WO2019128942A1 - 用于矿产成分分析的加速器系统、用于矿产成分分析的系统及方法 - Google Patents
用于矿产成分分析的加速器系统、用于矿产成分分析的系统及方法 Download PDFInfo
- Publication number
- WO2019128942A1 WO2019128942A1 PCT/CN2018/123254 CN2018123254W WO2019128942A1 WO 2019128942 A1 WO2019128942 A1 WO 2019128942A1 CN 2018123254 W CN2018123254 W CN 2018123254W WO 2019128942 A1 WO2019128942 A1 WO 2019128942A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compartment
- component analysis
- mineral component
- shielding
- accelerator
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 45
- 229910052500 inorganic mineral Inorganic materials 0.000 title claims abstract description 41
- 239000011707 mineral Substances 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000007246 mechanism Effects 0.000 claims abstract description 94
- 238000010894 electron beam technology Methods 0.000 claims abstract description 26
- 239000002131 composite material Substances 0.000 claims abstract description 25
- 230000002285 radioactive effect Effects 0.000 claims abstract description 21
- 230000001133 acceleration Effects 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 17
- 238000001514 detection method Methods 0.000 claims description 13
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 230000005672 electromagnetic field Effects 0.000 claims description 4
- -1 polyethylene Polymers 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 239000013558 reference substance Substances 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000012423 maintenance Methods 0.000 description 14
- 238000001816 cooling Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 230000005855 radiation Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000001391 atomic fluorescence spectroscopy Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/09—Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/20—Metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/06—Electron sources; Electron guns
- H01J37/065—Construction of guns or parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32211—Means for coupling power to the plasma
- H01J37/32229—Waveguides
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G1/00—X-ray apparatus involving X-ray tubes; Circuits therefor
- H05G1/02—Constructional details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/16—Vessels
- H01J2235/165—Shielding arrangements
- H01J2235/166—Shielding arrangements against electromagnetic radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/02—Details
- H01J2237/026—Shields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/04—Means for controlling the discharge
- H01J2237/047—Changing particle velocity
- H01J2237/0473—Changing particle velocity accelerating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/248—Components associated with the control of the tube
- H01J2237/2485—Electric or electronic means
- H01J2237/2487—Electric or electronic means using digital signal processors
Definitions
- the present invention relates to radiation technology and, in particular, to an accelerator system for mineral component analysis, a system and method for mineral component analysis.
- an accelerator system for mineral component analysis comprising: an electron gun for generating an electron beam; and an accelerating tube for accelerating an electron beam emitted by the electron gun to a predetermined energy; a composite target for generating radioactive rays on the composite target after receiving electron beam bombardment; and a shielding mechanism for shielding the radioactive rays.
- the method further includes a microwave system for providing a microwave electromagnetic field to the acceleration tube to accelerate the electron beam to the predetermined energy.
- the predetermined energy of the electron beam after the acceleration tube is accelerated is 8.5 MeV-14 MeV, wherein the energy of the electron beam after the acceleration tube is accelerated is continuously adjustable.
- the radioactive rays generated by the composite target include X-rays.
- the shielding mechanism includes a first shielding layer and a second shielding layer
- the material of the first shielding layer is a lead material and a tungsten material
- the material of the second shielding layer is a boron-containing polyethylene material
- a system for mineral component analysis comprising the above-described accelerator system for mineral component analysis, further comprising:
- a detector for receiving the radioactive rays and generating ray data for subsequent analysis
- a conveying device for moving the sample to be tested between the front end of the composite target and the detector.
- an integral tank structure including a first tank, a second tank and a third tank arranged side by side;
- the detector and the conveying device are located in the first compartment;
- the composite target, the electron gun, the accelerating tube, and the shielding mechanism are located in a second compartment;
- the microwave system is located in the third compartment.
- a carrying device is further included, and the accelerating tube is fixed to the second cabin by a carrying device, and the carrying device includes a frame mechanism and a pulling mechanism.
- the accelerating tube is mounted to the frame mechanism
- the drawer mechanism is coupled to the frame mechanism and the frame mechanism is linearly moveable relative to the drawer mechanism.
- the first compartment, the second compartment, and the third compartment are respectively independent movable container compartment structures
- connection manner between the first cabin, the second cabin and the third cabin includes:
- the first compartment and the second compartment are positioned and installed by a sample conveying device
- the second compartment and the third compartment are positioned and mounted by a waveguide location in a microwave system.
