WO2019130983A1 - Carbon nitride, method for producing same, and semiconductor material - Google Patents

Carbon nitride, method for producing same, and semiconductor material Download PDF

Info

Publication number
WO2019130983A1
WO2019130983A1 PCT/JP2018/044203 JP2018044203W WO2019130983A1 WO 2019130983 A1 WO2019130983 A1 WO 2019130983A1 JP 2018044203 W JP2018044203 W JP 2018044203W WO 2019130983 A1 WO2019130983 A1 WO 2019130983A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
group
carbon nitride
band gap
dicyandiamide
Prior art date
Application number
PCT/JP2018/044203
Other languages
French (fr)
Japanese (ja)
Inventor
正人 栗原
学 石崎
みゆ 荒井
Original Assignee
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山形大学 filed Critical 国立大学法人山形大学
Priority to JP2019562891A priority Critical patent/JPWO2019130983A1/en
Publication of WO2019130983A1 publication Critical patent/WO2019130983A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals

Definitions

  • the present invention relates to carbon nitride, a method of manufacturing the same, and a semiconductor material, and more specifically, carbon nitride having a band gap controlled by doping of graphite-type carbon nitride (g-C 3 N 4 ), a method of manufacturing the same, and a semiconductor material It is about
  • Graphite-type carbon nitride in which triazine or tristriazine molecules are infinitely linked is a substance exhibiting a yellow absorption due to an absorption band extending around 460 nm, which is a visible light region derived from a band gap of 2.7 eV It is.
  • Graphite-type carbon nitride has been studied for its application as a semiconductor material composed of carbon and nitrogen atoms, which are ubiquitous elements without concern of resource exhaustion.
  • the valence band and the conduction band are in an energy range that can thermodynamically decompose water molecules into oxygen and hydrogen, they are attracting attention as metal-free photocatalysts excellent in chemicals and environmental durability.
  • Graphite-type carbon nitride can be synthesized by heating a raw material such as urea, melamine, or dicyandiamide at about 550 ° C.
  • molecular doping methods have been developed to synthesize graphitic carbon nitride responsive to the broad visible light wavelengths of sunlight.
  • the band gap is systematically reduced by copolymerizing dicyandiamide using barbituric acid as a molecular doping agent (Non-patent document 1) and copolymerizing with melamine using triamino pyrimidine (Non-patent document 2) Have succeeded.
  • Non-patent Document 3 A carbon nitride having a reduced band gap has been synthesized by copolymerization with a molecule containing an aromatic or double bond-containing carbon skeleton with an amino group or a cyano group, or both. It is also reported that quinoline is molecularly doped (Non-patent Document 4). Molecular doping is achieved by forming a Schiff base with furan or thiophene having a formyl substituent and melamine and the like (Non-patent Document 5). In each of these prior art documents, aiming at doping of aromatic molecules having a high carbon composition ratio, reduction of the band gap and band gap control depending on the doping amount are performed.
  • Non-patent document 6 a method of hydrogen bonding ethanol and melamine (Non-patent document 6) and hydrogen bonding of melamine and cyanuric acid with ethylene glycol (Non-patent document 7) has been reported .
  • the band gap can be extended to 1 eV by doping nitrogen atoms into graphene with a band gap of 0 eV and introducing a defect structure.
  • the graphene-derived carbon nitride is also expected to be applied to a TFT element function as a narrow band gap semiconductor, a secondary battery electrode, and the like.
  • Non-patent Document 8 Since a black carbon nitride group having a band gap of 1 eV to 0 eV has high conductivity, development of an electrochemical catalyst in which a nitrogen site functions as an active site has been advanced. In addition to metal-free oxygen reduction catalysts, which replace high-priced platinum catalysts used in fuel cell electrodes, metal-free carbon nitride catalysts that electrochemically reduce carbon dioxide to useful substances with two or more carbon atoms such as ethanol. The function has been reported (Non-patent Document 8).
  • Non-patent Document 9 An electrochemical catalytic function that converts carbon dioxide to ethanol with high efficiency and high selectivity is reported by a catalyst in which copper nanocrystals and carbon nitride are complexed (Non-Patent Document 9), metal-free carbon dioxide to ethanol An electrochemical catalyst of carbon nitride that converts with high efficiency and efficiency is reported (Non-patent Document 10).
  • the carbon nitride group composed of only ubiquitous elements can be controlled from a band gap of 2.7 to 0 eV, and the photosemiconductor catalyst function responding to the visible light, the metal free electrochemical catalyst, etc.
  • a target metal it is a material that is expected to develop high functions and its practical use.
  • Jinshui Zhang et al “Synthesis of a Carbon Nitride Structure for Visible-Light Catalysis by Copolymerization”, Angew. Chem. Int. Ed., 2010, 49, 441-444 Manas K. Bhunia et al, “Harvesting Solar Light with Crystalline Carbon Nitrides for Efficient Photocatalytic Hydrogen Evolution”, Angew. Chem. Int. Ed., 2014, 53, 110011-1005 Jinshui Zhang et al, “Co-Monomer Control of Carbon Nitride Semiconductors to Optimize Hydrogen Evolution with Visible Light”, Angew. Chem. Int.
  • Non-Patent Documents 1 and 2 it is understood that the band gap control by molecular doping is limited to 2.7 to 1 eV. In addition, the problem remains that such doping molecules are more expensive than urea, melamine and dicyandiamide which are raw materials of graphite type carbon nitride. Also in Non-Patent Documents 6 and 7, the introduction of ethanol or ethylene glycol hardly increases the carbon composition ratio as compared with graphite-type carbon nitride, and the reduction of the band gap is very slight. In addition, nitrogen atom doping has problems in manufacturing in industrial applications, such as requiring special synthesis equipment including gas reaction.
  • An object of the present invention is to provide carbon nitride which can be produced by an inexpensive method, a method for producing the same, and a semiconductor material.
  • the present invention is carbon nitride, and the ground carbon is composed of dicyandiamide as a first monomer, a hydroxyl group, an amino group, a carboxyl group, and an amide group.
  • a polymer of at least one second monomer selected from the group consisting of cyclic carbonates, and an organic compound having two or more same or different functional groups selected from the group, and the first monomer and the second monomer The molar ratio to is 100: 0.1 to 100: 100.
  • the second monomer oxalic acid is excluded.
  • the said polymer can be obtained by the manufacturing method mentioned later.
  • the polymer is preferably a fired product of the first monomer and the second monomer.
  • the organic compound having two or more same or different functional groups selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and an amide group is represented by the following general formula (1)
  • AR B Formula (1) (Wherein, A and B are each independently a functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and an amide group, which may be the same or different, and R is And a linear or branched alkylene group having 0 to 20 carbon atoms, an aromatic ring, or a cycloalkane).
  • R is an aromatic ring
  • a and B are preferably bonded to the ortho position of the aromatic ring.
  • the first monomer may be composed of dicyandiamide and melamine, in which case the weight ratio of dicyandiamide to melamine is preferably 10:90 to 30:70.
  • the carbon nitride made of the polymer according to the present invention preferably has a band gap of 0.01 to 2.5 eV.
  • the band gap value is more preferably 1.56 eV or less, and in this case, the C / N atomic ratio of carbon nitride is preferably in the range of 0.77 to 3.23.
  • the band gap value is more preferably more than 0.40 ev and not more than 1.56 eV, and in this case, the C / N atomic ratio of carbon nitride is in the range of 0.77 to less than 0.83.
  • the band gap value is more preferably 0.40 eV or less, and in this case, the C / N atomic ratio of carbon nitride is preferably in the range of 0.83 to less than 3.23.
  • Another aspect of the present invention is a semiconductor material, which comprises the carbon nitride according to the present invention described above.
  • a method for producing carbon nitride which method is selected from the group consisting of dicyandiamide as a first monomer, a hydroxyl group, an amino group, a carboxyl group, and an amide group.
  • a step of preparing a mixture by weighing and then mixing at least one second monomer selected from the group consisting of the above organic compounds having the same or different functional groups, and cyclic carbonate, and heating the mixture And a step of polymerizing the first monomer and the second monomer, wherein the molar ratio of the first monomer to the second monomer in the mixture is 100: 0.1 to 100: 100.
  • the second monomer oxalic acid is excluded.
  • the first monomer and the second monomer in the manufacturing method according to the present invention can use the first monomer and the second monomer in the carbon nitride according to the present invention described above.
  • dicyandiamide which is a raw material of graphite-type carbon nitride, is used as a first monomer, and in order to perform carbon (molecular) doping on this graphite-type carbon nitride, an organic having two or more predetermined or the same or different functional groups
  • the band gap of the graphitized carbon nitride comprising a polymer obtained by polymerizing the compound and at least one member selected from the group consisting of cyclic carbonates using the second monomer as the second monomer comprises the first monomer and the second monomer It is possible to control systematically in a very wide range from around 2.7 to 0 eV simply and inexpensively by changing the molar ratio of, or selecting the compound of the second monomer.
  • a polymer having a band gap of 0.01 to 2.5 eV has the performance as an n-type semiconductor due to the presence of nitrogen in a planar structure, and is very useful as a semiconductor material.
  • the graph of the infrared absorption spectrum of the polymer obtained by making dicyandiamide and propylene carbonate react in the molar ratio of 100: 0 to 100: 100 is shown.
  • the powder X-ray analysis (XRD) graph of the polymer obtained by making dicyandiamide and a propylene carbonate react in the molar ratio of 100: 0 to 100: 100 is shown.
  • the scanning electron microscope image of the polymer obtained by reacting dicyandiamide with propylene carbonate at a molar ratio of 100: 10 is shown.
  • the carbon nitride of the present embodiment is made of a polymer obtained by polymerizing predetermined first and second monomers described in detail below at a predetermined molar ratio.
  • the first monomer is essentially a dicyandiamide used as a raw material of the graphite type carbon nitride (g-C 3 N 4) , rational formula: represented by H 2 N-CNH-NH- CN.
  • the melting point of dicyandiamide is 209 ° C. and the boiling point is 252 ° C. When it is heated above the melting point, ammonia is generated to produce melamine and the like.
  • melamine can also be used as the first monomer.
  • the weight ratio of dicyandiamide to melamine is preferably in the range of 10:90 to 30:70.
  • an organic compound having two or more same or different functional groups selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and an amide group can be used.
  • This organic compound may be used alone or as a mixture of two or more. More specifically, for example, an organic compound represented by the following general formula (1) is preferably used.
  • AR B Formula (1)
  • a and B are each independently a functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and an amide group, and may be the same or different.
  • R may be a linear or branched alkylene group having 0 to 20 carbon atoms, an aromatic ring, or a cycloalkane.
  • the upper limit of the carbon number of the alkylene group is more preferably 20 or less, and still more preferably 10 or less.
