WO2019130489A1 - Air conditioner management device - Google Patents

Air conditioner management device Download PDF

Info

Publication number
WO2019130489A1
WO2019130489A1 PCT/JP2017/046991 JP2017046991W WO2019130489A1 WO 2019130489 A1 WO2019130489 A1 WO 2019130489A1 JP 2017046991 W JP2017046991 W JP 2017046991W WO 2019130489 A1 WO2019130489 A1 WO 2019130489A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
unit
control
air
priority
Prior art date
Application number
PCT/JP2017/046991
Other languages
French (fr)
Japanese (ja)
Inventor
佑輝 西川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/046991 priority Critical patent/WO2019130489A1/en
Publication of WO2019130489A1 publication Critical patent/WO2019130489A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values

Definitions

  • the present invention relates to an air conditioner management apparatus that manages a plurality of air conditioners.
  • the present invention relates to the realization of energy saving control to reduce power.
  • This invention solves the above subjects, and it aims at obtaining the air conditioner management apparatus which can perform energy saving control according to the state of the air conditioning by equipment etc.
  • the air conditioner management apparatus is an air conditioner management apparatus that manages and controls a plurality of air conditioners, and is preset based on operation data obtained by the operation of the plurality of air conditioners.
  • the table data creation unit creates a table data creation unit that creates data for each unit to be controlled for multiple items, and the numerical value of the influence of the power reduction of the air conditioner on the temperature change of the air conditioning target space.
  • a priority determination unit configured to calculate the unit to be controlled based on the created data, and to determine the priority to perform the power reduction based on the calculated degree of influence.
  • the priority determining unit calculates the degree of influence from the data generated by the table data generating unit based on the operation data, and determines the priority for performing the power reduction. It is possible to reduce the power of the air conditioner having low impact with priority. For this reason, energy saving control can be performed according to the state of air conditioning that differs depending on equipment etc. without impairing the comfort.
  • FIG. 1 is a diagram showing a configuration of an air conditioning monitoring system centering on an air conditioner management device 1 according to Embodiment 1 of the present invention.
  • the air conditioning monitoring system according to the first embodiment includes an air conditioner management device 1, a plurality of air conditioners 2 (air conditioners 2A to 2D), and an external device 3. There is.
  • the air conditioner management device 1 is communicably connected to the plurality of air conditioners 2 and can transmit and receive signals.
  • the air conditioner management device 1 is also communicably connected to the external device 3 through another communication path, and can transmit and receive signals.
  • FIG. 2 is a diagram showing the configuration of the air conditioner 2 according to Embodiment 1 of the present invention.
  • a refrigerant circuit is configured by connecting the outdoor unit 200 and the indoor unit 100 by a gas refrigerant pipe 300 and a liquid refrigerant pipe 400.
  • the outdoor unit 200 includes a compressor 210, a four-way valve 220, and an outdoor heat exchanger 230.
  • the compressor 210 compresses and discharges the sucked refrigerant.
  • compressor 210 arbitrarily changes the operating frequency by, for example, an inverter circuit or the like, thereby changing the capacity of compressor 210 (the amount of refrigerant to be discharged per unit time). It can be changed.
  • the four-way valve 220 is a valve that switches the flow of the refrigerant, for example, according to the cooling operation and the heating operation.
  • the outdoor heat exchanger 230 exchanges heat between the refrigerant and air (air outside the room). For example, in heating operation, it functions as an evaporator and evaporates and evaporates the refrigerant. Also, in the cooling operation, it functions as a condenser and condenses and liquefies the refrigerant.
  • the indoor heat exchanger 110 performs heat exchange, for example, between the indoor air to be air-conditioned and the refrigerant.
  • the refrigerant functions as a condenser to condense and liquefy the refrigerant.
  • the refrigerant functions as an evaporator to evaporate and evaporate the refrigerant.
  • the indoor unit 100 has an indoor heat exchanger 110, an expansion valve 120 and an indoor fan 130.
  • an expansion valve 120 such as a throttling device (flow rate control means) decompresses and expands the refrigerant.
  • the opening degree adjustment is performed based on an instruction from a control device (not shown) or the like.
  • the indoor heat exchanger 110 exchanges heat between the indoor air, which is the space to be air-conditioned, and the refrigerant.
  • the refrigerant functions as an evaporator to evaporate and evaporate the refrigerant.
  • the indoor fan 130 passes the indoor air to the indoor heat exchanger 110 and supplies the air passed through the indoor heat exchanger 110 to the room.
  • the indoor unit 100 further includes an indoor control device 140 and a temperature sensor 150.
  • the temperature sensor 150 detects an indoor temperature which is the temperature of the air conditioning target space, and sends a signal relating to the detection to the indoor control device 140.
  • the indoor control device 140 manages the control capability of the indoor unit 100, and controls the indoor unit 100 so that the space to be air-conditioned becomes the set temperature.
  • the indoor control device 140 transmits a signal including operation data collected periodically, to the air conditioner management device 1 by detection of various sensors and the like.
  • the air conditioner management apparatus 1 includes in the signal operation data including data relating to the control capability of the indoor unit 100, data on the indoor temperature detected by the temperature sensor 150, and data on the set temperature.
  • the data relating to the control capability of the indoor unit 100 is data indicating the capability of the indoor unit 100 such as the opening degree of the expansion valve 120, the wind speed by the indoor fan 130, etc., being supplied to indoor air.
  • FIG. 3 is a diagram showing a configuration of the air conditioner management device 1 according to Embodiment 1 of the present invention.
  • the air conditioner management device 1 includes an air conditioning communication unit 11, an operation data storage unit 12, a table data creation unit 13, a table storage unit 14, a priority order determination unit 15, a control processing calculation unit 16, an external signal reception unit 17, and signal analysis. It has a portion 18.
  • the air conditioning communication unit 11 is an interface that performs communication between the air conditioner management device 1 and the plurality of air conditioners 2.
  • a signal including operation data sent from a plurality of air conditioners 2 is received.
  • the control processing calculation unit 16 sends a signal including an instruction generated by the processing to the plurality of air conditioners 2.
  • the operation data storage unit 12 stores and stores the operation data sent from the air conditioner 2 side. At this time, the operation data is stored in association with the time data.
  • the table data creation unit 13 creates table data to be managed in a table format based on the operation data stored in the operation data storage unit 12.
  • the table storage unit 14 stores and stores the table data created by the table data creation unit 13 in a table format.
  • the priority order determination unit 15 determines the order of the air conditioners 2 for which energy saving control is given priority.
  • a control unit to be managed and controlled by creation of table data, determination of priority, and the like will be described as being the air conditioner 2.
  • the external signal reception unit 17 receives an external signal sent from the external device 3 and converts it into external data which is data of a format that can be processed by the signal analysis unit 18.
  • the signal analysis unit 18 analyzes external data, and sends data related to an instruction from the external device 3 to the control processing calculation unit 16.
  • the control processing calculation unit 16 controls the air conditioner 2. It is assumed that energy saving control is performed to determine the control content of the air conditioner 2 according to the priority determined by the priority determining unit 15. Then, the control processing calculation unit 16 instructs the corresponding air conditioner 2 via the air conditioning communication unit 11 according to the determined control content.
  • each part is comprised based on a function about the air conditioner management apparatus 1 mentioned above, it has a control apparatus, a memory
  • the control device has, for example, a central processing unit (CPU).
  • the storage device stores, for example, operation data, table data, and the like.
  • the storage device is a volatile storage device (not shown) such as random access memory (RAM) capable of temporarily storing data, and a non-volatile auxiliary storage device (not shown) such as flash memory capable of storing data for a long period of time )have.
  • storage device memorize
  • the clocking device has a timer and the like, and the control device clocks the time used for calculation and the like.
  • the communication device is a device that transmits and receives signals to and from the air conditioner 2 and the external device 3.
  • FIG. 4 is a figure which shows the flow of the process regarding the table data creation which the air conditioner management apparatus 1 in Embodiment 1 of this invention performs.
  • the air conditioning communication unit 11 causes the operation data storage unit 12 to store and store the operation data included in the signal periodically transmitted from each air conditioner 2 (step S1).
  • the table data creation unit 13 detects, from the operation data storage unit 12, data relating to the control capability of the indoor unit 100 in each air conditioner 2 among the operation data, detection of the indoor temperature in the air conditioning target space, and the temperature sensor 150. Search the room temperature according to (step S2). Then, the table data creation unit 13 creates table data based on the retrieved operation data (step S3). The table data creation unit 13 stores the created table data in the table storage unit 14 (step S4).
  • the items created as table data are the control capability of the indoor unit 100, the average time from the thermo-off to the thermo-on, and the transition until the indoor temperature reaches the set temperature.
  • the table data creation unit 13 determines whether table data creation processing has been performed for all the indoor units 100 (step S5). Then, the processing of steps S2 to S5 is performed until the table data of all the indoor units 100 are stored in the table storage unit 14. A process is performed until table data of all the indoor units 100 are created.
  • FIG. 5 is a diagram for explaining creation of table data in the first embodiment of the present invention.
  • table data regarding the four air conditioners 2A to 2D will be described.
  • the table data creation unit 13 creates table data for the control capability of the indoor unit 100, the average time from thermo-off to thermo-on, and three items of transition until the indoor temperature reaches the set temperature. .
  • the control capability of the indoor unit 100 creates data based on the control data of the device in the indoor unit 100 included in the operation data and calculating the percentage of the capability currently being supplied with respect to the capability that can be supplied by percentage. .