- a method for analyzing a mineral component comprising: generating a radioactive ray of a predetermined energy by an accelerator; illuminating a reference substance and a sample containing the target element by the radioactive ray of the predetermined energy; acquiring by a detector First detection data from the sample and second detection data from the reference; determining the content of the target element in the sample by comparing the first detection data with the second detection data.
- FIG. 1 is a system block diagram of an accelerator system for mineral component analysis, according to an exemplary embodiment.
- FIG. 2 is a block diagram of an accelerator system pod structure for mineral component analysis, according to an exemplary embodiment.
- FIG. 3 is a schematic diagram of a water cooling system in an accelerator system for mineral component analysis, according to an exemplary embodiment.
- FIG. 4 is a perspective view of a drawer mechanism in an accelerator system for mineral component analysis, according to an exemplary embodiment.
- FIG. 5 is a front elevational view of a drawer mechanism in an accelerator system for mineral component analysis, according to an exemplary embodiment.
- FIG. 6 is a top plan view of a drawer mechanism in an accelerator system for mineral component analysis, according to an exemplary embodiment.
- FIG. 7 is a side view of a drawer mechanism in an accelerator system for mineral component analysis, according to an exemplary embodiment.
- FIG. 8 is a top plan view of a pod structure in an accelerator system for mineral component analysis, according to an exemplary embodiment.
- FIG. 9 is a cross-sectional view of a pod structure in an accelerator system for mineral component analysis, according to an exemplary embodiment.
- FIG. 10 is a flow chart of a method of mineral component analysis, according to another exemplary embodiment.
- the accelerator system 100 can include an electron gun 102, an accelerating tube 104, a composite target 106, a shielding mechanism 110, and a microwave system 114.
- the present application also provides a system for mineral component analysis comprising the above described accelerator system further comprising a transfer device 108 and a detector 112.
- the electron gun 102 is used to generate an electron beam.
- the electron gun 102 can be, for example, a conventional two-pole gun, or can be, for example, a grid gun power supply.
- the accelerator system 100 in the present application needs to control the beam load, so it is necessary to achieve the goal of energy switching by changing the injection voltage of the electron gun and the gun emission current.
- the design specifications of the grid gun power supply can be adjusted.
- the accelerating tube 104 is for accelerating the electron beam emitted by the electron gun 102 to a predetermined energy.
- the acceleration tube 104 has an electronic input port and a microwave feed inlet, and the electronic input port is coupled to the output end of the electron gun to receive the electron beam, and the microwave feed inlet is coupled to the output end of the microwave power source.
- the microwave power source generates microwaves and feeds the acceleration tube.
- the predetermined energy of the electron beam accelerated by the acceleration tube 104 is 8.5 MeV-14 MeV, wherein the energy of the electron beam after the acceleration of the acceleration tube 104 is continuously adjustable.
- the magnetic coupling structure is adopted between the lumens of the accelerating tube 104.
- the design with the opposite side coupling has a smaller lateral dimension and a more compact structure.
- the double-cycle standing wave acceleration structure is adopted.
- the overall length of the acceleration gun 104 is 1.2 m, and the pipe body is sleeve-cooled.
- the composite target 106 is configured to generate radioactive rays on the composite target 106 after receiving electron beam bombardment.
- the radioactive rays generated by the composite target 106 include X-rays.
- the scanning structure of the composite target 106 is divided into two sections, and the middle is separated by adding ceramics to facilitate the acquisition of the target stream.
- the current of the scanning magnet is controlled to adapt to different energies. Deflection demand.
- composite target 106 can, for example, employ a gold and copper composite target structure capable of producing a relatively large dose of X-rays.
- the composite target adopts water-cooling mode, and the three-way water cooling is formed by changing the composite target structure to achieve sufficient cooling of the target area to avoid damage to the target structure due to excessive temperature.
- the conveying device 108 is configured to move the sample to be tested between the front end of the composite target and the detector.
- a shielding mechanism 110 is used to shield the radioactive rays.
- the shielding mechanism includes a first shielding layer and a second shielding layer; wherein the material of the first shielding layer is a lead material and a tungsten material, and the material of the second shielding layer is a boron-containing polyethylene material. Due to the high X-ray energy, the shielding system includes shielding protection for both X-ray and neutron radiation. For X-rays, shielded with lead and tungsten, neutron protection is shielded with boron-containing polyethylene.
