WO2019131673A1 - Cell culture vessel - Google Patents

Cell culture vessel Download PDF

Info

Publication number
WO2019131673A1
WO2019131673A1 PCT/JP2018/047648 JP2018047648W WO2019131673A1 WO 2019131673 A1 WO2019131673 A1 WO 2019131673A1 JP 2018047648 W JP2018047648 W JP 2018047648W WO 2019131673 A1 WO2019131673 A1 WO 2019131673A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
culture vessel
cell
holding space
well
Prior art date
Application number
PCT/JP2018/047648
Other languages
French (fr)
Japanese (ja)
Inventor
晃輔 堀
紀之 河原
Original Assignee
株式会社幹細胞&デバイス研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社幹細胞&デバイス研究所 filed Critical 株式会社幹細胞&デバイス研究所
Priority to JP2019562049A priority Critical patent/JP7278523B2/en
Publication of WO2019131673A1 publication Critical patent/WO2019131673A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to a cell culture vessel, and in particular to one having a cell holding area in advance.
  • the plastic container 10 is a container for culturing living cells such as living cells and tissues, and is a container for imaging (or observing) the cultured living cells with a phase contrast microscope. is there. Further, the plastic container 10 is a so-called multi-well plate, and has a plurality of circularly opened wells 11.
  • the well 11 is a recess for containing living cells to be imaged after culture and culture and a culture solution for culturing the living cells.
  • FIG. 7 shows a 96-well plate having 96 wells 11 in 8 rows and 12 columns as an example, the plastic container 10 may have at least two wells 11. The number of is arbitrary. In addition to the 96-well plate, the wells 11 are often 6, 24, or 384 multi-well plates.
  • Suitable materials for the plastic container 10 are, for example, polyethylene terephthalate (PET), polystyrene (PS), polycarbonate (PC), TAC (triacetyl cellulose), polyimide (PI), nylon (Ny), low density polyethylene (LDPE) And medium density polyethylene (MDPE), vinyl chloride, vinylidene chloride, polyphenylene sulfide, polyether sulfone, polyethylene naphthalate, polypropylene, acrylic materials such as urethane acrylate, cellulose, glass and the like. Further, resins such as biodegradable polymers such as polylactic acid, polyglycolic acid, polycaprolactone or copolymers thereof can be used.
  • polyethylene terephthalate, polystyrene and polycarbonate can be preferably used, and polystyrene can be particularly preferably used. It is because cytotoxicity is low.
  • the surface of the plastic container 10 may be subjected to any surface treatment (for example, irradiation with plasma, corona, microwave, electron beam, ultraviolet light, etc.).
  • the well 11 is a non-through hole and is opened on the surface of the plastic container 10.
  • the living cells 13 to be cultured and the culture solution 12 (for example, serum solution) for culturing the living cells 13 are injected into the wells 11 from the opening.
  • the culture solution 12 injected into the well 11 is always in the vicinity of the opening of the well 11 during the culture of the living cells 13 and during imaging with a phase contrast microscope. Contact the air. For this reason, the cultured living cells 13 are imaged (observed) by a phase contrast microscope while being alive.
  • the well 11 has an opening diameter R of 0.5 mm or more and less than 2 cm, and a depth D of 2 mm or more and less than 2 cm.
  • the diameter R of the opening of the well 11 is preferably 0.5 mm or more and less than 2 cm because it is preferable to obtain data in which the number of living cells 13 cultured in the same environment is uniformly converged. .
  • the diameter R of the opening of the well 11 is more preferably 1 mm or more.
  • the present invention is particularly useful because when the diameter R of the opening of the well 11 is less than 2 cm, the meniscus of the liquid surface 12a of the culture solution 12 becomes remarkable, and the diameter R of the opening of the well 11 is 1 cm or less It is particularly suitable in the case.
  • the diameter of the opening of the well 11 is 6 mm, for example, in the case of a 384-well plate having 384 wells 11, the diameter of the opening of the well 11 is 3 mm is there.
  • the depth D of the well 11 is the height from the bottom surface 11b of the well 11 to the opening (surface of the plastic container 10), and the depth D of the well 11 is 2 mm or more. This is for securing a sufficient medium for culturing 13 and for securing a sufficient amount of culture solution 12 for culturing living cells 13.
  • the depth D of the well 11 is formed to be less than 2 cm in order to prevent the decrease in the amount of light of the peripheral vision due to vignetting when observed with a transmission type microscope. If the depth D of the well 11 is in the range of 3 mm or more and 1 cm or less, it is particularly suitable for culture and imaging of the living cell 13. Moreover, it is preferable that the quantity of the culture solution 12 put into the well 11 is 1/2 or less of the depth D of the well 11 (as mentioned above, refer patent document 1).
  • the aforementioned plastic container 10 has the following points to be improved.
  • the living cells 13 are cultured at the bottom of the well 11.
  • the bottom of the well 11 has a relatively large area in view of the cells to be cultured, and it is unknown at which position of the bottom the cell is to be cultured and to what extent. Therefore, even if the conditions for cell culture, the number of cells, the amount of medium, the temperature, and the like are the same, cells are not uniformly cultured at the bottom of the well 11. For this reason, also in the well 11, there is a point to be improved that the result may be different depending on the position of the cell target to be experimented.
  • the present inventors have found that, as a result of intensive studies aimed at overcoming the problems of the prior art described above, it is possible to provide a cell culture vessel having a cell holding region in advance, and to complete the present invention. It reached. That is, the object of the present invention is achieved by the following invention.
  • a cell culture vessel for culturing cells in a culture medium stationed in a cell culture space formed by a bottom surface and a side comprising: A protrusion protruding from the bottom surface to the cell culture space; A cell holding space formed concavely from the top surface to the bottom surface in the protrusion; A cell culture vessel having (2) In the cell culture vessel according to (1), The cell culture vessel is Being a well placed in a multiwell plate, A cell culture vessel characterized by (3) In the cell culture vessel according to (1) or (2), The body is It is formed by the upper surface and the inner surface of at least a hollow column shape, The cell holding space is Being a hollow space of the hollow column shape; A cell culture vessel characterized by (4) In any of the cell culture vessels according to (1) to (3), The cell holding space is It has been subjected to a hydrophilic treatment to facilitate retention of the cells, A cell culture vessel characterized by (5) In the cell culture vessel according to (4), The cell holding space is A cell culture vessel having a contact angle of less than 60
  • a cell culture vessel characterized by (7) In any of the cell culture vessels according to (1) to (6), The cell culture container which has a contact angle of 60 degrees or more other than the surface which forms the said cell holding
  • the cell holding space is The area forming the bottom is polystyrene (PS), glass, polycarbonate (PC), cycloolefin polymer (COP), cyclic olefin copolymer (COC), polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), and A cell culture vessel formed of one or more materials selected from the group consisting of acrylic resin (PMMA).
  • PS polystyrene
  • PC polycarbonate
  • COP cycloolefin polymer
  • COC cyclic olefin copolymer
  • PDMS polydimethylsiloxane
  • PET polyethylene terephthalate
  • the cell culture vessel according to the present invention is a cell culture vessel used for culturing cells in a culture medium stationed in a cell culture space formed by a bottom surface and a side surface, and protrudes from the bottom surface to the cell culture space And the cell holding space formed in a concave shape from the top surface toward the bottom surface.
  • the cell holding space is formed at a predetermined position with respect to the cell culture vessel, so that the cells are cultured in the cell culture vessel, and the place where the cultured cells are held can be fixed.
  • the cell holding space having a predetermined capacity is arranged with respect to the cell culture vessel, it is possible to prevent a difference in the amount of cells to be cultured among the cell culture vessels. Thereby, when performing the comparison experiment and the comparison test on cells cultured in each cell culture vessel, the conditions before the experiment in each cell culture vessel can be made the same.
  • cells can be cultured in the cell holding space, desired cells can be cultured in three dimensions.
  • the cell culture vessel is a well disposed in a multiwell plate.
  • the cell holding space is formed at a predetermined position for each well, so that the cells are cultured in each well, and the place where the cultured cells are held is fixed.
  • the cell culture vessel according to the present invention is characterized in that the main body is formed by at least an upper surface and an inner side surface of a hollow column shape, and the cell holding space is a hollow space of the hollow column shape.
  • the cell holding area forming device for cell culture containers can be easily generated.
  • the cell holding space is characterized in that a surface coating treatment is performed to facilitate holding of the cells.
  • the cell holding space has the cells to be cultured.
  • FIG. 1 is a view showing a multi-well plate W1 which is an example of a cell culture vessel according to the present invention, in which A shows a plan view, B shows a front view, and C shows an X1-X1 cross section of A. It is a figure which shows the well 100 of multi-well plate W1.
  • FIG. 1 is a view showing a multi-well plate W2 which is an example of a cell culture vessel according to the present invention, wherein A shows a plan view, B shows a front view, and C shows an X3-X3 cross section of A.
  • FIG. It is a figure which shows the well 200 of multi-well plate W2.
  • FIG. 1 is a view showing a multi-well plate W1 which is an example of a cell culture vessel according to the present invention, in which A shows a plan view, B shows a front view, and C shows an X1-X1 cross section of A.
  • FIG. 1 is a view showing a multi-well plate W2 which is an example of
  • FIG. 1 is a view showing a multi-well plate W3 which is an example of a cell culture vessel according to the present invention, wherein A shows a plan view, B shows a front view, and C shows an X5-X5 cross section of A.
  • FIG. It is a figure which shows the well 300 of multi-well plate W3. It is a figure which shows the conventional cell culture container. It is a figure which shows the conventional cell culture container. It is a figure which shows the shape of cell holding
  • the cell culture vessel according to the present invention will be described using a multiwell plate W1 having 96 wells as one embodiment.
  • the multiwell plate W1 is a device for culturing cells in a culture medium and performing predetermined experiments and tests on the cultured cells.
  • FIG. 1A shows a plan view of the multiwell plate W1
  • FIG. 1B shows a front view of the multiwell plate W1
  • FIG. 1C shows an X1-X1 cross section of FIG. 1A.
  • the multiwell plate W1 has 96 wells 100. Each well 100 is arranged in a multiwell plate W1 in a matrix of 8 ⁇ 12. As shown in FIG. 1B, the well 100 has a bottom surface portion 101 and a side surface portion 103. The bottom surface portion 101 and the side surface portion 103 form a cylindrical internal space S100. A medium or the like for cell culture is stored in the internal space S100.
  • the well 100 has a protrusion 105 and a cell holding space 107.
  • the protrusion 105 is formed in a hollow cylindrical shape (see FIG. 1A).
  • the projecting portion 105 is formed such that the center of the hollow cylindrical shape coincides with the center of the bottom surface portion 101.
  • the protruding portion 105 is formed in an island shape so as to protrude from the bottom surface portion 101 toward the internal space S100 side.
  • the height of the protrusion 105 that is, the height from the top surface P 105 u to the bottom portion 101 is lower than the general medium storage height for cell culture in the inner space S 100.
  • the cell holding space 107 can be disposed in the medium to culture the cells in the medium.
  • the cell holding space 107 is formed as a hollow cylindrical hollow space from the top surface P 105 u of the protrusion 105 to the bottom surface 101. That is, the cell holding space 107 is formed in a concave shape from the top surface P 105 u of the protrusion 105 toward the bottom surface 101.
  • the cell holding space 107 is formed at a predetermined position with respect to each well 100. For this reason, cells are cultured in the well 100, and the place where the cultured cells are held is fixed.
  • the cell holding space 107 having a predetermined capacity is disposed with respect to the wells 100, it is possible to prevent differences in the amount of cells to be cultured among the wells 100.
  • the conditions before the experiment in each well 100 can be made the same.
  • the conditions before the experiment can be made the same between the multiwell plates W1.
  • cells can be cultured in the cell holding space 107, desired cells can be cultured in three dimensions.
