WO2019131249A1 - Biological information measurement device, measurement control method, and program - Google Patents

Biological information measurement device, measurement control method, and program Download PDF

Info

Publication number
WO2019131249A1
WO2019131249A1 PCT/JP2018/046244 JP2018046244W WO2019131249A1 WO 2019131249 A1 WO2019131249 A1 WO 2019131249A1 JP 2018046244 W JP2018046244 W JP 2018046244W WO 2019131249 A1 WO2019131249 A1 WO 2019131249A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
biological information
instruction
blood pressure
cuff
Prior art date
Application number
PCT/JP2018/046244
Other languages
French (fr)
Japanese (ja)
Inventor
出野 徹
直樹 土屋
臼井 弘
皓介 井上
善之 森田
和 松岡
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Publication of WO2019131249A1 publication Critical patent/WO2019131249A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the present invention relates to a biological information measuring device for measuring biological information such as blood pressure, and a measurement control method and program executed by this device.
  • Japanese Patent Application Laid-Open No. 2017-6230 discloses a wristwatch-type biological information measuring device.
  • the biological information measuring device receives a user input such as a measurement start instruction with a push-type switch.
  • the biological information measuring device disclosed in Japanese Patent Application Laid-Open No. 2017-6230 has a small switch and is not good in operability. Therefore, the user can not operate the biological information measurement device, for example, when it is not possible to freely move the fingers due to a failure, health reasons, or some other circumstances. In the wearable type biological information measuring apparatus, improvement in operability is desired.
  • the present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a biological information measuring device, a measurement control method and a program for improving operability.
  • the present invention adopts the following aspects in order to solve the above-mentioned problems.
  • a biological information measuring apparatus measures biological information by pressing a measurement target region of a subject with a cuff including a fluid bag, and indicates the pressure inside the fluid bag.
  • An instruction for determining the content of an instruction related to the measurement of the biological information by the subject based on a motion detection unit that detects the motion of the target site based on a pressure signal, and a detection result of the motion of the target site And a determination unit.
  • the subject can input an instruction related to measurement of biological information to the biological information measurement device by moving the measurement site.
  • the switch operation with a finger becomes unnecessary, and the operability of the biological information measurement device is improved.
  • the movement of the measurement site is detected using the fluid bag already provided to measure the biological information, it is not necessary to additionally install a sensor for detecting the movement of the measurement site.
  • the motion detection unit may detect the motion of the measurement site based on comparison between the value of the fluctuation component included in the pressure signal and a preset threshold value.
  • part can be easily performed by threshold value determination.
  • the motion detection unit may output a detection result including the number of times the value of the fluctuation component exceeds the threshold, and the instruction determination unit is included in the detection result.
  • the content of the instruction from the subject may be determined based on the number of times the information is read.
  • the movement detection unit may detect the movement of the measurement site based on the matching between the waveform of the fluctuation component included in the pressure signal and the reference waveform prepared in advance. Good. According to this configuration, it is possible to more accurately determine the movement of the measurement site as compared to the case where the pressure value is determined using the threshold value. For this reason, it becomes possible to input more instructions correctly by the movement of a to-be-measured site
  • the biological information measurement apparatus may further include a posture detection unit that detects the posture of the measurement target region, and the instruction determination unit determines the detection result of the movement of the measurement target region and the measurement target region.
  • the instruction content relating to the measurement of the biological information by the subject may be determined based on a combination with the posture detection result.
  • the measurement start instruction of the biological information is determined based on the detection result of the posture of the measurement target region, and the biological information is determined based on the detection result of the movement of the measurement target after the determination of the measurement start instruction.
  • a configuration may be considered to determine the measurement stop instruction of.
  • the present invention it is possible to provide a biological information measurement device, a measurement control method, and a program for improving operability.
  • FIG. 1 is a block diagram showing a biological information measurement apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the appearance of the blood pressure measurement device according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the cuff structure shown in FIG.
  • FIG. 4 is a block diagram showing an example of a hardware configuration of the blood pressure measurement device of FIG.
  • FIG. 5 is a functional block diagram showing a control unit provided in the blood pressure measurement device of FIG.
  • FIG. 6 is a flowchart illustrating the blood pressure measurement method according to the first embodiment.
  • FIG. 7 is a graph showing an example of the pressure Cc of the sensing cuff detected by the pressure sensor shown in FIG. 4 and the noise component Dn contained therein.
  • FIG. 8 is a functional block diagram showing a control unit provided in the blood pressure measurement device according to the modification.
  • FIG. 9A is a view showing an example of a suitable blood pressure measurement posture.
  • FIG. 9B is a diagram showing
  • FIG. 1 is a block diagram showing a functional configuration of a biological information measurement device 1 according to an embodiment of the present invention.
  • the living body information measuring device 1 is a wearable living body information measuring device provided with a cuff 2, and is mounted on a measurement target site (for example, a wrist) of a user who is a measurement subject.
  • the biological information measurement device 1 includes a biological information measurement unit 10, a fluid supply unit 20, a motion detection unit 30, and an instruction determination unit 40.
  • the biological information measurement unit 10 controls the fluid supply unit 20 to measure biological information.
  • the fluid supply unit 20 supplies a fluid to the cuff 2 under the control of the biological information measurement unit 10 to expand the cuff 2 and press the measurement site.
  • the biological information measurement unit 10 detects the pressure of the cuff 2 with a pressure sensor (not shown) and calculates biological information based on the output of the pressure sensor while pressing the measurement target region.
  • Biological information includes, but is not limited to, blood pressure values and pulse rates.
  • As the fluid air is typically used, but other gas or liquid may be used.
  • noise referred to as cuff noise
  • the motion detection unit 30 detects the motion of the measurement site based on the fluctuation component included in the output signal of the pressure sensor.
  • the instruction determination unit 40 determines an instruction related to measurement of biological information by the user based on the detection result of the movement of the measurement site by the movement detection unit 30. For example, in the case where the biological information measuring device 1 is a wrist type, when the motion detecting unit 30 detects a gesture of shaking the arm including the wrist twice, the instruction determining unit 40 receives an instruction to stop the measurement from the user. recognize. As described above, the biological information measurement device 1 determines the movement (gesture) of the predetermined measurement site as a command related to the measurement of the biological information by the user. When determining the instruction related to the measurement of the biological information, the instruction determination unit 40 gives the biological information measurement unit 10 information indicating the instruction. The living body information measurement unit 10 performs an operation related to measurement of living body information based on the instruction information received from the instruction determination unit 40.
  • the user can input an instruction related to the measurement of biological information by performing a simple operation such as moving the measurement site. Therefore, the operability can be improved as compared with the case of operating the switch with fingers. This effect is particularly effective when the hand can not be moved freely due to disability, health reasons, or something else.
  • the movement of the measurement site is detected using components already provided to measure biological information, there is no need to additionally install a sensor for detecting the movement of the measurement site, It is possible to prevent the increase in size and cost of the device.
  • part not only a wrist but other site
  • FIG. 2 is a perspective view showing an appearance of a blood pressure measurement device 200 which is one embodiment of the biological information measurement device according to the present invention.
  • the blood pressure measurement device 200 is a watch-type wearable device.
  • the blood pressure measurement device 200 is designed to be worn on the user's left wrist and measures blood pressure at the left wrist.
  • the blood pressure measurement device 200 includes a main body 210, a belt 230, and a cuff structure 250.
  • the belt 230 and the cuff structure 250 may be collectively referred to as a cuff.
  • the main body 210 includes a cylindrical case 211, a circular glass 212 attached to one opening of the case 211, and a back cover 213 attached to the other opening of the case 211.
  • the case 211 has a pair of projecting lugs for attaching the belt 230 at each of two places on its side.
  • a display unit 215 is provided inside the main body 210 so as to face the glass 212.
  • the display unit 215 for example, an LCD (Liquid Crystal Display), an OLED (Organic Light Emitting Diode) display, or the like can be used.
  • the main body 210 is provided with an operation unit 216.
  • the operation unit 216 enables the user to input various instructions to the blood pressure measurement device 200.
  • the user can use the operation unit 216 to input a blood pressure measurement execution instruction or to input a blood pressure measurement result history display instruction.
  • the operation unit 216 includes push-type switches 216A, 216B, and 216C provided on the side surface of the case 211.
  • a touch screen may be used as a combination of the display unit 215 and the operation unit 216.
  • a plurality of elements including an element for blood pressure measurement are further provided inside the main body 210. These elements will be described later with reference to FIG.
  • the belt 230 is an example of a mounting member for mounting the main body 210 and the cuff structure 250 on the user's left wrist.
  • the belt 230 includes a belt-shaped first belt portion 231 and a belt-shaped second belt portion 236.
  • the root portion 232 of the first belt portion 231 is rotatably attached to a pair of lugs of the main body 210 by a connecting rod 221 extending in the X direction.
  • the X direction corresponds to the width direction of the belt 230.
  • the root portion 237 of the second belt portion 236 is rotatably attached to a pair of lugs of the main body 210 by a connecting rod 226 extending in the X direction.
  • a tail lock 240 is attached to the tip end portion 233 of the first belt portion 231.
  • the tail lock 240 includes a substantially U-shaped frame body 241, a stick bar 242, and a connecting bar 243 extending in the X direction.
  • the frame body 241 and the sticking rod 242 are rotatably attached to the tip end portion 233 of the first belt portion 231 by the connecting rod 243.
  • Ring-shaped belt holding portions 234 and 235 are provided between the distal end portion 233 and the root portion 232 of the first belt portion 231.
  • the inner circumferential surface of the first belt portion 231 does not protrude inward at the portions of the belt holding portions 234 and 235. Thereby, the belt 230 can uniformly surround the outer peripheral surface of the cuff structure 250.
  • a plurality of small holes 239 are formed in the thickness direction of the second belt portion 236 between the root portion 237 and the tip end portion 238 of the second belt portion 236.
  • the first belt portion 231 and the second belt portion 236 are formed of, for example, a plastic material.
  • the first belt portion 231 and the second belt portion 236 are flexible in the thickness direction and substantially non-stretchable in the longitudinal direction.
  • the first belt portion 231 and the second belt portion 236 may be formed of another material, for example, a leather material.
  • the frame body 241 and the stick 242 of the buckle 240 are formed of, for example, a metal material.
  • the frame body 241 and the stick 242 may be formed of other materials, for example, a plastic material.
  • the cuff structure 250 has an elongated band shape.
  • the cuff structure 250 is opposed to the inner circumferential surface of the belt 230.
  • the root portion 251 of the cuff structure 250 is attached to the main body 210.
  • the tip 252 of the cuff structure 250 is a free end.
  • the cuff structure 250 can be separated from the inner circumferential surface of the belt 230.
  • the cuff structure 250 includes a curler 254, a pressure cuff 255 disposed along the inner circumferential surface of the curler 254, a back plate 256 disposed along the inner circumferential surface of the pressure cuff 255, and an inner circumferential surface of the back plate 256. And a sensing cuff 257 disposed along the In a state where the blood pressure measurement device 200 is worn by the user, the sensing cuff 257 contacts the left wrist.
  • “contact” includes not only direct contact but also indirect contact via another member (for example, a cover member).
  • the belt 230, the curler 254, the pressing cuff 255, and the back plate 256 function as pressing parts capable of generating a force for pressing the sensing cuff 257 against the left wrist.
  • the blood pressure measurement device 200 compresses the left wrist via the sensing cuff 257 by the pressing unit.
  • the curler 254 is, for example, a resin plate (for example, a polypropylene plate) having a certain degree of flexibility and hardness. In the natural state, the curler 254 has a curved shape along the Y direction. As a result, the shape of the cuff structure 250 in the natural state is kept curved along the Y direction.
  • the Y direction corresponds to the circumferential direction of the left wrist.
  • the pressure cuff 255 is a fluid bag capable of containing fluid. Attached to the pressure cuff 255 is a flexible tube 421 (shown in FIG. 4). The flexible tube 421 is used to supply pressure fluid to the pressure cuff 255 and to discharge pressure fluid from the pressure cuff 255. As fluid is supplied to the pressure cuff 255, the pressure cuff 255 expands, thereby compressing the left wrist.
  • the pressure cuff 255 includes two bag-like members stacked in the thickness direction. Each bag-like member is formed, for example, by welding the peripheral portions of two stretchable polyurethane sheets. In these bag-like members, a plurality of through holes are formed in order to allow the fluid to flow between the bag-like members. A flexible tube 421 is attached to one of the bag-like members. When the fluid is supplied to the bag-like members via the flexible tube 421, the pressure cuffs 255 press the sensing cuffs 257 against the left wrist by the expansion of the bag-like members and press the left wrist.
  • the back plate 256 is, for example, a resin plate (for example, a polypropylene plate).
  • the back plate 256 functions as a reinforcing plate.
  • the back plate 256 can transmit the pressing force from the pressing cuff 255 to the entire area of the sensing cuff 257.
  • a plurality of V-shaped or U-shaped grooves extending in the X direction are provided on the inner and outer peripheral surfaces of the back plate 256. Thereby, the back plate 256 is easily bent. Thus, the back plate 256 does not prevent the cuff structure 250 from bending.
  • the sensing cuff 257 is a fluid bag capable of containing a fluid.
  • the sensing cuff 257 includes two stretchable polyurethane sheets, and the peripheral portions of these polyurethane sheets are welded to form a bag shape.
  • Attached to the sensing cuff 257 is a flexible tube 423 (shown in FIG. 4).
  • the flexible tube 423 is used to supply fluid for pressure transmission to the sensing cuff 257 and to discharge fluid for pressure transmission from the sensing cuff 257.
  • the blood pressure measurement device 200 having the above-described structure is mounted on the left wrist of the user with the cuff structure 250 surrounding the left wrist and the belt 230 restraining the cuff structure 250 against the left wrist.
  • FIG. 3 shows a cross section of the blood pressure measurement device 200 in a state where the blood pressure measurement device 200 is mounted on the left wrist 300 (hereinafter referred to as a mounted state).
  • This cross section corresponds to the cross section perpendicular to the X direction shown in FIG.
  • the main body 210 and the belt 230 are not shown.
  • a radial artery 301, an ulnar artery 302, a rib 303, an ulna 304, and a tendon 305 of the left wrist 300 are shown.
  • the curler 254 extends along the Y direction (corresponding to the circumferential direction of the left wrist 300).
  • the pressing cuff 255 extends in the Y direction on the inner circumferential side of the curler 254.
  • the back plate 256 extends along the Y direction on the inner peripheral side of the pressing cuff 255.
  • the sensing cuff 257 is disposed on the inner peripheral side of the back plate 256, contacts the left wrist 300, and extends along the Y direction so as to cross the arterial passage portion 300A of the left wrist 300.
  • the blood pressure measurement device 200 adopts a double cuff structure having two fluid bags (ie, a pressing cuff 255 and a sensing cuff 257), and the left wrist is compressed by the sensing cuff 257 by the pressing force from the pressing cuff 255.
  • This enables effective compression of the artery (eg, radial artery 301) passing through the left wrist 300. As a result, accurate blood pressure measurement can be performed.
  • FIG. 4 shows a hardware configuration example of the blood pressure measurement device 200.
  • the blood pressure measurement device 200 includes a CPU (Central Processing Unit) 401, a memory 402, a communication unit 407, a battery 408, a pressure sensor 409, a pressure sensor 410, a pump drive circuit 411, in addition to the display unit 215 and the operation unit 216 described above.
  • a pump 412, an on-off valve drive circuit 415, and an on-off valve 416 are provided inside the main body 210 of the blood pressure measurement device 200.
  • the CPU 401 is an example of a processor that configures a computer.
  • the CPU 401 controls each component according to the control program stored in the memory 402. For example, the CPU 401 performs control of driving the pump 412 and the on-off valve 416 based on the signals from the pressure sensors 409 and 410.
  • the CPU 401 also performs control to calculate the blood pressure value and the pulse rate based on the signal from the pressure sensor 410.
  • the memory 402 includes, for example, a random access memory (RAM) and an auxiliary storage device.
  • the auxiliary storage device stores various data including data used to control each component of the blood pressure measurement device 200 and blood pressure data obtained by blood pressure measurement, in addition to the control program described above.
  • the auxiliary storage device may be a semiconductor memory such as a flash memory.
  • the RAM is used as a work memory or the like when the program is executed.
  • the memory 402 may further include a ROM (Read Only Memory). In this case, part or all of the control program may be stored in the ROM.
  • the communication unit 407 is an interface for communicating with the external device 450.
  • the external device 450 is, for example, a portable terminal such as a smartphone or a tablet terminal, or a server.
  • the communication unit 407 exchanges information with the external device 450 via the network.
  • the communication unit 407 transmits the information received from the CPU 401 to the external device 450.
  • the communication unit 407 also receives information from the external device 450 and passes the received information to the CPU 401.
  • Communication via the network may be implemented by wireless communication, wired communication, or both.
  • the network is, for example, the Internet, but is not limited thereto.
  • the network may be another type of network such as a hospital local area network (LAN), or may be one-to-one communication using a USB cable or the like.
  • the communication unit 407 may include a micro USB connector.
  • the communication unit 407 may directly communicate with the external device 450 by near field communication such as Bluetooth (registered trademark).
  • the battery 408 is, for example, a rechargeable secondary battery.
  • the battery 408 supplies power to each element mounted on the main body 210.
  • the battery 408 supplies power to, for example, the display unit 215, the CPU 401, the memory 402, the communication unit 407, the pressure sensor 409, the pressure sensor 410, the pump drive circuit 411, the pump 412, the on-off valve drive circuit 415, and the on-off valve 416. .
  • the pressure sensor 409 is, for example, a piezoresistive pressure sensor.
  • the pressure sensor 409 detects the pressure inside the pressure cuff 255 via the flexible tube 421 and the flow path forming member 422.
  • the flexible tube 421 and the flow path forming member 422 form a flow path connecting the pump 412 and the pressure cuff 255 so as to allow the fluid from the pump 412 to be injected into the pressure cuff 255.
  • the pressure sensor 409 outputs a pressure signal to the CPU 401.
  • an amplifier that amplifies the output signal of pressure sensor 409 and an analog-to-digital converter that converts the output signal of the amplifier from an analog signal to a digital signal are provided between pressure sensor 409 and CPU 401.
  • the pressure sensor 410 is, for example, a piezoresistive pressure sensor.
  • the pressure sensor 410 detects the pressure inside the sensing cuff 257 via the flow path forming member 422, the flexible tube 423 and the flow path forming member 424.
  • the flow path forming member 422, the flexible tube 423 and the flow path forming member 424 connect the pump 412 and the sensing cuff 257 so as to allow the fluid from the pump 412 to be injected into the sensing cuff 257.
  • Form The pressure sensor 410 outputs a pressure signal to the CPU 401.
  • an amplifier that amplifies the output signal of pressure sensor 410 and an analog-to-digital converter that converts the output signal of the amplifier from an analog signal to a digital signal are provided between pressure sensor 410 and CPU 401.
  • the pump drive circuit 411 drives the pump 412 based on a control signal from the CPU 401.
  • the pump 412 is, for example, a piezoelectric pump.
  • the pump 412 can supply fluid to the pressure cuff 255 through the flexible tube 421 and the flow path forming member 422. Further, the pump 412 can supply fluid to the sensing cuff 257 through the flow path forming member 422, the flexible tube 423 and the flow path forming member 424.