- the first shielding layer comprises an accelerating tube bracket, and the accelerating tube bracket fixes the accelerating tube, the transmission waveguide, the scanning box, the target and the scanning magnet together.
- the part in close contact with the accelerating tube is used as a primary shield and installed in the head bracket. Accelerate the tube coupler to the target, without primary shielding, and the bracket size is as small as possible.
- the bracket is fixed at the front end of the coupler and the second shielding layer, and the accelerating tube bracket carries the primary shielding, and after docking with the second shielding layer, an integral shielding system is formed. Ensure that the external environmental dose of the shield meets relevant local legal requirements.
- a detector 112 is used to receive the radioactive rays and generate ray data for subsequent analysis.
- a microwave system 114 is used to provide a microwave electromagnetic field to the accelerating tube to accelerate the electron beam to the predetermined energy.
- the microwave system 114 is a basic component of the electronic linear accelerator, including a high power microwave source and a microwave transmission system.
- the microwave power source is used to generate microwaves of different frequencies. Because the system requires higher dose output, the speed governing tube is used as the power source, the speed governing tube can obtain higher microwave input power, and is equipped with a low power microwave excitation source as the driving, and the microwave system 114 in the speed regulating tube. For example, a high power speed control tube can be used.
- the waveguide transmission system 114 is composed of various passive microwave components, and the main function is to feed the power outputted by the microwave source into the acceleration tube to excite the electromagnetic field required for accelerating the electrons; and provide a monitoring signal for the frequency and power of the system operation. .
- the accelerator system 100 further includes a control device (not shown) coupled to the microwave power source and the electron gun, and the microwave power source is controlled to generate microwaves of different frequencies such that the acceleration tube is in different resonant modes. Switching between them produces an electron beam of corresponding energy.
- a control device (not shown) coupled to the microwave power source and the electron gun, and the microwave power source is controlled to generate microwaves of different frequencies such that the acceleration tube is in different resonant modes. Switching between them produces an electron beam of corresponding energy.
- the accelerator system for mineral component analysis is capable of providing an electron beam of a predetermined energy, a predetermined energy level, and a predetermined ray size, and achieves high-pressure stable out-beam, high repetition frequency long-term operation.
- the design parameters of the implementation of the accelerator system 100 for mineral component analysis of the present invention are as follows:
- the energy index in the table is divided into three grades.
- the energy of 8.5MeV can be used for the identification of gold elements.
- the dose index of 16000cGy/min@1m can ensure the full activation of the sample in a short time, improve the working efficiency, and select the linear ray for the ray size. Instead of the traditional point source ray, the sample can be fully illuminated to improve the detection accuracy.
- the other two energy levels can be used for the identification of non-precious metal elements such as copper, tantalum and lead.
- FIG. 2 is a block diagram of a pod structure of an accelerator system for mineral component analysis, according to an exemplary embodiment.
- the overall cabin structure distribution is as shown in Fig. 2.
- Three container bays are arranged side by side from left to right, respectively being the first tank 202, the second tank 204 and the third tank 206.
- the detector 112 and the transmitting device 108 are located in the first compartment 202;
- the composite target 106, the electron gun 102, the accelerating tube 104 and the shielding mechanism 110 are located in the second compartment 204;
- the microwave system 114 is located in the third bay 206.
- the acceleration tube 104 is fixed to the second compartment 204 by a carrying device.
- the carrying device includes a frame mechanism 10 and a pulling mechanism 20.
- the frame mechanism 10 is used to mount the accelerating tube 104.
- the drawer mechanism 20 is coupled to the frame mechanism 10 and the frame mechanism 10 is movable relative to the drawer mechanism 20.
- the acceleration tube 104 is mounted to the frame mechanism 10; the drawing mechanism 20 is coupled to the frame mechanism 10, and the frame mechanism 10 is linearly movable relative to the drawing mechanism 20.
- first compartment 202, the second compartment 204 and the third compartment 206 are respectively independent movable container compartment structures; and the first compartment 202, the second compartment 204 and the third compartment 206 are respectively independent movable container compartment structures; and the first compartment 202, the second compartment 204 and the third The manner of connection between the compartments 206 includes the first compartment 202 and the second compartment 204 being positioned and mounted by the sample transport device 108; the second compartment 204 and the third compartment 206 are positioned and mounted by the waveguide locations in the microwave system 114.