  • the cell culture method in the multi-well plate W1 will be described by taking a case where cardiomyocytes are cultured as an example.
  • the user applies a cell retention area generation process to the cell retention space 107 to facilitate retention of the seeded cardiomyocytes.
  • the cell holding area generation process has a hydrophilic process, a washing process, and a surface coating process.
  • the user first applies hydrophilic treatment to the cell holding space 107.
  • the hydrophilic treatment is performed, for example, by discharging a cow's serum sucked into a pipette into the cell holding space 107, retaining the cow's serum in the cell holding space 107 for a predetermined time, and then suctioning it with an aspirator.
  • the washing treatment is performed, for example, by aspirating pure water using a pipette, discharging it into the cell holding space 107, and aspirating using an aspirator.
  • the user applies a surface coating treatment to the washed cell holding space 107.
  • a surface coating treatment for example, a commercially available surface coating material, such as Geltrex (trademark), is aspirated with a pipette, discharged into the cell holding space 107, and dried for a predetermined time. Drying is carried out at a humidity of 60% or more for 30 minutes to 2 hours.
  • the user disseminates cardiomyocytes in the cell holding space 107 using a cell suspension containing cardiomyocytes.
  • the cell suspension containing cardiomyocytes is accurately placed at a predetermined position of the well 100, specifically, the position where the cell holding space 107 is formed, that is, the cardiomyocytes are seeded and held can do.
  • the user similarly disseminates cardiomyocytes for the required wells 100.
  • each well 100 has the projecting portion 105 projecting like an island.
  • the multi-well plate W2 has a projecting portion 205 (described later) having a shape different from that of the above-mentioned projecting portion 105.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description is omitted.
  • FIG. 3A shows a plan view of the multiwell plate W2
  • FIG. 3B shows a front view of the multiwell plate W2
  • FIG. 3C shows an X3-X3 cross section of FIG. 3A.
  • the multiwell plate W2 has 96 wells 200. Each well 200 is arranged in a multiwell plate W2 in a matrix of 8 ⁇ 12. As shown in FIG. 3B, the well 200 has a bottom surface portion 101 and a side surface portion 103.
  • the well 200 has a protrusion 205 and a cell holding space 107.
  • FIG. 4 shows an enlarged view of the circle portion P3 of FIG. 3C.
  • the protrusion 205 is formed in a hollow cylindrical shape (see FIG. 3A).
  • the projecting portion 205 is arranged such that the center of the hollow cylindrical shape coincides with the center of the bottom portion 101.
  • the projecting portion 205 is formed to project from the bottom surface portion 101 toward the internal space S100 (see FIG. 3).
  • the projecting portion 205 is formed such that the outer surface P 205 s of the projecting portion 205 and the side surface portion 103 are integrated, and the lower surface P 205 b of the projecting portion 205 and the bottom surface portion 101 are integrated.
  • the height of the projecting portion 205 that is, the height from the top surface P205u to the bottom portion 101 is lower than the general medium storage height for cell culture in the internal space S100.
  • the cell holding space 107 is disposed in the medium, and the cells can be cultured in the medium.
  • the cell holding space 107 is formed as a hollow cylindrical hollow space from the bottom surface portion 101 to the top surface P 205 u of the projecting portion 205. That is, the cell holding space 107 is formed in a concave shape from the top surface P 205 u of the protrusion 205 toward the bottom surface 101.
  • the cell holding space 107 is formed at a predetermined position with respect to each well 200. For this reason, the place where a cell is hold
  • the cell holding space 107 having a predetermined capacity is arranged with respect to the wells 200, it is possible to prevent differences in the amount of cells to be cultured between the wells 200.
  • the conditions before the experiment in each well 200 can be made the same.
  • the conditions before the experiment can be made the same between the multiwell plates W2.
  • cells can be cultured in the cell holding space 107, desired cells can be cultured in three dimensions.
  • the cell culture vessel according to the present invention will be described using a multiwell plate W3 having 96 wells as one embodiment.
  • the multi-well plate W2 described above the lower surface P205b of the protruding portion 205 and the bottom surface portion 101 are integrated such that the outer surface P205s of the protruding portion 205 and the side surface portion 103 are integrated. It had the protrusion part 205 formed in this way.
  • the multi-well plate W3 has a protrusion 305 (described later) having a shape different from that of the protrusion 205 described above.
  • the same components as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and detailed description will be omitted.
  • FIG. 5A shows a plan view of the multiwell plate W3
  • FIG. 5B shows a front view of the multiwell plate W3
  • FIG. 5C shows an X5-X5 cross section of FIG. 5A.
  • the multiwell plate W3 has 96 wells 300. Each well 300 is arranged in a multiwell plate W3 in a matrix of 8 ⁇ 12. As shown in FIG. 5B, the well 300 has a bottom surface portion 301 and a side surface portion 303. The bottom surface portion 301 is formed as a surface that closes one end of the lower portion of the inner side surface P 305 i (described later) of the projecting portion 305.
  • the well 300 has a protrusion 305 and a cell holding space 107.
  • FIG. 6 shows an enlarged view of the circle portion P5 of FIG. 5C.
  • the protrusion 305 is formed of a hollow cylindrical upper surface P 305 u and an inner side surface P 305 i (see FIG. 5A).
  • the protruding portion 305 is arranged such that the center of the partial shape of the hollow cylindrical shape formed by the top surface P 305 u and the inner side surface P 305 i coincides with the center of the bottom surface portion 301.
  • the protrusion 305 is formed to protrude from the bottom surface 301 toward the internal space S100.
  • the height of the protrusion 305 that is, the height from the top surface P305u to the bottom portion 301, is lower than the general medium storage height for cell culture in the internal space S100.
  • the cell holding space 107 can be disposed in the medium to culture the cells in the medium.
  • the cell holding space 107 is formed as a hollow cylindrical hollow space from the bottom surface portion 301 to the upper surface P 305 u of the projecting portion 305. That is, the cell holding space 107 is formed in a concave shape from the top surface P 305 u of the protrusion 305 toward the bottom surface 301.
  • the cell holding space 107 is formed at a predetermined position with respect to each well 300. For this reason, the place where a cell is hold
  • the cell holding space 107 having a predetermined capacity is arranged with respect to the wells 300, it is possible to prevent differences in the amount of cells to be cultured among the wells 300.
  • the conditions before the experiment in each well 300 can be made the same.
  • the conditions before the experiment can be made the same between the multiwell plates W3.
  • cells can be cultured in the cell holding space 107, desired cells can be cultured in three dimensions.
  • the protrusion 105 has a hollow cylindrical shape, but is not limited to the illustrated one as long as it protrudes from the bottom surface 101 toward the internal space S100.
  • it may be a hollow prism having a prismatic shape.
  • the cylindrical shape may be removed from the prismatic shape. The same applies to Example 2 and Example 3.
  • Example 1 the well 100 has one cell holding space 107, but may have a plurality of cell holding spaces. The same applies to Example 2 and Example 3.
  • Example 1 Cell to be Measured: In Example 1 described above, cardiomyocytes were used as cells cultured in the medium using the well 100, but the present invention is not limited to the illustrated one.
  • it may be a nerve cell.
  • it may be neural cells derived from pluripotent stem cells.
  • pluripotent stem cells include, for example, embryonic stem cells (ES cells) and iPS cells. The same applies to Example 2 and Example 3.
  • Example 1 the multi-well plate W1 having the wells 100 arranged in a matrix of 8 ⁇ 12 was used, but if it has a plurality of wells, It is not limited to the illustrated one. For example, it may have wells arranged in a 3 ⁇ 4, 4 ⁇ 6 matrix. The same applies to Example 2 and Example 3.
  • Example 1 Although the hydrophilic treatment was performed using bovine serum, it is not limited to the exemplified one as long as at least the cell holding space 107 can be made hydrophilic.
  • Example 1 Although the washing treatment was performed using pure water, it is not limited to the illustrated one as long as at least the cell holding space 107 can be washed. In addition, if it is not necessary, in the cell holding area generation process, the washing process may not be performed. The same applies to Example 2 and Example 3.
  • Example 1 Although the surface coating treatment was performed using geltorex, at least the cell holding space 107 is limited to the exemplified one as long as it can cover the surface. I will not.
  • protein-amino acid-matrix coating treatment using collagen, fibronectin, vitronectin, laminin, matrigel, gelatin, geltrex, synthetic amino acid chain, poly-L-ornithine, albumin or the like may be used.
  • it is not necessary it is not necessary to perform the surface coating process in the cell holding area generation process. The same applies to Example 2 and Example 3.
  • the cell suspension stored in the cell holding space 107 does not flow out to the area other than the cell holding space 107 with respect to the faces other than the face forming the cell holding space 107 in Example 1 described above. It is desirable to have a contact angle. Specifically, it is desirable that the surfaces other than the surface forming the cell holding space 107 have a contact angle greater than 60 °. The same applies to the other embodiments.
  • Size of cell holding space 107 is the same as the size of the cell discharged once from the pipette used when storing the cell suspension in the cell holding space 107.
  • the size of the suspension may be similar to that of the suspension.
  • the volume of the cell holding space 107 is preferably about 30 ⁇ L to 0.5 ⁇ L.
  • Example 10 Member for Forming Cell Holding Space:
  • a region forming the bottom of the cell holding space 107 in the bottom portion 101 that is, a hollow cylinder of at least the protrusion 105 in the bottom portion 101. It is desirable to form the area corresponding to the part by a transparent material. Thus, the operation can be carried out while confirming the state of cell culture in the cell holding space 107 from the outside, particularly from the bottom side. The same applies to the other embodiments.
  • transparent material examples include polystyrene (PS), glass, polycarbonate (PC), cycloolefin polymer (COP), cyclic olefin copolymer (COC), polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), acrylic Although resin (PMMA) etc. are mentioned, it does not limit to these.
  • PS polystyrene
  • PC polycarbonate
  • COP cycloolefin polymer
  • COC cyclic olefin copolymer
  • PDMS polydimethylsiloxane
  • PET polyethylene terephthalate
  • PMMA acrylic Although resin
  • the bottom portion 101 is formed of a transparent material
  • the well 200 is formed by bonding with the composite of the side surface portion 103 and the projecting portion 205.
  • the well 200 may be formed by forming the bottom surface portion 101 and the projecting portion 205 with a transparent material and bonding the side surface portion 103 whose both ends are open.
  • the bottom surface portion 301 is formed of a transparent material, and a composite of a hollow cylindrical upper surface P 305 u, an inner side surface P 305 i, and a side surface portion 301 and both ends
  • the well 300 may be formed by bonding with the open side surface portion 103.
  • the well 300 may be formed by forming the bottom surface portion 301 and the projecting portion 305 with a transparent material and bonding the side surface portion 103 whose both ends are open.
  • an adhesive material with low cytotoxicity such as a silicon adhesive material, for joining of both members.
  • the region forming the bottom of the cell holding space in each example have a contact angle of less than 60 ° in order to facilitate cell holding.
  • the well 100 may be formed of polystyrene, silicon, glass, polycarbonate or the like.
  • the protrusion 105 forming the cell holding space 107 is a hollow cylindrical shape, and the cell holding space 107 is a cylindrical shape, but the cell suspension is The cell holding space 107 is not limited to the illustrated one as long as the cell holding space 107 can hold the
  • a protrusion 505 having a shape obtained by removing a truncated cone shape from a cylindrical shape may be used.
  • the side surface P505 can be tapered downward, so that the cell suspension can be stably stored in the inverted truncated conical cell holding space 507. The same applies to the other embodiments.
  • the cell culture vessel according to the present invention can be used, for example, in a multiwell plate.
  • W1 multi-well plate 100 well 101 bottom portion 103 side portion 105 protrusion P 105 u top surface 107 cell holding space S 100 internal space W 2 multi-well plate 200 well 205 protrusion P 205 s outer surface P 205 b lower surface P 205 u upper surface W 3 multi-well plate 300 well 301 lower surface portion 303 side surface 305 protrusion P305i inner side P305u upper surface

