WO2019129910A1 - Device for recovering energy from combustion gas - Google Patents

Device for recovering energy from combustion gas Download PDF

Info

Publication number
WO2019129910A1
WO2019129910A1 PCT/ES2018/070828 ES2018070828W WO2019129910A1 WO 2019129910 A1 WO2019129910 A1 WO 2019129910A1 ES 2018070828 W ES2018070828 W ES 2018070828W WO 2019129910 A1 WO2019129910 A1 WO 2019129910A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
combustion
gases
energy
ejector
Prior art date
Application number
PCT/ES2018/070828
Other languages
Spanish (es)
French (fr)
Inventor
Jesús Vicente BENAJES CALVO
José María Desantes Fernandez
Antonio Garcia Martinez
Pedro PIQUERAS CABRERA
José Ramón SERRANO CRUZ
Original Assignee
Universitat Politècnica De València
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De València filed Critical Universitat Politècnica De València
Publication of WO2019129910A1 publication Critical patent/WO2019129910A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates generally to the field of internal combustion engines of vehicles, and more specifically to the systems for recovering the energy of the gases coming from combustion in said internal combustion engines.
  • LTC low temperature combustion
  • the optimum fuel for LTC strategies depends on the operating conditions of the engine: at low loads, a high-reactivity fuel is necessary while, on the contrary, at high loads a low-reactivity fuel is necessary.
  • a LTC strategy called RCCI has been developed that uses two fuels of different reactivity.
  • gasoline is injected as a low-reactivity fuel in the intake manifold and diesel fuel as a high-reactivity fuel directly in the combustion chamber.
  • This concept makes it possible to vary the mixing ratio of both fuels instantaneously, which allows achieving the desired reactivity for each motor operation condition.
  • the RCCI combustion strategy provides ultra low levels of particulate material and NOx, so that the post-treatment needs of both pollutants are significantly reduced. Said reduction occurs at the same time that the consumption of a conventional diesel combustion is improved. This is achieved through the use of high proportions of gasoline in the mixture and an optimized diesel fuel injection strategy.
  • the temperature throughout the entire combustion process is low compared to a conventional diesel combustion and consequently the exhaust temperature is also.
  • high levels of CO and HC together with low exhaust temperatures compromise the correct operation of the diesel oxidation catalyst (DOC).
  • DOC diesel oxidation catalyst
  • the present invention relates to a configuration for reciprocating internal combustion engines that takes advantage of synergies between the combustion process, the location of the post-treatment system aimed at reducing CO emissions and HC, the supercharging system and the design of the recirculated gas line to reduce consumption and polluting emissions.
  • the present invention discloses a device for recovering energy from gases coming from combustion in an internal combustion engine.
  • the internal combustion engine comprises a motor block and a post-treatment system for gases from combustion.
  • the energy recovery equipment of the invention is disposed downstream of said post treatment system and comprises:
  • a first turbogroup consisting of a first turbine and a first compressor to recover energy from the gases evacuated to the atmosphere; - an ejector to recover energy from the recirculated gases; Y
  • an additional compressor which is a second compressor forming a second turbogroup together with a second turbine
  • the second turbine of the second turbogroup located in the line of recirculated gases between the exhaust line and the intake line, the recirculated gases expanding in said second turbine, allowing to obtain mechanical energy to drive the second compressor of the second turbogroup, in the that the flow pressure of the intake line is increased.
  • the energy recovery equipment of the present invention allows to increase the pressure of the admission gases to the combustion engine taking advantage of the energy coming from the combustion gases.
  • Figure 1 shows a general outline of an equipment according to the present invention.
  • Figure 2 shows a schematic of a gas energy recovery equipment from combustion comprising a first turbogroup, an ejector and an additional compressor.
  • Figure 3 shows a schematic of an equipment according to a preferred embodiment of the present invention.
  • Figure 4 shows a schematic of an equipment according to another preferred embodiment of the present invention.
  • Figure 5 shows a diagram of a team according to another preferred embodiment of the present invention.
  • the internal combustion engine itself comprises a motor block (1) and a post-treatment system (2) for gases from combustion.
  • the engine block (1) can have any suitable number of cylinders capable of operating in low temperature combustion mode (LTC), in particular of the RCCI type. This type of combustion is particularly demanding from the point of view of compliance with the regulations on polluting emissions since it can lead to a high rate of CO and HC formation combined with gases from low temperature combustion in order to optimize the consumption specific.
  • LTC low temperature combustion mode
  • the post-treatment system (2) for gases from combustion is located just after the engine block (1), upstream of a turbine (4) (pre-turbine location) which will be described later. In this location, the temperature of the gases coming from the combustion is maximum.
  • the post-treatment system (2) comprises at least the functions of particulate filtering and oxidation of CO and HC. This allows to work always with recirculated gases free of soot and guarantees that the chemical energy released in the oxidation of the unburned hydrocarbons is used in the elements located downstream of said post-treatment system (2), in the form of both thermal energy as mechanical according to the process carried out, and both for recirculated gases as for the gases coming from the combustion of the engine that are going to be evacuated to the atmosphere.
  • this post-treatment system (2) is not particularly limited, and any of the many possibilities known in the prior art can be employed.
  • DOC diesel oxidation catalyst
  • DPF diesel particulate filter
  • the use of a catalyzed particle filter the use of a NOx trap (LNT) followed by a DPF; a DOC or LNT followed by a catalyzed particulate filter with NOx reduction function (SCRF); etc.
  • SCRF catalyzed particulate filter with NOx reduction function
  • the energy recovery equipment itself is arranged downstream of the post-treatment system (2) and comprises a first turbogroup (5), an ejector (7) and an additional compressor.
  • the additional compressor is part of a second turbogroup (9).
  • the set of these three elements is designated schematically in Figure 1 by reference 3, while the ejector assembly (7) and the second turbogroup (9) is designated by reference 6.
  • the combustion gases evacuated to the atmosphere will always pass through a first turbine (4), which together with a first compressor (20) forms part of the first turbogroup (5).
  • a first turbine (4) which together with a first compressor (20) forms part of the first turbogroup (5).
  • the size of the first turbogroup (5) will always adapt to fresh air entering the engine, reducing its size to the maximum possible and thus reducing the delay of the first turbogroup (5) before transient operating processes.
  • the recirculated gases will expand in a specific system (6).
  • Said system (6) comprises a ejector (7) and a second turbogroup (9) constituted by a second turbine (8) and a second compressor (10).
  • this combination results in different preferred configurations according to the relative disposition of the ejector (7) and the second turbogroup (9) as well as the first turbogroup (5) and the second turbogroup (9) .
  • the use of these energy recovery systems in the recirculated gases allows avoiding the use of specific heat exchangers for this flow.
  • the exhaust line comprising, in a known manner and therefore not described in detail herein, the necessary conduits (11) (for simplicity, are indicated schematically in Figure 1) for coupling the different elements that compose it from the output of the engine block (12) to the outlet to the atmosphere (13), a post-treatment system (14) complementary to (2) to ensure compliance with the regulations on polluting emissions and an exhaust silencer system (15).
  • the necessary conduits (11) for simplicity, are indicated schematically in Figure 1 for coupling the different elements that compose it from the output of the engine block (12) to the outlet to the atmosphere (13), a post-treatment system (14) complementary to (2) to ensure compliance with the regulations on polluting emissions and an exhaust silencer system (15).
  • the intake line comprises, also in a manner known per se and therefore not described in detail herein, the necessary conduits (16) (for simplicity, are indicated only in Figure 1) for coupling the various elements that compose it from the entrance to the line from the atmosphere (17) to the entrance to the engine block (18), an air filter (19) and a heat exchanger (21), preferably intercooler type.
  • the heat exchanger (21) is common for the mass flow of fresh air and recirculated gases which reduces the number of elements of this type with respect to the state of the art.
  • Figure 2 shows a device for recovering energy from combustion gases comprising a first turbogroup, an ejector and an additional compressor, which is a centrifugal compressor (22).
  • the recirculated gases are high pressure and are clean when taken between the post-treatment system (2) pre-turbine and the first turbine (4) for the expansion of the gases from the combustion evacuated to the atmosphere.
  • the ejector (7) the energy present in the gases coming from the combustion is recovered, guaranteeing that:
  • the pressure at the outlet of the ejector (7) is greater than the pressure of fresh air from the first compressor (20) of the first turbogroup (5) due to the compression experienced by this flow in the ejector (7).