  • the lower limit of the carbon number of the alkylene group may be one or more.
  • diamine compounds, amino alcohol compounds, hydroxycarboxylic acid compounds, aminocarboxylic acid compounds, diol compounds, polyhydric alcohol compounds, diamide compounds, or aromatic compounds are preferably used as the organic compound.
  • diamine compounds include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminopentane, 1,8-diaminooctane
  • a diamine compound having a linear alkylene of 1 to 20 carbon atoms such as 1,9-diaminononane, 1,10-diaminodecane, 1,12-diaminododecane, or 1,20-diaminoeicosane, or 1,2
  • diamine compounds having a branched alkylene having 1 to 20 carbon atoms such as diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 2-methyl-1,3-diaminopropane and the like.
  • amino alcohol compound ethanolamine, 3-aminopropanol, 4-aminobutanol, 5-aminopentanol, 6-aminohexanol, 7-aminopentanol, 8-aminooctanol, 9-aminononanol, 10-amino Amino alcohol compounds having linear alkylene having 1 to 20 carbon atoms such as decanol, 12-aminododecanol, or 20-aminoeicosanol, or isobutanolamine, 1,2-diaminopropanol, 1,2- Examples thereof include amino alcohol compounds having a branched alkylene having 1 to 20 carbon atoms such as diaminobutanol, 1,3-diaminobutanol, 1,2-diaminopropanol, or 2-methyl-1,3-diaminopropanol.
  • hydroxycarboxylic acid compound glycolic acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid, 6-hydroxycaproic acid, 8-hydroxycaprylic acid, 10-hydroxycaprylic acid, 12-hydroxylylic acid, 18-hydroxystearic acid
  • a hydroxycarboxylic acid compound having a linear alkylene of 1 to 20 carbon atoms such as 20-hydroxyarachidic acid or a hydroxycarboxylic acid compound having a branched alkylene having 1 to 20 carbon atoms such as 3-hydroxybutyric acid
  • a hydroxycarboxylic acid compound having a linear alkylene of 1 to 20 carbon atoms such as 20-hydroxyarachidic acid
  • a hydroxycarboxylic acid compound having a branched alkylene having 1 to 20 carbon atoms such as 3-hydroxybutyric acid
  • aminocarboxylic acid compounds include glycine, 3-aminopropionic acid, 4-aminobutyric acid, 6-aminocaproic acid, 8-aminocaprylic acid, 10-aminocaprylic acid, 12-aminolylic acid, 18-aminostearic acid, or 20 And aminocarboxylic acid compounds having a linear alkylene of 1 to 20 carbon atoms such as aminoarachidic acid, or aminocarboxylic acid compounds having a branched alkylene of 1 to 20 carbon atoms such as 3-aminobutyric acid.
  • diol compound ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-pentanediol, 1,8-octanediol,
  • a diol compound having a linear alkylene having 1 to 20 carbon atoms such as 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, or 1,20-eicosanediol, or 1,2 -Diol having branched alkylene having 1 to 20 carbon atoms such as propanediol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, or 2-methyl-1,3-propanediol Compounds are mentioned.
  • polyhydric alcohol compounds 1,2,3-propanetriol (that is, glycerol), 1,2,3-butanetriol, oligovinyl alcohol (polymerization degree is 10 to 20), polyvinyl alcohol (polymerization degree is 21 or more) Or 1,2,3,4,5,6-cyclohexanehexaol (ie, inositol) and the like.
  • diamide compounds examples include oxamide, malonamide, 2-methoxypropanediamide, 1,6-hexanediamide, and 1,8-octanediamide.
  • aromatic compound examples include aromatic compounds having two or more identical or different functional groups selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and an amide group at the ortho position of the aromatic ring.
  • catechol phthalic anhydride, ortho phenylene diamine, ortho aminophenol, salicylic acid, or ortho amino benzoic acid and the like.
  • a cyclic carbonate can be used instead of or in addition to the above-described organic compound.
  • the cyclic carbonate is an ester of an alkylene diol having 2 to 4 carbon atoms and carbonic acid, and examples thereof include ethylene carbonate, propylene carbonate, butylene carbonate, and carbonic acid isobutylene.
  • oxalic acid is excluded.
  • Method of producing carbon nitride In the method for producing carbon nitride of the present embodiment, a step of mixing the first monomer and the second monomer described above after mixing and preparing the mixture, and heating the mixture to produce the first monomer and the second monomer And the step of polymerizing.
  • the heating conditions in the polymerization step are not particularly limited as long as the temperature and the time at which the first monomer and the second monomer sufficiently polymerize, and for example, although depending on the kind of the compound selected as the monomer, It is preferable to raise the temperature to 300 to 900 ° C. at a temperature rising rate of 1 min and maintain this temperature for 1 to 3 hours, and to a temperature of 550 ° C. at a heating rate of 15 ° C./min for 2 hours It is more preferable to maintain this temperature. By heating at a high temperature (eg, 900 ° C.), the carbon number can be controlled, or the surface area can be increased.
  • a high temperature eg, 900 ° C.
  • the molar ratio of the first monomer to the second monomer in the mixing step is 100: 0.1 to 100: 100.
  • the band gap of the resulting polymer can be controlled in a very wide region from around 2.7 to 0 eV.
  • a polymer having a desired band gap can be obtained depending on the type of compound selected as the monomer and the molar ratio of the first monomer to the second monomer. For example, when a diamine compound is selected as the second monomer, the band gap can be greatly reduced by adding a small amount of diamine. On the other hand, when a cyclic carbonate is selected as the second monomer, the decrease in band gap with respect to the addition amount is small as compared with the diamine compound, and therefore, the band gap can be accurately controlled to a desired value.
  • an amino alcohol compound and a diol compound other than a diamine compound can be mentioned. Further, by using a compound having a long alkylene chain in the diamine compound, the diol compound and the like, the band gap can be greatly reduced by the addition of a small amount.
  • the second monomer that controls the band gap to the desired value with high precision.
  • the molar ratio of the first monomer to the second monomer is preferably in the range of 100: 0.1 to 100: 100, and the height and accuracy of the band gap depend on the purpose, and the range and the second range It can be achieved by the choice of the type of monomer.
  • the band gap value of carbon nitride is preferably controlled in the range of 0.01 to 2.5 eV.
  • the band gap value of carbon nitride can be controlled to a desired value or range depending on the application of carbon nitride.
  • Carbon nitride having a band gap in the range of 0.01 to 2.5 eV has the performance as an n-type semiconductor due to the presence of nitrogen in a planar structure. Therefore, the semiconductor material of the present embodiment is made of the carbon nitride of the present embodiment which is controlled to have the band gap in the range of 0.01 to 2.5 eV described above.
  • Example 1 Polymer of Dicyandiamide with 1,6-Diaminohexane (Polymerization) Assuming 1.0 g of dicyandiamide (Tokyo Chemical Industry, purity> 98.0%) and a molar ratio of 100, 1,6-diaminohexane (Tokyo Chemical Industry, purity> 99.0) at a molar ratio of 0 to 20. Mixed), put the mixture in an alumina crucible, covered, heated up to 550 ° C. at a heating rate of 15 ° C./min in a muffle furnace ( knitting, model: KDF S-70), and under the atmosphere for 2 hours The polymer was calcined to obtain a polymer. Thereafter, the fired product was ground in an alumina mortar and various measurements were made.
  • dicyandiamide Tokyo Chemical Industry, purity> 98.0%) and a molar ratio of 100, 1,6-diaminohexane (Tokyo Chemical Industry, purity> 99.0) at
  • Example 9 to 15 Polymer of dicyandiamide and alkylene diol (polymerization) A polymer was obtained in the same manner as in Example 1 except that, instead of 1,6-diaminohexane, an alkylene diol selected from 2 to 12 carbon atoms shown in Table 4 was mixed at a molar ratio of 10.
  • Example 16 Polymer of dicyandiamide and cyclic carbonate (polymerization) A polymer was prepared in the same manner as in Example 1, except that propylene carbonate (Kanto Chemical for electrochemistry, purity 99.5%) was mixed at a molar ratio of 0 to 100 instead of 1,6-diaminohexane. I got The formation amount of the polymer is shown in Table 5. The polymer was obtained in a yield of 0.4 g or more when the amount of propylene carbonate added was 50 at a molar ratio.
  • Example 16 Structure of the polymer obtained in Example 16 was analyzed by powder X-ray diffraction (Rigaku, MiniFlex II). The results are shown in FIG.
  • the XRD pattern of g-C 3 N 4 when the amount of propylene carbonate added is 0 in molar ratio is derived from the signal by the 13 ° tris triazine periodic structure (in plane) and the interlayer distance of the 27 ° tris triazine layer Pattern.
  • the signal derived from the interlayer distance is shifted to the lower angle side (the distance between the surfaces tends to be longer) and approaches the inter-surface distance (26 °) of the graphite.
  • the signal due to the 13 ° tris triazine periodic structure (in plane) is observed until the molar ratio of propylene carbonate is 20, but when it is more, it becomes unobservable along with the 27 ° signal broadening .
  • Example 16 (Observation by scanning electron microscope) The polymer obtained in Example 16 and having propylene carbonate at a molar ratio of 10 was observed with a scanning electron microscope (JEOL, JEM 7600). The results are shown in FIG. It can be seen that the portion indicated in FIG. 4 has a layered structure.
  • Example 17 Polymer of dicyandiamide and cyclic carbonate (polymerization) A polymer was prepared in the same manner as in Example 1, except that ethylene carbonate (Kanto Chemical for electrochemistry, purity 99.5%) was mixed at a molar ratio of 0 to 20 instead of 1,6-diaminohexane. I got
  • Example 18 Polymer of dicyandiamide and a monomer having two or more hydroxyl groups (polymerization) Instead of 1,6-diaminohexane, catechol (Nacalai Tesque, purity ⁇ 95.0%) or glycerol (Wako Pure Chemical Industries, purity 97.0%), which are monomers having two or more hydroxyl groups shown in Table 7
  • the polymer was obtained in the same manner as in Example 1 except that the mixture was mixed at a molar ratio of 10.
  • Comparative Example 7 Polymer of Melamine and Propylene Carbonate A polymer was obtained in the same manner as Example 16, except that melamine (Tokyo Chemical Industry, purity> 98%) was used instead of dicyandiamide of Example 16. . Although melamine is used as a raw material of g-C 3 N 4 similarly to dicyandiamide, in the polymer with propylene carbonate, no change in band gap was observed.
  • Example 20 Polymer of Dicyandiamide, Melamine, and Ethylene Glycol (Polymerization)
  • the weight ratio of dicyandiamide to melamine was varied and mixed so that the total weight of dicyandiamide and melamine was 1 g.
  • the mixture of dicyandiamide and melamine was adjusted to a molar ratio of 100, to which 50 ethylene glycol was added at a molar ratio, and mixed in an agate mortar. This was put in an alumina crucible, covered, heated to 550 ° C. at a heating rate of 15 ° C./min in a muffle furnace, and fired for 2 hours in the air to obtain a polymer. Thereafter, it was crushed in an alumina mortar and used for measurement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: a carbon nitride in which a band gap in a graphite type carbon nitride (g-C3N4) can be systematically controlled in an extremely broad region from approximately 2.7 eV to 0 eV using a simple and inexpensive method; a method for producing same; and a semiconductor material. This carbon nitride comprises a polymer of: a first monomer, dicyandiamide; and at least one second monomer selected from the group consisting of cyclic carbonates and organic compounds having two or more identical or different functional groups selected from the group consisting of hydroxyl groups, amino groups, carboxyl groups and amide groups. The molar ratio of the first monomer and the second monomer is 100:0.1-100:100. Moreover, oxalic acid is excluded as the second monomer. This carbon nitride is obtained by weighing out, mixing, heating and polymerizing the monomers. A carbon nitride having a band gap of 0.01-2.5 eV can be used as a semiconductor material.