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

[Problem] To provide a cell culture vessel having a pre-prepared cell retaining region. [Solution] A protruding section 105 of each well 100 in a multiwell plate W1 is formed as an island shape protruding from a bottom surface section 101 toward the inner space S100 side. A cell retaining space 107 is formed as a hollow space in the form of a hollow cylinder from the top surface P105u of the protruding section 105 to the bottom surface section 101. In other words, the cell retaining space 107 is formed as a recess from the top surface P105u of the protruding section 105 to the bottom surface section 101. Thus, in the multiwell plate W1, the cell retaining space 107 is formed in a predetermined position in each well 100. As a result, it is possible to fix the site where cultured cells are retained when cells are cultured in the wells 100. In addition, since a cell retaining space 107 with a predetermined capacity is provided, it is possible to avoid differences in the amount of cultured cells in the wells 100.

Description

細胞培養容器Cell culture vessel
 本発明は、細胞培養容器に関し、特に、予め細胞保持領域を有しているものに関する。 The present invention relates to a cell culture vessel, and in particular to one having a cell holding area in advance.
 従来の細胞培養容器について、プラスチック製容器10を用いて説明する。図7に示すように、プラスチック製容器10は、生物の細胞や組織等の生細胞を培養する容器であり、かつ、培養した生細胞を位相差顕微鏡で撮像(あるいは観察)するための容器である。また、プラスチック製容器10は、いわゆるマルチウェルプレートであり、円形に開口された複数のウェル11を有している。ウェル11は、培養及び培養後に撮像する生細胞と生細胞を培養するための培養液を入れる凹部である。図7では、一例として、8行12列の96個のウェル11を有する96ウェルプレートを示しているが、プラスチック製容器10は、ウェル11を少なくとも2つ以上有していれば良く、ウェル11の個数は任意である。96ウェルプレートの他には、ウェル11が、6個、24個、または384個のマルチウェルプレートがよく用いられる。 A conventional cell culture vessel will be described using a plastic vessel 10. As shown in FIG. 7, the plastic container 10 is a container for culturing living cells such as living cells and tissues, and is a container for imaging (or observing) the cultured living cells with a phase contrast microscope. is there. Further, the plastic container 10 is a so-called multi-well plate, and has a plurality of circularly opened wells 11. The well 11 is a recess for containing living cells to be imaged after culture and culture and a culture solution for culturing the living cells. Although FIG. 7 shows a 96-well plate having 96 wells 11 in 8 rows and 12 columns as an example, the plastic container 10 may have at least two wells 11. The number of is arbitrary. In addition to the 96-well plate, the wells 11 are often 6, 24, or 384 multi-well plates.
  プラスチック製容器10に好適な材料は、例えば、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ポリカーボネート(PC)、TAC(トリアセチルセルロース)、ポリイミド(PI)、ナイロン(Ny)、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、塩化ビニル、塩化ビニリデン、ポリフェニレンサルファイド、ポリエーテルサルフォン、ポリエチレンナフタレート、ポリプロピレン、ウレタンアクリレート等のアクリル系材料、セルロース、ガラス等が挙げられる。また、ポリ乳酸、ポリグリコール酸、ポリカプロラクタン、もしくはその共重合体のような生分解性ポリマー等の樹脂等を用いることができる。これらなかでも、ポリエチレンテレフタレート、ポリスチレン、ポリカーボネートを好ましく用いることができ、特に、ポリスチレンを好ましく用いることができる。細胞毒性が低いからである。また、プラスチック製容器10の表面は、任意の表面処理(例えば、プラズマ、コロナ、マイクロウェーブ、電子線および紫外線等の照射等)が施されていても良い。 Suitable materials for the plastic container 10 are, for example, polyethylene terephthalate (PET), polystyrene (PS), polycarbonate (PC), TAC (triacetyl cellulose), polyimide (PI), nylon (Ny), low density polyethylene (LDPE) And medium density polyethylene (MDPE), vinyl chloride, vinylidene chloride, polyphenylene sulfide, polyether sulfone, polyethylene naphthalate, polypropylene, acrylic materials such as urethane acrylate, cellulose, glass and the like. Further, resins such as biodegradable polymers such as polylactic acid, polyglycolic acid, polycaprolactone or copolymers thereof can be used. Among these, polyethylene terephthalate, polystyrene and polycarbonate can be preferably used, and polystyrene can be particularly preferably used. It is because cytotoxicity is low. In addition, the surface of the plastic container 10 may be subjected to any surface treatment (for example, irradiation with plasma, corona, microwave, electron beam, ultraviolet light, etc.).
  図8に示すように、ウェル11は非貫通孔であり、プラスチック製容器10の表面に開口されている。ウェル11には、開口から、培養する生細胞13と生細胞13を培養するための培養液12(例えば血清液)とが注入される。プラスチック製容器10を用いる場合、ウェル11は開口されているので、ウェル11に注入された培養液12は、生細胞13の培養中及び位相差顕微鏡での撮像時にも常にウェル11の開口近傍で空気に接触する。このため、培養された生細胞13は生きたまま位相差顕微鏡によって撮像(観察)される。 As shown in FIG. 8, the well 11 is a non-through hole and is opened on the surface of the plastic container 10. The living cells 13 to be cultured and the culture solution 12 (for example, serum solution) for culturing the living cells 13 are injected into the wells 11 from the opening. When the plastic container 10 is used, since the well 11 is open, the culture solution 12 injected into the well 11 is always in the vicinity of the opening of the well 11 during the culture of the living cells 13 and during imaging with a phase contrast microscope. Contact the air. For this reason, the cultured living cells 13 are imaged (observed) by a phase contrast microscope while being alive.
  プラスチック製容器10では、ウェル11は、開口の直径Rが0.5mm以上2cm未満に形成され、深さDが2mm以上2cm未満に形成されている。ウェル11の開口の直径Rが0.5mm以上2cm未満に形成されているのは、同一環境下で培養された生細胞13の細胞数をばらつきなく収束したデータを取得するために好ましいからである。ウェル11の開口の直径Rは、1mm以上であることがより好ましい。ウェル11の開口の直径Rが2cm未満の場合には、培養液12の液面12aのメニスカスが顕著になるので、本発明が特に有用であり、ウェル11の開口の直径Rは1cm以下である場合に特に好適である。例えば、96個のウェル11を有する96ウェルプレートの場合、ウェル11の開口の直径は例えば6mmである、384個のウェル11を有する384ウェルプレートの場合、ウェル11の開口の直径は例えば3mmである。 In the plastic container 10, the well 11 has an opening diameter R of 0.5 mm or more and less than 2 cm, and a depth D of 2 mm or more and less than 2 cm. The diameter R of the opening of the well 11 is preferably 0.5 mm or more and less than 2 cm because it is preferable to obtain data in which the number of living cells 13 cultured in the same environment is uniformly converged. . The diameter R of the opening of the well 11 is more preferably 1 mm or more. The present invention is particularly useful because when the diameter R of the opening of the well 11 is less than 2 cm, the meniscus of the liquid surface 12a of the culture solution 12 becomes remarkable, and the diameter R of the opening of the well 11 is 1 cm or less It is particularly suitable in the case. For example, in the case of a 96-well plate having 96 wells 11, the diameter of the opening of the well 11 is 6 mm, for example, in the case of a 384-well plate having 384 wells 11, the diameter of the opening of the well 11 is 3 mm is there.
  ウェル11の深さDとは、ウェル11の底面11bから開口(プラスチック製容器10の表面)までの高さであり、ウェル11の深さDが2mm以上に形成されているのは、生細胞13を培養するために十分な培地を確保し、かつ、生細胞13を培養するために十分な培養液12の量を確保するためである。ウェル11の深さDが2cm未満に形成されているのは、透過型顕微鏡で観察する場合のケラレによる周辺視野の光量低下を防ぐためである。ウェル11の深さDが3mm以上1cm以下の範囲内であれば、生細胞13の培養及び撮像に特に好適である。また、ウェル11に入れる培養液12の量は、ウェル11の深さDの1/2以下であることが好ましい(以上、特許文献1参照)。 The depth D of the well 11 is the height from the bottom surface 11b of the well 11 to the opening (surface of the plastic container 10), and the depth D of the well 11 is 2 mm or more. This is for securing a sufficient medium for culturing 13 and for securing a sufficient amount of culture solution 12 for culturing living cells 13. The depth D of the well 11 is formed to be less than 2 cm in order to prevent the decrease in the amount of light of the peripheral vision due to vignetting when observed with a transmission type microscope. If the depth D of the well 11 is in the range of 3 mm or more and 1 cm or less, it is particularly suitable for culture and imaging of the living cell 13. Moreover, it is preferable that the quantity of the culture solution 12 put into the well 11 is 1/2 or less of the depth D of the well 11 (as mentioned above, refer patent document 1).
特開2016-67322号公報JP, 2016-67322, A