  • the pump 412 is equipped with an exhaust valve whose opening and closing are controlled in accordance with the on / off of the pump 412. That is, the exhaust valve closes when the pump 412 is turned on to help entrap air within the pressure cuff 255. On the other hand, the exhaust valve opens when the pump 412 is turned off to discharge the air in the pressure cuff 255 to the atmosphere.
  • the exhaust valve has the function of a check valve, and the discharged air does not flow back.
  • the on-off valve drive circuit 415 drives the on-off valve 416 based on a control signal from the CPU 401.
  • the on-off valve 416 is interposed between the flow path forming member 422 and the flow path forming member 424.
  • the on-off valve 416 is, for example, a normally open solenoid valve. Opening and closing (opening degree) of the on-off valve 416 is controlled based on a control signal from the CPU 401.
  • the pump 412 can supply fluid to the sensing cuff 257 through the flow path forming member 422, the flexible tube 423 and the flow path forming member 424.
  • the pump drive circuit 411, the pump 412, the on-off valve drive circuit 415, and the on-off valve 416 supply fluid to the pressing cuff 255 and the sensing cuff 257, and an example of a fluid supply unit that discharges fluid from the pressing cuff 255 and the sensing cuff 257 It is.
  • FIG. 5 is a block diagram showing a software configuration of the control unit 500 provided in the blood pressure measurement device 200.
  • the same reference numerals as in FIG. 4 denote the same parts in FIG. 5, and a detailed description thereof will be omitted.
  • the control unit 500 is realized by one or more processors (for example, the CPU 401) executing a control program stored in the memory 402. Note that part or all of the control unit 500 may be realized by a hardware circuit such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the control unit 500 includes a motion detection unit 501, an instruction determination unit 502, a blood pressure measurement unit 503, and a blood pressure measurement result output unit 506.
  • the motion detection unit 501 detects the motion of the left wrist based on the pressure signal received from the pressure sensor 410.
  • the motion detection unit 501 may detect the motion of the left wrist based on the pressure signal received from the pressure sensor 409. Also, the motion detection unit 501 may detect the motion of the left wrist based on the pressure signals received from both the pressure sensor 409 and the pressure sensor 410.
  • a method of comparing a pressure signal with a threshold can be used.
  • the motion detection unit 501 extracts the fluctuation component from the pressure signal, and the user moves the left arm (including the left wrist) when the value (for example, the amplitude value or the fluctuation amount) of the extracted fluctuation component exceeds a preset threshold. ) Can recognize that the gesture was made. Also, the motion detection unit 501 can recognize the number of times the user has made a gesture of swinging the left arm based on the number of times the value of the fluctuation component exceeds the threshold (for example, 2 seconds) within a preset time.
  • the motion detection unit 501 can also recognize a gesture for raising the wrist to the height of the heart by using a threshold different from the threshold related to the gesture for shaking the arm.
  • These threshold values may be fixed values, and may be set based on the gesture actually performed by the user in the gesture setting mode.
  • Pattern matching may be used as a method of detecting the movement of the left wrist.
  • a cuff noise waveform corresponding to various gestures such as a cuff noise waveform generated when the arm is shaken and a cuff noise generated when the wrist is raised to the height of the heart are collected in advance as a reference waveform and stored in the memory 402 deep.
  • the motion detection unit 501 detects the motion of the left wrist based on the matching between the waveform of the fluctuation component included in the pressure signal and the reference waveform stored in the memory 402. For example, when a waveform whose degree of similarity with the reference waveform exceeds a threshold appears in the fluctuation component of the pressure signal, the motion detection unit 501 can recognize a gesture corresponding to the reference waveform.
  • the reference waveform may be prepared based on an unspecified number of samples, or may be determined based on a gesture actually performed by the user in the gesture setting mode.
  • the instruction determination unit 502 determines an instruction related to measurement by the user.
  • the instruction determination unit 502 can determine an instruction from the user based on the result of detection by the motion detection unit 501.
  • a plurality of contents of the instruction may be prepared.
  • the content of the instruction is determined in advance in accordance with how to move the left wrist, which is the measurement site to which the blood pressure measurement device 200 is attached. For example, the gesture for raising the wrist to the height of the heart is associated with an instruction to start blood pressure measurement, and the gesture for swinging the left arm twice is associated with an instruction to stop blood pressure measurement.
  • the instruction determination unit 502 can determine an instruction according to the operation of the operation unit 216 by the user. For example, when performing blood pressure measurement, the user presses the switch 216B (FIG. 2) to switch the blood pressure measurement device 200 to the blood pressure measurement mode, and then presses the switch 216A to start blood pressure measurement.
  • the switch 216B FIG. 2
  • the instruction determination unit 502 determines an instruction related to blood pressure measurement
  • the instruction determination unit 502 provides the blood pressure measurement unit 503 with information indicating the content of the determined instruction.
  • the blood pressure measurement unit 503 measures the blood pressure of the user.
  • the blood pressure measurement unit 503 can operate based on the information received from the instruction determination unit 502. For example, upon receiving information indicating an instruction to start blood pressure measurement from the instruction determination unit 502, the blood pressure measurement unit 503 starts blood pressure measurement.
  • the blood pressure measurement unit 503 includes a fluid supply control unit 504 and a blood pressure value calculation unit 505.
  • the fluid supply control unit 504 controls the supply of fluid to the pressure cuff 255 and the sensing cuff 257. Specifically, the fluid supply control unit 504 controls the fluid supply unit 511 that supplies fluid to the pressure cuff 255 and the sensing cuff 257.
  • the fluid supply unit 511 includes a pump drive circuit 411, a pump 412, an on-off valve drive circuit 415, and an on-off valve 416.
  • the fluid supply control unit 504 provides control signals to the pump drive circuit 411 and the on-off valve drive circuit 415, respectively.
  • the blood pressure value calculation unit 505 calculates a blood pressure value based on the pressure signal obtained by the pressure sensor 410.
  • Blood pressure values include, but are not limited to, for example, systolic blood pressure (SBP; Systolic Blood Pressure) and diastolic blood pressure (DBP; diastolic blood pressure).
  • SBP systolic blood pressure
  • DBP diastolic blood pressure
  • the calculated blood pressure value is stored in the memory 402 in association with additional information such as time.
  • the blood pressure measurement result output unit 506 outputs the blood pressure measurement result.
  • the blood pressure measurement result output unit 506 displays the blood pressure value calculated by the blood pressure value calculation unit 505 on the display unit 215.
  • FIG. 6 is a flowchart illustrating the blood pressure measurement control method according to the first embodiment.
  • the instruction determination unit 502 acquires an instruction to start blood pressure measurement from the user. For example, the motion detection unit 501 detects that the user raises the left wrist to the height of the heart, and the instruction determination unit 502 thereby determines that the user has input a blood pressure measurement start instruction.
  • the instruction determination unit 502 provides the blood pressure measurement unit 503 with information indicating the determined instruction content, that is, information indicating that the user has input a blood pressure measurement start instruction. When the information indicating the content of the instruction is received, the blood pressure measurement unit 503 starts blood pressure measurement in step S602.
  • the control unit 500 waits for the movement of the left wrist indicating the blood pressure measurement stop instruction, that is, the measurement stop gesture, under the control of the motion detection unit 501 and the instruction determination unit 502.
  • the measurement stop gesture is an operation of shaking the left arm twice.
  • the motion detection unit 501 extracts the fluctuation component included in the pressure signal from the pressure sensor 410, and the value of the extracted fluctuation component exceeds the threshold set in advance for 2 seconds twice.
  • FIG. 7 illustrates the pressure Pc inside the sensing cuff 257 obtained when the user shakes the left arm twice during blood pressure measurement.
  • FIG. 7 also shows the fluctuation component Dn included in the pressure Pc.
  • the fluctuation component Dn can be easily extracted from the pressure Pc since the pressure Pc of the sensing cuff 257 increases substantially linearly in the pressurization process if there is no pulse wave effect and noise such as cuff noise.
  • the fluctuation component Dn exceeds the threshold T by 2 degrees in 2 seconds.
  • the instruction determination unit 502 determines that the measurement stop gesture has been performed based on the detection result, and the blood pressure measurement unit An instruction to stop measurement is given to 503.
  • the blood pressure measurement unit 503 stops the blood pressure measurement operation in step S604.
  • the blood pressure measurement unit 503 may resume the blood pressure measurement operation after a predetermined time has elapsed since the blood pressure measurement operation was stopped. Also, a period for waiting for the measurement stop gesture may be determined. For example, the control unit 500 waits for a measurement stop gesture until a preset time (for example, 5 seconds) elapses from the time of starting measurement.
  • the blood pressure measurement unit 503 calculates the blood pressure value based on the pressure signal from the pressure sensor 410 in step S605.
  • the calculated blood pressure value can be displayed on the display unit 215.
  • the fluid is air.
  • the blood pressure measurement unit 503 receives the memory 402. Initialize the processing memory area of. Furthermore, the blood pressure measurement unit 503 turns off the pump 412 via the pump drive circuit 411 and opens the exhaust valve while keeping the on-off valve 416 open. Thus, the air in the pressure cuff 255 and the sensing cuff 257 is exhausted.
  • the current output values of the pressure sensor 409 and the pressure sensor 410 are set as the respective reference values (0 mmHg adjustment).
  • the blood pressure measurement unit 503 turns on the pump 412 via the pump drive circuit 411. Thereby, supply of air to the pressure cuff 255 and the sensing cuff 257 is started. The pressure on pressure cuff 255 and sensing cuff 257 is monitored using pressure sensor 409 and pressure sensor 410.
  • the blood pressure measurement unit 503 closes the on-off valve 416 via the on-off valve drive circuit 415.
  • a predetermined pressure for example, 15 mmHg
  • the driving time of the pump 412 for a predetermined time for example, 3 seconds
  • the blood pressure measurement unit 503 The on-off valve 416 is closed via the drive circuit 415. As a result, the supply of air to the sensing cuff 257 is cut off.
  • the pressure cuff 255 is inflated and gradually pressurized.
  • the back plate 256 transmits the pressing force from the pressing cuff 255 to the sensing cuff 257.
  • the sensing cuff 257 compresses the left wrist.
  • the blood pressure measurement unit 503 monitors the pressure of the sensing cuff 257 using the pressure sensor 410 in order to calculate the blood pressure value, and the fluctuation component of the arterial volume generated in the radial artery of the wrist is pulse wave Acquire as a signal.
  • the blood pressure measurement unit 503 tries to calculate a blood pressure value by applying a known algorithm by oscillometric method based on the pulse wave signal acquired at this time. If at this time the blood pressure value can not be calculated because of insufficient data, the pressure cuff should be pressed unless the pressure in the sensing cuff 257 reaches the upper limit pressure (for safety, for example, 300 mmHg). The supply of air to 255 is continued.
  • the blood pressure measurement unit 503 turns off the pump 412 via the pump drive circuit 411 and opens the on-off valve 416 via the on-off valve drive circuit 415.
  • the air in the pressure cuff 255 and the sensing cuff 257 is exhausted.
  • the blood pressure calculation may be performed not in the pressurization process of the pressure cuff 255 but in the decompression process.
  • the blood pressure measurement unit 503 turns off the pump 412 via the pump drive circuit 411 and receives the on-off valve 416 via the on-off valve drive circuit 415 when receiving a measurement stop instruction from the instruction determination unit 502 during execution of blood pressure measurement. open. Thus, the air in the pressure cuff 255 and the sensing cuff 257 is exhausted.
  • the blood pressure measurement device 200 detects the movement of the left wrist based on the pressure signal indicating the pressure inside the sensing cuff 257 (or the pressing cuff 255), and detects the movement of the left wrist. Based on the result, an instruction on blood pressure measurement by the user is determined.
  • the user can input an instruction for the blood pressure measurement device 200 by moving the left wrist on which the blood pressure measurement device 200 is mounted.
  • the switch operation with a finger becomes unnecessary, and the operability of the blood pressure measurement device 200 is improved.
  • the motion of the left wrist is detected using the pressure sensor 410 (or pressure sensor 409) already provided to measure the blood pressure, a sensor for detecting the motion of the left wrist is additionally installed. There is no need.
  • the user can start or stop blood pressure measurement at a desired timing.
  • the blood pressure measurement device 200 can, for example, extract the fluctuation component included in the pressure signal, and detect the movement of the left wrist based on the comparison between the value of the fluctuation component extracted and the preset threshold value.
  • the process of detecting the movement of the left wrist may be performed by determination using a threshold.
  • the detection result of the movement of the left wrist includes the number of times the value of the extracted fluctuation component exceeds the threshold, the content of the instruction may be determined based on the number of times. In this case, the user can input different instructions depending on how to move the left wrist.
  • the process of detecting the movement of the measurement site may be performed by pattern matching. When pattern matching is used, it is possible to more accurately determine the movement of the left wrist as compared to determination using a threshold. For this reason, it becomes possible to input more instructions correctly by the movement of the left wrist.
  • an instruction not intended by the user may be input.
  • the blood pressure measurement device 200 may determine that an instruction to start blood pressure measurement has been input and start blood pressure measurement.
  • a method for preventing such an erroneous input will be described.
  • the blood pressure measurement device 200 according to the modification has the same configuration as the blood pressure measurement device 200 according to the first embodiment described above. Here, parts different from the blood pressure measurement device 200 according to the first embodiment will be described, and description of the same parts as the blood pressure measurement device 200 according to the first embodiment will be omitted.
  • FIG. 8 is a block diagram showing the software configuration of the control unit 800 provided in the blood pressure measurement device 200 according to the modification.
  • the control unit 800 includes a motion detection unit 501, an instruction determination unit 802, a blood pressure measurement unit 503, a blood pressure measurement result output unit 506, and a posture detection unit 807.
  • the blood pressure measurement device 200 according to the modification further includes an acceleration sensor 811 as hardware.
  • the acceleration sensor 811 is, for example, a three-axis acceleration sensor, and outputs an acceleration signal representing acceleration in three directions orthogonal to one another.
  • the posture detection unit 807 detects the posture of the left wrist that is the measurement site.
  • the posture of the user's left wrist corresponds to the posture of the main body 210 of the blood pressure measurement device 200.
  • the posture detection unit 807 can detect the posture of the user's left wrist based on the acceleration signal from the acceleration sensor 811.
  • the posture detection unit 807 may detect the posture of the user's left wrist based on a pressure signal from at least one of the pressure sensor 409 and the pressure sensor 410.
  • the instruction determination unit 802 acquires an instruction from the user based on a combination of the detection result of the movement of the left wrist and the detection result of the posture of the left wrist.
  • FIG. 9A shows an example of a posture suitable for measurement.
  • the instruction determination unit 802 indicates that the detection result of the left wrist posture is in a state in which the user has taken a posture suitable for measurement, and the detection result of the left wrist movement If it indicates that the user shook the left wrist, it can be determined that the user has input a blood pressure measurement start instruction.
  • the blood pressure measurement device 200 makes a gesture from the user when the posture of the left wrist is a preset posture, as when the user takes a posture suitable for blood pressure measurement. Accept input. As a result, it is possible to prevent an instruction that the user does not intend to be input.
  • the instruction discrimination unit 802 discriminates the measurement start instruction of blood pressure based on the detection result of the posture of the left wrist by the posture detection unit 807, and based on the detection result of the movement of the left wrist obtained after the discrimination of the measurement start instruction. An instruction to stop measuring blood pressure may be determined.
  • the blood pressure measurement device 200 not only measures the blood pressure value and the pulse rate, but also has various functions as described below.
  • the blood pressure measurement device 200 includes the acceleration sensor 811 as described above.
  • the control unit 800 may calculate the amount of activity of the user based on the acceleration signal from the acceleration sensor 811.
  • the activity amount is an index related to physical activity of the user such as walking, housework, desk work and the like. Examples of the activity amount include the number of steps, the number of steps walking fast, the number of steps walking up stairs, the walking distance, the calorie consumption, the amount of fat burning, and the like.
  • the control unit 800 can also estimate the sleep state of the user by detecting the turn state of the user based on the acceleration signal.
  • the blood pressure measurement device 200 may further include a temperature and humidity sensor, an air pressure sensor, and a GPS receiver.
  • the temperature and humidity sensor measures environmental temperature and humidity around the blood pressure measurement device, and outputs environmental data representing the environmental temperature and humidity.
  • the control unit 800 links environment data with time information and stores the data in the memory. For example, air temperature (temperature change) is considered as one of the factors that can cause human blood pressure fluctuation. For this reason, environmental data is information that can be a factor of the blood pressure fluctuation of the user.
  • the atmospheric pressure sensor detects atmospheric pressure and outputs atmospheric pressure data.
  • Barometric pressure data can be used to calculate the amount of activity. By using the barometric pressure data together with the acceleration signal, it becomes possible to calculate the number of steps of stairs and the like more accurately.
  • the GPS receiver receives GPS signals transmitted from a plurality of GPS satellites and outputs the received GPS signals.
  • the control unit 800 calculates position information of the blood pressure measurement device, that is, the position of the user wearing the blood pressure measurement device based on the GPS signal.
  • the position information of the blood pressure measurement device calculated by the external device can be acquired from the external device through the communication unit.
  • fluid may be enclosed in the sensing cuff 257 at the manufacturing stage of the cuff structure 250.
  • control for supplying fluid to the sensing cuff 257 becomes unnecessary each time blood pressure measurement.
  • CPU load can be reduced.
  • the fluid supplied to the pressure cuff 255 and the sensing cuff 257 may be different.
  • a structure may be employed in which the pressing cuff 255 faces the sensing cuff 257 via the measurement site in the mounted state.
  • the blood pressure measurement device may adopt a single cuff structure having one air bladder. If a single cuff construction is employed, this will facilitate construction and control. As a result, the manufacturing cost can be reduced, and further, the CPU load can be reduced. Further, the blood pressure measurement device may adopt a structure having three or more air bags.
  • the present invention is not limited to the above-described embodiment as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention.
  • various inventions can be formed by appropriate combinations of a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiments. Furthermore, the components in different embodiments may be combined as appropriate.
  • a biological information measuring apparatus that measures biological information by pressing a measurement target site of a measurement subject with a cuff including an air bag, At least one processor, A memory connected to the at least one processor; Equipped with The at least one processor is Detecting a movement of the measurement site based on a pressure signal indicating a pressure inside the fluid bag; A biological information measuring device configured to determine the content of an instruction related to the measurement of the biological information by the person to be measured based on the detection result of the movement of the portion to be measured.
  • a measurement control method executed by a biological information measurement apparatus that measures biological information by pressing a measurement target region of a measurement subject with a cuff including a fluid bag, Detecting the movement of the measurement site based on a pressure signal indicative of the pressure inside the fluid bladder using at least one processor; Determining an instruction related to the measurement of the biological information by the subject based on the detection result of the movement of the target site using at least one processor.
  • CPU 402 Memory 407: Communication unit 408: Battery 409, 410: Pressure sensor 411: Pump drive circuit 412: Pump 415: On-off valve drive circuit 416: On-off valve 421, 423: Flexible tube 422, 424: Flow path forming member 450: External device 500: Control unit 501: Motion detection unit 502: Instruction determination unit 503: Blood pressure measurement unit 504: Fluid supply control unit 505: Blood pressure value calculation unit 506: Blood pressure measurement result output unit 511: Fluid supply unit 800: Control Unit 802 ... Instruction determination unit 807 ... Posture detection unit 811 ... Acceleration sensor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