  • the control capabilities of the indoor unit 100 of each of the air conditioners 2A to 2D are 100%, 50%, 20%, and 10%. .
  • FIG. 6 is a diagram for explaining the average time from thermo-off to thermo-on of the air conditioning apparatus 2A according to Embodiment 1 of the present invention and the transition until the room temperature reaches the set temperature.
  • FIG. 7 is a diagram for explaining the average time from thermo-off to thermo-on of the air conditioner 2B according to Embodiment 1 of the present invention and the transition until the room temperature reaches the set temperature.
  • the time change of indoor temperature in case the air conditioning apparatus 2A and the air conditioning apparatus 2B are performing heating operation is shown as an example.
  • the rising or falling speed until the room temperature reaches the set temperature is a transition until the room temperature reaches the set temperature.
  • the transition until the indoor temperature reaches the set temperature is an index of the warmth of the room which is the space to be air conditioned.
  • the air conditioner 2 is not completely stopped in order to maintain the room temperature at the set temperature, and the indoor fan 130 is stopped and the heat is not supplied to the room.
  • the thermal off and the thermal on for driving the indoor fan 130 are repeated.
  • the average time from thermo-off to thermo-on is an index of the coolness of the room which is the space to be air conditioned.
  • the table data creation unit 13 For the transition until the room temperature reaches the set temperature, the table data creation unit 13 reaches the set temperature based on the time when (the room temperature at the start of operation-set temperature) / the set temperature is reached. Create data related to the transition to The transition is the temperature rise or fall per unit time until the room temperature reaches the set temperature.
  • the transition of each of the air conditioners 2A to 2D is 5 [° C./min], 1 [° C./min], 5 [° C./min], 10 [° C./min] It has become.
  • the table data creation unit 13 creates data in which the average time from the thermo-off to the thermo-on repeatedly performed in the indoor unit 100 is calculated.
  • the average times of the air conditioners 2A to 2D are 5 minutes, 10 minutes, 4 minutes, and 20 minutes.
  • the influence of the temperature change is low when the numerical value is small, and the influence of the temperature change is high when the numerical value is large.
  • the items to be the table data regarding the average time from thermo-off to thermo-on, if the temperature change is small and the influence of the temperature change is low, the average time becomes longer and the numerical value becomes larger. For this reason, it is necessary to reverse the relationship so that the smaller the value, the lower the influence of the temperature change. Therefore, data is generated by calculating the reciprocal of the average time.
  • the average time of each of the air conditioners 2A to 2D is 0.2, 0.1, 0.25, and 0.05.
  • the reciprocal is calculated so that the smaller the numerical value is, the lower the influence of the temperature change is, but it is not limited to this.
  • the table data creation unit 13 normalizes the numerical value of each item. Specifically, conversion is performed such that the maximum value in each item is 1 and the numerical value of each item is in the range of 0 or more and 1 or less. Therefore, each numerical value is divided by the maximum value to create table data.
  • the table data relating to the control capability of the indoor unit 100 in each of the air conditioners 2A to 2D is 1, 0.5, 0.2, and 0.1.
  • table data relating to the transition of each of the air conditioners 2A to 2D is 0.8, 0.4, 1, 0.2.
  • the table data relating to the average time of each of the air conditioners 2A to 2D is 0.5, 0.1, 0.5, 1 respectively.
  • the table data creation unit 13 stores the created table data in the table storage unit 14 in a table format.
  • FIG. 8 is a diagram for explaining the procedure for determining the priority in the first embodiment of the present invention.
  • the priority determining unit 15 determines the priority of reducing the heat supply to the room which is the air conditioning target space. Therefore, the priority determining unit 15 calculates the degree of influence for each of the air conditioners 2A to 2D based on the table data.
  • the degree of influence is calculated as an absolute distance from the origin in a coordinate system having three items of table data as respective dimensions.
  • the influence degrees of the air conditioners 2A to 2D are 1.37, 0.65, 1.14 and 1.04, respectively.
  • FIG. 8A shows the relationship between the degree of influence and the distance as an image.
  • the priority determining unit 15 determines the priority in ascending order of the degree of influence obtained by the calculation.
  • the order of priority is in the order of the air conditioner 2B, the air conditioner 2D, the air conditioner 2C, and the air conditioner 2A.
  • the coordinates of a certain dimension are weighted in the calculation of the influence degree , Do not give weight between matters, shall be treated equally.
  • the present invention is not limited to this, and weighting may be performed depending on the item to be selected.
  • the control process calculation unit 16 performs a process related to energy saving control based on the priority order determined by the priority order determination unit 15.
  • energy saving control There are three main types of energy saving control: stop control, forced thermo-off control, and capability control.
  • the stop control is control for stopping the air conditioner 2.
  • Forced thermo-off control is control to forcibly thermo-off the indoor unit 100. As the air conditioning device 2 is not stopped, the energy reduction effect is reduced.
  • capacity control is control of the ability of the indoor unit 100 of the air conditioning apparatus 2 to supply heat to the air in the room which is the air conditioning target space. Therefore, the energy reduction effect increases in the order of stop control> forced thermo-off control> capacity control.
  • the forced thermo-off control is control between stop control and capability control.
  • the capability control different from the stop control and the forced thermo-off control, the capability can be set. For example, when the current capacity in the normal control before energy saving control is 100%, the capacity control of 50% and 80% is set to be performed. Then, stop control, forced thermo-off control, 50% capacity control, and 80% capacity control are performed in descending order of priority.
  • the air conditioner management device 1 performs the following process.
  • the priority determining unit 15 performs the process again to determine the priority based on the table data obtained by each air conditioner 2. Then, the control processing calculation unit 16 determines whether there is the air conditioner 2 whose priority has been raised or the air conditioner 2 whose priority is lowered. By determining the priority, it is confirmed whether the control under the energy saving control affects the priority. For example, when the priority of the air conditioner 2 is increased, the control achieves a high energy saving effect, but the control deviates from the operation in the normal control. Moreover, when the priority of the air conditioning apparatus 2 falls, the energy saving effect by control is low.
  • control processing calculation unit 16 lowers the energy saving reduction effect control by one step (for example, when the stop control is performed, the control processing calculation unit 16 is forced Perform processing such as thermo-off control. As a result, energy saving control is performed within a range that does not deviate significantly from the normal control.
  • the table data creation unit 13 creates table data based on operation data from the plurality of air conditioners 2 that perform management. did. Then, the priority determining unit 15 calculates the degree of influence which quantified the influence of the power reduction on the indoor temperature change, and determines the priority of the air conditioner 2 performing energy saving control, so that the temperature change is performed. The power of the air conditioner 2 with low influence can be reduced preferentially. Therefore, energy saving control can be performed without losing the comfort.
  • the conditions for performing the energy saving control performed by the control processing calculation unit 16 are not particularly limited.
  • the control processing calculation unit 16 normally controls the air conditioner 2 unless otherwise instructed. Then, when an energy saving operation is instructed based on an external signal sent from the external device 3, the energy saving control described in the first embodiment is performed.
  • the control processing calculation unit 16 performs control to stop all the air conditioners 2.
  • the emergency stop signal may be, for example, an emergency stop signal for preventing forgetting to stop at a unit of a building, an area, or the like, an emergency stop signal for fire notification, or an emergency stop signal due to energy saving.
  • the control processing calculation unit 16 may perform energy saving control as in the case of the above-described energy saving operation instruction.
  • the air conditioner management device 1 performs energy saving control based on an instruction from the outside, the installation environment of the air conditioner 2 can be flexibly supported without changing the purpose of the instruction. Energy saving control can be performed without losing comfort.
  • table data is created for each air conditioner 2 with each air conditioner 2 as a control unit, the priority order is determined, and energy saving control is performed.
  • the priority is determined by creating table data for each indoor unit 100, etc., with each indoor unit 100 as a control unit.
  • Energy saving control may be performed.
  • a group of indoor units 100 in the same area is used as a control unit, table data is created for each group by area, priority order is determined, and energy saving control is performed You may
  • table data was created about three items of control capability of indoor unit 100, average time from thermo-off to thermo-on, and transition until indoor temperature reaches setting temperature.
  • the number of items and item contents are not limited to these.
  • Air Conditioner Management Device 2, 2A, 2B, 2C, 2D Air Conditioning Device, 3 External Equipment, 11 Air Conditioning Communication Unit, 12 Operation Data Storage Unit, 13 Table Data Creation Unit, 14 Table Storage Unit, 15 Priority Determination 16 control processing calculation unit 17 external signal reception unit 18 signal analysis unit 100 indoor unit 110 indoor heat exchanger 120 expansion valve 130 indoor fan 140 indoor control device 150 temperature sensor 200 outdoor unit 210 compressor, 220 four-way valve, 230 outdoor heat exchanger, 300 gas refrigerant piping, 400 liquid refrigerant piping.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioner management device for managing and controlling a plurality of air conditioning devices, said air conditioner management device comprising: a table data creation unit that creates data for a plurality of preset items for each unit of control on the basis of operation data acquired by the operation of the plurality of air conditioning devices; and a priority order determination unit that calculates a degree of impact, which quantifies the impact on temperature variations in a space being air conditioned due to reducing power to the air conditioning device, for each unit of control on the basis of the data created by the table data creation unit, and determines the order of priority for reducing power on the basis of the calculated degree of impact.

