with respect to the nut;
    And an electric motor for rotationally driving the screw.
  8.  請求項6に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
     前記スクリューが、
     前記アンカブロックに対して相対回転可能かつ車輪回転軸方向に移動不能に配置される。
    The floating caliper type disk brake device according to claim 6, wherein
    The screw is
    It is arranged to be relatively rotatable with respect to the anchor block and immovable in the wheel rotational axis direction.
  9.  請求項7に記載のフローティングキャリパタイプのディスクブレーキ装置であって、
     前記スクリューが、
     前記制輪子保持部に対して相対回転可能かつ車輪回転軸方向に移動不能に配置される。
    The floating caliper type disk brake device according to claim 7, wherein
    The screw is
    It is arranged so as to be relatively rotatable with respect to the control wheel holder and immovable in the wheel rotational axis direction.
PCT/JP2018/047652 2017-12-28 2018-12-25 Floating-caliper-type disc brake device WO2019131676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017254159A JP6949707B2 (en) 2017-12-28 2017-12-28 Floating caliper type disc brake device
JP2017-254159 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131676A1 true WO2019131676A1 (en) 2019-07-04

Family

ID=67067410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047652 WO2019131676A1 (en) 2017-12-28 2018-12-25 Floating-caliper-type disc brake device

Country Status (3)

Country Link
JP (1) JP6949707B2 (en)
TW (1) TW201930744A (en)
WO (1) WO2019131676A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230209A (en) * 1998-02-17 1999-08-27 Kayaba Ind Co Ltd Disk brake device
WO2014006658A1 (en) * 2012-07-05 2014-01-09 株式会社Tbk Disc brake device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230209A (en) * 1998-02-17 1999-08-27 Kayaba Ind Co Ltd Disk brake device
WO2014006658A1 (en) * 2012-07-05 2014-01-09 株式会社Tbk Disc brake device

Also Published As

Publication number Publication date
JP2019120288A (en) 2019-07-22
JP6949707B2 (en) 2021-10-13
TW201930744A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
KR101786337B1 (en) Electro-Mechanical Brake
JP3904604B2 (en) Modular disc brake and its operating lever
US9555779B2 (en) Electric parking brake device
KR101511437B1 (en) Electro mechanical brake Apparatus
US20070062767A1 (en) Disk brake, especially with an electromotive adjusting device, and method for controlling said type of disk brake
US9989115B2 (en) Disc brake system
BR102012015611A2 (en) A FORCE TRANSMISSION DEVICE
KR102383332B1 (en) Ball Screw Type Electro-Mechanical Brake
WO2019073786A1 (en) Floating caliper disc brake device
KR20170124743A (en) Electro-Mechanical Brake
JP2016050629A (en) Gear unit and brake device
EP0129145B1 (en) Slack adjuster for a disc brake
JP5466259B2 (en) Disc brake booster
WO2019131676A1 (en) Floating-caliper-type disc brake device
CN110914567B (en) Disc brake and brake actuator
KR20220107460A (en) Electro-mechanical brake
WO2017006956A1 (en) Device for driving power brake
WO2014021647A1 (en) Disk brake for vehicle having gear connection
US3592300A (en) Self-energizing disc brake
JP2004068977A (en) Wedge actuation type disc brake device
JP2001173693A (en) Actuator for motor driven brake
JP2002503321A (en) Improvements on disc brake assembly
KR101612963B1 (en) Electro wedge brake device for vehicle
JPH0517411B2 (en)
JP2022090347A (en) Wedge cam type brake

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894942

Country of ref document: EP

Kind code of ref document: A1