 前述のプラスチック製容器10には、以下に示すような改善すべき点がある。プラスチック製容器10では、ウェル11の底部において生細胞13が培養されている。ウェル11の底部は、培養する細胞からすれば比較的面積が大きく、底部のどの位置で細胞、どの程度培養されるかは、不明である。そのため、細胞培養の前提条件、細胞数や培地量、温度等を同一にしたとしても、ウェル11の底部においては、均一に細胞が培養されていない。このため、ウェル11においても、どの位置の細胞対象として実験を行うかによって、結果に差異が生ずる可能性ある、という改善すべき点がある。 The aforementioned plastic container 10 has the following points to be improved. In the plastic container 10, the living cells 13 are cultured at the bottom of the well 11. The bottom of the well 11 has a relatively large area in view of the cells to be cultured, and it is unknown at which position of the bottom the cell is to be cultured and to what extent. Therefore, even if the conditions for cell culture, the number of cells, the amount of medium, the temperature, and the like are the same, cells are not uniformly cultured at the bottom of the well 11. For this reason, also in the well 11, there is a point to be improved that the result may be different depending on the position of the cell target to be experimented.
  本発明者らは、上記の従来技術の問題点を克服することを目的とし、鋭意検討した結果、予め細胞保持領域を有している細胞培養容器を提供できることを見出し、本発明を完成するに至った。
 すなわち、本発明の目的は、以下の発明により達成される。
(1)
 底面及び側面によって形成される細胞培養空間に駐留した培地内で細胞を培養する際に用いる細胞培養容器であって、
 前記底面から前記細胞培養空間に対して突出した突出部、
 前記突出部において、上面から前記底面に向かって凹状に形成された細胞保持空間、
 を有する細胞培養容器。
(2)
 (1)に係る細胞培養容器において、
 前記細胞培養容器は、
 マルチウェルプレートに配置されるウェルであること、
 を特徴とする細胞培養容器。
(3)
 (1)又は(2)に係る細胞培養容器において、
 前記本体は、
 少なくとも中空柱形状の上面及び内側面により形成されており、
 前記細胞保持空間は、
 前記中空柱形状の中空空間であること、
 を特徴とする細胞培養容器。
(4)
 (1)~(3)に係るいずれかの細胞培養容器において、
 前記細胞保持空間は、
 前記細胞を保持しやすくするための親水処理が施されていること、
 を特徴とする細胞培養容器。
(5)
 (4)に係る細胞培養容器において、
 前記細胞保持空間は、
 少なくとも前記細胞保持空間の底面を形成する領域は、60°未満の接触角を有する細胞培養容器。
(6)
 (1)~(5)に係るいずれかの細胞培養容器において、
 前記細胞保持空間は、
 培養する前記細胞を有していること、
 を特徴とする細胞培養容器。
(7)
 (1)~(6)に係るいずれかの細胞培養容器において、
 前記細胞保持空間を形成する面以外の面は、60°以上の接触角を有する細胞培養容器。
(8)
 (1)~(7)に係るいずれかの細胞培養容器において、
 前記細胞保持空間の容量は、30μL~0.5μLである細胞培養容器。
(9)
 (1)~(8)に係るいずれかの細胞培養容器において、
 前記細胞保持空間の底面を形成する領域は、全光線透過率が80%以上を有する材料により形成される細胞培養容器。
(10)
 (9)に係る細胞培養容器において、
 前記細胞保持空間は、
 前記底面を形成する領域が、ポリスチレン(PS)、ガラス, ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、環状オレフィン・コポリマー(COC)、ポリジメチルシロキサン(PDMS)、ポリエチレンテレフタレート(PET)、及び、アクリル樹脂(PMMA)から成る群から選ばれる1種類以上の材料により形成される細胞培養容器。
The present inventors have found that, as a result of intensive studies aimed at overcoming the problems of the prior art described above, it is possible to provide a cell culture vessel having a cell holding region in advance, and to complete the present invention. It reached.
That is, the object of the present invention is achieved by the following invention.
(1)
A cell culture vessel for culturing cells in a culture medium stationed in a cell culture space formed by a bottom surface and a side, comprising:
A protrusion protruding from the bottom surface to the cell culture space;
A cell holding space formed concavely from the top surface to the bottom surface in the protrusion;
A cell culture vessel having
(2)
In the cell culture vessel according to (1),
The cell culture vessel is
Being a well placed in a multiwell plate,
A cell culture vessel characterized by
(3)
In the cell culture vessel according to (1) or (2),
The body is
It is formed by the upper surface and the inner surface of at least a hollow column shape,
The cell holding space is
Being a hollow space of the hollow column shape;
A cell culture vessel characterized by
(4)
In any of the cell culture vessels according to (1) to (3),
The cell holding space is
It has been subjected to a hydrophilic treatment to facilitate retention of the cells,
A cell culture vessel characterized by
(5)
In the cell culture vessel according to (4),
The cell holding space is
A cell culture vessel having a contact angle of less than 60 ° at least in a region forming the bottom of the cell holding space.
(6)
In any of the cell culture vessels according to (1) to (5),
The cell holding space is
Having the cells to be cultured,
A cell culture vessel characterized by
(7)
In any of the cell culture vessels according to (1) to (6),
The cell culture container which has a contact angle of 60 degrees or more other than the surface which forms the said cell holding | maintenance space.
(8)
In any of the cell culture vessels according to (1) to (7),
A cell culture vessel, wherein a volume of the cell holding space is 30 μL to 0.5 μL.
(9)
In any of the cell culture vessels according to (1) to (8),
A cell culture vessel, wherein a region forming the bottom of the cell holding space is formed of a material having a total light transmittance of 80% or more.
(10)
In the cell culture vessel according to (9),
The cell holding space is
The area forming the bottom is polystyrene (PS), glass, polycarbonate (PC), cycloolefin polymer (COP), cyclic olefin copolymer (COC), polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), and A cell culture vessel formed of one or more materials selected from the group consisting of acrylic resin (PMMA).
 本発明における課題を解決するための手段及び発明の効果を以下に示す。 The means for solving the problems in the present invention and the effects of the invention will be shown below.
 本発明に係る細胞培養容器は、底面及び側面によって形成される細胞培養空間に駐留した培地内で細胞を培養する際に用いる細胞培養容器であって、前記底面から前記細胞培養空間に対して突出した突出部、前記突出部において、上面から前記底面に向かって凹状に形成された細胞保持空間、を有する。 The cell culture vessel according to the present invention is a cell culture vessel used for culturing cells in a culture medium stationed in a cell culture space formed by a bottom surface and a side surface, and protrudes from the bottom surface to the cell culture space And the cell holding space formed in a concave shape from the top surface toward the bottom surface.
 これにより、細胞培養容器に対して予め定められた位置に細胞保持空間が形成されるので、細胞培養容器において細胞が培養され、培養された細胞が保持される場所を固定できる。 Thus, the cell holding space is formed at a predetermined position with respect to the cell culture vessel, so that the cells are cultured in the cell culture vessel, and the place where the cultured cells are held can be fixed.
 また、細胞培養容器に対して、予め容量が定められた細胞保持空間が配置されているため、細胞培養容器間で、培養する細胞量に差がでないようできる。これにより、各細胞培養容器で培養した細胞を対象に比較実験、比較試験を行う際に、各細胞培養容器における実験前の条件を同じにできる。 In addition, since the cell holding space having a predetermined capacity is arranged with respect to the cell culture vessel, it is possible to prevent a difference in the amount of cells to be cultured among the cell culture vessels. Thereby, when performing the comparison experiment and the comparison test on cells cultured in each cell culture vessel, the conditions before the experiment in each cell culture vessel can be made the same.
 さらに、細胞保持空間で細胞を培養できるので、3次元的に所望の細胞を培養できる。 Furthermore, since cells can be cultured in the cell holding space, desired cells can be cultured in three dimensions.
 本発明に係る細胞培養容器では、前記細胞培養容器は、マルチウェルプレートに配置されるウェルであること、を特徴とする。 In the cell culture vessel according to the present invention, the cell culture vessel is a well disposed in a multiwell plate.
 これにより、マルチウェルプレートにおいて、各ウェルに対して予め定められた位置に細胞保持空間が形成されるので、各ウェルにおいて細胞が培養され、培養された細胞が保持される場所が固定される。 Thereby, in the multi-well plate, the cell holding space is formed at a predetermined position for each well, so that the cells are cultured in each well, and the place where the cultured cells are held is fixed.
 本発明に係る細胞培養容器では、前記本体は、少なくとも中空柱形状の上面及び内側面により形成されており、前記細胞保持空間は、前記中空柱形状の中空空間であること、を特徴とする。 The cell culture vessel according to the present invention is characterized in that the main body is formed by at least an upper surface and an inner side surface of a hollow column shape, and the cell holding space is a hollow space of the hollow column shape.
 これにより、細胞培養容器用細胞保持領域形成装置を容易に生成することができる。 Thereby, the cell holding area forming device for cell culture containers can be easily generated.
 本発明に係る細胞培養容器では、前記細胞保持空間は、前記細胞を保持しやすくするための表面被覆処理が施されていること、を特徴とする。 In the cell culture vessel according to the present invention, the cell holding space is characterized in that a surface coating treatment is performed to facilitate holding of the cells.
 これにより、細胞保持空間に容易に細胞を播種し、保持できる。 This allows cells to be easily seeded and held in the cell holding space.
 本発明に係る細胞培養容器では、前記細胞保持空間は、培養する前記細胞を有していること、を特徴とする。 In the cell culture vessel according to the present invention, the cell holding space has the cells to be cultured.
 これにより、予め細胞が固定位置に播種されている細胞培養容器を提供することができる。
 