Description

空気調和機管理装置Air conditioner management device
 この発明は、複数の空気調和装置を管理する空気調和機管理装置に関するものである。特に、電力削減をはかる省エネルギ制御の実現に係るものである。 The present invention relates to an air conditioner management apparatus that manages a plurality of air conditioners. In particular, the present invention relates to the realization of energy saving control to reduce power.
 従来から、複数の空気調和装置の状態などを管理し、制御を行う装置がある。その中で、電力を削減し、省エネルギをはかる制御を行う空気調和機制御装置がある(たとえば、特許文献1参照)。この空気調和機制御装置では、空気調和装置において、室内機の負荷指標による順位付けを行う。そして、順位が低い空気調和装置から運転を停止する省エネルギ制御を行うものである。また、複数の空気調和装置で広い空間を空気調和する場合、ローテーションをさせて、温度変化を最小限にするものである。 BACKGROUND Conventionally, there is an apparatus that manages and controls the states of a plurality of air conditioners and the like. Among them, there is an air conditioner control device that performs control to reduce power and save energy (for example, see Patent Document 1). In this air conditioner control device, the air conditioner is ranked according to the load index of the indoor units. And energy saving control which stops operation from the air harmony device with a low rank is performed. Moreover, when air conditioning a large space with a plurality of air conditioners, rotation is performed to minimize temperature change.
特開2014-089043号公報JP, 2014-089043, A
 しかしながら、特許文献1における空気調和機制御装置の制御では、空気調和装置の運転を止める処理を行うことで省エネルギを実現している。しかしながら、一方で、空気調和装置の運転を止めると、快適性を損なうことになる。空調対象空間となる設備毎に、構造部材(鉄筋、木造など)、窓、カーテンなどによる熱負荷の差、空間の広さなどが異なる場合には、さらに快適性にばらつきが発生し、省エネルギ性が見込まれたとしても、快適性を損なうことになる。 However, in the control of the air conditioner control device in Patent Document 1, energy saving is realized by performing processing for stopping the operation of the air conditioner. However, on the other hand, if the operation of the air conditioner is stopped, the comfort will be impaired. If the difference in heat load due to structural members (rebars, wooden etc.), windows, curtains, etc., and the size of the space differ for each facility to be the air conditioning target space, the comfort will further vary and energy saving Even if you expect sex, you will lose comfort.
 この発明は、上記のような課題を解決するものであり、設備などによる空気調和の状態に応じた省エネルギ制御を行うことができる空気調和機管理装置を得ることを目的とする。 This invention solves the above subjects, and it aims at obtaining the air conditioner management apparatus which can perform energy saving control according to the state of the air conditioning by equipment etc.
 この発明に係る空気調和機管理装置は、複数の空気調和装置を管理して制御する空気調和機管理装置であって、複数の空気調和装置の運転によって得られる運転データに基づいて、あらかじめ設定された複数の項目について、制御する単位毎にデータを作成するテーブルデータ作成部と、空気調和装置の電力削減による空調対象空間の温度変化への影響を数値化した影響度を、テーブルデータ作成部が作成したデータに基づいて、制御する単位毎に演算し、算出した影響度に基づいて、電力削減を行う優先順位を決定する優先順位決定部とを備えるものである。 The air conditioner management apparatus according to the present invention is an air conditioner management apparatus that manages and controls a plurality of air conditioners, and is preset based on operation data obtained by the operation of the plurality of air conditioners. The table data creation unit creates a table data creation unit that creates data for each unit to be controlled for multiple items, and the numerical value of the influence of the power reduction of the air conditioner on the temperature change of the air conditioning target space. And a priority determination unit configured to calculate the unit to be controlled based on the created data, and to determine the priority to perform the power reduction based on the calculated degree of influence.
 この発明によれば、運転データに基づいてテーブルデータ作成部が作成したデータから、優先順位決定部が、影響度を演算し、電力削減を行う優先順位を決定するようにしたので、温度変化の影響が低い空気調和装置の電力を優先して削減することができる。このため、快適性を損なわずに、設備などによって違いがでる空気調和の状態に応じた省エネルギ制御を行うことができる。 According to the present invention, the priority determining unit calculates the degree of influence from the data generated by the table data generating unit based on the operation data, and determines the priority for performing the power reduction. It is possible to reduce the power of the air conditioner having low impact with priority. For this reason, energy saving control can be performed according to the state of air conditioning that differs depending on equipment etc. without impairing the comfort.
この発明の実施の形態1における空気調和機管理装置1を中心とする空調監視システムの構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of the air-conditioning monitoring system centering on the air conditioner management apparatus 1 in Embodiment 1 of this invention. この発明の実施の形態1における空気調和装置2の構成を示す図である。It is a figure which shows the structure of the air conditioning apparatus 2 in Embodiment 1 of this invention. この発明の実施の形態1における空気調和機管理装置1の構成を示す図である。It is a figure which shows the structure of the air conditioner management apparatus 1 in Embodiment 1 of this invention. この発明の実施の形態1における空気調和機管理装置1が行うテーブルデータ作成に関する処理の流れを示す図である。It is a figure which shows the flow of the process regarding the table data creation which the air conditioner management apparatus 1 in Embodiment 1 of this invention performs. この発明の実施の形態1におけるテーブルデータの作成を説明する図である。It is a figure explaining preparation of the table data in Embodiment 1 of this invention. この発明の実施の形態1における空気調和装置2Aのサーモオフからサーモオンするまでの平均時間および室内温度が設定温度に到達するまでの推移について説明する図である。It is a figure explaining the transition until the average time and room temperature from thermo-off to thermo-on of air conditioning apparatus 2A in Embodiment 1 of this invention reach | attain a preset temperature. この発明の実施の形態1における空気調和装置2Bのサーモオフからサーモオンするまでの平均時間および室内温度が設定温度に到達するまでの推移について説明する図である。It is a figure explaining the transition until the average time from the thermo-off of the air conditioning apparatus 2B to thermo-on in Embodiment 1 of this invention and room temperature reach | attains preset temperature. この発明の実施の形態1における優先順位決定に係る手順について説明する図である。It is a figure explaining the procedure which concerns on the priority determination in Embodiment 1 of this invention.
実施の形態1.
 図1は、この発明の実施の形態1における空気調和機管理装置1を中心とする空調監視システムの構成を示す図である。図1に示すように、実施の形態1の空調監視システムは、空気調和機管理装置1、複数台の空気調和装置2(空気調和装置2A~空気調和装置2D)および外部機器3で構成されている。そして、空気調和機管理装置1は、複数台の空気調和装置2との間で通信接続され、信号の送受信が可能である。また、空気調和機管理装置1は、別の通信経路で外部機器3とも通信接続され、信号の送受信が可能である。
Embodiment 1
FIG. 1 is a diagram showing a configuration of an air conditioning monitoring system centering on an air conditioner management device 1 according to Embodiment 1 of the present invention. As shown in FIG. 1, the air conditioning monitoring system according to the first embodiment includes an air conditioner management device 1, a plurality of air conditioners 2 (air conditioners 2A to 2D), and an external device 3. There is. The air conditioner management device 1 is communicably connected to the plurality of air conditioners 2 and can transmit and receive signals. The air conditioner management device 1 is also communicably connected to the external device 3 through another communication path, and can transmit and receive signals.
 図2は、この発明の実施の形態1における空気調和装置2の構成を示す図である。図2に示すように、空気調和装置2は、室外機200と室内機100とを、ガス冷媒配管300、液冷媒配管400により配管接続することで、冷媒回路が構成される。室外機200は、圧縮機210、四方弁220および室外熱交換器230を有している。実施の形態1の空気調和装置2は、1台の室外機200と1台の室内機100が配管接続されているものとする。 FIG. 2 is a diagram showing the configuration of the air conditioner 2 according to Embodiment 1 of the present invention. As shown in FIG. 2, in the air conditioner 2, a refrigerant circuit is configured by connecting the outdoor unit 200 and the indoor unit 100 by a gas refrigerant pipe 300 and a liquid refrigerant pipe 400. The outdoor unit 200 includes a compressor 210, a four-way valve 220, and an outdoor heat exchanger 230. In the air conditioner 2 of the first embodiment, it is assumed that one outdoor unit 200 and one indoor unit 100 are connected by piping.
 圧縮機210は、吸入した冷媒を圧縮して吐出する。特に限定するものではないが、実施の形態1の圧縮機210は、たとえばインバータ回路などにより、運転周波数を任意に変化させることにより、圧縮機210の容量(単位時間あたりの冷媒を送り出す量)を変化させることができる。四方弁220は、たとえば冷房運転時と暖房運転時とによって冷媒の流れを切り換える弁である。 The compressor 210 compresses and discharges the sucked refrigerant. Although not particularly limited, compressor 210 according to the first embodiment arbitrarily changes the operating frequency by, for example, an inverter circuit or the like, thereby changing the capacity of compressor 210 (the amount of refrigerant to be discharged per unit time). It can be changed. The four-way valve 220 is a valve that switches the flow of the refrigerant, for example, according to the cooling operation and the heating operation.
 室外熱交換器230は、冷媒と空気(室外の空気)との熱交換を行う。たとえば、暖房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。 The outdoor heat exchanger 230 exchanges heat between the refrigerant and air (air outside the room). For example, in heating operation, it functions as an evaporator and evaporates and evaporates the refrigerant. Also, in the cooling operation, it functions as a condenser and condenses and liquefies the refrigerant.
 室内熱交換器110は、たとえば空調対象となる室内の空気と冷媒との熱交換を行う。暖房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、冷房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。 The indoor heat exchanger 110 performs heat exchange, for example, between the indoor air to be air-conditioned and the refrigerant. During heating operation, the refrigerant functions as a condenser to condense and liquefy the refrigerant. In addition, during the cooling operation, the refrigerant functions as an evaporator to evaporate and evaporate the refrigerant.