- the second compartment 204 can be, for example, an accelerator head compartment.
- 1 is an acceleration tube main body
- 2 and 3 are primary shielding and secondary shielding structures, wherein the lateral passage is a conveying sample passage.
- 4 is the speed governing tube, which is installed in the microwave head frame
- 5 is the solid state modulator
- 6 is the water cooling unit indoor unit
- the above three sub-system components are installed in the right side cabin
- the speed regulating tube outlet end passes the waveguide part.
- the leftmost compartment contains 8 transmission channels.
- 9 is the location of the detector, which is convenient for the sample to be detected quickly after irradiation.
- 10 is the automatic sample conveying device.
- On the right side of the three container bays is the water-cooled unit outdoor unit 7.
- the accelerator system is a non-movable system, and in general, the outer compartment of the accelerator system is a one-piece structure.
- the various components inside the accelerator system are respectively located in different movable container compartments, and the respective compartments are positioned and installed by components inside the accelerator system, so that the accelerator system is easy to disassemble.
- the mobile is installed so that the accelerator system can be disassembled at the site of the mine for on-site measurements at the mine site, which is suitable for more scenarios.
- FIG. 3 is a schematic diagram of a water cooling system for an accelerator system for mineral composition analysis, according to an exemplary embodiment.
- the water cooling system 300 is connected as shown in FIG. 3.
- the water cooling system 300 includes a flow divider 302, a four-terminal looper and a waveguide water load 312, a pulse transformer 314, a temperature control system 316, and a combiner 318.
- the components of the accelerator system 10 that require cooling or constant temperature of the constant temperature water cooling system include an accelerating tube 104, a composite target 106, an accelerating tube window 308, a microwave window (not shown), a speed regulating tube 310, and a four-terminal circulating current 312.
- FIGS. 4-7 are schematic views of a drawer mechanism in an accelerator system for mineral component analysis, according to an exemplary embodiment.
- the carrier device includes a frame mechanism 10 and a drawer mechanism 20.
- the frame mechanism 10 is used to mount the accelerating tube 104.
- the drawer mechanism 20 is coupled to the frame mechanism 10 and the frame mechanism 10 is movable relative to the drawer mechanism 20.
- the carrier device can be applied to an accelerator cabin structure.
- the accelerator cabin structure can include a cabin 30, a shielding mechanism 110, and the above-described pull-type bearing device for the accelerator.
- the cabin 30 has a working area A1.
- the shielding mechanism 110 is disposed in the work area A1, and the shielding mechanism 110 has a side opening door 41 facing the maintenance area A2.
- the frame mechanism 10 can be drawn out of the shielding mechanism 110 into the maintenance area A2.
- the frame mechanism 10 carrying the accelerator system 100 can be pulled, so that the accelerator system 100 located in the work area A1 moves relative to the drawing mechanism 20 to the maintenance area A2, which can be in the cabin. Complete commissioning or repair within 30.
- the present invention moves the accelerator system 100 in a pulling manner, greatly reducing the operation difficulty and improving the maintenance and debugging efficiency of the high-power accelerator system 100. Moreover, by utilizing the pull-type carrying device of the present invention, commissioning or maintenance can be completed inside the accelerator cabin structure, and therefore, it is not necessary to reserve a space volume outside the cabin body 30 of the accelerator system 100, thereby improving the internal space of the cabin 30. The utilization rate avoids waste of the external space of the cabin 30.
- the frame mechanism 10 may include a main frame 11 and at least one fixed support base 12.
- the fixed support base 12 is fixed to the upper side of the main frame 11, and the fixed support base 12 is used for supporting and The accelerator system 100 is fixed.
- the main frame 11 may include an upper support frame 111, a lower support frame 112, and a column 113 connected between the upper support frame 111 and the lower support frame 112.
- the accelerator system 100 includes an acceleration tube 104 and a target protection assembly 120.
- One end of the target protection assembly 120 is coupled to one end of the acceleration tube 104.
- the frame mechanism 10 may further include a shielding mechanism 13 detachably coupled to the upper support frame 111 and protruding from the other end of the upper support frame 111, and the shielding mechanism 13 can cover the other end of the target protection assembly 120.
- the shielding mechanism 13 can include a cover body 131 and a connecting portion 132.
- the connecting portion 132 is protruded and fixed to the other end of the upper support frame 111, and the cover body 131 is detachably connected to the connecting portion 132.