This can provide a cell culture vessel in which cells are seeded at a fixed position in advance.
本発明に係る細胞培養容器の一実施例であるマルチウェルプレートW1を示す図であり、Aは平面図を、Bは正面図を、CはAのX1-X1断面を、それぞれ示す。FIG. 1 is a view showing a multi-well plate W1 which is an example of a cell culture vessel according to the present invention, in which A shows a plan view, B shows a front view, and C shows an X1-X1 cross section of A. マルチウェルプレートW1のウェル100を示す図である。It is a figure which shows the well 100 of multi-well plate W1. 本発明に係る細胞培養容器の一実施例であるマルチウェルプレートW2を示す図であり、Aは平面図を、Bは正面図を、CはAのX3-X3断面を、それぞれ示す。FIG. 1 is a view showing a multi-well plate W2 which is an example of a cell culture vessel according to the present invention, wherein A shows a plan view, B shows a front view, and C shows an X3-X3 cross section of A. FIG. マルチウェルプレートW2のウェル200を示す図である。It is a figure which shows the well 200 of multi-well plate W2. 本発明に係る細胞培養容器の一実施例であるマルチウェルプレートW3を示す図であり、Aは平面図を、Bは正面図を、CはAのX5-X5断面を、それぞれ示す。FIG. 1 is a view showing a multi-well plate W3 which is an example of a cell culture vessel according to the present invention, wherein A shows a plan view, B shows a front view, and C shows an X5-X5 cross section of A. FIG. マルチウェルプレートW3のウェル300を示す図である。It is a figure which shows the well 300 of multi-well plate W3. 従来の細胞培養容器を示す図である。It is a figure which shows the conventional cell culture container. 従来の細胞培養容器を示す図である。It is a figure which shows the conventional cell culture container. 細胞保持空間の形状を示す図である。It is a figure which shows the shape of cell holding | maintenance space.
 以下、本発明の実施例について、図面を参照しながら詳細に説明していく。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明に係る細胞培養容器について、一実施例である96個のウェルを有するマルチウェルプレートW1を用いて説明する。マルチウェルプレートW1は、培地内で細胞を培養し、培養した細胞に対して所定の実験、検査を実施するための装置である。 The cell culture vessel according to the present invention will be described using a multiwell plate W1 having 96 wells as one embodiment. The multiwell plate W1 is a device for culturing cells in a culture medium and performing predetermined experiments and tests on the cultured cells.
第1 構成
 マルチウェルプレートW1の構成について、図1を用いて説明する。ここで、図1AはマルチウェルプレートW1の平面図を、図1BはマルチウェルプレートW1の正面図を、図1Cは図1AのX1-X1断面を、それぞれ示す。
First Configuration The configuration of the multi-well plate W1 will be described with reference to FIG. Here, FIG. 1A shows a plan view of the multiwell plate W1, FIG. 1B shows a front view of the multiwell plate W1, and FIG. 1C shows an X1-X1 cross section of FIG. 1A.
 図1Aに示すように、マルチウェルプレートW1は、96個のウェル100を有している。各ウェル100は、8×12のマトリクス状にマルチウェルプレートW1に配置されている。図1Bに示すように、ウェル100は、底面部101、及び、側面部103を有している。底面部101、及び、側面部103によって、円筒状の内部空間S100が形成される。内部空間S100には、細胞培養のための培地等が貯留される。 As shown in FIG. 1A, the multiwell plate W1 has 96 wells 100. Each well 100 is arranged in a multiwell plate W1 in a matrix of 8 × 12. As shown in FIG. 1B, the well 100 has a bottom surface portion 101 and a side surface portion 103. The bottom surface portion 101 and the side surface portion 103 form a cylindrical internal space S100. A medium or the like for cell culture is stored in the internal space S100.
 また、図1Cに示すように、ウェル100は、突出部105、及び、細胞保持空間107を有している。図2に、図1Cの円部Aの拡大図を示す。突出部105は、中空円柱形状に形成されている(図1A参照)。突出部105は、中空円柱形状の中心が、底面部101の中心と一致するように形成されている。また、突出部105は、底面部101から内部空間S100側に向かって突出するように、島状に形成されている。突出部105の高さ、つまり、上面P105uから底面部101までの高さは、内部空間S100において細胞培養のための一般的な培地貯留高さよりも低くなっている。これにより、細胞保持空間107を培地中に配置し培地中で細胞を培養ができる。 Also, as shown in FIG. 1C, the well 100 has a protrusion 105 and a cell holding space 107. In FIG. 2, the enlarged view of the circle part A of FIG. 1C is shown. The protrusion 105 is formed in a hollow cylindrical shape (see FIG. 1A). The projecting portion 105 is formed such that the center of the hollow cylindrical shape coincides with the center of the bottom surface portion 101. Further, the protruding portion 105 is formed in an island shape so as to protrude from the bottom surface portion 101 toward the internal space S100 side. The height of the protrusion 105, that is, the height from the top surface P 105 u to the bottom portion 101 is lower than the general medium storage height for cell culture in the inner space S 100. Thus, the cell holding space 107 can be disposed in the medium to culture the cells in the medium.
 図2に示すように、細胞保持空間107は、突出部105の上面P105uから底面部101までの中空円柱形状の中空空間として形成される。つまり、細胞保持空間107は、突出部105の上面P105uから底面部101に向かって凹状に形成されている。このように、マルチウェルプレートW1は、各ウェル100に対して予め定められた位置に細胞保持空間107が形成されている。このため、ウェル100において細胞が培養され、培養された細胞が保持される場所が固定される。 As shown in FIG. 2, the cell holding space 107 is formed as a hollow cylindrical hollow space from the top surface P 105 u of the protrusion 105 to the bottom surface 101. That is, the cell holding space 107 is formed in a concave shape from the top surface P 105 u of the protrusion 105 toward the bottom surface 101. Thus, in the multiwell plate W1, the cell holding space 107 is formed at a predetermined position with respect to each well 100. For this reason, cells are cultured in the well 100, and the place where the cultured cells are held is fixed.
 また、ウェル100に対して、予め容量が定められた細胞保持空間107が配置されているため、ウェル100間で、培養する細胞量に差がでないようできる。これにより、各ウェル100で培養した細胞を対象に比較実験、比較試験を行う際に、各ウェル100における実験前の条件を同じにできる。マルチウェルプレートW1間でも同様に、実験前の条件を同じにできる。 In addition, since the cell holding space 107 having a predetermined capacity is disposed with respect to the wells 100, it is possible to prevent differences in the amount of cells to be cultured among the wells 100. As a result, when performing comparison experiments and comparison tests on cells cultured in each well 100, the conditions before the experiment in each well 100 can be made the same. Similarly, the conditions before the experiment can be made the same between the multiwell plates W1.
 さらに、細胞保持空間107で細胞を培養できるので、3次元的に所望の細胞を培養できる。
 
Furthermore, since cells can be cultured in the cell holding space 107, desired cells can be cultured in three dimensions.
第2 マルチウェルプレートW1における細胞培養方法
 マルチウェルプレートW1における細胞培養方法について、心筋細胞を培養する場合を例に説明する。使用者は、細胞保持空間107に、播種した心筋細胞を保持しやすくする細胞保持領域生成処理を施す。細胞保持領域生成処理は、親水処理、洗浄処理、及び、表面被覆処理を有している。
Cell Culture Method in Second Multi-Well Plate W1 The cell culture method in the multi-well plate W1 will be described by taking a case where cardiomyocytes are cultured as an example. The user applies a cell retention area generation process to the cell retention space 107 to facilitate retention of the seeded cardiomyocytes. The cell holding area generation process has a hydrophilic process, a washing process, and a surface coating process.
 使用者は、まず、細胞保持空間107に親水処理を施す。親水処理は、例えば、ピペットに吸引した牛の血清を細胞保持空間107に吐出し、細胞保持空間107に牛の血清を所定時間滞留させた後、アスピレータで吸引することによって行う。 The user first applies hydrophilic treatment to the cell holding space 107. The hydrophilic treatment is performed, for example, by discharging a cow's serum sucked into a pipette into the cell holding space 107, retaining the cow's serum in the cell holding space 107 for a predetermined time, and then suctioning it with an aspirator.
 次に、使用者は、親水処理を施した細胞保持空間107に洗浄処理を施す。洗浄処理は、例えば、ピペットを用いて純水を吸引し、細胞保持空間107に吐出し、アスピレータを用いて、吸引することにより行う。 Next, the user performs a washing process on the cell holding space 107 subjected to the hydrophilic process. The washing treatment is performed, for example, by aspirating pure water using a pipette, discharging it into the cell holding space 107, and aspirating using an aspirator.
 さらに、使用者は、洗浄処理を施した細胞保持空間107に表面被覆処理を施す。表面被覆処理は、例えば、市販の表面被覆材、例えばゲルトレックス(Geltrex:商標)をピペットで吸引し、細胞保持空間107に吐出し、所定時間、乾燥する。なお、乾燥は、湿度60%以上で、30分~2時間とする。 Furthermore, the user applies a surface coating treatment to the washed cell holding space 107. In the surface coating process, for example, a commercially available surface coating material, such as Geltrex (trademark), is aspirated with a pipette, discharged into the cell holding space 107, and dried for a predetermined time. Drying is carried out at a humidity of 60% or more for 30 minutes to 2 hours.
 そして、使用者は、細胞保持空間107に、心筋細胞を含む細胞懸濁液を用いて、心筋細胞を播種する。これにより、ウェル100の所定の位置、具体的には細胞保持空間107が形成されている位置に、正確に、心筋細胞を含む細胞懸濁液を配置し、つまり、心筋細胞を播種し、保持することができる。使用者は、必要なウェル100について、同様に、心筋細胞を播種する。
 