 一方、室内機100は、室内熱交換器110、膨張弁120および室内ファン130を有している。膨張弁120は、絞り装置(流量制御手段)などの膨張弁120は冷媒を減圧して膨張させる。たとえば電子式膨張弁などで構成した場合には、制御装置(図示せず)などの指示に基づいて開度調整を行う。また、室内熱交換器110は、空調対象空間である室内の空気と冷媒との熱交換を行う。たとえば、暖房運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。また、冷房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。室内ファン130は、室内の空気を、室内熱交換器110に通過させ、室内熱交換器110を通過させた空気を室内に供給する。 On the other hand, the indoor unit 100 has an indoor heat exchanger 110, an expansion valve 120 and an indoor fan 130. In the expansion valve 120, an expansion valve 120 such as a throttling device (flow rate control means) decompresses and expands the refrigerant. For example, in the case of an electronic expansion valve or the like, the opening degree adjustment is performed based on an instruction from a control device (not shown) or the like. In addition, the indoor heat exchanger 110 exchanges heat between the indoor air, which is the space to be air-conditioned, and the refrigerant. For example, in heating operation, it functions as a condenser and condenses and liquefies the refrigerant. In addition, during the cooling operation, the refrigerant functions as an evaporator to evaporate and evaporate the refrigerant. The indoor fan 130 passes the indoor air to the indoor heat exchanger 110 and supplies the air passed through the indoor heat exchanger 110 to the room.
 実施の形態1の室内機100は、さらに、室内制御装置140および温度センサ150を有している。温度センサ150は、空調対象空間の温度である室内温度を検出し、検出に係る信号を室内制御装置140に送る。室内制御装置140は、室内機100の制御能力を管理し、空調対象空間が設定された設定温度となるように、室内機100の制御を行う。また、室内制御装置140は、各種センサなどの検出により、定期的に収集した運転データを含む信号を、空気調和機管理装置1に送信する。特に、実施の形態1においては、室内機100の制御能力に係るデータ、温度センサ150が検出した室内温度のデータおよび設定温度のデータを含む運転データを、信号に含め、空気調和機管理装置1に送信する。ここで、室内機100の制御能力に係るデータとは、膨張弁120の開度、室内ファン130による風速などの、室内機100が、室内の空気に供給している能力を示すデータである。 The indoor unit 100 according to the first embodiment further includes an indoor control device 140 and a temperature sensor 150. The temperature sensor 150 detects an indoor temperature which is the temperature of the air conditioning target space, and sends a signal relating to the detection to the indoor control device 140. The indoor control device 140 manages the control capability of the indoor unit 100, and controls the indoor unit 100 so that the space to be air-conditioned becomes the set temperature. In addition, the indoor control device 140 transmits a signal including operation data collected periodically, to the air conditioner management device 1 by detection of various sensors and the like. In particular, in the first embodiment, the air conditioner management apparatus 1 includes in the signal operation data including data relating to the control capability of the indoor unit 100, data on the indoor temperature detected by the temperature sensor 150, and data on the set temperature. Send to Here, the data relating to the control capability of the indoor unit 100 is data indicating the capability of the indoor unit 100 such as the opening degree of the expansion valve 120, the wind speed by the indoor fan 130, etc., being supplied to indoor air.
 図3は、この発明の実施の形態1における空気調和機管理装置1の構成を示す図である。空気調和機管理装置1は、空調通信部11、運転データ保管部12、テーブルデータ作成部13、テーブル保管部14、優先順位決定部15、制御処理計算部16、外部信号受信部17および信号解析部18を有している。 FIG. 3 is a diagram showing a configuration of the air conditioner management device 1 according to Embodiment 1 of the present invention. The air conditioner management device 1 includes an air conditioning communication unit 11, an operation data storage unit 12, a table data creation unit 13, a table storage unit 14, a priority order determination unit 15, a control processing calculation unit 16, an external signal reception unit 17, and signal analysis. It has a portion 18.
 空調通信部11は、空気調和機管理装置1と複数の空気調和装置2との間の通信を行うインターフェースとなる。実施の形態1においては、複数の空気調和装置2から送られる運転データを含む信号を受信する。また、複数の空気調和装置2に、制御処理計算部16が処理を行って生成した指示を含む信号を送る。運転データ保管部12は、空気調和装置2側から送られた運転データを記憶し、保管する。このとき、運転データは、時刻データと関連づけて保管される。テーブルデータ作成部13は、運転データ保管部12が保管する運転データに基づいて、テーブル形式で管理するテーブルデータを作成する。テーブル保管部14は、テーブルデータ作成部13が作成したテーブルデータを、テーブル形式で記憶して、保管する。優先順位決定部15は、テーブル保管部14が保管するテーブルデータに基づいて、優先して省エネルギ制御する空気調和装置2の順位を決定する。ここで、実施の形態1では、テーブルデータの作成、優先順位の決定などにより、管理および制御する制御単位を、空気調和装置2であるものとして説明する。 The air conditioning communication unit 11 is an interface that performs communication between the air conditioner management device 1 and the plurality of air conditioners 2. In the first embodiment, a signal including operation data sent from a plurality of air conditioners 2 is received. In addition, the control processing calculation unit 16 sends a signal including an instruction generated by the processing to the plurality of air conditioners 2. The operation data storage unit 12 stores and stores the operation data sent from the air conditioner 2 side. At this time, the operation data is stored in association with the time data. The table data creation unit 13 creates table data to be managed in a table format based on the operation data stored in the operation data storage unit 12. The table storage unit 14 stores and stores the table data created by the table data creation unit 13 in a table format. Based on the table data stored in the table storage unit 14, the priority order determination unit 15 determines the order of the air conditioners 2 for which energy saving control is given priority. Here, in the first embodiment, a control unit to be managed and controlled by creation of table data, determination of priority, and the like will be described as being the air conditioner 2.
 外部信号受信部17は、外部機器3から送られる外部信号を受信し、信号解析部18が処理可能な形式のデータである外部データに変換する。また、信号解析部18は、外部データを解析し、外部機器3からの指示に係るデータを制御処理計算部16に送る。 The external signal reception unit 17 receives an external signal sent from the external device 3 and converts it into external data which is data of a format that can be processed by the signal analysis unit 18. In addition, the signal analysis unit 18 analyzes external data, and sends data related to an instruction from the external device 3 to the control processing calculation unit 16.
 制御処理計算部16は、空気調和装置2を制御する。優先順位決定部15が決定した優先順位により、空気調和装置2の制御内容を決定する、省エネルギ制御を行うものとする。そして、制御処理計算部16は、空調通信部11を介して、対応する空気調和装置2に対して、決定した制御内容に係る指示を行う。 The control processing calculation unit 16 controls the air conditioner 2. It is assumed that energy saving control is performed to determine the control content of the air conditioner 2 according to the priority determined by the priority determining unit 15. Then, the control processing calculation unit 16 instructs the corresponding air conditioner 2 via the air conditioning communication unit 11 according to the determined control content.
 ここで、前述した空気調和機管理装置1について、機能に基づいて各部を構成しているが、ハードウェアの構成としては、制御装置、記憶装置、計時装置、通信装置などを有している。制御装置は、たとえば、CPU(Central Processing Unit)などを有している。また、記憶装置は、たとえば、運転データ、テーブルデータなどを記憶する。記憶装置は、データを一時的に記憶できるランダムアクセスメモリ(RAM)などの揮発性記憶装置(図示せず)およびデータを長期的に記憶できるフラッシュメモリなどの不揮発性の補助記憶装置(図示せず)を有している。また、記憶装置は、プログラムを記憶し、制御装置が、プログラムに基づいて処理を実行して、空気調和機管理装置1の各部が行う処理を実現する。そして、計時装置は、タイマなどを有し、制御装置が、演算などに用いる時間の計時を行う。通信装置は、空気調和装置2および外部機器3との間で信号の送受信を行う装置となる。 Here, although each part is comprised based on a function about the air conditioner management apparatus 1 mentioned above, it has a control apparatus, a memory | storage device, a time-measurement apparatus, a communication apparatus etc. as a structure of a hardware. The control device has, for example, a central processing unit (CPU). Also, the storage device stores, for example, operation data, table data, and the like. The storage device is a volatile storage device (not shown) such as random access memory (RAM) capable of temporarily storing data, and a non-volatile auxiliary storage device (not shown) such as flash memory capable of storing data for a long period of time )have. Moreover, a memory | storage device memorize | stores a program and a control apparatus performs a process based on a program, and implement | achieves the process which each part of the air conditioner management apparatus 1 performs. Then, the clocking device has a timer and the like, and the control device clocks the time used for calculation and the like. The communication device is a device that transmits and receives signals to and from the air conditioner 2 and the external device 3.
 図4は、この発明の実施の形態1における空気調和機管理装置1が行うテーブルデータ作成に関する処理の流れを示す図である。空調通信部11は、各空気調和装置2から定期的に送られる信号に含まれる運転データを、運転データ保管部12に記憶させ、保管させる(ステップS1)。 FIG. 4: is a figure which shows the flow of the process regarding the table data creation which the air conditioner management apparatus 1 in Embodiment 1 of this invention performs. The air conditioning communication unit 11 causes the operation data storage unit 12 to store and store the operation data included in the signal periodically transmitted from each air conditioner 2 (step S1).
 テーブルデータ作成部13は、運転データ保管部12から、運転データのうち、各空気調和装置2における室内機100の制御能力に係るデータ、空調対象空間である室内の設定温度および温度センサ150の検出に係る室内温度を検索する(ステップS2)。そして、テーブルデータ作成部13は、検索した運転データに基づいて、テーブルデータを作成する(ステップS3)。テーブルデータ作成部13は、作成したテーブルデータを、テーブル保管部14に保管させる(ステップS4)。ここで、実施の形態1において、テーブルデータとして作成される項目は、室内機100の制御能力、サーモオフからサーモオンするまでの平均時間および室内温度が設定温度に到達するまでの推移である。 The table data creation unit 13 detects, from the operation data storage unit 12, data relating to the control capability of the indoor unit 100 in each air conditioner 2 among the operation data, detection of the indoor temperature in the air conditioning target space, and the temperature sensor 150. Search the room temperature according to (step S2). Then, the table data creation unit 13 creates table data based on the retrieved operation data (step S3). The table data creation unit 13 stores the created table data in the table storage unit 14 (step S4). Here, in the first embodiment, the items created as table data are the control capability of the indoor unit 100, the average time from the thermo-off to the thermo-on, and the transition until the indoor temperature reaches the set temperature.
 テーブルデータ作成部13は、すべての室内機100に対して、テーブルデータ作成処理を行ったかどうかを判定する(ステップS5)。そして、すべての室内機100のテーブルデータがテーブル保管部14に保管されるまで、ステップS2~ステップS5の処理を行う。すべての室内機100のテーブルデータを作成するまで処理を行う。 The table data creation unit 13 determines whether table data creation processing has been performed for all the indoor units 100 (step S5). Then, the processing of steps S2 to S5 is performed until the table data of all the indoor units 100 are stored in the table storage unit 14. A process is performed until table data of all the indoor units 100 are created.