Description

窒化炭素、その製造方法、及び半導体材料Carbon nitride, method for producing the same, and semiconductor material
 本発明は、窒化炭素、その製造方法、及び半導体材料に関し、より詳しくは、グラファイト型窒化炭素(g-C)のドーピングによりバンドギャップを制御した窒化炭素、その製造方法、及び半導体材料に関するものである。 The present invention relates to carbon nitride, a method of manufacturing the same, and a semiconductor material, and more specifically, carbon nitride having a band gap controlled by doping of graphite-type carbon nitride (g-C 3 N 4 ), a method of manufacturing the same, and a semiconductor material It is about
 トリアジンまたはトリストリアジン分子が無限に連結したグラファイト型窒化炭素(g-C)は、バンドギャップ2.7eVに由来する可視光域である、460nm付近に吸収帯が広がり、黄色を呈する物質である。グラファイト型窒化炭素は、資源の枯渇の心配がないユビキタス元素である炭素と窒素原子から構成される半導体材料として、その応用研究が進められている。特に、その価電子帯と伝導帯が、熱力学的に水分子を酸素と水素に光分解できるエネルギー領域にあるため、化学薬品、環境耐久性に優れるメタルフリー光触媒として注目を集めている。 Graphite-type carbon nitride (g-C 3 N 4 ) in which triazine or tristriazine molecules are infinitely linked is a substance exhibiting a yellow absorption due to an absorption band extending around 460 nm, which is a visible light region derived from a band gap of 2.7 eV It is. Graphite-type carbon nitride has been studied for its application as a semiconductor material composed of carbon and nitrogen atoms, which are ubiquitous elements without concern of resource exhaustion. In particular, since the valence band and the conduction band are in an energy range that can thermodynamically decompose water molecules into oxygen and hydrogen, they are attracting attention as metal-free photocatalysts excellent in chemicals and environmental durability.
 尿素、メラミン、あるいはジシアンジアミドなどの原料を550℃程度で加熱することでグラファイト型窒化炭素が合成できる。従来、太陽光の幅広い可視光波長に応答するグラファイト型窒化炭素を合成するため、分子ドーピング法が開発されてきた。分子ドーピング剤としてバルビツール酸を用いジシアンジアミドを共重合させ(非特許文献1)、また、トリアミノピリミジンを用いメラミンと共重合させることで(非特許文献2)、バンドギャップを系統的に低下させることに成功している。芳香族や二重結合を有する炭素骨格にアミノ基あるいはシアノ基、又はその両方を含む分子との共重合によりバンドギャップが低減した窒化炭素が合成されている(非特許文献3)。キノリンが分子ドープされていることも報告されている(非特許文献4)。ホルミル置換基を有するフランやチオフェン等と、メラミンとで、シッフ塩基を形成させることで分子ドーピングを達成している(非特許文献5)。これら先行文献では、いずれも、炭素組成比が高い芳香族性分子のドーピングを狙い、バンドギャップの低減と、ドープ量に依存したバンドギャップ制御をしている。 Graphite-type carbon nitride can be synthesized by heating a raw material such as urea, melamine, or dicyandiamide at about 550 ° C. Heretofore, molecular doping methods have been developed to synthesize graphitic carbon nitride responsive to the broad visible light wavelengths of sunlight. The band gap is systematically reduced by copolymerizing dicyandiamide using barbituric acid as a molecular doping agent (Non-patent document 1) and copolymerizing with melamine using triamino pyrimidine (Non-patent document 2) Have succeeded. A carbon nitride having a reduced band gap has been synthesized by copolymerization with a molecule containing an aromatic or double bond-containing carbon skeleton with an amino group or a cyano group, or both (Non-patent Document 3). It is also reported that quinoline is molecularly doped (Non-patent Document 4). Molecular doping is achieved by forming a Schiff base with furan or thiophene having a formyl substituent and melamine and the like (Non-patent Document 5). In each of these prior art documents, aiming at doping of aromatic molecules having a high carbon composition ratio, reduction of the band gap and band gap control depending on the doping amount are performed.
 一方で、非芳香族性分子のドーピングでは、エタノールとメラミンを水素結合させ(非特許文献6)、メラミンとシアヌル酸をエチレングルコールで水素結合させる方法(非特許文献7)が報告されている。 On the other hand, in doping of non-aromatic molecules, a method of hydrogen bonding ethanol and melamine (Non-patent document 6) and hydrogen bonding of melamine and cyanuric acid with ethylene glycol (Non-patent document 7) has been reported .
 また、バンドギャップ0eVのグラフェンに窒素原子をドーピングし、欠陥構造を導入することでバンドギャップを1eVまで拡張できることが理論的に分かっている。そのグラフェン由来の窒化炭素は、ナローバンドギャップ半導体としてのTFT素子機能や二次電池電極などへの応用も期待されている。 In addition, it is theoretically known that the band gap can be extended to 1 eV by doping nitrogen atoms into graphene with a band gap of 0 eV and introducing a defect structure. The graphene-derived carbon nitride is also expected to be applied to a TFT element function as a narrow band gap semiconductor, a secondary battery electrode, and the like.
 バンドギャップ1eVから0eVまでの黒色の窒化炭素群は高い導電性を有するので、窒素部位が活性サイトとして機能する電気化学触媒の開発が進められている。燃料電池電極で使用する高価な白金触媒代替となるメタルフリーの酸素還元触媒の他に、最近では、二酸化炭素をエタノール等の炭素数2以上の有用物質に電気化学還元するメタルフリー窒化炭素の触媒機能が報告されている(非特許文献8)。銅ナノ結晶と窒化炭素を複合化した触媒により、二酸化炭素をエタノールに高効率、高選択的に変換する電気化学触媒機能が報告され(非特許文献9)、メタルフリーで二酸化炭素をエタノールに高効率、高選択的に変換する窒化炭素の電気化学触媒が報告されている(非特許文献10)。 Since a black carbon nitride group having a band gap of 1 eV to 0 eV has high conductivity, development of an electrochemical catalyst in which a nitrogen site functions as an active site has been advanced. In addition to metal-free oxygen reduction catalysts, which replace high-priced platinum catalysts used in fuel cell electrodes, metal-free carbon nitride catalysts that electrochemically reduce carbon dioxide to useful substances with two or more carbon atoms such as ethanol. The function has been reported (Non-patent Document 8). An electrochemical catalytic function that converts carbon dioxide to ethanol with high efficiency and high selectivity is reported by a catalyst in which copper nanocrystals and carbon nitride are complexed (Non-Patent Document 9), metal-free carbon dioxide to ethanol An electrochemical catalyst of carbon nitride that converts with high efficiency and efficiency is reported (Non-patent Document 10).
 このように、ユビキタス元素のみで構成される窒化炭素群は、バンドギャップ2.7から0eVまで制御可能であり、その可視光に応答する光半導体触媒機能や、メタルフリーの電気化学触媒などの疑似的金属として、高い機能の開拓とその実用化が期待される材料である。 As described above, the carbon nitride group composed of only ubiquitous elements can be controlled from a band gap of 2.7 to 0 eV, and the photosemiconductor catalyst function responding to the visible light, the metal free electrochemical catalyst, etc. As a target metal, it is a material that is expected to develop high functions and its practical use.
 しかしながら、非特許文献1及び2によれば、分子ドーピングによるバンドギャップ制御は2.7~1eVまでが限界であることが分かる。また、そうしたドーピング分子がグラファイト型窒化炭素の原料である尿素、メラミン、ジシアンジアミドに比較して高価である点にも課題が残る。非特許文献6及び7についても、エタノールやエチレングリコールの導入でも、グラファイト型窒化炭素と比較してその炭素組成比の増大は殆ど起こっておらず、バンドギャップの低減も極めて僅かである。また、窒素原子ドーピングは、気体反応を含む特殊な合成設備が必要であるなど、産業応用には製造面での課題がある。 However, according to Non-Patent Documents 1 and 2, it is understood that the band gap control by molecular doping is limited to 2.7 to 1 eV. In addition, the problem remains that such doping molecules are more expensive than urea, melamine and dicyandiamide which are raw materials of graphite type carbon nitride. Also in Non-Patent Documents 6 and 7, the introduction of ethanol or ethylene glycol hardly increases the carbon composition ratio as compared with graphite-type carbon nitride, and the reduction of the band gap is very slight. In addition, nitrogen atom doping has problems in manufacturing in industrial applications, such as requiring special synthesis equipment including gas reaction.
 そこで本発明は、上記の課題に鑑み、グラファイト型窒化炭素(g-C)において、バンドギャップを2.7付近から0eVまでの非常に広い領域で系統的に制御することが簡便かつ安価な方法によってできる窒化炭素、その製造方法、及び半導体材料を提供することを目的とする。 Therefore, in view of the above problems, in the present invention, it is easy to systematically control the band gap in a very wide range from around 2.7 to 0 eV in graphite-type carbon nitride (g-C 3 N 4 ). An object of the present invention is to provide carbon nitride which can be produced by an inexpensive method, a method for producing the same, and a semiconductor material.
 上記目的を達成するため、本発明は、その一態様によれば、窒化炭素であって、この地化炭素は、第1モノマーとしてジシアンジアミドと、水酸基、アミノ基、カルボキシル基、及びアミド基からなる群から選択される2以上の同一若しくは異なる官能基を有する有機化合物、並びに環状カーボネートからなる群から選択される少なくとも1つの第2モノマーとの重合体からなり、前記第1モノマーと前記第2モノマーとのモル比は100:0.1~100:100である。なお、前記第2モノマーとしてはシュウ酸を除く。前記重合体は、後述する製造方法によって得ることができる。また、前記重合体は、前記第1モノマーと前記第2モノマーとの焼成物であることが好ましい。 In order to achieve the above object, the present invention, according to one aspect thereof, is carbon nitride, and the ground carbon is composed of dicyandiamide as a first monomer, a hydroxyl group, an amino group, a carboxyl group, and an amide group. And a polymer of at least one second monomer selected from the group consisting of cyclic carbonates, and an organic compound having two or more same or different functional groups selected from the group, and the first monomer and the second monomer The molar ratio to is 100: 0.1 to 100: 100. As the second monomer, oxalic acid is excluded. The said polymer can be obtained by the manufacturing method mentioned later. The polymer is preferably a fired product of the first monomer and the second monomer.
 前記水酸基、アミノ基、カルボキシル基、及びアミド基からなる群から選択される2以上の同一若しくは異なる官能基を有する有機化合物は、下記一般式(1)
   A-R-B  ・・・式(1)
(式中、AおよびBは、それぞれ独立して、水酸基、アミノ基、カルボキシル基、及びアミド基からなる群から選択される官能基であって、同一であっても異なってもよく、Rは、炭素数0~20の直鎖又は分岐したアルキレン基、芳香環、又はシクロアルカンである。)で示される構造を有するものであってよい。
The organic compound having two or more same or different functional groups selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and an amide group is represented by the following general formula (1)
AR B: Formula (1)
(Wherein, A and B are each independently a functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and an amide group, which may be the same or different, and R is And a linear or branched alkylene group having 0 to 20 carbon atoms, an aromatic ring, or a cycloalkane).
 前記式(1)において、Rが芳香環である場合、A及びBは、前記芳香環のオルト位に結合していることが好ましい。 In the formula (1), when R is an aromatic ring, A and B are preferably bonded to the ortho position of the aromatic ring.
 前記第1モノマーは、ジシアンジアミドとメラミンとからなってもよく、この場合、ジシアンジアミドとメラミンとの重量比は10:90~30:70が好ましい。 The first monomer may be composed of dicyandiamide and melamine, in which case the weight ratio of dicyandiamide to melamine is preferably 10:90 to 30:70.
 本発明に係る重合体からなる窒化炭素は、バンドギャップが0.01~2.5eVであることが好ましい。バンドギャップの値は1.56eV以下であることがより好ましく、この場合、窒化炭素のC/N原子数比は0.77以上で3.23以下の範囲であることが好ましい。バンドギャップの値は0.40evを超えて1.56eV以下であることが更に好ましく、この場合、窒化炭素のC/N原子数比は0.77以上で0.83未満の範囲であることが好ましい。又は、バンドギャップの値は0.40eV以下であることが更に好ましく、この場合、窒化炭素のC/N原子数比は0.83以上で3.23未満の範囲であることが好ましい。 The carbon nitride made of the polymer according to the present invention preferably has a band gap of 0.01 to 2.5 eV. The band gap value is more preferably 1.56 eV or less, and in this case, the C / N atomic ratio of carbon nitride is preferably in the range of 0.77 to 3.23. The band gap value is more preferably more than 0.40 ev and not more than 1.56 eV, and in this case, the C / N atomic ratio of carbon nitride is in the range of 0.77 to less than 0.83. preferable. Alternatively, the band gap value is more preferably 0.40 eV or less, and in this case, the C / N atomic ratio of carbon nitride is preferably in the range of 0.83 to less than 3.23.
 本発明は、別の態様として、半導体材料であって、この半導体材料は、上述した本発明に係る窒化炭素からなるものである。 Another aspect of the present invention is a semiconductor material, which comprises the carbon nitride according to the present invention described above.