Then, the user disseminates cardiomyocytes in the cell holding space 107 using a cell suspension containing cardiomyocytes. Thereby, the cell suspension containing cardiomyocytes is accurately placed at a predetermined position of the well 100, specifically, the position where the cell holding space 107 is formed, that is, the cardiomyocytes are seeded and held can do. The user similarly disseminates cardiomyocytes for the required wells 100.
 本発明に係る細胞培養容器について、一実施例である96個のウェルを有するマルチウェルプレートW2を用いて説明する。前述のマルチウェルプレートW1では、各ウェル100が、島状に突出した突出部105を有するものであった。一方、マルチウェルプレートW2は、前述の突出部105とは異なる形状の突出部205(後述)を有するものである。なお、以下においては、実施例1と同様の構成について、同符号を付し、詳細な説明を省略する。 The cell culture vessel according to the present invention will be described using a multiwell plate W2 having 96 wells as one embodiment. In the multi-well plate W1 described above, each well 100 has the projecting portion 105 projecting like an island. On the other hand, the multi-well plate W2 has a projecting portion 205 (described later) having a shape different from that of the above-mentioned projecting portion 105. In the following, the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description is omitted.
第1 構成
 マルチウェルプレートW2の構成について、図3を用いて説明する。ここで、図3AはマルチウェルプレートW2の平面図を、図3BはマルチウェルプレートW2の正面図を、図3Cは図3AのX3-X3断面を、それぞれ示す。
First Configuration The configuration of the multi-well plate W2 will be described with reference to FIG. Here, FIG. 3A shows a plan view of the multiwell plate W2, FIG. 3B shows a front view of the multiwell plate W2, and FIG. 3C shows an X3-X3 cross section of FIG. 3A.
 図3Aに示すように、マルチウェルプレートW2は、96個のウェル200を有している。各ウェル200は、8×12のマトリクス状にマルチウェルプレートW2に配置されている。図3Bに示すように、ウェル200は、底面部101、及び、側面部103を有している。 As shown in FIG. 3A, the multiwell plate W2 has 96 wells 200. Each well 200 is arranged in a multiwell plate W2 in a matrix of 8 × 12. As shown in FIG. 3B, the well 200 has a bottom surface portion 101 and a side surface portion 103.
 また、図3Cに示すように、ウェル200は、突出部205、及び、細胞保持空間107を有している。図4に、図3Cの円部P3の拡大図を示す。突出部205は、中空円柱形状に形成されている(図3A参照)。突出部205は、中空円柱形状の中心が、底面部101の中心と一致するように配置されている。また、突出部205は、底面部101から内部空間S100(図3参照)側に向かって突出するように形成されている。突出部205は、突出部205の外側面P205sと側面部103とが一体となるように、また、突出部205の低面P205bと底面部101とが一体となるように形成されている。突出部205の高さ、つまり、上面P205uから底面部101までの高さは、内部空間S100において細胞培養のための一般的な培地貯留高さよりも低くなっている。これにより、細胞保持空間107を培地中に配置し、培地中で細胞を培養ができる。 Further, as shown in FIG. 3C, the well 200 has a protrusion 205 and a cell holding space 107. FIG. 4 shows an enlarged view of the circle portion P3 of FIG. 3C. The protrusion 205 is formed in a hollow cylindrical shape (see FIG. 3A). The projecting portion 205 is arranged such that the center of the hollow cylindrical shape coincides with the center of the bottom portion 101. In addition, the projecting portion 205 is formed to project from the bottom surface portion 101 toward the internal space S100 (see FIG. 3). The projecting portion 205 is formed such that the outer surface P 205 s of the projecting portion 205 and the side surface portion 103 are integrated, and the lower surface P 205 b of the projecting portion 205 and the bottom surface portion 101 are integrated. The height of the projecting portion 205, that is, the height from the top surface P205u to the bottom portion 101 is lower than the general medium storage height for cell culture in the internal space S100. Thereby, the cell holding space 107 is disposed in the medium, and the cells can be cultured in the medium.
 図4に示すように、細胞保持空間107は、底面部101から突出部205の上面P205uまでの中空円柱形状の中空空間として形成される。つまり、細胞保持空間107は、突出部205の上面P205uから底面部101に向かって凹状に形成されている。このように、マルチウェルプレートW2は、各ウェル200に対して予め定められた位置に細胞保持空間107が形成されている。このため、ウェル200において細胞が保持される場所が固定される。 As shown in FIG. 4, the cell holding space 107 is formed as a hollow cylindrical hollow space from the bottom surface portion 101 to the top surface P 205 u of the projecting portion 205. That is, the cell holding space 107 is formed in a concave shape from the top surface P 205 u of the protrusion 205 toward the bottom surface 101. Thus, in the multiwell plate W2, the cell holding space 107 is formed at a predetermined position with respect to each well 200. For this reason, the place where a cell is hold | maintained in the well 200 is fixed.
 また、ウェル200に対して、予め容量が定められた細胞保持空間107が配置されているため、ウェル200間で、培養する細胞量に差がでないようできる。これにより、各ウェル200で培養した細胞を対称に比較実験を行う際に、各ウェル200における実験前の条件を同じにできる。マルチウェルプレートW2間でも同様に、実験前の条件を同じにできる。 In addition, since the cell holding space 107 having a predetermined capacity is arranged with respect to the wells 200, it is possible to prevent differences in the amount of cells to be cultured between the wells 200. Thus, when performing comparison experiments symmetrically on cells cultured in each well 200, the conditions before the experiment in each well 200 can be made the same. Similarly, the conditions before the experiment can be made the same between the multiwell plates W2.
 さらに、細胞保持空間107で細胞を培養できるので、3次元的に所望の細胞を培養できる。
 
Furthermore, since cells can be cultured in the cell holding space 107, desired cells can be cultured in three dimensions.
 本発明に係る細胞培養容器について、一実施例である96個のウェルを有するマルチウェルプレートW3を用いて説明する。前述のマルチウェルプレートW2は、各ウェル200が、突出部205の外側面P205sと側面部103とが一体となるように、また、突出部205の低面P205bと底面部101とが一体となるように形成されている突出部205を有するものであった。一方、マルチウェルプレートW3は、前述の突出部205とは異なる形状の突出部305(後述)を有するものである。なお、以下においては、実施例1、実施例2と同様の構成について、同符号を付し、詳細な説明を省略する。 The cell culture vessel according to the present invention will be described using a multiwell plate W3 having 96 wells as one embodiment. In the multi-well plate W2 described above, the lower surface P205b of the protruding portion 205 and the bottom surface portion 101 are integrated such that the outer surface P205s of the protruding portion 205 and the side surface portion 103 are integrated. It had the protrusion part 205 formed in this way. On the other hand, the multi-well plate W3 has a protrusion 305 (described later) having a shape different from that of the protrusion 205 described above. In the following, the same components as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and detailed description will be omitted.
第1 構成
 マルチウェルプレートW3の構成について、図5を用いて説明する。ここで、図5AはマルチウェルプレートW3の平面図を、図5BはマルチウェルプレートW3の正面図を、図5Cは図5AのX5-X5断面を、それぞれ示す。
First Configuration The configuration of the multi-well plate W3 will be described with reference to FIG. Here, FIG. 5A shows a plan view of the multiwell plate W3, FIG. 5B shows a front view of the multiwell plate W3, and FIG. 5C shows an X5-X5 cross section of FIG. 5A.
 図5Aに示すように、マルチウェルプレートW3は、96個のウェル300を有している。各ウェル300は、8×12のマトリクス状にマルチウェルプレートW3に配置されている。図5Bに示すように、ウェル300は、底面部301、及び、側面部303を有している。なお、底面部301は、突出部305の内側面P305i(後述)の下部の一端を閉じる面として形成される。 As shown in FIG. 5A, the multiwell plate W3 has 96 wells 300. Each well 300 is arranged in a multiwell plate W3 in a matrix of 8 × 12. As shown in FIG. 5B, the well 300 has a bottom surface portion 301 and a side surface portion 303. The bottom surface portion 301 is formed as a surface that closes one end of the lower portion of the inner side surface P 305 i (described later) of the projecting portion 305.
 また、図5Cに示すように、ウェル300は、突出部305、及び、細胞保持空間107を有している。図6に、図5Cの円部P5の拡大図を示す。突出部305は、中空円柱形状の上面P305u及び内側面P305iにより形成されている(図5A参照)。突出部305は、上面P305u及び内側面P305iにより形成される中空円柱形状の一部形状の中心が底面部301の中心と一致するように配置されている。また、突出部305は、底面部301から内部空間S100側に向かって突出するように形成されている。突出部305の高さ、つまり、上面P305uから底面部301までの高さは、内部空間S100において細胞培養のための一般的な培地貯留高さよりも低くなっている。これにより、細胞保持空間107を培地中に配置し培地中で細胞を培養ができる。 In addition, as shown in FIG. 5C, the well 300 has a protrusion 305 and a cell holding space 107. FIG. 6 shows an enlarged view of the circle portion P5 of FIG. 5C. The protrusion 305 is formed of a hollow cylindrical upper surface P 305 u and an inner side surface P 305 i (see FIG. 5A). The protruding portion 305 is arranged such that the center of the partial shape of the hollow cylindrical shape formed by the top surface P 305 u and the inner side surface P 305 i coincides with the center of the bottom surface portion 301. The protrusion 305 is formed to protrude from the bottom surface 301 toward the internal space S100. The height of the protrusion 305, that is, the height from the top surface P305u to the bottom portion 301, is lower than the general medium storage height for cell culture in the internal space S100. Thus, the cell holding space 107 can be disposed in the medium to culture the cells in the medium.
 図6に示すように、細胞保持空間107は、底面部301から突出部305の上面P305uまでの中空円柱形状の中空空間として形成される。つまり、細胞保持空間107は、突出部305の上面P305uから底面部301に向かって凹状に形成されている。このように、マルチウェルプレートW3は、各ウェル300に対して予め定められた位置に細胞保持空間107が形成されている。このため、ウェル300において細胞が保持される場所が固定される。 As shown in FIG. 6, the cell holding space 107 is formed as a hollow cylindrical hollow space from the bottom surface portion 301 to the upper surface P 305 u of the projecting portion 305. That is, the cell holding space 107 is formed in a concave shape from the top surface P 305 u of the protrusion 305 toward the bottom surface 301. Thus, in the multiwell plate W3, the cell holding space 107 is formed at a predetermined position with respect to each well 300. For this reason, the place where a cell is hold | maintained in the well 300 is fixed.
 また、ウェル300に対して、予め容量が定められた細胞保持空間107が配置されているため、ウェル300間で、培養する細胞量に差がでないようできる。これにより、各ウェル300で培養した細胞を対称に比較実験を行う際に、各ウェル300における実験前の条件を同じにできる。マルチウェルプレートW3間でも同様に、実験前の条件を同じにできる。 In addition, since the cell holding space 107 having a predetermined capacity is arranged with respect to the wells 300, it is possible to prevent differences in the amount of cells to be cultured among the wells 300. As a result, when performing comparison experiments on cells cultured in each well 300 symmetrically, the conditions before the experiment in each well 300 can be made the same. Similarly, the conditions before the experiment can be made the same between the multiwell plates W3.
 さらに、細胞保持空間107で細胞を培養できるので、3次元的に所望の細胞を培養できる。
 