 図5は、この発明の実施の形態1におけるテーブルデータの作成を説明する図である。ここでは、4台の空気調和装置2A~空気調和装置2Dに関するテーブルデータについて説明する。前述したように、テーブルデータ作成部13は、室内機100の制御能力、サーモオフからサーモオンするまでの平均時間および室内温度が設定温度に到達するまでの推移の3つの項目について、テーブルデータを作成する。 FIG. 5 is a diagram for explaining creation of table data in the first embodiment of the present invention. Here, table data regarding the four air conditioners 2A to 2D will be described. As described above, the table data creation unit 13 creates table data for the control capability of the indoor unit 100, the average time from thermo-off to thermo-on, and three items of transition until the indoor temperature reaches the set temperature. .
 室内機100の制御能力は、運転データに含まれる室内機100内における機器の制御データに基づき、供給可能な能力に対して、現に供給している能力の割合を百分率で演算したデータを作成する。図5(a)では、空気調和装置2A~空気調和装置2Dのそれぞれの室内機100の制御能力は、100[%]、50[%]、20[%]、10[%]となっている。 The control capability of the indoor unit 100 creates data based on the control data of the device in the indoor unit 100 included in the operation data and calculating the percentage of the capability currently being supplied with respect to the capability that can be supplied by percentage. . In FIG. 5A, the control capabilities of the indoor unit 100 of each of the air conditioners 2A to 2D are 100%, 50%, 20%, and 10%. .
 図6は、この発明の実施の形態1における空気調和装置2Aのサーモオフからサーモオンするまでの平均時間および室内温度が設定温度に到達するまでの推移について説明する図である。また、図7は、この発明の実施の形態1における空気調和装置2Bのサーモオフからサーモオンするまでの平均時間および室内温度が設定温度に到達するまでの推移について説明する図である。図6および図7では、空気調和装置2Aおよび空気調和装置2Bが暖房運転を行っている場合の室内温度の時間変化を例として示している。たとえば、室内温度が設定温度に到達するまでの間における上昇または下降速度が、室内温度が設定温度に到達するまでの推移となる。室内温度が設定温度に到達するまでの推移は、暖房運転の場合には、空調対象空間である室内の暖まりやすさの指標となる。一方、室内温度が設定温度に到達してからは、室内温度を設定温度に維持するため、空気調和装置2を完全停止させず、室内ファン130を停止して室内への熱の供給を行わないサーモオフと室内ファン130を駆動させるサーモオンとを繰り返す。ここで、サーモオフからサーモオンするまでの平均時間は、暖房運転の場合には、空調対象空間である室内の冷えやすさの指標となる。 FIG. 6 is a diagram for explaining the average time from thermo-off to thermo-on of the air conditioning apparatus 2A according to Embodiment 1 of the present invention and the transition until the room temperature reaches the set temperature. FIG. 7 is a diagram for explaining the average time from thermo-off to thermo-on of the air conditioner 2B according to Embodiment 1 of the present invention and the transition until the room temperature reaches the set temperature. In FIG. 6 and FIG. 7, the time change of indoor temperature in case the air conditioning apparatus 2A and the air conditioning apparatus 2B are performing heating operation is shown as an example. For example, the rising or falling speed until the room temperature reaches the set temperature is a transition until the room temperature reaches the set temperature. In the case of heating operation, the transition until the indoor temperature reaches the set temperature is an index of the warmth of the room which is the space to be air conditioned. On the other hand, after the room temperature reaches the set temperature, the air conditioner 2 is not completely stopped in order to maintain the room temperature at the set temperature, and the indoor fan 130 is stopped and the heat is not supplied to the room. The thermal off and the thermal on for driving the indoor fan 130 are repeated. Here, in the case of heating operation, the average time from thermo-off to thermo-on is an index of the coolness of the room which is the space to be air conditioned.
 テーブルデータ作成部13は、室内温度が設定温度に到達するまでの推移については、(運転開始時の室内温度-設定温度)/設定温度に到達した時間に基づいて、室内温度が設定温度に到達するまでの推移に係るデータを作成する。推移は、室内温度が設定温度に到達するまでの単位時間あたりの上昇または下降温度となる。図5(a)では、空気調和装置2A~空気調和装置2Dのそれぞれの推移は、5[℃/分]、1[℃/分]、5[℃/分]、10[℃/分]となっている。 For the transition until the room temperature reaches the set temperature, the table data creation unit 13 reaches the set temperature based on the time when (the room temperature at the start of operation-set temperature) / the set temperature is reached. Create data related to the transition to The transition is the temperature rise or fall per unit time until the room temperature reaches the set temperature. In FIG. 5A, the transition of each of the air conditioners 2A to 2D is 5 [° C./min], 1 [° C./min], 5 [° C./min], 10 [° C./min] It has become.
 また、テーブルデータ作成部13は、室内機100において繰り返し行われるサーモオフしてからサーモオンするまでの平均時間を演算したデータを作成する。図5(a)では、空気調和装置2A~空気調和装置2Dのそれぞれの平均時間は、5分、10分、4分、20分となる。 Further, the table data creation unit 13 creates data in which the average time from the thermo-off to the thermo-on repeatedly performed in the indoor unit 100 is calculated. In FIG. 5A, the average times of the air conditioners 2A to 2D are 5 minutes, 10 minutes, 4 minutes, and 20 minutes.
 ここで、各項目のデータの数値において、数値が小さいと、温度変化の影響が低く、数値が大きいと温度変化の影響が高くなるように調整する。テーブルデータとなる項目のうち、サーモオフしてからサーモオンするまでの平均時間については、温度変化が小さくて、温度変化の影響が低くなる方が、平均時間が長くなって、数値が大きくなる。このため、数値が小さい方が温度変化の影響が低くなるように、関係を逆転する必要がある。そこで、平均時間の逆数を演算したデータを作成する。図5(b)に示すように、空気調和装置2A~空気調和装置2Dのそれぞれの平均時間は、0.2、0.1、0.25、0.05となる。ここでは、数値が小さい方が温度変化の影響が低くなるように、逆数を算出したが、これに限定するものではない。 Here, in the numerical values of the data of each item, the influence of the temperature change is low when the numerical value is small, and the influence of the temperature change is high when the numerical value is large. Among the items to be the table data, regarding the average time from thermo-off to thermo-on, if the temperature change is small and the influence of the temperature change is low, the average time becomes longer and the numerical value becomes larger. For this reason, it is necessary to reverse the relationship so that the smaller the value, the lower the influence of the temperature change. Therefore, data is generated by calculating the reciprocal of the average time. As shown in FIG. 5B, the average time of each of the air conditioners 2A to 2D is 0.2, 0.1, 0.25, and 0.05. Here, the reciprocal is calculated so that the smaller the numerical value is, the lower the influence of the temperature change is, but it is not limited to this.
 さらに、テーブルデータ作成部13は、各項目の数値について正規化を行う。具体的には、各項目における最大値が1となり、各項目の数値が0以上1以下の間となるように変換する。そこで、各数値を最大値で割って、テーブルデータを作成する。図5(c)に示すように、空気調和装置2A~空気調和装置2Dのそれぞれの室内機100の制御能力に係るテーブルデータは、1、0.5、0.2、0.1となる。また、空気調和装置2A~空気調和装置2Dのそれぞれの推移に係るテーブルデータは、0.8、0.4、1、0.2となる。そして、空気調和装置2A~空気調和装置2Dのそれぞれの平均時間に係るテーブルデータは、0.5、0.1、0.5、1となる。テーブルデータ作成部13は、作成したテーブルデータを、テーブル保管部14に、テーブル形式で保管させる。 Furthermore, the table data creation unit 13 normalizes the numerical value of each item. Specifically, conversion is performed such that the maximum value in each item is 1 and the numerical value of each item is in the range of 0 or more and 1 or less. Therefore, each numerical value is divided by the maximum value to create table data. As shown in FIG. 5C, the table data relating to the control capability of the indoor unit 100 in each of the air conditioners 2A to 2D is 1, 0.5, 0.2, and 0.1. Further, table data relating to the transition of each of the air conditioners 2A to 2D is 0.8, 0.4, 1, 0.2. The table data relating to the average time of each of the air conditioners 2A to 2D is 0.5, 0.1, 0.5, 1 respectively. The table data creation unit 13 stores the created table data in the table storage unit 14 in a table format.
 図8は、この発明の実施の形態1における優先順位決定に係る手順について説明する図である。優先順位決定部15は、省エネルギをはかるために、空調対象空間である室内への熱供給を削減する優先順位を決定する。このため、優先順位決定部15は、テーブルデータに基づいて、空気調和装置2A~空気調和装置2Dについて、それぞれ影響度の演算を行う。影響度は、テーブルデータの3つの項目を各次元とする座標系において、原点からの絶対距離として算出する。空気調和装置2A~空気調和装置2Dのそれぞれの影響度は、1.37、0.65、1.14、1.04となる。ここで、距離の最大値は、(12+12+12)1/2=1.732…、となる。図8(a)は、影響度と距離との関係をイメージとして表したものである。そして、優先順位決定部15は、演算して得られた影響度が小さい順に優先順位を決定する。図8(b)に示すように、優先順位は、空気調和装置2B、空気調和装置2D、空気調和装置2C、空気調和装置2Aの順になる。ここで、実施の形態1では、室内機100の状態を表す制御能力に対し、室内における推移および平均時間が表されることから、影響度の算出において、たとえば、ある次元の座標に重み付けするなど、事項間で軽重を設けることはせず、対等に扱うものとする。ただし、これに限定するものではなく、選択する事項によっては、重み付けなどを行ってもよい。 FIG. 8 is a diagram for explaining the procedure for determining the priority in the first embodiment of the present invention. In order to save energy, the priority determining unit 15 determines the priority of reducing the heat supply to the room which is the air conditioning target space. Therefore, the priority determining unit 15 calculates the degree of influence for each of the air conditioners 2A to 2D based on the table data. The degree of influence is calculated as an absolute distance from the origin in a coordinate system having three items of table data as respective dimensions. The influence degrees of the air conditioners 2A to 2D are 1.37, 0.65, 1.14 and 1.04, respectively. Here, the maximum value of the distance is (12 + 12 + 12) 1/2 = 1.732. FIG. 8A shows the relationship between the degree of influence and the distance as an image. Then, the priority determining unit 15 determines the priority in ascending order of the degree of influence obtained by the calculation. As shown in FIG. 8B, the order of priority is in the order of the air conditioner 2B, the air conditioner 2D, the air conditioner 2C, and the air conditioner 2A. Here, in the first embodiment, since the transition and the average time in the room are represented with respect to the control ability representing the state of the indoor unit 100, for example, the coordinates of a certain dimension are weighted in the calculation of the influence degree , Do not give weight between matters, shall be treated equally. However, the present invention is not limited to this, and weighting may be performed depending on the item to be selected.
 制御処理計算部16は、優先順位決定部15が決定した優先順位に基づいて、省エネルギ制御に関する処理を行う。省エネルギ制御には、主に、停止制御、強制サーモオフ制御および能力制御の3つの制御がある。停止制御は、空気調和装置2を停止させる制御である。強制サーモオフ制御は、室内機100を強制的にサーモオフさせる制御である。空気調和装置2を停止させない分、エネルギ削減効果が低くなる。そして、能力制御は、空気調和装置2の室内機100が、空調対象空間である室内の空気に対する熱供給の能力の制御である。したがって、停止制御>強制サーモオフ制御>能力制御の順に、エネルギ削減効果が高くなる。 The control process calculation unit 16 performs a process related to energy saving control based on the priority order determined by the priority order determination unit 15. There are three main types of energy saving control: stop control, forced thermo-off control, and capability control. The stop control is control for stopping the air conditioner 2. Forced thermo-off control is control to forcibly thermo-off the indoor unit 100. As the air conditioning device 2 is not stopped, the energy reduction effect is reduced. And capacity control is control of the ability of the indoor unit 100 of the air conditioning apparatus 2 to supply heat to the air in the room which is the air conditioning target space. Therefore, the energy reduction effect increases in the order of stop control> forced thermo-off control> capacity control.