The biological information measurement device pertaining to an embodiment of the present invention is provided with a movement detection unit for detecting movement of a part to be measured on the basis of a pressure signal indicating the pressure inside a fluid bag, and an instruction discriminating unit for discriminating the content of an instruction relating to measurement of biological information by a measurement subject on the basis of the result of detection of movement of the part to be measured.

Description

生体情報測定装置、測定制御方法およびプログラムBiological information measuring device, measurement control method and program
 本発明は、血圧などの生体情報を測定する生体情報測定装置と、この装置により実行される測定制御方法およびプログラムに関する。 The present invention relates to a biological information measuring device for measuring biological information such as blood pressure, and a measurement control method and program executed by this device.
 近年、ウェアラブル型の生体情報測定装置の開発が進められている。例えば、日本国特開2017-6230号公報には、腕時計型の生体情報測定装置が開示されている。この生体情報測定装置は、測定開始の指示などのユーザ入力をプッシュ式スイッチで受け付ける。 In recent years, development of wearable-type biological information measuring devices has been promoted. For example, Japanese Patent Application Laid-Open No. 2017-6230 discloses a wristwatch-type biological information measuring device. The biological information measuring device receives a user input such as a measurement start instruction with a push-type switch.
 日本国特開2017-6230号公報に開示される生体情報測定装置は、スイッチが小さく、操作性が良くない。このため、例えば、障害や健康上の理由、または他の何らかの事情で手指を自由に動かすことができない場合、ユーザは生体情報測定装置を操作することができない。ウェアラブル型の生体情報測定装置においては、操作性の向上が望まれている。 The biological information measuring device disclosed in Japanese Patent Application Laid-Open No. 2017-6230 has a small switch and is not good in operability. Therefore, the user can not operate the biological information measurement device, for example, when it is not possible to freely move the fingers due to a failure, health reasons, or some other circumstances. In the wearable type biological information measuring apparatus, improvement in operability is desired.
 本発明は、上記の事情に着目してなされたものであり、その目的は、操作性の向上を図った生体情報測定装置、測定制御方法およびプログラムを提供することである。 The present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a biological information measuring device, a measurement control method and a program for improving operability.
 本発明は、上記課題を解決するために、以下の態様を採用する。 The present invention adopts the following aspects in order to solve the above-mentioned problems.
 本発明の一態様に係る生体情報測定装置は、流体袋を含むカフにより被測定者の被測定部位を圧迫することにより生体情報を測定するものであって、前記流体袋の内部の圧力を示す圧力信号に基づいて、前記被測定部位の動きを検出する動き検出部と、前記被測定部位の動きの検出結果に基づいて、前記被測定者による前記生体情報の測定に関する指示内容を判別する指示判別部とを備える。 A biological information measuring apparatus according to an aspect of the present invention measures biological information by pressing a measurement target region of a subject with a cuff including a fluid bag, and indicates the pressure inside the fluid bag. An instruction for determining the content of an instruction related to the measurement of the biological information by the subject based on a motion detection unit that detects the motion of the target site based on a pressure signal, and a detection result of the motion of the target site And a determination unit.
 上記構成によれば、被測定者は被測定部位を動かすことにより生体情報測定装置に対し生体情報の測定に関する指示を入力することが可能となる。この結果、例えば指によるスイッチ操作が不要になり、生体情報測定装置の操作性が向上する。また、生体情報を測定するために既に設けられている流体袋を利用して被測定部位の動きが検出されるので、被測定部位の動きを検出するためのセンサを追加設置する必要がない。 According to the above configuration, the subject can input an instruction related to measurement of biological information to the biological information measurement device by moving the measurement site. As a result, for example, the switch operation with a finger becomes unnecessary, and the operability of the biological information measurement device is improved. In addition, since the movement of the measurement site is detected using the fluid bag already provided to measure the biological information, it is not necessary to additionally install a sensor for detecting the movement of the measurement site.
 上記態様に係る生体情報測定装置において、前記動き検出部は、前記圧力信号に含まれる変動成分の値と予め設定された閾値との比較に基づいて前記被測定部位の動きを検出してもよい。当該構成によれば、被測定部位の動きを検出する処理は、閾値判定により容易に実行されることができる。 In the biological information measurement device according to the above aspect, the motion detection unit may detect the motion of the measurement site based on comparison between the value of the fluctuation component included in the pressure signal and a preset threshold value. . According to the said structure, the process which detects the motion of a to-be-measured site | part can be easily performed by threshold value determination.
 上記態様に係る生体情報測定装置において、前記動き検出部は、前記変動成分の値が前記閾値を超えた回数を含む検出結果を出力してもよく、前記指示判別部は、前記検出結果に含まれる回数に基づいて、前記被測定者からの指示の内容を判別してもよい。当該構成によれば、被測定部位を無意識に動かしてしまった場合を指示として誤判別しないようにすることができ、また被測定部位の動かし方に応じて異なる指示を入力することが可能となる。 In the biological information measurement device according to the above aspect, the motion detection unit may output a detection result including the number of times the value of the fluctuation component exceeds the threshold, and the instruction determination unit is included in the detection result. The content of the instruction from the subject may be determined based on the number of times the information is read. According to the configuration, it is possible to prevent erroneous determination as an instruction when the measurement site is moved unintentionally, and it becomes possible to input different instructions according to how to move the measurement site. .
 上記態様に係る生体情報測定装置において、前記動き検出部は、前記圧力信号に含まれる変動成分の波形と予め用意された参照波形とのマッチングに基づいて前記被測定部位の動きを検出してもよい。当該構成によれば、閾値を用いて圧力値を判別する場合に比べ、被測定部位の動きをより正確に判別することが可能となる。このため、被測定部位の動きでより多くの指示を正確に入力することが可能となる。 In the biological information measurement device according to the above aspect, the movement detection unit may detect the movement of the measurement site based on the matching between the waveform of the fluctuation component included in the pressure signal and the reference waveform prepared in advance. Good. According to this configuration, it is possible to more accurately determine the movement of the measurement site as compared to the case where the pressure value is determined using the threshold value. For this reason, it becomes possible to input more instructions correctly by the movement of a to-be-measured site | part.
 上記態様に係る生体情報測定装置は、前記被測定部位の姿勢を検出する姿勢検出部をさらに備えてもよく、前記指示判別部は、前記被測定部位の動きの前記検出結果と前記被測定部位の姿勢の検出結果との組み合わせに基づいて、前記被測定者による前記生体情報の測定に係る指示内容を判別してもよい。当該構成によれば、被測定部位が予め定められた姿勢になっているときに、被測定部位の動きによる指示の入力が可能となる。この結果、指示の誤入力を防止することができる。
 一例としては、前記被測定部位の姿勢の検出結果に基づいて前記生体情報の測定開始指示を判別し、当該測定開始指示の判別後の前記被測定部位の動きの検出結果に基づいて前記生体情報の測定中止指示を判別する構成が考えられる。
The biological information measurement apparatus according to the above aspect may further include a posture detection unit that detects the posture of the measurement target region, and the instruction determination unit determines the detection result of the movement of the measurement target region and the measurement target region. The instruction content relating to the measurement of the biological information by the subject may be determined based on a combination with the posture detection result. According to this configuration, when the measurement site is in a predetermined posture, it is possible to input an instruction based on the movement of the measurement site. As a result, erroneous input of instructions can be prevented.
As one example, the measurement start instruction of the biological information is determined based on the detection result of the posture of the measurement target region, and the biological information is determined based on the detection result of the movement of the measurement target after the determination of the measurement start instruction. A configuration may be considered to determine the measurement stop instruction of.
 本発明によれば、操作性の向上を図った生体情報測定装置、測定制御方法およびプログラムを提供することができる。 According to the present invention, it is possible to provide a biological information measurement device, a measurement control method, and a program for improving operability.
図1は、本発明の一実施形態に係る生体情報測定装置を示すブロック図である。FIG. 1 is a block diagram showing a biological information measurement apparatus according to an embodiment of the present invention. 図2は、実施例1に係る血圧測定装置の外観を示す斜視図である。FIG. 2 is a perspective view showing the appearance of the blood pressure measurement device according to the first embodiment. 図3は、図2に示されるカフ構造体を示す断面図である。FIG. 3 is a cross-sectional view showing the cuff structure shown in FIG. 図4は、図2の血圧測定装置のハードウェア構成例を示すブロック図である。FIG. 4 is a block diagram showing an example of a hardware configuration of the blood pressure measurement device of FIG. 図5は、図4の血圧測定装置が備える制御部を示す機能ブロック図である。FIG. 5 is a functional block diagram showing a control unit provided in the blood pressure measurement device of FIG. 図6は、実施例1に係る血圧測定方法を例示するフローチャートである。FIG. 6 is a flowchart illustrating the blood pressure measurement method according to the first embodiment. 図7は、図4に示した圧力センサによって検出されるセンシングカフの圧力Pcおよびそれに含まれるノイズ成分Dnの一例を示すグラフである。FIG. 7 is a graph showing an example of the pressure Cc of the sensing cuff detected by the pressure sensor shown in FIG. 4 and the noise component Dn contained therein. 図8は、変形例に係る血圧測定装置が備える制御部を示す機能ブロック図である。FIG. 8 is a functional block diagram showing a control unit provided in the blood pressure measurement device according to the modification. 図9Aは、好適な血圧測定姿勢の一例を示す図である。FIG. 9A is a view showing an example of a suitable blood pressure measurement posture. 図9Bは、ジェスチャ入力の一例を示す図である。FIG. 9B is a diagram showing an example of gesture input.
 以下、図面を参照しながら本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [一実施形態]
 図1は、本発明の一実施形態に係る生体情報測定装置1の機能構成を示すブロック図である。
 この生体情報測定装置1は、カフ2を備えたウェアラブル生体情報測定装置であり、被測定者であるユーザの被測定部位(例えば手首)に装着される。生体情報測定装置1は、生体情報測定部10、流体供給部20、動き検出部30、および指示判別部40を備えている。
[One embodiment]
FIG. 1 is a block diagram showing a functional configuration of a biological information measurement device 1 according to an embodiment of the present invention.
The living body information measuring device 1 is a wearable living body information measuring device provided with a cuff 2, and is mounted on a measurement target site (for example, a wrist) of a user who is a measurement subject. The biological information measurement device 1 includes a biological information measurement unit 10, a fluid supply unit 20, a motion detection unit 30, and an instruction determination unit 40.
 生体情報測定部10は、生体情報を測定するために流体供給部20を制御する。流体供給部20は、生体情報測定部10の制御の下で、カフ2に流体を供給することでカフ2を膨張させ、被測定部位を圧迫する。生体情報測定部10は、上記被測定部位を圧迫した状態で、カフ2の圧力を図示しない圧力センサで検出し、圧力センサの出力に基づいて生体情報を算出する。生体情報は、血圧値および脈拍数を含むが、これに限定されない。上記流体としては、典型的には空気が用いられるが、他の気体、または液体を用いてもよい。 The biological information measurement unit 10 controls the fluid supply unit 20 to measure biological information. The fluid supply unit 20 supplies a fluid to the cuff 2 under the control of the biological information measurement unit 10 to expand the cuff 2 and press the measurement site. The biological information measurement unit 10 detects the pressure of the cuff 2 with a pressure sensor (not shown) and calculates biological information based on the output of the pressure sensor while pressing the measurement target region. Biological information includes, but is not limited to, blood pressure values and pulse rates. As the fluid, air is typically used, but other gas or liquid may be used.
 ユーザが生体情報測定装置1を装着している被測定部位を動かすと、被測定部位の動きに応じて変動するノイズ(カフノイズと呼ぶ)が圧力センサの出力信号に生じる。したがって、圧力センサの出力信号に含まれる変動成分に基づいて被測定部位の動きを検出することが可能である。動き検出部30は、圧力センサの出力信号に含まれる変動成分に基づいて被測定部位の動きを検出する。 When the user moves the measurement site on which the biological information measurement device 1 is mounted, noise (referred to as cuff noise) that fluctuates according to the movement of the measurement site is generated in the output signal of the pressure sensor. Therefore, it is possible to detect the movement of the measurement site based on the fluctuation component included in the output signal of the pressure sensor. The motion detection unit 30 detects the motion of the measurement site based on the fluctuation component included in the output signal of the pressure sensor.
 指示判別部40は、動き検出部30による被測定部位の動きの検出結果に基づいてユーザによる生体情報の測定に関する指示を判別する。例えば、生体情報測定装置1が手首式である場合において、動き検出部30が、手首を含む腕を2回振るジェスチャを検出すると、指示判別部40が、ユーザから測定中止の指示が入力されたと認識する。このように、生体情報測定装置1は、予め定められた被測定部位の動き(ジェスチャ)をユーザによる生体情報の測定に関する指示として判別する。指示判別部40は、生体情報の測定に関連する指示を判別すると、その指示を示す情報を生体情報測定部10に与える。生体情報測定部10は、指示判別部40から受け取った指示情報に基づいて生体情報の測定に関する動作を行う。 The instruction determination unit 40 determines an instruction related to measurement of biological information by the user based on the detection result of the movement of the measurement site by the movement detection unit 30. For example, in the case where the biological information measuring device 1 is a wrist type, when the motion detecting unit 30 detects a gesture of shaking the arm including the wrist twice, the instruction determining unit 40 receives an instruction to stop the measurement from the user. recognize. As described above, the biological information measurement device 1 determines the movement (gesture) of the predetermined measurement site as a command related to the measurement of the biological information by the user. When determining the instruction related to the measurement of the biological information, the instruction determination unit 40 gives the biological information measurement unit 10 information indicating the instruction. The living body information measurement unit 10 performs an operation related to measurement of living body information based on the instruction information received from the instruction determination unit 40.
 以上のような構成を備えた生体情報測定装置1によれば、ユーザは被測定部位を動かすといった簡単な動作をすることで生体情報の測定に関する指示を入力することが可能となる。このため、手指によりスイッチを操作する場合に比べ、操作性を高めることが可能となる。この効果は、特に、障害や健康上の理由、または他の何らかの事情で手指を自由に動かすことができない場合に、有効である。また、生体情報を測定するために既に設けられている構成要素を利用して被測定部位の動きが検出されるので、被測定部位の動きを検出するためのセンサを追加設置する必要がなく、装置の大型化やコストアップを防止できる。 According to the biological information measuring device 1 having the above-described configuration, the user can input an instruction related to the measurement of biological information by performing a simple operation such as moving the measurement site. Therefore, the operability can be improved as compared with the case of operating the switch with fingers. This effect is particularly effective when the hand can not be moved freely due to disability, health reasons, or something else. In addition, since the movement of the measurement site is detected using components already provided to measure biological information, there is no need to additionally install a sensor for detecting the movement of the measurement site, It is possible to prevent the increase in size and cost of the device.
 なお、被測定部位としては、手首に限らず上腕などの他の部位であってもよい。 In addition, as a to-be-measured site | part, not only a wrist but other site | parts, such as an upper arm, may be sufficient.
 [実施例1]
 (構成)
 図2は、本発明に係る生体情報測定装置の1つの実施例である血圧測定装置200の外観を示す斜視図である。血圧測定装置200は、腕時計型ウェアラブルデバイスである。血圧測定装置200は、ユーザの左手首に装着するように設計されており、左手首において血圧を測定する。血圧測定装置200は、本体210、ベルト230、およびカフ構造体250を備えている。ベルト230およびカフ構造体250をカフと総称することもある。
Example 1
(Constitution)
FIG. 2 is a perspective view showing an appearance of a blood pressure measurement device 200 which is one embodiment of the biological information measurement device according to the present invention. The blood pressure measurement device 200 is a watch-type wearable device. The blood pressure measurement device 200 is designed to be worn on the user's left wrist and measures blood pressure at the left wrist. The blood pressure measurement device 200 includes a main body 210, a belt 230, and a cuff structure 250. The belt 230 and the cuff structure 250 may be collectively referred to as a cuff.
 本体210は、円筒状のケース211、ケース211の一方の開口部に取り付けられた円形状のガラス212、およびケース211の他方の開口部に取り付けられた裏蓋213を含む。ケース211は、その側面の2カ所の各々に、ベルト230を取り付けるための1対の突起状のラグを有する。 The main body 210 includes a cylindrical case 211, a circular glass 212 attached to one opening of the case 211, and a back cover 213 attached to the other opening of the case 211. The case 211 has a pair of projecting lugs for attaching the belt 230 at each of two places on its side.
 本体210の内部には、表示部215がガラス212に対向して設けられている。表示部215としては、例えば、LCD(Liquid Crystal Display)、OLED(Organic Light Emitting Diode)ディスプレイなどを用いることができる。本体210には、操作部216が設けられている。操作部216は、ユーザが血圧測定装置200に対する種々の指示を入力することを可能にする。ユーザは、操作部216を用いて血圧測定の実行指示を入力したり、血圧測定結果の履歴の表示指示を入力したりすることができる。この例では、操作部216は、ケース211の側面に設けられたプッシュ式スイッチ216A、216B、216Cを含む。なお、表示部215および操作部216の組み合わせとして、タッチスクリーンが用いられてもよい。 A display unit 215 is provided inside the main body 210 so as to face the glass 212. As the display unit 215, for example, an LCD (Liquid Crystal Display), an OLED (Organic Light Emitting Diode) display, or the like can be used. The main body 210 is provided with an operation unit 216. The operation unit 216 enables the user to input various instructions to the blood pressure measurement device 200. The user can use the operation unit 216 to input a blood pressure measurement execution instruction or to input a blood pressure measurement result history display instruction. In this example, the operation unit 216 includes push- type switches 216A, 216B, and 216C provided on the side surface of the case 211. A touch screen may be used as a combination of the display unit 215 and the operation unit 216.
 本体210の内部には、血圧測定のための要素を含む複数の要素がさらに設けられている。これらの要素については図4を参照して後述する。 Inside the main body 210, a plurality of elements including an element for blood pressure measurement are further provided. These elements will be described later with reference to FIG.
 ベルト230は、本体210およびカフ構造体250をユーザの左手首に装着するための装着部材の一例である。ベルト230は、帯状の第1ベルト部231および帯状の第2ベルト部236を含む。第1ベルト部231の根元部232は、X方向に延在する連結棒221により本体210の1対のラグに回動自在に取り付けられている。X方向はベルト230の幅方向に相当する。同様に、第2ベルト部236の根元部237は、X方向に延在する連結棒226により本体210の1対のラグに回動自在に取り付けられている。 The belt 230 is an example of a mounting member for mounting the main body 210 and the cuff structure 250 on the user's left wrist. The belt 230 includes a belt-shaped first belt portion 231 and a belt-shaped second belt portion 236. The root portion 232 of the first belt portion 231 is rotatably attached to a pair of lugs of the main body 210 by a connecting rod 221 extending in the X direction. The X direction corresponds to the width direction of the belt 230. Similarly, the root portion 237 of the second belt portion 236 is rotatably attached to a pair of lugs of the main body 210 by a connecting rod 226 extending in the X direction.