- the outer material of the cover body 131 may be stainless steel, and the inner liner material may be lead.
- the shielding mechanism 13 When the actual ejection is performed, the shielding mechanism 13 is removed and the target protection assembly 120 is exposed. During the maintenance process, the accelerator system 100 connects the shielding mechanism 13 to the upper support frame 111 to cover one end of the target protection assembly 120.
- the shielding mechanism 13 is configured to provide radiation protection shielding protection when the beam is beamed, as well as isolation protection of the activated target after the shutdown, to prevent maintenance personnel from being irradiated.
- the pulling mechanism 20 may include a first rail 21, a second rail 22, and a third rail 23 that are continuously arranged along the longitudinal direction of the frame mechanism 10. At least a pair of rollers 14 are disposed below the frame mechanism 10, and the roller 14 The first rail 21, the second rail 22, and the third rail 23 can be rolled to drive the frame mechanism 10 to move linearly with respect to the drawer mechanism 20 in the longitudinal direction.
- the first track 21 is disposed in the working area A1
- the third track 23 is disposed in the maintenance area A2
- a part of the second track 22 is located in the working area A1
- the other part of the second track 22 is located in the maintenance area A2.
- the frame mechanism 10 is located in the shielding mechanism 110, the side opening door 41 of the shielding mechanism 110 is closed, and the second rail 22 is not installed.
- the side opening door 41 of the shielding mechanism 110 is opened, and the second rail 22 is mounted such that the second rail 22 straddles the work area A1 and the maintenance area A2, and with the first rail 21 and the third
- the rails 23 are continuously arranged in a straight line to constitute a complete rail type pulling mechanism 20, and the frame mechanism 10 is movable along the first rail 21, the second rail 22, and the third rail 23 to enter the maintenance area A2.
- the corresponding track can be disassembled or installed according to actual needs, the installation of the track is simple and fast, and the existing accelerator cabin structure is not required to be greatly modified. Therefore, the accelerator cabin structure of the present embodiment is excellent in operability and high in applicability.
- the number of tracks is not limited thereto, and may be one, two or three or more, and may be adjusted according to actual conditions.
- the arrangement of the rails is not limited thereto, and may be a curved arrangement.
- the manner of movement of the frame mechanism 10 is not limited to linear motion, and it may also be a curved motion.
- the shielding mechanism 110 may include a shielding cavity 42.
- the first rail 21 is disposed in alignment with the shielding cavity 42.
- the frame mechanism 10 can enter the working area A1 along the first track 21, and the target The guard assembly 120 enters the shield cavity 42. Therefore, the rail is not only used for the pull-out transmission, but also provides a registration function for the installation of the accelerating tube 104 and the target guard assembly 120, thereby improving the mounting efficiency and preventing the target from being damaged due to the misalignment of the target guard assembly 120.
- the first rail 21, the second rail 22, and the third rail 23 each include a pair of continuous and aligned guiding grooves 24, and the height of the guiding groove 24 is the same as the height of the roller 14.
- the distance between the pair of guiding grooves 24 is equal to the spacing of the pair of rollers 14.
- the pair of rollers 14 can slide in the guiding groove 24 to drive the frame mechanism 10 to move linearly with respect to the pulling mechanism 20, and the guiding groove 24 can The movement of the frame mechanism 10 serves as a guide and limit to prevent the frame mechanism 10 from deviating from the track.
- the frame mechanism 10 may further include a fixing portion 15 which is located at both ends of the main frame 11 and protrudes from the lower side of the main frame 11.
- the first rail 21 further includes a first base 211.
- the guide groove 24 of the first rail 21 is fixed to the first base 211.
- One end of the first base 211 is provided with a first limiting portion 212.
- the third rail 23 further includes a third base 231.
- the guide slot 24 of the third rail 23 is fixed to the third base 231.
- the second seat 231 is provided with a second limiting portion 232 away from the first rail 21.
- the two end fixing portions 15 of the frame mechanism 10 cooperate with the limiting portions at both ends of the drawing mechanism 20, and can define the maximum displacement amount of the frame mechanism 10 sliding on the drawing mechanism 20, and, in the extreme position,
- the fixing portion 15 is fixedly coupled to the corresponding limiting portion, so that the fastening of the frame mechanism 10 can be prevented, the shaking thereof can be prevented, and the accuracy and safety of the operation can be improved.
- the form of the drawer mechanism 20 is not limited to the form of a track, and any solution capable of achieving motion can be applied to the present invention, such as a conveyor belt, a hydraulic cylinder, or the like.
- the pulling mechanism may include a hydraulic cylinder, and the piston rod of the hydraulic cylinder is fixedly connected with the frame mechanism, and the piston rod can drive the frame mechanism to linearly move relative to the cylinder of the hydraulic cylinder during the expansion and contraction of the piston rod.
- the present invention moves the accelerator in a pulling manner, greatly reducing the operation difficulty and improving the maintenance and debugging efficiency of the high-power accelerator. Moreover, by utilizing the pull-type carrying device of the present invention, debugging or maintenance can be completed inside the accelerator cabin structure, so that it is not necessary to reserve a space volume outside the accelerator cabin, thereby improving the utilization of the internal space of the cabin and avoiding Waste of the outer space of the cabin.
- FIG. 10 is a flow chart of a method of mineral component analysis, according to another exemplary embodiment.
- a predetermined amount of radioactive rays are generated by an accelerator, the predetermined energy including 8.5 MeV-14 MeV.
- the reference substance and the sample containing the target element are irradiated by the predetermined energy of the radioactive rays.
- first detection data from the sample and second detection data from the reference are acquired by a detector.
- the content of the target element in the sample is further determined by comparing the first detection data with the second detection data.
- the analysis of the gold content of the sample to be tested can be performed quickly and accurately, and there is no radioactive residue.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- Plasma & Fusion (AREA)
- Particle Accelerators (AREA)
Abstract
一种用于矿产成分分析的加速器系统及其方法,该加速器系统(100)包括:电子枪(102),用于产生电子束;加速管(104),用于将所述电子枪(102)发出的电子束加速到预定能量;复合靶(106),用于接收电子束轰击之后在所述复合靶(106)上产生放射性射线;探测器(112),用于接收所述放射性射线,并生成射线数据以进行后续分析;传送装置(108),用于将待测样品在所述复合靶(106)的前端与探测器(112)之间进行位置移动;以及屏蔽机构(110),用于对所述放射性射线进行屏蔽。
Description
本发明涉及辐射技术,具体地,涉及一种用于矿产成分分析的加速器系统、用于矿产成分分析的系统及方法。
在现今的金矿选矿和探矿过程中最为关心的问题之一就是如何在保证准确度的情况下尽可能快速有效的分析出矿区中的金含量。传统的原子荧光光谱分析中,一份样品需要研磨溶解,使用多种化学药剂,并在特定高温下加热数小时等操作后才能得到金含量的分析结果。该过程历时长,操作复杂,且需要使用强酸等化学试剂。本发明利用了辐射技术来分析矿产成分,可以有效克服上述问题。
发明内容
根据本发明的一方面,提出一种用于矿产成分分析的加速器系统,该加速器系统包括:电子枪,用于产生电子束;加速管,用于将所述电子枪发出的电子束加速到预定能量;复合靶,用于接收电子束轰击之后在所述复合靶上产生放射性射线;以及屏蔽机构,用于对所述放射性射线进行屏蔽。
在本公开的一种示例性实施例中,还包括:微波系统,用于为所述加速管提供微波电磁场以将所述电子束加速到所述预定能量。
在本公开的一种示例性实施例中,其中,所述加速管加速后的电子束的预定能量为8.5MeV-14MeV,其中,加速管加速后的电子束的能量连续可调。
在本公开的一种示例性实施例中,其中,所述复合靶产生的放射性射线包括X射线。
在本公开的一种示例性实施例中,所述屏蔽机构包括第一屏蔽层与第二屏蔽层;
其中,所述第一屏蔽层的材料为铅材料和钨材料,所述第二屏蔽层的材料为含硼聚乙烯材料。
根据本发明的一方面,提供一种用于矿产成分分析的系统,其包括上述的用于矿产成分分析的加速器系统,还包括:
探测器,用于接收所述放射性射线,并生成射线数据以进行后续分析;以及
传送装置,用于将待测样品在所述复合靶的前端与探测器之间进行位置移动。
在本公开的一种示例性实施例中,还包括整体舱结构,其包括并排布置的第一舱、第二舱与第三舱;
所述探测器与所述传送装置位于第一舱;
所述复合靶、所述电子枪、所述加速管与所述屏蔽机构位于第二舱;以及
所述微波系统位于第三舱。
在本公开的一种示例性实施例中,还包括承载装置,所述加速管通过承载装置固定于所述第二舱,所述承载装置中包括框架机构与抽拉机构。
在本公开的一种示例性实施例中,所述加速管安装于所述框架机构;
所述抽拉机构与所述框架机构连接,且所述框架机构能够相对于所述抽拉机构进行线性运动。
在本公开的一种示例性实施例中,所述第一舱,所述第二舱以及所述第三舱分别为独立可移动集装箱舱结构;以及
所述第一舱,所述第二舱以及所述第三舱之间的连接方式包括:
所述第一舱与所述第二舱通过样品传送装置进行定位安装;
所述第二舱和所述第三舱通过微波系统中的波导位置进行定位安装。
根据本发明的一方面,提出一种矿产成分分析方法,该方法包括:通过加速器产生预定能量的放射性射线;通过所述预定能量的放射性射线照射参考物质与含有目标元素的样品;通过探测器获取来自所述样品的第一检测数据与来自所述参考物的第二检测数据;通过比较所述第一检测数据与所述第二检测数据进而确定所述目标元素在所述样品中的含 量。
通过参照附图详细描述其示例实施例,本发明的上述和其它目标、特征及优点将变得更加显而易见。
图1是根据一示例性实施例示出的一种用于矿产成分分析的加速器系统的系统框图。
图2是根据一示例性实施例示出的一种用于矿产成分分析的加速器系统舱体结构的框图。
图3是根据一示例性实施例示出的一种用于矿产成分分析的加速器系统中水冷系统的示意图。
图4是根据一示例性实施例示出的一种用于矿产成分分析的加速器系统中抽拉机构的立体图。
图5是根据一示例性实施例示出的一种用于矿产成分分析的加速器系统中抽拉机构的主视图。
图6是根据一示例性实施例示出的一种用于矿产成分分析的加速器系统中抽拉机构的俯视图。
图7是根据一示例性实施例示出的一种用于矿产成分分析的加速器系统中抽拉机构的侧视图。
图8是根据一示例性实施例示出的一种用于矿产成分分析的加速器系统中舱体结构的俯视图。
图9是根据一示例性实施例示出的一种用于矿产成分分析的加速器系统中舱体结构的剖视图。
图10是根据另一示例性实施例示出的一种矿产成分分析的方法的流程图。
现在将参考附图更全面地描述示例实施例。
图1是根据一示例性实施例示出的一种用于矿产成分分析的加速器系统的系统框图。加速器系统100可以包括:电子枪102、加速管104、 复合靶106、屏蔽机构110以及微波系统114。本申请还提供一种用于矿产成分分析的系统,其包括上述的加速器系统还包括传送装置108及探测器112。
电子枪102用于产生电子束。在本申请中,电子枪102可以例如为传统的二极枪,也可例如为栅控枪电源。
在本申请中的加速器系统100为了实现三档能量可切换的需求,需要对束流负载进行控制,因此需要通过改变电子枪的注入电压和枪发射电流来达到能量切换的目标。根据栅控电子枪的工作要求,可以调整栅控枪电源的设计指标。