 前述したように、優先順位が高い空気調和装置2は、エネルギを削減しても、室内の温度変化に与える影響は小さい。したがって、積極的に停止制御を指示する。一方、優先順位が低い空気調和装置2は、エネルギの削減によって、室内の温度変化に与える影響は大きい。そこで、エネルギを削減しすぎないように、能力制御を指示する。強制サーモオフ制御については、停止制御および能力制御の間における制御となる。ここで、能力制御については、停止制御および強制サーモオフ制御とは違って、能力を設定することができる。たとえば、省エネルギ制御を行う前の通常制御における現能力を100%としたとき、その50%と80%の能力制御を行うように設定しておく。そして、優先順位の高い順に、停止制御、強制サーモオフ制御、50%の能力制御、80%の能力制御の制御を行わせるようにする。 As described above, the high priority air conditioner 2 has little influence on the temperature change in the room even if energy is reduced. Therefore, the stop control is positively instructed. On the other hand, the air conditioner 2 with a low priority has a large influence on the temperature change in the room due to the reduction of energy. Therefore, capacity control is instructed not to reduce energy excessively. The forced thermo-off control is control between stop control and capability control. Here, as for the capability control, different from the stop control and the forced thermo-off control, the capability can be set. For example, when the current capacity in the normal control before energy saving control is 100%, the capacity control of 50% and 80% is set to be performed. Then, stop control, forced thermo-off control, 50% capacity control, and 80% capacity control are performed in descending order of priority.
 ただ、優先順位と省エネルギ制御における制御内容とを固定してしまうと、行われる制御が、空気調和装置2にとって、最適とは限らない場合がある。そこで、たとえば、省エネルギ制御を行っているときに、空気調和機管理装置1では、次のような処理を行う。 However, if the priority and the control content in the energy saving control are fixed, the control to be performed may not be optimal for the air conditioner 2. Therefore, for example, when performing energy saving control, the air conditioner management device 1 performs the following process.
 優先順位決定部15は、省エネルギ制御中に、各空気調和装置2によって得られたテーブルデータに基づき、再度、処理を行って優先順位を決定する。そして、制御処理計算部16は、優先順位が上がった空気調和装置2または優先順位が下がった空気調和装置2があるかどうかを判定する。優先順位を判定することで、省エネルギ制御下における制御が優先順位に影響しているかを確認する。たとえば、空気調和装置2の優先順位が上がった場合、制御によって省エネルギ効果は高いが、通常制御における運転に比べて逸脱した制御となっている。また、空気調和装置2の優先順位が下がった場合、制御による省エネルギ効果が低くなっている。そこで、制御処理計算部16は、優先順位が高くなった空気調和装置2に対して、たとえば、省エネルギ削減効果制御を1段階下げるなどの(たとえば、停止制御を行っていた場合には、強制サーモオフ制御にするなど)処理を行う。これにより、通常制御から大きく逸脱しない範囲で、省エネルギ制御が行われるようにする。 During the energy saving control, the priority determining unit 15 performs the process again to determine the priority based on the table data obtained by each air conditioner 2. Then, the control processing calculation unit 16 determines whether there is the air conditioner 2 whose priority has been raised or the air conditioner 2 whose priority is lowered. By determining the priority, it is confirmed whether the control under the energy saving control affects the priority. For example, when the priority of the air conditioner 2 is increased, the control achieves a high energy saving effect, but the control deviates from the operation in the normal control. Moreover, when the priority of the air conditioning apparatus 2 falls, the energy saving effect by control is low. Therefore, for example, the control processing calculation unit 16 lowers the energy saving reduction effect control by one step (for example, when the stop control is performed, the control processing calculation unit 16 is forced Perform processing such as thermo-off control. As a result, energy saving control is performed within a range that does not deviate significantly from the normal control.
 以上のように、実施の形態1の空気調和機管理装置1によれば、管理を行う複数の空気調和装置2からの運転データに基づいて、テーブルデータ作成部13がテーブルデータを作成するようにした。そして、優先順位決定部15が、電力削減による室内温度変化への影響を数値化した影響度を演算し、省エネルギ制御を行う空気調和装置2の優先順位を決定するようにしたので、温度変化の影響が低い空気調和装置2の電力を優先して削減することができる。このため、快適性を損なわずに、省エネルギ制御を行うことができる。 As described above, according to the air conditioner management apparatus 1 of the first embodiment, the table data creation unit 13 creates table data based on operation data from the plurality of air conditioners 2 that perform management. did. Then, the priority determining unit 15 calculates the degree of influence which quantified the influence of the power reduction on the indoor temperature change, and determines the priority of the air conditioner 2 performing energy saving control, so that the temperature change is performed. The power of the air conditioner 2 with low influence can be reduced preferentially. Therefore, energy saving control can be performed without losing the comfort.
実施の形態2.
 前述した実施の形態1では、制御処理計算部16が行う省エネルギ制御を行う条件について、特に限定するものではなかった。実施の形態2の空気調和機管理装置1では、制御処理計算部16は、特に指示がなければ、空気調和装置2を通常制御を行う。そして、外部機器3から送られる外部信号に基づいて、省エネルギ運転が指示されると、実施の形態1で説明した省エネルギ制御を行うようにする。
Second Embodiment
In the first embodiment described above, the conditions for performing the energy saving control performed by the control processing calculation unit 16 are not particularly limited. In the air conditioner management device 1 according to the second embodiment, the control processing calculation unit 16 normally controls the air conditioner 2 unless otherwise instructed. Then, when an energy saving operation is instructed based on an external signal sent from the external device 3, the energy saving control described in the first embodiment is performed.
 また、制御処理計算部16は、外部機器3からの外部信号として、緊急停止信号が送られると、すべての空気調和装置2を停止させる制御を行う。緊急停止信号としては、たとえば、建物、エリアなどの単位での停止を一括して行う消し忘れ防止のための緊急停止信号、火災報知での緊急停止信号、省エネルギによる緊急停止信号などがある。ここで、省エネルギによる緊急停止信号が送られると、制御処理計算部16は、前述した省エネルギ運転の指示と同様に、省エネルギ制御を行うようにしてもよい。 Further, when an emergency stop signal is sent as an external signal from the external device 3, the control processing calculation unit 16 performs control to stop all the air conditioners 2. The emergency stop signal may be, for example, an emergency stop signal for preventing forgetting to stop at a unit of a building, an area, or the like, an emergency stop signal for fire notification, or an emergency stop signal due to energy saving. Here, when an emergency stop signal with energy saving is sent, the control processing calculation unit 16 may perform energy saving control as in the case of the above-described energy saving operation instruction.
 以上のように、空気調和機管理装置1が、外部からの指示に基づいて、省エネルギ制御を行うようにしたので、指示の目的を変えることなく、空気調和装置2の設置環境に柔軟に対応し、快適性を損なわずに、省エネルギ制御を行うことができる。 As described above, since the air conditioner management device 1 performs energy saving control based on an instruction from the outside, the installation environment of the air conditioner 2 can be flexibly supported without changing the purpose of the instruction. Energy saving control can be performed without losing comfort.
実施の形態3.
 前述した実施の形態1の空気調和機管理装置1では、各空気調和装置2を制御単位として、空気調和装置2毎にテーブルデータを作成し、優先順位を決定して、省エネルギ制御を行うようにしたが、これに限定するものではない。たとえば、複数の室内機100を有している空気調和装置2を管理する場合、各室内機100を制御単位として、室内機100毎に、テーブルデータを作成するなどして、優先順位を決定して、省エネルギ制御を行うようにしてもよい。また、複数の室内などの空調対象空間において、同じエリア内の室内機100のグループを制御単位とし、エリアによるグループ毎にテーブルデータを作成し、優先順位を決定して、省エネルギ制御を行うようにしてもよい。
Third Embodiment
In the air conditioner management apparatus 1 according to the first embodiment described above, table data is created for each air conditioner 2 with each air conditioner 2 as a control unit, the priority order is determined, and energy saving control is performed. But it is not limited to this. For example, when managing the air conditioning apparatus 2 having a plurality of indoor units 100, the priority is determined by creating table data for each indoor unit 100, etc., with each indoor unit 100 as a control unit. Energy saving control may be performed. Also, in a plurality of indoor and other air conditioning target spaces, a group of indoor units 100 in the same area is used as a control unit, table data is created for each group by area, priority order is determined, and energy saving control is performed You may
 また、前述した実施の形態1では、室内機100の制御能力、サーモオフからサーモオンするまでの平均時間および室内温度が設定温度に到達するまでの推移の3つの項目について、テーブルデータを作成した。しかし、項目数、項目内容については、これらに限定するものではない。たとえば、室内機100から、空調対象空間である室内に送り出される空気の風速または風量を項目として、風速または風量を数値で表したテーブルデータを作成するなどすることができる。 Moreover, in Embodiment 1 mentioned above, table data was created about three items of control capability of indoor unit 100, average time from thermo-off to thermo-on, and transition until indoor temperature reaches setting temperature. However, the number of items and item contents are not limited to these. For example, it is possible to create table data in which the wind speed or the air volume is expressed numerically by using the wind speed or the air volume of the air sent from the indoor unit 100 into the room as the air conditioning target space as an item.
 1 空気調和機管理装置、2,2A,2B,2C,2D 空気調和装置、3 外部機器、11 空調通信部、12 運転データ保管部、13 テーブルデータ作成部、14 テーブル保管部、15 優先順位決定部、16 制御処理計算部、17 外部信号受信部、18 信号解析部、100 室内機、110 室内熱交換器、120 膨張弁、130 室内ファン、140 室内制御装置、150 温度センサ、200 室外機、210 圧縮機、220 四方弁、230 室外熱交換器、300 ガス冷媒配管、400 液冷媒配管。 1 Air Conditioner Management Device, 2, 2A, 2B, 2C, 2D Air Conditioning Device, 3 External Equipment, 11 Air Conditioning Communication Unit, 12 Operation Data Storage Unit, 13 Table Data Creation Unit, 14 Table Storage Unit, 15 Priority Determination 16 control processing calculation unit 17 external signal reception unit 18 signal analysis unit 100 indoor unit 110 indoor heat exchanger 120 expansion valve 130 indoor fan 140 indoor control device 150 temperature sensor 200 outdoor unit 210 compressor, 220 four-way valve, 230 outdoor heat exchanger, 300 gas refrigerant piping, 400 liquid refrigerant piping.