 本発明は、また別の態様として、窒化炭素の製造方法であって、この製造方法は、第1モノマーとしてジシアンジアミドと、水酸基、アミノ基、カルボキシル基、及びアミド基からなる群から選択される2以上の同一若しくは異なる官能基を有する有機化合物、並びに環状カーボネートからなる群から選択される少なくとも1つの第2モノマーとを、秤量後、混合して混合物を調製する工程と、前記混合物を加熱して前記第1モノマーと前記第2モノマーとを重合する工程とを含み、前記混合物における前記第1モノマーと前記第2モノマーとのモル比は100:0.1~100:100である。なお、前記第2モノマーとしてはシュウ酸を除く。本発明に係る製造方法における前記第1モノマー、前記第2モノマーは、上述した本発明に係る窒化炭素における前記第1モノマー、前記第2モノマーを用いることができる。 According to another aspect of the present invention, there is provided a method for producing carbon nitride, which method is selected from the group consisting of dicyandiamide as a first monomer, a hydroxyl group, an amino group, a carboxyl group, and an amide group. A step of preparing a mixture by weighing and then mixing at least one second monomer selected from the group consisting of the above organic compounds having the same or different functional groups, and cyclic carbonate, and heating the mixture And a step of polymerizing the first monomer and the second monomer, wherein the molar ratio of the first monomer to the second monomer in the mixture is 100: 0.1 to 100: 100. As the second monomer, oxalic acid is excluded. The first monomer and the second monomer in the manufacturing method according to the present invention can use the first monomer and the second monomer in the carbon nitride according to the present invention described above.
 本発明によれば、グラファイト型窒化炭素の原材料であるジシアンジアミドを第1モノマーとし、このグラファイト型窒化炭素に炭素(分子)ドーピングを行うために、所定の2以上の同一若しくは異なる官能基を有する有機化合物、並びに環状カーボネートからなる群から選択される少なくとも1つを第2モノマーとしてこれらを重合することで、得られる重合体からなるグラファイト型窒化炭素のバンドギャップは、第1モノマーと第2モノマーとのモル比を変化させたり、第2モノマーの化合物を選択する等によって簡便かつ安価に2.7付近から0eVまでと非常に広い領域で系統的に制御することができる。なお、第1モノマーとしてジシアンジアミドにメラミンを加えても同等の効果を得ることができる。また、バンドギャップが0.01~2.5eVである重合体は、窒素が平面構造内に存在することで、n型半導体としての性能を持ち、半導体材料として非常に有益である。 According to the present invention, dicyandiamide, which is a raw material of graphite-type carbon nitride, is used as a first monomer, and in order to perform carbon (molecular) doping on this graphite-type carbon nitride, an organic having two or more predetermined or the same or different functional groups The band gap of the graphitized carbon nitride comprising a polymer obtained by polymerizing the compound and at least one member selected from the group consisting of cyclic carbonates using the second monomer as the second monomer comprises the first monomer and the second monomer It is possible to control systematically in a very wide range from around 2.7 to 0 eV simply and inexpensively by changing the molar ratio of, or selecting the compound of the second monomer. The same effect can be obtained by adding melamine to dicyandiamide as the first monomer. In addition, a polymer having a band gap of 0.01 to 2.5 eV has the performance as an n-type semiconductor due to the presence of nitrogen in a planar structure, and is very useful as a semiconductor material.
ジシアンジアミドと炭酸プロピレンとをモル比100:0~100:100の範囲で反応させて得られた重合体の赤外線吸収スペクトルのグラフを示す。The graph of the infrared absorption spectrum of the polymer obtained by making dicyandiamide and propylene carbonate react in the molar ratio of 100: 0 to 100: 100 is shown. ジシアンジアミドと炭酸プロピレンとをモル比100:0~100:100の範囲で反応させて得られた重合体の粉末X線解析(XRD)のグラフを示す。The powder X-ray analysis (XRD) graph of the polymer obtained by making dicyandiamide and a propylene carbonate react in the molar ratio of 100: 0 to 100: 100 is shown. ジシアンジアミドと炭酸プロピレンとをモル比100:10で反応させて得られた重合体の走査型電子顕微鏡の写真を示す。The scanning electron microscope image of the polymer obtained by reacting dicyandiamide with propylene carbonate at a molar ratio of 100: 10 is shown.
 以下、本発明に係る窒化炭素、その製造方法、及び半導体材料の一実施の形態について説明する。 Hereinafter, one embodiment of carbon nitride according to the present invention, a method for producing the same, and a semiconductor material will be described.
 本実施の形態の窒化炭素は、以下に詳細を説明する所定の第1モノマーと第2モノマーとを所定のモル比で重合した重合体からなるものである。 The carbon nitride of the present embodiment is made of a polymer obtained by polymerizing predetermined first and second monomers described in detail below at a predetermined molar ratio.
(第1モノマー)
 第1モノマーは、基本的に、グラファイト型窒化炭素(g-C)の原材料として用いられるジシアンジアミドであり、示性式:HN-CNH-NH-CNで示される。ジシアンジアミドの融点は209℃、沸点は252℃であり、融点以上に加熱するとアンモニアを発生してメラミンなどを生じる。
(1st monomer)
The first monomer is essentially a dicyandiamide used as a raw material of the graphite type carbon nitride (g-C 3 N 4) , rational formula: represented by H 2 N-CNH-NH- CN. The melting point of dicyandiamide is 209 ° C. and the boiling point is 252 ° C. When it is heated above the melting point, ammonia is generated to produce melamine and the like.
 第1モノマーとして、上記のジシアンジアミドに加えて、メラミンを用いることもできる。メラミンを加える場合、ジシアンジアミドとメラミンとの重量比は、10:90~30:70の範囲が好ましい。このような範囲で第1モノマーとしてメラミンを加えることで、第2モノマーとの重合体からなる窒化炭素のバンドギャップを低下させることができ、ジシアンジアミドよりも安価なメラミンを使うことで、さらに材料コストを低くできるというメリットがある。 In addition to the above dicyandiamide, melamine can also be used as the first monomer. When melamine is added, the weight ratio of dicyandiamide to melamine is preferably in the range of 10:90 to 30:70. By adding melamine as the first monomer in such a range, the band gap of carbon nitride formed of a polymer with the second monomer can be reduced, and by using melamine cheaper than dicyandiamide, the material cost is further increased. It has the merit of being able to lower the
(第2モノマー)
 第2モノマーとしては、水酸基、アミノ基、カルボキシル基、及びアミド基からなる群から選択される2以上の同一若しくは異なる官能基を有する有機化合物を用いることができる。この有機化合物は、1種類で用いても2種類以上の混合物として用いてもよい。より具体的には、例えば、下記一般式(1)で表わされる有機化合物が好ましく用いられる。
   A-R-B  ・・・式(1)
(2nd monomer)
As the second monomer, an organic compound having two or more same or different functional groups selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and an amide group can be used. This organic compound may be used alone or as a mixture of two or more. More specifically, for example, an organic compound represented by the following general formula (1) is preferably used.
AR B: Formula (1)
 上式(1)において、AおよびBは、それぞれ独立して、水酸基、アミノ基、カルボキシル基、及びアミド基からなる群から選択される官能基であり、同一であっても異なってもよい。 In the above formula (1), A and B are each independently a functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and an amide group, and may be the same or different.
 上式(1)において、Rは、炭素数0から20の直鎖又は分岐したアルキレン基、芳香環、又はシクロアルカンであってもよい。アルキレン基の炭素数の上限は、20以下がより好ましく、10以下が更に好ましい。アルキレン基の炭素数の下限は、1以上としてもよい。 In the above formula (1), R may be a linear or branched alkylene group having 0 to 20 carbon atoms, an aromatic ring, or a cycloalkane. The upper limit of the carbon number of the alkylene group is more preferably 20 or less, and still more preferably 10 or less. The lower limit of the carbon number of the alkylene group may be one or more.
 更に具体的には、この有機化合物としては、ジアミン化合物、アミノアルコール化合物、ヒドロキシカルボン酸化合物、アミノカルボン酸化合物、ジオール化合物、多価アルコール化合物、ジアミド化合物、または芳香族化合物が好ましく用いられる。 More specifically, diamine compounds, amino alcohol compounds, hydroxycarboxylic acid compounds, aminocarboxylic acid compounds, diol compounds, polyhydric alcohol compounds, diamide compounds, or aromatic compounds are preferably used as the organic compound.
 ジアミン化合物としては、例えば、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノペンタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,12-ジアミノドデカン、若しくは1,20-ジアミノエイコサン等の炭素数1~20の直鎖アルキレンを有するジアミン化合物、又は、1,2-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、2-メチル-1,3-ジアミノプロパン等の炭素数1~20の分岐したアルキレンを有するジアミン化合物が挙げられる。 Examples of diamine compounds include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminopentane, 1,8-diaminooctane A diamine compound having a linear alkylene of 1 to 20 carbon atoms, such as 1,9-diaminononane, 1,10-diaminodecane, 1,12-diaminododecane, or 1,20-diaminoeicosane, or 1,2 And diamine compounds having a branched alkylene having 1 to 20 carbon atoms such as diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 2-methyl-1,3-diaminopropane and the like.
 アミノアルコール化合物としては、エタノールアミン、3-アミノプロパノール、4-アミノブタノール、5-アミノペンタノール、6-アミノヘキサノール、7-アミノペンタノール、8-アミノオクタノール、9-アミノノナノール、10-アミノデカノール、12-アミノドデカノール、若しくは20-アミノエイコサノール等の炭素数1~20の直鎖アルキレンを有するアミノアルコール化合物、又は、イソブタノールアミン、1,2-ジアミノプロパノール、1,2-ジアミノブタノール、1,3-ジアミノブタノール、1,2-ジアミノプロパノール、若しくは2-メチル-1,3-ジアミノプロパノール等の炭素数1~20の分岐したアルキレンを有するアミノアルコール化合物が挙げられる。 As an amino alcohol compound, ethanolamine, 3-aminopropanol, 4-aminobutanol, 5-aminopentanol, 6-aminohexanol, 7-aminopentanol, 8-aminooctanol, 9-aminononanol, 10-amino Amino alcohol compounds having linear alkylene having 1 to 20 carbon atoms such as decanol, 12-aminododecanol, or 20-aminoeicosanol, or isobutanolamine, 1,2-diaminopropanol, 1,2- Examples thereof include amino alcohol compounds having a branched alkylene having 1 to 20 carbon atoms such as diaminobutanol, 1,3-diaminobutanol, 1,2-diaminopropanol, or 2-methyl-1,3-diaminopropanol.
 ヒドロキシカルボン酸化合物としては、グリコール酸、3-ヒドロキシプロピオン酸、4-ヒドロキシ酪酸、6-ヒドロキシカプロン酸、8-ヒドロキシカプリル酸、10-ヒドロキシカプリン酸、12-ヒドロキシライリン酸、18-ヒドロキステアリン酸、若しくは20-ヒドロキアラキジン酸などの炭素数1~20の直鎖アルキレンを有するヒドロキシカルボン酸化合物、又は、3-ヒドロキシ酪酸などの炭素数1~20の分岐したアルキレンを有するヒドロキシカルボン酸化合物が挙げられる。 As a hydroxycarboxylic acid compound, glycolic acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid, 6-hydroxycaproic acid, 8-hydroxycaprylic acid, 10-hydroxycaprylic acid, 12-hydroxylylic acid, 18-hydroxystearic acid Or a hydroxycarboxylic acid compound having a linear alkylene of 1 to 20 carbon atoms such as 20-hydroxyarachidic acid or a hydroxycarboxylic acid compound having a branched alkylene having 1 to 20 carbon atoms such as 3-hydroxybutyric acid Can be mentioned.
 アミノカルボン酸化合物としては、グリシン、3-アミノプロピオン酸、4-アミノ酪酸、6-アミノカプロン酸、8-アミノカプリル酸、10-アミノカプリン酸、12-アミノライリン酸、18-アミノステアリン酸、若しくは20-アミノアラキジン酸などの炭素数1~20の直鎖アルキレンを有するアミノカルボン酸化合物、又は、3-アミノ酪酸などの炭素数1~20の分岐したアルキレンを有するアミノカルボン酸化合物が挙げられる。 Examples of aminocarboxylic acid compounds include glycine, 3-aminopropionic acid, 4-aminobutyric acid, 6-aminocaproic acid, 8-aminocaprylic acid, 10-aminocaprylic acid, 12-aminolylic acid, 18-aminostearic acid, or 20 And aminocarboxylic acid compounds having a linear alkylene of 1 to 20 carbon atoms such as aminoarachidic acid, or aminocarboxylic acid compounds having a branched alkylene of 1 to 20 carbon atoms such as 3-aminobutyric acid.
 ジオール化合物としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ペンタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、若しくは1,20-エイコサンジオール等の炭素数1~20の直鎖アルキレンを有するジオール化合物、又は、1,2-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、若しくは2-メチル-1,3-プロパンジオール等の炭素数1~20の分岐したアルキレンを有するジオール化合物が挙げられる。 As a diol compound, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-pentanediol, 1,8-octanediol, A diol compound having a linear alkylene having 1 to 20 carbon atoms, such as 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, or 1,20-eicosanediol, or 1,2 -Diol having branched alkylene having 1 to 20 carbon atoms such as propanediol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, or 2-methyl-1,3-propanediol Compounds are mentioned.
 多価アルコール化合物としては、1,2,3―プロパントリオール(すなわち、グリセロール)、1,2,3-ブタントリオール、オリゴビニルアルコール(重合度が10~20)、ポリビニルアルコール(重合度が21以上)、若しくは1,2,3,4,5,6-シクロヘキサンヘキサオール(すなわち、イノシトール)等が挙げられる。 As polyhydric alcohol compounds, 1,2,3-propanetriol (that is, glycerol), 1,2,3-butanetriol, oligovinyl alcohol (polymerization degree is 10 to 20), polyvinyl alcohol (polymerization degree is 21 or more) Or 1,2,3,4,5,6-cyclohexanehexaol (ie, inositol) and the like.
 ジアミド化合物としては、オキサミド、マロンアミド、2-メトキシプロパンジアミド、1,6-ヘキサンジアミド、又は1,8-オクタンジアミド等が挙げられる。 Examples of diamide compounds include oxamide, malonamide, 2-methoxypropanediamide, 1,6-hexanediamide, and 1,8-octanediamide.