  • the pressure of the recirculated gases is greater than the pressure at the outlet of the ejector (7) due to the expansion they experience in the ejector itself (7).
  • the temperature at the outlet of the ejector (7) is an intermediate value between the temperature of the recirculated gases, which are cooled in the expansion process in the ejector (7), and the temperature of the fresh air from the first compressor (20). ) of the first turbogroup (5).
  • the throat of the ejector (7) is of variable geometry (variable section) in order to allow regulating the mass flow of recirculated gases.
  • FIG. 1 Downstream of the ejector (7) is located a heat exchanger (21), preferably of intercooler type, and downstream of the latter is the centrifugal compressor (22) driven mechanically by an electric motor or connected to the auxiliary power system of the engine. Between the heat exchanger (21) and the centrifugal compressor (22) is located a condensate separator (23), which protects the centrifugal compressor (22) from the impact of condensed liquids on the impeller.
  • Figure 3 shows a device according to a preferred embodiment of the present invention, which uses a recirculated gas energy recovery system integrated in a turbo-supercharging system in two stages (series compressors).
  • the first and second compressors (20, 10) are located in series while the first and second turbines (4, 8) are located in parallel.
  • the recirculated gases are directed from the outlet of the post-treatment system (2) to the inlet of the second turbine (8) of the second turbogroup (9).
  • This second turbine (8) is of variable geometry to allow regulating the expense of recirculated gases.
  • the expansion of the recirculated gases allows to obtain mechanical energy to drive the second compressor (10) of the second turbogroup (9) in which the pressure of the fresh air admitted by the engine is increased.
  • the recirculated gases are then directed to an ejector (7) of fixed geometry in which they expand, giving rise to their cooling and to the increase in pressure of the fresh air, coming from the second compressor (10), with which they are mixed.
  • the flow rate of recirculated gases is regulated by the position of the second turbine (8) of variable geometry. This avoids the direct strangulation of the flow of recirculated gases in the intake line, which reduces the work of pumping and avoids the penalty of consumption.
  • the mixture of fresh air and recirculated gases is led to a condensate separator (23) which protects the impact of condensed liquids on the impeller of the first compressor (20) of the first turbogroup (5) located below.
  • This first compressor (20) increases the pressure of the mixed flow, in what supposes a third stage of compression, when operated by the mechanical work provided by the expansion of the gases evacuated to the atmosphere in the first turbine (4) of the first turbogroup (5), which can be of fixed geometry (instead of variable geometry) because of the high expansion ratio with which it will work.
  • This configuration allows to have turbines of small size given that each one of them will move approximately half of the flow of gases coming from combustion (high rate of recirculated gases in RCCI combustion systems) while the compressors in series will also be sized reduced.
  • the second compressor (10) belonging to the second turbogroup (9) may be small because only the fresh air is transferred; the first compressor (20) belonging to the first turbogroup (5) operates at high pressure at the inlet thereof, which reduces the corrected expense and therefore the size needed for the compressor.
  • the combination of two stages of turbo-supercharging in series together with the compression in the ejector (7) allows to obtain a very high boost pressure of the motor.
  • the equipment uses a recirculated gas energy recovery system consisting of the expansion of the recirculated gases in the second turbine (8) of the second turbogroup (9) and in the energy recovery in an ejector (7) located below in order to compress the flow of fresh air.
  • the first and second compressors (20, 10) are located in parallel while the first and second turbines (4, 8) are also located in parallel.
  • the second turbine (8) of the second turbogroup (9) is of variable geometry since in this way it allows acting as a regulator of the flow of recirculated gases.
  • the ejector (7) can have a throat of fixed geometry, so that the throttling in admission is avoided to regulate the rate of recirculated gases, which reduces the work of pumping and avoids penalties in consumption.
  • This configuration reduces the pumping work despite the fact that the expense of recirculated gases requires controlling the pressure in the exhaust manifold, since a large part of the associated energy is recovered efficiently in the second turbogroup (9).
  • the recirculated gases expand in the nozzle of the ejector (7) allowing these gases to be precooled and the kinetic energy recovered, thus compressing the mixture of fresh air from the air filter (19) and recirculated gases.
  • a condensate separator (23) generated in the mixture of pre-cooled and wet recirculated gases and fresh air at room temperature. Then the mixture of fresh air and recirculated gases is directed to two centrifugal compressors (10, 20) installed in parallel.
  • the first compressor (20) belongs to the first turbogroup (5) and is coupled to the first turbine (4) of gases evacuated to the atmosphere; while the second compressor (10) belongs to the second turbogroup (9) and is coupled to the second turbine (8) of recirculated gases.
  • the first turbine (4) of the first turbogroup (5) is also of variable geometry in order to regulate the corrected regime of both compressors so that their operating point is similar.
  • This configuration guarantees very high recirculated gas rates, even during very dynamic transients (period in which, in the prior art, this expense is canceled or highly reduced) due to the energy recovery that takes place in the second turbogroup ( 9).
  • FIG 5 describes a device according to another preferred embodiment of the present invention in which a system for recovering the energy of recirculated gases with compressors in series is used as shown in Figure 3, which are driven by turbines in which they expand the gases evacuated to the atmosphere and the gases recirculated separately.
  • the difference with respect to the embodiment shown in Figure 3 lies in the location of the ejector (7).
  • the recirculated gases are initially expanded in the second turbine (8) of the second turbogroup (9).
  • This second turbine (8) is of variable geometry to regulate the flow of recirculated gases.
  • the mechanical energy produced in this expansion process is used in moving the second compressor (10) in charge of the first stage of fresh air compression in the intake system.
  • the gases evacuated to the atmosphere expand in the first turbine (4) of the first turbogroup (5), which will be of variable geometry to force the flow of recirculated gases in the other branch.
  • the mechanical energy generated in the first turbine (4) of the first turbogroup (5) is used to move the first compressor (20) in charge of the second stage of compression of the fresh air admitted by the engine.
  • a heat exchanger (24) can be located between both compression stages (between the second compressor (10) and the first compressor (20).
  • the compressed fresh air is directed to a third compression stage in the ejector (7) in which the recirculated gases expand once again completing their cooling.
  • a variable geometry system can be included in the throat thereof. This preferential configuration guarantees the use of turbo machinery of reduced size, improving the transitory response, since the turbines transfer approximately half of the incoming flow to the engine and the compressors only transfer the fresh air, the first compressor (20) of the first turbogroup (5) being especially small for operating at high pressure. In this way a rapid transient response of the turbocharging system is guaranteed.
  • Another advantage of this preferred embodiment is associated with the absence of a condensate separator.
  • the mixture of fresh air and recirculated gases is made downstream of the compressors, no condensate separator is required, so that the absence of damage to said compressors is guaranteed.
  • the boost pressure of the engine would be very high when combining three flow compression processes in the intake line.
  • - Cold combustion engines require a large amount of recirculated gas.
  • recirculation is carried out from the high pressure zone of the motor to the low pressure zone. This difference in pressure is essential, since it allows to recirculate a large quantity of gases coming from the combustion and therefore have a lot of energy to recover.
  • the recirculated gases are delivered to the engine as cold as possible.
  • the recirculated gases are cooled, for example, by the expansion of the gases in turbines and possible heat exchangers.
  • the gas post-treatment system is located before the bypass of the recirculated gases (pre-turbine location).
  • the clean recirculated gases are combined with high pressure and their energy is recovered while cooling before carrying it to the entrance of the compression elements (for example ejector, compressors) located in the low pressure area of the engine intake.
  • the compression elements for example ejector, compressors located in the low pressure area of the engine intake.
  • the present invention makes it possible to improve the oxidation conditions of the unburned hydrocarbons (HC), the CO and the particulate material present in the gases coming from combustion in internal combustion engines.
  • the various preferred embodiments of the present invention combine the specific location of the CO and HC post-treatment system, a particular definition of the supercharging system and the particular definition of the distribution of the exhaust and intake lines to optimize the energy recovery of the exhaust line, thus maximizing the reduction of consumption and polluting emissions.

Abstract

The invention relates to a device for recovering energy from combustion gas produced in an internal combustion engine. The internal combustion engine comprises an engine block and a combustion gas post-treatment system. The energy recovery device is arranged downstream of the post-treatment system and comprises a first turbo-unit with a first turbine and a first compressor; an ejector; and an additional compressor, which is a second compressor that forms a second turbo-unit together with a second turbine located in the path of recirculated gas between the exhaust pipe and the intake pipe. This increases the gas intake pressure into the combustion energy and recovers the energy in the combustion gas, both the gas that is discharged into the atmosphere and the recirculated gas.

Description

EQUIPO DE RECUPERACIÓN DE ENERGÍA DE GASES PROCEDENTES DE LA  GAS ENERGY RECOVERY EQUIPMENT FROM THE
COMBUSTIÓN  COMBUSTION
Campo de la invención Field of the invention
La presente invención se refiere de manera general al campo de los motores de combustión interna de vehículos, y más concretamente a los sistemas de recuperación de energía de los gases procedentes de la combustión en dichos motores de combustión interna.  The present invention relates generally to the field of internal combustion engines of vehicles, and more specifically to the systems for recovering the energy of the gases coming from combustion in said internal combustion engines.
Antecedentes de la invención BACKGROUND OF THE INVENTION
La normativa referente al cumplimiento de las emisiones contaminantes en los sectores del transporte y la automoción se ha vuelto altamente restrictiva durante los últimos años, especialmente para los motores de encendido por compresión que utilizan gasóleo como combustible. Debido al compromiso existente entre las emisiones de hollín y de óxidos de nitrógeno (NOx) en los motores de encendido por compresión se ha hecho necesaria la inclusión de sistemas de post- tratamiento de gases procedentes de la combustión cuya función es la eliminación de las emisiones contaminantes, a saber monóxido de carbono (CO) , hidrocarburos sin quemar (HC) , material particulado y óxidos de nitrógeno (NOx) , después de haberse generado. Así, los sistemas de post- tratamiento son hoy en día esenciales para alcanzar el cumplimiento de las normativas de emisiones contaminantes.  The regulations regarding the compliance with polluting emissions in the transport and automotive sectors have become highly restrictive in recent years, especially for compression ignition engines that use diesel fuel. Due to the compromise between the emissions of soot and nitrogen oxides (NOx) in compression ignition engines it has become necessary to include post-treatment systems of gases from combustion whose function is the elimination of emissions contaminants, namely carbon monoxide (CO), unburned hydrocarbons (HC), particulate matter and nitrogen oxides (NOx), after they have been generated. Thus, post-treatment systems are essential today to achieve compliance with the regulations on polluting emissions.
La adición de dichos sistemas al conjunto de motor implica un incremento considerable en los costes de producción así como una mayor complejidad de la planta motriz. Además, el correcto funcionamiento de dichos sistemas requiere del consumo de fluidos adicionales en la línea de escape, como urea para la reducción de NOx en sistemas de reducción catalítica selectiva (SCR) , y eventualmente gasóleo aguas abajo de la turbina para aumentar la temperatura de escape durante el proceso de calentamiento del motor. The addition of said systems to the engine assembly implies a considerable increase in production costs as well as a greater complexity of the power plant. In addition, the correct operation of these systems requires the consumption of additional fluids in the exhaust line, such as urea for the reduction of NOx in selective catalytic reduction (SCR) systems, and eventually gasoil downstream of the turbine to increase the temperature of exhaust during the heating process of the engine.
En los últimos años se han investigado diferentes estrategias de combustión a baja temperatura (LTC) que mantienen o mejoran el consumo de una combustión diésel convencional reduciendo la formación de material particulado y NOx en la cámara de combustión de los motores de encendido por compresión y que, por tanto, mitigan las desventajas que generan los sistemas de post-tratamiento al ser menores sus requerimientos. A pesar de su potencial, la aplicación de la mayoría de los conceptos de combustión LTC se ve restringida a medias cargas de motor ya que fundamentalmente están controlados por cinética química con lo que no se tiene control ciclo a ciclo del inicio de combustión mediante parámetros de motor y la estabilidad de la combustión se ve comprometida. A bajas cargas se puede presentar apagado de llama mientras que a altas cargas pueden aparecer problemas de detonación. En este sentido, el combustible óptimo para las estrategias LTC depende de las condiciones de operación del motor: a bajas cargas, es necesario un combustible de alta reactividad mientras que, por el contrario, a altas cargas se hace necesario un combustible de baja reactividad. Basándose en este hecho se ha desarrollado una estrategia LTC denominada RCCI que usa dos combustibles de diferente reactividad. En particular, se inyecta gasolina como combustible de baja reactividad en el colector de admisión y gasóleo como combustible de alta reactividad de manera directa en la cámara de combustión. Este concepto permite variar la razón de mezcla de ambos combustibles instantáneamente, lo que permite conseguir la reactividad deseada para cada condición de operación de motor. Así pues, la estrategia de combustión RCCI proporciona niveles ultra bajos de material particulado y NOx con lo que las necesidades de post-tratamiento de ambos contaminantes se reducen notablemente. Dicha reducción se da al mismo tiempo que se mejora el consumo de una combustión diésel convencional. Esto se consigue mediante el uso de altas proporciones de gasolina en la mezcla y una estrategia de inyección de gasóleo optimizada. In recent years, different low temperature combustion (LTC) strategies have been investigated that maintain or improve the consumption of conventional diesel combustion by reducing the formation of particulate matter and NOx in the combustion chamber of compression ignition engines and , therefore, mitigate the disadvantages generated by post-treatment systems as their requirements are lower. Despite its potential, the application of most LTC combustion concepts is restricted to half motor loads since they are mainly controlled by chemical kinetics, which means that there is no cycle to cycle control of the start of combustion by parameters of engine and the stability of combustion is compromised. At low loads, the flame may be extinguished, while at high loads detonation problems may occur. In this sense, the optimum fuel for LTC strategies depends on the operating conditions of the engine: at low loads, a high-reactivity fuel is necessary while, on the contrary, at high loads a low-reactivity fuel is necessary. Based on this fact, a LTC strategy called RCCI has been developed that uses two fuels of different reactivity. In particular, gasoline is injected as a low-reactivity fuel in the intake manifold and diesel fuel as a high-reactivity fuel directly in the combustion chamber. This concept makes it possible to vary the mixing ratio of both fuels instantaneously, which allows achieving the desired reactivity for each motor operation condition. Thus, the RCCI combustion strategy provides ultra low levels of particulate material and NOx, so that the post-treatment needs of both pollutants are significantly reduced. Said reduction occurs at the same time that the consumption of a conventional diesel combustion is improved. This is achieved through the use of high proportions of gasoline in the mixture and an optimized diesel fuel injection strategy.
A pesar de las claras ventajas que presenta, el concepto tiene retos importantes todavía no resueltos para poder implementarse completamente en motores de combustión, como por ejemplo la necesidad de recircular grandes cantidades de gases procedentes de la combustión a la admisión, para reducir lo suficiente la temperatura de combustión. La recirculación de gases procedentes de la combustión supone retirar una gran cantidad de energía de dichos gases que en la técnica anterior no se puede recuperar para sobrealimentar el motor u otro tipo de aplicación. Otra limitación muy relevante es la baja eficiencia de combustión a bajas cargas, entendida como altas emisiones de monóxido de carbono (CO) e hidrocarburos sin quemar (HC) . Estas emisiones provienen fundamentalmente de un excesivo nivel de premezcla entre el aire y el combustible así como de la alta volatilidad del combustible de baja reactividad. Adicionalmente, y gracias a la alta tasa de gases recirculados, la temperatura a lo largo de todo el proceso de combustión es baja en comparación con una combustión de gasóleo convencional y consecuentemente la temperatura de escape también lo es. Así pues, altos niveles de CO y HC junto con bajas temperaturas de escape comprometen el correcto funcionamiento del catalizador de oxidación diésel (DOC) .  Despite the clear advantages it presents, the concept has important challenges not yet resolved to be fully implemented in combustion engines, such as the need to recirculate large quantities of gases from combustion to admission, to reduce enough combustion temperature. The recirculation of gases from combustion involves removing a large amount of energy from said gases that in the prior art can not be recovered to supercharge the engine or other type of application. Another very important limitation is the low efficiency of combustion at low loads, understood as high emissions of carbon monoxide (CO) and unburned hydrocarbons (HC). These emissions come mainly from an excessive premix level between air and fuel as well as from the high volatility of low reactivity fuel. Additionally, and thanks to the high rate of recirculated gases, the temperature throughout the entire combustion process is low compared to a conventional diesel combustion and consequently the exhaust temperature is also. Thus, high levels of CO and HC together with low exhaust temperatures compromise the correct operation of the diesel oxidation catalyst (DOC).
En la técnica ya se conocen motores de combustión interna que pueden funcionar en modo de combustión a baja temperatura, en concreto de tipo RCCI, por ejemplo a partir de los documentos US2014032081A1 y US2012247421A1. También se conoce el empleo de sistemas de recuperación de energía a partir de los gases procedentes de la combustión que son evacuados a la atmósfera, por ejemplo a partir de los documentos US5611203A y EP2105596A2. In the art, internal combustion engines are already known which can operate in a low temperature combustion mode, in particular of the RCCI type, for example from the documents US2014032081A1 and US2012247421A1. It is also known to use energy recovery systems from the combustion gases that are evacuated to the atmosphere, for example from the US5611203A and EP2105596A2 documents.
Sin embargo, los sistemas conocidos en la técnica anterior no permiten un aprovechamiento suficiente de la energía de los gases procedentes de la combustión y por tanto no resultan adecuados debido a los altos costes que suponen en cuanto al consumo específico del motor.  However, the systems known in the prior art do not allow a sufficient use of the energy of the gases coming from the combustion and therefore are not suitable due to the high costs involved in the specific consumption of the engine.
Por todo lo expuesto, se hace necesario la definición de un sistema de post-tratamiento adecuado a los requerimientos del concepto de combustión RCCI así como la definición de la línea de escape y admisión que proporcionen las condiciones adecuadas para el control del proceso de combustión y la recuperación de energía de los gases procedentes de la combustión, tanto evacuados a la atmósfera como recirculados.  For all the above, it is necessary to define a post-treatment system adequate to the requirements of the RCCI combustion concept as well as the definition of the exhaust and intake line that provide the adequate conditions for the control of the combustion process and the recovery of energy from the gases from combustion, both evacuated to the atmosphere and recirculated.
Sumario de la invención Summary of the invention
Para resolver los problemas de la técnica anterior, la presente invención se refiere a una configuración para motores de combustión interna alternativo que aprovecha las sinergias entre el proceso de combustión, la ubicación del sistema de post-tratamiento destinado a la reducción de emisiones de CO y HC, el sistema de sobrealimentación y el diseño de la línea de gases recirculados para reducir el consumo y las emisiones contaminantes.  To solve the problems of the prior art, the present invention relates to a configuration for reciprocating internal combustion engines that takes advantage of synergies between the combustion process, the location of the post-treatment system aimed at reducing CO emissions and HC, the supercharging system and the design of the recirculated gas line to reduce consumption and polluting emissions.
Así, la presente invención da a conocer un equipo de recuperación de energía de gases procedentes de la combustión en un motor de combustión interna. El motor de combustión interna comprende un bloque motor y un sistema de post tratamiento para gases procedentes de la combustión.  Thus, the present invention discloses a device for recovering energy from gases coming from combustion in an internal combustion engine. The internal combustion engine comprises a motor block and a post-treatment system for gases from combustion.
El equipo de recuperación de energía de la invención está dispuesto aguas abajo de dicho sistema de post tratamiento y comprende:  The energy recovery equipment of the invention is disposed downstream of said post treatment system and comprises:
- un primer turbogrupo compuesto por una primera turbina y un primer compresor para recuperar energía de los gases evacuados a la atmósfera; - un eyector para recuperar energía de los gases recirculados; y - a first turbogroup consisting of a first turbine and a first compressor to recover energy from the gases evacuated to the atmosphere; - an ejector to recover energy from the recirculated gases; Y
- un compresor adicional, que es un segundo compresor que forma un segundo turbogrupo junto con una segunda turbina;  - an additional compressor, which is a second compressor forming a second turbogroup together with a second turbine;
- la segunda turbina del segundo turbogrupo, ubicada en la línea de gases recirculados entre la línea de escape y la línea de admisión, expandiéndose en dicha segunda turbina los gases recirculados, permitiendo obtener energía mecánica para conducir al segundo compresor del segundo turbogrupo, en el que se aumenta la presión del flujo de la línea de admisión. - the second turbine of the second turbogroup, located in the line of recirculated gases between the exhaust line and the intake line, the recirculated gases expanding in said second turbine, allowing to obtain mechanical energy to drive the second compressor of the second turbogroup, in the that the flow pressure of the intake line is increased.
Así, el equipo de recuperación de energía de la presente invención permite aumentar la presión de los gases de admisión al motor de combustión aprovechando energía de los gases procedentes de la combustión. Thus, the energy recovery equipment of the present invention allows to increase the pressure of the admission gases to the combustion engine taking advantage of the energy coming from the combustion gases.
Breve descripción de los dibujos BRIEF DESCRIPTION OF THE DRAWINGS
La presente invención se entenderá mejor con referencia a los siguientes dibujos que ilustran realizaciones preferidas de la invención, proporcionadas a modo de ejemplo, y que no deben interpretarse como limitativas de la invención de ninguna manera:  The present invention will be better understood with reference to the following drawings which illustrate preferred embodiments of the invention, provided by way of example, and which are not to be construed as limiting the invention in any way:
La figura 1 muestra un esquema general de un equipo según la presente invención.  Figure 1 shows a general outline of an equipment according to the present invention.
La figura 2 muestra un esquema de un equipo de recuperación de energía de gases procedentes de la combustión que comprende un primer turbogrupo, un eyector y un compresor adicional .  Figure 2 shows a schematic of a gas energy recovery equipment from combustion comprising a first turbogroup, an ejector and an additional compressor.
La figura 3 muestra un esquema de un equipo según una realización preferida de la presente invención.  Figure 3 shows a schematic of an equipment according to a preferred embodiment of the present invention.
La figura 4 muestra un esquema de un equipo según otra realización preferida de la presente invención.  Figure 4 shows a schematic of an equipment according to another preferred embodiment of the present invention.
La figura 5 muestra un esquema de un equipo según otra realización preferida de la presente invención. Figure 5 shows a diagram of a team according to another preferred embodiment of the present invention.
Descripción detallada de las realizaciones preferidas Detailed description of the preferred embodiments
Haciendo referencia en primer lugar a la figura 1, se describirán de manera general y amplia los principales componentes del equipo de recuperación de energía de gases procedentes de la combustión en un motor de combustión interna según la presente invención.  Referring first to Figure 1, the main components of the gas energy recovery equipment from combustion in an internal combustion engine according to the present invention will be described generally and broadly.
En primer lugar, el propio motor de combustión interna comprende un bloque motor (1) y un sistema de post tratamiento (2) para gases procedentes de la combustión.  First, the internal combustion engine itself comprises a motor block (1) and a post-treatment system (2) for gases from combustion.
El bloque motor (1) puede presentar cualquier número de cilindros adecuado y cilindrada susceptible de funcionar en modo de combustión a baja temperatura (LTC) , en particular de tipo RCCI . Este tipo de combustión es especialmente exigente desde el punto de vista del cumplimiento de la normativa de emisiones contaminantes dado que puede conducir a una elevada tasa de formación de CO y HC combinada con gases procedentes de la combustión a baja temperatura a fin de optimizar el consumo especifico.  The engine block (1) can have any suitable number of cylinders capable of operating in low temperature combustion mode (LTC), in particular of the RCCI type. This type of combustion is particularly demanding from the point of view of compliance with the regulations on polluting emissions since it can lead to a high rate of CO and HC formation combined with gases from low temperature combustion in order to optimize the consumption specific.
El sistema de post-tratamiento (2) para gases procedentes de la combustión se encuentra ubicado justo después del bloque motor (1), aguas arriba de una turbina (4) (ubicación pre-turbina) que se describirá posteriormente. En esta ubicación, la temperatura de los gases procedentes de la combustión es máxima. El sistema de post-tratamiento (2) comprende al menos las funciones de filtrado de material particulado y de oxidación de CO y HC . Esto permite trabajar siempre con gases recirculados libres de hollín y garantiza que la energía química liberada en la oxidación de los hidrocarburos sin quemar se aproveche en los elementos ubicados aguas abajo de dicho sistema de post-tratamiento (2), en forma de energía tanto térmica como mecánica según el proceso llevado a cabo, y tanto para los gases recirculados como para los gases procedentes de la combustión del motor que van a evacuarse a la atmósfera. The post-treatment system (2) for gases from combustion is located just after the engine block (1), upstream of a turbine (4) (pre-turbine location) which will be described later. In this location, the temperature of the gases coming from the combustion is maximum. The post-treatment system (2) comprises at least the functions of particulate filtering and oxidation of CO and HC. This allows to work always with recirculated gases free of soot and guarantees that the chemical energy released in the oxidation of the unburned hydrocarbons is used in the elements located downstream of said post-treatment system (2), in the form of both thermal energy as mechanical according to the process carried out, and both for recirculated gases as for the gases coming from the combustion of the engine that are going to be evacuated to the atmosphere.
Según realizaciones alternativas de la presente invención, también se disponen otros sistemas de post tratamiento destinados a la reducción de las emisiones de NOx, tal como ya conoce el experto en la técnica. Asimismo, la arquitectura de este sistema de post-tratamiento (2) no se encuentra particularmente limitada, y puede emplearse cualquiera de las múltiples posibilidades conocidas en la técnica anterior. Por ejemplo, puede recurrirse al empleo de un catalizador de oxidación diésel (DOC) junto con un filtro de partículas diésel (DPF) , en cualquier orden entre ellos; el uso de un filtro de partículas catalizado; el uso de una trampa de NOx (LNT) seguida por un DPF; un DOC o LNT seguido por un filtro de partículas catalizado con función de reducción de NOx (SCRF) ; etc.  According to alternative embodiments of the present invention, other post-treatment systems intended for the reduction of NOx emissions are also available, as is already known to the person skilled in the art. Also, the architecture of this post-treatment system (2) is not particularly limited, and any of the many possibilities known in the prior art can be employed. For example, the use of a diesel oxidation catalyst (DOC) may be used together with a diesel particulate filter (DPF), in any order between them; the use of a catalyzed particle filter; the use of a NOx trap (LNT) followed by a DPF; a DOC or LNT followed by a catalyzed particulate filter with NOx reduction function (SCRF); etc.
El equipo de recuperación de energía en sí mismo está dispuesto aguas abajo del sistema de post-tratamiento (2) y comprende un primer turbogrupo (5), un eyector (7) y un compresor adicional. El compresor adicional forma parte de un segundo turbogrupo (9) . El conjunto de estos tres elementos se designa de manera esquemática en la figura 1 mediante la referencia 3, mientras que el conjunto del eyector (7) y el segundo turbogrupo (9) se designa mediante la referencia 6.  The energy recovery equipment itself is arranged downstream of the post-treatment system (2) and comprises a first turbogroup (5), an ejector (7) and an additional compressor. The additional compressor is part of a second turbogroup (9). The set of these three elements is designated schematically in Figure 1 by reference 3, while the ejector assembly (7) and the second turbogroup (9) is designated by reference 6.
Los gases procedentes de la combustión evacuados a la atmósfera se harán pasar siempre por una primera turbina (4), que junto a un primer compresor (20) forma parte del primer turbogrupo (5) . De este modo el tamaño del primer turbogrupo (5) se adaptará siempre al aire fresco entrante al motor, reduciendo su tamaño al máximo posible y reduciendo por tanto el retraso del primer turbogrupo (5) ante procesos de operación transitorios.  The combustion gases evacuated to the atmosphere will always pass through a first turbine (4), which together with a first compressor (20) forms part of the first turbogroup (5). In this way, the size of the first turbogroup (5) will always adapt to fresh air entering the engine, reducing its size to the maximum possible and thus reducing the delay of the first turbogroup (5) before transient operating processes.
Por su parte, los gases recirculados se expandirán en un sistema específico (6) . Dicho sistema (6) comprende un eyector (7) y un segundo turbogrupo (9) constituido por una segunda turbina (8) y un segundo compresor (10) . Tal como se describirá a continuación en el presente documento, esta combinación da lugar a distintas configuraciones preferentes según la disposición relativa del eyector (7) y el segundo turbogrupo (9) asi como del primer turbogrupo (5) y el segundo turbogrupo (9) . El uso de estos sistemas de recuperación de energía en los gases recirculados permite evitar el uso de intercambiadores de calor específicos para este flujo. On the other hand, the recirculated gases will expand in a specific system (6). Said system (6) comprises a ejector (7) and a second turbogroup (9) constituted by a second turbine (8) and a second compressor (10). As will be described hereinafter, this combination results in different preferred configurations according to the relative disposition of the ejector (7) and the second turbogroup (9) as well as the first turbogroup (5) and the second turbogroup (9) . The use of these energy recovery systems in the recirculated gases allows avoiding the use of specific heat exchangers for this flow.
En la figura 1 también puede apreciarse la línea de escape que comprende, de manera conocida y por tanto no descrita en detalle en el presente documento, las conducciones necesarias (11) (por sencillez, se indican de manera esquemática en la figura 1) para acoplar los distintos elementos que la componen desde la salida del bloque motor (12) hasta la salida a la atmósfera (13), un sistema de post tratamiento (14) complementario a (2) para garantizar el cumplimiento de las normativas de emisiones contaminantes y un sistema silenciador de escape (15) .  In figure 1 it can also be seen the exhaust line comprising, in a known manner and therefore not described in detail herein, the necessary conduits (11) (for simplicity, are indicated schematically in Figure 1) for coupling the different elements that compose it from the output of the engine block (12) to the outlet to the atmosphere (13), a post-treatment system (14) complementary to (2) to ensure compliance with the regulations on polluting emissions and an exhaust silencer system (15).
Por su parte, la línea de admisión comprende, también de manera conocida en sí misma y por tanto no descrita en detalle en el presente documento, las conducciones necesarias (16) (por sencillez, se indican sólo en la figura 1) para acoplar los distintos elementos que la componen desde la entrada a la línea desde la atmósfera (17) hasta la entrada al bloque motor (18), un filtro de aire (19) y un intercambiador de calor (21), preferiblemente de tipo intercooler. El intercambiador de calor (21) es común para el flujo másico de aire fresco y de gases recirculados lo que reduce el número de elementos de este tipo respecto al estado de la técnica.  For its part, the intake line comprises, also in a manner known per se and therefore not described in detail herein, the necessary conduits (16) (for simplicity, are indicated only in Figure 1) for coupling the various elements that compose it from the entrance to the line from the atmosphere (17) to the entrance to the engine block (18), an air filter (19) and a heat exchanger (21), preferably intercooler type. The heat exchanger (21) is common for the mass flow of fresh air and recirculated gases which reduces the number of elements of this type with respect to the state of the art.
En la figura 2 se muestra un equipo de recuperación de energía de gases procedentes de la combustión que comprende un primer turbogrupo, un eyector y un compresor adicional, que es un compresor centrifugo (22) . Los gases recirculados son de alta presión y se encuentran limpios al tomarse entre el sistema de post-tratamiento (2) pre-turbina y la primera turbina (4) para la expansión de los gases procedentes de la combustión evacuados a la atmósfera. En el eyector (7) se recupera la energía presente en los gases procedentes de la combustión garantizando que: Figure 2 shows a device for recovering energy from combustion gases comprising a first turbogroup, an ejector and an additional compressor, which is a centrifugal compressor (22). The recirculated gases are high pressure and are clean when taken between the post-treatment system (2) pre-turbine and the first turbine (4) for the expansion of the gases from the combustion evacuated to the atmosphere. In the ejector (7) the energy present in the gases coming from the combustion is recovered, guaranteeing that:
• La presión a la salida del eyector (7) es mayor que la presión del aire fresco procedente del primer compresor (20) del primer turbogrupo (5) debido a la compresión que experimenta este flujo en el eyector (7) .  • The pressure at the outlet of the ejector (7) is greater than the pressure of fresh air from the first compressor (20) of the first turbogroup (5) due to the compression experienced by this flow in the ejector (7).
• La presión de los gases recirculados es mayor que la presión a la salida del eyector (7) debido a la expansión que experimentan éstos en el propio eyector (7) .  • The pressure of the recirculated gases is greater than the pressure at the outlet of the ejector (7) due to the expansion they experience in the ejector itself (7).
• La temperatura a la salida del eyector (7) es un valor intermedio entre la temperatura de los gases recirculados, que se enfrían en el proceso de expansión en el eyector (7), y la temperatura del aire fresco procedente del primer compresor (20) del primer turbogrupo (5) .  • The temperature at the outlet of the ejector (7) is an intermediate value between the temperature of the recirculated gases, which are cooled in the expansion process in the ejector (7), and the temperature of the fresh air from the first compressor (20). ) of the first turbogroup (5).
La garganta del eyector (7) es de geometría variable (sección variable) con el fin de permitir regular el flujo másico de gases recirculados.  The throat of the ejector (7) is of variable geometry (variable section) in order to allow regulating the mass flow of recirculated gases.
Aguas abajo del eyector (7) está ubicado un intercambiador de calor (21), preferiblemente de tipo intercooler, y aguas abajo de este último se encuentra el compresor centrífugo (22) conducido mecánicamente por un motor eléctrico o conectado al sistema de potencia auxiliar del motor. Entre el intercambiador de calor (21) y el compresor centrífugo (22) se encuentra ubicado un separador de condensados (23), que protege al compresor centrífugo (22) del impacto de líquidos condensados sobre el rodete. En la figura 3 se muestra un equipo según una realización preferida de la presente invención, que emplea un sistema de recuperación de energía de los gases recirculados integrado en un sistema de turbo-sobrealimentación en doble etapa (compresores en serie) . Es decir, tal como se verá a continuación los compresores primero y segundo (20, 10) están ubicados en serie mientras que las turbinas primera y segunda (4, 8) están ubicadas en paralelo. En concreto, únicamente los gases recirculados se dirigen desde la salida del sistema de post-tratamiento (2) a la entrada de la segunda turbina (8) del segundo turbogrupo (9) . Esta segunda turbina (8) es de geometría variable para permitir regular el gasto de gases recirculados. La expansión de los gases recirculados permite obtener energía mecánica para conducir al segundo compresor (10) del segundo turbogrupo (9) en el que se aumenta la presión del aire fresco admitido por el motor. Los gases recirculados se dirigen entonces a un eyector (7) de geometría fija en el que se expanden dando lugar a su enfriamiento y al aumento de presión del aire fresco, procedente del segundo compresor (10), con el que se mezclan. Con esta configuración, el caudal de gases recirculados se regula mediante la posición de la segunda turbina (8) de geometría variable. Con ello se evita la estrangulación directa del flujo de gases recirculados en la línea de admisión, lo que reduce el trabajo de bombeo y evita la penalización del consumo. Downstream of the ejector (7) is located a heat exchanger (21), preferably of intercooler type, and downstream of the latter is the centrifugal compressor (22) driven mechanically by an electric motor or connected to the auxiliary power system of the engine. Between the heat exchanger (21) and the centrifugal compressor (22) is located a condensate separator (23), which protects the centrifugal compressor (22) from the impact of condensed liquids on the impeller. Figure 3 shows a device according to a preferred embodiment of the present invention, which uses a recirculated gas energy recovery system integrated in a turbo-supercharging system in two stages (series compressors). That is, as will be seen below, the first and second compressors (20, 10) are located in series while the first and second turbines (4, 8) are located in parallel. In particular, only the recirculated gases are directed from the outlet of the post-treatment system (2) to the inlet of the second turbine (8) of the second turbogroup (9). This second turbine (8) is of variable geometry to allow regulating the expense of recirculated gases. The expansion of the recirculated gases allows to obtain mechanical energy to drive the second compressor (10) of the second turbogroup (9) in which the pressure of the fresh air admitted by the engine is increased. The recirculated gases are then directed to an ejector (7) of fixed geometry in which they expand, giving rise to their cooling and to the increase in pressure of the fresh air, coming from the second compressor (10), with which they are mixed. With this configuration, the flow rate of recirculated gases is regulated by the position of the second turbine (8) of variable geometry. This avoids the direct strangulation of the flow of recirculated gases in the intake line, which reduces the work of pumping and avoids the penalty of consumption.
Desde el eyector (7) la mezcla de aire fresco y gases recirculados se conduce hasta un separador de condensados (23) que protege del impacto de líquidos condensados sobre el rodete del primer compresor (20) del primer turbogrupo (5) situado a continuación. Este primer compresor (20) aumenta la presión del flujo mezclado, en lo que supone una tercera etapa de compresión, al accionarse por el trabajo mecánico proporcionado por la expansión de los gases evacuados a la atmósfera en la primera turbina (4) del primer turbogrupo (5), la cual puede ser de geometría fija (en lugar de geometría variable) por la alta relación de expansión con la que funcionará. From the ejector (7) the mixture of fresh air and recirculated gases is led to a condensate separator (23) which protects the impact of condensed liquids on the impeller of the first compressor (20) of the first turbogroup (5) located below. This first compressor (20) increases the pressure of the mixed flow, in what supposes a third stage of compression, when operated by the mechanical work provided by the expansion of the gases evacuated to the atmosphere in the first turbine (4) of the first turbogroup (5), which can be of fixed geometry (instead of variable geometry) because of the high expansion ratio with which it will work.
Esta configuración permite disponer de turbinas de pequeño tamaño dado que cada una de ellas moverá aproximadamente la mitad del flujo de gases procedentes de la combustión (alta tasa de gases recirculados en sistemas de combustión RCCI) al tiempo que los compresores en serie también serán de tamaño reducido. El segundo compresor (10) perteneciente al segundo turbogrupo (9) puede ser pequeño por trasegar únicamente el aire fresco; el primer compresor (20) perteneciente al primer turbogrupo (5) funciona a alta presión a la entrada del mismo, lo que reduce el gasto corregido y por tanto el tamaño necesario para el compresor. La combinación de dos etapas de turbo-sobrealimentación en serie junto con la compresión en el eyector (7) permite obtener una presión de sobrealimentación del motor muy elevada .  This configuration allows to have turbines of small size given that each one of them will move approximately half of the flow of gases coming from combustion (high rate of recirculated gases in RCCI combustion systems) while the compressors in series will also be sized reduced. The second compressor (10) belonging to the second turbogroup (9) may be small because only the fresh air is transferred; the first compressor (20) belonging to the first turbogroup (5) operates at high pressure at the inlet thereof, which reduces the corrected expense and therefore the size needed for the compressor. The combination of two stages of turbo-supercharging in series together with the compression in the ejector (7) allows to obtain a very high boost pressure of the motor.
Haciendo ahora referencia a la figura 4, se describirá un equipo según otra realización preferida de la presente invención. En este caso, el equipo emplea un sistema de recuperación de energía de los gases recirculados consistente en la expansión de los gases recirculados en la segunda turbina (8) del segundo turbogrupo (9) y en la recuperación de energía en un eyector (7) situado a continuación con el fin de comprimir el flujo de aire fresco. Tal como puede apreciarse en la figura 4, en esta tercera realización de la presente invención los compresores primero y segundo (20, 10) están ubicados en paralelo mientras que las turbinas primera y segunda (4, 8) también están ubicadas en paralelo.  Referring now to Figure 4, an equipment according to another preferred embodiment of the present invention will be described. In this case, the equipment uses a recirculated gas energy recovery system consisting of the expansion of the recirculated gases in the second turbine (8) of the second turbogroup (9) and in the energy recovery in an ejector (7) located below in order to compress the flow of fresh air. As can be seen in Figure 4, in this third embodiment of the present invention the first and second compressors (20, 10) are located in parallel while the first and second turbines (4, 8) are also located in parallel.
La segunda turbina (8) del segundo turbogrupo (9) es de geometría variable dado que de este modo permite actuar como regulador del flujo de gases recirculados. En este caso, el eyector (7) puede disponer de una garganta de geometría fija, de modo que se evita la estrangulación en admisión para regular la tasa de gases recirculados, lo que reduce el trabajo de bombeo y evita penalizaciones en consumo. Esta configuración reduce el trabajo de bombeo pese a que el gasto de gases recirculados requiere controlar la presión en el colector de escape, ya que gran parte de la energía asociada se recupera eficientemente en el segundo turbogrupo (9) . The second turbine (8) of the second turbogroup (9) is of variable geometry since in this way it allows acting as a regulator of the flow of recirculated gases. In this case, the ejector (7) can have a throat of fixed geometry, so that the throttling in admission is avoided to regulate the rate of recirculated gases, which reduces the work of pumping and avoids penalties in consumption. This configuration reduces the pumping work despite the fact that the expense of recirculated gases requires controlling the pressure in the exhaust manifold, since a large part of the associated energy is recovered efficiently in the second turbogroup (9).
Los gases recirculados se expanden en la tobera del eyector (7) permitiendo pre-enfriar estos gases y recuperándose la energía cinética comprimiendo así la mezcla de aire fresco procedente del filtro de aire (19) y de gases recirculados. A la salida del eyector (7) se encuentra ubicado una vez más un separador de condensados (23) generados en la mezcla de gases recirculados pre-enfriados y húmedos y aire fresco a temperatura ambiente. A continuación la mezcla de aire fresco y gases recirculados se dirige a dos compresores centrífugos (10, 20) instalados en paralelo. Al igual que en los casos anteriores, el primer compresor (20) pertenece al primer turbogrupo (5) y está acoplado a la primera turbina (4) de gases evacuados a la atmósfera; mientras que el segundo compresor (10) pertenece al segundo turbogrupo (9) y se encuentra acoplado a la segunda turbina (8) de gases recirculados.  The recirculated gases expand in the nozzle of the ejector (7) allowing these gases to be precooled and the kinetic energy recovered, thus compressing the mixture of fresh air from the air filter (19) and recirculated gases. At the outlet of the ejector (7) is located once again a condensate separator (23) generated in the mixture of pre-cooled and wet recirculated gases and fresh air at room temperature. Then the mixture of fresh air and recirculated gases is directed to two centrifugal compressors (10, 20) installed in parallel. As in the previous cases, the first compressor (20) belongs to the first turbogroup (5) and is coupled to the first turbine (4) of gases evacuated to the atmosphere; while the second compressor (10) belongs to the second turbogroup (9) and is coupled to the second turbine (8) of recirculated gases.
En este caso, la primera turbina (4) del primer turbogrupo (5) también es de geometría variable con el fin de regular el régimen corregido de ambos compresores de modo que su punto de funcionamiento sea similar. Esta configuración garantiza tasas de gases recirculados muy elevadas, incluso durante transitorios muy dinámicos (periodo en el que, en la técnica anterior, se anula o reduce altamente este gasto) debido a la recuperación de energía que se lleva a cabo en el segundo turbogrupo (9) .  In this case, the first turbine (4) of the first turbogroup (5) is also of variable geometry in order to regulate the corrected regime of both compressors so that their operating point is similar. This configuration guarantees very high recirculated gas rates, even during very dynamic transients (period in which, in the prior art, this expense is canceled or highly reduced) due to the energy recovery that takes place in the second turbogroup ( 9).
Haciendo por último referencia a la figura 5, se describe un equipo según otra realización preferida de la presente invención en el que se usa un sistema de recuperación de energía de los gases recirculados con compresores en serie al igual que el mostrado en la figura 3, que son conducidos por turbinas en las que se expanden los gases evacuados a la atmósfera y los gases recirculados por separado. La diferencia con respecto a la realización mostrada en la figura 3 radica en la ubicación del eyector (7) . En este caso los gases recirculados se expanden inicialmente en la segunda turbina (8) del segundo turbogrupo (9) . Esta segunda turbina (8) es de geometría variable para regular el caudal de gases recirculados. La energía mecánica producida en este proceso expansión se emplea en mover al segundo compresor (10) encargado de la primera etapa de compresión del aire fresco en el sistema de admisión. A su vez, los gases evacuados a la atmósfera se expanden en la primera turbina (4) del primer turbogrupo (5), la cual será de geometría variable para forzar el caudal de gases recirculados en la otra rama. La energía mecánica generada en la primera turbina (4) del primer turbogrupo (5) se emplea en mover al primer compresor (20) encargado de la segunda etapa de compresión del aire fresco admitido por el motor. Finally, referring to Figure 5, describes a device according to another preferred embodiment of the present invention in which a system for recovering the energy of recirculated gases with compressors in series is used as shown in Figure 3, which are driven by turbines in which they expand the gases evacuated to the atmosphere and the gases recirculated separately. The difference with respect to the embodiment shown in Figure 3 lies in the location of the ejector (7). In this case, the recirculated gases are initially expanded in the second turbine (8) of the second turbogroup (9). This second turbine (8) is of variable geometry to regulate the flow of recirculated gases. The mechanical energy produced in this expansion process is used in moving the second compressor (10) in charge of the first stage of fresh air compression in the intake system. In turn, the gases evacuated to the atmosphere expand in the first turbine (4) of the first turbogroup (5), which will be of variable geometry to force the flow of recirculated gases in the other branch. The mechanical energy generated in the first turbine (4) of the first turbogroup (5) is used to move the first compressor (20) in charge of the second stage of compression of the fresh air admitted by the engine.
Entre ambas etapas de compresión (entre el segundo compresor (10) y el primer compresor (20)) puede ubicarse un intercambiador de calor (24) . De este modo, el aire fresco comprimido se dirige a una tercera etapa de compresión en el eyector (7) en el que los gases recirculados se expanden una vez más completando su enfriamiento. Para mejorar las prestaciones de este eyector (7), puede incluirse un sistema de geometría variable en la garganta del mismo. Esta configuración preferente garantiza el uso de turbomaquinaria de tamaño reducido, mejorando la respuesta transitoria, dado que las turbinas trasiegan aproximadamente la mitad del flujo entrante al motor y los compresores únicamente trasiegan el aire fresco, siendo el primer compresor (20) del primer turbogrupo (5) especialmente pequeño por funcionar a elevada presión. De este modo se garantiza una rápida respuesta transitoria del sistema de turbo-sobrealimentación. Between both compression stages (between the second compressor (10) and the first compressor (20)) a heat exchanger (24) can be located. In this way, the compressed fresh air is directed to a third compression stage in the ejector (7) in which the recirculated gases expand once again completing their cooling. To improve the performance of this ejector (7), a variable geometry system can be included in the throat thereof. This preferential configuration guarantees the use of turbo machinery of reduced size, improving the transitory response, since the turbines transfer approximately half of the incoming flow to the engine and the compressors only transfer the fresh air, the first compressor (20) of the first turbogroup (5) being especially small for operating at high pressure. In this way a rapid transient response of the turbocharging system is guaranteed.
Otra ventaja de esta realización preferida está asociada a la ausencia de un separador de condensados. En este caso, dado que la mezcla de aire fresco y gases recirculados se realiza aguas abajo de los compresores, no hace falta separador de condensados, de modo que se garantiza la ausencia de daños en dichos compresores. En esta configuración la presión de sobrealimentación del motor seria muy elevada al combinar tres procesos de compresión del flujo en la linea de admisión.  Another advantage of this preferred embodiment is associated with the absence of a condensate separator. In this case, since the mixture of fresh air and recirculated gases is made downstream of the compressors, no condensate separator is required, so that the absence of damage to said compressors is guaranteed. In this configuration the boost pressure of the engine would be very high when combining three flow compression processes in the intake line.
Según todo lo expuesto, la presente invención resuelve varios aspectos relevantes que la diferencian y le confieren claras ventajas respecto de la técnica anterior:  According to the foregoing, the present invention resolves several relevant aspects that differentiate it and give it clear advantages over the prior art:
- Los motores de combustión fría (RCCI o HCCI) necesitan disponer de gran cantidad de gas recirculado. Para ello, según la presente invención se realiza la recirculación desde la zona de alta presión del motor a la zona de baja presión. Esa diferencia de presión es esencial, ya que permite recircular gran cantidad de gases procedentes de la combustión y por consiguiente tener mucha energía para recuperar .  - Cold combustion engines (RCCI or HCCI) require a large amount of recirculated gas. For this purpose, according to the present invention, recirculation is carried out from the high pressure zone of the motor to the low pressure zone. This difference in pressure is essential, since it allows to recirculate a large quantity of gases coming from the combustion and therefore have a lot of energy to recover.
- Para reducir la formación de material particulado y NOx en la combustión, es importante que los gases recirculados se entreguen al motor lo más fríos posible. Para ello, según la presente invención, los gases recirculados se enfrían por ejemplo, gracias a la expansión de los gases en turbinas y posibles intercambiadores de calor.  - To reduce the formation of particulate matter and NOx in combustion, it is important that the recirculated gases are delivered to the engine as cold as possible. For this purpose, according to the present invention, the recirculated gases are cooled, for example, by the expansion of the gases in turbines and possible heat exchangers.
- Para poder aprovechar lo más posible la energía de los gases procedentes de la combustión, es necesario "limpiar" dichos gases a la salida del motor (gases a alta presión) . Para ello, según la presente invención, es esencial que el sistema de post-tratamiento de gases se ubique antes de la derivación de los gases recirculados (ubicación pre turbina) . - In order to make the most of the energy of the gases coming from the combustion, it is necessary to "clean" these gases at the motor output (high pressure gases). For this, according to the present invention, it is essential that the gas post-treatment system is located before the bypass of the recirculated gases (pre-turbine location).
En definitiva, se combinan los gases recirculados limpios (tomados después del sistema post-tratamiento) con alta presión y se recupera su energía a la vez que se enfría antes de llevarlo a la entrada de los elementos de compresión (por ejemplo eyector, compresores) situados en la zona de baja presión de la admisión del motor. De este modo, la presente invención permite mejorar las condiciones de oxidación de los hidrocarburos sin quemar (HC) , el CO y el material particulado presentes en los gases procedentes de la combustión en motores de combustión interna.  In short, the clean recirculated gases (taken after the post-treatment system) are combined with high pressure and their energy is recovered while cooling before carrying it to the entrance of the compression elements (for example ejector, compressors) located in the low pressure area of the engine intake. In this way, the present invention makes it possible to improve the oxidation conditions of the unburned hydrocarbons (HC), the CO and the particulate material present in the gases coming from combustion in internal combustion engines.
Entre las ventajas que los aspectos señalados confieren a la presente invención se encuentran las siguientes:  Among the advantages that the mentioned aspects confer to the present invention are the following:
- Permite la utilización de motores de combustión fría con reducciones efectivas de HC, CO, NOx y material recirculado .  - Allows the use of cold combustion engines with effective reductions of HC, CO, NOx and recirculated material.
- Permite la utilización de motores de combustión fría con reducciones importantes en el consumo de combustible.  - Allows the use of cold combustion engines with significant reductions in fuel consumption.
- Permite la utilización de motores de combustión fría con un coste asequible de post-tratamiento de los gases procedentes de la combustión.  - Allows the use of cold combustion engines with an affordable cost of post-treatment of gases from combustion.
- Permite la utilización de motores de combustión fría con combustibles convencionales sin emisiones de HC, CO, NOx y material recirculado.  - Allows the use of cold combustion engines with conventional fuels without emissions of HC, CO, NOx and recirculated material.
Por tanto, en el presente documento se han dado a conocer diversas realizaciones preferidas de la presente invención para la recuperación de energía en los gases procedentes de la combustión de motores de combustión interna alternativos cuando estos funcionan con modos de combustión específicos para reducir las emisiones contaminantes de material particulado y NOx, y en concreto de los gases recirculados a la admisión cuya energía se desaprovecha según las enseñanzas de la técnica anterior. Estos gases recirculados son muy abundantes en los modos de combustión específicos descritos con lo que aprovechar su energía por la presente invención entraña una ventaja más que notable respecto a la técnica anterior. Therefore, various preferred embodiments of the present invention for the recovery of energy in gases from the combustion of alternative internal combustion engines when they operate with specific combustion modes to reduce polluting emissions have been disclosed herein. of particulate matter and NOx, and specifically of gases recirculated to the admission whose energy is wasted according to the teachings of the prior art. These recirculated gases are very abundant in the specific combustion modes described, so that exploiting their energy by the present invention entails a more than notable advantage over the prior art.
Para ello, las diversas realizaciones preferidas de la presente invención combinan la ubicación específica del sistema de post-tratamiento de CO y HC, una definición particular del sistema de sobrealimentación y la definición particular de la distribución de las líneas de escape y admisión para optimizar la recuperación de energía de la línea de escape, maximizando así la reducción de consumo y emisiones contaminantes.  For this, the various preferred embodiments of the present invention combine the specific location of the CO and HC post-treatment system, a particular definition of the supercharging system and the particular definition of the distribution of the exhaust and intake lines to optimize the energy recovery of the exhaust line, thus maximizing the reduction of consumption and polluting emissions.
En concreto, se han descrito con detalle diversas realizaciones de un equipo de recuperación de energía de gases procedentes de la combustión en un motor de combustión interna que comprende, de manera general, un primer turbogrupo, un eyector y un compresor adicional que forma parte de un segundo turbogrupo. Sin embargo, el experto en la técnica entenderá que la presente invención no se limita a las realizaciones específicas descritas de manera detallada, y que pueden aportarse variaciones y modificaciones sin apartarse del alcance definido por las reivindicaciones adj untas .  In particular, various embodiments of a device for recovering energy from combustion gases in an internal combustion engine comprising, in a general manner, a first turbogroup, an ejector and an additional compressor that is part of the invention have been described in detail. a second turbogroup. However, the person skilled in the art will understand that the present invention is not limited to the specific embodiments described in detail, and that variations and modifications may be provided without departing from the scope defined by the appended claims.