 第1ベルト部231の先端部233には、尾錠240が取り付けられている。尾錠240は、略コの字状の枠状体241、つく棒242、およびX方向に延在する連結棒243を含む。枠状体241およびつく棒242は、連結棒243により第1ベルト部231の先端部233に回動自在に取り付けられている。第1ベルト部231の先端部233と根元部232との間には、リング状のベルト保持部234、235が設けられている。第1ベルト部231の内周面は、ベルト保持部234、235の箇所で内側へ突起していない。これにより、ベルト230がカフ構造体250の外周面を均一に取り巻くことができる。 A tail lock 240 is attached to the tip end portion 233 of the first belt portion 231. The tail lock 240 includes a substantially U-shaped frame body 241, a stick bar 242, and a connecting bar 243 extending in the X direction. The frame body 241 and the sticking rod 242 are rotatably attached to the tip end portion 233 of the first belt portion 231 by the connecting rod 243. Ring-shaped belt holding portions 234 and 235 are provided between the distal end portion 233 and the root portion 232 of the first belt portion 231. The inner circumferential surface of the first belt portion 231 does not protrude inward at the portions of the belt holding portions 234 and 235. Thereby, the belt 230 can uniformly surround the outer peripheral surface of the cuff structure 250.
 第2ベルト部236の根元部237と先端部238との間には、複数の小穴239が第2ベルト部236の厚さ方向に貫通して形成されている。第1ベルト部231と第2ベルト部236とが締結される場合は、尾錠240の枠状体241に第2ベルト部236が先端部238側から通され、第2ベルト部236の複数の小穴239のうちのいずれか1つに尾錠240のつく棒242が挿通される。そして、第2ベルト部236の先端部238がベルト保持部234、235により保持される。 A plurality of small holes 239 are formed in the thickness direction of the second belt portion 236 between the root portion 237 and the tip end portion 238 of the second belt portion 236. When the first belt portion 231 and the second belt portion 236 are fastened, the second belt portion 236 is passed through the frame body 241 of the tail lock 240 from the tip end 238 side, and a plurality of small holes in the second belt portion 236 A stick 242 of the tail lock 240 is inserted into any one of 239. Then, the tip end portion 238 of the second belt portion 236 is held by the belt holding portions 234 and 235.
 第1ベルト部231および第2ベルト部236は、例えば、プラスチック材料により形成される。第1ベルト部231および第2ベルト部236は、厚さ方向に関して可撓性を有し、長手方向に関して実質的に非伸縮性を示す。これにより、血圧測定装置200の装着が容易になるとともに、血圧測定時に左手首の圧迫を助けることができる。なお、第1ベルト部231および第2ベルト部236は、他の材料、例えば、革材料で形成されていてもよい。尾錠240の枠状体241およびつく棒242は、例えば、金属材料により形成される。なお、枠状体241およびつく棒242は、他の材料、例えば、プラスチック材料で形成されてもよい。 The first belt portion 231 and the second belt portion 236 are formed of, for example, a plastic material. The first belt portion 231 and the second belt portion 236 are flexible in the thickness direction and substantially non-stretchable in the longitudinal direction. Thus, the blood pressure measurement device 200 can be easily attached, and compression of the left wrist can be assisted at the time of blood pressure measurement. The first belt portion 231 and the second belt portion 236 may be formed of another material, for example, a leather material. The frame body 241 and the stick 242 of the buckle 240 are formed of, for example, a metal material. The frame body 241 and the stick 242 may be formed of other materials, for example, a plastic material.
 カフ構造体250は、細長い帯状をなす。カフ構造体250は、ベルト230の内周面に対向している。カフ構造体250の根元部251が本体210に取り付けられている。カフ構造体250の先端部252は自由端となっている。これにより、カフ構造体250は、ベルト230の内周面から離間自在である。 The cuff structure 250 has an elongated band shape. The cuff structure 250 is opposed to the inner circumferential surface of the belt 230. The root portion 251 of the cuff structure 250 is attached to the main body 210. The tip 252 of the cuff structure 250 is a free end. Thus, the cuff structure 250 can be separated from the inner circumferential surface of the belt 230.
 カフ構造体250は、カーラ254、カーラ254の内周面に沿って配置された押圧カフ255、押圧カフ255の内周面に沿って配置された背板256、および背板256の内周面に沿って配置されたセンシングカフ257を含む。血圧測定装置200がユーザに装着された状態では、センシングカフ257が左手首に接する。本明細書において、「接する」は、直接に接する場合のみでなく、他の部材(例えばカバー部材)を介して間接的に接する場合も含む。本実施例においては、ベルト230、カーラ254、押圧カフ255、および背板256は、センシングカフ257を左手首に対して押圧する力を発生可能な押圧部として働く。血圧測定装置200は、押圧部によってセンシングカフ257を介して左手首を圧迫する。 The cuff structure 250 includes a curler 254, a pressure cuff 255 disposed along the inner circumferential surface of the curler 254, a back plate 256 disposed along the inner circumferential surface of the pressure cuff 255, and an inner circumferential surface of the back plate 256. And a sensing cuff 257 disposed along the In a state where the blood pressure measurement device 200 is worn by the user, the sensing cuff 257 contacts the left wrist. In the present specification, “contact” includes not only direct contact but also indirect contact via another member (for example, a cover member). In the present embodiment, the belt 230, the curler 254, the pressing cuff 255, and the back plate 256 function as pressing parts capable of generating a force for pressing the sensing cuff 257 against the left wrist. The blood pressure measurement device 200 compresses the left wrist via the sensing cuff 257 by the pressing unit.
 カーラ254は、例えば、ある程度の可撓性および硬さを有する樹脂板(例えばポリプロピレン板)である。カーラ254は、自然状態では、Y方向に沿って湾曲した形状を有する。これにより、カフ構造体250の自然状態での形状がY方向に沿って湾曲した状態に保たれる。Y方向は、左手首の周方向に相当する。 The curler 254 is, for example, a resin plate (for example, a polypropylene plate) having a certain degree of flexibility and hardness. In the natural state, the curler 254 has a curved shape along the Y direction. As a result, the shape of the cuff structure 250 in the natural state is kept curved along the Y direction. The Y direction corresponds to the circumferential direction of the left wrist.
 押圧カフ255は、流体を収容可能な流体袋である。押圧カフ255には、可撓性チューブ421(図4に示される)が取り付けられている。可撓性チューブ421は、押圧カフ255に加圧用の流体を供給し、押圧カフ255から加圧用の流体を排出するために使用される。流体が押圧カフ255に供給されると、押圧カフ255は膨張し、それにより左手首が圧迫される。 The pressure cuff 255 is a fluid bag capable of containing fluid. Attached to the pressure cuff 255 is a flexible tube 421 (shown in FIG. 4). The flexible tube 421 is used to supply pressure fluid to the pressure cuff 255 and to discharge pressure fluid from the pressure cuff 255. As fluid is supplied to the pressure cuff 255, the pressure cuff 255 expands, thereby compressing the left wrist.
 一例として、押圧カフ255は、厚さ方向に積層された2つの袋状部材を含む。各袋状部材は、例えば、2枚の伸縮可能なポリウレタンシートの周縁部を溶着して形成される。これらの袋状部材には、袋状部材間での流体の流通を可能にするために、複数の貫通孔が形成されている。袋状部材の一方に可撓性チューブ421が取り付けられる。流体が可撓性チューブ421を介して袋状部材に供給されると、押圧カフ255は、これらの袋状部材の膨張によりセンシングカフ257を左手首に押し付け、左手首を圧迫する。 As one example, the pressure cuff 255 includes two bag-like members stacked in the thickness direction. Each bag-like member is formed, for example, by welding the peripheral portions of two stretchable polyurethane sheets. In these bag-like members, a plurality of through holes are formed in order to allow the fluid to flow between the bag-like members. A flexible tube 421 is attached to one of the bag-like members. When the fluid is supplied to the bag-like members via the flexible tube 421, the pressure cuffs 255 press the sensing cuffs 257 against the left wrist by the expansion of the bag-like members and press the left wrist.
 背板256は、例えば、樹脂板(例えばポリプロピレン板)である。背板256は、補強板として機能する。背板256は、押圧カフ255からの押圧力をセンシングカフ257の全域に伝えることができる。背板256の内周面および外周面には、X方向に延びる断面V字状またはU字状の溝が複数設けられている。これにより、背板256が屈曲し易くなっている。したがって、カフ構造体250が湾曲しようとすることを背板256が妨げることがない。 The back plate 256 is, for example, a resin plate (for example, a polypropylene plate). The back plate 256 functions as a reinforcing plate. The back plate 256 can transmit the pressing force from the pressing cuff 255 to the entire area of the sensing cuff 257. A plurality of V-shaped or U-shaped grooves extending in the X direction are provided on the inner and outer peripheral surfaces of the back plate 256. Thereby, the back plate 256 is easily bent. Thus, the back plate 256 does not prevent the cuff structure 250 from bending.
 センシングカフ257は、流体を収容可能な流体袋である。一例として、センシングカフ257は、2枚の伸縮可能なポリウレタンシートを含み、これらのポリウレタンシートの周縁部が溶着されて袋状に形成されている。センシングカフ257には、可撓性チューブ423(図4に示される)が取り付けられている。可撓性チューブ423は、センシングカフ257に圧力伝達用の流体を供給し、センシングカフ257から圧力伝達用の流体を排出するために使用される。 The sensing cuff 257 is a fluid bag capable of containing a fluid. As an example, the sensing cuff 257 includes two stretchable polyurethane sheets, and the peripheral portions of these polyurethane sheets are welded to form a bag shape. Attached to the sensing cuff 257 is a flexible tube 423 (shown in FIG. 4). The flexible tube 423 is used to supply fluid for pressure transmission to the sensing cuff 257 and to discharge fluid for pressure transmission from the sensing cuff 257.
 上述した構造を有する血圧測定装置200は、カフ構造体250が左手首を取り巻き、ベルト230がカフ構造体250を左手首に対して拘束した状態で、ユーザの左手首に装着される。 The blood pressure measurement device 200 having the above-described structure is mounted on the left wrist of the user with the cuff structure 250 surrounding the left wrist and the belt 230 restraining the cuff structure 250 against the left wrist.
 図3は、血圧測定装置200が左手首300に装着された状態(以下、装着状態と呼ぶ)における血圧測定装置200の断面を示している。この断面は、図2に示したX方向に垂直な断面に相当する。図3において、本体210およびベルト230の図示は省略されている。図3には、左手首300の橈骨動脈301、尺骨動脈302、橈骨303、尺骨304、および腱305が示されている。 FIG. 3 shows a cross section of the blood pressure measurement device 200 in a state where the blood pressure measurement device 200 is mounted on the left wrist 300 (hereinafter referred to as a mounted state). This cross section corresponds to the cross section perpendicular to the X direction shown in FIG. In FIG. 3, the main body 210 and the belt 230 are not shown. In FIG. 3, a radial artery 301, an ulnar artery 302, a rib 303, an ulna 304, and a tendon 305 of the left wrist 300 are shown.
 装着状態では、カーラ254は、Y方向(左手首300の周方向に相当する)に沿って延在する。押圧カフ255は、カーラ254の内周側でY方向に沿って延在する。背板256は、押圧カフ255の内周側でY方向に沿って延在する。センシングカフ257は、背板256の内周側に配置されており、左手首300に接し、かつ、左手首300の動脈通過部分300Aを横切るようにY方向に沿って延在する。 In the worn state, the curler 254 extends along the Y direction (corresponding to the circumferential direction of the left wrist 300). The pressing cuff 255 extends in the Y direction on the inner circumferential side of the curler 254. The back plate 256 extends along the Y direction on the inner peripheral side of the pressing cuff 255. The sensing cuff 257 is disposed on the inner peripheral side of the back plate 256, contacts the left wrist 300, and extends along the Y direction so as to cross the arterial passage portion 300A of the left wrist 300.
 血圧測定装置200は、2つの流体袋(すなわち押圧カフ255およびセンシングカフ257)を有するダブルカフ構造を採用しており、左手首は、押圧カフ255からの押圧力によってセンシングカフ257により圧迫される。これにより、左手首300を通る動脈(例えば橈骨動脈301)を効果的に圧迫することが可能になる。この結果、精度の高い血圧測定を行うことができる。 The blood pressure measurement device 200 adopts a double cuff structure having two fluid bags (ie, a pressing cuff 255 and a sensing cuff 257), and the left wrist is compressed by the sensing cuff 257 by the pressing force from the pressing cuff 255. This enables effective compression of the artery (eg, radial artery 301) passing through the left wrist 300. As a result, accurate blood pressure measurement can be performed.
 図4は、血圧測定装置200のハードウェア構成例を示している。血圧測定装置200は、上述した表示部215および操作部216に加えて、CPU(Central Processing Unit)401、メモリ402、通信部407、電池408、圧力センサ409、圧力センサ410、ポンプ駆動回路411、ポンプ412、開閉弁駆動回路415、および開閉弁416を備え、これらは、血圧測定装置200の本体210の内部に設けられる。 FIG. 4 shows a hardware configuration example of the blood pressure measurement device 200. The blood pressure measurement device 200 includes a CPU (Central Processing Unit) 401, a memory 402, a communication unit 407, a battery 408, a pressure sensor 409, a pressure sensor 410, a pump drive circuit 411, in addition to the display unit 215 and the operation unit 216 described above. A pump 412, an on-off valve drive circuit 415, and an on-off valve 416 are provided inside the main body 210 of the blood pressure measurement device 200.
 CPU401は、コンピュータを構成するプロセッサの一例である。CPU401は、メモリ402に記憶されている制御プログラムに従って、各構成要素を制御する。例えば、CPU401は、圧力センサ409、410からの信号に基づいて、ポンプ412および開閉弁416を駆動する制御を行う。また、CPU401は、圧力センサ410からの信号に基づいて、血圧値および脈拍数を算出する制御を行う。 The CPU 401 is an example of a processor that configures a computer. The CPU 401 controls each component according to the control program stored in the memory 402. For example, the CPU 401 performs control of driving the pump 412 and the on-off valve 416 based on the signals from the pressure sensors 409 and 410. The CPU 401 also performs control to calculate the blood pressure value and the pulse rate based on the signal from the pressure sensor 410.
 メモリ402は、例えば、RAM(Random Access Memory)および補助記憶装置を含む。補助記憶装置は、上述の制御プログラムとともに、血圧測定装置200の各構成要素を制御するために用いられるデータおよび血圧測定により得られた血圧データを含む各種データを記憶する。補助記憶装置は、フラッシュメモリなどの半導体メモリであり得る。RAMは、プログラムが実行されるときのワークメモリなどとして用いられる。メモリ402は、ROM(Read Only Memory)をさらに含んでいてもよい。この場合、制御プログラムの一部または全部はROMに格納されてもよい。 The memory 402 includes, for example, a random access memory (RAM) and an auxiliary storage device. The auxiliary storage device stores various data including data used to control each component of the blood pressure measurement device 200 and blood pressure data obtained by blood pressure measurement, in addition to the control program described above. The auxiliary storage device may be a semiconductor memory such as a flash memory. The RAM is used as a work memory or the like when the program is executed. The memory 402 may further include a ROM (Read Only Memory). In this case, part or all of the control program may be stored in the ROM.
 通信部407は、外部装置450と通信するためのインタフェースである。外部装置450は、例えば、スマートフォンやタブレット端末などの携帯端末、またはサーバである。通信部407は、ネットワークを介して外部装置450と情報をやり取りする。通信部407は、CPU401から受け取った情報を外部装置450に送信する。また、通信部407は、外部装置450から情報を受信し、受信した情報をCPU401へ渡す。ネットワークを介した通信は、無線通信、有線通信、またはこれらの両方により実施されることができる。ネットワークは、例えば、インターネットであるが、これに限定されない。ネットワークは、病院内LAN(Local Area Network)などの他の種類のネットワークであってもよく、USBケーブルなどを用いた1対1の通信であってもよい。通信部407は、マイクロUSBコネクタを含んでいてもよい。通信部407は、Bluetooth(登録商標)などの近距離無線通信により外部装置450と直接通信してもよい。 The communication unit 407 is an interface for communicating with the external device 450. The external device 450 is, for example, a portable terminal such as a smartphone or a tablet terminal, or a server. The communication unit 407 exchanges information with the external device 450 via the network. The communication unit 407 transmits the information received from the CPU 401 to the external device 450. The communication unit 407 also receives information from the external device 450 and passes the received information to the CPU 401. Communication via the network may be implemented by wireless communication, wired communication, or both. The network is, for example, the Internet, but is not limited thereto. The network may be another type of network such as a hospital local area network (LAN), or may be one-to-one communication using a USB cable or the like. The communication unit 407 may include a micro USB connector. The communication unit 407 may directly communicate with the external device 450 by near field communication such as Bluetooth (registered trademark).
 電池408は、例えば、充電可能な2次電池である。電池408は、本体210に搭載されている各要素へ電力を供給する。電池408は、例えば、表示部215、CPU401、メモリ402、通信部407、圧力センサ409、圧力センサ410、ポンプ駆動回路411、ポンプ412、開閉弁駆動回路415、および開閉弁416へ電力を供給する。 The battery 408 is, for example, a rechargeable secondary battery. The battery 408 supplies power to each element mounted on the main body 210. The battery 408 supplies power to, for example, the display unit 215, the CPU 401, the memory 402, the communication unit 407, the pressure sensor 409, the pressure sensor 410, the pump drive circuit 411, the pump 412, the on-off valve drive circuit 415, and the on-off valve 416. .
 圧力センサ409は、例えば、ピエゾ抵抗式圧力センサである。圧力センサ409は、可撓性チューブ421および流路形成部材422を介して、押圧カフ255の内部の圧力を検出する。可撓性チューブ421および流路形成部材422は、ポンプ412からの流体を押圧カフ255に注入することを可能にするようにポンプ412と押圧カフ255とを接続する流路を形成する。圧力センサ409は、圧力信号をCPU401へ出力する。図4には示されないが、圧力センサ409とCPU401との間には、圧力センサ409の出力信号を増幅する増幅器、および増幅器の出力信号をアナログ信号からデジタル信号に変換するアナログデジタル変換器が設けられる。 The pressure sensor 409 is, for example, a piezoresistive pressure sensor. The pressure sensor 409 detects the pressure inside the pressure cuff 255 via the flexible tube 421 and the flow path forming member 422. The flexible tube 421 and the flow path forming member 422 form a flow path connecting the pump 412 and the pressure cuff 255 so as to allow the fluid from the pump 412 to be injected into the pressure cuff 255. The pressure sensor 409 outputs a pressure signal to the CPU 401. Although not shown in FIG. 4, an amplifier that amplifies the output signal of pressure sensor 409 and an analog-to-digital converter that converts the output signal of the amplifier from an analog signal to a digital signal are provided between pressure sensor 409 and CPU 401. Be
 圧力センサ410は、例えば、ピエゾ抵抗式圧力センサである。圧力センサ410は、流路形成部材422、可撓性チューブ423および流路形成部材424を介して、センシングカフ257の内部の圧力を検出する。流路形成部材422、可撓性チューブ423および流路形成部材424は、ポンプ412からの流体をセンシングカフ257に注入することを可能にするようにポンプ412とセンシングカフ257とを接続する流路を形成する。圧力センサ410は、圧力信号をCPU401へ出力する。図4には示されないが、圧力センサ410とCPU401との間には、圧力センサ410の出力信号を増幅する増幅器、および増幅器の出力信号をアナログ信号からデジタル信号に変換するアナログデジタル変換器が設けられる。 The pressure sensor 410 is, for example, a piezoresistive pressure sensor. The pressure sensor 410 detects the pressure inside the sensing cuff 257 via the flow path forming member 422, the flexible tube 423 and the flow path forming member 424. The flow path forming member 422, the flexible tube 423 and the flow path forming member 424 connect the pump 412 and the sensing cuff 257 so as to allow the fluid from the pump 412 to be injected into the sensing cuff 257. Form The pressure sensor 410 outputs a pressure signal to the CPU 401. Although not shown in FIG. 4, an amplifier that amplifies the output signal of pressure sensor 410 and an analog-to-digital converter that converts the output signal of the amplifier from an analog signal to a digital signal are provided between pressure sensor 410 and CPU 401. Be
 ポンプ駆動回路411は、CPU401からの制御信号に基づいて、ポンプ412を駆動する。ポンプ412は、例えば、圧電ポンプである。ポンプ412は、可撓性チューブ421および流路形成部材422を通して、押圧カフ255に流体を供給することができる。さらに、ポンプ412は、流路形成部材422、可撓性チューブ423および流路形成部材424を通して、センシングカフ257に流体を供給することができる。ポンプ412には、ポンプ412のオン/オフに伴って開閉が制御される排気弁が搭載されている。すなわち、排気弁は、ポンプ412がオンされると閉じて、押圧カフ255内に空気を封入するのを助ける。一方、排気弁は、ポンプ412がオフされると開いて、押圧カフ255内の空気を大気中へ排出させる。なお、排気弁は、逆止弁の機能を有し、排出された空気が逆流することはない。 The pump drive circuit 411 drives the pump 412 based on a control signal from the CPU 401. The pump 412 is, for example, a piezoelectric pump. The pump 412 can supply fluid to the pressure cuff 255 through the flexible tube 421 and the flow path forming member 422. Further, the pump 412 can supply fluid to the sensing cuff 257 through the flow path forming member 422, the flexible tube 423 and the flow path forming member 424. The pump 412 is equipped with an exhaust valve whose opening and closing are controlled in accordance with the on / off of the pump 412. That is, the exhaust valve closes when the pump 412 is turned on to help entrap air within the pressure cuff 255. On the other hand, the exhaust valve opens when the pump 412 is turned off to discharge the air in the pressure cuff 255 to the atmosphere. The exhaust valve has the function of a check valve, and the discharged air does not flow back.
 開閉弁駆動回路415は、CPU401からの制御信号に基づいて、開閉弁416を駆動する。開閉弁416は、流路形成部材422と流路形成部材424との間に介挿されている。開閉弁416は、例えば、常開の電磁弁である。開閉弁416の開閉(開度)は、CPU401からの制御信号に基づいて制御される。開閉弁416が開状態にあるとき、ポンプ412は、流路形成部材422、可撓性チューブ423および流路形成部材424を通して、センシングカフ257に流体を供給することができる。 The on-off valve drive circuit 415 drives the on-off valve 416 based on a control signal from the CPU 401. The on-off valve 416 is interposed between the flow path forming member 422 and the flow path forming member 424. The on-off valve 416 is, for example, a normally open solenoid valve. Opening and closing (opening degree) of the on-off valve 416 is controlled based on a control signal from the CPU 401. When the on-off valve 416 is in the open state, the pump 412 can supply fluid to the sensing cuff 257 through the flow path forming member 422, the flexible tube 423 and the flow path forming member 424.