Furthermore, since cells can be cultured in the cell holding space 107, desired cells can be cultured in three dimensions.
[その他の実施形態]
 (1)突出部の形状:前述の実施例1においては、突出部105は中空円柱形状としたが、底面部101から内部空間S100に向かって突出する形状であれば、例示のものに限定されない。例えば、角柱形状の中空角柱形状としてもよい。また、角柱形状から円筒形状が取り除かれた形状としてもよい。実施例2、実施例3についても、同様である。
Other Embodiments
(1) Shape of Protrusions: In the above-described first embodiment, the protrusion 105 has a hollow cylindrical shape, but is not limited to the illustrated one as long as it protrudes from the bottom surface 101 toward the internal space S100. . For example, it may be a hollow prism having a prismatic shape. In addition, the cylindrical shape may be removed from the prismatic shape. The same applies to Example 2 and Example 3.
 (2)細胞保持空間107:前述の実施例1においては、ウェル100は、1つの細胞保持空間107を有するとしたが、複数の細胞保持空間を有するようにしてもよい。実施例2、実施例3についても、同様である。 (2) Cell Holding Space 107: In Example 1 described above, the well 100 has one cell holding space 107, but may have a plurality of cell holding spaces. The same applies to Example 2 and Example 3.
 (3)計測対象の細胞:前述の実施例1においては、ウェル100を用いて培地内で培養する細胞として心筋細胞を用いたが、例示のものに限定されない。例えば、神経細胞であってもよい。また、多能性幹細胞由来の神経細胞であってもよい。なお、多能性幹細胞としては、例えば、胚性幹細胞(ES細胞)やiPS細胞がある。実施例2、実施例3についても、同様である。 (3) Cell to be Measured: In Example 1 described above, cardiomyocytes were used as cells cultured in the medium using the well 100, but the present invention is not limited to the illustrated one. For example, it may be a nerve cell. In addition, it may be neural cells derived from pluripotent stem cells. Examples of pluripotent stem cells include, for example, embryonic stem cells (ES cells) and iPS cells. The same applies to Example 2 and Example 3.
 (4)マルチウェルプレート:前述の実施例1においては、マルチウェルプレートW1として8×12のマトリクス状に配置されたウェル100を有するものを用いたが、複数のウェルを有するものであれば、例示のものに限定されない。例えば、3×4、4×6のマトリクス状に配置されたウェルを有するものであってもよい。実施例2、実施例3についても、同様である。 (4) Multi-Well Plate: In Example 1 described above, the multi-well plate W1 having the wells 100 arranged in a matrix of 8 × 12 was used, but if it has a plurality of wells, It is not limited to the illustrated one. For example, it may have wells arranged in a 3 × 4, 4 × 6 matrix. The same applies to Example 2 and Example 3.
 (5)親水処理:前述の実施例1においては、親水処理を牛の血清を用いて行ったが、少なくとも細胞保持空間107を親水化できるものであれば、例示のものに限定されない。例えば、プラズマ処理、コロナ放電処理、マイクロウェーブ、電子線や紫外線照射等を用いた物理的処理、コラーゲン、フィブロネクチン、ビトロネクチン、ラミニン、マトリゲル、ゼラチン、ゲルトレックス、合成アミノ酸鎖、ポリ-L-オルニチン、アルブミン等を用いたタンパク-アミノ酸-マトリックコート処理、又は、酸化剤、親水物質、ハイドロゲル、ガラス化剤等を用いた化合物処理等であってもよい。実施例2、実施例3についても、同様である。 (5) Hydrophilic treatment: In the above-mentioned Example 1, although the hydrophilic treatment was performed using bovine serum, it is not limited to the exemplified one as long as at least the cell holding space 107 can be made hydrophilic. For example, physical treatment using plasma treatment, corona discharge treatment, microwave, electron beam or ultraviolet radiation, collagen, fibronectin, vitronectin, laminin, matrigel, gelatin, geltrex, synthetic amino acid chain, poly-L-ornithine, A protein-amino acid-matrix coating treatment using albumin or the like, or a compound treatment using an oxidizing agent, a hydrophilic substance, a hydrogel, a vitrifying agent or the like may be used. The same applies to Example 2 and Example 3.
 (6)洗浄処理:前述の実施例1においては、洗浄処理を、純水を用いて行ったが、少なくとも細胞保持空間107を洗浄できるものであれば、例示のものに限定されない。また、必要でなければ、細胞保持領域生成処理において、洗浄処理を施さなくてもよい。実施例2、実施例3についても、同様である。 (6) Washing treatment: In the above-mentioned Example 1, although the washing treatment was performed using pure water, it is not limited to the illustrated one as long as at least the cell holding space 107 can be washed. In addition, if it is not necessary, in the cell holding area generation process, the washing process may not be performed. The same applies to Example 2 and Example 3.
 (7)表面被覆処理:前述の実施例1においては、表面被覆処理を、ゲルトレックスを用いて行ったが、少なくとも細胞保持空間107を、表面を被覆できるものであれば、例示のものに限定されない。例えば、コラーゲン、フィブロネクチン、ビトロネクチン、ラミニン、マトリゲル、ゼラチン、ゲルトレックス、合成アミノ酸鎖、ポリ-L-オルニチン、アルブミン等を用いたタンパク-アミノ酸-マトリックコート処理を用いるようにしてもよい。また、必要でなければ、細胞保持領域生成処理において、表面被覆処理を施さなくてもよい。実施例2、実施例3についても、同様である。 (7) Surface coating treatment: In the above-mentioned Example 1, although the surface coating treatment was performed using geltorex, at least the cell holding space 107 is limited to the exemplified one as long as it can cover the surface. I will not. For example, protein-amino acid-matrix coating treatment using collagen, fibronectin, vitronectin, laminin, matrigel, gelatin, geltrex, synthetic amino acid chain, poly-L-ornithine, albumin or the like may be used. In addition, if it is not necessary, it is not necessary to perform the surface coating process in the cell holding area generation process. The same applies to Example 2 and Example 3.
 (8)接触角:前述の実施例1において、細胞保持空間107を形成する面以外の面について、細胞保持空間107に貯留する細胞懸濁液が細胞保持空間107以外の領域へ流出しないような接触角を有することが望ましい。具体的には、細胞保持空間107を形成する面以外の面は、60°より大きい接触角を有することが望ましい。その他の実施例についても同様である。 (8) Contact Angle: The cell suspension stored in the cell holding space 107 does not flow out to the area other than the cell holding space 107 with respect to the faces other than the face forming the cell holding space 107 in Example 1 described above. It is desirable to have a contact angle. Specifically, it is desirable that the surfaces other than the surface forming the cell holding space 107 have a contact angle greater than 60 °. The same applies to the other embodiments.
 (9)細胞保持空間の大きさ:前述の実施例1において、細胞保持空間107の大きさを、細胞保持空間107に細胞懸濁液を貯留する際に用いるピペットから1回で吐出される細胞懸濁液の量と、同程度の大きさとしてもよい。具体的には、細胞保持空間107の容量として、30μL~0.5μL程度が望ましい。 (9) Size of cell holding space: In Example 1 described above, the size of the cell holding space 107 is the same as the size of the cell discharged once from the pipette used when storing the cell suspension in the cell holding space 107. The size of the suspension may be similar to that of the suspension. Specifically, the volume of the cell holding space 107 is preferably about 30 μL to 0.5 μL.
 (10)細胞保持空間を形成する部材:前述の実施例1において、底面部101のうち、細胞保持空間107の底面を形成する領域、つまり、底面部101のうち、少なくとも突出部105の中空円柱部分に対応する領域を、透明な材料により形成するようにすることが望ましい。これにより、細胞保持空間107における細胞培養の様子を外部、特に底面側から確認しながら、作業を進めることができる。その他の実施例についても同様である。前記透明な材料としては、例えば、ポリスチレン(PS)、ガラス、ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、環状オレフィン・コポリマー(COC)、ポリジメチルシロキサン(PDMS)、ポリエチレンテレフタレート(PET)、アクリル樹脂(PMMA)等が挙げられるが、これらに限定するものではない。 (10) Member for Forming Cell Holding Space: In Example 1 described above, a region forming the bottom of the cell holding space 107 in the bottom portion 101, that is, a hollow cylinder of at least the protrusion 105 in the bottom portion 101. It is desirable to form the area corresponding to the part by a transparent material. Thus, the operation can be carried out while confirming the state of cell culture in the cell holding space 107 from the outside, particularly from the bottom side. The same applies to the other embodiments. Examples of the transparent material include polystyrene (PS), glass, polycarbonate (PC), cycloolefin polymer (COP), cyclic olefin copolymer (COC), polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), acrylic Although resin (PMMA) etc. are mentioned, it does not limit to these.
 また、実施例2におけるウェル200(図4参照)において、底面部101を透明な材料で形成し、側面部103と突出部205との合成体と接合することによって、ウェル200を形成するようにしてもよい。また、底面部101と突出部205とを透明な材料で形成し、両端が開放された側面部103と接合することによって、ウェル200を形成するようにしてもよい。実施例3におけるウェル300(図6参照)においも同様に、底面部301を透明な材料で形成し、中空円柱形状の上面P305u、内側面P305i、及び、側面部301の合成体と、両端が開放された側面部103と接合することによって、ウェル300を形成するようにしてもよい。また、底面部301、及び、突出部305を透明な材料で形成し、両端が開放された側面部103と接合することによって、ウェル300を形成するようにしてもよい。なお、両部材の接合には、シリコン接着材等、細胞毒性が低い接着材を用いるようにする。 In the well 200 (see FIG. 4) in the second embodiment, the bottom portion 101 is formed of a transparent material, and the well 200 is formed by bonding with the composite of the side surface portion 103 and the projecting portion 205. May be Alternatively, the well 200 may be formed by forming the bottom surface portion 101 and the projecting portion 205 with a transparent material and bonding the side surface portion 103 whose both ends are open. Similarly, in the well 300 (see FIG. 6) in the third embodiment, the bottom surface portion 301 is formed of a transparent material, and a composite of a hollow cylindrical upper surface P 305 u, an inner side surface P 305 i, and a side surface portion 301 and both ends The well 300 may be formed by bonding with the open side surface portion 103. Alternatively, the well 300 may be formed by forming the bottom surface portion 301 and the projecting portion 305 with a transparent material and bonding the side surface portion 103 whose both ends are open. In addition, it is made to use an adhesive material with low cytotoxicity, such as a silicon adhesive material, for joining of both members.
 なお、各実施例における細胞保持空間の底面を形成する領域は、細胞を保持しやすくするために、60°未満の接触角を有するようにすることが望ましい。 In addition, it is desirable that the region forming the bottom of the cell holding space in each example have a contact angle of less than 60 ° in order to facilitate cell holding.
 (11)ウェルの材質:前述の実施例1において、ウェル100をポリスチレン、シリコン、ガラス、ポリカーボネート等により形成してもよい。 (11) Material of Well: In Example 1 described above, the well 100 may be formed of polystyrene, silicon, glass, polycarbonate or the like.
 (12)細胞保持空間の形状:前述の実施例1においては、細胞保持空間107を形成する突出部105は中空円柱形状であり、細胞保持空間107は円筒形状であったが、細胞懸濁液を貯留できる細胞保持空間107であれば、例示のものに限定されない。例えば、図9に示すように、円筒形状から円錐台形状を除いた形状を有する突出部505を用いるようにしてもよい。この場合、側面P505を下に向かって先細りに形成できるため、逆円錐台形状の細胞保持空間507に安定して細胞懸濁液を貯留することができる。その他の実施例についても同様である。
 
