WO2019130935A1 - Motor cooling system - Google Patents

Motor cooling system Download PDF

Info

Publication number
WO2019130935A1
WO2019130935A1 PCT/JP2018/043382 JP2018043382W WO2019130935A1 WO 2019130935 A1 WO2019130935 A1 WO 2019130935A1 JP 2018043382 W JP2018043382 W JP 2018043382W WO 2019130935 A1 WO2019130935 A1 WO 2019130935A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
process gas
motor frame
cooling system
casing
Prior art date
Application number
PCT/JP2018/043382
Other languages
French (fr)
Japanese (ja)
Inventor
克年 小林
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019130935A1 publication Critical patent/WO2019130935A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing

Definitions

  • the present invention relates to a motor cooling system.
  • the well temperature which is several thousand meters underground is high in ambient temperature. Therefore, the motor for driving the compressor for mining is at a high temperature because it is installed inside a well near a natural gas field where the ambient temperature is high and narrow and airy.
  • the inner diameter of the well is small. Therefore, there is not enough space for installing cooling accessories other than the compressor inside the well.
  • Patent Document 1 describes a system for blowing gas into the motor to cool the motor.
  • Patent Document 1 does not describe a structure that facilitates the gas being taken into the motor in order to take the gas into the motor.
  • the present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a motor cooling system capable of effectively cooling a compressor for extracting a process gas.
  • a motor cooling system includes a motor having a rotor and a stator, and an impeller driven by the motor to boost the process gas, and boosts the process gas and transports the process gas.
  • a compressor is provided, and the stator includes a cylindrical motor frame in which the stator is installed.
  • the motor frame is provided with a plurality of or single first vent holes on the upstream side of the motor.
  • the cross-sectional schematic diagram which shows the upstream plant which produces natural gas.
  • BRIEF DESCRIPTION OF THE DRAWINGS The cross-sectional schematic diagram which shows the whole schematic structure of the gas pumping system which installed the compressor of embodiment which concerns on this invention.
  • the expanded sectional view which shows the outline of the gas pumping system of a comparative example.
  • the expanded sectional view which expanded the periphery of a motor.
  • the expanded sectional view which expanded the small clearance periphery vicinity between the motor frame and casing of the compressor concerning Example 4 of this invention.
  • a system for directly cooling a high temperature part of a motor of a drive source using the process gas is adopted.
  • part of the process gas is taken into the motor to directly cool the high temperature part of the motor.
  • FIG. 1 is a schematic cross-sectional view showing an upstream plant that produces natural gas.
  • a well 21 having a depth of several thousand m or more, for example, 1000 m or more is excavated from the ground G so as to lead to the natural gas field 22.
  • the well 21 has a depth on the order of several kilometers, and the depth reaches, for example, 1 to 2 km.
  • the process gas g of the natural gas is ejected from the ground toward the ground through the well 21 by the self-injection pressure of the high pressure natural gas field 22 (arrow ⁇ 1 in FIG. 1). Therefore, at the beginning of the drilling of the well 21, the process gas g to be purified into natural gas spouted at high pressure of the natural gas field 22 through the well 21 is sampled. After that, when natural gas production progresses, the self-injection pressure decreases, so the production of process gas g decreases.
  • FIG. 2 is a schematic cross-sectional view showing an overall schematic configuration of a gas pumping system S provided with a compressor C according to an embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view schematically showing a gas pumping system of a comparative example to which the present invention is applied.
  • the compressor C of the gas pumping system S10 is installed inside the well 21 near the natural gas field 22 (see FIG. 2).
  • the casing 6 is provided inside the well 21 (see FIG. 2), and the compressor C of the gas pumping system S10 is provided inside the casing 6.
  • the ambient temperature of the compressor C in this case reaches a high temperature state of 100 to 200.degree.
  • the gas pumping system S10 of the comparative example includes the impeller 1 of the compressor C, the rotor 2 fixed to the shaft 2j, the motor stator 3, and the casing 6 in which the suction passage 4 is formed.
  • the rotor 2 and the motor stator 3 constitute a motor m. Although the rotor 2 has a magnet, it is omitted in FIG. 3 and FIG. 4 and FIG.
  • the impeller 1 is fixed to one side of a shaft 2 j to which the rotor 2 is fixed.
  • the motor stator 3 is fixed to the inside of a circular tubular or cylindrical motor frame 5.
  • a bearing 2 j 1 is provided between one side of the shaft 2 j to which the rotor 2 near the impeller 1 is fixed and the motor frame 5.
  • a bearing 2 j 2 is provided between the other side of the shaft 2 j and the motor frame 5.
  • the rotor 2 By driving the motor m, the rotor 2 is rotated, and the impeller 1 fixed to the shaft 2 j of the rotor 2 is rotationally driven.
  • the compressor C sucks the process gas g from the upstream suction flow path 4 close to the natural gas field 22 (see FIG. 2) by the rotation of the impeller 1.
  • the impeller 1 of the compressor C pressurizes the sucked process gas g by its rotation, and spouts and pumps it downstream of the well 21 (see FIG. 3).
  • the process gas g flows into the interior of the casing 6 from the suction flow path 4, flows through the gap 12 between the motor frame 5 and the casing 6, and flows into the impeller 1.
  • the pressure is increased by the rotation of the impeller 1.
  • the energy of the motor m causes the periphery between the rotor 2 and the motor stator 3 in the motor m to have a high temperature.
  • the periphery between the rotor 2 and the motor stator 3 has a high temperature of about 400 to 500.degree.
  • a part of the process gas g1 of the process gas g is used as a gap between the rotor 2 and the motor stator 3 Flow through the air gap 7.
  • the following embodiments shown in FIGS. 4 to 6 disclose a configuration in which the process gas g1 flows in the air gap 7 which is a gap between the rotor 2 and the motor stator 3.
  • FIG. 4 shows the structure of the compressor C1 of Example 1 according to the embodiment of the present invention.
  • the perspective view of the motor frame 5 in which the vent holes 9 and 10 of the gas pumping system S of embodiment were installed in FIG. 5 is shown.
  • a part of the process gas g1 of the process gas g flowing in from the suction flow path 4 is flowed into the air gap 7 between the rotor 2 and the motor stator 3 in the motor m.
  • a plurality of ventilating holes 9 are circumferentially provided on the upstream side of the circular or tubular motor frame 5. It has been installed.
  • FIG. 5 shows the case where four rectangular ventilation holes 9 are formed on one side of the motor frame 5.
  • the shape and / or the number of the vent holes 9 are not limited as long as the process gas g1 can flow through the air gap 7 in the gap between the rotor 2 and the motor stator 3.