 ポンプ駆動回路411、ポンプ412、開閉弁駆動回路415、および開閉弁416は、押圧カフ255およびセンシングカフ257に流体を供給し、押圧カフ255およびセンシングカフ257から流体を排出する流体供給部の一例である。 The pump drive circuit 411, the pump 412, the on-off valve drive circuit 415, and the on-off valve 416 supply fluid to the pressing cuff 255 and the sensing cuff 257, and an example of a fluid supply unit that discharges fluid from the pressing cuff 255 and the sensing cuff 257 It is.
 図5は、血圧測定装置200が備える制御部500のソフトウェア構成を示すブロック図である。なお、図5において図4に示した部分と同じ部分に同じ符号を付して、それらについての詳しい説明は省略する。 FIG. 5 is a block diagram showing a software configuration of the control unit 500 provided in the blood pressure measurement device 200. The same reference numerals as in FIG. 4 denote the same parts in FIG. 5, and a detailed description thereof will be omitted.
 制御部500は、1つまたは複数のプロセッサ(例えばCPU401)がメモリ402に記憶された制御プログラムを実行することにより実現される。なお、制御部500の一部または全部は、ASIC(Application Specific Integrated Circuit)またはFPGA(Field Programmable Gate Array)などのハードウェア回路によって実現されてもよい。 The control unit 500 is realized by one or more processors (for example, the CPU 401) executing a control program stored in the memory 402. Note that part or all of the control unit 500 may be realized by a hardware circuit such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA).
 制御部500は、動き検出部501、指示判別部502、血圧測定部503、および血圧測定結果出力部506を備える。 The control unit 500 includes a motion detection unit 501, an instruction determination unit 502, a blood pressure measurement unit 503, and a blood pressure measurement result output unit 506.
 動き検出部501は、圧力センサ410から受け取った圧力信号に基づいて、左手首の動きを検出する。なお、動き検出部501は、圧力センサ409から受け取った圧力信号に基づいて、左手首の動きを検出してもよい。また、動き検出部501は、圧力センサ409および圧力センサ410の両方から受け取った圧力信号に基づいて、左手首の動きを検出してもよい。 The motion detection unit 501 detects the motion of the left wrist based on the pressure signal received from the pressure sensor 410. The motion detection unit 501 may detect the motion of the left wrist based on the pressure signal received from the pressure sensor 409. Also, the motion detection unit 501 may detect the motion of the left wrist based on the pressure signals received from both the pressure sensor 409 and the pressure sensor 410.
 左手首の動きを検出する方法としては、例えば、圧力信号を閾値と比較する方法を用いることができる。例えば、動き検出部501は、圧力信号から変動成分を抽出し、抽出した変動成分の値(例えば振幅値または変動量)が予め設定された閾値を超えた場合にユーザが左腕(左手首を含む)を振るジェスチャをしたことを認識することができる。また、動き検出部501は、変動成分の値が予め設定された時間内に(例えば2秒間に)閾値を超えた回数に基づいてユーザが左腕を振るジェスチャをした回数を認識することができる。動き検出部501は、腕を振るジェスチャに関する閾値とは異なる閾値を用いることで、手首を心臓の高さにあげるジェスチャを認識することもできる。これらの閾値は、固定値であってもよく、ジェスチャ設定モードにおいてユーザが実際に行ったジェスチャに基づいて設定されてもよい。 As a method of detecting the movement of the left wrist, for example, a method of comparing a pressure signal with a threshold can be used. For example, the motion detection unit 501 extracts the fluctuation component from the pressure signal, and the user moves the left arm (including the left wrist) when the value (for example, the amplitude value or the fluctuation amount) of the extracted fluctuation component exceeds a preset threshold. ) Can recognize that the gesture was made. Also, the motion detection unit 501 can recognize the number of times the user has made a gesture of swinging the left arm based on the number of times the value of the fluctuation component exceeds the threshold (for example, 2 seconds) within a preset time. The motion detection unit 501 can also recognize a gesture for raising the wrist to the height of the heart by using a threshold different from the threshold related to the gesture for shaking the arm. These threshold values may be fixed values, and may be set based on the gesture actually performed by the user in the gesture setting mode.
 左手首の動きを検出する方法として、パターンマッチングが用いられてもよい。例えば、腕を振ったときに生じるカフノイズの波形および手首を心臓の高さに上げたときに生じるカフノイズなど、様々なジェスチャに対応するカフノイズの波形を参照波形として予め収集しメモリ402に記憶しておく。動き検出部501は、圧力信号に含まれる変動成分の波形と、上記メモリ402に記憶された参照波形とのマッチングに基づいて左手首の動きを検出する。例えば、動き検出部501は、参照波形との類似度が閾値を超える波形が圧力信号の変動成分に現れた場合に、その参照波形に対応するジェスチャを認識することができる。参照波形は、不特定多数のサンプルに基づいて用意されてもよく、ジェスチャ設定モードにおいてユーザが実際に行ったジェスチャに基づいて決定されてもよい。 Pattern matching may be used as a method of detecting the movement of the left wrist. For example, a cuff noise waveform corresponding to various gestures such as a cuff noise waveform generated when the arm is shaken and a cuff noise generated when the wrist is raised to the height of the heart are collected in advance as a reference waveform and stored in the memory 402 deep. The motion detection unit 501 detects the motion of the left wrist based on the matching between the waveform of the fluctuation component included in the pressure signal and the reference waveform stored in the memory 402. For example, when a waveform whose degree of similarity with the reference waveform exceeds a threshold appears in the fluctuation component of the pressure signal, the motion detection unit 501 can recognize a gesture corresponding to the reference waveform. The reference waveform may be prepared based on an unspecified number of samples, or may be determined based on a gesture actually performed by the user in the gesture setting mode.
 指示判別部502は、ユーザによる測定に関する指示を判別する。指示判別部502は、動き検出部501による検出の結果に基づいて、ユーザからの指示を判別することができる。指示の内容は複数用意されていてもよい。指示の内容は、血圧測定装置200が装着されている被測定部位である左手首の動かし方に応じて事前に決定される。例えば、手首を心臓の高さに上げるジェスチャは血圧測定開始の指示に対応付けられ、左腕を2回振るジェスチャは血圧測定中止の指示に対応付けられる。 The instruction determination unit 502 determines an instruction related to measurement by the user. The instruction determination unit 502 can determine an instruction from the user based on the result of detection by the motion detection unit 501. A plurality of contents of the instruction may be prepared. The content of the instruction is determined in advance in accordance with how to move the left wrist, which is the measurement site to which the blood pressure measurement device 200 is attached. For example, the gesture for raising the wrist to the height of the heart is associated with an instruction to start blood pressure measurement, and the gesture for swinging the left arm twice is associated with an instruction to stop blood pressure measurement.
 また、指示判別部502は、ユーザによる操作部216の操作に応じて指示を判別することができる。例えば、血圧測定を行う場合、ユーザは、スイッチ216B(図2)を押して血圧測定装置200を血圧測定モードに切り替え、続いてスイッチ216Aを押して血圧測定を開始する。 In addition, the instruction determination unit 502 can determine an instruction according to the operation of the operation unit 216 by the user. For example, when performing blood pressure measurement, the user presses the switch 216B (FIG. 2) to switch the blood pressure measurement device 200 to the blood pressure measurement mode, and then presses the switch 216A to start blood pressure measurement.
 指示判別部502は、血圧測定に関する指示を判別すると、判別した指示の内容を示す情報を血圧測定部503に与える。 When the instruction determination unit 502 determines an instruction related to blood pressure measurement, the instruction determination unit 502 provides the blood pressure measurement unit 503 with information indicating the content of the determined instruction.
 血圧測定部503は、ユーザの血圧を測定する。血圧測定部503は、指示判別部502から受け取った情報に基づいて動作することができる。例えば、血圧測定部503は、指示判別部502から血圧測定開始の指示を示す情報を受け取ると、血圧測定を開始する。 The blood pressure measurement unit 503 measures the blood pressure of the user. The blood pressure measurement unit 503 can operate based on the information received from the instruction determination unit 502. For example, upon receiving information indicating an instruction to start blood pressure measurement from the instruction determination unit 502, the blood pressure measurement unit 503 starts blood pressure measurement.
 血圧測定部503は、流体供給制御部504および血圧値算出部505を備える。流体供給制御部504は、押圧カフ255およびセンシングカフ257への流体の供給を制御する。具体的には、流体供給制御部504は、押圧カフ255およびセンシングカフ257に流体を供給する流体供給部511を制御する。流体供給部511は、ポンプ駆動回路411、ポンプ412、開閉弁駆動回路415、および開閉弁416を含む。流体供給制御部504は、ポンプ駆動回路411および開閉弁駆動回路415それぞれに制御信号を与える。 The blood pressure measurement unit 503 includes a fluid supply control unit 504 and a blood pressure value calculation unit 505. The fluid supply control unit 504 controls the supply of fluid to the pressure cuff 255 and the sensing cuff 257. Specifically, the fluid supply control unit 504 controls the fluid supply unit 511 that supplies fluid to the pressure cuff 255 and the sensing cuff 257. The fluid supply unit 511 includes a pump drive circuit 411, a pump 412, an on-off valve drive circuit 415, and an on-off valve 416. The fluid supply control unit 504 provides control signals to the pump drive circuit 411 and the on-off valve drive circuit 415, respectively.
 血圧値算出部505は、圧力センサ410によって得られた圧力信号に基づいて、血圧値を算出する。血圧値は、例えば、収縮期血圧(SBP;Systolic Blood Pressure)および拡張期血圧(DBP;Diastolic Blood Pressure)を含むが、これに限定されない。算出された血圧値は、時間などの付加情報と関連付けられてメモリ402に保存される。 The blood pressure value calculation unit 505 calculates a blood pressure value based on the pressure signal obtained by the pressure sensor 410. Blood pressure values include, but are not limited to, for example, systolic blood pressure (SBP; Systolic Blood Pressure) and diastolic blood pressure (DBP; diastolic blood pressure). The calculated blood pressure value is stored in the memory 402 in association with additional information such as time.
 血圧測定結果出力部506は、血圧測定結果を出力する。例えば、血圧測定結果出力部506は、血圧値算出部505によって算出された血圧値を表示部215に表示する。 The blood pressure measurement result output unit 506 outputs the blood pressure measurement result. For example, the blood pressure measurement result output unit 506 displays the blood pressure value calculated by the blood pressure value calculation unit 505 on the display unit 215.
 (動作)
 次に、血圧測定装置200の動作について説明する。
 図6は、実施例1に係る血圧測定制御方法を例示するフローチャートである。
 図6のステップS601において、指示判別部502は、ユーザから血圧測定開始の指示を取得する。例えば、動き検出部501が、ユーザが左手首を心臓の高さに上げたことを検出し、それにより、指示判別部502が、ユーザが血圧測定開始の指示を入力したと判断する。上記左手首を心臓の高さに上げたことを検出する方法としては、先に述べたように圧力センサ409または圧力センサ410により検出された圧力信号の値を閾値と比較する方法や、圧力信号の波形と参照波形とのパターンマッチングを行う方法が用いられる。指示判別部502は、判別した指示内容を示す情報、つまりユーザから血圧測定開始の指示が入力されたことを示す情報を血圧測定部503に与える。上記指示内容を示す情報を受け取ると血圧測定部503は、ステップS602において血圧測定を開始する。
(Operation)
Next, the operation of the blood pressure measurement device 200 will be described.
FIG. 6 is a flowchart illustrating the blood pressure measurement control method according to the first embodiment.
In step S601 in FIG. 6, the instruction determination unit 502 acquires an instruction to start blood pressure measurement from the user. For example, the motion detection unit 501 detects that the user raises the left wrist to the height of the heart, and the instruction determination unit 502 thereby determines that the user has input a blood pressure measurement start instruction. As a method of detecting that the left wrist has been raised to the height of the heart, as described above, a method of comparing the value of the pressure signal detected by the pressure sensor 409 or the pressure sensor 410 with a threshold, a pressure signal A method of performing pattern matching between the waveform of and the reference waveform is used. The instruction determination unit 502 provides the blood pressure measurement unit 503 with information indicating the determined instruction content, that is, information indicating that the user has input a blood pressure measurement start instruction. When the information indicating the content of the instruction is received, the blood pressure measurement unit 503 starts blood pressure measurement in step S602.
 上記血圧測定が開始されると制御部500は、ステップS603において、動き検出部501および指示判別部502の制御の下、血圧測定中止の指示を示す左手首の動き、つまり測定中止ジェスチャを待ち受ける。例えば、測定中止ジェスチャは、左腕を2回振る動作である。具体的には、動き検出部501は、圧力センサ410からの圧力信号に含まれる変動成分を抽出し、抽出した変動成分の値が2秒間の間に予め設定された閾値を2回超えたか否かを判定する。図7は、血圧測定中にユーザが左腕を2回振った場合に得られるセンシングカフ257の内部の圧力Pcを例示している。図7には、圧力Pcに含まれる変動成分Dnも示されている。加圧過程では脈波の影響およびカフノイズなどのノイズがなければセンシングカフ257の圧力Pcは実質的に線形的に増加するので、変動成分Dnは圧力Pcから容易に抽出することができる。図7に示される例では、変動成分Dnが2秒間の間に閾値Tを2度超えている。 When the blood pressure measurement is started, in step S603, the control unit 500 waits for the movement of the left wrist indicating the blood pressure measurement stop instruction, that is, the measurement stop gesture, under the control of the motion detection unit 501 and the instruction determination unit 502. For example, the measurement stop gesture is an operation of shaking the left arm twice. Specifically, the motion detection unit 501 extracts the fluctuation component included in the pressure signal from the pressure sensor 410, and the value of the extracted fluctuation component exceeds the threshold set in advance for 2 seconds twice. Determine if FIG. 7 illustrates the pressure Pc inside the sensing cuff 257 obtained when the user shakes the left arm twice during blood pressure measurement. FIG. 7 also shows the fluctuation component Dn included in the pressure Pc. The fluctuation component Dn can be easily extracted from the pressure Pc since the pressure Pc of the sensing cuff 257 increases substantially linearly in the pressurization process if there is no pulse wave effect and noise such as cuff noise. In the example shown in FIG. 7, the fluctuation component Dn exceeds the threshold T by 2 degrees in 2 seconds.
 血圧測定が完了するまでに動き検出部501において上記した左腕を2回振る動作が検出されると、指示判別部502は上記検出結果に基づいて測定中止ジェスチャが行われたと判別し、血圧測定部503に対し測定中止指示を与える。この測定中止指示を受け取ると血圧測定部503は、ステップS604において血圧測定動作を中止する。なお、血圧測定部503は、血圧測定動作を中止してから所定時間が経過した後に血圧測定動作を再開してもよい。また、測定中止ジェスチャを待ち受ける期間が決められていてもよい。例えば、制御部500は、測定を開始した時点から予め設定された時間(例えば5秒)が経過するまで測定中止ジェスチャを待ち受ける。 When the motion detection unit 501 detects the above-described action of shaking the left arm twice before the blood pressure measurement is completed, the instruction determination unit 502 determines that the measurement stop gesture has been performed based on the detection result, and the blood pressure measurement unit An instruction to stop measurement is given to 503. When receiving the measurement stop instruction, the blood pressure measurement unit 503 stops the blood pressure measurement operation in step S604. The blood pressure measurement unit 503 may resume the blood pressure measurement operation after a predetermined time has elapsed since the blood pressure measurement operation was stopped. Also, a period for waiting for the measurement stop gesture may be determined. For example, the control unit 500 waits for a measurement stop gesture until a preset time (for example, 5 seconds) elapses from the time of starting measurement.
 測定中止ジェスチャが検出されなければ、血圧測定が継続され、ステップS605において、血圧測定部503は、圧力センサ410からの圧力信号に基づいて血圧値を算出する。算出された血圧値は表示部215に表示されることができる。 If the measurement stop gesture is not detected, the blood pressure measurement is continued, and the blood pressure measurement unit 503 calculates the blood pressure value based on the pressure signal from the pressure sensor 410 in step S605. The calculated blood pressure value can be displayed on the display unit 215.
 血圧測定の開始から血圧値の算出までの具体的な流れについて説明する。ここでは、流体は空気とする。
 ユーザが、先に述べた左手首を心臓の高さに上げる動作を行うか、または操作部216において測定開始操作を行うことで血圧測定開始の指示を入力すると、血圧測定部503は、メモリ402の処理用メモリ領域を初期化する。さらに、血圧測定部503は、開閉弁416を開状態に維持したまま、ポンプ駆動回路411を介してポンプ412をオフし、排気弁を開く。これにより、押圧カフ255内およびセンシングカフ257内の空気が排気される。圧力センサ409および圧力センサ410の現時点の出力値がそれぞれの基準値として設定される(0mmHg調整)。
The specific flow from the start of blood pressure measurement to the calculation of the blood pressure value will be described. Here, the fluid is air.
When the user performs an operation of raising the left wrist to the height of the heart described above or performs an instruction to start blood pressure measurement by performing a measurement start operation at the operation unit 216, the blood pressure measurement unit 503 receives the memory 402. Initialize the processing memory area of. Furthermore, the blood pressure measurement unit 503 turns off the pump 412 via the pump drive circuit 411 and opens the exhaust valve while keeping the on-off valve 416 open. Thus, the air in the pressure cuff 255 and the sensing cuff 257 is exhausted. The current output values of the pressure sensor 409 and the pressure sensor 410 are set as the respective reference values (0 mmHg adjustment).
 血圧測定部503は、ポンプ駆動回路411を介してポンプ412をオンする。これにより、押圧カフ255およびセンシングカフ257への空気の供給が開始される。押圧カフ255およびセンシングカフ257の圧力は圧力センサ409および圧力センサ410を用いてモニターされる。 The blood pressure measurement unit 503 turns on the pump 412 via the pump drive circuit 411. Thereby, supply of air to the pressure cuff 255 and the sensing cuff 257 is started. The pressure on pressure cuff 255 and sensing cuff 257 is monitored using pressure sensor 409 and pressure sensor 410.
 血圧測定部503は、センシングカフ257に適量の空気が収容されたら、開閉弁駆動回路415を介して開閉弁416を閉じる。例えば、血圧測定部503は、センシングカフ257の圧力が所定の圧力(例えば15mmHg)に到達するか、あるいは、ポンプ412の駆動時間が所定の時間(例えば3秒)だけ経過したときに、開閉弁駆動回路415を介して開閉弁416を閉じる。これにより、センシングカフ257への空気の供給が絶たれる。 When an appropriate amount of air is stored in the sensing cuff 257, the blood pressure measurement unit 503 closes the on-off valve 416 via the on-off valve drive circuit 415. For example, when the pressure of the sensing cuff 257 reaches a predetermined pressure (for example, 15 mmHg), or the driving time of the pump 412 for a predetermined time (for example, 3 seconds), the blood pressure measurement unit 503 The on-off valve 416 is closed via the drive circuit 415. As a result, the supply of air to the sensing cuff 257 is cut off.
 押圧カフ255への空気の供給は継続される。これにより、押圧カフ255は、膨張するとともに、徐々に加圧される。このとき、背板256が押圧カフ255からの押圧力をセンシングカフ257に伝える。これにより、センシングカフ257が左手首を圧迫する。この加圧過程で、血圧測定部503は、血圧値を算出するために、圧力センサ410を用いてセンシングカフ257の圧力をモニターし、手首の橈骨動脈で発生する動脈容積の変動成分を脈波信号として取得する。 Supply of air to the pressure cuff 255 is continued. Thus, the pressure cuff 255 is inflated and gradually pressurized. At this time, the back plate 256 transmits the pressing force from the pressing cuff 255 to the sensing cuff 257. Thereby, the sensing cuff 257 compresses the left wrist. In this pressurization process, the blood pressure measurement unit 503 monitors the pressure of the sensing cuff 257 using the pressure sensor 410 in order to calculate the blood pressure value, and the fluctuation component of the arterial volume generated in the radial artery of the wrist is pulse wave Acquire as a signal.
 血圧測定部503は、この時点で取得されている脈波信号に基づいて、オシロメトリック法により公知のアルゴリズムを適用して血圧値の算出を試みる。この時点でデータ不足のために未だ血圧値を算出できない場合は、センシングカフ257の圧力が上限圧力(安全のために、例えば300mmHgというように予め定められている)に達していない限り、押圧カフ255への空気の供給が継続される。 The blood pressure measurement unit 503 tries to calculate a blood pressure value by applying a known algorithm by oscillometric method based on the pulse wave signal acquired at this time. If at this time the blood pressure value can not be calculated because of insufficient data, the pressure cuff should be pressed unless the pressure in the sensing cuff 257 reaches the upper limit pressure (for safety, for example, 300 mmHg). The supply of air to 255 is continued.