Claims (11)

  1.  複数の空気調和装置を管理して制御する空気調和機管理装置であって、
     複数の前記空気調和装置の運転によって得られる運転データに基づいて、あらかじめ設定された複数の項目について、制御する単位毎にデータを作成するテーブルデータ作成部と、
     前記空気調和装置の電力削減による空調対象空間の温度変化への影響を数値化した影響度を、前記テーブルデータ作成部が作成したデータに基づいて、前記制御する単位毎に演算し、算出した影響度に基づいて、電力削減を行う優先順位を決定する優先順位決定部と
    を備える空気調和機管理装置。
    An air conditioner management device that manages and controls a plurality of air conditioners, comprising:
    A table data creation unit that creates data for each unit to be controlled for a plurality of items set in advance based on operation data obtained by the operation of the plurality of air conditioners;
    Based on the data created by the table data creation unit, the impact degree which quantified the influence on the temperature change of the air conditioning target space due to the power reduction of the air conditioner is calculated and calculated for each unit to be controlled An air conditioner management apparatus comprising: a priority determination unit that determines a priority for performing power reduction based on a degree.
  2.  前記優先順位決定部が決定した前記優先順位の順に、前記空気調和装置に前記電力削減に係る指示を行う省エネルギ制御を行う制御処理計算部をさらに備える請求項1に記載の空気調和機管理装置。 The air conditioner management apparatus according to claim 1, further comprising: a control processing calculation unit that performs energy saving control that instructs the air conditioning apparatus to reduce the power in the order of the priorities determined by the priority determination unit. .
  3.  前記制御処理計算部は、外部からの信号に基づいて、前記省エネルギ制御を行う請求項2に記載の空気調和機管理装置。 The air conditioner management device according to claim 2, wherein the control process calculation unit performs the energy saving control based on an external signal.
  4.  前記制御処理計算部は、前記優先順位が高い前記空気調和装置は運転を停止させ、前記優先順位が低い前記空気調和装置には、能力制御を行わせる前記省エネルギ制御を行う請求項2または請求項3に記載の空気調和機管理装置。 3. The energy saving control according to claim 2, wherein the control processing calculation unit stops the operation of the air conditioner having the high priority, and performs the energy control on the air conditioner having the low priority. The air conditioner management device according to Item 3.
  5.  前記テーブルデータ作成部は、
     前記空気調和装置が有する室内機の制御能力、前記室内機におけるサーモオフからサーモオンするまでの平均時間および前記空調対象空間の温度が設定温度に到達するまでの推移を前記項目として、それぞれ前記データを作成する請求項1~請求項4のいずれか一項に記載の空気調和機管理装置。
    The table data creation unit
    The data is created using the control capability of the indoor unit of the air conditioner, the average time from the thermo-off to the thermo-on in the indoor unit, and the transition until the temperature of the air-conditioned space reaches the set temperature as the items. The air conditioner management apparatus according to any one of claims 1 to 4, wherein
  6.  前記優先順位決定部は、前記省エネルギ制御が行われているときの前記運転データから、前記テーブルデータ作成部が作成した前記データに基づいて、前記優先順位を決定し、
     前記制御処理計算部は、前記優先順位決定部が決定した前記優先順位が変化していると判定すると、前記空気調和装置への指示を変更する請求項2~請求項5のいずれか一項に記載の空気調和機管理装置。
    The priority determining unit determines the priority based on the data created by the table data creating unit from the operation data when the energy saving control is performed.
    The control process calculation unit changes the instruction to the air conditioning apparatus when it is determined that the priority order determined by the priority order determination unit has changed, according to any one of claims 2 to 5. An air conditioner management device according to claim 1.
  7.  前記制御処理計算部は、外部から緊急停止信号が送られたと判定すると、複数の前記空気調和装置を停止させる請求項2~請求項6のいずれか一項に記載の空気調和機管理装置。 The air conditioner management apparatus according to any one of claims 2 to 6, wherein the control process calculation unit stops the plurality of air conditioners when it determines that an emergency stop signal has been sent from the outside.
  8.  前記テーブルデータ作成部は、それぞれの前記項目について、複数の前記空気調和装置の前記運転データのうち、最大となる値を1とする、0以上1以下の数値で表した前記データを作成し、
     前記優先順位決定部は、前記項目を次元とする座標系の距離として、前記影響度を演算する請求項1~請求項7のいずれか一項に記載の空気調和機管理装置。
    The table data creation unit creates, for each of the items, the data represented by a numerical value of 0 or more and 1 or less, where the value which is the largest among the operation data of the plurality of air conditioners is 1.
    The air conditioner management device according to any one of claims 1 to 7, wherein the priority determining unit calculates the degree of influence as a distance of a coordinate system having the item as a dimension.
  9.  前記空気調和装置を、前記制御する単位とする請求項1~請求項8のいずれか一項に記載の空気調和機管理装置。 The air conditioner management device according to any one of claims 1 to 8, wherein the air conditioner is a unit to be controlled.
  10.  前記空気調和装置が有する室内機を、前記制御する単位とする請求項1~請求項8のいずれか一項に記載の空気調和機管理装置。 The air conditioner management apparatus according to any one of claims 1 to 8, wherein an indoor unit included in the air conditioner is a unit to be controlled.
  11.  同じ前記空調対象空間内における、前記空気調和装置が有する室内機を、前記制御する単位とする請求項1~請求項8のいずれか一項に記載の空気調和機管理装置。 The air conditioner management apparatus according to any one of claims 1 to 8, wherein an indoor unit in the air conditioning apparatus in the same air conditioning target space is a unit to be controlled.
PCT/JP2017/046991 2017-12-27 2017-12-27 Air conditioner management device WO2019130489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046991 WO2019130489A1 (en) 2017-12-27 2017-12-27 Air conditioner management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046991 WO2019130489A1 (en) 2017-12-27 2017-12-27 Air conditioner management device