  • the process gas g is branched from the main process gas g0 and a part of the process gas g1 passing through the vent holes 9 on the upstream side. Then, a part of the branched process gas g1 can be flowed into the air gap 7 in the motor m. Thereby, the periphery between the rotor 2 and the motor stator 3 can be cooled. Therefore, the life of the motor m can be extended, and the reliability of the compressor C1 can be improved.
  • Vent holes 9 are more desirable than in the case of a single vent hole, since the process gas g1 can be taken in different directions and / or in large amounts inside the motor m.
  • Example 2 The gap 12 between the motor frame 5 and the casing 6 shown in FIG. 3 is, for example, about 5 to 10 mm.
  • the air gap 7 is a very narrow gap, for example, about 3 mm, even if the vent hole 9 is installed in the motor frame 5, a portion of the process gas g1 of the process gas g is a motor Even inside the frame 5, the air usually bounces off the air gap 7 and flows into the gap 12 of about 5 to 10 mm between the motor frame 5 and the casing 6. Therefore, even if there are vent holes 9, the process gas g does not branch at the vent holes 9, and part of the process gas g1 does not flow in the air gap 7.
  • FIG. 4 shows the structure of a compressor C2 according to a second embodiment of the present invention.
  • the casing 6 is formed in a step shape having a convex portion 6t projecting inward.
  • the convex portion 6 t is formed in an annular shape projecting inward from the cylindrical casing 6.
  • a narrow gap channel 12i is formed between the annular convex 6t of the motor frame 5 and the casing 6. Since the gap channel 12i is narrow and the pressure loss is high, the main flow process gas g0 is less likely to flow through the gap channel 12i between the motor frame 5 and the casing 6.
  • the process gas g1 flows into the air gap 7 inside the motor m.
  • the casing 6 is illustrated to have a step shape with the projecting portion 6t projecting inward.
  • the motor frame 5 is not provided.
  • the projection may be provided with an outwardly projecting protrusion.
  • the casing 6 may be provided with a projection projecting inward, and the motor frame 5 may be provided with a projection projecting outward. If the gap channel 12i is narrowed, the configuration of the convex portion is not limited and can be selected arbitrarily.
  • Example 3 As shown in FIG. 3, a bearing 2j1 is provided between the other side of the motor frame 5 and the side of the impeller 1 of the shaft 2j to which the rotor 2 is fixed. Therefore, in the conventional structure, part of the process gas g1 passing through the air gap 7 shown in FIG. 4 can not flow. Therefore, part of the process gas g1 flowing into the air gap 7 needs to be merged with the main process gas g0 again.
  • Install 10 That is, as shown in FIG. 5, a plurality of ventilating holes 10 are installed in the circumferential direction on the other side of the circular tubular motor frame 5.
  • FIG. 5 the case where four rectangular ventilation holes 10 are installed in the circumferential direction on the other side of the circular tubular motor frame 5 is shown.
  • the shape and / or the number of the vent holes 10 are not limited as long as the process gas g1 discharged from the air gap 7 between the rotor 2 and the motor stator 3 can be discharged to the outside of the motor frame 5.
  • part of the process gas g1 having flowed into the air gap 7 joins the mainstream process gas g0 through the vent holes 10 (see FIG. 5) even when the bearing 2j1 is on the downstream side.
  • the process gas g is branched into the main flow process gas g0 and a part of the process gas g1 passing through the vent holes 9 through the vent holes 9. Then, a part of the branched process gas g1 flows into the air gap 7 between the rotor 2 and the motor stator 3. Thereafter, the process gas g1 can be smoothly joined to the mainstream process gas g0 through the vent holes 10 on the downstream side of the motor frame 5.
  • the rotor 2 and the motor stator 3 around the air gap 7 can be cooled smoothly by the process gas g1.
  • the process gas g1 inside the motor m can be discharged to the outside in different directions and / or in a large amount than in the case where the vent hole 10 is a single one.
  • Example 4 The structure of the compressor C4 concerning Example 4 of this invention is shown in FIG. 6, and the expanded sectional view which expanded the narrow clearance gap 12a periphery between the motor frame 5 and the casing 6 is shown.
  • the flow passage structure of the gap 12a is formed into a labyrinth shape 6r.
  • the motor frame 5 is provided with a plurality of annular projections 13 projecting outward.
  • the flow path between the motor frame 5 and the casing 6 becomes a narrow gap 12 a and becomes the labyrinth flow path 14.
  • the labyrinth flow path 14 has a configuration in which the flow path is folded, and the flow is blocked by the resistance of the projection 13. That is, the resistance of the flow from the upstream side to the downstream side of the main flow process gas g0 is increased by the throttling effect at the tip of the projection 13 and the vortex generated between the projections 13.
  • the main process gas g0 does not easily flow in the gap 12a between the motor frame 5 and the casing 6, and more process gas g branches into the air passage 9 and flows into the motor frame 5.
  • the surface area of the motor frame 5 is increased by the projections 13, the cooling efficiency of the motor m can also be increased.
  • the protrusion 13 shown in FIG. 6 is made into the cross-sectional rectangular shape, if the shape of the protrusion 13 is a labyrinth flow path 14 which makes a flow path hard to flow by the shape of several annular rings, the cross-sectional shape is triangular
  • the shape may be any shape other than the cross-sectional rectangular shape.
  • the process gas g can be guided to the air passage 9 and branched to the air passage 9 for the process gas g.
  • the amount of process gas g1 can be increased. Therefore, more process gas g1 can flow in the air gap 7 between the rotor 2 and the motor stator 3. Thereby, the cooling effect around the air gap 7 by the process gas g1 can be enhanced. Further, the surface area of the motor frame 5 including the projections 13 is increased, and the cooling efficiency can be improved by the labyrinth flow path 14.
  • the motor frame 5 is provided with the annular projection 13 projecting outward to form the labyrinth shape 6r, and the labyrinth flow path 14 is configured.
  • a projecting labyrinth protrusion may be provided to form a labyrinth shape, and the labyrinth flow path 14 may be configured.
  • the same labyrinth shape may be formed on both the motor frame 5 and the casing 6 to provide a labyrinth flow path.
  • the main process gas g0 of about 140 ° C. is used to cool the periphery between the high-temperature rotor 2 and the motor stator 3 of about 400 to 500 ° C. It can be cooled to about 150 ° C.
  • the motor m is cooled using the process gas g1 before the pressure rise and temperature rise by the impeller 1 of the compressors C1 to C4, an external accessory necessary for cooling the motor m is not necessary. Therefore, the whole structure of the apparatus for gas pumping system S shown in FIG. 4 can be reduced. Therefore, for example, the compressors C1, C2, and C3 can be installed in the well 21 that produces natural gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

This motor cooling system (S) comprises a compressor (C1) that raises the pressure of and transports a process gas (g) and comprises: a motor (m) that has a rotor (2) and a stator (3); and an impeller (1) that is driven by the motor (m) and raises the pressure of the process gas (g). The stator (3) is arranged inside a cylindrical motor frame (5). One or more first ventilation holes (9) are provided in the motor frame (5) upstream of the motor (m).