 このようにして血圧値の算出ができたら、血圧測定部503は、ポンプ駆動回路411を介してポンプ412をオフし、開閉弁駆動回路415を介して開閉弁416を開く。これにより、押圧カフ255内およびセンシングカフ257内の空気が排気される。 Thus, when the blood pressure value can be calculated, the blood pressure measurement unit 503 turns off the pump 412 via the pump drive circuit 411 and opens the on-off valve 416 via the on-off valve drive circuit 415. Thus, the air in the pressure cuff 255 and the sensing cuff 257 is exhausted.
 なお、血圧算出は、押圧カフ255の加圧過程でなく、減圧過程で行われてもよい。 The blood pressure calculation may be performed not in the pressurization process of the pressure cuff 255 but in the decompression process.
 血圧測定部503は、血圧測定の実行中に指示判別部502から測定中止指示を受け取ったときには、ポンプ駆動回路411を介してポンプ412をオフし、開閉弁駆動回路415を介して開閉弁416を開く。これにより、押圧カフ255内およびセンシングカフ257内の空気が排気される。 The blood pressure measurement unit 503 turns off the pump 412 via the pump drive circuit 411 and receives the on-off valve 416 via the on-off valve drive circuit 415 when receiving a measurement stop instruction from the instruction determination unit 502 during execution of blood pressure measurement. open. Thus, the air in the pressure cuff 255 and the sensing cuff 257 is exhausted.
 (効果)
 以上のように、実施例1に係る血圧測定装置200は、センシングカフ257(または押圧カフ255)の内部の圧力を示す圧力信号に基づいて左手首の動きを検出し、左手首の動きの検出結果に基づいてユーザによる血圧測定に関する指示を判別する。これにより、ユーザは、血圧測定装置200が装着されている左手首を動かすことで血圧測定装置200に対する指示を入力することが可能となる。この結果、例えば指によるスイッチ操作が不要になり、血圧測定装置200の操作性が向上する。また、血圧を測定するために既に設けられている圧力センサ410(または圧力センサ409)を利用して左手首の動きが検出されるので、左手首の動きを検出するためのセンサを追加設置する必要がない。さらに、ユーザは所望のタイミングで血圧測定を開始または中止することが可能になる。
(effect)
As described above, the blood pressure measurement device 200 according to the first embodiment detects the movement of the left wrist based on the pressure signal indicating the pressure inside the sensing cuff 257 (or the pressing cuff 255), and detects the movement of the left wrist. Based on the result, an instruction on blood pressure measurement by the user is determined. Thus, the user can input an instruction for the blood pressure measurement device 200 by moving the left wrist on which the blood pressure measurement device 200 is mounted. As a result, for example, the switch operation with a finger becomes unnecessary, and the operability of the blood pressure measurement device 200 is improved. Also, since the motion of the left wrist is detected using the pressure sensor 410 (or pressure sensor 409) already provided to measure the blood pressure, a sensor for detecting the motion of the left wrist is additionally installed. There is no need. Furthermore, the user can start or stop blood pressure measurement at a desired timing.
 血圧測定装置200は、例えば、上記圧力信号に含まれる変動成分を抽出し、抽出した変動成分の値と予め設定された閾値との比較に基づいて左手首の動きを検出することができる。このように、左手首の動きを検出する処理は、閾値を用いた判定により実行されてもよい。左手首の動きの検出結果が、抽出された変動成分の値が閾値を超えた回数を含む場合、その回数に基づいて指示の内容が判別されてもよい。この場合、ユーザは左手首の動かし方に応じて異なる指示を入力することができる。被測定部位の動きを検出する処理はパターンマッチングにより実行されてもよい。パターンマッチングを用いる場合、閾値を用いた判別に比べて、左手首の動きをより正確に判別することが可能となる。このため、左手首の動きでより多くの指示を正確に入力することが可能となる。 The blood pressure measurement device 200 can, for example, extract the fluctuation component included in the pressure signal, and detect the movement of the left wrist based on the comparison between the value of the fluctuation component extracted and the preset threshold value. As described above, the process of detecting the movement of the left wrist may be performed by determination using a threshold. When the detection result of the movement of the left wrist includes the number of times the value of the extracted fluctuation component exceeds the threshold, the content of the instruction may be determined based on the number of times. In this case, the user can input different instructions depending on how to move the left wrist. The process of detecting the movement of the measurement site may be performed by pattern matching. When pattern matching is used, it is possible to more accurately determine the movement of the left wrist as compared to determination using a threshold. For this reason, it becomes possible to input more instructions correctly by the movement of the left wrist.
 [変形例]
 実施例1では、ユーザが意図しない指示が入力されることがある。例えば、ユーザが何気なく左腕を上げた場合に、血圧測定装置200が血圧測定開始の指示が入力されたと判断して血圧測定を開始する事態が起こり得る。変形例では、このような誤入力を防止する方法について説明する。
[Modification]
In the first embodiment, an instruction not intended by the user may be input. For example, when the user casually raises the left arm, the blood pressure measurement device 200 may determine that an instruction to start blood pressure measurement has been input and start blood pressure measurement. In the modification, a method for preventing such an erroneous input will be described.
 変形例に係る血圧測定装置200は、上述した実施例1に係る血圧測定装置200と同様の構成を有する。ここでは、実施例1に係る血圧測定装置200と異なる部分について説明を行い、実施例1に係る血圧測定装置200と同じ部分についての説明は省略する。 The blood pressure measurement device 200 according to the modification has the same configuration as the blood pressure measurement device 200 according to the first embodiment described above. Here, parts different from the blood pressure measurement device 200 according to the first embodiment will be described, and description of the same parts as the blood pressure measurement device 200 according to the first embodiment will be omitted.
 図8は、変形例に係る血圧測定装置200が備える制御部800のソフトウェア構成を示すブロック図である。図8において、図5に示したものと同じ部分に同じ符号を付している。制御部800は、動き検出部501、指示判別部802、血圧測定部503、血圧測定結果出力部506、および姿勢検出部807を備える。変形例に係る血圧測定装置200は、ハードウェアとして加速度センサ811をさらに備えている。加速度センサ811は、例えば、3軸加速度センサであり、互いに直交する3方向の加速度を表す加速度信号を出力する。 FIG. 8 is a block diagram showing the software configuration of the control unit 800 provided in the blood pressure measurement device 200 according to the modification. In FIG. 8, the same parts as those shown in FIG. 5 are denoted by the same reference numerals. The control unit 800 includes a motion detection unit 501, an instruction determination unit 802, a blood pressure measurement unit 503, a blood pressure measurement result output unit 506, and a posture detection unit 807. The blood pressure measurement device 200 according to the modification further includes an acceleration sensor 811 as hardware. The acceleration sensor 811 is, for example, a three-axis acceleration sensor, and outputs an acceleration signal representing acceleration in three directions orthogonal to one another.
 姿勢検出部807は、被測定部位である左手首の姿勢を検出する。ユーザの左手首の姿勢は、血圧測定装置200の本体210の姿勢に相当する。姿勢検出部807は、加速度センサ811からの加速度信号に基づいてユーザの左手首の姿勢を検出することができる。なお、姿勢検出部807は、圧力センサ409および圧力センサ410の少なくとも一方からの圧力信号に基づいてユーザの左手首の姿勢を検出してもよい。 The posture detection unit 807 detects the posture of the left wrist that is the measurement site. The posture of the user's left wrist corresponds to the posture of the main body 210 of the blood pressure measurement device 200. The posture detection unit 807 can detect the posture of the user's left wrist based on the acceleration signal from the acceleration sensor 811. The posture detection unit 807 may detect the posture of the user's left wrist based on a pressure signal from at least one of the pressure sensor 409 and the pressure sensor 410.
 指示判別部802は、左手首の動きの検出結果と左手首の姿勢の検出結果の組み合わせに基づいて、ユーザからの指示を取得する。一般に、血圧を正確に測定するためには、被測定部位(この例では左手首)の位置を心臓の高さに合わせた姿勢で血圧測定を行うことが望まれる。図9Aに測定に適した姿勢の一例を示す。例えば、指示判別部802は、図9Bに示すように、左手首の姿勢の検出結果が、ユーザが測定に適した姿勢をとった状態であることを示し、左手首の動きの検出結果が、ユーザが左手首を振ったことを示す場合に、ユーザが血圧測定開始の指示を入力したことを決定することができる。 The instruction determination unit 802 acquires an instruction from the user based on a combination of the detection result of the movement of the left wrist and the detection result of the posture of the left wrist. Generally, in order to measure blood pressure accurately, it is desirable to perform blood pressure measurement in a posture in which the position of the measurement site (the left wrist in this example) is matched to the height of the heart. FIG. 9A shows an example of a posture suitable for measurement. For example, as illustrated in FIG. 9B, the instruction determination unit 802 indicates that the detection result of the left wrist posture is in a state in which the user has taken a posture suitable for measurement, and the detection result of the left wrist movement If it indicates that the user shook the left wrist, it can be determined that the user has input a blood pressure measurement start instruction.
 上述した構成を有する変形例に係る血圧測定装置200は、ユーザが血圧測定に適した姿勢をとっているときのように、左手首の姿勢が予め設定された姿勢であるときに、ユーザからジェスチャ入力を受け付ける。この結果、ユーザが意図しない指示が入力されることを防止することができる。 The blood pressure measurement device 200 according to the modification having the configuration described above makes a gesture from the user when the posture of the left wrist is a preset posture, as when the user takes a posture suitable for blood pressure measurement. Accept input. As a result, it is possible to prevent an instruction that the user does not intend to be input.
 指示判別部802は、姿勢検出部807による左手首の姿勢の検出結果に基づいて血圧の測定開始指示を判別し、当該測定開始指示の判別後に得られた左手首の動きの検出結果に基づいて血圧の測定中止指示を判別してもよい。 The instruction discrimination unit 802 discriminates the measurement start instruction of blood pressure based on the detection result of the posture of the left wrist by the posture detection unit 807, and based on the detection result of the movement of the left wrist obtained after the discrimination of the measurement start instruction. An instruction to stop measuring blood pressure may be determined.
 変形例に係る血圧測定装置200は、血圧値および脈拍数を測定するだけでなく、下記に説明するような様々な機能を有する。 The blood pressure measurement device 200 according to the modification not only measures the blood pressure value and the pulse rate, but also has various functions as described below.
 変形例に係る血圧測定装置200は、上述したように加速度センサ811を備えている。制御部800は、加速度センサ811からの加速度信号に基づいてユーザの活動量を算出してもよい。活動量は、歩行、家事、デスクワークなどのユーザの身体活動に関連する指標である。活動量の例は、歩数、早歩き歩数、階段上がり歩数、歩行距離、消費カロリー、脂肪燃焼量などを含む。制御部800は、加速度信号に基づいてユーザの寝返りの状態を検出することで、ユーザの睡眠状態を推定することもできる。 The blood pressure measurement device 200 according to the modification includes the acceleration sensor 811 as described above. The control unit 800 may calculate the amount of activity of the user based on the acceleration signal from the acceleration sensor 811. The activity amount is an index related to physical activity of the user such as walking, housework, desk work and the like. Examples of the activity amount include the number of steps, the number of steps walking fast, the number of steps walking up stairs, the walking distance, the calorie consumption, the amount of fat burning, and the like. The control unit 800 can also estimate the sleep state of the user by detecting the turn state of the user based on the acceleration signal.
 変形例に係る血圧測定装置200は、温湿度センサ、気圧センサ、およびGPS受信機をさらに備えてもよい。
 温湿度センサは、血圧測定装置の周辺の環境温度および湿度を計測し、環境温度および湿度を表す環境データを出力する。制御部800は、環境データを時刻情報と紐づけてメモリに記憶させる。例えば、気温(気温の変化)は、人間の血圧変動を引き起こしうる要素の1つとして考えられる。このため、環境データは、ユーザの血圧変動の要因となりうる情報である。
The blood pressure measurement device 200 according to the modification may further include a temperature and humidity sensor, an air pressure sensor, and a GPS receiver.
The temperature and humidity sensor measures environmental temperature and humidity around the blood pressure measurement device, and outputs environmental data representing the environmental temperature and humidity. The control unit 800 links environment data with time information and stores the data in the memory. For example, air temperature (temperature change) is considered as one of the factors that can cause human blood pressure fluctuation. For this reason, environmental data is information that can be a factor of the blood pressure fluctuation of the user.
 気圧センサは、気圧を検出し、気圧データを出力する。気圧データは、活動量の算出に利用されることができる。加速度信号とともに気圧データを用いることにより、階段のぼり歩数などをより正確に算出することが可能になる。 The atmospheric pressure sensor detects atmospheric pressure and outputs atmospheric pressure data. Barometric pressure data can be used to calculate the amount of activity. By using the barometric pressure data together with the acceleration signal, it becomes possible to calculate the number of steps of stairs and the like more accurately.
 GPS受信機は、複数のGPS衛星から送信されるGPS信号を受信し、受信したGPS信号を出力する。制御部800は、GPS信号に基づいて、血圧測定装置の位置情報、つまり血圧測定装置を装着しているユーザの位置を算出する。なお、血圧測定装置は、GPS受信機を備えない場合、外部装置から当該外部装置により算出された血圧測定装置の位置情報を、通信部を介して取得することができる。 The GPS receiver receives GPS signals transmitted from a plurality of GPS satellites and outputs the received GPS signals. The control unit 800 calculates position information of the blood pressure measurement device, that is, the position of the user wearing the blood pressure measurement device based on the GPS signal. When the blood pressure measurement device does not include the GPS receiver, the position information of the blood pressure measurement device calculated by the external device can be acquired from the external device through the communication unit.
 [その他の実施例]
 なお、本発明は、上記実施例に限定されるものではない。例えば、センシングカフ257には、カフ構造体250の製造段階で流体が封入されていてもよい。この場合、血圧測定の都度、センシングカフ257に流体を供給する制御が不要となる。この結果、CPU負荷を軽減することができる。また、押圧カフ255およびセンシングカフ257に供給される流体は異なるものであってもよい。装着状態で押圧カフ255が被測定部位を介してセンシングカフ257に対向する構造が採用されてもよい。
[Other embodiments]
The present invention is not limited to the above embodiment. For example, fluid may be enclosed in the sensing cuff 257 at the manufacturing stage of the cuff structure 250. In this case, control for supplying fluid to the sensing cuff 257 becomes unnecessary each time blood pressure measurement. As a result, CPU load can be reduced. Also, the fluid supplied to the pressure cuff 255 and the sensing cuff 257 may be different. A structure may be employed in which the pressing cuff 255 faces the sensing cuff 257 via the measurement site in the mounted state.
 さらに、血圧測定装置は、1つの空気袋を有するシングルカフ構造を採用したものであってもよい。シングルカフ構造を採用する場合、この場合、構造および制御が容易になる。その結果、製造コストを抑えることができ、さらに、CPU負荷を軽減することができる。また、血圧測定装置は、3以上の空気袋を有する構造を採用したものであってもよい。 Furthermore, the blood pressure measurement device may adopt a single cuff structure having one air bladder. If a single cuff construction is employed, this will facilitate construction and control. As a result, the manufacturing cost can be reduced, and further, the CPU load can be reduced. Further, the blood pressure measurement device may adopt a structure having three or more air bags.
 本発明は、上記実施例そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施例に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施例に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施例に亘る構成要素を適宜組み合せてもよい。 The present invention is not limited to the above-described embodiment as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention. In addition, various inventions can be formed by appropriate combinations of a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiments. Furthermore, the components in different embodiments may be combined as appropriate.
 上記の実施例の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られるものではない。
 (付記1)
 空気袋を含むカフにより被測定者の被測定部位を圧迫することにより生体情報を測定する生体情報測定装置であって、
 少なくとも1つのプロセッサと、
 前記少なくとも1つのプロセッサに接続されたメモリと、
 を備え、
 前記少なくとも1つのプロセッサは、
  前記流体袋の内部の圧力を示す圧力信号に基づいて、前記被測定部位の動きを検出し、
 前記被測定部位の動きの検出結果に基づいて、前記被測定者による前記生体情報の測定に関する指示内容を判別する
 ように構成された、生体情報測定装置。
Some or all of the above embodiments may be described as in the following appendices, but are not limited thereto.
(Supplementary Note 1)
A biological information measuring apparatus that measures biological information by pressing a measurement target site of a measurement subject with a cuff including an air bag,
At least one processor,
A memory connected to the at least one processor;
Equipped with
The at least one processor is
Detecting a movement of the measurement site based on a pressure signal indicating a pressure inside the fluid bag;
A biological information measuring device configured to determine the content of an instruction related to the measurement of the biological information by the person to be measured based on the detection result of the movement of the portion to be measured.
 (付記2)
 流体袋を含むカフにより被測定者の被測定部位を圧迫することにより生体情報を測定する生体情報測定装置が実行する測定制御方法であって、
 少なくとも1つのプロセッサを用いて、前記流体袋の内部の圧力を示す圧力信号に基づいて前記被測定部位の動きを検出することと、
 少なくとも1つのプロセッサを用いて、前記被測定部位の動きの検出結果に基づいて、前記被測定者による前記生体情報の測定に関する指示を判別することと
 を備える測定制御方法。
(Supplementary Note 2)
A measurement control method executed by a biological information measurement apparatus that measures biological information by pressing a measurement target region of a measurement subject with a cuff including a fluid bag,
Detecting the movement of the measurement site based on a pressure signal indicative of the pressure inside the fluid bladder using at least one processor;
Determining an instruction related to the measurement of the biological information by the subject based on the detection result of the movement of the target site using at least one processor.
 1…生体情報測定装置
 2…カフ
 10…生体情報測定部
 20…流体供給部
 30…動き検出部
 40…指示判別部
 200…血圧測定装置
 210…本体
 211…ケース
 212…ガラス
 213…裏蓋
 215…表示部
 216…操作部
 216A,216B,216C…プッシュ式スイッチ
 221,226…連結棒
 230…ベルト
 231…第1ベルト部
 232…根元部
 233…先端部
 234,235…ベルト保持部
 236…第2ベルト部
 237…根元部
 238…先端部
 239…小穴
 240…尾錠
 241…枠状体
 242…つく棒
 243…連結棒
 250…カフ構造体
 251…根元部
 252…先端部
 254…カーラ
 255…押圧カフ
 256…背板
 257…センシングカフ
 300…左手首
 300A…動脈通過部分
 301…橈骨動脈
 302…尺骨動脈
 303…橈骨
 304…尺骨
 305…腱
 401…CPU
 402…メモリ
 407…通信部
 408…電池
 409,410…圧力センサ
 411…ポンプ駆動回路
 412…ポンプ
 415…開閉弁駆動回路
 416…開閉弁
 421,423…可撓性チューブ
 422,424…流路形成部材
 450…外部装置
 500…制御部
 501…動き検出部
 502…指示判別部
 503…血圧測定部
 504…流体供給制御部
 505…血圧値算出部
 506…血圧測定結果出力部
 511…流体供給部
 800…制御部
 802…指示判別部
 807…姿勢検出部
 811…加速度センサ
DESCRIPTION OF SYMBOLS 1 ... biological information measuring device 2 ... cuff 10 ... biological information measuring unit 20 ... fluid supply unit 30 ... motion detecting unit 40 ... instruction discriminating unit 200 ... blood pressure measuring device 210 ... main body 211 ... case 212 ... glass 213 ... back cover 215 ... Display portion 216: Operation portion 216A, 216B, 216C: Push-type switch 221, 226: Connecting rod 230: Belt 231: First belt portion 232: Root portion 233: Tip portion 234, 235: Belt holding portion 236: Second belt Part 237 ... Root part 238 ... Tip part 239 ... Small hole 240 ... Tail lock 241 ... Stick body 242 ... Sticking rod 243 ... Connecting rod 250 ... Cuff structure 251 ... Root part 252 ... Tip part 254 ... Curly 255 ... Pressing Cuff 256 ... Back plate 257 ... sensing cuff 300 ... left wrist 300 A ... artery passing portion 301 ... radial artery 302 ... Bone artery 303 ... radius 304 ... ulna 305 ... tendon 401 ... CPU
402: Memory 407: Communication unit 408: Battery 409, 410: Pressure sensor 411: Pump drive circuit 412: Pump 415: On-off valve drive circuit 416: On-off valve 421, 423: Flexible tube 422, 424: Flow path forming member 450: External device 500: Control unit 501: Motion detection unit 502: Instruction determination unit 503: Blood pressure measurement unit 504: Fluid supply control unit 505: Blood pressure value calculation unit 506: Blood pressure measurement result output unit 511: Fluid supply unit 800: Control Unit 802 ... Instruction determination unit 807 ... Posture detection unit 811 ... Acceleration sensor