Publications (1)

Publication Number Publication Date
WO2019130489A1 true WO2019130489A1 (en) 2019-07-04

Family

ID=67066786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046991 WO2019130489A1 (en) 2017-12-27 2017-12-27 Air conditioner management device

Country Status (1)

Country Link
WO (1) WO2019130489A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009116427A (en) * 2007-11-02 2009-05-28 Yamaguchi Univ Soundness deterioration evaluation system
JP2014089043A (en) * 2014-01-10 2014-05-15 Azbil Corp Air conditioner control apparatus and method
WO2015083529A1 (en) * 2013-12-02 2015-06-11 三菱重工業株式会社 Air conditioner
JP2017096529A (en) * 2015-11-20 2017-06-01 三菱重工業株式会社 Control device, air conditioning system including the same, control method and control program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009116427A (en) * 2007-11-02 2009-05-28 Yamaguchi Univ Soundness deterioration evaluation system
WO2015083529A1 (en) * 2013-12-02 2015-06-11 三菱重工業株式会社 Air conditioner
JP2014089043A (en) * 2014-01-10 2014-05-15 Azbil Corp Air conditioner control apparatus and method
JP2017096529A (en) * 2015-11-20 2017-06-01 三菱重工業株式会社 Control device, air conditioning system including the same, control method and control program

Similar Documents

Publication Publication Date Title
US10088211B2 (en) Air-conditioning apparatus
US10088193B2 (en) Air-conditioning apparatus including a controller that controls opening degrees of expansion valves based on detection results of human detection devices
US20140069131A1 (en) Air conditioning system
US8670871B2 (en) Load processing balance setting apparatus
WO2018220803A1 (en) Air conditioning system
JP5058325B2 (en) Air conditioning system controller and air conditioning system
AU2016346536B2 (en) Air conditioning apparatus
US20160290669A1 (en) Air-conditioning apparatus
KR20100010237A (en) Control method of air conditioner
JP2020034183A (en) Air conditioner
JP5642121B2 (en) Air conditioner
WO2011101892A1 (en) Air-conditioning system
JP5389618B2 (en) Air conditioner control system
JP5695861B2 (en) Outside air processing air conditioner and multi air conditioning system using the same
JP2007271112A (en) Air conditioner
JP2013130384A (en) Air conditioner
JP5900463B2 (en) Air conditioning system
JPWO2020035913A1 (en) Air conditioner, control device, air conditioning method and program
JPWO2020035911A1 (en) Air conditioner, control device, air conditioning method and program
JP6570748B2 (en) Air conditioner
WO2021214930A1 (en) Air-conditioning system and control method
WO2019130489A1 (en) Air conditioner management device
CN116697538A (en) Multi-split air conditioning system and control method thereof
US20220113053A1 (en) Control device for air conditioning apparatus, air conditioning system, control method for air conditioning apparatus, and program
CN111207495B (en) Method for improving air conditioning capacity and air conditioner using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP