WO2019129014A1 - 一种通信方法、装置以及系统 - Google Patents

一种通信方法、装置以及系统 Download PDF

Info

Publication number
WO2019129014A1
WO2019129014A1 PCT/CN2018/123658 CN2018123658W WO2019129014A1 WO 2019129014 A1 WO2019129014 A1 WO 2019129014A1 CN 2018123658 W CN2018123658 W CN 2018123658W WO 2019129014 A1 WO2019129014 A1 WO 2019129014A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
shift
null
unit group
mod
Prior art date
Application number
PCT/CN2018/123658
Other languages
English (en)
French (fr)
Inventor
张旭
成艳
王建国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810060582.0A external-priority patent/CN109995492B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22168158.8A priority Critical patent/EP4113884A1/en
Priority to EP18896599.0A priority patent/EP3716710B1/en
Publication of WO2019129014A1 publication Critical patent/WO2019129014A1/zh
Priority to US16/915,838 priority patent/US11412520B2/en
Priority to US17/868,517 priority patent/US20220377744A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of wireless communications, and more particularly to a configuration of a set of resource blocks in a wireless communication system.
  • the control channel includes a physical downlink control channel (PDCCH) and an enhanced physical downlink control channel (EPDCCH).
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • the time-frequency resource region where the PDCCH is located is located in the first 0-3 Orthogonal Frequency Division Multiplexing (OFDM) symbols of one subframe, and the time-frequency resource region where the EPDCCH is located is occupied in one subframe. All or part of the downlink OFDM symbols except the PDCCH; in the frequency domain, the time-frequency region where the PDCCH is located occupies the entire system bandwidth, and the time-frequency region where the EPDCCH is located occupies the frequency domain width of at least one physical resource block (PRB) in the frequency domain.
  • PRB physical resource block
  • downlink control information carried by a control channel is used to indicate that a resource block (RB) used by a data channel is in a data area.
  • RB resource block
  • the data channel is used to carry downlink data.
  • COREST a control resource set
  • the network device may send a downlink control channel to the terminal device on any control resource set corresponding to the terminal device.
  • the downlink control channel includes one or more Control-channel elements (CCEs), and the downlink control channel unit CCE is mapped to the CORESET, where the control resource set includes continuous or discrete frequency domain resources in the frequency domain, in the time domain. Includes multiple consecutive OFDM symbols.
  • a Control Channel Element (CCE) is composed of a plurality of Resource Element Groups (REGs).
  • mapping the CCE to the CORESET since the CORESET includes continuous or discrete frequency domain resources in the frequency domain, there may be a case where different CCEs are mapped to the same resource, and the transmission and reception of the control information fails. Therefore, how to implement mapping from CCE to CORESET to achieve accurate and efficient resource allocation is a technical problem that needs to be solved.
  • the invention relates to a communication method, device and system for realizing accurate and efficient resource allocation in a communication system.
  • an embodiment of the present application provides a communication method, where the method includes:
  • the terminal device determines to bind the M resource unit groups in the control resource set
  • the terminal device detects a control channel on the resource corresponding to the M resource unit group binding, where the M is greater than or equal to 1.
  • N is the number of resource unit groups included in the control resource set
  • B is the number of resource unit group bindings included in the control resource set
  • L is a resource unit group.
  • R is the interleaving parameter
  • N null (C ⁇ RB)
  • x cR+r,r ⁇ 0,1,...,R-1 ⁇ (in the case of introducing an interleaving matrix, r is also called a row number)
  • c ⁇ 0,1,...,C -1 ⁇ in the case of introducing an interleaving matrix, c is also called a column number).
  • control resource set is composed of B resource unit group resource unit group bindings
  • the M resource unit group bindings according to at least one offset value and/or a shift value, where the at least one offset value and/or the shift value is based on Value determined;
  • the value of B is less than or equal to
  • the R is an interleaving parameter acquired by the terminal device.
  • the at least one offset value is based on The value, as determined by at least one of the row number r and the column number c.
  • the at least one offset value includes at least one of offset1, offset2, offset3, offset4, and offset5, offset6; the terminal device determines the M resource unit groups according to at least one offset value Binding, including:
  • the terminal device determines that an index bound to the i+1th resource unit group in the j+1th control channel unit in the control resource set is f(x), and the value of the x is equal to (6j/L+ i), the L is the size of the resource unit group binding;
  • the offset1 n, and a n ⁇ x ⁇ a n+1 , the n ⁇ 0,1,...N null -1 ⁇ ;
  • the N null is not 0 and is less than C.
  • n in the optional design has a different meaning from n in the previous optional design.
  • the at least one offset value is based on The value is determined.
  • the at least one offset value is based on The value and the line number r are determined.
  • the at least one offset value is based on The value is determined by the row number r and the column number c.
  • the at least one offset value is based on The value and the line number r are determined.
  • the at least one offset value is based on The value is determined by the row number r and the column number c.
  • h(x) u(x)+n shift ;
  • the value of the n shift is A ⁇ n id ⁇ (N symbol /L), the A is an offset parameter acquired by the terminal device, and the n id is identifier information acquired by the terminal device, and the N symbol is the number of symbols occupied by the resource control the time domain set.
  • h(x) u(k);
  • the n shift is a shift value determined by the terminal device.
  • the mth position e null (m) of N null row positions satisfies the following formula:
  • the value of offset4 is -m, and e null (m) ⁇ r ⁇ e null (m+1).
  • the determining, by the terminal device, the M resource unit group bindings in the control resource set includes: determining, by the terminal device, the M resource unit group bindings according to the at least one shift value.
  • the at least one shift value includes the above-described n shift .
  • the value of the n shift may be determined by at least one parameter, and the parameter may be at least one of an offset parameter A, an offset parameter Z, and an identification information n id .
  • the value of the n shift may be determined by the offset parameter A or Z, and the offset parameters A and Z are determined by the parameter P.
  • the value of A is equal to the value of P
  • the value of Z is equal to (N symbol /L) ⁇ A, and the N symbol is the number of OFDM symbols occupied by the control resource set in the time domain.
  • the value of the n shift may be determined by the identifier information n id .
  • the identification information may be a cell identifier Or a parameter configured through higher layer signaling.
  • the value of the n shift may be determined by using the offset parameter A and the identifier information n id or by the offset parameter Z and the identifier information n id .
  • n shift satisfies or
  • the network device and the terminal device determine that the number of the i+1th REG binding in the j+1th control channel unit CCE in the control resource set is f(x),
  • an embodiment of the present application further provides a wireless device, where the wireless device can be applied to a terminal device or a network device, where the device includes a processing unit, where:
  • the processing unit determines to bind the M resource unit groups in the control resource set
  • the processing unit detects a control channel on the resource corresponding to the M resource unit group binding, where the M is greater than or equal to 1.
  • the device further includes a receiving unit, where the receiving unit is configured to receive the control channel.
  • the device further comprises a transmitting unit.
  • control resource set is composed of B resource unit group resource unit group bindings
  • the processing unit determines the M resource unit group bindings according to at least one offset value and/or a shift value, the at least one offset value and/or the shift value being based on Value determined;
  • the value of B is less than or equal to
  • the R is an interleaving parameter acquired by the processing unit or the terminal device.
  • the at least one offset value and/or the shift value are based on The value, as determined by at least one of the row number r and the column number c.
  • the at least one offset value includes at least one of offset1, offset2, offset3, offset4, offset5, and offset6; the processing unit determines the M resource unit groups according to at least one offset value Binding, including:
  • the processing unit determines that an index bound to the i+1th resource unit group in the j+1th control channel unit in the control resource set is f(x), and the value of the x is equal to (6j/L+ i), the L is the size of the resource unit group binding;
  • the offset1 n, and a n ⁇ x ⁇ a n+1 , the n ⁇ 0,1,...N null -1 ⁇ ;
  • the N null is not 0 and is less than C.
  • n in the optional design has a different meaning from n in the previous optional design.
  • the N null is not 0 and is greater than C.
  • the offset3 min ⁇ 0, (RN null -r) ⁇ , or,
  • Offset3 min ⁇ 0,(RN null )-(x mod R) ⁇ .
  • h(x) u(x)+n shift ;
  • the value of the n shift is A ⁇ n id ⁇ (N symbol /L), where A is an offset parameter acquired by the processing unit or the terminal device, and the n id is the identification information acquired by the processing unit or the terminal device.
  • the N symbol is the number of symbols occupied in the time domain of the control resource set.
  • h(x) u(k);
  • n shift is a shift value
  • the value of offset4 is -m, and e null (m) ⁇ r ⁇ e null (m+1).
  • the processing unit determines the M resource unit group bindings in the control resource set, including: the processing unit further determines the M resource unit group bindings according to the at least one shift value.
  • the at least one shift value includes the above-described n shift .
  • the value of the n shift may pass at least one parameter, and the parameter may be at least one of an offset parameter A, an offset parameter Z, and an identification information n id .
  • the value of the n shift may be determined by the offset parameter A or Z, and the offset parameters A and Z are determined by the parameter P.
  • the value of A is equal to the value of P
  • the value of Z is (N symbol /L) ⁇ A, and the N symbol is the number of OFDM symbols occupied by the control resource set in the time domain.
  • the value of the n shift may be determined by the identifier information n id .
  • the identification information may be a cell identifier Or a parameter configured through higher layer signaling.
  • the value of the n shift may be determined by using the offset parameter A and the identifier information n id or by the offset parameter Z and the identifier information n id .
  • n shift satisfies or
  • the processing unit may be a processor
  • the receiving unit may be a receiver
  • the transmitting unit may be a transmitter
  • an embodiment of the present application provides a communication method, where the method includes:
  • the network device determines to bind the M resource unit groups in the control resource set
  • the network device sends a control channel on the resource corresponding to the M resource unit group binding, where the M is greater than or equal to 1.
  • the method for determining the binding of the M resource unit groups by the network device and the terminal device may be the same or different, but the determined result is the same.
  • the communication method in the first aspect for the M The description of the resource unit group binding determination.
  • an embodiment of the present application further provides a wireless device, where the wireless device includes a processing unit and a transmitting unit, where:
  • the processing unit determines to bind the M resource unit groups in the control resource set
  • the transmitting unit sends a control channel on the resource corresponding to the M resource unit group binding, where the M is greater than or equal to 1.
  • the wireless device further includes a receiving unit.
  • the processing unit determines that the method for binding the M resource unit groups is the same as or different from the method for determining the wireless device provided by the first aspect, and the determined result is the same. For details, refer to the first aspect.
  • the determination of the determination of the M resource unit group bindings in the communication method refer to the first aspect.
  • the processing unit may be a processor
  • the receiving unit may be a receiver
  • the transmitting unit may be a transmitter
  • an embodiment of the present application provides an apparatus, including at least one memory, and/or at least one processor, the at least one processor executing a computer program to implement the first aspect and/or the second aspect Any method.
  • the device is a chip or a wireless device.
  • the computer program may be all stored in the at least one memory, or a part of the computer program is stored in the at least one memory, and another part is stored in the at least one memory In other storage media.
  • the at least one processor is coupled to the at least one memory.
  • the at least one processor and the at least one memory are integrated in one chip.
  • the present invention provides a system comprising at least the two devices provided by the first and second aspects described above.
  • the present invention provides a wireless device including one or more processors, and a memory, wherein the memory stores a computer program, and when the processor executes the computer program, the device is implemented Any of the methods of the first aspect and/or the third aspect described above.
  • the present invention provides a computer storage medium storing a computer program on which a computer program is stored, and when the computer program is executed by a processor (or a device (terminal device or network device)), the foregoing Any one of the methods described in the aspect and/or the third aspect.
  • the present invention provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform any of the methods provided by the first aspect and/or the third aspect.
  • the present invention provides a chip system including a processor for supporting a network device or device to implement the functions involved in the first aspect and/or the third aspect described above, such as, for example, generating or processing Data and/or information involved in the above methods.
  • the chip system further includes a memory for holding program instructions and data necessary for the network device or the communication device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present invention provides a chip, the chip includes a processing module and a communication interface, the processing module is configured to control the communication interface to communicate with an external, and the processing module is further configured to implement the first aspect and / or any of the methods provided in the third aspect.
  • the solution provided by the embodiment of the present invention can implement non-repetitive mapping of control channel unit to resource unit group binding, and provides accuracy and efficiency of resource configuration.
  • FIG. 1 is a schematic diagram of a possible application scenario of an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a possible control resource set provided by an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of a possible communication method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a possible interlace mapping provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of still another possible interleaving mapping provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of still another possible interleaving mapping provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of still another possible interleaving mapping provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a possible structure of a wireless device according to an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • a plurality means two or more.
  • "and/or” describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic diagram of a possible application scenario in the embodiment of the present invention.
  • the communication system in the application scenario includes: a network device, and one or more terminal devices.
  • the network device and the terminal device can communicate through one or more air interface technologies.
  • LTE Long Term Evolution
  • 5G fifth generation 5G system and the like.
  • Network device may be a base station, or an access point, or a network device, or may refer to a device in the access network that communicates with the wireless terminal over one or more sectors over the air interface.
  • the network device can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • Network devices can also coordinate attribute management of air interfaces.
  • the network device may be a Global System of Mobile communication (GSM) or a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA), or may be a wideband code division multiple access.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • the base station (NodeB, NB) in the (Wideband Code Division Multiple Access, WCDMA) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or access A point, or a base station in a future 5G network, such as gNB, is not limited herein.
  • Evolutional Node B, eNB or eNodeB in Long Term Evolution (LTE)
  • LTE Long Term Evolution
  • gNB a relay station or access A point
  • a base station in a future 5G network such as gNB
  • TRP Transmission Reception Point
  • the network device may also be divided into a Control Unit (CU) and a Data Unit (DU).
  • CU Control Unit
  • DU Data Unit
  • each DU and terminal may exist, where each DU and terminal
  • the measurement reporting method described in the embodiment of the present application can be used.
  • the difference between the CU-DU separation scenario and the multi-TRP scenario is that the TRP is only a radio unit or an antenna device, and the protocol stack function can be implemented in the DU.
  • the physical layer function can be implemented in the DU.
  • Terminal device may be a wireless terminal or a wired terminal, the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • RAN Radio Access Network
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • Orthogonal Frequency Division Multiplexing OFDM
  • SCMA Sparse Code Multiplexing Access
  • Filtered Orthogonal Frequency Division Frtered Orthogonal Frequency Division
  • F-OFDM F-OFDM
  • NOMA Non-Orthogonal Multiple Access
  • Control Resource Set A collection of resources used to control channel transmission.
  • the time domain resources of CORESET can be continuous or discontinuous.
  • RB Resource Block
  • REG Resource Element Group
  • 1 REG occupies 1 resource block in the frequency domain and 1 OFDM symbol in the time domain.
  • a Resource Element Group Bundle (REG Bundle) consists of multiple REGs in a time domain or a frequency domain, and the multiple REGs use the same precoding.
  • a REG Bundle can include 2, 3, 6, or other numbers of REGs.
  • the resources of the reference signal for demodulating the control channel included in one REG bundle are more resources than the reference signals included in the single REG, which can improve the accuracy of channel estimation and reduce the bit error rate of the control channel transmission.
  • High-level signaling Different from physical layer signaling, it can be a Master Information Block (MIB), a System Information Block (SIB), or a Radio Resource Control (RRC) signaling, or Other high-level signaling with similar characteristics.
  • MIB Master Information Block
  • SIB System Information Block
  • RRC Radio Resource Control
  • Bandwidth area BandWidth Part (BWP), a plurality of physical resource blocks in the frequency domain, which are generally configured by the network device for the terminal device.
  • the terminal device receives or transmits data within the BWP.
  • the control resource transmission as an example, at least one control resource set is included in one BWP, and the control resource set includes a frequency domain resource that does not exceed multiple physical resource blocks included in the frequency domain of the BWP.
  • the network device 102 is capable of performing the methods provided by embodiments of the present invention.
  • the network device 102 may include a controller or a processor 201 (hereinafter, the processor 201 is taken as an example) and a transceiver 202.
  • Controller/processor 201 is sometimes also referred to as a modem processor.
  • Modem processor 201 can include a baseband processor (BBP) (not shown) that processes the digitized received signal to extract information or data bits conveyed in the signal.
  • BBP baseband processor
  • DSPs digital signal processors
  • ICs integrated circuits
  • the transceiver 202 can be used to support sending and receiving information between the network device and the terminal device, and to support radio communication between the terminal devices.
  • the processor 201 can also be used to perform functions of communication between various terminal devices and other network devices.
  • On the uplink the uplink signal from the terminal device is received via the antenna, coordinated by the transceiver 202, and further processed by the processor 201 to recover the traffic data and/or signaling information transmitted by the terminal device.
  • traffic data and/or signaling messages are processed by the terminal device and modulated by the transceiver 202 to generate downlink signals for transmission to the terminal device via the antenna.
  • the network device can also include a memory 203 that can be used to store program code and/or data for the network device.
  • the transceiver 202 can include separate receiver and transmitter circuits, or the same circuit can implement transceiving functions.
  • the network device can also include a communication unit 204 for supporting the network device to communicate with other network entities. For example, it is used to support the network device to communicate with a network device or the like of the core network.
  • the network device may also include a bus.
  • the transceiver 202, the memory 203, and the communication unit 204 can be connected to the processor 201 through a bus.
  • the bus can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus may include an address bus, a data bus, a control bus, and the like.
  • FIG. 3 is a schematic diagram of a possible structure of a terminal device in the above communication system.
  • the terminal device is capable of performing the method provided by the embodiment of the present invention.
  • the terminal device may be any one of the one or more terminal devices in FIG.
  • the terminal device includes a transceiver 301, an application processor 302, a memory 303, and a modem processor 304.
  • the transceiver 301 can condition (e.g., analog convert, filter, amplify, upconvert, etc.) the output samples and generate an uplink signal that is transmitted via an antenna to the base station described in the above embodiments. On the downlink, the antenna receives the downlink signal transmitted by the network device. Transceiver 301 can condition (eg, filter, amplify, downconvert, digitize, etc.) the signals received from the antenna and provide input samples.
  • Modem processor 304 also sometimes referred to as a controller or processor, may include a baseband processor (BBP) (not shown) that processes the digitized received signal to extract information conveyed in the signal Or data bits.
  • BBP baseband processor
  • the BBP is typically implemented in one or more numbers within the modem processor 304 or as a separate integrated circuit (IC), as needed or desired.
  • a modem processor 304 may include an encoder 3041, a modulator 3042, a decoder 3043, and a demodulator 3044.
  • the encoder 3041 is for encoding the signal to be transmitted.
  • encoder 3041 can be used to receive traffic data and/or signaling messages to be transmitted on the uplink and to process (eg, format, encode, or interleave, etc.) the traffic data and signaling messages.
  • Modulator 3042 is used to modulate the output signal of encoder 3041.
  • the modulator can perform symbol mapping and/or modulation processing on the encoder's output signals (data and/or signaling) and provide output samples.
  • a demodulator 3044 is used to demodulate the input signal.
  • demodulator 3044 processes the input samples and provides symbol estimates.
  • the decoder 3043 is configured to decode the demodulated input signal.
  • the decoder 3043 deinterleaves, and/or decodes the demodulated input signal and outputs the decoded signal (data and/or signaling).
  • Encoder 3041, modulator 3042, demodulator 3044, and decoder 3043 may be implemented by a composite modem processor 304. These units are processed according to the radio access technology employed by the radio access network.
  • Modem processor 304 receives digitized data representative of voice, data or control information from application processor 302 and processes the digitized data for transmission.
  • the associated modem processor can support one or more of a variety of wireless communication protocols of various communication systems, such as LTE, new air interface, Universal Mobile Telecommunications System (UMTS), high speed packet access (High Speed) Packet Access, HSPA) and more.
  • UMTS Universal Mobile Telecommunications System
  • High Speed Packet Access High Speed Packet Access
  • one or more memories may also be included in the modem processor 304.
  • modem processor 304 and the application processor 302 may be integrated in one processor chip.
  • the memory 303 is used to store program code (sometimes referred to as programs, instructions, software, etc.) and/or data for supporting communication of the terminal device.
  • program code sometimes referred to as programs, instructions, software, etc.
  • the memory 203 or the memory 303 may include one or more storage units, for example, may be a processor 201 for storing program code or a storage unit inside the modem processor 304 or the application processor 302, or may Is an external storage unit separate from the processor 201 or the modem processor 304 or the application processor 302, or may also be a storage unit including the processor 201 or the modem processor 304 or the application processor 302 and with the processor 201 or modem
  • the processor 304 or the application processor 302 is a separate component of an external storage unit.
  • the processor 201 and the modem processor 304 may be the same type of processor or different types of processors. For example, it can be implemented in a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and a field programmable gate array ( Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, other integrated circuit, or any combination thereof.
  • Processor 201 and modem processor 304 may implement or perform various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing function devices, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, or a system-on-a-chip (SOC) or the like.
  • transmitting a downlink (uplink) channel may refer to transmitting data or information carried on a downlink (uplink) channel, where the data or information may refer to channel-encoded data or information.
  • the embodiments of the present invention will be further described in detail below based on the common aspects of the invention described above.
  • the delay that may exist in the uplink and downlink is ignored, and it is assumed that the transmission time of the network device is the same as the reception time of the terminal device.
  • the embodiment is described from the perspective of the terminal device side.
  • the terminal device receives from the network device, which means that the network device performs the transmission.
  • the present invention relates to the expression "resource block unit".
  • the resource block unit is logically dividing the resource block, and is convenient for resource allocation according to the corresponding resource allocation granularity, and may cover other resources. The representation of the block division.
  • the numbering of each step in the embodiment of the present invention does not limit the sequence in the specific execution process. In different alternative designs, the sequence of execution of the above steps may be adaptively adjusted.
  • the values of the parameters represented by letters in the embodiment of the present invention are all non-negative integers, that is, the values indicated by the letters are non-negative integers.
  • “ ⁇ " or “” means “less than”, “>” or Indicates "greater than”, “ ⁇ ” means “less than or equal to”, “ ⁇ ” means “greater than or equal to”, “ ⁇ ” means “not equal to”, " ⁇ ” means “multiplied by", Means "under the whole”, Indicates "up and down.”
  • the control channel can be composed of one or more CCEs.
  • a CCE consists of multiple REGs, for example, each CCE includes 6 REGs. Therefore, when the network device sends the control channel, one or more CCEs constituting the control channel are mapped to the REG in the control channel resource set on the one or more control resource sets allocated for each terminal device, where REG is a physical resource, and CCE is a logical unit that constitutes a control channel.
  • CCE to REG mapping that is, mapping each CCE used by the control channel to physical resources.
  • the REGs included in the control resource set are numbered in a time domain priority manner, that is, the number of the first OFDM symbols included in the control resource set and the lowest resource block number are numbered.
  • the numbering manner may also be determined according to configuration information of the control resource set, that is, may be numbered in a frequency-prioritized manner or a time-domain-first manner.
  • the NR standard supports the following CCE to REG resource mapping modes: non-interleaved resource mapping (non-interleaved) and interleaved resource mapping (Interleaved).
  • CCE to REG resource mapping is performed using non-Interleaved
  • REGs belonging to the same CCE are consecutive in time domain and frequency domain resources.
  • the CCE to REG resource mapping is performed by using Interleaved
  • the REGs belonging to the same CCE are discretely mapped in the time domain and the frequency domain, and the discrete granularity is the size of the REG bundle.
  • the REG binding is composed of multiple REGs that are consecutive or adjacent in the time domain and/or the frequency domain, and the size of the REG binding is related to the configuration of the control resource set. For example, when the mapping of the CCE to the REG in the control resource set is an interlace, and the control resource set includes 1 or 2 OFDM symbols in the time domain, the size of the REG binding may be 2 or 6; the CCE to the REG in the control resource set The mapping of the REG binding may be 3 or 6 when the mapping of the control resource set includes 3 OFDM symbols in the time domain. When the mapping of CCE to REG in the control resource set is non-interleaved, the size of the REG binding is 6.
  • the REGs included in the REG binding may be configured in a time domain priority manner or in a frequency domain priority manner.
  • the REG binding size is 2, and if the time domain priority is used, the REGs that form the REG binding are composed of two consecutive REGs in the time domain; if the frequency domain priority is used, the REGs that constitute the REG binding are formed. It consists of two consecutive REGs in the frequency domain.
  • the REG binding is formed according to a time domain priority manner or a frequency domain priority manner, and may be determined according to a configuration of a control channel resource set.
  • the REG binding is formed according to a time domain priority manner; and the control resource set includes 1 OFDM.
  • REG bindings are formed in a frequency-first manner.
  • the number of logical REG bindings included in one CCE corresponds to at least one physical REG binding number different from the logical number.
  • the physical REG binding number corresponding to the jth CCE is ⁇ 6j/L, 6j/L+1, ..., 6j/L+L-1 ⁇ , where L is a REG tied The number of REGs to be included.
  • the number of the REG corresponding to the number of the i-th REG binding is ⁇ i, iL+1, ..., iL+L-1 ⁇ , where L can be ⁇ 2, 3, 6 ⁇ .
  • the physical REG binding number corresponding to the jth CCE is ⁇ f(6j/L), f(6j/L+1), ..., f(6j/L+L-1) ⁇ , where f( ⁇ ) can be represented as an interleaver. And given by:
  • one or more of the foregoing L, R, and n shift may be determined according to configuration information of the higher layer signaling.
  • the interleaver function f(.) does not apply to all possible configurations, especially in Cannot be divisible by the product of L and R, the output value of the interleaver function will appear multiple repeated values. As shown in the control resource set of Figure 4.
  • the control resource set includes 24 resource blocks in the frequency domain and 2 OFDM symbols in the time domain.
  • the REG corresponding to CCE 3 is bound to ⁇ f(3) ⁇
  • the REG corresponding to CCE 4 is bound to ⁇ f(4) ⁇
  • the REG corresponding to CCE 5 is bound to ⁇ f( 5) ⁇
  • the REG binding corresponding to CCE 6 is ⁇ f(6) ⁇
  • the REG corresponding to CCE 7 is bound to ⁇ f(7) ⁇ .
  • the expression of f(.) is as shown in formula (1).
  • An embodiment of the present invention provides a communication method, where a network device determines that M resource element group REGs in a control resource set are bound, and sends a control channel to a terminal device; the terminal device determines the M REG bindings, and The control channel is detected on the resource corresponding to the M REG bindings.
  • the location of the REG binding determined by the embodiment of the present invention or the result of the f(x) output is the location where the M REGs constituting the CCE are bound in the control resource set, and the specific value may be the REG binding. Number or index. In the specific elaboration process, the position, number, and index can be replaced by each other.
  • the embodiments of the present invention relate to resource location mapping, and inevitably involve a large number of parameters, intermediate variables, and formulas.
  • the "determining" operation involved in the embodiments of the present invention is not limited to the determination of parameters, intermediate variables, and formulas according to the embodiments, but is determined according to the technical concept embodied by the formula. That is to say, the parameters, intermediate variables, and formulas involved in the embodiments of the present invention should not be limited only to parameters, variables, and formulas themselves, and the scope of the scheme should cover the range determined according to the technical meaning expressed by the specific parameters and intermediate variables. And the calculation of the formula is not limited to the formula itself. Those skilled in the art can make reasonable modifications based on the formula, but the results and solutions of the same or similar technical problems should still be obtained. Within the scope of the embodiments of the present invention.
  • FIG. 5 shows a specific implementation manner of the communication method in the embodiment of the present invention. The solution provided by the embodiment of the present invention is described below with reference to FIG. 5.
  • the interleaving process of resource allocation in the embodiment of the present invention is embodied by a matrix interleaver, and the size of the matrix interleaver is represented by the matrix value of the matrix.
  • the matrix interleaver Through the processing of the matrix interleaver, one or more CCEs that logically divide the control resource set are mapped to corresponding physical resource REG bindings to implement transmission and reception of downlink information.
  • Step 500 The network device determines to control the M resource element group REG bindings in the resource set.
  • the control resource set is composed of B REG bindings.
  • This determining step can be performed by the processor 201 of the network device.
  • Step 501 The network device sends downlink information to the terminal device on the resources corresponding to the M REG bindings.
  • the downlink information may be a control channel and/or a data channel or the like.
  • This step can be performed by the transceiver 202 of the network device or by the processor 201 of the network device controlling the transceiver 202 to perform.
  • the control resource set includes N REGs, and the N REGs are logically divided into one or more CCEs, and the numbers of the one or more CCEs are arranged in order of size.
  • the number of REGs included in each CCE is S, and the M REGs are combined to form a first control channel unit CCE in the control resource set (corresponding to the j+1th in order from the number), the first CCE
  • the number is j, the j ⁇ 0,1,...,N/S-1 ⁇ .
  • the L is the size of the REG binding, and B is equal to N/L, and M is greater than or equal to 1.
  • Step 502 The terminal device determines that the M resource element group REGs in the control resource set are bound.
  • This determining step can be performed by the processor 304 of the terminal device.
  • Step 503 The terminal device detects a control channel on the resources corresponding to the M REG bindings.
  • the foregoing step 503 may also be that the terminal device detects and receives the control channel on the resources corresponding to the M REG bindings, or indicates that the terminal device receives control on the resources corresponding to the M REG bindings. channel.
  • This determination step may be performed by the processor 304 of the terminal device, or by the transceiver 301, or by the processor 304 controlling the transceiver 301 to perform.
  • the determining operation of the network device involved in the embodiment of the present invention may be performed by the processor 201, and the transmitting and receiving operations of the network device may be performed by the transceiver 202, or the transceiver 201 may be controlled by the processor 201; the terminal device The determining operation of the terminal device may be performed by the processor 304, and the obtaining operation of the terminal device may be performed by the processor 304 or the transceiver 301, or may be controlled by the processor 304, depending on the obtaining manner, and the receiving and receiving operations of the terminal device may be performed. It is executed by the transceiver 301.
  • the network device configures a control resource set
  • the control resource set may be configured by using high layer signaling, where the high layer signaling includes broadcast information and system information (for example, when initial access, including for initial configuration)
  • the system information of the incoming access channel, the RRC signaling, and the like the terminal device may acquire the control resource set according to the configuration of the high layer signaling.
  • the configuration of the control resource set includes, but is not limited to, a frequency domain resource location and a time domain length, where the frequency domain resource location and the time domain length may be used to determine the number of REGs included in the control resource set.
  • the value of the N may be obtained by the terminal device in other manners, which is not limited in the embodiment of the present invention.
  • the network device configures the size L of the REG binding in the control resource set, that is, the number of REGs included in one REG binding.
  • the L has a value range of ⁇ 2, 3, 6 ⁇ .
  • the configuration can be done by higher layer signaling.
  • each CCE includes an RE number of S.
  • the S may be pre-configured or defined, for example, as specified in a standard or protocol, or may be configured by a network device.
  • the value of S is 6.
  • the NR system uses a rectangular interleaver for resource configuration or mapping, and a matrix is generated by a rectangular interleaver, and the row and column positions in the matrix are used for mapping with REG binding as granularity.
  • the input and output of the matrix interleaver are performed in the manner listed for travel, see Figure 6.
  • the numbers 0-5 are input to the interleaver in the order of ⁇ 0, 1, 2, 3, 4, 5 ⁇ , are matrix interleaved in the order of row priority, and are output in the order of column priority.
  • the output number is ⁇ 0. , 2, 4, 1, 3, 5 ⁇ .
  • the number of rows of the matrix is called R (Row)
  • the number of columns is called C (Column); further, r ⁇ ⁇ 0, 1, ..., R-1 ⁇ (also called row number) , c ⁇ 0,1,...,C-1 ⁇ (also known as column number).
  • the R is configured by the network device, and is also referred to as an interleaving parameter, for example, configured by using a high layer signaling;
  • the C may be configured for the network device, or may be implicitly indicated by the configuration of the network device.
  • the value of C is equal to It should be noted that the meanings of L, N, C, R, and B involved in the embodiments of the present invention are the same, and the details are as described above.
  • the size of the matrix is C ⁇ R, and the number of REG bindings included in the control resource set is B.
  • the size of the matrix is equal to B, a complete mapping can be implemented, and no mapping position conflict occurs.
  • the size of the matrix is larger than B, in order to avoid resource conflicts caused by mapping different CCEs to the same REG binding, It is necessary to accurately and efficiently determine the mapping location of the REG binding.
  • f(x) an index used to indicate the REG binding numbered x, or an interleaver or interleaver function
  • g(x) an index for indicating the REG binding numbered x, which is different from f(x), and may be an interleaver or an interleaver function in the prior art.
  • g(x) may be:
  • the value of the n shift is determined by the terminal device or the network device, for example, may be predefined or configured, or may be configured by the network device, or may be determined by the terminal device according to the configuration of the network device, or according to a certain
  • the rules are determined and different designs can be made according to different scenarios.
  • the terminal device determines the value of the n shift according to a predetermined rule or function by using a parameter configured by the high layer signaling. Based on the above formula, based on z and R, the values of r and c can be determined, and the value of g(x) can be further obtained.
  • a detailed explanation of the n shift can be found in the description of the second alternative design below.
  • the network device and the terminal device respectively determine M resource element group REG bindings in the control resource set.
  • the network device and the terminal device determine that an index of the i+1th REG binding in the j+1th control channel unit CCE in the control resource set is f(x), and the value of the x is equal to (6j/ L+i).
  • the M REG bindings are determined according to at least one offset value, and the at least one offset value may be a difference between a matrix size and B, that is, ((C ⁇ R)-B Determining, the subsequent call ((C ⁇ R)-B) is N null , that is, the number of nulls (or locations where the numbers of the REG binding are duplicated), that is, the terminal device ignores or does not read
  • the location of these locations is not mapped to the CCEs in the control channel element. See Figure 7.
  • the number of REG bindings in the control channel element is input to the interleaving matrix in a row-first manner and output from the interleaving matrix in a column-first manner.
  • the at least one offset value includes one or more of offset 1, offset 2, offset 3, offset 4, offset 5, and offset 6.
  • offset 1, offset 2, offset 3, offset 4, offset 5, and offset 6. There are a number of alternative implementations in this first alternative design, which are set forth below for each of the various alternative implementations. Further optionally, any one or more of the at least one offset value may be based on The value, and at least one of the row number r and the column number c are determined.
  • any one or more of the at least one offset value is based on And a value determined by the row number r, or any one or more of the at least one offset value is based on And the column number c, or any one or more of the at least one offset value is based on The value is determined by the row number r and the column number c.
  • the at least one offset value comprises offset1.
  • the location of the null (the location of the numbering of REG bindings is repeated) is at the end of the last row in the matrix. The determination of the M REG binding indexes needs to avoid the tail of the last row, that is, the output of the matrix cannot contain N null positions of the tail of the last row of the matrix, as shown in FIG. 7 .
  • the value of offset1 differs according to N null , as described in the following.
  • the REG corresponding to CCE 0 in CORESET is bound to ⁇ f(0) ⁇
  • the REG corresponding to CCE 1 is bound to ⁇ f(1) ⁇
  • the REG corresponding to CCE 2 is bound to ⁇ f(2) ⁇
  • the REG binding corresponding to CCE 3 is ⁇ f(3) ⁇
  • the REG binding corresponding to CCE 4 is ⁇ f(4) ⁇
  • the REG binding corresponding to CCE 5 is ⁇ f(5) ⁇ , corresponding to CCE 6.
  • the REG is bound to ⁇ f(6) ⁇ .
  • the index of the M REG bindings determined above does not include the location of the null element (or the REG binding number is repeated).
  • the at least one offset value includes offset2, and may further include offset6, where:
  • h(x) u(k);
  • the n shift is a shift value, which may be determined by the terminal device or the network device.
  • the terminal device or the network device.
  • the network device For specific explanation, refer to the description in the second optional design below.
  • the position of the null is at the end of the last column of the matrix, see Figure 7.
  • the determination of the M REG binding indexes needs to avoid the tail of the last column, that is, the output of the matrix cannot contain N null positions of the tail of the last column of the matrix.
  • the seven CCEs are mapped to different REG bindings, so that the one or more CCEs that constitute the downlink control channel (PDCCH) are mapped to the control resource set as much as possible within the entire control resource set.
  • a large frequency diversity gain can be obtained by transmitting/receiving the downlink control channel.
  • the location of the null element is located in the header of the last column of the matrix, and the determination of the M REG binding index needs to avoid the header of the last column, that is, the output of the matrix cannot contain the N of the last column of the matrix. Null locations, see Figure 8.
  • the seven CCEs are mapped to different REG bindings, so that the one or more CCEs that constitute the downlink control channel (PDCCH) are mapped to the control resource set as much as possible within the entire control resource set. Further, a larger frequency diversity gain can be obtained by transmission/reception of the PDCCH. .
  • PDCCH downlink control channel
  • the at least one offset value includes offset3, and further may include offset6 where:
  • h(x) u(k);
  • the n shift is a shift value, which may be determined by the terminal device or the network device.
  • the terminal device or the network device.
  • the network device For specific explanation, refer to the description in the second optional design below.
  • the position of the null is at the end of the last column of the matrix, see Figure 7.
  • the determination of the M REG binding indexes needs to avoid the tail of the last column, that is, the output of the matrix cannot contain N null positions of the tail of the last column of the matrix.
  • the seven CCEs are mapped to different REG bindings, so that the one or more CCEs that constitute the downlink control channel (PDCCH) are mapped to the control resource set as much as possible within the entire control resource set. Further, a larger frequency diversity gain can be obtained by transmission/reception of the PDCCH. .
  • PDCCH downlink control channel
  • the position of the null is located at the head of the last column of the matrix, see Figure 8.
  • the determination of the M REG binding indexes needs to avoid the header of the last column, that is, the output of the matrix cannot contain N null positions of the header of the last column of the matrix.
  • the value of the offset 6 is described in the second alternative implementation.
  • N null (C ⁇ RB) positions
  • the network device does not send the control channel at the location of the null element, then the terminal device detects the control channel.
  • the N null locations are ignored or not read.
  • the mth position e null (m) of the N null locations satisfies the following formula:
  • the row number of the null element in the matrix is ⁇ 2 ⁇ or ⁇ 1, 2 ⁇ ;
  • the m+1th position e null (m) of the N null positions satisfies the following formula:
  • the values of offset4 and offset5 may be predefined or configured, or determined according to predetermined rules.
  • offset4 is -m, e null (m) ⁇ r ⁇ e null (m+1);
  • the M REG bindings are determined based on at least one shift value.
  • the at least one shift value comprises the above-described n shift .
  • the value of the n shift may be determined by at least one parameter, and the parameter may be at least one of an offset parameter A, an offset parameter Z, and an identification information n id .
  • the value of A is implicitly obtained, or the value of A is determined according to a preset rule, for example, the preset rule is specified by a standard or a protocol, or is notified by the network device to the terminal device.
  • a ⁇ ⁇ 1, 2, 3, 4, 6 ⁇ , A is a subset of ⁇ 1, 2, 3, 4, 6 ⁇ .
  • the value of the n shift may be determined by the offset parameter A or Z, the offset parameters A and Z being determined by the parameter P.
  • the value of A is equal to the value of P
  • the value of Z is (N symbol /L) ⁇ A, and the N symbol is the number of OFDM symbols occupied by the control resource set in the time domain, and L is Controls the size of resource unit group bindings in a resource collection.
  • the P is a frequency domain granularity of a virtual physical resource block mapping in the bandwidth area BWP, where the frequency domain granularity may be configured by high layer signaling; and the A or Z passes the virtual physical resource block in the bandwidth area BWP.
  • the frequency domain granularity of the mapping is determined.
  • the granularity of the data channel resource mapping matches the offset of the control channel resource mapping, which reduces the number of resource fragments on the system side and improves the spectrum utilization.
  • the P is a number of frequency domain RBs of the REG binding corresponding resource configured by the control resource set, and the A or Z is determined by controlling the number of frequency domain RBs of the REG binding corresponding resources configured by the resource set.
  • the set of values of P is ⁇ 2, 3, 6 ⁇ .
  • the first control resource set occupies 2 OFDM symbols in the time domain
  • the size of the REG bundle is 2
  • the number of RBs occupied by the REG bundle in the frequency domain is 1, and the CCE interlace in the first control resource set is mapped to the resource unit.
  • the second control resource set occupies 1 OFDM symbol in the time domain
  • the REG bundle size is 6,
  • the number of RBs occupied by the REG bundle in the frequency domain is 6, and the CCE in the second control resource set is non-interleaved to the resource unit. group.
  • the value of the resource is equal to 6, that is, the number of frequency domain RBs of the REG binding corresponding resource configured by the first control resource set.
  • the interlace mapping of the CCE to the REG bundle in the first control resource set is shifted by 6 RB granularities in the frequency domain, and the control channel resources between the control resource sets of the interleaved and non-interleaved mapping are reduced. Probability of conflict;
  • the first control resource set occupies 2 OFDM symbols in the time domain, the size of the REG bundle is 2, the number of RBs occupied by the REG bundle in the frequency domain is 1, and the CCEs in the first control resource set are mapped to resources.
  • the second control resource set occupies 2 OFDM symbols in the time domain, the REG bundle size is 6, the number of RBs occupied by the REG bundle in the frequency domain is 3, and the CCEs in the second control resource set are non-interleaved and mapped to resources. Unit group.
  • the value is equal to 3; the REG bundle that implements the CCE interlace mapping in the first control resource set is shifted by 3 RB granularities in the frequency domain, which reduces the conflict of control channel resources between the control resource sets of the interleaved and non-interleaved mapping. Probability.
  • the first control resource set occupies 2 OFDM symbols in the time domain, the size of the REG bundle is 2, the number of RBs occupied by the REG bundle in the frequency domain is 1, and the CCE interlace in the first control resource set is mapped to the resource.
  • the second control resource set occupies 3 OFDM symbols in the time domain, the REG bundle size is 6, the number of RBs occupied by the REG bundle in the frequency domain is 2, and the CCE in the second control resource set is non-interleaved and mapped to the resource. Unit group.
  • the first control resource set and the second control resource set partially or completely overlap on the time-frequency resource; in this case, when the CCE inter-interlace in the first control resource set is mapped to the REG, the terminal device acquires the partial The value of the shift parameter is equal to 2; the REG bundle that implements the CCE interlace mapping in the first control resource set is shifted in the frequency domain by 2 RB granularities, and the control channel between the control resource set of the interleaved and non-interleaved mapping is reduced. The probability of conflict of resources.
  • the value of the n shift may be determined by the identification information n id .
  • the identification information may be a cell identifier Or a parameter configured through higher layer signaling.
  • the parameter may be a parameter configured by higher layer signaling; optionally, the range of the parameter belongs to ⁇ 0, 1, . . . , 274 ⁇ .
  • the value of the n shift may be determined by the offset parameter A and the identification information n id or by the offset parameter Z and the identification information n id .
  • n shift is satisfied or
  • the A belongs to ⁇ 2, 4 ⁇ , ⁇ 2, 3, 6 ⁇ , ⁇ 1, 2, 4 ⁇ , ⁇ 1, 2, 3, 6 ⁇ , ⁇ 1, 2, 3, 4,6 ⁇ or ⁇ 1 ⁇
  • the Z belongs to ⁇ 2,4 ⁇ , ⁇ 1,2,4 ⁇ , ⁇ 2,3,6 ⁇ , ⁇ 1,2,3,6 ⁇ or ⁇ 1 ⁇ , See the first and second implementations for an explanation of Z, A, and n id .
  • the M REG bindings are determined in conjunction with the first and second alternative designs described above.
  • the shift value included in the second alternative design includes n shift , which can be directly applied to the first alternative design.
  • the network device and the terminal device determine that an index of the i+1th REG binding in the j+1th control channel unit CCE in the control resource set is f(x),
  • the output of the matrix is B positions or indexes of REG bindings that are different from each other and smaller than B.
  • the matrix mapping process if the value obtained for a certain input parameter x is greater than or equal to B, the matrix does not output the value, but continues to calculate for the next input parameter until the matrix output B is different from each other and less than The location of B.
  • the specific parameters are described with reference to FIG. 4.
  • the REG binding corresponding to CCE 0 is ⁇ f(0) ⁇
  • the REG binding corresponding to CCE 1 For ⁇ f(1) ⁇ , the REG corresponding to CCE 2 is bound to ⁇ f(2) ⁇ , the REG corresponding to CCE 3 is bound to ⁇ f(3) ⁇ , and the REG corresponding to CCE 4 is bound to ⁇ f(4).
  • the REG binding corresponding to CCE 5 is ⁇ f(5) ⁇
  • the REG binding corresponding to CCE 6 is ⁇ f(6) ⁇
  • the output of the matrix is the position or index of B REG bindings that are different from each other and smaller than B.
  • the matrix mapping process if the value obtained for a certain input parameter x is the same as the value corresponding to the previously input parameter, the matrix does not output the repeated value, but continues to calculate for the next input parameter, until the matrix Output B positions that are different from each other and smaller than B.
  • the specific parameters are described with reference to FIG. 4.
  • the REG binding corresponding to CCE 0 is ⁇ f(0) ⁇
  • the REG binding corresponding to CCE 1 For ⁇ f(1) ⁇ , the REG corresponding to CCE 2 is bound to ⁇ f(2) ⁇ , the REG corresponding to CCE 3 is bound to ⁇ f(3) ⁇ , and the REG corresponding to CCE 4 is bound to ⁇ f(4).
  • the REG binding corresponding to CCE 5 is ⁇ f(5) ⁇
  • the REG binding corresponding to CCE 6 is ⁇ f(6) ⁇
  • control resource set is composed of B resource unit group bindings; the value of the B is less than or equal to (C ⁇ R).
  • the CCE to REG binding interleaving mapping is performed through the matrix, the REG binding number (logical index) in the CCE is written into the matrix in rows, and the index of the mapped physical REG binding is read out by the column.
  • B is less than (C ⁇ R)
  • null positioned after the last one of the N null rows.
  • the null elements are in the first N null lines of the last column;
  • N null is one of 1-5.
  • N null is 1
  • the row number is 5
  • N null is 4, the row number is 1, 2, 4, 5, see for details.
  • the column number of the following column position of the last element in the last row satisfies:
  • the row number of the following row position in which the null element is located in the last column is satisfied.
  • the column number of the following column position of the last element in the last row is satisfied.
  • M 0,1,...,N null -1 ⁇ ;
  • the row position is a row in the matrix, in ascending order, corresponding row number
  • the row position in the matrix is the first row in the order from top to bottom in the matrix
  • the row number is 1, and the row position in the matrix is the second row in the order from top to bottom in the matrix;
  • the row number is 2, and the row position in the matrix is the third row in the order from the top to the bottom in the matrix.
  • each network element such as a network device, a terminal device, etc.
  • each network element includes a hardware structure and/or a software module corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the terminal device can perform any of the methods of the embodiments of the present invention.
  • the terminal device can include at least a transceiver 301 and a processor 304 (here, the upper representation is a processor, which can represent the modem processor 304 itself, or the modem 304 and the application processor. 302 integration).
  • FIG. 3 such as a memory, and other components in the description of FIG. 3 may also be included.
  • the transceiver 301 can be composed of independent receivers and transmitters, and can perform corresponding receiving and transmitting functions separately, or can be a transceiver integrated with receiving and transmitting functions. There is no further limitation here.
  • the transceiver 301 of Figure 3 can be split into a receiver 301A and a transmitter 301B.
  • the terminal device is merely an exemplary description of an optional main body
  • the wireless device is mainly described as a main body, and the wireless device may be a unit, a chip or a component included in the terminal device, or the terminal device itself. .
  • the wireless device includes a processor 304 and a receiver 301A, wherein:
  • the processor 304 determines to bind the M resource unit groups in the control resource set
  • the processor 304 detects a control channel on the resource corresponding to the M resource unit group binding, where the M is greater than or equal to 1.
  • the receiver 301A is configured to receive the control channel.
  • the device further includes a transmitter 301B.
  • the processor determines the M resource unit group bindings according to at least one offset value and/or a shift value, the at least one offset value and/or the shift value being according to Value is determined;
  • the value of B is less than or equal to
  • the R is an interleaving parameter acquired by the processor or the terminal device.
  • the at least one offset value is based on The value, as determined by at least one of the row number r and the column number c.
  • the at least one offset value includes at least one of offset1, offset2, offset3, offset4, and offset5; the processing unit determines the j+1th control channel unit in the control resource set
  • the index of the i+1th resource unit group binding is f(x), the value of the x is equal to (6j/L+i), and the L is the size of the resource unit group binding;
  • the value of offset4 is -m, and e null (m) ⁇ r ⁇ e null (m+1).
  • the value of offset5 is optional.
  • the processor determines the M resource unit group bindings according to at least one shift value.
  • the at least one shift value includes the above-described n shift .
  • the value of the n shift may be determined by at least one parameter, and the parameter may be at least one of an offset parameter A, an offset parameter Z, and an identification information n id .
  • the value of the n shift may be determined by the offset parameter A or Z, and the offset parameters A and Z are determined by the parameter P.
  • the value of A is equal to the value of P
  • the value of Z is (N symbol /L) ⁇ A, and the N symbol is the number of OFDM symbols occupied by the control resource set in the time domain.
  • the value of the n shift may be determined by the identifier information n id .
  • the identification information may be a cell identifier Or a parameter configured through higher layer signaling.
  • the value of the n shift may be determined by using the offset parameter A and the identifier information n id or by the offset parameter Z and the identifier information n id .
  • n shift satisfies or
  • the specific implementation manner of the communication method performed by the foregoing wireless device can be referred to the description of the embodiment of the present invention and the communication method provided.
  • the communication method corresponding to the terminal device of the embodiment of the present invention and FIG. 5 is based on the same concept, and the technical effects thereof are the same as the above communication method.
  • the specific functions of the processor and receiver included in the wireless device in the embodiments of the present invention, and any features, terms, and implementation details involved therein correspond to the functions of the terminal device in the method embodiment corresponding to FIG. 5. For details, refer to the description in the method embodiment corresponding to FIG. 5 of the present invention, and details are not described herein again.
  • the wireless device may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • the corresponding components in the foregoing embodiments may be implemented by corresponding hardware, or may be executed by corresponding hardware, for example, the foregoing receiving.
  • the device 301A may be hardware having a function of performing the foregoing receiving function, such as a transceiver that integrates a transceiving function or a receiver that only implements a receiving function, or a general processor or other hardware device capable of executing a corresponding computer program to perform the foregoing functions.
  • the processor 304 may also be a software module or a functional unit that performs the corresponding function, such as a receiving unit; and the processor 304 as described above may be a hardware having a function of executing the processor, such as a specific function processor, or a general processor, It may be another hardware device capable of executing a corresponding computer program to perform the foregoing functions, and may also be a software module or a functional unit that performs a corresponding function, such as a processing unit; for example, the aforementioned transmitter 301B may have the foregoing Sending function hardware, such as integrated transceiver work
  • the transceiver, or the transmitter that only implements the transmitting function may also be a general processor or other hardware device capable of executing a corresponding computer program to perform the foregoing functions, or may be a software module or a functional unit that performs a corresponding function, such as a transmitting unit.
  • a storage unit may also be included. See Figure 10 for details.
  • the network device is capable of performing any of the methods of the embodiments of the present invention.
  • the network device may include at least a controller or processor 201 (hereinafter, the processor 201 is taken as an example) and a transceiver 202.
  • FIG. 2 such as a memory, and other components in the description of FIG. 2 may also be included.
  • the transceiver 202 may be composed of independent receivers and transmitters, and perform respective receiving and transmitting functions separately, or may be transceivers that integrate receiving and transmitting functions.
  • the transceiver 202 of Figure 2 can be split into a receiver 202A and a transmitter 202B.
  • the network device is merely an exemplary description of an optional main body, the following is mainly described by a wireless device, which may be a unit, a chip or a component included in the network device, or the network device itself. .
  • the wireless device includes a processor 201 and a transmitter 202B, wherein:
  • the processor 201 determines to bind the M resource unit groups in the control resource set
  • the transmitter 202B sends a control channel on the resource corresponding to the M resource unit group binding, where the M is greater than or equal to 1.
  • the wireless device further includes a receiver 202A.
  • the processor 201 determines the M resource unit group bindings according to at least one offset value and/or a shift value, the at least one offset value and/or the shift value being according to Value is determined;
  • the value of B is less than or equal to
  • the R is an interleaving parameter acquired by the processing unit or the terminal device.
  • the at least one offset value is based on The value, as determined by at least one of the row number r and the column number c.
  • the at least one offset value includes at least one of offset1, offset2, offset3, offset4, and offset5;
  • the processor determines that an index of the i+1th resource unit group binding in the j+1th control channel unit in the control resource set is f(x), and the value of the x is equal to (6j/L+ i), the L is the size of the resource unit group binding;
  • the processor 201 further determines the M resource unit group bindings according to at least one shift value.
  • the at least one shift value includes the above-described n shift .
  • the value of the n shift may be determined by at least one parameter, and the parameter may be at least one of an offset parameter A, an offset parameter Z, and an identification information n id .
  • the specific implementation manner of the communication method performed by the foregoing wireless device may refer to the description of the communication method provided by the embodiment of the present invention.
  • the communication method corresponding to the network device in FIG. 5 in the embodiment of the present invention is based on the same concept, and the technical effect brought by the same is the same as the above-mentioned control resource acquisition method.
  • the specific functions of the processor and transmitter included in the wireless device in the embodiments of the present invention, as well as any features, terms, and implementation details involved therein, correspond to the functions of the network device in the method embodiment corresponding to FIG. 5. For details, refer to the description in the method embodiment corresponding to FIG. 5 of the present invention, and details are not described herein again.
  • the wireless device may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • the corresponding components in the foregoing embodiments may be implemented by corresponding hardware, or may be executed by corresponding hardware, for example, the foregoing transmission.
  • the device 202B may be hardware having the foregoing transmitting function, such as a transceiver that integrates a transceiving function or a transmitter that only implements a receiving function, or a general processor or other hardware device capable of executing a corresponding computer program to perform the foregoing functions.
  • the processor 201 may also be a software module or a functional unit that performs the corresponding function, such as a transmitting unit; and the processor 201 as described above may be a hardware having a function of executing the processor, such as a specific function processor, or a general processor, It may be another hardware device capable of executing a corresponding computer program to perform the aforementioned functions, and may also be a software module or a functional unit that performs a corresponding function, such as a processing unit; for example, the aforementioned receiver 202A may have the foregoing Receive function hardware, such as integrated transceiver function Transceiver, receiving function or achieve only a receiver, and may be capable of executing a corresponding computer program to implement the functions of a general processor or other hardware devices, may also be software modules performing the corresponding functions or functional unit, for example, the receiving unit.
  • a storage unit may also be included. See Figure 10 for details.
  • a wireless device can include any number of transmitters, receivers, processors, controllers, memories, communication units, and the like.
  • the embodiment of the present invention further provides a communication system, including at least one network device and at least one terminal device mentioned in the foregoing embodiments of the present invention.
  • the embodiment of the invention further provides a device (for example, an integrated circuit, a wireless device, a circuit module, etc.) for implementing the above communication method.
  • a device for example, an integrated circuit, a wireless device, a circuit module, etc.
  • the means for implementing the power tracker and/or power generator described herein may be a stand-alone device or may be part of a larger device.
  • the device may be (i) a self-contained IC; (ii) a set having one or more 1Cs, which may include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter (iv) an ASIC, such as a mobile station modem; (v) a module that can be embedded in other devices; (vi) a receiver, a cellular phone, a wireless device, a handset, or a mobile unit; (vii) other, etc. Wait.
  • a self-contained IC may include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter (iv) an ASIC, such as a mobile station modem; (v) a module that can be embedded in other devices; (vi) a receiver, a cellular phone, a wireless device, a handset, or a mobile unit; (vii) other, etc. Wait.
  • the method and apparatus provided by the embodiments of the present invention may be applied to a terminal device or a network device (which may be collectively referred to as a wireless device).
  • the terminal device or network device or wireless device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the embodiment of the present invention does not limit the specific structure of the execution body of the method, as long as the transmission signal according to the embodiment of the present invention can be executed by running a program recording the code of the method of the embodiment of the present invention.
  • the method can be communicated.
  • the execution body of the method for wireless communication in the embodiment of the present invention may be a terminal device or a network device, or a function module that can call a program and execute a program in the terminal device or the network device.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and the present invention should not be The implementation of the embodiments constitutes any limitation.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present invention, or the part contributing to the prior art or the part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信领域,尤其涉及无线通信系统中的一种通信方法、装置以及系统。所述方法中,网络设备和终端设备确定控制资源集合中M个资源单元组绑定;所述网络设备在所述M个资源单元组绑定对应的资源上发送控制信道,所述终端设备在所述M个资源单元组绑定对应的资源上检测控制信道,所述M大于或者等于1。所述控制资源集合由B个资源单元组资源单元组绑定组成。通过该方法,提高了通信系统中的资源配置效率。

Description

一种通信方法、装置以及系统 技术领域
本发明涉及无线通信领域,尤其涉及无线通信系统中资源块集合的配置。
背景技术
现有长期演进(Long Term Evolution,LTE)系统中,控制信道包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)和增强下行物理控制信道(Enhanced Physical Downlink Control Channel,EPDCCH)两类。在时域上,PDCCH所在时频资源区域位于一个子帧的前0-3个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,EPDCCH所在时频资源区域为一个子帧内占除PDCCH以外的全部或部分下行OFDM符号;在频域上,PDCCH所在时频区域占用整个系统带宽,EPDCCH所在时频区域占用频域上至少一个物理资源块(Physical Resource Block,PRB)的频域宽度。
在下一代无线通信系统中,例如:在新的无线(New Radio,NR)系统中,控制信道承载的下行控制信息用于指示数据信道所使用的资源块(Resource Block,RB)在数据区域的频域位置,数据信道用于承载下行数据。
为了提高终端设备盲检控制信道的效率,NR标准制定过程中提出了控制资源集合(control resource set,以下称为COREST)的概念。即,在控制区域为每个终端设备划分一个或多个控制资源集合。网络设备可以在终端设备对应的任一控制资源集合上,向终端设备发送下行控制信道。下行控制信道包括一个或多个控制信道单元(Control-channel elements,CCE),下行控制信道单元CCE映射到CORESET,其中,控制资源集合在频域上包括连续或离散的频域资源,时域上包括多个连续OFDM符号。一个控制信道单元(CCE)由多个资源单元组(Resource element group,REG)构成。
在CCE映射到CORESET的过程中,由于CORESET在频域上包括连续或离散的频域资源,有可能存在将不同的CCE映射到相同的资源上的情况,导致控制信息的收发失败。因此如何实现CCE到CORESET上的映射,以实现准确、高效的资源配置是亟需解决的一个技术问题。
发明内容
本发明涉及一种通信方法、装置以及系统,实现通信系统中准确、高效的资源配置。
第一方面,本申请的实施例提供一种通信方法,所述方法包括:
终端设备确定控制资源集合中M个资源单元组绑定;
所述终端设备在所述M个资源单元组绑定对应的资源上检测控制信道,所述M大于或者等于1。
以下可选的设计中,参数解释为:N为所述控制资源集合中包含的资源单元组的数量,B为所述控制资源集合中包含的资源单元组绑定的数量,L为资源单元组绑定的大小,R为交织参数,N null=(C·R-B),
Figure PCTCN2018123658-appb-000001
x=cR+r,r∈{0,1,...,R-1}(在引入交织矩阵的情况下,r又称作行编号),c∈{0,1,...,C-1}(在引入交织矩阵的情况下,c又称作列编号)。
一种可选的设计中,所述控制资源集合由B个资源单元组资源单元组绑定组成;
所述终端设备确定控制资源集合中M个资源单元组绑定,包括:
所述终端设备根据至少一个偏移值和/或移位值确定所述M个资源单元组绑定,所述至少一个偏移值和/或移位值是根据
Figure PCTCN2018123658-appb-000002
的值确定的;
所述B的值小于或者等于
Figure PCTCN2018123658-appb-000003
所述R为所述终端设备获取的交织参数。
可选的,所述至少一个偏移值是根据
Figure PCTCN2018123658-appb-000004
的值,以及行编号r和列编号c中的至少一个确定的。
一种可选的设计中,所述至少一个偏移值包括offset1、offset2、offset3、offset4以及offset5、offset6中的至少一个;所述终端设备根据至少一个偏移值确定所述M个资源单元组绑定,包括:
所述终端设备确定所述控制资源集合中第j+1个控制信道单元中的第i+1个资源单元组绑定的索引为f(x),所述x的值等于(6j/L+i),所述L为资源单元组绑定的大小;
所述f(x)的值满足以下公式中的一个:
f(x)=g(x+offset1);
f(x)=(rC+c+n shift)mod B,x=cR+r-offset1;
f(x)=(h(x)-offset2)mod B,或者,f(x)=h(x)-offset2;
Figure PCTCN2018123658-appb-000005
f(x)=(h(x)+offset3)mod B,或者,f(x)=h(x)+offset3;
Figure PCTCN2018123658-appb-000006
f(x)=(r ·C+c+n shift+offset4)mod B,cR+r+offset5=x。
其中,g(z)=h(z)mod B,或者,g(z)=h(z),其中,x、z、offset1、offset2、offset3、offset4以及offset5为整数。
一种可选的设计中,所述offset1=n,且a n≤x<a n+1,所述n∈{0,1,...N null-1};
其中,
Figure PCTCN2018123658-appb-000007
进一步可选的,所述N null不为0,且小于C。
一种可选的设计中,所述offert1=n·W n,f(x)=g(x+n·W n),n的取值满足:
b n≤x<b n+1,且所述n∈{0,1,...,C-1};
其中,
Figure PCTCN2018123658-appb-000008
所述
Figure PCTCN2018123658-appb-000009
需要说明的是,该可选的设计中的n与上一可选的设计中的n含义不同。
一种可选的设计中,所述至少一个偏移值是根据
Figure PCTCN2018123658-appb-000010
的值确定的。
可选的,所述offset2的值满足offset2=N null,其中N null满足
Figure PCTCN2018123658-appb-000011
一种可选的设计中,所述至少一个偏移值是根据
Figure PCTCN2018123658-appb-000012
的值以及行编号r确定的。
可选的,所述offset2=max{0,r-(R-N null)};或者,offset2=max{0,(x mod R)-(R-N null)}。
一种可选的设计中,所述至少一个偏移值是根据
Figure PCTCN2018123658-appb-000013
的值以及行编号r和列编号c确定的。
可选的,所述
Figure PCTCN2018123658-appb-000014
一种可选的设计中,所述至少一个偏移值是根据
Figure PCTCN2018123658-appb-000015
的值以及行编号r确定的。
可选的,所述offset3=min{0,(R-N null-r)},或者,offset3=min{0,(R-N null)-(x mod R)}。
一种可选的设计中,所述至少一个偏移值是根据
Figure PCTCN2018123658-appb-000016
的值以及行编号r和列编号c确定的。
可选的,所述
Figure PCTCN2018123658-appb-000017
一种可选的设计中,所述h(x)的值满足:h(x)=u(x)+n shift
所述u(x)的值等于(r·C+c);其中,x=cR+r;
所述n shift的值为A·n id·(N symbol/L),所述A为所述终端设备获取的偏移参数,所述n id为所述终端设备获取的标识信息,所述N symbol为所述控制资源集合时域上占用的符号数量。
一种可选的设计中,所述h(x)的值满足:h(x)=u(k);
所述u(k)的值等于(r·C+c),所述k的值满足k=(x+n shift)mod(B),或者,k=(x-n shift)mod(B),或者,x=(k+n shift)mod(B),或者,x=(k-n shift)mod(B),并且,c和r的值满足:k=cR+r,或者,k=cR+r+offset6;
其中,所述n shift为所述终端设备确定的移位值。
一种可选的设计中,N null个行位置中第m个位置e null(m)满足以下公式:
Figure PCTCN2018123658-appb-000018
m∈{1,2,...N null};或者,
N null个行位置中第m+1个位置e null(m)满足以下公式:
Figure PCTCN2018123658-appb-000019
m∈{0,1,2,...N null-1}。
一种可选的,offset4的值为-m,e null(m)≤r<e null(m+1)。
进一步可选的,offset5的值为
Figure PCTCN2018123658-appb-000020
e null(m)≤r<e null(m+1)。
又一可选的,offset4的值满足,offset4=-N null,其中N null满足
Figure PCTCN2018123658-appb-000021
进一步可选的:
当c∈{0,1,2,…,N null-1}时,offset5的值满足offset5=(-c-1),其中,r∈{1,…(R-1)};和/或
当c∈{N null,N null+1,…,C-1}时,offset5的值满足offset5=-N null,其中,r∈{0,1,…(R-1)}。
一种可选的设计中,当c∈{0,1,2,…,N null-1}时,offset6的值满足offset6=(-c-1),其中,r∈{1,2,…,R-1};和/或
当c∈{N null,N null+1,…,C-1}时,offset6的值满足offset6=-N null,其中,r∈{0,1,2,…,R-1}。
一种可选的设计中,所述终端设备确定控制资源集合中的M个资源单元组绑定, 包括:所述终端设备还根据至少一个移位值确定所述M个资源单元组绑定。所述至少一个移位值包括上述n shift。所述n shift的值可以通过至少一个参数确定,所述参数可以为偏移参数A、偏移参数Z以及标识信息n id中的至少一个。
可选的,所述n shift的值可以通过所述偏移参数A或Z确定,所述偏移参数A和Z通过参数P确定。进一步可选的,所述A的值等于P的值,所述Z的值等于(N symbol/L)·A,所述N symbol为控制资源集合在时域占用的OFDM符号的数量。
可选的,所述n shift的值可以通过所述标识信息n id确定。所述标识信息可以为小区标识
Figure PCTCN2018123658-appb-000022
或者为通过高层信令配置的参数。
可选的,所述n shift的值可以通过偏移参数A和标识信息n id确定,或者通过偏移参数Z以及标识信息n id确定。
例如,n shift的值满足
Figure PCTCN2018123658-appb-000023
或者,
Figure PCTCN2018123658-appb-000024
或者,n shiftmod(A)=0。
又如,n shift的值满足
Figure PCTCN2018123658-appb-000025
或者,
Figure PCTCN2018123658-appb-000026
又如,n shift的值满足
Figure PCTCN2018123658-appb-000027
或者,
Figure PCTCN2018123658-appb-000028
或者,n shiftmod(Z)=0。
再如,n shift的值满足n shift=A·(N symbol/L)·n id,或者,n shift=Z·n id
一种可选的设计中,所述网络设备和终端设备确定所述控制资源集合中第j+1个控制信道单元CCE中的第i+1个REG绑定的编号为f(x),所述x的值等于(6j/L+i),所述f(x)的值满足f(x)=(rC+c+n shift)mod(C·R),或者,f(x)=(rC+c+n shift)modB,并且x∈{0,1,2,3,…,C·R-1},f(x)的取值集合为B个互不相同且小于B的编号。
需要说明的是,在能够用于资源单元组绑定确定的情况下,以上各种可选的设计中的一种或多种可以相互结合。
第一方面中,本申请的实施例还提供了一种无线装置,所述无线装置可以应用于终端设备或网络设备中,所述装置包括处理单元,其中:
所述处理单元确定控制资源集合中M个资源单元组绑定;
所述处理单元在所述M个资源单元组绑定对应的资源上检测控制信道,所述M大于或者等于1。可选的,所述装置还包括接收单元,所述接收单元用于接收所述控制信道。可选的,所述装置还包括发射单元。
一种可选的设计中,所述控制资源集合由B个资源单元组资源单元组绑定组成;
所述处理单元根据至少一个偏移值和/或移位值确定所述M个资源单元组绑定,所述至少一个偏移值和/或移位值是根据
Figure PCTCN2018123658-appb-000029
的值确定的;
所述B的值小于或者等于
Figure PCTCN2018123658-appb-000030
所述R为所述处理单元或终端设备获取的交织参数。
可选的,所述至少一个偏移值和/或移位值是根据
Figure PCTCN2018123658-appb-000031
的值,以及行编号r和列编号c中的至少一个确定的。
一种可选的设计中,所述至少一个偏移值包括offset1、offset2、offset3、offset4、offset5以及offset6中的至少一个;所述处理单元根据至少一个偏移值确定所述M个资源单元组绑定,包括:
所述处理单元确定所述控制资源集合中第j+1个控制信道单元中的第i+1个资源单元组绑定的索引为f(x),所述x的值等于(6j/L+i),所述L为资源单元组绑定的大小;
所述f(x)的值满足以下公式中的一个:
f(x)=g(x+offset1);
f(x)=(rC+c+n shift)mod B,x=cR+r-offset1;
f(x)=(h(x)-offset2)mod B,或者,f(x)=h(x)-offset2;
Figure PCTCN2018123658-appb-000032
f(x)=(h(x)+offset3)mod B,或者,f(x)=h(x)+offset3;
Figure PCTCN2018123658-appb-000033
f(x)=(r ·C+c+n shift+offset4)mod B,cR+r+offset5=x。
其中,g(z)=h(z)mod B,或者,g(z)=h(z),x、z、offset1、offset2、offset3、offset4以及offset5、offset6为整数。
一种可选的设计中,所述offset1=n,且a n≤x<a n+1,所述n∈{0,1,...N null-1};
其中,
Figure PCTCN2018123658-appb-000034
进一步可选的,所述N null不为0,且小于C。
一种可选的设计中,所述offert1=n·W n,f(x)=g(x+n·W n),n的取值满足:
b n≤x<b n+1,且所述n∈{0,1,...,C-1};
其中,
Figure PCTCN2018123658-appb-000035
所述
Figure PCTCN2018123658-appb-000036
需要说明的是,该可选的设计中的n与上一可选的设计中的n含义不同。进一步可选的,所述N null不为0,且大于C。
一种可选的设计中,所述offset2的值满足offset2=N null,其中N null满足
Figure PCTCN2018123658-appb-000037
Figure PCTCN2018123658-appb-000038
一种可选的设计中,所述offset2=max{0,r-(R-N null)};或者,offset2=max{0,(x mod R)-(R-N null)}。
一种可选的设计中,所述
Figure PCTCN2018123658-appb-000039
一种可选的设计中,所述offset3=min{0,(R-N null-r)},或者,
offset3=min{0,(R-N null)-(x mod R)}。
一种可选的设计中,所述
Figure PCTCN2018123658-appb-000040
一种可选的设计中,所述h(x)的值满足:h(x)=u(x)+n shift
所述u(x)的值等于(r·C+c);其中,x=cR+r;
所述n shift的值为A·n id·(N symbol/L),所述A为处理单元或终端设备获取的偏移参数,所述n id为所述处理单元或终端设备获取的标识信息,所述N symbol为所述控制资源集合时域上占用的符号数量。
一种可选的设计中,所述h(x)的值满足:h(x)=u(k);
所述u(k)的值等于(r·C+c),所述k的值满足k=(x+n shift)mod(B),或者,k=(x-n shift)mod(B),或者x=(k+n shift)mod(B),或者x=(k-n shift)mod(B),并且,c和r的值满足:k=cR+r,或者,k=cR+r+offset6;
其中,所述n shift为移位值。
一种可选的设计中,N null个位置中第m+1个位置e null(m)满足以下公式:
Figure PCTCN2018123658-appb-000041
m∈{1,2,...N null};或者,
Figure PCTCN2018123658-appb-000042
m∈{0,1,2,...N null-1}。
一种可选的,offset4的值为-m,e null(m)≤r<e null(m+1)。
进一步可选的,offset5的值为
Figure PCTCN2018123658-appb-000043
e null(m)≤r<e null(m+1)。
又一可选的,offset4的值满足,offset4=-N null,其中N null满足
Figure PCTCN2018123658-appb-000044
进一步可选的:
当c∈{0,1,2,…,N null-1}时,offset5的值满足offset5=(-c-1),其中,r∈{1,…(R-1)};和/或
当c∈{N null,N null+1,…,C-1}时,offset5的值满足offset5=-N null,其中,r∈{0,1,…(R-1)}。
一种可选的设计中,当c∈{0,1,2,…,N null-1}时,offset6的值满足offset6=(-c-1),其中,r∈{1,2,…,R-1};和/或
当c∈{N null,N null+1,…,C-1}时,offset6的值满足offset6=-N null,其中,r∈{0,1,2,…,R-1}。
一种可选的设计中,所述处理单元确定控制资源集合中的M个资源单元组绑定,包括:所述处理单元还根据至少一个移位值确定所述M个资源单元组绑定。所述至少一个移位值包括上述n shift。所述n shift的值可以通过至少一个参数,所述参数可以为偏移参数A、偏移参数Z以及标识信息n id中的至少一个。
可选的,所述n shift的值可以通过所述偏移参数A或Z确定,所述偏移参数A和Z通过参数P确定。进一步可选的,所述A的值等于P的值,所述Z的值为(N symbol/L)·A, 所述N symbol为控制资源集合在时域占用的OFDM符号的数量。
可选的,所述n shift的值可以通过所述标识信息n id确定。所述标识信息可以为小区标识
Figure PCTCN2018123658-appb-000045
或者为通过高层信令配置的参数。
可选的,所述n shift的值可以通过偏移参数A和标识信息n id确定,或者通过偏移参数Z以及标识信息n id确定。
例如,n shift的值满足
Figure PCTCN2018123658-appb-000046
或者,
Figure PCTCN2018123658-appb-000047
或者,n shiftmod(A)=0。
又如,n shift的值满足
Figure PCTCN2018123658-appb-000048
或者,
Figure PCTCN2018123658-appb-000049
又如,n shift的值满足
Figure PCTCN2018123658-appb-000050
或者,
Figure PCTCN2018123658-appb-000051
或者,n shiftmod(Z)=0。
再如,n shift的值满足n shift=A·(N symbol/L)·n id,或者,n shift=Z·n id
一种可选的设计中,所述处理单元确定所述控制资源集合中第j+1个控制信道单元CCE中的第i+1个REG绑定的索引为f(x),所述x的值等于(6j/L+i),所述f(x)的值满足f(x)=(rC+c+n shift)mod(C·R),或者,f(x)=(rC+c+n shift)modB,并且x∈{0,1,2,3,…,C·R-1},f(x)的取值集合为B个互不相同且小于B的索引或位置。
该无线装置中,可替换的,所述处理单元可以为处理器,所述接收单元可以为接收器,所述发射单元可以为发射器。
第二方面,本申请的实施例提供一种通信方法,所述方法包括:
网络设备确定控制资源集合中M个资源单元组绑定;
所述网络设备在所述M个资源单元组绑定对应的资源上发送控制信道,所述M大于或者等于1。
该通信方法中,所述网络设备与终端设备确定所述M个资源单元组绑定的方法可以相同或不同,但是确定的结果相同,具体参见第一方面中的通信方法中针对所述M个资源单元组绑定确定的阐述。
第二方面,本申请的实施例还提供一种无线装置,所述无线装置包括处理单元以及发射单元,其中:
所述处理单元确定控制资源集合中M个资源单元组绑定;
所述发射单元在所述M个资源单元组绑定对应的资源上发送控制信道,所述M大于或者等于1。可选的,所述无线装置还包括接收单元。
该无线装置中,所述处理单元确定所述M个资源单元组绑定的方法与第一方面所 提供的无线装置的确定方法可以相同或不同,确定的结果相同,具体参见第一方面中的通信方法中针对所述M个资源单元组绑定确定的阐述。
该无线装置中,可替换的,所述处理单元可以为处理器,所述接收单元可以为接收器,所述发射单元可以为发射器。
第三方面,本申请实施例提供一种装置,包括至少一个存储器,和/或至少一个处理器,所述至少一个处理器执行计算机程序以实现第一方面和/或第二方面中所提供的任一种方法。可选的,所述装置为芯片,或者为无线装置。
一种可选的设计中,所述计算机程序可以全部存储在所述至少一个存储器中,或者所述计算机程序的一部分存储在所述至少一个存储器中,另一部分存储在不同于所述至少一个存储器的其他存储介质中。
一种可选的设计中,所述至少一个处理器与所述至少一个存储器耦接。
一种可选的设计中,所述至少一个处理器与所述至少一个存储器集成在一个芯片中。
第四方面,本发明提供了一种系统,至少包括上述第一和第二方面提供的两种装置。
第五方面,本发明提供了一种无线装置,其包括一个或多个处理器,以及存储器,所述存储器上存储有计算机程序,所述处理器执行所述计算机程序时,使得所述装置实现上述第一方面和/或第三方面所述的任一种方法。
第六方面,本发明提供了一种存储有计算机程序的计算机存储介质,其上存储有计算机程序,当所述计算机程序被处理器(或者设备(终端设备或网络设备))执行时实现上述第一方面和/或第三方面所述的任一种方法。
第七方面,本发明提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面和/或第三方面所提供的任何一种方法。
第八方面,本发明提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备或装置实现上述第一方面和/或第三方面中所涉及的功能,例如,例如生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备或通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,本发明提供了一种芯片,所述芯片包括处理模块与通信接口,所述处理模块用于控制所述通信接口与外部进行通信,所述处理模块还用于实现第一方面和/或第三方面提供的任何一种方法。
相较于现有技术,本发明实施例提供的方案,可以实现控制信道单元到资源单元组绑定不重复的映射,提供了资源配置的准确性和效率。
附图说明
下面将参照所示附图对本发明实施例进行更详细的描述:
图1示出了本发明实施例的一种可能的应用场景示意图;
图2示出了本发明实施例提供的网络设备的一种可能的结构示意图;
图3示出了本发明实施例提供的终端设备的一种可能的结构示意图;
图4示出了本发明实施例提供的一种可能的控制资源集合示意图;
图5示出了本发明实施例提供的一种可能的通信方法的流程示意图
图6示出了本发明实施例提供的一种可能的交织映射的示意图;
图7示出了本发明实施例提供的又一种可能的交织映射的示意图;
图8示出了本发明实施例提供的又一种可能的交织映射的示意图;
图9示出了本发明实施例提供的又一种可能的交织映射的示意图;
图10示出了本发明实施例提供的无线装置的一种可能的结构示意图。
具体实施方式
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
图1示出了本发明实施例中一种可能的应用场景示意图。该应用场景中的通信系统包括:网络设备,以及一个或者多个终端设备。其中,网络设备和终端设备可以通过一种或多种空口技术进行通信。
以下,对本发明实施例可能出现的术语进行解释。
通信系统:可以适用于长期演进(Long Term Evolution,简称LTE)系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统。此外,还可以适用于使用LTE系统后续的演进系统,如第五代5G系统等。
网络设备:可以是基站,或者接入点,或者网络设备,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。网络设备可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。网络设备还可协调对空中接口的属性管理。例如,网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站,例如gNB等,在此并不限定。需要说明的是,对于5G或NR系统,在一个NR基站下,可能存在一个或多个发送接收点(Transmission Reception Point,TRP),所有的TRP属于同一个小区,其中,每个TRP和终端都可以使用本申请实施例所述的测量上报方法。在另一种场景下,网络设备还可以分为控制单元(Control Unit,CU)和数据单元(Data Unit,DU),在一个CU下,可以存在多个DU,其中,每个DU和终端都可以使用本申请实施例所述的测 量上报方法。CU-DU分离场景和多TRP场景的区别在于,TRP只是一个射频单元或一个天线设备,而DU中可以实现协议栈功能,例如DU中可以实现物理层功能。
终端设备:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
符号,包括但不限于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、稀疏码分多址技术(Sparse Code Multiplexing Access,SCMA)符号、过滤正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)符号、非正交多址接入(Non-Orthogonal Multiple Access,NOMA)符号,具体可以根据实际情况确定,在此不再赘述。
控制资源集合(Control Resource Set,CORESET):用于控制信道传输的资源集合,CORESET的时域资源可以连续或者不连续。
资源块(Resource Block,RB):或者物理资源块,一种频域资源的单位,频域上占用连续的M个子载波,M为大于零的自然数。例如,LTE中,一个RB在频域上占用连续的12个子载波。
资源单元组(Resource Element Group,REG):一种时频资源的单位。例如,一个REG在频域上占用1个资源块、时域上占用1个OFDM符号。
资源单元组绑定(Resource Element Group Bundle,REG Bundle),由时域或频域连续的多个REG组成,且所述多个REG采用相同的预编码。例如,一个REG Bundle可以包括2个、3个、6个或者其他数量的REG。这样,在一个REG bundle内包括的用于解调控制信道的参考信号的资源比单个REG中包括的参考信号的资源更多,可以提高信道估计的准确性,降低控制信道传输的误码率。
高层信令:区分于物理层信令,可以为主信息块(Master Information Block,MIB),系统信息块(System Information Block,SIB),或无线资源控制(Radio Resource Control,RRC)信令,或其他具有类似特征的高层信令。
带宽区域:BandWidth Part(BWP),频域连续的多个物理资源块,一般由网络设备为终端设备配置。终端设备在BWP内接收或发送数据。以控制资源传输为例,在一个BWP 内包括至少一个控制资源集合,且控制资源集合包括的频域资源不超过BWP在频域上包括的多个物理资源块。
进一步地,上述网络设备的一种可能的结构示意图可以如图2所示。该网络设备102能够执行本发明实施例提供的方法。其中,该网络设备102可以包括:控制器或处理器201(下文以处理器201为例进行说明)以及收发器202。控制器/处理器201有时也称为调制解调器处理器(modem processor)。调制解调器处理器201可包括基带处理器(baseband processor,BBP)(未示出),该基带处理器处理经数字化的收到信号以提取该信号中传达的信息或数据比特。如此,BBP通常按需或按期望实现在调制解调器处理器201内的一个或多个数字信号处理器(digital signal processor,DSP)中或实现为分开的集成电路(integrated circuit,IC)。
收发器202可以用于支持网络设备与终端设备之间收发信息,以及支持终端设备之间进行无线电通信。所述处理器201还可以用于执行各种终端设备与其他网络设备通信的功能。在上行链路,来自终端设备的上行链路信号经由天线接收,由收发器202进行调解,并进一步处理器201进行处理来恢复终端设备所发送的业务数据和/或信令信息。在下行链路上,业务数据和/或信令消息由终端设备进行处理,并由收发器202进行调制来产生下行链路信号,并经由天线发射给终端设备。所述网络设备还可以包括存储器203,可以用于存储该网络设备的程序代码和/或数据。收发器202可以包括独立的接收器和发送器电路,也可以是同一个电路实现收发功能。所述网络设备还可以包括通信单元204,用于支持所述网络设备与其他网络实体进行通信。例如,用于支持所述网络设备与核心网的网络设备等进行通信。
可选的,网络设备还可以包括总线。其中,收发器202、存储器203以及通信单元204可以通过总线与处理器201连接。例如,总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以包括地址总线、数据总线、以及控制总线等。
图3为上述通信系统中,终端设备的一种可能的结构示意图。该终端设备能够执行本发明实施例提供的方法。该终端设备可以是图1中的一个或多个终端设备中的任一个。所述终端设备包括收发器301,应用处理器(application processor)302,存储器303和调制解调器处理器(modem processor)304。
收发器301可以调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收网络设备发射的下行链路信号。收发器301可以调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。
调制解调器处理器304有时也称为控制器或处理器,可包括基带处理器(baseband processor,BBP)(未示出),该基带处理器处理经数字化的收到信号以提取该信号中传达的信息或数据比特。BBP通常按需或按期望实现在调制解调器处理器304内的一个或多个数字中或实现为分开的集成电路(IC)。
在一个设计中,调制解调器处理器(modem processor)304可包括编码器3041,调制器3042,解码器3043,解调器3044。编码器3041用于对待发送信号进行编码。 例如,编码器3041可用于接收要在上行链路上发送的业务数据和/或信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码、或交织等)。调制器3042用于对编码器3041的输出信号进行调制。例如,调制器可对编码器的输出信号(数据和/或信令)进行符号映射和/或调制等处理,并提供输出采样。解调器3044用于对输入信号进行解调处理。例如,解调器3044处理输入采样并提供符号估计。解码器3043用于对解调后的输入信号进行解码。例如,解码器3043对解调后的输入信号解交织、和/或解码等处理,并输出解码后的信号(数据和/或信令)。编码器3041、调制器3042、解调器3044和解码器3043可以由合成的调制解调处理器304来实现。这些单元根据无线接入网采用的无线接入技术来进行处理。
调制解调器处理器304从应用处理器302接收可表示语音、数据或控制信息的数字化数据,并对这些数字化数据处理后以供传输。所属调制解调器处理器可以支持多种通信系统的多种无线通信协议中的一种或多种,例如LTE,新空口,通用移动通信系统(Universal Mobile Telecommunications System,UMTS),高速分组接入(High Speed Packet Access,HSPA)等等。可选的,调制解调器处理器304中也可以包括一个或多个存储器。
可选的,该调制解调器处理器304和应用处理器302可以是集成在一个处理器芯片中。
存储器303用于存储用于支持所述终端设备通信的程序代码(有时也称为程序,指令,软件等)和/或数据。
需要说明的是,该存储器203或存储器303可以包括一个或多个存储单元,例如,可以是用于存储程序代码的处理器201或调制解调器处理器304或应用处理器302内部的存储单元,或者可以是与处理器201或调制解调器处理器304或应用处理器302独立的外部存储单元,或者还可以是包括处理器201或调制解调器处理器304或应用处理器302内部的存储单元以及与处理器201或调制解调器处理器304或应用处理器302独立的外部存储单元的部件。
处理器201和调制解调器处理器304(下文简称处理器304)可以是相同类型的处理器,也可以是不同类型的处理器。例如可以实现在中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件、其他集成电路、或者其任意组合。处理器201和调制解调器处理器304可以实现或执行结合本发明实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能器件的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合或者片上系统(system-on-a-chip,SOC)等等。
本领域技术人员能够理解,结合本申请所公开的诸方面描述的各种解说性逻辑块、模块、电路和算法可被实现为电子硬件、存储在存储器中或另一计算机可读介质中并由处理器或其它处理设备执行的指令、或这两者的组合。作为示例,本文中描述的设备可用在任何电路、硬件组件、IC、或IC芯片中。本申请所公开的存储器可以是任何类型和大小的存储器,且可被配置成存储所需的任何类型的信息。为清楚地解说这种 可互换性,以上已经以其功能性的形式一般地描述了各种解说性组件、框、模块、电路和步骤。此类功能性如何被实现取决于具体应用、设计选择和/或加诸于整体系统上的设计约束。本领域技术人员可针对每种特定应用以不同方式来实现所描述的功能性,但此类实现决策不应被解读为致使脱离本发明的范围。
在本发明实施例中,发送下行(上行)信道可以是指发送下行(上行)信道上承载的数据或信息,其中,该数据或信息可以是指经过信道编码后的数据或信息。
下面将基于上面所述的本发明涉及的共性方面,对本发明实施例进一步详细说明。在实施例的阐述中,忽略上下行可能存在的时延,假设网络设备的发送时刻与终端设备的接收时刻相同。对于网络设备的发送和终端设备的接收相对应的处理,实施例中多从终端设备侧角度阐述,本领域技术人员可以理解,终端设备从网络设备接收,意味着网络设备进行了发送。本发明中涉及“资源块单元”的表述,本领域技术人员可以理解,所述资源块单元是逻辑上对资源块的划分,便于按照相应的资源分配粒度进行资源配置,可以涵盖其它用于资源块划分的表述。
另外,本发明实施例中各个步骤的编号不限定具体执行过程中的先后顺序,在不同的可选设计中,上述各个步骤执行先后顺序会进行适应性的调整。本发明实施例涉及的用字母来代表的参数的值均为非负整数,即所述字母所指示的值均为非负整数。本发明实施例可能涉及的运算符中:“<”或
Figure PCTCN2018123658-appb-000052
”表示“小于”,“>”或
Figure PCTCN2018123658-appb-000053
表示“大于”,“≤”表示“小于或等于”,“≥”表示“大于或等于”,“≠”表示“不等于”,“·”表示“乘以”,
Figure PCTCN2018123658-appb-000054
表示“下取整”,
Figure PCTCN2018123658-appb-000055
表示“上取整”。
下面以5G通信系统为例阐述下行传输资源的配置情况。5G通信系统的NR标准中,下行传输资源在频域上占用全部或部分系统带宽,在时域上由若干个OFDM符号组成。控制信道可以由一个或多个CCE组成。一个CCE由多个REG组成,例如每个CCE包括6个REG。因此,网络设备发送控制信道时,需要在为每个终端设备分配的一个或多个控制资源集合上,将组成控制信道的一个或多个CCE映射到控制信道资源集合中的REG上,其中,REG为物理资源,CCE为组成控制信道的逻辑单元。CCE到REG的映射,即,把控制信道所使用的每个CCE映射到物理资源上。
目前,NR标准中,控制资源集合中包括的REG按照时域优先的方式进行编号,即,从控制资源集合包括的第一个OFDM符号且最低资源块编号的位置为起始进行编号。可选的,所述编号方式也可以根据控制资源集合的配置信息确定,即,可以按照频率优先的方式,或,时域优先的方式进行编号。
NR标准支持如下CCE到REG的资源映射方式:非交织式资源映射方式(non-Interleaved)、交织式资源映射方式(Interleaved)。在使用non-Interleaved进行CCE到REG的资源映射时,属于同一个CCE的REG在时域和或频域资源上是连续的。在使用Interleaved进行CCE到REG的资源映射时,属于同一个CCE的REG在时域和或频域上是离散映射的,且离散的粒度为REG绑定(REG bundle)的大小。其中,REG绑定由时域和/或频域连续或相邻的多个REG构成,REG绑定的大小与控制资源集合的配置有关。例如,控制资源集合中CCE到REG的映射为交织,且控制资源集合在时域上包括1个或2个OFDM符号时,REG绑定的大小可以为2或6;控 制资源集合中CCE到REG的映射为交织式,且控制资源集合在时域上包括3个OFDM符号时,REG绑定的大小可以为3或6。当控制资源集合中CCE到REG的映射为非交织,则REG绑定的大小为6。
所述REG绑定大小给定的情况下,REG绑定包括的REG可以按照时域优先的方式组成,或者按照频域优先的方式组成。例如,REG绑定大小为2,若按照时域优先的方式,则组成REG绑定的REG由时域上连续的2个REG构成;若按照频域优先的方式,则组成REG绑定的REG由频域上连续的2个REG构成。可选的,REG绑定按照时域优先的方式还是按照频域优先的方式组成可以根据控制信道资源集合的配置来确定。或者,根据控制资源集合时域上OFDM符号的数量确定,例如,在控制资源集合包括2个或3个OFDM符号时,按照时域优先的方式组成REG绑定;在控制资源集合包括1个OFDM符号时,按照频优先的方式组成REG绑定。
在交织方式中,一个CCE包括的逻辑的REG绑定的编号对应至少一个与逻辑编号不同的物理的REG绑定的编号。例如,在非交织方式中,第j个CCE对应的物理的REG绑定的编号为{6j/L,6j/L+1,…,6j/L+L-1},其中,L为REG绑定包括的REG的个数。第i个REG绑定的编号对应的REG的编号为{i,iL+1,…,iL+L-1},其中,L的取值可以为{2,3,6}。此外,在交织方式中,第j个CCE对应的物理的REG绑定的编号为{f(6j/L),f(6j/L+1),…,f(6j/L+L-1)},其中,f(·)可表示为交织器。且由下式给出,
Figure PCTCN2018123658-appb-000056
x=cR+r
r=0,1,...,R-1
c=0,1,...,C-1
Figure PCTCN2018123658-appb-000057
其中,R∈{2,3,6},
Figure PCTCN2018123658-appb-000058
为控制资源集合包括的REG个数,上述L、R以及n shift中的一个或多个可以根据高层信令的配置信息确定。
上述技术中,交织器函数f(.)不适用所有可能的配置情况,尤其在
Figure PCTCN2018123658-appb-000059
无法被L和R的乘积整除下,交织器函数的输出取值会出现多次重复的取值。如图4的控制资源集合所示。
控制资源集合包括频域连续的24个资源块、时域连续的2个OFDM符号,控制资源集合包括的REG的个数为2x24=48,即:
Figure PCTCN2018123658-appb-000060
在一个CCE包括6个REG的情况下,CORESET内共包括8个CCE,编号为{0,1,2,3,4,5,6,7};若通过高层信令的配置,确定n shift=0,L=6,R=6;则CORESET内CCE 0对应的REG绑定为{f(0)},CCE 1对应的REG绑定为{f(1)},CCE 2对应的REG绑定为{f(2)},CCE 3对应的REG绑定为{f(3)},CCE 4对应的REG绑定为{f(4)},CCE 5对应的REG绑定为{f(5)},CCE 6对应的REG绑定为{f(6)},CCE 7对应的REG绑定为{f(7)}。f(.)的表示式如公式(1)所示。
若f(x=1),R=6,则c=0,r=1(x=cR+r);进一步,
Figure PCTCN2018123658-appb-000061
(C·R)=12,大于CORESET中的REG绑定个数8。
依此类推,得:
Figure PCTCN2018123658-appb-000062
Figure PCTCN2018123658-appb-000063
Figure PCTCN2018123658-appb-000064
Figure PCTCN2018123658-appb-000065
Figure PCTCN2018123658-appb-000066
Figure PCTCN2018123658-appb-000067
Figure PCTCN2018123658-appb-000068
Figure PCTCN2018123658-appb-000069
由上可知,f(x=0)与f(x=4)的取值相同,f(x=1)和f(x=5)的取值相同。由于交织函数的取值存在重复,将导致不同编号的CCE映射到相同的REG绑定上,造成控制信息发送和/或接收的失败。
本发明的实施例提供一种通信方法,网络设备确定控制资源集合中的M个资源单元组REG绑定,向终端设备发送控制信道;所述终端设备确定所述M个REG绑定,并在所述M个REG绑定对应的资源上检测控制信道。通过该通信方法,实现了通信系统中准确、高效的资源配置,提高了通信效率。
需要说明的是,本发明实施例中涉及的“第一”、“第二”等类似表述,仅用于举例,并不引入顺序或者编号上的限定。
需要说明的是,本发明实施例中确定的REG绑定的位置或者f(x)输出的结果为构成CCE的M个REG绑定在控制资源集合内的位置,具体的值可以为REG绑定的编号或者索引。具体阐述过程中,位置、编号、索引三者可以互相替代。
需要说明的是,本发明实施例中的“获取”操作,可以是确定或者接收。
还需要说明的是,本发明实施例涉及资源位置映射,不可避免的会涉及大量参数、中间变量以及公式。但是本发明实施例所涉及的“确定”操作并非仅仅局限于根据实施例所涉及的参数、中间变量和公式确定,而是根据公式所体现的技术构思确定。也就是说,本发明实施例所涉及的参数、中间变量、公式都不应当仅仅限制在参数、变量和公式本身,方案的范围应覆盖根据具体参数、中间变量所表达的技术含义所确定的范围,并且公式的计算也不仅仅限制在公式本身,本领域技术人员在所述公式基础上进行合理变型,但仍能得到公式所实现的结果或解决相同或相似的技术问题的构思和方案也应该本发明实施例的覆盖范围之内。
另外,本领域技术人员可知,对于M3的值满足M3=M1 mod M2时,若M1的值 小于M2的值,则M3的值满足M3=M1 mod M2即等同于M3的值满足M3=M1。
图5示出了本发明实施例中通信方法的一种具体实现方式,如下根据图5对本发明的实施例提供的方案进行说明。
为方便阐述,本发明实施例中资源分配的交织处理以矩阵交织器的方式体现,矩阵交织器的大小通过矩阵的行列值体现。通过矩阵交织器的处理,控制资源集合上逻辑划分的一个或多个CCE,被映射到相应的物理资源REG绑定上,以实现下行信息的发送和接收。
步骤500:网络设备确定控制资源集合中的M个资源单元组REG绑定。所述控制资源集合由B个REG绑定组成。
该确定步骤可由网络设备的处理器201执行。
步骤501:所述网络设备在所述M个REG绑定对应的资源上,向终端设备发送下行信息。所述下行信息可以为控制信道和/或数据信道等。
该步骤可以网络设备的收发器202执行,或者由网络设备的处理器201控制收发器202执行。
其中,所述控制资源集合包括N个REG,所述N个REG在逻辑上被划分为一个或多个CCE,所述一个或多个CCE的编号按照大小顺序排列。每个CCE包括的REG数量为S,所述M个REG绑定组成所述控制资源集合中的第一控制信道单元CCE(从编号顺序上对应于第j+1个),所述第一CCE的编号为j,所述j∈{0,1,…,N/S-1}。其中,所述L为REG绑定的大小,B等于N/L、M大于或者等于1。
步骤502,所述终端设备确定所述控制资源集合中M个资源单元组REG绑定。
该确定步骤可由终端设备的处理器304执行。
步骤503:所述终端设备在所述M个REG绑定对应的资源上检测控制信道。
上述步骤503也可以表述为所述终端设备在所述M个REG绑定对应的资源上检测并接收控制信道,或者表述为所述终端设备在所述M个REG绑定对应的资源上接收控制信道。
该确定步骤可由终端设备的处理器304执行,或者由收发器301执行,再或者由处理器304控制收发器301执行。
通过上述步骤500-503所实现的通信方法,可以实现通信系统中准确、高效的资源配置,提高了通信效率。
需要说明的是,本发明实施例中所涉及的网络设备的确定操作可以通过处理器201执行,网络设备的收发操作可以通过收发器202执行,或者通过处理器201控制收发器202执行;终端设备的确定操作可以通过处理器304执行,终端设备的获取操作可以通过处理器304或者收发器301执行,或者由处理器304控制收发器301执行,具体视获取方式而定,终端设备的收发操作可以通过收发器301执行。
本发明实施例中,网络设备配置控制资源集合,所述控制资源集合可以通过高层信 令配置,所述高层信令包括广播信息、系统信息(例如,初始接入时,包括用于配置初始接入信道(Random access channel)的系统信息)、RRC信令等,终端设备可以根据所述高层信令的配置获取控制资源集合。可选的,所述控制资源集合的配置包括但不限于频域资源位置以及时域长度,所述频域资源位置和时域长度可以用于确定所述控制资源集合包括的REG个数N。终端设备可以通过其它方式获取所述N的值,本发明实施例不做限定。
进一步可选的,所述网络设备配置所述控制资源集合中的REG绑定的大小L,即一个REG绑定包括的REG个数。可选的,所述L的取值范围为{2,3,6}。所述配置可以通过高层信令完成。
进一步可选的,每个CCE包括的REG数量为S。所述S可以是预先配置或定义的,例如,标准或协议中规定的,也可以是网络设备配置的。可选的,所述S的值为6。
这里需要说明的是,NR系统中采用矩形交织器进行资源配置或映射,通过矩形交织器产生矩阵,所述矩阵中的行列位置用于以REG绑定为粒度的映射。一般来说,矩阵交织器的输入和输出以行进列出的方式进行,参见图6。例如,编号0-5以{0,1,2,3,4,5}的顺序输入到交织器中,以行优先的顺序经过矩阵交织,以列优先的顺序输出,输出的编号为{0,2,4,1,3,5}。下面为阐述方便,将矩阵的行数称为R(Row),列数称为C(Column);进一步,r∈{0,1,...,R-1}(又称作行编号),c∈{0,1,...,C-1}(又称作列编号)。可选的,所述R是网络设备配置的,也称作交织参数,例如,通过高层信令配置;所述C可以为网络设备配置的,也可以是通过网络设备的配置隐式指示的,所述C的值等于
Figure PCTCN2018123658-appb-000070
需要说明的是,本发明实施例中所涉及的L、N、C、R、B的含义相同,具体参见上文的阐述。
本发明实施例中,在采用矩形交织器进行资源配置或映射时,所述矩阵的大小为C·R,所述控制资源集合包括的REG绑定个数为B。在所述矩阵大小与B相等时,可以实现完整映射,不会出现映射位置冲突;在所述矩阵大小大于B时,为避免不同的CCE映射到相同的REG绑定上而导致资源冲突,则需要准确、高效的确定REG绑定的映射位置。
下述的阐述中涉及到的共同特征解释如下:
f(x):用于指示编号为x的REG绑定的索引,或者叫做交织器或交织器函数;
g(x):用于指示编号为x的REG绑定的索引,区别于f(x),可以为现有技术中的交织器或者交织器函数。例如,所述g(x)=h(x)mod B,或者,g(x)=h(x)(这里需要说明的是,当h(x)的值小于B时,g(x)=h(x)mod B=h(x))。
进一步,所述g(x)的值可以为:
g(x)=h(x)modB=(rC+c+n shift)mod(N/L)
x=cR+r
r∈{0,1,...,R-1};这里,
c∈{0,1,...,C-1}
h(x)=rC+c+n shift
可选的,当h(x)的值小于B时:g(x)=h(x)=(r·C+c);为与上述公式区分,将这里的(r·C+c)定义为u(k),即u(k)=(r·C+c)。其中:
c和r的值满足:k=cR+r(或者,k=cR+r+offset6,offset6的取值参见下文中的阐述);
所述k的值满足k=(x+n shift)mod(B),或者,k=(x-n shift)mod(B),或者x=(k+n shift)mod(B),或者x=(k-n shift)mod(B)。
其中,所述n shift的值是终端设备或网络设备确定的,例如可以为预先定义或配置的,也可以是网络设备配置的,还可以是终端设备根据网络设备的配置确定,或者根据一定的规则确定,可以根据不同的场景进行不同的设计。例如,所述终端设备通过高层信令配置的参数,根据预定的规则或者函数,确定所述n shift的值。基于上述公式,根据z和R,可以确定r和c的值,进一步得到g(x)的值。所述n shift的具体解释可以参见下文中第二种可选的设计的阐述。
上述步骤500和502中,所述网络设备和所述终端设备分别确定控制资源集合中M个资源单元组REG绑定。所述网络设备和终端设备确定所述控制资源集合中第j+1个控制信道单元CCE中的第i+1个REG绑定的索引为f(x),所述x的值等于(6j/L+i)。
第一种可选的设计中,根据至少一个偏移值确定所述M个REG绑定,所述至少一个偏移值可以根据矩阵大小与B的差值,即((C·R)-B)确定,后续称((C·R)-B)为N null,即空元(或者称为REG绑定的编号重复的位置)的个数,所述空元即终端设备忽略或者不读取的位置,这些位置不与所述控制信道单元中的CCE映射。参见图7。控制信道单元中的REG绑定的编号以行优先的方式输入到交织矩阵中,并以列优先的方式从交织矩阵输出。在所述矩阵大小大于B时,为避免资源映射冲突,矩阵中REG绑定的映射位置以及空元的个数以及位置存在多种配置方式。所述至少一个偏移值包括offset1、offset2、offset3、offset4、offset5以及offset6中的一个或多个。该第一种可选的设计中存在多种可选的实现,下面针对该多种可选的实现分别阐述。进一步可选的,所述至少一个偏移值中的任一个或多个偏移值可以根据
Figure PCTCN2018123658-appb-000071
的值,以及行编号r和列编号c中的至少一个确定。即,所述至少一个偏移值中的任一个或多个偏移值是根据
Figure PCTCN2018123658-appb-000072
的值以及行编号r确定的,或者,所述至少一个偏移值中的任一个或多个偏移值是根据
Figure PCTCN2018123658-appb-000073
的值以及列编号c确定的,或者,所述至 少一个偏移值中的任一个或多个偏移值是根据
Figure PCTCN2018123658-appb-000074
的值以及行编号r和列编号c确定的。
第一种可选的实现中,所述至少一个偏移值包括offset1。在该可选的实现中所述空元(REG绑定的编号重复的位置)的位置在矩阵中最后一行的尾部。所述M个REG绑定索引的确定需要避开最后一行的尾部,即矩阵的输出不能包含该矩阵最后一行尾部的N null个位置,具体参见图7。
可选的,f(x)的值满足f(x)=g(x+offset1)。
可选的,f(x)的值满足f(x)=(rC+c+n shift)mod B,x=cR+r-offset1。
在上述两种可选的方式中,根据N null的不同,offset1的取值存在区别,具体参见以下阐述。
当N null=0时,f(x)=g(x)。
当N null≠0时,参见以下两种情况下的取值:
第一种情况、C≥N null,则offset1=n,f(x)=g(x+n),n的取值满足:a n≤x<a n+1,所述n∈{0,1,...N null-1};
其中,
Figure PCTCN2018123658-appb-000075
所述N null=(C·R-B),所述
Figure PCTCN2018123658-appb-000076
第二种情况、C<N null,则offert1=n·W n,f(x)=g(x+n·W n),该情况中的n与第一种情况中的n含义不同,具体参见相应解释。n的取值满足:b n≤x<b n+1,所述n∈{0,1,...,C-1};
其中,
Figure PCTCN2018123658-appb-000077
所述
Figure PCTCN2018123658-appb-000078
参见例1,控制资源集合包括频域连续的21个资源块、时域连续的2个OFDM符号,进而控制资源集合包括的REG的个数为2x 21=42,即:N=42;CCE包括6个REG,若CORESET内共包括7个CCE,编号为{0,1,2,3,4,5,6};若通过高层信令的配置,确定n shift=0,L=6,R=3;则CORESET内CCE 0对应的REG绑定为{f(0)},CCE 1对应的REG绑定为{f(1)},CCE 2对应的REG绑定为{f(2)},CCE 3对应的REG绑定为{f(3)},CCE 4对应的REG绑定为{f(4)},CCE 5对应的REG绑定为{f(5)},CCE 6对应的REG绑定为{f(6)}。
若g(x=1),R=3,则根据x=cR+r可知,c=0,r=1;进一步,B=7,C=3;则根据g(x)=(rC+c+n shift)mod(N/L),可知:
g(x=0)=(rC+c)mod(N/L)=(0x3+0)mod(42/6)=0;
g(x=1)=(rC+c)mod(N/L)=(1x3+0)mod(42/6)=3;
g(x=2)=(rC+c)mod(N/L)=(2x3+0)mod(42/6)=6;
g(x=3)=(rC+c)mod(N/L)=(0x3+1)mod(42/6)=1;
g(x=4)=(rC+c)mod(N/L)=(1x3+1)mod(42/6)=4;
g(x=5)=(rC+c)mod(N/L)=(2x3+1)mod(42/6)=0;
g(x=6)=(rC+c)mod(N/L)=(0x3+2)mod(42/6)=2;
g(x=7)=(rC+c)mod(N/L)=(1x3+2)mod(42/6)=5;
g(x=8)=(rC+c)mod(N/L)=(2x3+2)mod(42/6)=1;
由于f(x)的值满足f(x)=g(x+n),n∈{0,1},根据a0=0,a1=R·(C-N null)+(R-1)=5,a2=R·(C-N null)+2(R-1)=7可知:
当0≤x<5时,n=0,所述f(x)的值如下:
f(0)=g(0+0)=0;f(1)=g(1+0)=3;f(2)=g(2+0)=6;f(3)=g(3+0)=1;f(4)=g(4+0)=4;
当5≤x<7时,n=1,所述f(x)的值如下:
f(5)=g(5+1)=g(6)=2;f(6)=g(6+1)=g(7)=5。参见图7,上述确定的M个REG绑定的索引不包含空元(或REG绑定编号重复)的位置。
通过该实现方式,可以实现组成下行控制信道的一个或多个CCE映射到控制资源集合内的REG绑定时,尽可能的分散在整个控制资源集合内,进而下行控制信道的发送/接收可以获得较大的频率分集增益。
第二种可选的实现中,所述至少一个偏移值包括offset2,进一步还可以包括offset6,其中:
所述f(x)的值满足f(x)=(h(x)-offset2)mod B,其中,x=cR+r,h(x)=rC+c+n shift,N null=(C·R-B),
Figure PCTCN2018123658-appb-000079
r∈{0,1,…(R-1)},c∈{0,1,…(C-1)};
或者
f(x)的值满足
Figure PCTCN2018123658-appb-000080
或者,
所述f(x)的值满足f(x)=h(x)-offset2(这里需要说明的是,当(h(x)-offset2)的值小于B时,f(x)=(h(x)-offset2)mod B=h(x)-offset2)。
可选的,所述h(x)的值满足:h(x)=u(k);
所述u(k)的值等于(r·C+c),所述k的值满足k=(x+n shift)mod(B),或者,(x-n shift)mod(B),或者x=(k+n shift)mod(B),或者x=(k-n shift)mod(B),并且,c和r的值满足:k=cR+r,或者,k=cR+r+offset6;
其中,所述n shift为移位值,可以为终端设备或网络设备确定的,具体的解释可以参见下文中第二种可选的设计中的阐述。
对于offset2的值:
一种可选的,所述offset2=max{0,r-(R-N null)},或者,offset2= max{0,(xmodR)-(R-N null)}。该可选的方式中,空元的位置位于矩阵的最后一列的尾部,参见图7。所述M个REG绑定索引的确定需要避开最后一列的尾部,即矩阵的输出不能包含该矩阵最后一列尾部的N null个位置。
参见例2,控制资源集合包括频域连续的21个资源块、时域连续的2个OFDM符号,进而控制资源集合包括的REG的个数为2x 21=42,即:N=42;当CCE包括6个REG时,CORESET内共包括7个CCE,编号为{0,1,2,3,4,5,6};若通过高层信令的配置,确定n shift=0,L=6,R=3;则CORESET内CCE 0对应的REG绑定为{f(0)},CCE 1对应的REG绑定为{f(1)},CCE 2对应的REG绑定为{f(2)},CCE 3对应的REG绑定为{f(3)},CCE 4对应的REG绑定为{f(4)},CCE 5对应的REG绑定为{f(5)},CCE 6对应的REG绑定为{f(6)}。
若f(x=1),R=3,则根据x=cR+r可知,c=0,r=1;进一步,B=7,C=3,N null=2,offset2=max{0,r-(R-N null)}=max{0,1-1}=0。
则基于上述阐述可知:
f(x=0)=(rC+c+n shift-offset2)mod B=(0x3+0-0)mod(42/6)=0;
f(x=1)=(rC+c+n shift-offset2)mod B=(1x3+0-0)mod(42/6)=3;
f(x=2)=(rC+c+n shift-offset2)mod B=(2x3+0-1)mod(42/6)=5;
f(x=3)=(rC+c+n shift-offset2)mod B=(0x3+1-0)mod(42/6)=1;
f(x=4)=(rC+c+n shift-offset2)mod B=(1x3+1-0)mod(42/6)=4;
f(x=5)=(rC+c+n shift-offset2)mod B=(2x3+1-1)mod(42/6)=6;
f(x=6)=(rC+c+n shift-offset2)mod B=(0x3+2-0)mod(42/6)=2。
基于上述实现,7个CCE映射到不同的REG绑定上,使得组成下行控制信道(PDCCH)的一个或多个CCE映射到控制资源集合内的REG绑定尽可能的分散在整个控制资源集合内,进而使得下行控制信道的发送/接收可获得较大的频率分集增益。
又一种可选的,所述
Figure PCTCN2018123658-appb-000081
该可选的方式中,空元的位置位于矩阵的最后一列的首部,所述M个REG绑定索引的确定需要避开最后一列的首部,即矩阵的输出不能包含该矩阵最后一列首部的N null个位置,参见图8。
参见例3,控制资源集合包括频域连续的21个资源块、时域连续的2个OFDM符号,进而控制资源集合包括的REG的个数为2x 21=42,即:N=42;当CCE包括6个REG时,CORESET内共包括7个CCE,编号为{0,1,2,3,4,5,6};若通过高层信令的配置,确定n shift=0,L=6,R=3;则CORESET内CCE 0对应的REG绑定为{f(0)},CCE 1对应的REG绑定为{f(1)},CCE 2对应的REG绑定为{f(2)},CCE 3对应的REG绑定为{f(3)},CCE 4对应的REG绑定为{f(4)},CCE 5对应的REG绑定为{f(5)},CCE 6对应的REG绑定为{f(6)}。
若f(x=1),R=3,则根据x=cR+r可知c=0,r=1;进一步,B=7,C=3,N null=2,c<C-1,则offset2=max{r,N null}=min{1,2}=1。
则基于上述阐述可知:
f(x=0)=(rC+c+n shift-offset2)mod B=(0x3+0-0)mod(42/6)=0;
f(x=1)=(rC+c+n shift-offset2)mod B=(1x3+0-1)mod(42/6)=2;
f(x=2)=(rC+c+n shift-offset2)mod B=(2x3+0-2)mod(42/6)=4;
f(x=3)=(rC+c+n shift-offset2)mod B=(0x3+1-0)mod(42/6)=1;
f(x=4)=(rC+c+n shift-offset2)mod B=(1x3+1-1)mod(42/6)=3;
f(x=5)=(rC+c+n shift-offset2)mod B=(2x3+1-2)mod(42/6)=5;
f(x=6)=(rC+c+n shift-offset2)mod B=(0x3+2-2+3x2)mod(42/6)=6。
再一可选的,所述offset2的值满足offset2=N null,其中N null满足
Figure PCTCN2018123658-appb-000082
对于offset6的值:
当c∈{0,1,2,…,N null-1}时,offset6的值满足offset6=(-c-1),其中,r∈{1,2,…,R-1};和/或
当c∈{N null,N null+1,…,C-1}时,offset6的值满足offset6=-N null,其中,r∈{0,1,2,…,R-1}。
基于上述实现,7个CCE映射到不同的REG绑定上,使得组成下行控制信道(PDCCH)的一个或多个CCE映射到控制资源集合内的REG绑定尽可能的分散在整个控制资源集合内,进而PDCCH的发送/接收可获得较大的频率分集增益。。
第三种可选的实现中,所述至少一个偏移值包括offset3,,进一步还可以包括offset6其中:
所述f(x)的值满足f(x)=(h(x)+offset3)mod B,x=cR+r,h(x)=rC+c+n shift,N null=(C·R-B),
Figure PCTCN2018123658-appb-000083
r∈{0,1,…(R-1)},c∈{0,1,…(C-1)};
或者,
所述f(x)的值满足
Figure PCTCN2018123658-appb-000084
或者,
所述f(x)的值满足f(x)=(h(x)+offset3)(这里需要说明的是,当(h(x)+offset3)的值小于B时,f(x)=((h(x)+offset3))mod B=(h(x)+offset3))。
可选的,所述h(x)的值满足:h(x)=u(k);
所述u(k)的值等于(r·C+c),所述k的值满足k=(x+n shift)mod(B),或者,k=(x-n shift)mod(B),或者x=(k+n shift)mod(B),或者x=(k-n shift)mod(B),,并且,c和r的值满足:k=cR+r,或者,k=cR+r+offset6;
其中,所述n shift为移位值,可以为终端设备或网络设备确定的,具体的解释可以参见下文中第二种可选的设计中的阐述。
一种可选的,所述offset3=min{0,(R-N null)-r)},或者,offset3=min{0,(R-N null)-(x mod R)}。该可选的方式中,空元的位置位于矩阵的最后一列的尾部,参见图7。所述M个REG绑定索引的确定需要避开最后一列的尾部,即矩阵的输出不能包含该矩阵最后一列尾部的N null个位置。
参见例4,控制资源集合包括频域连续的21个资源块、时域连续的2个OFDM符号,进而控制资源集合包括的REG的个数为2x 21=42,即:N=42;当CCE包括6 个REG时,CORESET内共包括7个CCE,编号为{0,1,2,3,4,5,6};若通过高层信令的配置,确定n shift=0,L=6,R=3;则CORESET内CCE 0对应的REG绑定为{f(0)},CCE 1对应的REG绑定为{f(1)},CCE 2对应的REG绑定为{f(2)},CCE 3对应的REG绑定为{f(3)},CCE 4对应的REG绑定为{f(4)},CCE 5对应的REG绑定为{f(5)},CCE 6对应的REG绑定为{f(6)}。
若f(x=1),R=3,则根据x=cR+r可知c=0,r=1;进一步,B=7,C=3,N null=2,则offset3=min{0,(R-N null)-r}=min{0,1-1}=0。
则基于上述阐述可知:
f(x=0)=(rC+c+n shift+offset3)mod B=(0x3+0+0)mod(42/6)=0;
f(x=1)=(rC+c+n shift+offset3)mod B=(1x3+0+0)mod(42/6)=3;
f(x=2)=(rC+c+n shift+offset3)mod B=(2x3+0-1)mod(42/6)=5;
f(x=3)=(rC+c+n shift+offset3)mod B=(0x3+1+0)mod(42/6)=1;
f(x=4)=(rC+c+n shift+offset3)mod B=(1x3+1+0)mod(42/6)=4;
f(x=5)=(rC+c+n shift+offset3)mod B=(2x3+1-1)mod(42/6)=6;
f(x=6)=(rC+c+n shift+offset3)mod B=(0x3+2+0)mod(42/6)=2;
基于上述实现,7个CCE映射到不同的REG绑定上,使得组成下行控制信道(PDCCH)的一个或多个CCE映射到控制资源集合内的REG绑定尽可能的分散在整个控制资源集合内,进而PDCCH的发送/接收可获得较大的频率分集增益。。
又一种可选的,所述
Figure PCTCN2018123658-appb-000085
该可选的方式中,空元的位置位于矩阵的最后一列的首部,参见图8。所述M个REG绑定索引的确定需要避开最后一列的首部,即矩阵的输出不能包含该矩阵最后一列首部的N null个位置。
参见与例4相同的控制资源集合的配置,控制资源集合包括REG的个数为2x 21=42;若高层信令配置的n shift=0,L=6,R=3。
若f(x=1),R=3,则c=0,r=1;进一步,B=7,C=3,N null=2,c<C-1,则offset3=max{-r,-N null}=max{-1,-2}=-1。
则基于上述阐述可知:
f(x=0)=(rC+c+n shift+offset3)mod B=(0x3+0-0)mod(42/6)=0;
f(x=1)=(rC+c+n shift+offset3)mod B=(1x3+0-1)mod(42/6)=2;
f(x=2)=(rC+c+n shift+offset3)mod B=(2x3+0-2)mod(42/6)=4;
f(x=3)=(rC+c+n shift+offset3)mod B=(0x3+1-0)mod(42/6)=1;
f(x=4)=(rC+c+n shift+offset3)mod B=(1x3+1-1)mod(42/6)=3;
f(x=5)=(rC+c+n shift+offset3)mod B=(2x3+1-2)mod(42/6)=5;
f(x=6)=(rC+c+n shift+offset3)mod B=(0x3+2-2+3x2)mod(42/6)=6。
该可选的实现中,所述offset6的取值参见第二种可选的实现中的阐述。
第四种可选的实现中,所述至少一个偏移值包括offset4和offset5,所述f(x)的值满足f(x)=(r·C+c+n shift+offset4)mod B,其中:cR+r+offset5=x,所述
Figure PCTCN2018123658-appb-000086
r∈{0,1,…(R-1)},c∈{0,1,…(C-1)}。
根据上文的阐述可知,矩阵中存在空元,即N null=(C·R-B)个位置,网络设备不在 这些空元位置上发送控制信道,那么所述终端设备在检测控制信道的过程中,忽略或者不读取所述N null个位置。在该可选的实现中,所述N null个位置中第m个位置e null(m)满足以下公式:
一可选的,
Figure PCTCN2018123658-appb-000087
m∈{1,2,...N null}。
例如,对于C=3的矩阵,空元位于矩阵中的行编号为{2}或{1,2};
当矩阵的最后一列包括1个空元时,所述空元的位置为:
Figure PCTCN2018123658-appb-000088
当矩阵的最后一列包括2个空元时,第一空元位置(m=1)位于交织矩阵行的编号为:
Figure PCTCN2018123658-appb-000089
第二空元位置(m=2)的位于交织矩阵行的编号为:
Figure PCTCN2018123658-appb-000090
又一可选的,所述N null个位置中第m+1个位置e null(m)满足以下公式:
Figure PCTCN2018123658-appb-000091
该可选的实现中,所述offset4和offset5的值可以是预先定义或者配置的,或者按照预定的规则确定。
一种可选的,offset4的值为-m,e null(m)≤r<e null(m+1);
进一步可选的,offset5的值为
Figure PCTCN2018123658-appb-000092
e null(m)≤r<e null(m+1)。
又一可选的,offset4的值满足,offset4=-N null,其中N null满足
Figure PCTCN2018123658-appb-000093
进一步可选的:
当c∈{0,1,2,…,N null-1}时,offset5的值满足offset5=(-c-1),其中,r∈{1,…(R-1)};和/或
当c∈{N null,N null+1,…,C-1}时,offset5的值满足offset5=-N null,其中,r∈{0,1,…(R-1)}。
第二种可选的设计中,根据至少一个移位值确定所述M个REG绑定。
该可选的设计中,所述至少一个移位值包括上述n shift。所述n shift的值可以通过至少一个参数确定,所述参数可以为偏移参数A、偏移参数Z以及标识信息n id中的至少一个。可选的,A的取值是隐式获得的,或者说,A的取值是根据预设的规则确定,例如预设的规则是标准或协议规定的,或者是网络设备通知给终端设备的。进一步可选的,A∈{1,2,3,4,6},A为{1,2,3,4,6}的子集。
第一种实现中,所述n shift的值可以通过所述偏移参数A或Z确定,所述偏移参数A和Z通过参数P确定。进一步可选的,所述A的值等于P的值,所述Z的值为(N symbol/L)·A,所述N symbol为控制资源集合在时域占用的OFDM符号的数量,L为控制资源集合中的资源单元组绑定的大小。
可选的,所述P为带宽区域BWP内虚拟物理资源块映射的频域粒度,所述频域粒度可以由高层信令配置;所述A或Z通过所述带宽区域BWP内虚拟物理资源块映射的频域粒度确定。进一步可选的,P的取值集合可以为{2,4}。若所述频域粒度是2个PRB,则A=2;若所述频域粒度为4个PRB,则A=4。通过该可选的方式,数据信道资源映射的粒度与控制信道资源映射的偏移量匹配,降低了系统侧资源碎片的数量,提高了频谱利用率。
可选的,所述P为DMRS所在的时域OFDM符号的位置编号或索引,所述A或Z通过DMRS所在的时域OFDM符号的位置编号或索引确定。例如,DMRS在第4个OFDM符号上,则A=2,若DMRS在第3个OFDM符号上,则A=3。
可选的,所述P为控制资源集合配置的REG绑定对应资源的频域RB数量,所述A或Z通过控制资源集合配置的REG绑定对应资源的频域RB数量确定。进一步,P的取值集合为{2,3,6}。
例如,第一控制资源集合在时域上占用2个OFDM符号,REG bundle的大小为2,REG bundle在频域上占用的RB数量为1,第一控制资源集合中的CCE交织映射到资源单元组;第二控制资源集合在时域上占用1个OFDM符号,REG bundle大小为6,REG bundle在频域上占用的RB数量为6,第二控制资源集合中的CCE非交织映射到资源单元组。在所述第一控制资源集合与所述第二控制资源集合在时频资源上部分或全部重叠的情况下,所述第一控制资源集合内CCE交织映射到REG时,终端设备获取偏移参数的值等于6,即所述第一控制资源集合配置的REG绑定对应资源的频域RB数量。这种实现方式,可以使得第一控制资源集合中CCE到REG bundle的交织映射在频域上以6个RB粒度进行移位,降低了交织和非交织映射的控制资源集合之间控制信道资源的冲突概率;
又如,第一控制资源集合在时域上占用2个OFDM符号,REG bundle的大小为2,REG bundle在频域上占用的RB数量为1,第一控制资源集合中的CCE交织映射到资源单元组;第二控制资源集合在时域上占用2个OFDM符号,REG bundle大小为6,REG bundle在频域上占用的RB数量为3,第二控制资源集合中的CCE非交织映射到资源单元组。所述第一控制资源集合与所述第二控制资源集合在时频资源上部分或全部重叠的情况下,所述第一控制资源集合内CCE交织映射到REG时,终端设备获取偏移参数的值等于3;实现所述第一控制资源集合中CCE交织映射的REG bundle在频域上以3个RB粒度进行移位,降低了交织和非交织映射的控制资源集合之间控制信道资源的冲突概率。
再如,第一控制资源集合在时域上占用2个OFDM符号,REG bundle的大小为2, REG bundle在频域上占用的RB数量为1,第一控制资源集合中的CCE交织映射到资源单元组;第二控制资源集合在时域上占用3个OFDM符号,REG bundle大小为6,REG bundle在频域上占用的RB数量为2,第二控制资源集合中的CCE非交织映射到资源单元组。所述第一控制资源集合与所述第二控制资源集合在时频资源上部分或全部重叠;在这种情况下,所述第一控制资源集合内CCE交织映射到REG时,终端设备获取偏移参数的值等于2;实现所述第一控制资源集合中CCE交织映射的REG bundle在频域上以2个RB粒度进行移位,降低了交织和非交织映射的控制资源集合之间控制信道资源的冲突概率。
第二种实现中,所述n shift的值可以通过所述标识信息n id确定。所述标识信息可以为小区标识
Figure PCTCN2018123658-appb-000094
或者为通过高层信令配置的参数。例如,所述
Figure PCTCN2018123658-appb-000095
是网络设备通过同步信号和/或广播信道获取的,所述
Figure PCTCN2018123658-appb-000096
用于所述控制资源集合的下行控制信息传输。又如,所述参数可以为通过高层信令配置的参数;可选的,所述参数的范围属于{0,1,...,274}。
第三种实现中,所述n shift的值可以通过偏移参数A和标识信息n id确定,或者通过偏移参数Z以及标识信息n id确定。
可选的,n shift的值满足
Figure PCTCN2018123658-appb-000097
或者,
Figure PCTCN2018123658-appb-000098
或者,n shiftmod(A)=0。
可选的,n shift的值满足
Figure PCTCN2018123658-appb-000099
或者,
Figure PCTCN2018123658-appb-000100
可选的,n shift的值满足
Figure PCTCN2018123658-appb-000101
或者,
Figure PCTCN2018123658-appb-000102
或者,n shiftmod(Z)=0。
可选的,n shift的值满足n shift=A·(N symbol/L)·n id,或者,n shift=Z·n id
该第三种实现中,所述A属于{2,4}、{2,3,6}、{1,2,4}、{1,2,3,6}、{1,2,3,4,6}或者{1},所述Z属于{2,4}、{1,2,4}、{2,3,6}、{1,2,3,6}或者{1},所述Z、A以及n id的解释参见第一和第二种实现。
第三种可选的设计中,结合上述第一和第二种可选的设计确定所述M个REG绑定。所述第二种可选的设计中的移位值包括的n shift,可以直接应用于第一种可选的设计。
第四种可选的设计中,所述网络设备和终端设备确定所述控制资源集合中第j+1个控制信道单元CCE中的第i+1个REG绑定的索引为f(x),所述x的值等于(6j/L+i),所述f(x)的值满足f(x)=(rC+c+n shift)mod(C·R),或者,f(x)=(rC+c+n shift)mod B,并且x∈{0,1,2,3,…,C·R-1},针对所述x的取值集合,f(x)的取值集合为B个互不相同且小于B的位置。
当所述f(x)的值满足f(x)=(rC+c+n shift)mod(C·R)时,所述CCE中的REG绑定的编号(逻辑上的索引)x按行写入矩阵,x∈{0,1,2,3,…,C·R-1},矩阵的输出为B个互不相同且小于B的REG绑定的位置或索引。矩阵映射过程中,若针对某一输入参数x, 得到的值大于或者等于B,则矩阵不输出所述值,而是针对下一个输入的参数继续计算,直到矩阵输出B个互不相同且小于B的位置。
以图4所述的矩阵为例,具体参数参见针对图4的阐述。CORESET内共包括8个CCE,编号为{0,1,2,3,4,5,6,7};CCE 0对应的REG绑定为{f(0)},CCE 1对应的REG绑定为{f(1)},CCE 2对应的REG绑定为{f(2)},CCE 3对应的REG绑定为{f(3)},CCE 4对应的REG绑定为{f(4)},CCE 5对应的REG绑定为{f(5)},CCE 6对应的REG绑定为{f(6)},CCE 7对应的REG绑定为{f(7)}。即,B=8,C·R=12。在N null=(C·R-B)不为0的情况下,存在N null个空元位置。若f(x)满足f(x)=(rC+c+n shift)mod(C·R),x的范围为{0,1,2,…,11},相应的REG绑定位置确定如下。
具体的,f(x=0)=0,原对应于f(x=4)的位置为8,等于B,忽略或者不输出,则对应于f(x=4)的位置输出顺序上应对应f(x=5)的值,即10,大于B,忽略或者不输出,继续计算直到f(x=6)=1。则对应于f(x=4)的位置输出顺序上应对应f(x=6)的值,即1。由于x作为输入参数,输入范围大于原输入范围,依次计算,得到的8个互不相同且小于8个输出{0,2,4,6,3,1,3,5,7}。
当f(x)的值满足f(x)=(rC+c+n shift)modB时,所述CCE中的REG绑定的编号(逻辑上的索引)x按行写入矩阵,x∈{0,1,2,3,…,C·R-1},矩阵的输出为B个互不相同且小于B的REG绑定的位置或索引。矩阵映射过程中,若针对某一输入参数x,得到的值与先前输入的参数对应的值相同,则矩阵不输出所述重复的值,而是针对下一个输入的编参数继续计算,直到矩阵输出B个互不相同且小于B的位置。
以图4所述的矩阵为例,具体参数参见针对图4的阐述。CORESET内共包括8个CCE,编号为{0,1,2,3,4,5,6,7};CCE 0对应的REG绑定为{f(0)},CCE 1对应的REG绑定为{f(1)},CCE 2对应的REG绑定为{f(2)},CCE 3对应的REG绑定为{f(3)},CCE 4对应的REG绑定为{f(4)},CCE 5对应的REG绑定为{f(5)},CCE 6对应的REG绑定为{f(6)},CCE 7对应的REG绑定为{f(7)}。即,B=8,C·R=12。在N null=(C·R-B)不为0的情况下,存在N null个空元位置。若f(x)满足f(x)=(rC+c+n shift)modB,x的范围为{0,1,2,…,11},相应的REG绑定位置确定如下。
具体的,f(x=0)=0,原对应于f(x=4)的位置也为0,产生重复,则对应于f(x=4)的位置输出顺序上应对应f(x=5)的值,即2,同样与f(x=1)的值重复。则对应于f(x=4)的位置输出顺序上应对应f(x=6)的值,即1。由于x作为输入参数,输入范围大于原输入范围,依次计算,得到的8个互不相同且小于8个输出{0,2,4,6,3,1,3,5,7}。
在可选的设计中,所述控制资源集合由B个资源单元组绑定组成;所述B的值小于或者等于(C·R)。在通过矩阵进行CCE到REG绑定的交织映射时,所述CCE中的REG绑定的编号(逻辑上的索引)按行写入矩阵,并按列读出映射后的物理REG绑定的索引。在B小于(C·R)时,空元的数量为N null=(C·R-B),空元的位置由如下可选的方式:
可选的,空元位于最后一列的后N null个行。
可选的,空元位于最后一列的前N null个行;
可选的,空元位于最后一列的下述行位置的行编号满足:
Figure PCTCN2018123658-appb-000103
当R=6时,N null为1-5中的一个,例如,当N null为1时,行编号为5;当N null为4时,行编号为1、2、4、5,具体参见图9。
可选的,空元位于最后一行的下述列位置的列编号满足:
Figure PCTCN2018123658-appb-000104
可选的,空元位于最后一列的下述行位置的行编号满足
Figure PCTCN2018123658-appb-000105
m∈{0,1,...,N null-1};
可选的,空元位于最后一行的下述列位置的列编号满足
Figure PCTCN2018123658-appb-000106
m∈{0,1,...,N null-1};
所述行位置为矩阵中的行按升序编号下,对应的行编号;
例如,行编号为0,则在矩阵中的行位置为矩阵中以上至下的顺序下的第1行;
行编号为1,则在矩阵中的行位置为矩阵中以上至下的顺序下的第2行;
行编号为2,则在矩阵中的行位置为矩阵中以上至下的顺序下的第3行。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如网络设备、终端设备等为了实现上述功能,其包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
下面基于图3中终端设备的可能的结构进行进一步解释。终端设备能够执行本发明实施例任一种方法,该终端设备至少可以包括:收发器301以及处理器304(这里上位表述为处理器,可以代表调制解调器处理器304本身,或者调制解调器304和应用处理器302的集成)。可选的,还可以包括存储器等图3以及关于图3的阐述中的其他部件。这里收发器301可以由独立的接收器和发送器组成,单独执行相应的接收和发送功能,也可以是集成了接收和发送功能的收发器。这里不做进一步限定。结构上,图3中的收发器301可以拆分为接收器301A和发射器301B。这里,由于终端设备只是作为一种可选的主体的示例性说明,接下来以无线装置为主体进行说明,所述无线装置可以为终端设备所包括的一个单元、芯片或者部件,或者终端设备本身。
所述无线装置,包括处理器304和接收器301A,其中:
所述处理器304确定控制资源集合中M个资源单元组绑定;
所述处理器304在所述M个资源单元组绑定对应的资源上检测控制信道,所述M大于或者等于1。
可选的,所述接收器301A用于接收所述控制信道。
可选的,所述装置还包括发射器301B。
一种可选的设计中,所述处理器根据至少一个偏移值和/或移位值确定所述M个资源单 元组绑定,所述至少一个偏移值和/或移位值根据
Figure PCTCN2018123658-appb-000107
的值确定;
所述B的值小于或者等于
Figure PCTCN2018123658-appb-000108
所述R为所述处理器或终端设备获取的交织参数。
可选的,所述至少一个偏移值是根据
Figure PCTCN2018123658-appb-000109
的值,以及行编号r和列编号c中的至少一个确定的。
一种可选的设计中,所述至少一个偏移值包括offset1、offset2、offset3、offset4以及offset5中的至少一个;所述处理单元确定所述控制资源集合中第j+1个控制信道单元中的第i+1个资源单元组绑定的索引为f(x),所述x的值等于(6j/L+i),所述L为资源单元组绑定的大小;
所述f(x)的值满足以下公式中的一个:
f(x)=g(x+offset1);
f(x)=(rC+c+n shift)mod B,x=cR+r-offset1;
f(x)=(h(x)-offset2)mod B,或者,f(x)=h(x)-offset2;
Figure PCTCN2018123658-appb-000110
f(x)=(h(x)+offset3)mod B,或者,f(x)=h(x)+offset3;
Figure PCTCN2018123658-appb-000111
f(x)=(r·C+c+n shift+offset4)mod B,cR+r+offset5= x
其中,g(z)=h(z)mod B,或者,g(z)=h(z),x、z、offset1、offset2、offset3、offset4以及offset5为整数。
一种可选的设计中,所述offset2=max{,0r-(R-N null)};或者,offset2=max{0,(xmodR)-(R-N null)}。
一种可选的设计中,所述
Figure PCTCN2018123658-appb-000112
一种可选的设计中,所述offset3=min{0,(R-N null-r)},或者,offset3=min{0,(R-N null)-(x mod R)}。
一种可选的设计中,所述
Figure PCTCN2018123658-appb-000113
一种可选的设计中,N null个位置中第m+1个位置e null(m)满足以下公式:
Figure PCTCN2018123658-appb-000114
m∈{1,2,...N null};或者,
Figure PCTCN2018123658-appb-000115
m∈{0,1,2,...N null-1}。
可选的,offset4的值为-m,e null(m)≤r<e null(m+1)。
可选的,offset5的值为
Figure PCTCN2018123658-appb-000116
e null(m)≤r<e null(m+1)。
一种可选的设计中,所述处理器根据至少一个移位值确定所述M个资源单元组绑定。所述至少一个移位值包括上述n shift。所述n shift的值可以通过至少一个参数确定,所述参数可以为偏移参数A、偏移参数Z以及标识信息n id中的至少一个。
可选的,所述n shift的值可以通过所述偏移参数A或Z确定,所述偏移参数A和Z通过参数P确定。进一步可选的,所述A的值等于P的值,所述Z的值为(N symbol/L)·A,所述N symbol为控制资源集合在时域占用的OFDM符号的数量。
可选的,所述n shift的值可以通过所述标识信息n id确定。所述标识信息可以为小区标识
Figure PCTCN2018123658-appb-000117
或者为通过高层信令配置的参数。
可选的,所述n shift的值可以通过偏移参数A和标识信息n id确定,或者通过偏移参数Z以及标识信息n id确定。
例如,n shift的值满足
Figure PCTCN2018123658-appb-000118
或者,
Figure PCTCN2018123658-appb-000119
或者,n shiftmod(A)=0。
又如,n shift的值满足
Figure PCTCN2018123658-appb-000120
或者,
Figure PCTCN2018123658-appb-000121
又如,n shift的值满足
Figure PCTCN2018123658-appb-000122
或者,
Figure PCTCN2018123658-appb-000123
或者,n shiftmod(Z)=0。
再如,n shift的值满足n shift=A·(N symbol/L)·n id,或者,n shift=Z·n id
一种可选的设计中,所述处理器确定所述控制资源集合中第j+1个控制信道单元CCE中的第i+1个REG绑定的索引为f(x),所述x的值等于(6j/L+i),所述f(x)的值满足f(x)=(rC+c+n shift)mod(C·R),或者,f(x)=(rC+c+n shift)mod B,并且x∈{0,1,2,3,…,C·R-1},f(x)的取值集合为B个互不相同且小于B的索引或位置。
需要说明的是,上述无线装置执行的通信方法的具体实施方式可参见本发明实施例和提供的通信方法的描述。本发明实施例的终端设备与图5对应的通信方法基于同一构思, 其带来的技术效果与上述通信方法相同。本发明实施例中无线装置所包括的处理器和接收器的具体功能以及其中所涉及的任何特征、术语和实现细节与图5对应的方法实施例中的终端设备的功能相对应。具体内容可分别参见本发明图5对应的方法实施例中的叙述,此处不再赘述。
需要说明的是,在上述实施例中,无线装置可以全部或部分地通过软件、硬件、固件或者其任一组合来实现。
对于所述无线装置的结构,另一种可选的方式为,上述实施例中的相应的部件可以是由相应的硬件实现,也可以由相应的硬件执行相应的软件完成,例如,前述的接收器301A,可以是具有执行前述接收功能的硬件,例如集成收发功能的收发器或者仅实现接收功能的接收器,也可以是能够执行相应计算机程序从而完成前述功能的一般处理器或者其他硬件设备,还可以是执行相应功能的软件模块或者功能单元,例如接收单元;又如前述的处理器304,可以是具有执行所述处理器功能的硬件,例如特定功能的处理器,或者一般处理器,也可以是能够执行相应计算机程序从而完成前述功能的其他硬件设备,还可以是还可以是执行相应功能的软件模块或者功能单元,例如处理单元;再如,前述的发射器301B,可以是具有执行前述发送功能的硬件,例如集成收发功能的收发器,或者仅实现发射功能的发射器,也可以是能够执行相应计算机程序从而完成前述功能的一般处理器或者其他硬件设备,还可以是执行相应功能的软件模块或者功能单元,例如发射单元。可选的,还可以包括存储单元。具体参见图10。
下面基于图2中网络设备的可能的结构进行进一步的解释。该网络设备能够执行本发明实施例任一种方法。该网络设备至少可以包括:控制器或处理器201(下文以处理器201为例进行说明)以及收发器202。可选的,还可以包括存储器等图2以及关于图2的阐述中的其他部件。这里收发器202可以由独立的接收器和发送器组成,单独执行相应的接收和发送功能,也可以是集成了接收和发送功能的收发器。这里不做进一步限定。结构上,图2中的收发器202可以拆分为接收器202A和发射器202B。这里,由于网络设备只是作为一种可选的主体的示例性说明,接下来以无线装置为主体进行说明,所述无线装置可以为网络设备所包括的一个单元、芯片或者部件,或者网络设备本身。
所述无线装置,包括处理器201和发射器202B,其中:
所述处理器201确定控制资源集合中M个资源单元组绑定;
所述发射器202B在所述M个资源单元组绑定对应的资源上发送控制信道,所述M大于或者等于1。可选的,所述无线装置还包括接收器202A。
所述处理器201根据至少一个偏移值和/或移位值确定所述M个资源单元组绑定,所述至少一个偏移值和/或移位值根据
Figure PCTCN2018123658-appb-000124
的值确定;
所述B的值小于或者等于
Figure PCTCN2018123658-appb-000125
所述R为所述处理单元或终端设备获取的交织参数。
可选的,所述至少一个偏移值是根据
Figure PCTCN2018123658-appb-000126
的值,以及行编号r和列编号c中的至少一个确定的。
一种可选的设计中,所述至少一个偏移值包括offset1、offset2、offset3、offset4以及offset5中的至少一个;
所述处理器确定所述控制资源集合中第j+1个控制信道单元中的第i+1个资源单元组绑定的索引为f(x),所述x的值等于(6j/L+i),所述L为资源单元组绑定的大小;
所述f(x)的值满足以下公式中的一个:
f(x)=g(x+offset1);
f(x)=(rC+c+n shift)mod B,x=cR+r-offset1;
f(x)=(h(x)-offset2)mod B,或者,f(x)=h(x)-offset2;
Figure PCTCN2018123658-appb-000127
f(x)=(h(x)+offset3)mod B,或者,f(x)=h(x)+offset3;
Figure PCTCN2018123658-appb-000128
f(x)=(r·C+c+n shift+offset4)mod B,cR+r+offset5=x。
其中,g(z)=h(z)mod B,或者,g(z)=h(z),x、z、offset1、offset2、offset3、offset4以及offset5为整数。
一种可选的设计中,所述处理器201还根据至少一个移位值确定所述M个资源单元组绑定。所述至少一个移位值包括上述n shift。所述n shift的值可以通过至少一个参数确定,所述参数可以为偏移参数A、偏移参数Z以及标识信息n id中的至少一个。
需要说明的是,上述无线装置执行的通信方法的具体实施方式可参见本发明实施例提供的通信方法的描述。本发明实施例中网络设备与图5对应的通信方法基于同一构思,其带来的技术效果与上述控制资源获取方法相同。本发明实施例中无线装置所包括的处理器和发射器的具体功能以及其中所涉及的任何特征、术语和实现细节与图5对应的方法实施例中的网络设备的功能相对应。具体内容可参见本发明图5对应的方法实施例中的叙述,此处不再赘述。
需要说明的是,在上述实施例中,无线装置可以全部或部分地通过软件、硬件、固件或者其任一组合来实现。
对于所述无线装置的结构,另一种可选的方式为,上述实施例中的相应的部件可以是由相应的硬件实现,也可以由相应的硬件执行相应的软件完成,例如,前述的发射器202B,可以是具有执行前述发送功能的硬件,例如集成收发功能的收发器或者仅实现接收功能的发射器,也可以是能够执行相应计算机程序从而完成前述功能的一般处理器或者其他硬件设备,还可以是执行相应功能的软件模块或者功能单元,例如发射单元;又如前述的处理器201,可以是具有执行所述处理器功能的硬件,例如特定功能的处理器,或者一般处理器,也可以是能够执行相应计算机程序从而完成前述功能的其他硬件设备,还可以是还可以是执行相应功能的软件模块或者功能单元,例如处理单元;再如,前述的接收器202A,可以是具有执行前述接收功能的硬件,例如集成收发功能的收发器,或者仅实现接收功能的接收器,也可以是能够执行相应计算机程序从而完成前述功能的一般处理器或者其他硬件设备,还可以是执行相应功能的软件模块或者功能单元,例如接收单元。可选的,还可以包括存储单元。具体参见图10。
可以理解的是,附图仅仅示出了无线装置的简化设计。在实际应用中,无线装置可以包括任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等。
本发明实施例还提供一种通信系统,其包括执行本发明上述实施例所提到的至少一个网络设备以及至少一个终端设备。
本发明实施例还提供一种装置(例如,集成电路、无线设备、电路模块等)用于实现上述通信方法。实现本文描述的功率跟踪器和/或供电发生器的装置可以是自立设备或者可以是较大设备的一部分。设备可以是(i)自立的IC;(ii)具有一个或多个1C的集合,其可包括用于存储数据和/或指令的存储器IC;(iii)RFIC,诸如RF接收机或RF发射机/接收机;(iv)ASIC,诸如移动站调制解调器;(v)可嵌入在其他设备内的模块;(vi)接收机、蜂窝电话、无线设备、手持机、或者移动单元;(vii)其他等等。
本发明实施例提供的方法和装置,可以应用于终端设备或网络设备(可以统称为无线设备)。该终端设备或网络设备或无线设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包括浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本发明实施例中,本发明实施例并不限定方法的执行主体的具体结构,只要能够通过运行记录有本发明实施例的方法的代码的程序,以根据本发明实施例的传输信号的方法进行通信即可,例如,本发明实施例的无线通信的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。
应理解,在本发明实施例的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端设备确定控制资源集合中M个资源单元组绑定;
    所述终端设备在所述M个资源单元组绑定对应的资源上检测控制信道,所述M大于或者等于1。
  2. 根据权利要求1所述的方法,其特征在于:
    所述控制资源集合由B个资源单元组绑定组成;
    所述终端设备确定控制资源集合中M个资源单元组绑定,包括:
    所述终端设备根据至少一个偏移值和/或移位值确定所述M个资源单元组绑定,所述至少一个偏移值和/或所述移位值是根据
    Figure PCTCN2018123658-appb-100001
    的值确定的;
    所述B的值小于或者等于
    Figure PCTCN2018123658-appb-100002
    所述R为所述终端设备获取的交织参数。
  3. 根据权利要求2所述的方法,其特征在于:
    所述至少一个偏移值包括offset1、offset2、offset3和offset6中的至少一个;
    所述终端设备根据至少一个偏移值确定所述M个资源单元组绑定,包括:
    所述终端设备确定所述控制资源集合中第j+1个控制信道单元中的第i+1个资源单元组绑定的索引为f(x),所述x的值等于(6j/L+i),所述L为资源单元组绑定的大小;
    所述f(x)的值满足以下公式中的一个:
    f(x)=g(x+offset1);
    f(x)=(h(x)-offset2)mod B,或者,f(x)=h(x)-offset2;
    f(x)=(h(x)+offset3)mod B,或者,f(x)=h(x)+offset3;
    其中,g(z)=h(z)mod B,或者,g(z)=h(z),x、z、offset1、offset2以及offset3为整数。
  4. 根据权利要求3所述的方法,其特征在于:
    所述offset1=n,且a n≤x<a n+1,所述n∈{0,1,...N null-1};
    其中,
    Figure PCTCN2018123658-appb-100003
    所述N null=C·R-B,所述
    Figure PCTCN2018123658-appb-100004
  5. 根据权利要求3所述的方法,其特征在于:
    所述offset2=max{0,r-(R-N null)};或者
    所述
    Figure PCTCN2018123658-appb-100005
    其中,所述N null=(C·R-B),所述
    Figure PCTCN2018123658-appb-100006
    所述r∈{0,1,…(R-1)},c∈{0,1,…(C-1)}。
  6. 根据权利要求3所述的方法,其特征在于:
    所述offset3=min{0,(R-N null-r)};或者
    所述
    Figure PCTCN2018123658-appb-100007
    其中,N null=(C·R-B),
    Figure PCTCN2018123658-appb-100008
    r∈{0,1,…(R-1)},c∈{0,1,…(C-1)}。
  7. 根据权利要求3-6任一项所述的方法,其特征在于:
    所述h(x)的值满足:h(x)=u(x)+n shift
    所述u(x)的值等于(r·C+c);其中,x=cR+r;
    所述n shift的值等于A·n id·(N symbol/L),所述A为所述终端设备获取的偏移参数,所述n id为所述终端设备获取的标识信息,所述N symbol为所述控制资源集合时域上占用的符号数量。
  8. 根据权利要求3-6任一项所述的方法,其特征在于:
    所述h(x)的值满足:h(x)=u(k);
    所述u(k)的值等于(r·C+c),所述k的值满足k=(x+n shift)mod(B),或者,k=(x-n shift)mod(B),或者x=(k+n shift)mod(B),或者x=(k-n shift)mod(B),并且,c和r的值满足:k=cR+r,或者,k=cR+r+offset6;
    其中,所述n shift为移位值。
  9. 根据权利要求2所述的方法,其特征在于,
    所述至少一个偏移值包括offset4和offset5;
    所述终端设备根据至少一个偏移值确定所述M个资源单元组绑定,包括:
    所述终端设备确定所述控制资源集合中第j+1个控制信道单元中的第i+1个资源单元组绑定的索引为f(x),所述x的值等于(6j/L+i),所述L为资源单元组绑定的大小;
    所述f(x)的值满足以下公式:
    f(x)=(r·C+c+n shift+offset4)mod B,其中:cR+r+offset5=x,所述
    Figure PCTCN2018123658-appb-100009
  10. 根据权利要求1、2、3或9所述的方法,其特征在于:
    所述终端设备确定控制资源集合中M个资源单元组资源单元组绑定,包括:
    所述终端设备通过一矩阵获取所述M个资源单元组绑定,所述矩阵还包括行位置满足以下公式的N null个资源单元组绑定,或者N null个空元:
    Figure PCTCN2018123658-appb-100010
    或者
    Figure PCTCN2018123658-appb-100011
    其中,N null=(C·R-B),所述
    Figure PCTCN2018123658-appb-100012
    所述B为所述控制资源集合中资源单元组绑定的数量,所述R为所述终端设备获取的交织参数。
  11. 根据权利要求1-6、9、10任一项所述的方法,其特征在于:
    所述终端设备确定控制资源集合中的M个资源单元组绑定,包括:
    所述终端设备还根据至少一个移位值确定所述M个资源单元组绑定,所述至少一个移位值是根据所述终端设备获取的偏移参数以及标识信息确定的。
  12. 一种无线装置,包括处理器以及接收器,其特征在于:
    所述处理器用于确定控制资源集合中M个资源单元组绑定;
    所述处理器还用于在所述M个资源单元组绑定对应的资源上检测控制信道,所述M大于或者等于1。
  13. 根据权利要求12所述的无线装置,其特征在于:
    所述控制资源集合由B个资源单元组资源单元组绑定组成;
    所述处理器根据至少一个偏移值和/或移位值确定所述M个资源单元组绑定,所述至少一个偏移值和/或移位值是根据
    Figure PCTCN2018123658-appb-100013
    的值确定的;
    所述B的值小于或者等于
    Figure PCTCN2018123658-appb-100014
    所述R为所述处理器获取的交织参数。
  14. 根据权利要求13所述的无线装置,其特征在于:
    所述至少一个偏移值包括offset1、offset2、offset3和offset6中的至少一个;
    所述处理器确定所述控制资源集合中第j+1个控制信道单元中的第i+1个资源单元组绑定的索引为f(x),所述x的值等于(6j/L+i),所述L为资源单元组绑定的大小;
    所述f(x)的值满足以下公式中的一个:
    f(x)=g(x+offset1);
    f(x)=(h(x)-offset2)mod B,或者,f(x)=h(x)-offset2;
    f(x)=(h(x)+offset3)mod B,或者,f(x)=h(x)+offset3;
    其中,g(z)=h(z)mod B,或者,g(z)=h(z),x、z、offset1、offset2以及offset3为整数。
  15. 根据权利要求14所述的无线装置,其特征在于:
    所述offset1=n,且a n≤x<a n+1,所述n∈{0,1,...N null-1};
    其中,
    Figure PCTCN2018123658-appb-100015
    所述N null=C·R-B,所述
    Figure PCTCN2018123658-appb-100016
  16. 根据权利要求14所述的无线装置,其特征在于:
    所述offset2=max{0,r-(R-N null)};或者
    所述
    Figure PCTCN2018123658-appb-100017
    其中,所述N null=(C·R-B),所述
    Figure PCTCN2018123658-appb-100018
    所述r∈{0,1,…(R-1)},c∈{0,1,…(C-1)}。
  17. 根据权利要14所述的无线装置,其特征在于:
    所述offset3=min{0,(R-N null-r)};或者
    所述
    Figure PCTCN2018123658-appb-100019
    其中,所述N null=(C·R-B),所述
    Figure PCTCN2018123658-appb-100020
    所述r∈{0,1,…(R-1)},c∈{0,1,…(C-1)}。
  18. 根据权利要求14-17任一项所述的无线装置,其特征在于:
    所述h(x)的值满足:h(x)=u(x)+n shift
    所述u(x)的值等于(r·C+c);其中,x=cR+r;
    所述n shift的值等于A·n id·(N symbol/L),所述A为所述处理器获取的偏移参数,所述n id为所述处理器获取的标识信息,所述N symbol为所述控制资源集合时域上占用的符号数量。
  19. 根据权利要求14-17任一项所述的方法,其特征在于:
    所述h(x)的值满足:h(x)=u(k);
    所述u(k)的值等于(r·C+c),所述k的值满足k=(x+n shift)mod(B),或者,k=(x-n shift)mod(B),或者,x=(k+n shift)mod(B),或者,x=(k-n shift)mod(B),并且,c和r的值满足:k=cR+r,或者,k=cR+r+offset6;
    其中,所述n shift为移位值。
  20. 根据权利要13所述的无线装置,其特征在于,
    所述至少一个偏移值包括offset4和offset5;
    所述处理器确定所述控制资源集合中第j+1个控制信道单元中的第i+1个资源单元组绑定的索引为f(x),所述x的值等于(6j/L+i),所述L为资源单元组绑定的大小;
    所述f(x)的值满足以下公式:
    f(x)=(r·C+c+n shift+offset4)mod B,其中:cR+r+offset5=x,所述
    Figure PCTCN2018123658-appb-100021
  21. 根据权利要求12、13、14或20所述的无线装置,其特征在于:
    所述处理器通过一矩阵获取所述M个资源单元组绑定,所述矩阵还包括行位置满足以下公式的N null个资源单元组绑定,或N null个空元:
    Figure PCTCN2018123658-appb-100022
    或者
    Figure PCTCN2018123658-appb-100023
    其中,N null=(C·R-B),所述
    Figure PCTCN2018123658-appb-100024
    所述B为所述控制资源集合中资源单元组绑定的数量,所述R为所述处理器获取的交织参数。
  22. 根据权利要求12-17,20-21任一项所述的无线装置,其特征在于:
    所述处理器确定控制资源集合中的M个资源单元组绑定,包括:
    所述处理器还根据至少一个移位值确定所述M个资源单元组绑定,所述至少一个移位值是根据所述处理器获取的偏移参数以及标识信息确定的。
  23. 一种通信方法,其特征在于,所述方法包括:
    网络设备确定控制资源集合中M个资源单元组绑定;
    所述网络设备在所述M个资源单元组绑定对应的资源上发送控制信道,所述M大于或者等于1。
  24. 根据权利要求23所述的方法,其特征在于:
    所述控制资源集合由B个资源单元组绑定组成;
    所述网络设备确定控制资源集合中M个资源单元组绑定,包括:
    所述网络设备根据至少一个偏移值和/或移位值确定所述M个资源单元组绑定,所述至少一个偏移值和/或移位值是根据
    Figure PCTCN2018123658-appb-100025
    的值确定的;
    所述B的值小于或者等于
    Figure PCTCN2018123658-appb-100026
    所述R为所述网络设备确定的交织参数。
  25. 根据权利要求24所述的方法,其特征在于:
    所述至少一个偏移值包括offset1、offset2、offset3和offset6中的至少一个;
    所述网络设备根据至少一个偏移值确定所述M个资源单元组绑定,包括:
    所述网络设备确定所述控制资源集合中第j+1个控制信道单元中的第i+1个资源单元组绑定的索引为f(x),所述x的值等于(6j/L+i),所述L为资源单元组绑定的大小;
    所述f(x)的值满足以下公式中的一个:
    f(x)=g(x+offset1);
    f(x)=(h(x)-offset2)mod B,或者,f(x)=h(x)-offset2;
    f(x)=(h(x)+offset3)mod B,或者,f(x)=h(x)+offset3;
    其中,g(z)=h(z)mod B,或者,g(z)=h(z),x、z、offset1、offset2以及offset3为整数。
  26. 根据权利要求25所述的方法,其特征在于:
    所述offset1=n,且a n≤x<a n+1,所述n∈{0,1,...N null-1};
    其中,
    Figure PCTCN2018123658-appb-100027
    所述N null=C·R-B,所述
    Figure PCTCN2018123658-appb-100028
  27. 根据权利要求25所述的方法,其特征在于:
    所述offset2=max{0,r-(R-N null)};或者
    所述
    Figure PCTCN2018123658-appb-100029
    其中,所述N null=(C·R-B),所述
    Figure PCTCN2018123658-appb-100030
    所述r∈{0,1,…(R-1)},c∈{0,1,…(C-1)}。
  28. 根据权利要求25所述的方法,其特征在于:
    所述offset3=min{0,(R-N null-r)};或者
    所述
    Figure PCTCN2018123658-appb-100031
    其中,N null=(C·R-B),
    Figure PCTCN2018123658-appb-100032
    r∈{0,1,…(R-1)},c∈{0,1,…(C-1)}。
  29. 根据权利要求25-28任一项所述的方法,其特征在于:
    所述h(x)的值满足:h(x)=u(x)+n shift
    所述u(x)的值等于(r·C+c);其中,x=cR+r;
    所述n shift的值等于A·n id·(N symbol/L),所述A为所述网络设备确定的偏移参数,所述n id为所述网络设备确定的标识信息,所述N symbol为所述控制资源集合时域上占用的符号数量。
  30. 根据权利要求25-28任一项所述的方法,其特征在于:
    所述h(x)的值满足:h(x)=u(k);
    所述u(k)的值等于(r·C+c),所述k的值满足k=(x+n shift)mod(B),或者,k=(x-n shift)mod(B),或者x=(k+n shift)mod(B),或者x=(k-n shift)mod(B),并且,c和r的值满足:k=cR+r,或者,k=cR+r+offset6;
    其中,所述n shift为移位值。
  31. 根据权利要24所述的方法,其特征在于,
    所述至少一个偏移值包括offset4和offset5;
    所述网络设备根据至少一个偏移值确定所述M个资源单元组绑定,包括:
    所述网络设备确定所述控制资源集合中第j+1个控制信道单元中的第i+1个资源单元组绑定的索引为f(x),所述x的值等于(6j/L+i),所述L为资源单元组绑定的大小;
    所述f(x)的值满足以下公式:
    f(x)=(r·C+c+n shift+offset4)mod B,其中:cR+r+offset5=x,所述
    Figure PCTCN2018123658-appb-100033
  32. 根据权利要23、24、25或31所述的方法,其特征在于:
    所述网络设备确定控制资源集合中M个资源单元组资源单元组绑定,包括:
    所述网络设备通过一矩阵获取所述M个资源单元组绑定,所述矩阵还包括行位置满足以下公式的N null个资源单元组绑定,或N null个空元:
    Figure PCTCN2018123658-appb-100034
    或者
    Figure PCTCN2018123658-appb-100035
    其中,N null=(C·R-B),所述
    Figure PCTCN2018123658-appb-100036
    所述B为所述控制资源集合中资源单元组绑定的数量,所述R为所述网络设备确定的交织参数。
  33. 根据权利要求23-28、31以及32任一项所述的方法,其特征在于:
    所述网络设备确定控制资源集合中的M个资源单元组绑定,包括:
    所述网络设备还根据至少一个移位值确定所述M个资源单元组绑定,所述至少一个移位值是根据所述网络设备确定的偏移参数以及标识信息确定的。
  34. 一种装置,其包括一个或多个处理器,以及存储器,所述存储器上存储有计算机程序,其特征在于:
    当所述计算机程序被所述一个或多个处理器执行时,使得所述装置实现权利要求1-11、23-33任一项所述的方法。
  35. 一种存储介质,其上存储有计算机程序,其特征在于:
    当所述计算机程序被一个或多个处理器执行时,实现权利要求1-11、23-33任一项所述的方法。
PCT/CN2018/123658 2017-12-29 2018-12-25 一种通信方法、装置以及系统 WO2019129014A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22168158.8A EP4113884A1 (en) 2017-12-29 2018-12-25 Communication method, apparatus and system
EP18896599.0A EP3716710B1 (en) 2017-12-29 2018-12-25 Communication method, device and system
US16/915,838 US11412520B2 (en) 2017-12-29 2020-06-29 Communication method, apparatus, and system
US17/868,517 US20220377744A1 (en) 2017-12-29 2022-07-19 Communication method, apparatus, and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711489452.0 2017-12-29
CN201711489452 2017-12-29
CN201810060582.0 2018-01-22
CN201810060582.0A CN109995492B (zh) 2017-12-29 2018-01-22 一种通信方法、装置以及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/915,838 Continuation US11412520B2 (en) 2017-12-29 2020-06-29 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019129014A1 true WO2019129014A1 (zh) 2019-07-04

Family

ID=67066613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123658 WO2019129014A1 (zh) 2017-12-29 2018-12-25 一种通信方法、装置以及系统

Country Status (4)

Country Link
US (1) US20220377744A1 (zh)
EP (2) EP3716710B1 (zh)
CN (1) CN115529116A (zh)
WO (1) WO2019129014A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021048581A1 (en) * 2019-09-09 2021-03-18 Orope France Sarl A method for control channel detection in wideband operation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385678B (zh) * 2018-12-29 2023-05-12 中兴通讯股份有限公司 一种实现光链路通道自协商的方法和装置
US11863359B1 (en) * 2021-05-11 2024-01-02 Amazon Technologies, Inc. Subcarrier pre-equalization technology for frequency selective fading characteristics of wireless channels
CN116436587B (zh) * 2023-06-14 2023-09-05 芯迈微半导体(上海)有限公司 控制信道的资源映射方法及装置和资源解映射方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594215A (zh) * 2008-05-26 2009-12-02 中兴通讯股份有限公司 控制信道单元数量确定方法及装置、控制信道管理方法
CN102665230A (zh) * 2012-04-23 2012-09-12 电信科学技术研究院 一种e-pdcch传输及盲检的方法及装置
CN102711253A (zh) * 2012-03-21 2012-10-03 电信科学技术研究院 E-pdcch的资源映射方法及装置
US20120281554A1 (en) * 2011-05-02 2012-11-08 Research In Motion Limited Methods and Systems of Wireless Communication with Remote Radio Heads
CN103202080A (zh) * 2012-07-26 2013-07-10 华为终端有限公司 控制信道传输方法及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312481A (zh) * 2012-03-13 2013-09-18 华为技术有限公司 信道搜索方法、设备和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594215A (zh) * 2008-05-26 2009-12-02 中兴通讯股份有限公司 控制信道单元数量确定方法及装置、控制信道管理方法
US20120281554A1 (en) * 2011-05-02 2012-11-08 Research In Motion Limited Methods and Systems of Wireless Communication with Remote Radio Heads
CN102711253A (zh) * 2012-03-21 2012-10-03 电信科学技术研究院 E-pdcch的资源映射方法及装置
CN102665230A (zh) * 2012-04-23 2012-09-12 电信科学技术研究院 一种e-pdcch传输及盲检的方法及装置
CN103202080A (zh) * 2012-07-26 2013-07-10 华为终端有限公司 控制信道传输方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3716710A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021048581A1 (en) * 2019-09-09 2021-03-18 Orope France Sarl A method for control channel detection in wideband operation

Also Published As

Publication number Publication date
EP4113884A1 (en) 2023-01-04
EP3716710A1 (en) 2020-09-30
EP3716710B1 (en) 2022-05-04
CN115529116A (zh) 2022-12-27
EP3716710A4 (en) 2021-01-06
US20220377744A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
CN108882376B (zh) 一种通信方法、装置以及系统
US11356219B2 (en) Resource allocation indication information communication method, apparatus and system
KR102332979B1 (ko) 통신 방법, 장치 및 시스템
CN111447048B (zh) 数据传输的方法、设备和系统
WO2019129014A1 (zh) 一种通信方法、装置以及系统
US11412520B2 (en) Communication method, apparatus, and system
EP3544347B1 (en) Method for transmitting information, network device and terminal device
EP3637653A1 (en) Data processing method and data processing device
US20220078760A1 (en) Communication method and terminal apparatus
CN110351017B (zh) 一种通信方法、装置以及系统
WO2020200014A1 (zh) 通信方法及装置
WO2019029014A1 (zh) 通信方法、终端设备和网络设备
US20210219288A1 (en) Data transmission method and apparatus
JP7027543B2 (ja) 情報送信方法及びデバイス
US11412532B2 (en) Method and device for determining whether data is damaged
WO2019183762A1 (zh) 天线端口指示方法及装置
CN116830708A (zh) 数据的传输方法及装置
CN114598427A (zh) 数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018896599

Country of ref document: EP

Effective date: 20200626