Claims (8)

  1.  流体袋を含むカフにより被測定者の被測定部位を圧迫することにより生体情報を測定する生体情報測定装置であって、
     前記流体袋の内部の圧力を示す圧力信号に基づいて、前記被測定部位の動きを検出する動き検出部と、
     前記被測定部位の動きの検出結果に基づいて、前記被測定者による前記生体情報の測定に関する指示内容を判別する指示判別部と
     を備える生体情報測定装置。
    A biological information measuring apparatus for measuring biological information by pressing a measurement target region of a subject with a cuff including a fluid bag,
    A motion detection unit that detects a motion of the measurement target based on a pressure signal indicating a pressure inside the fluid bag;
    An instruction determination unit configured to determine an instruction content related to measurement of the biological information by the subject based on a detection result of the movement of the measurement target part.
  2.  前記動き検出部は、前記圧力信号に含まれる変動成分の値と予め設定された閾値との比較に基づいて前記被測定部位の動きを検出する、請求項1に記載の生体情報測定装置。 The biological information measuring device according to claim 1, wherein the movement detecting unit detects the movement of the measurement site based on comparison between a value of a fluctuation component included in the pressure signal and a preset threshold value.
  3.  前記動き検出部は、前記変動成分の値が前記閾値を超えた回数を含む検出結果を出力し、
     前記指示判別部は、前記検出結果に含まれる回数に基づいて、前記被測定者からの指示の内容を判別する、請求項2に記載の生体情報測定装置。
    The motion detection unit outputs a detection result including the number of times the value of the fluctuation component exceeds the threshold value,
    The biological information measuring apparatus according to claim 2, wherein the instruction determination unit determines the content of the instruction from the subject based on the number of times included in the detection result.
  4.  前記動き検出部は、前記圧力信号に含まれる変動成分の波形と予め用意された参照波形とのマッチングに基づいて前記被測定部位の動きを検出する、請求項1に記載の生体情報測定装置。 The biological information measuring device according to claim 1, wherein the motion detection unit detects the motion of the measurement site based on matching between a waveform of a fluctuation component included in the pressure signal and a reference waveform prepared in advance.
  5.  前記被測定部位の姿勢を検出する姿勢検出部をさらに備え、
     前記指示判別部は、前記被測定部位の動きの前記検出結果と前記被測定部位の姿勢の検出結果との組み合わせに基づいて、前記被測定者による前記生体情報の測定に係る指示内容を判別する、請求項1乃至4のいずれか一項に記載の生体情報測定装置。
    It further comprises a posture detection unit that detects the posture of the measurement target site,
    The instruction determination unit determines the content of an instruction related to measurement of the biological information by the subject based on a combination of the detection result of the movement of the measurement site and the detection result of the posture of the measurement site. The biological information measuring device according to any one of claims 1 to 4.
  6.  前記指示判別部は、前記被測定部位の姿勢の検出結果に基づいて前記生体情報の測定開始指示を判別し、当該測定開始指示の判別後の前記被測定部位の動きの検出結果に基づいて前記生体情報の測定中止指示を判別する、請求項5に記載の生体情報測定装置。 The instruction determination unit determines an instruction to start measurement of the biological information based on a detection result of the posture of the measurement target region, and the determination unit determines the movement start of the measurement target region after the determination of the measurement start instruction. The biological information measuring device according to claim 5, wherein an instruction to stop measurement of biological information is determined.
  7.  流体袋を含むカフにより被測定者の被測定部位を圧迫することにより生体情報を測定する生体情報測定装置が実行する測定制御方法であって、
     前記流体袋の内部の圧力を示す圧力信号に基づいて前記被測定部位の動きを検出する過程と、
     前記被測定部位の動きの検出結果に基づいて、前記被測定者による前記生体情報の測定に関する指示を判別する過程と
     を備える測定制御方法。
    A measurement control method executed by a biological information measurement apparatus that measures biological information by pressing a measurement target region of a measurement subject with a cuff including a fluid bag,
    Detecting the movement of the measurement site based on a pressure signal indicative of the pressure inside the fluid bag;
    Determining an instruction related to the measurement of the biological information by the subject based on the detection result of the movement of the target site.
  8.  請求項1乃至6のいずれか一項に記載された生体情報測定装置の各部としてプロセッサを機能させるためのプログラム。 A program for causing a processor to function as each unit of the biological information measurement device according to any one of claims 1 to 6.
PCT/JP2018/046244 2017-12-27 2018-12-17 Biological information measurement device, measurement control method, and program WO2019131249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017252624A JP2019115602A (en) 2017-12-27 2017-12-27 Biological information measuring device, measurement control method, and program
JP2017-252624 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019131249A1 true WO2019131249A1 (en) 2019-07-04