 芳香族化合物としては、芳香環のオルト位に、水酸基、アミノ基、カルボキシル基、及びアミド基からなる群から選択される2以上の同一若しくは異なる官能基を有する芳香族化合物が挙げられ、例えば、カテコール、無水フタル酸、オルトフェニレンジアミン、オルトアミノフェノール、サリチル酸、若しくはオルトアミノ安息香酸などが挙げられる。 Examples of the aromatic compound include aromatic compounds having two or more identical or different functional groups selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and an amide group at the ortho position of the aromatic ring. And catechol, phthalic anhydride, ortho phenylene diamine, ortho aminophenol, salicylic acid, or ortho amino benzoic acid and the like.
 また、第2モノマーとしては、上述した有機化合物に替えて又は加えて、環状カーボネートを用いることができる。環状カーボネートは、炭素数2~4のアルキレンジオールと炭酸とのエステルであり、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、又は炭酸イソブチレン等が挙げられる。 Further, as the second monomer, a cyclic carbonate can be used instead of or in addition to the above-described organic compound. The cyclic carbonate is an ester of an alkylene diol having 2 to 4 carbon atoms and carbonic acid, and examples thereof include ethylene carbonate, propylene carbonate, butylene carbonate, and carbonic acid isobutylene.
 なお、第2モノマーとしては、シュウ酸を除く。 As the second monomer, oxalic acid is excluded.
(窒化炭素の製造方法)
 本実施の形態の窒化炭素の製造方法は、上述した第1モノマーと第2モノマーとを、秤量後、混合して混合物を調製する工程と、この混合物を加熱して第1モノマーと第2モノマーとを重合する工程とを含む。
(Method of producing carbon nitride)
In the method for producing carbon nitride of the present embodiment, a step of mixing the first monomer and the second monomer described above after mixing and preparing the mixture, and heating the mixture to produce the first monomer and the second monomer And the step of polymerizing.
 重合工程における加熱の条件は、第1モノマーと第2モノマーとが十分に重合する温度および時間であれば特に限定されないが、例えば、モノマーとして選択する化合物の種類によって変わるものの、10~20℃/分の昇温速度で、300~900℃まで昇温し、1~3時間にわたりこの温度を維持することが好ましく、昇温速度が15℃/分で、550℃まで昇温し、2時間にわたりこの温度に維持することがより好ましい。高温(例えば900℃)で加熱することで、炭素数を制御したり、表面積を増大させたりすることもできる。 The heating conditions in the polymerization step are not particularly limited as long as the temperature and the time at which the first monomer and the second monomer sufficiently polymerize, and for example, although depending on the kind of the compound selected as the monomer, It is preferable to raise the temperature to 300 to 900 ° C. at a temperature rising rate of 1 min and maintain this temperature for 1 to 3 hours, and to a temperature of 550 ° C. at a heating rate of 15 ° C./min for 2 hours It is more preferable to maintain this temperature. By heating at a high temperature (eg, 900 ° C.), the carbon number can be controlled, or the surface area can be increased.
(バンドギャップの制御)
 混合工程における第1モノマーと第2モノマーとのモル比は、100:0.1~100:100である。モル比をこの範囲にすることで、得られる重合体のバンドギャップを2.7付近から0eVまでの非常に広い領域で制御することができる。
(Band gap control)
The molar ratio of the first monomer to the second monomer in the mixing step is 100: 0.1 to 100: 100. By setting the molar ratio in this range, the band gap of the resulting polymer can be controlled in a very wide region from around 2.7 to 0 eV.
 モノマーとして選択する化合物の種類や、第1モノマーと第2モノマーとのモル比によって、所望のバンドギャップを有する重合体を得ることができる。例えば、第2モノマーとしてジアミン化合物を選択すると、少量のジアミンを添加することで、バンドギャップを大きく低下させることができる。一方、第2モノマーとして環状カーボネートを選択すると、ジアミン化合物と比べて、添加量に対するバンドギャップの低下は小さく、よって、バンドギャップを精度よく目的の値に制御させることができる。 A polymer having a desired band gap can be obtained depending on the type of compound selected as the monomer and the molar ratio of the first monomer to the second monomer. For example, when a diamine compound is selected as the second monomer, the band gap can be greatly reduced by adding a small amount of diamine. On the other hand, when a cyclic carbonate is selected as the second monomer, the decrease in band gap with respect to the addition amount is small as compared with the diamine compound, and therefore, the band gap can be accurately controlled to a desired value.
 少量の添加でバンドギャップを大きく低下できる第2モノマーとしては、ジアミン化合物の他に、アミノアルコール化合物、ジオール化合物を挙げることができる。またジアミン化合物およびジオール化合物等において、アルキレン鎖の長い化合物を用いることで、少量の添加でバンドギャップを大きく低下させることができる。 As a 2nd monomer which can reduce a band gap largely by addition of a small amount, an amino alcohol compound and a diol compound other than a diamine compound can be mentioned. Further, by using a compound having a long alkylene chain in the diamine compound, the diol compound and the like, the band gap can be greatly reduced by the addition of a small amount.
 また、バンドギャップを精度よく目的の値に制御させる第2モノマーとしては、炭酸プロピレン化合物の他に、多価アルコール化合物、アミノカルボン酸化合物、ジアミド化合物、ヒドロキシカルボン酸化合物等が挙げられ、添加量の選定により、精度よく目的とするバンドギャップを持つ窒化炭素を得ることができる。第1モノマーと第2モノマーとのモル比は、100:0.1~100:100の範囲であることが好ましく、バンドギャップの高さや精度は、目的により決まるものであり、当該範囲及び第2モノマーの種類の選択により達成できる。 In addition to propylene carbonate compounds, polyhydric alcohol compounds, aminocarboxylic acid compounds, diamide compounds, hydroxycarboxylic acid compounds and the like can be mentioned as the second monomer that controls the band gap to the desired value with high precision. By selection of the above, it is possible to obtain carbon nitride having a target band gap with high accuracy. The molar ratio of the first monomer to the second monomer is preferably in the range of 100: 0.1 to 100: 100, and the height and accuracy of the band gap depend on the purpose, and the range and the second range It can be achieved by the choice of the type of monomer.
 このように、目的に応じて使用する化合物を選定したり、又は混合したりすることができる。窒化炭素のバンドギャップの値は、0.01~2.5eVの範囲に制御することが好ましい。窒化炭素のバンドギャップの値は、窒化炭素の用途に応じて、所望する値または範囲に制御することができる。 In this way, compounds to be used can be selected or mixed depending on the purpose. The band gap value of carbon nitride is preferably controlled in the range of 0.01 to 2.5 eV. The band gap value of carbon nitride can be controlled to a desired value or range depending on the application of carbon nitride.
 0.01~2.5eVの範囲のバンドギャップを有する窒化炭素は、窒素が平面構造内に存在することで、n型半導体としての性能を持つ。よって、本実施の形態の半導体材料は、上述した0.01~2.5eVの範囲のバンドギャップを有するように制御して製造した本実施の形態の窒化炭素からなるものである。 Carbon nitride having a band gap in the range of 0.01 to 2.5 eV has the performance as an n-type semiconductor due to the presence of nitrogen in a planar structure. Therefore, the semiconductor material of the present embodiment is made of the carbon nitride of the present embodiment which is controlled to have the band gap in the range of 0.01 to 2.5 eV described above.
 以下に実施例および比較例を挙げて、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described by way of the following Examples and Comparative Examples, but the present invention is not limited to the following Examples.
 [実施例1]ジシアンジアミドと1,6-ジアミノヘキサンとの重合体
 (重合)
 ジシアンジアミド(東京化成工業、純度>98.0%)1.0gに、これをモル比で100とすると、0~20のモル比で1,6-ジアミノヘキサン(東京化成工業、純度>99.0%)を混合し、この混合物をアルミナるつぼに入れ蓋をし、マッフル炉(デンケン、型式:KDF S-70)で昇温速度15℃/分で550℃まで昇温し、2時間、大気下で焼成して重合体を得た。その後、アルミナ乳鉢で焼成物を粉砕し、種々の測定をした。
Example 1 Polymer of Dicyandiamide with 1,6-Diaminohexane (Polymerization)
Assuming 1.0 g of dicyandiamide (Tokyo Chemical Industry, purity> 98.0%) and a molar ratio of 100, 1,6-diaminohexane (Tokyo Chemical Industry, purity> 99.0) at a molar ratio of 0 to 20. Mixed), put the mixture in an alumina crucible, covered, heated up to 550 ° C. at a heating rate of 15 ° C./min in a muffle furnace (denken, model: KDF S-70), and under the atmosphere for 2 hours The polymer was calcined to obtain a polymer. Thereafter, the fired product was ground in an alumina mortar and various measurements were made.
 (バンドギャップ解析)
 紫外可視近赤外分光光度計(島津製作所、型式:UV-3600)を用いて、得られた重合体の拡散反射スペクトル測定を、拡散反射ユニット(島津製作所、型式:ISR-3100)で行った。そして、Kubelka-Munk関数よりTaucプロットからバンドギャップのエネルギーを分光化学的に求めた。結果を表1に示した。1,6-ジアミノヘキサンを全く添加しない(モル比が0)場合、得られた重合体のバンドギャップは、2.7eVであり、g-Cであることが確認された。そして、1,6-ジアミノヘキサンを添加すると急激にバンドギャップが減少した。これは、広範囲の波長で電磁波を吸収するグラファイトに類似した挙動である。添加量を10モル比以上の比率にすると、バンドギャップは0eV近くまで達し、分光化学的にバンドギャップを求めることができなかった。表中、0eVに限りなく近いとして、「~0」と記載した。
(Band gap analysis)
Diffuse reflection spectrum measurement of the obtained polymer was carried out with a diffuse reflection unit (Shimadzu Corporation, model: ISR-3100) using an ultraviolet visible near infrared spectrophotometer (Shimadzu Corporation, model: UV-3600) . Then, the energy of the band gap was determined spectrochemically from the Tauc plot from the Kubelka-Munk function. The results are shown in Table 1. When 1,6-diaminohexane was not added at all (the molar ratio was 0), the band gap of the obtained polymer was 2.7 eV, which was confirmed to be g-C 3 N 4 . Then, the band gap decreased rapidly when 1,6-diaminohexane was added. This is similar behavior to graphite absorbing electromagnetic waves in a wide range of wavelengths. When the addition amount is 10 molar ratio or more, the band gap reaches nearly 0 eV, and the band gap can not be determined spectrochemically. In the table, “̃0” is described as infinitely close to 0 eV.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実施例2~8]ジシアンジアミドと種々の第2モノマーとの重合体
 (重合)
 1,6-ジアミノヘキサンの代わりに表2に記載した第2モノマー、すなわち、エチレンジアミン(関東化学、鹿一級)、1,4-ジアミノブタン(東京化成工業、純度>98.0%)、エチレングリコール(東京化成工業、純度>99.5%)、アミノエタノール(関東化学、純度>99.5%)、グリシン(ナカライテスク、試薬特級)、オキサミド(東京化成工業、純度>98.0%)、グリコール酸(東京化成工業、純度>98.0%)を、表2に記載したモル比で混合したほかは、実施例1と同じ方法で重合体を得た。用いた第2モノマーは、いずれもジシアンジアミドと良好な反応を示した。
[Examples 2 to 8] Polymers of dicyandiamide and various second monomers (polymerization)
The second monomers listed in Table 2 instead of 1,6-diaminohexane, ie, ethylenediamine (Kanto Chemical, Deer Class 1), 1,4-diaminobutane (Tokyo Chemical Industry, purity> 98.0%), ethylene glycol (Tokyo Chemical Industry, purity> 99.5%), aminoethanol (Kanto Chemical, purity> 99.5%), glycine (Nacalai Tesque, special grade reagent), oxamide (Tokyo Chemical Industry, purity> 98.0%), A polymer was obtained in the same manner as Example 1, except that glycolic acid (Tokyo Chemical Industry, purity> 98.0%) was mixed at the molar ratio described in Table 2. All of the second monomers used showed a good reaction with dicyandiamide.
 (バンドギャップ解析)
 実施例1と同様の方法で重合体のバンドギャップを測定した。結果を表2に示した。いずれの第2モノマーも、第2モノマーの添加量の増加と共にバンドギャップは低くなった。
(Band gap analysis)
The band gap of the polymer was measured in the same manner as in Example 1. The results are shown in Table 2. The band gap of each of the second monomers decreased with the increase of the addition amount of the second monomer.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [比較例1~4]ジシアンジアミドと、官能基が1つのモノマーとの重合体
 (重合)
 1,6-ジアミノヘキサンの代わりに表3に記載した1つの官能基しか有さないモノマーであるn-へキシルアルコール(東京化成工業、純度>98.0%)、n-へキシルアミン(東京化成工業、純度>99.0%)、酢酸(関東化学、特級)、アセトアミド(関東化学、特級)を、表3に記載したモル比で混合したほかは、実施例1と同じ方法で重合体を得た。表3の各モノマーとの反応ではバンドギャップの低下は観測されず、良好な反応を示さなかった。
Comparative Examples 1 to 4 Polymer of Dicyandiamide and Monomer Having One Functional Group (Polymerization)
N-hexyl alcohol (Tokyo Chemical Industry Co., Ltd., purity> 98.0%) which is a monomer having only one functional group described in Table 3 instead of 1,6-diaminohexane, n-hexylamine (Tokyo Kasei Industry, purity> 99.0%), acetic acid (Kanto Chemical, special grade), acetamide (Kanto Chemical, special grade) were mixed in the molar ratio described in Table 3 in the same manner as in Example 1 except that the polymer was mixed Obtained. In the reaction with each monomer in Table 3, no decrease in band gap was observed and no good reaction was shown.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [比較例5]ジシアンジアミドとシュウ酸との重合体
 (重合)
 1,6-ジアミノヘキサンの代わりにシュウ酸(松葉薬品、純度99.6%)を混合したほかは、実施例1と同じ方法で重合体を得た。しかし、シュウ酸との反応ではバンドギャップの低下は観測されず、ジシアンジアミドとシュウ酸とでは良好な反応を示さなかった。
Comparative Example 5 Polymer of Dicyandiamide and Oxalic Acid (Polymerization)
A polymer was obtained in the same manner as in Example 1 except that oxalic acid (Matsuho Pharmaceutical, 99.6% purity) was mixed instead of 1,6-diaminohexane. However, no decrease in band gap was observed in the reaction with oxalic acid, and dicyandiamide and oxalic acid did not show a good reaction.
 [実施例9~15]ジシアンジアミドとアルキレンジオールとの重合体
 (重合)
 1,6-ジアミノヘキサンの代わりに表4に示した炭素数が2~12より選択されたアルキレンジオールを、モル比10で混合したほかは、実施例1と同じ方法で重合体を得た。
[Examples 9 to 15] Polymer of dicyandiamide and alkylene diol (polymerization)
A polymer was obtained in the same manner as in Example 1 except that, instead of 1,6-diaminohexane, an alkylene diol selected from 2 to 12 carbon atoms shown in Table 4 was mixed at a molar ratio of 10.
 (バンドギャップ解析)
 実施例1と同様の方法で重合体のバンドギャップを測定した。結果を表4に示した。アルキレンジオールのアルキレン鎖が長くなるほど、バンドギャップは低くなる傾向があった。
(Band gap analysis)
The band gap of the polymer was measured in the same manner as in Example 1. The results are shown in Table 4. The longer the alkylene chain of the alkylene diol, the lower the band gap tends to be.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [実施例16]ジシアンジアミドと環状カーボネートとの重合体
 (重合)
 1,6-ジアミノヘキサンの代わりに、モル比で0~100の比率で炭酸プロピレン(関東化学、電気化学用、純度99.5%)を混合したほかは、実施例1と同じ方法で重合体を得た。重合体の生成量を表5に示した。炭酸プロピレンの添加量がモル比で50までは、0.4g以上の収量で重合体を得られた。
[Example 16] Polymer of dicyandiamide and cyclic carbonate (polymerization)
A polymer was prepared in the same manner as in Example 1, except that propylene carbonate (Kanto Chemical for electrochemistry, purity 99.5%) was mixed at a molar ratio of 0 to 100 instead of 1,6-diaminohexane. I got The formation amount of the polymer is shown in Table 5. The polymer was obtained in a yield of 0.4 g or more when the amount of propylene carbonate added was 50 at a molar ratio.
 (バンドギャップ解析)
 実施例1と同様の方法で重合体のバンドギャップを測定した。結果を表5に示した。炭酸プロピレンの添加量の増大するほど、バンドギャップは低くなった。添加量をモル比で50以上の比率にすると、バンドギャップは0eV近くまで達し、分光化学的にバンドギャップを求めることができなかった。
(Band gap analysis)
The band gap of the polymer was measured in the same manner as in Example 1. The results are shown in Table 5. The band gap decreased as the amount of propylene carbonate added increased. When the addition amount was 50 or more in molar ratio, the band gap reached nearly 0 eV, and the band gap could not be determined spectrochemically.
 (元素分析)
 炭素と窒素原子の原子数比(C/N比)を求めるために、走査型電子顕微鏡によりEDX分析を行い、分析結果を炭酸プロピレンの添加量が0の場合の重合体のC/N比で強度補正し、結果を表5に示した。炭酸プロピレンの添加量の増大により、バンドギャップの低下したことに伴い、C/N原子数比が増大している。
(Elemental analysis)
In order to determine the atomic ratio (C / N ratio) of carbon and nitrogen atoms, EDX analysis is performed by a scanning electron microscope, and the analysis result is the C / N ratio of the polymer when the amount of propylene carbonate added is 0. The intensity was corrected and the results are shown in Table 5. The C / N atomic ratio increases with the decrease in the band gap due to the increase in the amount of propylene carbonate added.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (赤外線分析)
 実施例16で得られた重合体の赤外線吸収スペクトル(サーモサイエンティフィックNicolet6700)を測定した。その結果を図1に示した。炭酸プロピレンの添加量に関わらず、炭酸プロピレンの添加量がモル比で0のときのg-Cと類似した赤外吸収を示した。一方で、添加量が増大するに従って、スペクトルがブロード化した。800cm-1付近の特徴的な吸収は、トリアジン構造に由来している。添加量がモル比で20までは、その吸収が明確に観測できるが、モル比が50以上では、観測できないことから、添加量の増大に伴いトリアジン構造が大きく変化していることを示している。その結果は以下に述べる粉末X線解析の結果とも一致する。
(Infrared analysis)
The infrared absorption spectrum (Thermo Scientific Nicolet 6700) of the polymer obtained in Example 16 was measured. The results are shown in FIG. Regardless of the amount of propylene carbonate added, it showed infrared absorption similar to g-C 3 N 4 when the amount of propylene carbonate added was 0 in molar ratio. On the other hand, the spectrum broadened as the addition amount increased. The characteristic absorption around 800 cm -1 is derived from the triazine structure. The absorption can be clearly observed up to a molar ratio of 20, but it can not be observed at a molar ratio of 50 or more, which indicates that the triazine structure changes significantly with the increase of the additive amount. . The results are also consistent with the results of powder X-ray analysis described below.
 (粉末X線回折(XRD)による構造解析)
 実施例16で得られた重合体の構造を粉末X線回折(リガク、MiniFlexII)で解析した。その結果を図2に示した。炭酸プロピレンの添加量がモル比で0のときのg-CのXRDパターンは、13°のトリストリアジン周期構造(面内)によるシグナルと、27°のトリストリアジン層の層間距離に由来したパターンである。炭酸プロピレンの添加量が増大するに従って、層間距離に由来するシグナルは、低角側にシフトしており(面間距離が長くなる傾向)、グラファイトの面間距離(26°)に近づいていくことが分かる。また、13°のトリストリアジン周期構造(面内)によるシグナルは、炭酸プロピレンの添加量がモル比で20のときまで見られるが、それ以上になると、27°のシグナルのブロード化と共に観測できなくなる。これらは、炭酸プロピレンの添加量の増大により、炭素原子の存在比が増大していることを示唆している。
(Structural analysis by powder X-ray diffraction (XRD))
The structure of the polymer obtained in Example 16 was analyzed by powder X-ray diffraction (Rigaku, MiniFlex II). The results are shown in FIG. The XRD pattern of g-C 3 N 4 when the amount of propylene carbonate added is 0 in molar ratio is derived from the signal by the 13 ° tris triazine periodic structure (in plane) and the interlayer distance of the 27 ° tris triazine layer Pattern. As the amount of propylene carbonate added increases, the signal derived from the interlayer distance is shifted to the lower angle side (the distance between the surfaces tends to be longer) and approaches the inter-surface distance (26 °) of the graphite. I understand. Also, the signal due to the 13 ° tris triazine periodic structure (in plane) is observed until the molar ratio of propylene carbonate is 20, but when it is more, it becomes unobservable along with the 27 ° signal broadening . These suggest that the abundance ratio of carbon atoms is increased due to the increase in the amount of propylene carbonate added.
 (走査型電子顕微鏡による観察)
 実施例16で得られた、炭酸プロピレンがモル比で10の場合の重合体を走査型電子顕微鏡(日本電子、JEM7600)で観察した。その結果を図4に示した。図4中で指示する部分が、層状構造となっていることが分かる。
(Observation by scanning electron microscope)
The polymer obtained in Example 16 and having propylene carbonate at a molar ratio of 10 was observed with a scanning electron microscope (JEOL, JEM 7600). The results are shown in FIG. It can be seen that the portion indicated in FIG. 4 has a layered structure.
 [実施例17]ジシアンジアミドと環状カーボネートとの重合体
 (重合)
 1,6-ジアミノヘキサンの代わりに、モル比で0~20の比率で炭酸エチレン(関東化学、電気化学用、純度99.5%)を混合したほかは、実施例1と同じ方法で重合体を得た。
[Example 17] Polymer of dicyandiamide and cyclic carbonate (polymerization)
A polymer was prepared in the same manner as in Example 1, except that ethylene carbonate (Kanto Chemical for electrochemistry, purity 99.5%) was mixed at a molar ratio of 0 to 20 instead of 1,6-diaminohexane. I got
 (バンドギャップ解析)
 実施例1と同様の方法で重合体のバンドギャップを測定した。結果を表6に示した。他の実施例と比較して、炭酸エチレンの添加量の増大に伴うバンドギャップの減少量は小さかった。
(Band gap analysis)
The band gap of the polymer was measured in the same manner as in Example 1. The results are shown in Table 6. Compared to the other examples, the amount of decrease in the band gap with the increase in the amount of ethylene carbonate added was small.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 [比較例6]ジシアンジアミドとカーボネートとの重合体
 1,6-ジアミノヘキサンの代わりに、モル比15の比率で炭酸ジメチル粉末(関東化学、電気化学用、純度99.5%)を混合したほかは、実施例1と同じ方法で重合体を得た。しかし、バンドギャップの低下は観測されなかった。
Comparative Example 6 Polymer of Dicyandiamide and Carbonate Instead of 1,6-diaminohexane, dimethyl carbonate powder (Kanto Chemical, for electrochemistry, purity 99.5%) was mixed at a ratio of 15 in molar ratio. A polymer was obtained in the same manner as in Example 1. However, no decrease in band gap was observed.
 [実施例18~19]ジシアンジアミドと、水酸基が2つ以上のモノマーとの重合体
 (重合)
 1,6-ジアミノヘキサンの代わりに、表7に示した2以上の水酸基を有するモノマーであるカテコール(ナカライテスク、純度≧95.0%)またはグリセロール(和光純薬、純度97.0%)を、モル比10で混合したほかは、実施例1と同じ方法で重合体を得た。
[Examples 18 to 19] Polymer of dicyandiamide and a monomer having two or more hydroxyl groups (polymerization)
Instead of 1,6-diaminohexane, catechol (Nacalai Tesque, purity 和 95.0%) or glycerol (Wako Pure Chemical Industries, purity 97.0%), which are monomers having two or more hydroxyl groups shown in Table 7 The polymer was obtained in the same manner as in Example 1 except that the mixture was mixed at a molar ratio of 10.
 (バンドギャップ解析)
 実施例1と同様の方法で重合体のバンドギャップを測定した。結果を表7に示した。芳香環に2つの水酸基を有するカテコールも、多価アルコールであるグリセロールも、同様にバンドギャップは低くなった。
(Band gap analysis)
The band gap of the polymer was measured in the same manner as in Example 1. The results are shown in Table 7. The band gap of the catechol having two hydroxyl groups in the aromatic ring and the polyhydric alcohol glycerol similarly decreased.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 [比較例7]メラミンと炭酸プロピレンとの重合体
 実施例16のジシアンジアミドの代わりにメラミン(東京化成工業、純度>98%)を用いたほかは、実施例16と同じ方法で重合体を得た。メラミンは、g-Cの原材料としてジシアンジアミドと同様に用いられているものの、炭酸プロピレンとの重合体では、バンドギャップの変化が観測できなかった。
Comparative Example 7 Polymer of Melamine and Propylene Carbonate A polymer was obtained in the same manner as Example 16, except that melamine (Tokyo Chemical Industry, purity> 98%) was used instead of dicyandiamide of Example 16. . Although melamine is used as a raw material of g-C 3 N 4 similarly to dicyandiamide, in the polymer with propylene carbonate, no change in band gap was observed.
 [比較例8]尿素と炭酸プロピレンとn重合体
 実施例16のジシアンジアミドの代わりに尿素(東京化成工業、純度>99%)を用いたほかは、実施例16と同じ方法で重合体を得た。尿素は、g-Cの原材料としてジシアンジアミドと同様に用いられているものの、炭酸プロピレンとの重合体では、バンドギャップの変化が観測できなかった。
Comparative Example 8 Urea, Propylene Carbonate, and n Polymer A polymer was obtained in the same manner as in Example 16 except that urea (Tokyo Chemical Industry, purity> 99%) was used instead of dicyandiamide in Example 16. . Urea is used as a raw material of gC 3 N 4 in the same manner as dicyandiamide, but no change in band gap was observed in the polymer with propylene carbonate.
 [実施例20]ジシアンジアミド、メラミン、及びエチレングリコールの重合体
 (重合)
 ジシアンジアミドとメラミンの重量比を変化させ、ジシアンジアミドとメラミンの総重量が1gになるように混合した。ジシアンジアミドとメラミンの混合物をモル比で100とし、それに対しモル比で50のエチレングリコールを加え、メノウ乳鉢で混ぜ合わせた。これをアルミナるつぼに入れ蓋をし、マッフル炉で昇温速度15℃/分で550℃まで昇温し、2時間、大気下で焼成し、重合体を得た。その後、アルミナ乳鉢で粉砕し測定に供した。
Example 20 Polymer of Dicyandiamide, Melamine, and Ethylene Glycol (Polymerization)
The weight ratio of dicyandiamide to melamine was varied and mixed so that the total weight of dicyandiamide and melamine was 1 g. The mixture of dicyandiamide and melamine was adjusted to a molar ratio of 100, to which 50 ethylene glycol was added at a molar ratio, and mixed in an agate mortar. This was put in an alumina crucible, covered, heated to 550 ° C. at a heating rate of 15 ° C./min in a muffle furnace, and fired for 2 hours in the air to obtain a polymer. Thereafter, it was crushed in an alumina mortar and used for measurement.
 (バンドギャップ解析)
 実施例1と同様の方法で重合体のバンドギャップを測定した。結果を表8に示した。ジシアンジアミドの重量比が10~30%のときにバンドギャップの低下が見られ、ジシアンジアミドの重量比が増大するにつれてバンドギャップは低くなった。
(Band gap analysis)
The band gap of the polymer was measured in the same manner as in Example 1. The results are shown in Table 8. The band gap decreased when the weight ratio of dicyandiamide was 10 to 30%, and the band gap decreased as the weight ratio of dicyandiamide increased.
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 