Claims

REIVINDICACIONES
1 Equipo de recuperación de energía de gases procedentes de la combustión en un motor de combustión interna, comprendiendo el motor de combustión interna:  1 Equipment for the recovery of energy from combustion gases in an internal combustion engine, the internal combustion engine comprising:
- un bloque motor (1) ; y  - a motor block (1); Y
- un sistema de post-tratamiento (2) para gases procedentes de la combustión;  - a post-treatment system (2) for gases from combustion;
caracterizado por que el equipo de recuperación de energía está dispuesto aguas abajo del sistema de post tratamiento (2), y comprende:  characterized in that the energy recovery equipment is arranged downstream of the post-treatment system (2), and comprises:
- un primer turbogrupo (5) compuesto por una primera turbina (4) y un primer compresor (20) para recuperar energía de los gases evacuados a la atmósfera; - a first turbogroup (5) composed of a first turbine (4) and a first compressor (20) to recover energy from the gases evacuated to the atmosphere;
- un eyector (7) para recuperar energía de los gases recirculados; y - an ejector (7) to recover energy from the recirculated gases; Y
- un compresor adicional, que es un segundo compresor (10) que forma un segundo turbogrupo (9) junto con una segunda turbina (8);  - an additional compressor, which is a second compressor (10) forming a second turbogroup (9) together with a second turbine (8);
- la segunda turbina (8) del segundo turbogrupo (9), ubicada en la línea de gases recirculados entre la línea de escape y la línea de admisión, expandiéndose en dicha segunda turbina (8) los gases recirculados, permitiendo obtener energía mecánica para conducir al segundo compresor (10) del segundo turbogrupo (9), en el que se aumenta la presión del flujo de la línea de admisión;  - the second turbine (8) of the second turbogroup (9), located in the line of recirculated gases between the exhaust line and the intake line, the recirculated gases expanding in said second turbine (8), allowing to obtain mechanical energy to drive to the second compressor (10) of the second turbogroup (9), in which the flow pressure of the intake line is increased;
de modo que se aumenta la presión de los gases de admisión al motor de combustión aprovechando energía de los gases procedentes de la combustión.  so that the pressure of the gases of admission to the combustion engine is increased taking advantage of the gases coming from the combustion.
2 Equipo de recuperación de energía de gases procedentes de la combustión según la reivindicación 1, caracterizado por que al menos uno del primer compresor (20) y el compresor adicional está ubicado aguas abajo del eyector (7), y comprendiendo el equipo además un separador de condensados (23) ubicado entre el eyector (7) y el mismo.Equipment for recovering energy from combustion gases according to claim 1, characterized in that at least one of the first compressor (20) and the additional compressor is located downstream of the ejector (7), and the equipment also comprises a separator of condensed (23) located between the ejector (7) and the same.
3 Equipo de recuperación de energía de gases procedentes de la combustión según la reivindicación 2, caracterizado por que el compresor ubicado aguas abajo del eyector (7) es el compresor adicional. Equipment for recovering energy from combustion gases according to claim 2, characterized in that the compressor located downstream of the ejector (7) is the additional compressor.
4 Equipo de recuperación de energía de gases procedentes de la combustión según la reivindicación 2, caracterizado por que el compresor ubicado aguas abajo del eyector (7) es el primer compresor (20) del primer turbogrupo (5) .  Equipment for recovering energy from combustion gases according to claim 2, characterized in that the compressor located downstream of the ejector (7) is the first compressor (20) of the first turbogroup (5).
5 Equipo de recuperación de energía de gases procedentes de la combustión según la reivindicación 4, caracterizado por que el segundo compresor (10) del segundo turbogrupo (9) está ubicado aguas arriba del eyector (7) . Equipment for recovering energy from combustion gases according to claim 4, characterized in that the second compressor (10) of the second turbogroup (9) is located upstream of the ejector (7).
6 Equipo de recuperación de energía de gases procedentes de la combustión según la reivindicación 4, caracterizado por que el segundo compresor (10) del segundo turbogrupo (9) está ubicado aguas abajo del eyector (7), en paralelo con respecto al primer compresor (20) del primer turbogrupo (5) .  Equipment for recovering energy from combustion gases according to claim 4, characterized in that the second compressor (10) of the second turbogroup (9) is located downstream of the ejector (7), in parallel with respect to the first compressor ( 20) of the first turbogroup (5).
7 Equipo de recuperación de energía de gases procedentes de la combustión según la reivindicación 1, caracterizado por que el segundo compresor (10) y el primer compresor (20) están ubicados en serie aguas arriba del eyectorEquipment for recovering energy from combustion gases according to claim 1, characterized in that the second compressor (10) and the first compressor (20) are located in series upstream of the ejector
(7) . (7)
8 Equipo de recuperación de energía de gases procedentes de la combustión según la reivindicación 7, caracterizado por que comprende además un intercambiador de calor (24) entre el segundo compresor (10) y el primer compresor (20) . Equipment for recovering energy from combustion gases according to claim 7, characterized in that it also comprises a heat exchanger (24) between the second compressor (10) and the first compressor (20).
9 Equipo de recuperación de energía de gases procedentes de la combustión según cualquiera de las reivindicaciones anteriores, caracterizado por que comprende además al menos un intercambiador de calor (21) aguas abajo del eyector ( 7 ) . Equipment for recovering energy from combustion gases according to any of the preceding claims, characterized in that it also comprises at least one heat exchanger (21) downstream of the ejector (7).
10. Equipo de recuperación de energía de gases procedentes de la combustión según la reivindicación 9, caracterizado por que el intercambiador de calor (21) es de tipo intercooler . 10. Equipment for recovering energy from combustion gases according to claim 9, characterized in that the heat exchanger (21) is intercooler type.
PCT/ES2018/070828 2017-12-27 2018-12-21 Device for recovering energy from combustion gas WO2019129910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201731479A ES2657082B2 (en) 2017-12-27 2017-12-27 GAS ENERGY RECOVERY EQUIPMENT FROM THE COMBUSTION
ESP201731479 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019129910A1 true WO2019129910A1 (en) 2019-07-04

Family

ID=61280386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070828 WO2019129910A1 (en) 2017-12-27 2018-12-21 Device for recovering energy from combustion gas

Country Status (2)

Country Link
ES (1) ES2657082B2 (en)
WO (1) WO2019129910A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230460A (en) * 1999-02-08 2000-08-22 Hitachi Ltd Egr system for supercharged engine
JP2007224802A (en) * 2006-02-23 2007-09-06 Nissan Diesel Motor Co Ltd Exhaust recirculating device of turbo-compound engine
JP2007224801A (en) * 2006-02-23 2007-09-06 Nissan Diesel Motor Co Ltd Exhaust recirculating device of engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601315D0 (en) * 2006-01-23 2006-03-01 Ricardo Uk Ltd Supercharged diesel engines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230460A (en) * 1999-02-08 2000-08-22 Hitachi Ltd Egr system for supercharged engine
JP2007224802A (en) * 2006-02-23 2007-09-06 Nissan Diesel Motor Co Ltd Exhaust recirculating device of turbo-compound engine
JP2007224801A (en) * 2006-02-23 2007-09-06 Nissan Diesel Motor Co Ltd Exhaust recirculating device of engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BERMÏ¿½DEZ VICENTE ET AL.: "Pollutants emission and particle behavior in a pre-turbo aftertreatment light-duty diesel engine", ENERGY, vol. 66, 21 February 2014 (2014-02-21), AMSTERDAM, NL, pages 509 - 22, XP028634292, ISSN: 0360-5442, doi:10.1016/j.energy.2014.02.004 *

Also Published As

Publication number Publication date
ES2657082B2 (en) 2019-02-21
ES2657082A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
US6324846B1 (en) Exhaust gas recirculation system for an internal combustion engine
US8627662B2 (en) Exhaust gas recirculation heat recovery system and method
US7950231B2 (en) Low emission turbo compound engine system
US8726657B2 (en) Air turbine driven EGR pump for diesel engines
KR101648866B1 (en) Arrangement for cooling of recirculating exhaust gases of a combustion engine
US20080216476A1 (en) Turbocharged internal combustion engine with egr system having reverse flow
US8439021B2 (en) EGR system for an internal combustion engine
CN104213998A (en) System and method of operating an internal combustion engine
WO2009142989A2 (en) Exhaust driven auxiliary air pump and products and methods of using the same
US8495876B2 (en) Two-stage supercharging system with exhaust gas purification device for internal-combustion engine and method for controlling same
US20180163612A1 (en) Method for operating an internal combustion engine
US20100146967A1 (en) Emission system, apparatus, and method
KR20130126507A (en) Internal combustion engine
US20120227400A1 (en) Method and system for improving efficiency of multistage turbocharger
US20070261406A1 (en) Systems and methods of reducing NOx emissions in internal combustion engines
WO2013167932A1 (en) Truck internal combustion engine arrangement comprising a waste heat recovery system for compressing intake air
KR101683495B1 (en) Engine system having turbo charger
EP1966476B1 (en) Internal combustion engine and egr heat exchanger for it
ES2657082B2 (en) GAS ENERGY RECOVERY EQUIPMENT FROM THE COMBUSTION
US10794266B2 (en) System for cooling engine intake flow
KR101596519B1 (en) Exhaust gas Recirculation system for Diesel Engine
US20200284187A1 (en) Twin Scroll Turbocharger with Waste Heat Recovery
JP6375680B2 (en) HYBRID SYSTEM, HYBRID SYSTEM VEHICLE, AND EGR METHOD FOR HYBRID SYSTEM
KR101734247B1 (en) Engine system
CN205532950U (en) Air intake system of engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894469

Country of ref document: EP

Kind code of ref document: A1