Description

モータ冷却システムMotor cooling system
 本発明は、モータ冷却システムに関する。 The present invention relates to a motor cooling system.
 天然ガスを生産する上流プラントでは、地下数千メートル下にある天然ガス田から天然ガスを採掘するため、数千メートルの長さの井戸が掘られる。 In the upstream plant that produces natural gas, wells of several thousand meters in length are excavated to extract natural gas from natural gas fields several thousand meters underground.
 生産プラントが稼動する当初は、高圧な天然ガス田が持つ自噴圧力によって、地下から地上に向けて、天然ガスが井戸を通って噴出する。そこで、井戸の掘削当初には、井戸からその高圧で噴出する天然ガスを採取する。しかしながら、生産が進むと、自噴圧力が減衰していくため、天然ガスの生産が低下するという問題が発生する。 At the beginning of operation of the production plant, natural gas is ejected from the ground through the wells by the self-injection pressure of high-pressure natural gas fields. Therefore, at the beginning of drilling a well, natural gas spouted from the well at high pressure is collected. However, when the production proceeds, the self-injection pressure is attenuated, which causes a problem that the production of natural gas is reduced.
 そこで、井戸の掘削から時間が経過すると、天然ガスの生産減衰問題を解決すべく、井戸の中のガス田近くに圧縮機を設置して、天然ガスを地上に圧送するという方法がある。より天然ガス田に近い場所に圧縮機を設置することにより、天然ガスが圧縮機で昇圧されることで生産効率が改善する。 Therefore, there is a method of installing a compressor near the gas field in the well and pumping the natural gas to the ground as time passes from the well drilling, in order to solve the natural gas production attenuation problem. By installing the compressor at a location closer to the natural gas field, the production efficiency is improved by pressurizing the natural gas with the compressor.
特開2017―85740号公報JP, 2017-85740, A
 ところで、地下数千メートルに及ぶ井戸元は、周囲温度が高温である。そのため、採掘用の圧縮機を駆動するモータは、周囲温度が高温で狭く風通しが悪い天然ガス田近く井戸の内部に設置されるため、高温となる。
 ここで、井戸掘りに要するコストを低減するため、井戸の内径は小さい。そのため、井戸の内部に圧縮機以外の冷却用の補機を設置するための十分なスペースが存在しない。
By the way, the well temperature which is several thousand meters underground is high in ambient temperature. Therefore, the motor for driving the compressor for mining is at a high temperature because it is installed inside a well near a natural gas field where the ambient temperature is high and narrow and airy.
Here, in order to reduce the cost required for well drilling, the inner diameter of the well is small. Therefore, there is not enough space for installing cooling accessories other than the compressor inside the well.
 このように、補機を設置するための十分なスペースが確保できないため、天然ガス田の天然ガス(プロセスガス)を用いてモータを冷却する必要がある。
 そこで、特許文献1には、モータ内にガスを送風してモータを冷却するシステムが記載されている。
Thus, it is necessary to cool the motor using natural gas (process gas) of a natural gas field because sufficient space for installing the auxiliary equipment can not be secured.
Therefore, Patent Document 1 describes a system for blowing gas into the motor to cool the motor.
 しかしながら特許文献1には、モータ内にガスを取り込むために、モータ内にガスを取り込み易くする構造は記載がない。
 本発明は上記実状に鑑み創案されたものであり、プロセスガスを採取するための圧縮機を効果的に冷却できるモータ冷却システムの提供を目的とする。
However, Patent Document 1 does not describe a structure that facilitates the gas being taken into the motor in order to take the gas into the motor.
The present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a motor cooling system capable of effectively cooling a compressor for extracting a process gas.
 前記課題を解決するため、本発明のモータ冷却システムは、ロータとステータとを有するモータと、前記モータにより駆動されてプロセスガスを昇圧する羽根車とを備え、前記プロセスガスを昇圧して搬送する圧縮機を具備し、前記ステータが内部に設置される筒状のモータフレームを備え、前記モータフレームは、前記モータの上流側に第1通風穴が複数または単数設置されている。 In order to solve the above problems, a motor cooling system according to the present invention includes a motor having a rotor and a stator, and an impeller driven by the motor to boost the process gas, and boosts the process gas and transports the process gas. A compressor is provided, and the stator includes a cylindrical motor frame in which the stator is installed. The motor frame is provided with a plurality of or single first vent holes on the upstream side of the motor.
 本発明によれば、プロセスガスを採取するための圧縮機を効果的に冷却できるモータ冷却システムを提供できる。 According to the present invention, it is possible to provide a motor cooling system capable of effectively cooling a compressor for extracting process gas.
天然ガスを生産する上流プラントを示す断面模式図。The cross-sectional schematic diagram which shows the upstream plant which produces natural gas. 本発明に係る実施形態の圧縮機を設置したガス圧送システムの全体概略構成を示す断面模式図。BRIEF DESCRIPTION OF THE DRAWINGS The cross-sectional schematic diagram which shows the whole schematic structure of the gas pumping system which installed the compressor of embodiment which concerns on this invention. 比較例のガス圧送システムの概略を示す拡大断面図。The expanded sectional view which shows the outline of the gas pumping system of a comparative example. モータの周辺を拡大した拡大断面図。The expanded sectional view which expanded the periphery of a motor. 通風穴が設置されたモータフレームの斜視図。The perspective view of the motor frame in which the ventilation hole was installed. 本発明の実施例4に係わる圧縮機のモータフレームとケーシングの間の狭い隙間周辺を拡大した拡大断面図。The expanded sectional view which expanded the small clearance periphery vicinity between the motor frame and casing of the compressor concerning Example 4 of this invention.
 天然ガスを生産する上流プラントにおいて、モータ冷却用の外部補機を用いない圧縮機では、天然ガスを精製する前のプロセスガスを用いてモータの発熱部を直接冷却する必要がある。 In an upstream plant that produces natural gas, in a compressor that does not use an external accessory for motor cooling, it is necessary to directly cool the heat generating part of the motor using process gas before purifying the natural gas.
 そのため、本発明では、プロセスガスを昇圧して搬送する回転機械の一種である圧縮機において、駆動源のモータの高温部をプロセスガスを用いて直接冷却するシステムを採用している。モータの冷却性能を上げるためには、できる限り多くのプロセスガスをモータの高温部に取り込む必要がある。 Therefore, in the present invention, in a compressor which is a kind of rotary machine for conveying a pressurized process gas, a system for directly cooling a high temperature part of a motor of a drive source using the process gas is adopted. In order to improve the cooling performance of the motor, it is necessary to introduce as much process gas as possible into the high temperature part of the motor.
 そこで、本発明では、プロセスガスの一部をモータ内に取り込み、モータの高温部を直接冷却する。
 以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
Therefore, in the present invention, part of the process gas is taken into the motor to directly cool the high temperature part of the motor.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、天然ガスを生産する上流プラントを示す断面模式図である。
 天然ガス生産プラントには、天然ガス田22に通じるように、地面Gから地下数千m以上、例えば1000m 以上の深さをもつ井戸21が掘削されている。井戸21は、数kmオーダーの深さであり、深さは例えば1~2kmに達する。
FIG. 1 is a schematic cross-sectional view showing an upstream plant that produces natural gas.
In the natural gas production plant, a well 21 having a depth of several thousand m or more, for example, 1000 m or more is excavated from the ground G so as to lead to the natural gas field 22. The well 21 has a depth on the order of several kilometers, and the depth reaches, for example, 1 to 2 km.
 天然ガス生産プラントの稼動当初は、高圧な天然ガス田22が持つ自噴圧力によって、天然ガスのプロセスガスgが地下から地上に向けて井戸21を通って噴出する(図1の矢印α1)。そこで、井戸21の掘削当初には、井戸21を通じて天然ガス田22の高圧で噴出する天然ガスに精製するプロセスガスgを採取する。 
 その後、天然ガスの生産が進むと、自噴圧力が減衰していくため、プロセスガ スgの生産が低下する
At the beginning of the operation of the natural gas production plant, the process gas g of the natural gas is ejected from the ground toward the ground through the well 21 by the self-injection pressure of the high pressure natural gas field 22 (arrow α1 in FIG. 1). Therefore, at the beginning of the drilling of the well 21, the process gas g to be purified into natural gas spouted at high pressure of the natural gas field 22 through the well 21 is sampled.
After that, when natural gas production progresses, the self-injection pressure decreases, so the production of process gas g decreases.
 図2は、本発明に係る実施形態の圧縮機Cを設置したガス圧送システムSの全体概略構成を示す断面模式図である。図3は、本発明が適用される比較例のガス圧送システムの概略を示す拡大断面図である。 FIG. 2 is a schematic cross-sectional view showing an overall schematic configuration of a gas pumping system S provided with a compressor C according to an embodiment of the present invention. FIG. 3 is an enlarged cross-sectional view schematically showing a gas pumping system of a comparative example to which the present invention is applied.
 図4に本発明に係る実施形態のガス圧送システムSのモータmの周辺を拡大した拡大断面図を示す。
 ここで、図3の比較例のガス圧送システムS10と図4~図6に示す本発明の実施形態に係るガス圧送システムSの概略構成は同様であるから、同様な構成要素には同じ符号を付して示し、重複する説明は行わない。
The expanded sectional view which expanded the periphery of the motor m of gas pumping system S of embodiment which concerns on FIG. 4 at this invention is shown.
Here, since the gas pump system S10 of the comparative example of FIG. 3 and the gas pump system S according to the embodiment of the present invention shown in FIG. 4 to FIG. Indicated and not repeated.
 そこで、比較例では、図3に示すように、ガス圧送システムS10の圧縮機Cが天然ガス田22(図2参照)近くの井戸21の内部に設置される。
 井戸21(図2参照)の内部には、ケーシング6が設けられ、ケーシング6の内部にガス圧送システムS10の圧縮機Cが設けられている。この場合の圧縮機Cの周囲温度は100~200℃の高温状態に達している。
Therefore, in the comparative example, as shown in FIG. 3, the compressor C of the gas pumping system S10 is installed inside the well 21 near the natural gas field 22 (see FIG. 2).
The casing 6 is provided inside the well 21 (see FIG. 2), and the compressor C of the gas pumping system S10 is provided inside the casing 6. The ambient temperature of the compressor C in this case reaches a high temperature state of 100 to 200.degree.
 比較例のガス圧送システムS10は、圧縮機Cの羽根車1、シャフト2jに固定されるロータ2、およびモータステータ3と、吸込流路4が形成されるケーシング6とで構成されている。 The gas pumping system S10 of the comparative example includes the impeller 1 of the compressor C, the rotor 2 fixed to the shaft 2j, the motor stator 3, and the casing 6 in which the suction passage 4 is formed.
 ロータ2とモータステータ3とでモータmが構成されている。なお、ロータ2はマグネットを有しているが、図3および後記の図4、図6では省略している。
 ロータ2が固定されるシャフト2jの一方側に羽根車1が固定されている。モータステータ3は、円管状または筒状のモータフレーム5の内部に固定されている。
The rotor 2 and the motor stator 3 constitute a motor m. Although the rotor 2 has a magnet, it is omitted in FIG. 3 and FIG. 4 and FIG.
The impeller 1 is fixed to one side of a shaft 2 j to which the rotor 2 is fixed. The motor stator 3 is fixed to the inside of a circular tubular or cylindrical motor frame 5.
 こうして、ロータ2とモータステータ3とは、モータフレーム5に覆われている。羽根車1の近くのロータ2が固定されるシャフト2jの一方側とモータフレーム5との間には、軸受2j1が設けられている。なお、シャフト2jの他方側とモータフレーム5との間に軸受2j2が設けられている。 Thus, the rotor 2 and the motor stator 3 are covered by the motor frame 5. A bearing 2 j 1 is provided between one side of the shaft 2 j to which the rotor 2 near the impeller 1 is fixed and the motor frame 5. A bearing 2 j 2 is provided between the other side of the shaft 2 j and the motor frame 5.
 モータmの駆動により、ロータ2が回転して、ロータ2のシャフト2jに固定される羽根車1が回転駆動される。
 圧縮機Cは、羽根車1の回転により、プロセスガスgを天然ガス田22(図2参照)に近い上流側の吸込流路4から吸込む。そして、圧縮機Cの羽根車1は、その回転によって、吸込んだプロセスガスgを昇圧して、井戸21の下流21k(図3参照)に噴出して圧送する。
By driving the motor m, the rotor 2 is rotated, and the impeller 1 fixed to the shaft 2 j of the rotor 2 is rotationally driven.
The compressor C sucks the process gas g from the upstream suction flow path 4 close to the natural gas field 22 (see FIG. 2) by the rotation of the impeller 1. Then, the impeller 1 of the compressor C pressurizes the sucked process gas g by its rotation, and spouts and pumps it downstream of the well 21 (see FIG. 3).
 この際、図3に示すように、プロセスガスgは、吸込流路4からケーシング6の内部に流入して、モータフレーム5とケーシング6の間の隙間12を流れて羽根車1に流入して羽根車1の回転により昇圧される。
 この場合、モータmが磁気力により駆動されるためにそのエネルギによって、モータm内部のロータ2とモータステータ3との間の周辺が高温となる。例えば、ロータ2とモータステータ3との間周辺は400~500℃前後の高温となる。
At this time, as shown in FIG. 3, the process gas g flows into the interior of the casing 6 from the suction flow path 4, flows through the gap 12 between the motor frame 5 and the casing 6, and flows into the impeller 1. The pressure is increased by the rotation of the impeller 1.
In this case, since the motor m is driven by the magnetic force, the energy of the motor m causes the periphery between the rotor 2 and the motor stator 3 in the motor m to have a high temperature. For example, the periphery between the rotor 2 and the motor stator 3 has a high temperature of about 400 to 500.degree.
 そこで、プロセスガスgを用いてモータmの高温部を冷却するため、実施形態の図4に示すように、プロセスガスgの一部のプロセスガスg1をロータ2とモータステータ3との間の隙間であるエアギャップ7に流す。
 以下、下記の図4~図6に示す実施形態は、プロセスガスg1をロータ2とモータステータ3との間の隙間であるエアギャップ7に流す構成を開示する。
Therefore, in order to cool the high temperature part of the motor m using the process gas g, as shown in FIG. 4 of the embodiment, a part of the process gas g1 of the process gas g is used as a gap between the rotor 2 and the motor stator 3 Flow through the air gap 7.
The following embodiments shown in FIGS. 4 to 6 disclose a configuration in which the process gas g1 flows in the air gap 7 which is a gap between the rotor 2 and the motor stator 3.
<実施例1>
 図4に、本発明の実施形態に係わる実施例1の圧縮機C1の構造を示す。図5に実施形態のガス圧送システムSの通風穴9、10が設置されたモータフレーム5の斜視図を示す。
 吸込流路4から流入してきたプロセスガスgの一部のプロセスガスg1をモータm内のロータ2とモータステータ3との間のエアギャップ7に流し込む。
Example 1
FIG. 4 shows the structure of the compressor C1 of Example 1 according to the embodiment of the present invention. The perspective view of the motor frame 5 in which the vent holes 9 and 10 of the gas pumping system S of embodiment were installed in FIG. 5 is shown.
A part of the process gas g1 of the process gas g flowing in from the suction flow path 4 is flowed into the air gap 7 between the rotor 2 and the motor stator 3 in the motor m.
 そこで、実施例1では、プロセスガスgの一部のプロセスガスg1をモータmの内部に取り込むために、円管形状または筒形状のモータフレーム5の上流側に、周方向に通風穴9を複数設置している。 Therefore, in the first embodiment, in order to take in part of the process gas g1 of the process gas g into the motor m, a plurality of ventilating holes 9 are circumferentially provided on the upstream side of the circular or tubular motor frame 5. It has been installed.
 図5に示すように、モータフレーム5の一方側に通風穴9が複数設置されている。図5では、モータフレーム5の一方側に矩形状の通風穴9を4つ形成した場合を示す。しかし、通風穴9は、プロセスガスg1をロータ2とモータステータ3との間の隙間のエアギャップ7に流すことができれば、その形状および/またはその数は限定されない。 As shown in FIG. 5, a plurality of ventilation holes 9 are provided on one side of the motor frame 5. FIG. 5 shows the case where four rectangular ventilation holes 9 are formed on one side of the motor frame 5. However, the shape and / or the number of the vent holes 9 are not limited as long as the process gas g1 can flow through the air gap 7 in the gap between the rotor 2 and the motor stator 3.
 本構造により、図4に示すように、プロセスガスgが主流プロセスガスg0と上流側の通風穴9を通る一部のプロセスガスg1と分岐される。そして、分岐された一部のプロセスガスg1をモータm内のエアギャップ7に流し込むことができる。これにより、ロータ2とモータステータ3との間の周辺を冷却できる。そのため、モータmの寿命を延伸でき、圧縮機C1の信頼性を向上できる。 According to this structure, as shown in FIG. 4, the process gas g is branched from the main process gas g0 and a part of the process gas g1 passing through the vent holes 9 on the upstream side. Then, a part of the branched process gas g1 can be flowed into the air gap 7 in the motor m. Thereby, the periphery between the rotor 2 and the motor stator 3 can be cooled. Therefore, the life of the motor m can be extended, and the reliability of the compressor C1 can be improved.
 なお、実施例1では通風穴9を複数設置した場合を説明したが、通風穴9を単数設置してもよい。しかし、通風穴9が複数の方が単数の場合よりも、モータmの内部にプロセスガスg1を異なる方向および/または多量に取り込めるので、複数の方がより望ましい。 In addition, although the case where the ventilation hole 9 was installed in multiple numbers was demonstrated in Example 1, you may install the ventilation hole 9 singularly. However, a plurality of vent holes 9 is more desirable than in the case of a single vent hole, since the process gas g1 can be taken in different directions and / or in large amounts inside the motor m.
<実施例2>
 図3に示すモータフレーム5とケーシング6との隙間12は例えば5~10mm位である。
 ここで、図3に示すように、エアギャップ7は非常に狭い隙間、例えば3mm程度のため、モータフレーム5に通風穴9を設置しても、プロセスガスgの一部のプロセスガスg1がモータフレーム5の内部に入っても、通常エアギャップ7で跳ね返され、モータフレーム5とケーシング6との間の5~10mm位の隙間12に流れてしまう。そのため、プロセスガスgは、通風穴9があっても通風穴9で分岐せず、エアギャップ7にプロセスガスgの一部のプロセスガスg1が流れない。
Example 2
The gap 12 between the motor frame 5 and the casing 6 shown in FIG. 3 is, for example, about 5 to 10 mm.
Here, as shown in FIG. 3, since the air gap 7 is a very narrow gap, for example, about 3 mm, even if the vent hole 9 is installed in the motor frame 5, a portion of the process gas g1 of the process gas g is a motor Even inside the frame 5, the air usually bounces off the air gap 7 and flows into the gap 12 of about 5 to 10 mm between the motor frame 5 and the casing 6. Therefore, even if there are vent holes 9, the process gas g does not branch at the vent holes 9, and part of the process gas g1 does not flow in the air gap 7.
 そこで、実施例2は、図4に示すように、モータmの内部にプロセスガスgを取り込むため、主流プロセスガスg0が流れるモータフレーム5とケーシング6との隙間12を、比較例の図3に比べて狭い隙間12iを形成し、圧力損失が高くなる流路構造にしたものである。図4に本発明の実施例2に係わる、圧縮機C2の構造を示す。 Therefore, in Example 2, as shown in FIG. 4, since the process gas g is taken into the motor m, the gap 12 between the motor frame 5 and the casing 6 through which the main process gas g0 flows is shown in FIG. Compared with this, a narrow gap 12i is formed, and a pressure loss becomes high. FIG. 4 shows the structure of a compressor C2 according to a second embodiment of the present invention.
 実施例2では、図4に示すように、ケーシング6を内方に突出する凸部6tをもつ段差形状に形成する。凸部6tは円筒形状のケーシング6から内方に突出す円環形状に形成されている。 In the second embodiment, as shown in FIG. 4, the casing 6 is formed in a step shape having a convex portion 6t projecting inward. The convex portion 6 t is formed in an annular shape projecting inward from the cylindrical casing 6.
 これにより、モータフレーム5の円環形状の凸部6tとケーシング6との間に狭い隙間流路12iが形成される。隙間流路12iが狭く圧損が高いため、主流プロセスガスg0がモータフレーム5とケーシング6との間の隙間流路12iを流れにくくなる。 Thereby, a narrow gap channel 12i is formed between the annular convex 6t of the motor frame 5 and the casing 6. Since the gap channel 12i is narrow and the pressure loss is high, the main flow process gas g0 is less likely to flow through the gap channel 12i between the motor frame 5 and the casing 6.
 そのため、モータmの内部のエアギャップ7にもプロセスガスg1が流れ込むようになる。
 なお、実施例2では、ケーシング6に内方に突出する凸部6tをもつ段差形状を形成する場合を例示したが、ケーシング6に内方に突出する凸部6tを設けることなく、モータフレーム5に外方に突出する凸部を設けてもよい。
Therefore, the process gas g1 flows into the air gap 7 inside the motor m.
In the second embodiment, the casing 6 is illustrated to have a step shape with the projecting portion 6t projecting inward. However, without providing the projecting portion 6t projecting inward to the casing 6, the motor frame 5 is not provided. The projection may be provided with an outwardly projecting protrusion.
 或いは、ケーシング6に内方に突出する凸部を設けるとともに、モータフレーム5に外方に突出する凸部を設けてもよい。なお、隙間流路12iが狭くなれば、凸部の構成は限定されず任意に選択できる。 Alternatively, the casing 6 may be provided with a projection projecting inward, and the motor frame 5 may be provided with a projection projecting outward. If the gap channel 12i is narrowed, the configuration of the convex portion is not limited and can be selected arbitrarily.
<実施例3>
 図3に示すように、モータフレーム5の他方側とロータ2が固定されるシャフト2jの羽根車1の側との間には、軸受2j1が設けられている。そのため、従来構造では、図4に示すエアギャップ7を通った一部のプロセスガスg1は流れることができない。そのため、エアギャップ7に流れ込んだ一部のプロセスガスg1を再度、主流プロセスガスg0に合流させる必要がある。
Example 3
As shown in FIG. 3, a bearing 2j1 is provided between the other side of the motor frame 5 and the side of the impeller 1 of the shaft 2j to which the rotor 2 is fixed. Therefore, in the conventional structure, part of the process gas g1 passing through the air gap 7 shown in FIG. 4 can not flow. Therefore, part of the process gas g1 flowing into the air gap 7 needs to be merged with the main process gas g0 again.
 そこで、図4に示す実施例3は、エアギャップ7を流れた一部のプロセスガスg1を、プロセスガスgから分岐した主流プロセスガスg0と再度合流させるため、モータフレーム5の下流側に通風穴10を設置する。つまり、図5に示すように、円管形状のモータフレーム5の他方側に通風穴10が周方向に複数設置されている。図5では、円管形状のモータフレーム5の他方側に矩形状の通風穴10を周方向に4つ設置した場合を示す。なお、通風穴10は、ロータ2とモータステータ3との間のエアギャップ7から排出したプロセスガスg1をモータフレーム5の外部に排出できれば、その形状および/またはその数は限定されない。 Therefore, in the third embodiment shown in FIG. 4, the vent holes on the downstream side of the motor frame 5 in order to rejoin part of the process gas g1 flowing through the air gap 7 with the main process gas g0 branched from the process gas g. Install 10 That is, as shown in FIG. 5, a plurality of ventilating holes 10 are installed in the circumferential direction on the other side of the circular tubular motor frame 5. In FIG. 5, the case where four rectangular ventilation holes 10 are installed in the circumferential direction on the other side of the circular tubular motor frame 5 is shown. The shape and / or the number of the vent holes 10 are not limited as long as the process gas g1 discharged from the air gap 7 between the rotor 2 and the motor stator 3 can be discharged to the outside of the motor frame 5.
 これにより、エアギャップ7に流れ込んだ一部のプロセスガスg1が、下流側に軸受2j1がある場合にも通風穴10(図5参照)を通って、主流プロセスガスg0に合流する。 As a result, part of the process gas g1 having flowed into the air gap 7 joins the mainstream process gas g0 through the vent holes 10 (see FIG. 5) even when the bearing 2j1 is on the downstream side.
 本構成により、プロセスガスgを、通風穴9を介して主流プロセスガスg0と通風穴9を通る一部のプロセスガスg1とに分岐させる。そして、分岐した一部のプロセスガスg1をロータ2とモータステータ3との間のエアギャップ7に流す。その後、プロセスガスg1をモータフレーム5の下流側の通風穴10を介して円滑に主流プロセスガスg0に合流させることができる。 According to this configuration, the process gas g is branched into the main flow process gas g0 and a part of the process gas g1 passing through the vent holes 9 through the vent holes 9. Then, a part of the branched process gas g1 flows into the air gap 7 between the rotor 2 and the motor stator 3. Thereafter, the process gas g1 can be smoothly joined to the mainstream process gas g0 through the vent holes 10 on the downstream side of the motor frame 5.
 従って、円滑に、プロセスガスg1により、エアギャップ7周辺のロータ2とモータステータ3とを冷却できる。
 なお、実施例3では通風穴10を複数設置した場合を説明したが、通風穴10を単数設置してもよい。しかし、通風穴10が複数の方が単数の場合よりも、モータmの内部のプロセスガスg1を異なる方向および/または多くの量によって外部に排出できるので、より望ましい。
Therefore, the rotor 2 and the motor stator 3 around the air gap 7 can be cooled smoothly by the process gas g1.
In addition, although the case where multiple ventilation holes 10 were installed was demonstrated in Example 3, you may install the ventilation hole 10 single. However, it is more desirable that the process gas g1 inside the motor m can be discharged to the outside in different directions and / or in a large amount than in the case where the vent hole 10 is a single one.
<実施例4>
 図6に本発明の実施例4に係わる圧縮機C4の構造を示し、モータフレーム5とケーシング6の間の狭い隙間12a周辺を拡大した拡大断面図を示す。
 実施例4は、モータフレーム5とケーシング6の隙間12を流れる主流プロセスガスg0の圧力損失を大きくするため、隙間12aの流路構造をラビリンス形状6rにしている。
Example 4
The structure of the compressor C4 concerning Example 4 of this invention is shown in FIG. 6, and the expanded sectional view which expanded the narrow clearance gap 12a periphery between the motor frame 5 and the casing 6 is shown.
In the fourth embodiment, in order to increase the pressure loss of the main process gas g0 flowing through the gap 12 between the motor frame 5 and the casing 6, the flow passage structure of the gap 12a is formed into a labyrinth shape 6r.
 詳細には、実施例4では、モータフレーム5に外方に突出する円環状の突起13を複数設けている。これにより、モータフレーム5とケーシング6の間の流路は狭い隙間12aとなり、ラビリンス流路14になる。
 ラビリンス流路14は、その流路がつづら折れる構成であり、その突起13の抵抗で流れが阻害される。すなわち、突起13の先端での絞り効果と突起13の間に生ずる渦とによって、主流プロセスガスg0の上流側から下流側への流れの抵抗を大きくしている。
Specifically, in the fourth embodiment, the motor frame 5 is provided with a plurality of annular projections 13 projecting outward. As a result, the flow path between the motor frame 5 and the casing 6 becomes a narrow gap 12 a and becomes the labyrinth flow path 14.
The labyrinth flow path 14 has a configuration in which the flow path is folded, and the flow is blocked by the resistance of the projection 13. That is, the resistance of the flow from the upstream side to the downstream side of the main flow process gas g0 is increased by the throttling effect at the tip of the projection 13 and the vortex generated between the projections 13.
 このため、主流プロセスガスg0がモータフレーム5とケーシング6の間の隙間12aを流れにくくなり、より多くのプロセスガスgが通風路9に分岐して、モータフレーム5の内部に流れ込んでいく。また、突起13によりモータフレーム5の表面積が大きくなるため、モータmの冷却効率を上げることもできる。 As a result, the main process gas g0 does not easily flow in the gap 12a between the motor frame 5 and the casing 6, and more process gas g branches into the air passage 9 and flows into the motor frame 5. In addition, since the surface area of the motor frame 5 is increased by the projections 13, the cooling efficiency of the motor m can also be increased.
 なお、図6に示す突起13は断面矩形形状としているが、突起13の形状は流路を複数の凹凸の円環の形状により流れにくくするラビリンス流路14であれば、その断面形状は、三角形状など断面矩形形状以外の任意の形状で構わない。 In addition, although the protrusion 13 shown in FIG. 6 is made into the cross-sectional rectangular shape, if the shape of the protrusion 13 is a labyrinth flow path 14 which makes a flow path hard to flow by the shape of several annular rings, the cross-sectional shape is triangular The shape may be any shape other than the cross-sectional rectangular shape.
 実施例4の構成によれば、モータフレーム5とケーシング6の間の隙間12aはラビリンス流路14であるので、プロセスガスgを通風路9に誘導でき、プロセスガスgの通風路9に分岐するプロセスガスg1の量を増大できる。そのため、ロータ2とモータステータ3との間のエアギャップ7に、より多くのプロセスガスg1を流すことができる。これにより、プロセスガスg1によるエアギャップ7周辺の冷却効果を高めることができる。また、突起13を含むモータフレーム5の表面積が大きくなり、ラビリンス流路14によって冷却効率を向上できる。 According to the configuration of the fourth embodiment, since the gap 12a between the motor frame 5 and the casing 6 is the labyrinth passage 14, the process gas g can be guided to the air passage 9 and branched to the air passage 9 for the process gas g. The amount of process gas g1 can be increased. Therefore, more process gas g1 can flow in the air gap 7 between the rotor 2 and the motor stator 3. Thereby, the cooling effect around the air gap 7 by the process gas g1 can be enhanced. Further, the surface area of the motor frame 5 including the projections 13 is increased, and the cooling efficiency can be improved by the labyrinth flow path 14.
 なお、実施例4では、モータフレーム5に外方に突出する円環状の突起13を設けてラビリンス形状6rを形成し、ラビリンス流路14を構成する場合を例示したが、ケーシング6に内方に突出する円環状の突起を設けてラビリンス形状を形成し、ラビリンス流路14を構成してもよい。 In the fourth embodiment, the motor frame 5 is provided with the annular projection 13 projecting outward to form the labyrinth shape 6r, and the labyrinth flow path 14 is configured. A projecting labyrinth protrusion may be provided to form a labyrinth shape, and the labyrinth flow path 14 may be configured.
 また、モータフレーム5とケーシング6の両者に同様なラビリンス形状を形成し、ラビリンス流路を設けてもよい。 The same labyrinth shape may be formed on both the motor frame 5 and the casing 6 to provide a labyrinth flow path.
 以上、本実施形態の構成によれば、例えば、140℃前後の主流プロセスガスg0を用いて、400~500℃前後の高温のロータ2とモータステータ3との間周辺を冷却することで、300~150℃位まで冷却できる。 As described above, according to the configuration of the present embodiment, for example, the main process gas g0 of about 140 ° C. is used to cool the periphery between the high-temperature rotor 2 and the motor stator 3 of about 400 to 500 ° C. It can be cooled to about 150 ° C.
 また、圧縮機C1~C4の羽根車1で昇圧昇温する前のプロセスガスg1を用いてモータmを冷却するため、モータmの冷却に必要な外部補機を必要としない。そのため、図4に示すガス圧送システムSの機器の全体構造を小さくすることができる。
 従って、例えば、天然ガスを生産する井戸21の中に圧縮機C1、C2、C3を設置することが可能となる。
In addition, since the motor m is cooled using the process gas g1 before the pressure rise and temperature rise by the impeller 1 of the compressors C1 to C4, an external accessory necessary for cooling the motor m is not necessary. Therefore, the whole structure of the apparatus for gas pumping system S shown in FIG. 4 can be reduced.
Therefore, for example, the compressors C1, C2, and C3 can be installed in the well 21 that produces natural gas.
≪その他の実施形態≫
1.前記実施形態は本発明を分かり易く説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、実施形態の構成の一部について、他の構成の追加・削除・置換することが可能である。
«Other Embodiments»
1. The above embodiments are described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described. Moreover, it is possible to add, delete, and replace another configuration with respect to a part of the configuration of the embodiment.
2.また、本発明は、特許請求の範囲に記載した範囲内で様々な変形形態、具体的形態が可能であり、説明した実施形態、実施例に限定されない。 2. Further, the present invention can be variously modified and embodied within the scope described in the claims, and is not limited to the described embodiments and examples.
 1   羽根車
 2   ロータ
 3   モータステータ(ステータ)
 5   モータフレーム
 6   ケーシング
 6t  凸部(段差、下流の箇所の一部)
 6r  ラビリンス形状
 g   プロセスガス
 g0  主流プロセスガス
 g1  プロセスガスの一部
 9   通風路(第1通風穴)
 10  通風路(第2通風穴)
 12i  狭い隙間
 12a 狭い隙間
 12  隙間
 13  突起
 14  ラビリンス流路
 21  井戸
 C1、C2、C3、C4 圧縮機
 m  モータ
 S   ガス圧送システム(モータ冷却システム)
1 impeller 2 rotor 3 motor stator (stator)
5 Motor frame 6 Casing 6t Convex part (step, part of downstream part)
6r Labyrinth shape g Process gas g0 Main flow process gas g1 Part of process gas 9 Ventilation path (first vent)
10 air passage (second air vent)
12i narrow gap 12a narrow gap 12 gap 13 protrusion 14 labyrinth flow path 21 well C1, C2, C3, C4 compressor m motor S gas pumping system (motor cooling system)

Claims (5)

  1.  シャフトに固定されるロータとステータとを有するモータと、前記モータにより駆動されてプロセスガスを昇圧する羽根車とを備え、前記プロセスガスを昇圧して搬送する圧縮機を具備し、
     前記ステータが内部に設置される筒状のモータフレームを備え、
     前記モータフレームは、
     前記モータの上流側に第1通風穴が複数または単数設置されている
     ことを特徴とするモータ冷却システム。
    A motor having a rotor fixed to the shaft and a stator, and an impeller driven by the motor to boost the process gas, and having a compressor for boosting and conveying the process gas;
    It has a cylindrical motor frame in which the stator is installed,
    The motor frame is
    The motor cooling system, wherein a plurality of or a plurality of first vent holes are installed upstream of the motor.
  2.  請求項1に記載のモータ冷却システムにおいて、
     プロセスガスを採取するための井戸に沿って設けられ内部に前記モータフレームが収容される筒状のケーシングを備え、
     前記モータフレームと前記ケーシングとの間の隙間は、
     前記第1通風穴より下流の箇所の一部を他の箇所より狭く形成されている
     ことを特徴とするモータ冷却システム。
    In the motor cooling system according to claim 1,
    It comprises a cylindrical casing provided along a well for extracting process gas and in which the motor frame is accommodated.
    The gap between the motor frame and the casing is
    A motor cooling system characterized in that a part of a portion downstream of the first ventilation hole is formed narrower than other portions.
  3.  請求項1に記載のモータ冷却システムにおいて、
     プロセスガスを採取するための井戸に沿って設けられ内部に前記モータフレームが収容される筒状のケーシングを備え、
     前記ケーシングまたは前記モータフレームの少なくとも何れかは、
     前記モータフレームと前記ケーシングとの間の隙間における前記第1通風穴より下流の箇所の一部を狭くする段差を有している
     ことを特徴とするモータ冷却システム。
    In the motor cooling system according to claim 1,
    It comprises a cylindrical casing provided along a well for extracting process gas and in which the motor frame is accommodated.
    At least one of the casing or the motor frame is
    A motor cooling system, comprising: a step for narrowing a part of a portion downstream of the first vent hole in a gap between the motor frame and the casing.
  4.  請求項1に記載のモータ冷却システムにおいて、
     前記モータフレームは、
     前記モータの下流側に第2通風穴が複数または単数設置されている
     ことを特徴とするモータ冷却システム。
    In the motor cooling system according to claim 1,
    The motor frame is
    The motor cooling system, wherein a plurality of or a plurality of second vent holes are installed downstream of the motor.
  5.  請求項1に記載のモータ冷却システムにおいて、
     プロセスガスを採取するための井戸に沿って設けられ内部に前記モータフレームが収容される筒状のケーシングを備え、
     前記ケーシングまたは前記モータフレームの少なくとも何れかは、
     前記モータフレームと前記ケーシングとの間の隙間の前記第1通風穴より下流の流路にラビリンス形状を有している
     ことを特徴とするモータ冷却システム。
    In the motor cooling system according to claim 1,
    It comprises a cylindrical casing provided along a well for extracting process gas and in which the motor frame is accommodated.
    At least one of the casing or the motor frame is
    A motor cooling system characterized by having a labyrinth shape in a flow passage downstream of the first vent hole in the gap between the motor frame and the casing.
PCT/JP2018/043382 2017-12-25 2018-11-26 Motor cooling system WO2019130935A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017247191A JP2019115177A (en) 2017-12-25 2017-12-25 Motor cooling system
JP2017-247191 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019130935A1 true WO2019130935A1 (en) 2019-07-04