Claims (9)

  1.  第1モノマーとしてジシアンジアミドと、水酸基、アミノ基、カルボキシル基、及びアミド基からなる群から選択される2以上の同一若しくは異なる官能基を有する有機化合物、並びに環状カーボネートからなる群から選択される少なくとも1つの第2モノマーとを、秤量後、混合して混合物を調製する工程と、
     前記混合物を加熱して前記第1モノマーと前記第2モノマーとを重合する工程と
     を含み、前記混合物における前記第1モノマーと前記第2モノマーとのモル比が100:0.1~100:100であり、前記第2モノマーはシュウ酸を除く、窒化炭素の製造方法。
    At least one selected from the group consisting of cyclic carbonates and dicyandiamide as the first monomer, an organic compound having two or more same or different functional groups selected from the group consisting of hydroxyl group, amino group, carboxyl group, and amide group Weighing and then mixing the two second monomers to prepare a mixture;
    Heating the mixture to polymerize the first monomer and the second monomer, wherein a molar ratio of the first monomer to the second monomer in the mixture is 100: 0.1 to 100: 100. A method of producing carbon nitride, wherein the second monomer is oxalic acid.
  2.  第1モノマーとしてジシアンジアミドと、水酸基、アミノ基、カルボキシル基、及びアミド基からなる群から選択される2以上の同一若しくは異なる官能基を有する有機化合物、並びに環状カーボネートからなる群から選択される少なくとも1つの第2モノマーとを混合して混合物を調製する工程と、前記混合物を加熱して前記第1モノマーと前記第2モノマーとを重合する工程とを含む方法により得られる重合体からなる窒化炭素であって、
     前記第1モノマーと前記第2モノマーとのモル比が100:0.1~100:100であり、前記第2モノマーはシュウ酸を除く、窒化炭素。
    At least one selected from the group consisting of cyclic carbonates and dicyandiamide as the first monomer, an organic compound having two or more same or different functional groups selected from the group consisting of hydroxyl group, amino group, carboxyl group, and amide group A carbon nitride comprising a polymer obtained by a method comprising: mixing two second monomers to prepare a mixture; and heating the mixture to polymerize the first monomer and the second monomer. There,
    A molar ratio of the first monomer to the second monomer is 100: 0.1 to 100: 100, and the second monomer is carbon nitride except oxalic acid.
  3.  前記水酸基、アミノ基、カルボキシル基、及びアミド基からなる群から選択される2以上の同一若しくは異なる官能基を有する有機化合物が、下記一般式(1)
       A-R-B  ・・・式(1)
    (式中、AおよびBは、それぞれ独立して、水酸基、アミノ基、カルボキシル基、及びアミド基からなる群から選択される官能基であって、同一であっても異なってもよく、Rは、炭素数0~20の直鎖又は分岐したアルキレン基、芳香環、又はシクロアルカンである。)
    で示される構造を有する、請求項2に記載の窒化炭素。
    The organic compound having two or more same or different functional groups selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and an amide group is represented by the following general formula (1)
    AR B: Formula (1)
    (Wherein, A and B are each independently a functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and an amide group, which may be the same or different, and R is , A linear or branched alkylene group having 0 to 20 carbon atoms, an aromatic ring, or a cycloalkane.)
    The carbon nitride according to claim 2, having a structure represented by
  4.  前記式(1)において、Rが芳香環であって、A及びBが、前記芳香環のオルト位に結合している、請求項2に記載の窒化炭素。 The carbon nitride according to claim 2, wherein in the formula (1), R is an aromatic ring, and A and B are bonded to the ortho position of the aromatic ring.
  5.  前記第1モノマーが、ジシアンジアミドとメラミンとからなり、ジシアンジアミドとメラミンとの重量比が10:90~30:70である、請求項2に記載の窒化炭素。 The carbon nitride according to claim 2, wherein the first monomer comprises dicyandiamide and melamine, and the weight ratio of dicyandiamide to melamine is 10:90 to 30:70.
  6.  バンドギャップが0.01~2.5eVである、請求項2に記載の窒化炭素。 The carbon nitride according to claim 2, wherein the band gap is 0.01 to 2.5 eV.
  7.  C/N原子数比が0.77以上で3.23以下の範囲であり、バンドギャップの値が1.56eV以下である、請求項6に記載の窒化炭素。 The carbon nitride according to claim 6, wherein the C / N atomic ratio is in the range of 0.77 to 3.23, and the band gap value is 1.56 eV or less.
  8.  C/N原子数比が0.77以上で0.83未満の範囲であり、バンドギャップの値が0.40evを超えて1.56eV以下であるか、又はC/N原子数比が0.83以上で3.23未満の範囲であり、バンドギャップの値が0.40eV以下である、請求項7に記載の窒化炭素。 The C / N atomic ratio is in the range of 0.77 to less than 0.83, and the band gap value is more than 0.40 ev and 1.56 eV or less, or the C / N atomic ratio is 0.1. The carbon nitride according to claim 7, having a range of 83 or more and less than 3.23, and having a band gap value of 0.40 eV or less.
  9.  請求項6に記載の窒化炭素からなる、半導体材料。
     