Family

ID=67063530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046244 WO2019131249A1 (en) 2017-12-27 2018-12-17 Biological information measurement device, measurement control method, and program

Country Status (2)

Country Link
JP (1) JP2019115602A (en)
WO (1) WO2019131249A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024031078A (en) * 2022-08-25 2024-03-07 オムロンヘルスケア株式会社 Biological information measurement apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166A (en) * 1992-06-19 1994-01-11 Terumo Corp Electronic sphygmomanometer
JPH1066681A (en) * 1997-08-18 1998-03-10 Nippon Koden Corp Blood pressure monitoring device
JP2004195070A (en) * 2002-12-20 2004-07-15 Colin Medical Technology Corp Automatic sphygmomanometer
JP2004223108A (en) * 2003-01-27 2004-08-12 A & D Co Ltd Sphygmomanometer
JP2006263454A (en) * 2005-02-23 2006-10-05 Matsushita Electric Works Ltd Biological information detecting apparatus and method
WO2017179694A1 (en) * 2016-04-15 2017-10-19 オムロン株式会社 Biological information analysis device, system, program, and biological information analysis method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166A (en) * 1992-06-19 1994-01-11 Terumo Corp Electronic sphygmomanometer
JPH1066681A (en) * 1997-08-18 1998-03-10 Nippon Koden Corp Blood pressure monitoring device
JP2004195070A (en) * 2002-12-20 2004-07-15 Colin Medical Technology Corp Automatic sphygmomanometer
JP2004223108A (en) * 2003-01-27 2004-08-12 A & D Co Ltd Sphygmomanometer
JP2006263454A (en) * 2005-02-23 2006-10-05 Matsushita Electric Works Ltd Biological information detecting apparatus and method
WO2017179694A1 (en) * 2016-04-15 2017-10-19 オムロン株式会社 Biological information analysis device, system, program, and biological information analysis method
WO2017179695A1 (en) * 2016-04-15 2017-10-19 オムロン株式会社 Biological information analysis device and system, and program

Also Published As

Publication number Publication date
JP2019115602A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6881288B2 (en) Biological information measuring devices, methods and programs
JP7124552B2 (en) measuring device
US20140364749A1 (en) Calibration for blood pressure measurements
CN110381819B (en) Biological information measuring apparatus and storage medium
US20190053723A1 (en) Clamping Device, System and Method for Controlling Venous Blood Flow, Improving Venous Dilation and Effecting Blood Pressure Measurement
US11369276B2 (en) Blood pressure measurement device
CN111405868B (en) Biological information measuring device, wearing support method, and storage medium
JP6728474B2 (en) Biological information measuring device, method and program
WO2019131249A1 (en) Biological information measurement device, measurement control method, and program
US11495350B2 (en) Information processing apparatus, information processing method, and non-transitory computer-readable storage medium information processing program
US11317818B2 (en) Blood pressure measurement device and blood pressure measurement method
US20170273580A1 (en) Blood pressure measurement device and method of blood pressure measurement
WO2019131243A1 (en) Information processing device, information processing method, and information processing program
JP6837881B2 (en) Biometric information measuring devices, methods and programs
JP4693460B2 (en) Blood pressure measurement device
CN111432717A (en) Information processing device, biological information measurement device, method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894665

Country of ref document: EP

Kind code of ref document: A1