Family

ID=67067107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043382 WO2019130935A1 (en) 2017-12-25 2018-11-26 Motor cooling system

Country Status (2)

Country Link
JP (1) JP2019115177A (en)
WO (1) WO2019130935A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230257925A1 (en) * 2018-08-30 2023-08-17 Whirlpool Corporation Motor assembly for a laundry treating appliance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230291286A1 (en) * 2020-08-28 2023-09-14 Aisin Corporation Manufacturing method of cooling member for rotary electric machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822848U (en) * 1981-08-03 1983-02-12 株式会社東芝 rotating electric machine
JP2001339912A (en) * 2000-05-23 2001-12-07 Hitachi Ltd Electric blower
JP2005168204A (en) * 2003-12-03 2005-06-23 Toshiba Corp Rotary electric machine
JP2010166717A (en) * 2009-01-16 2010-07-29 Nissan Motor Co Ltd Cooling structure for multilayered motor
JP2013158135A (en) * 2012-01-30 2013-08-15 Toshiba Corp High voltage bushing of rotary electric machine and rotary electric machine
JP2017085740A (en) * 2015-10-27 2017-05-18 株式会社日立製作所 Motor and compressor including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822848U (en) * 1981-08-03 1983-02-12 株式会社東芝 rotating electric machine
JP2001339912A (en) * 2000-05-23 2001-12-07 Hitachi Ltd Electric blower
JP2005168204A (en) * 2003-12-03 2005-06-23 Toshiba Corp Rotary electric machine
JP2010166717A (en) * 2009-01-16 2010-07-29 Nissan Motor Co Ltd Cooling structure for multilayered motor
JP2013158135A (en) * 2012-01-30 2013-08-15 Toshiba Corp High voltage bushing of rotary electric machine and rotary electric machine
JP2017085740A (en) * 2015-10-27 2017-05-18 株式会社日立製作所 Motor and compressor including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230257925A1 (en) * 2018-08-30 2023-08-17 Whirlpool Corporation Motor assembly for a laundry treating appliance

Also Published As

Publication number Publication date
JP2019115177A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
US8371811B2 (en) System and method for improving flow in pumping systems
CN105899763B (en) Turbine bearing(s) shell
JP4982476B2 (en) Radial flow type fluid machine
US20170211595A1 (en) Extracting dry gas from a wet-gas compressor
JP6037906B2 (en) Centrifugal fluid machine
US9567864B2 (en) Centrifugal impeller and turbomachine
US9829008B2 (en) Centrifugal compressor impeller cooling
WO2019130935A1 (en) Motor cooling system
JP6133801B2 (en) Diaphragm and centrifugal rotating machine
JP6134628B2 (en) Axial flow compressor and gas turbine
WO2016051835A1 (en) Centrifugal compressor
EP3421815A1 (en) Centrifugal compressor
US10808725B2 (en) Turbomachine and method of operating a turbomachine
JP2010031777A (en) Multistage centrifugal compressor
JP2015078654A (en) Compressor and gas turbine
JP2017180237A (en) Centrifugal compressor
JP6071644B2 (en) Multistage centrifugal fluid machine
RU2633278C1 (en) Standard housing of centrifugal gas compressor
US9879690B2 (en) Compressor having hollow shaft
JP2014084803A (en) Centrifugal fluid machine
JP2019214966A (en) Centrifugal compressor
US9970455B2 (en) Compressor
JP2016164403A (en) Compression device
US10724528B2 (en) Cooling system for cooling a motorcompressor unit
JP2015113714A (en) Rotary machine assembly and centrifugal rotary machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894086

Country of ref document: EP

Kind code of ref document: A1