    A semiconductor material comprising the carbon nitride according to claim 6.
PCT/JP2018/044203 2017-12-25 2018-11-30 Carbon nitride, method for producing same, and semiconductor material WO2019130983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019562891A JPWO2019130983A1 (en) 2017-12-25 2018-11-30 Carbon nitride, its manufacturing method, and semiconductor materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-248186 2017-12-25
JP2017248186 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019130983A1 true WO2019130983A1 (en) 2019-07-04

Family

ID=67067060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044203 WO2019130983A1 (en) 2017-12-25 2018-11-30 Carbon nitride, method for producing same, and semiconductor material

Country Status (3)

Country Link
JP (1) JPWO2019130983A1 (en)
TW (1) TW201936489A (en)
WO (1) WO2019130983A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110813347A (en) * 2019-10-14 2020-02-21 西安交通大学 Molecular doping modified graphite phase carbon nitride photocatalyst with three-dimensional loose structure and preparation method and application thereof
CN111044586A (en) * 2019-11-06 2020-04-21 江苏大学 Preparation method of bismuth-doped polymeric carbon nitride nanocomposite material containing carbon defects
CN111186824A (en) * 2020-01-10 2020-05-22 山东大学 Preparation method of high-specific-surface-area defective carbon nitride
CN113413900A (en) * 2021-05-31 2021-09-21 深圳大学 Copolymer based on carbon nitride and preparation method and application thereof
CN115448266A (en) * 2022-09-20 2022-12-09 安徽理工大学 Preparation method of ferric oxide combined alpha and beta composite phase carbon nitride material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110639587B (en) * 2019-09-29 2022-10-04 西安工程大学 Preparation method and application of carbon-bridged modified carbon nitride photocatalytic material
CN112086673B (en) * 2020-09-15 2022-05-10 中国科学院大连化学物理研究所 Composite high-temperature proton exchange membrane for fuel cell and preparation method thereof
CN112675894B (en) * 2021-01-04 2022-12-06 中国人民解放军陆军军医大学第二附属医院 Hollow annular carbon nitride photocatalyst and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145108A (en) * 2013-02-07 2013-06-12 重庆工商大学 Preparation method of C3N4 organic heterojunction
CN105536844A (en) * 2015-12-15 2016-05-04 南京工业大学 Amorphous carbon composite carbon nitride photocatalysis material and preparation method thereof
CN107159291A (en) * 2017-04-28 2017-09-15 南京环保产业创新中心有限公司 Carbonitride catalysis material and its preparation method and application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145108A (en) * 2013-02-07 2013-06-12 重庆工商大学 Preparation method of C3N4 organic heterojunction
CN105536844A (en) * 2015-12-15 2016-05-04 南京工业大学 Amorphous carbon composite carbon nitride photocatalysis material and preparation method thereof
CN107159291A (en) * 2017-04-28 2017-09-15 南京环保产业创新中心有限公司 Carbonitride catalysis material and its preparation method and application

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110813347A (en) * 2019-10-14 2020-02-21 西安交通大学 Molecular doping modified graphite phase carbon nitride photocatalyst with three-dimensional loose structure and preparation method and application thereof
CN111044586A (en) * 2019-11-06 2020-04-21 江苏大学 Preparation method of bismuth-doped polymeric carbon nitride nanocomposite material containing carbon defects
CN111044586B (en) * 2019-11-06 2022-03-22 江苏大学 Preparation method of bismuth-doped polymeric carbon nitride nanocomposite material containing carbon defects
CN111186824A (en) * 2020-01-10 2020-05-22 山东大学 Preparation method of high-specific-surface-area defective carbon nitride
CN113413900A (en) * 2021-05-31 2021-09-21 深圳大学 Copolymer based on carbon nitride and preparation method and application thereof
CN113413900B (en) * 2021-05-31 2024-02-09 深圳大学 Copolymer based on carbon nitride and preparation method and application thereof
CN115448266A (en) * 2022-09-20 2022-12-09 安徽理工大学 Preparation method of ferric oxide combined alpha and beta composite phase carbon nitride material

Also Published As

Publication number Publication date
JPWO2019130983A1 (en) 2020-12-10
TW201936489A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
WO2019130983A1 (en) Carbon nitride, method for producing same, and semiconductor material
Zhang et al. Construction of K+ ion gradient in crystalline carbon nitride to accelerate exciton dissociation and charge separation for visible light H2 production
Zhang et al. Conjugated polymers: catalysts for photocatalytic hydrogen evolution
Humayun et al. Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism
Lan et al. Unveiling charge dynamics in acetylene-bridged donor− π–acceptor covalent triazine framework for enhanced photoredox catalysis
Lu et al. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties
Zhang et al. In-plane charge transport dominates the overall charge separation and photocatalytic activity in crystalline carbon nitride
Etacheri et al. Oxygen rich titania: A dopant free, high temperature stable, and visible‐light active anatase photocatalyst
Wang et al. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry
Wang et al. Z-scheme LaCoO3/g-C3N4 for efficient full-spectrum light-simulated solar photocatalytic hydrogen generation
Zhang et al. Multistage polymerization design for g-C3N4 nanosheets with enhanced photocatalytic activity by modifying the polymerization process of melamine
Zhang et al. Identification of Bi 2 WO 6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water
Kim et al. Photocatalytic water splitting over La 2 Ti 2 O 7 synthesized by the polymerizable complex method
Li et al. Polymeric carbon nitride for solar hydrogen production
Narayanam et al. Azole functionalized polyoxo-titanium clusters with sunlight-driven dye degradation applications: synthesis, structure, and photocatalytic studies
CN106732715B (en) A kind of BiOCl/g-C3N4/Bi2O3Composite granule and its preparation method and application
Liu et al. Mesoporous CaO–ZrO2 nano-oxides: A novel solid base with high activity and stability
Li et al. Ultraefficient singlet oxygen generation from manganese-doped cesium lead chloride perovskite quantum dots
Dharmarajan et al. Bio‐Inspired Supramolecular Self‐Assembled Carbon Nitride Nanostructures for Photocatalytic Water Splitting
Pradhan et al. Understanding of the Band Gap Transition in Cs3Sb2Cl9–x Br x: Anion Site Preference-Induced Structural Distortion
Kumar et al. Rose-like Bi2WO6 nanostructure for visible-light-assisted oxidation of lignocellulose-derived 5-hydroxymethylfurfural and vanillyl alcohol
CN113134379A (en) Carbon nitride composite photocatalyst based on oxygen doping and preparation method and application thereof
Ma et al. Promoted electron transfer and surface absorption by single nickel atoms for photocatalytic cross-coupling of aromatic alcohols and aliphatic amines under visible light
Estrada-Pomares et al. Mechanochemically designed bismuth-based halide perovskites for efficient photocatalytic oxidation of vanillyl alcohol
Yang et al. Recent advances in high-crystalline conjugated organic polymeric materials for photocatalytic CO 2 conversion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562891

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895556

Country of ref document: EP

Kind code of ref document: A1