(12) Shape of Cell Holding Space: In Example 1 described above, the protrusion 105 forming the cell holding space 107 is a hollow cylindrical shape, and the cell holding space 107 is a cylindrical shape, but the cell suspension is The cell holding space 107 is not limited to the illustrated one as long as the cell holding space 107 can hold the For example, as shown in FIG. 9, a protrusion 505 having a shape obtained by removing a truncated cone shape from a cylindrical shape may be used. In this case, the side surface P505 can be tapered downward, so that the cell suspension can be stably stored in the inverted truncated conical cell holding space 507. The same applies to the other embodiments.
 本発明に係る細胞培養容器は、例えば、マルチウェルプレートに用いることができる。
 
The cell culture vessel according to the present invention can be used, for example, in a multiwell plate.
W1   マルチウェルプレート
 100   ウェル
  101   底面部
  103   側面部
  105   突出部
   P105u   上面
  107   細胞保持空間
 S100   内部空間
W2   マルチウェルプレート
 200   ウェル
  205   突出部
   P205s   外側面
   P205b   低面
   P205u   上面
W3   マルチウェルプレート
 300   ウェル
  301   底面部
  303   側面部
  305   突出部
   P305i   内側面
   P305u   上面

 
W1 multi-well plate 100 well 101 bottom portion 103 side portion 105 protrusion P 105 u top surface 107 cell holding space S 100 internal space W 2 multi-well plate 200 well 205 protrusion P 205 s outer surface P 205 b lower surface P 205 u upper surface W 3 multi-well plate 300 well 301 lower surface portion 303 side surface 305 protrusion P305i inner side P305u upper surface

Claims (10)

  1.  底面及び側面によって形成される細胞培養空間に駐留した培地内で細胞を培養する際に用いる細胞培養容器であって、
     前記底面から前記細胞培養空間に対して突出した突出部、
     前記突出部において、上面から前記底面に向かって凹状に形成された細胞保持空間、
     を有する細胞培養容器。
    A cell culture vessel for culturing cells in a culture medium stationed in a cell culture space formed by a bottom surface and a side, comprising:
    A protrusion protruding from the bottom surface to the cell culture space;
    A cell holding space formed concavely from the top surface to the bottom surface in the protrusion;
    A cell culture vessel having
  2.  請求項1に係る細胞培養容器において、
     前記細胞培養容器は、
     マルチウェルプレートに配置されるウェルであること、
     を特徴とする細胞培養容器。
    In the cell culture vessel according to claim 1,
    The cell culture vessel is
    Being a well placed in a multiwell plate,
    A cell culture vessel characterized by
  3.  請求項1又は請求項2に係る細胞培養容器において、
     前記本体は、
     少なくとも中空柱形状の上面及び内側面により形成されており、
     前記細胞保持空間は、
     前記中空柱形状の中空空間であること、
     を特徴とする細胞培養容器。
    In the cell culture vessel according to claim 1 or 2,
    The body is
    It is formed by the upper surface and the inner surface of at least a hollow column shape,
    The cell holding space is
    Being a hollow space of the hollow column shape;
    A cell culture vessel characterized by
  4.  請求項1~請求項3に係るいずれかの細胞培養容器において、
     前記細胞保持空間は、
     前記細胞を保持しやすくするための親水処理が施されていること、
     を特徴とする細胞培養容器。
    The cell culture vessel according to any one of claims 1 to 3,
    The cell holding space is
    It has been subjected to a hydrophilic treatment to facilitate retention of the cells,
    A cell culture vessel characterized by
  5.  請求項4に係る細胞培養容器において、
     前記細胞保持空間は、
     少なくとも前記細胞保持空間の底面を形成する領域は、60°未満の接触角を有する細胞培養容器。
    In the cell culture vessel according to claim 4,
    The cell holding space is
    A cell culture vessel having a contact angle of less than 60 ° at least in a region forming the bottom of the cell holding space.
  6.  請求項1~請求項5に係るいずれかの細胞培養容器において、
     前記細胞保持空間は、
     培養する前記細胞を有していること、
     を特徴とする細胞培養容器。
    The cell culture vessel according to any one of claims 1 to 5, wherein
    The cell holding space is
    Having the cells to be cultured,
    A cell culture vessel characterized by
  7.  請求項1~請求項6に係るいずれかの細胞培養容器において、
     前記細胞保持空間を形成する面以外の面は、60°以上の接触角を有する細胞培養容器。
    In the cell culture vessel according to any one of claims 1 to 6,
    The cell culture container which has a contact angle of 60 degrees or more other than the surface which forms the said cell holding | maintenance space.
  8.  請求項1~請求項7に係るいずれかの細胞培養容器において、
     前記細胞保持空間の容量は、30μL~0.5μLである細胞培養容器。
    The cell culture vessel according to any one of claims 1 to 7, wherein
    A cell culture vessel, wherein a volume of the cell holding space is 30 μL to 0.5 μL.
  9.  請求項1~請求項8に係るいずれかの細胞培養容器において、
     前記細胞保持空間の底面を形成する領域は、全光線透過率が80%以上を有する材料により形成される細胞培養容器。
    The cell culture vessel according to any one of claims 1 to 8, wherein
    A cell culture vessel, wherein a region forming the bottom of the cell holding space is formed of a material having a total light transmittance of 80% or more.
  10.  請求項9に係る細胞培養容器において、
     前記細胞保持空間は、
     前記底面を形成する領域が、ポリスチレン(PS)、ガラス, ポリカーボネート(PC)、シクロオレフィンポリマー(COP)、環状オレフィン・コポリマー(COC)、ポリジメチルシロキサン(PDMS)、ポリエチレンテレフタレート(PET)、及び、アクリル樹脂(PMMA)から成る群から選ばれる1種類以上の材料により形成される細胞培養容器。
     
    In the cell culture vessel according to claim 9,
    The cell holding space is
    The area forming the bottom is polystyrene (PS), glass, polycarbonate (PC), cycloolefin polymer (COP), cyclic olefin copolymer (COC), polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), and A cell culture vessel formed of one or more materials selected from the group consisting of acrylic resin (PMMA).
PCT/JP2018/047648 2017-12-26 2018-12-25 Cell culture vessel WO2019131673A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019562049A JP7278523B2 (en) 2017-12-26 2018-12-25 cell culture vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-248717 2017-12-26
JP2017248717 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019131673A1 true WO2019131673A1 (en) 2019-07-04

Family

ID=67067452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047648 WO2019131673A1 (en) 2017-12-26 2018-12-25 Cell culture vessel

Country Status (2)

Country Link
JP (1) JP7278523B2 (en)
WO (1) WO2019131673A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129495A (en) * 2015-01-13 2016-07-21 大日本印刷株式会社 Cell culture vessel
JP2017216967A (en) * 2016-06-09 2017-12-14 大日本印刷株式会社 Cell culture container
JP2018000134A (en) * 2016-07-06 2018-01-11 大日本印刷株式会社 Cell culture container

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5990403B2 (en) * 2012-05-31 2016-09-14 株式会社 ジャパン・ティッシュ・エンジニアリング Culture dish and culture kit
WO2015111722A1 (en) * 2014-01-24 2015-07-30 独立行政法人科学技術振興機構 Cell-seeding and -culturing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129495A (en) * 2015-01-13 2016-07-21 大日本印刷株式会社 Cell culture vessel
JP2017216967A (en) * 2016-06-09 2017-12-14 大日本印刷株式会社 Cell culture container
JP2018000134A (en) * 2016-07-06 2018-01-11 大日本印刷株式会社 Cell culture container

Also Published As

Publication number Publication date
JPWO2019131673A1 (en) 2021-02-04
JP7278523B2 (en) 2023-05-22

Similar Documents

Publication Publication Date Title
EP3351615B1 (en) Cell culture vessel
ES2401640T3 (en) Hanging Drop Plate
CA2789761C (en) Array of micromolded structures for sorting adherent cells
KR101772452B1 (en) Object selecting device and object selecting method
KR102230694B1 (en) Culture container
JPH0866B2 (en) Cell culture vessel
EP2929014A1 (en) Cardiac tissue constructs and methods of fabrication thereof
US20240034968A1 (en) Cell Culture Plate, Assembly And Methods Of Use
JP2003180335A (en) Storable culture vessel
CN110709503A (en) Method for producing cell laminate
JP6459219B2 (en) Cell culture vessel
JP7441521B2 (en) Cell holding and transport device
JP2012235749A (en) Method for producing microchip, physical mask, and the microchip
WO2019131673A1 (en) Cell culture vessel
EP3452218B1 (en) Multiwell imaging plate and method for incubating non-adherent cells
Wollrab et al. Ordering single cells and single embryos in 3D confinement: a new device for high content screening
JP2021136996A (en) Cell culture vessel and cell chip
KR101444512B1 (en) Bio-chip and replacement method of culture medium
Ueno et al. Selective cell retrieval method using light-responsive gas-generating polymer-based microarrays
US20220241792A1 (en) Microplate for containing a plurality of samples
US20210277347A1 (en) Cell culture vessel and cell chip
US20230235261A1 (en) Droplet trapping structure array, method for spheroid transfer and formation of spheroid array using the same
JP6301098B2 (en) Sheet cell culture exfoliation method and production method, and container used therefor
CN211718614U (en) Specimen adapter and specimen adapting device
WO2008134748A1 (en) Screentop microplate lid and assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894683

Country of ref document: EP

Kind code of ref document: A1