加速管104用于将所述电子枪102发出的电子束加速到预定能量。加速管104具有电子输入端口和微波馈入口,所述电子输入端口与所述电子枪的输出端耦接,接收所述电子束,所述微波馈入口与所述微波功率源的输出端耦接,将所述微波功率源产生微波馈入所述加速管所述加速管104加速后的电子束的预定能量为8.5MeV-14MeV,其中,加速管104加速后的电子束的能量连续可调。在本申请中,加速管104的管腔间采用磁耦合结构,优选的,采用相对边耦合的设计横向尺寸更小,结构更加紧凑。采用双周期驻波加速结构,优选的,加速枪104整体长度为1.2m,管体采用套筒水冷。
复合靶106用于接收电子束轰击之后在所述复合靶106上产生放射性射线。复合靶106产生的放射性射线包括X射线。复合靶106扫描结构分为两段,中间通过增加陶瓷加以隔离,方便实现靶流的采集,为实现在不同能量下同样电子束宽度的需求,对扫描磁铁的电流进行控制,以适应不同能量的偏转需求。
在本申请中,复合靶106可例如,采用金和铜复合的靶结构,能够产生较大剂量的X射线。复合靶采用水冷方式,通过改变复合靶结构形成三路水冷,实现对靶区的充分冷却,避免由于温度过高对靶结构造成损坏。
传送装置108用于将待测样品在所述复合靶的前端与探测器之间进行位置移动。
屏蔽机构110用于对所述放射性射线进行屏蔽。所述屏蔽机构包括第 一屏蔽层与第二屏蔽层;其中,所述第一屏蔽层的材料为铅材料和钨材料,所述第二屏蔽层的材料为含硼聚乙烯材料。由于X射线能量较高,屏蔽系统包括对X射线和中子两种辐射的屏蔽保护。对于X射线,采用铅和钨进行屏蔽,中子防护采用含硼聚乙烯进行屏蔽。其中,第一屏蔽层包括加速管支架,加速管支架将加速管、传输波导、扫描盒、靶、扫描磁铁固定在一起。从加速管耦合波导到电子枪,与加速管紧密接触部分,做初级屏蔽,并安装在机头支架内。加速管耦合器至靶,不做初级屏蔽,支架尺寸尽可能小。支架在耦合器前端与第二屏蔽层固定,加速管支架携带初级屏蔽,与第二屏蔽层对接后,形成整体屏蔽系统。确保屏蔽外环境剂量满足当地相关法律要求。
探测器112用于接收所述放射性射线,并生成射线数据以进行后续分析。
微波系统114用于为所述加速管提供微波电磁场以将所述电子束加速到所述预定能量。微波系统114作为电子直线加速器整机的基本组成部分,包括高功率微波源及微波传输系统。微波功率源用以产生不同频率的微波。由于该系统需求较高的剂量输出,因此采用调速管作为功率源,调速管能够得到较高的微波输入功率,并配备有低功率的微波激励源作为驱动,微波系统114中调速管可例如采用大功率调速管。
波导传输系统114由各种无源微波元件组成,主要功能是将微波源输出的功率馈入到加速管中,用以激励加速电子所需求的电磁场;并且提供系统运行的频率和功率的监控讯号。
加速器系统100还包括控制装置(图中未示出),耦接到所述微波功率源和所述电子枪,控制所述微波功率源产生不同频率的微波,使得所述加速管在不同的谐振模式之间切换,产生相应能量的电子束。
根据本发明的用于矿产成分分析的加速器系统,能够提供预定能量,预定能量等级以及预定射线尺寸的电子束,并实现高压稳定出束、高重复频率长期运行。
本发明的用于矿产成分分析的加速器系统100的实现的设计参数如下:
三档能量束流技术指标
能量/MeV | 剂量率/cGy/min@1m | 射线尺寸/mm×mm |
8.5 | 16000 | 10×70 |
12 | 4000 | 10×70 |
14 | 2500 | 10×70 |
表中能量指标分为三档,8.5MeV档的能量能够用于金元素的识别,16000cGy/min@1m的剂量指标能够保证样品在短时间内充分活化,提高工作效率,射线尺寸选择线型射线而非传统的点源射线,能够对样品进行充分照射,提高检测精度。其他两档能量能够用于非贵重金属元素,例如:铜、锑、铅等元素的识别。
图2是根据一示例性实施例示出的一种用于矿产成分分析的加速器系统的舱体结构的框图。
整体舱结构分布如图2所示,从左向右并列分布三个集装箱舱,分别为第一舱202、第二舱204与第三舱206。优选的,所述探测器112与所述传送装置108位于第一舱202中;所述复合靶106、所述电子枪102、所述加速管104与所述屏蔽机构110位于第二舱204中;所述微波系统114位于第三舱206中。
其中,所述加速管104通过承载装置固定于所述第二舱204,如图4所示,所述承载装置中包括框架机构10与抽拉机构20。框架机构10用于安装加速管104。抽拉机构20与框架机构10连接,且框架机构10能够相对于抽拉机构20运动。
其中,所述加速管104安装于所述框架机构10;所述抽拉机构20与所述框架机构10连接,且所述框架机构10能够相对于所述抽拉机构20进行线性运动。
其中,所述第一舱202、所述第二舱204以及所述第三舱206分别为独立可移动集装箱舱结构;以及所述第一舱202、所述第二舱204以及所述第三舱206之间的连接方式包括:第一舱202与所述第二舱204通过样品传送装置108进行定位安装;第二舱204和第三舱206通过微波系统114中波导位置进行定位安装。
其中,第二舱204可例如为加速器机头舱,图2中①为加速管主体,②和③为初级屏蔽和二级屏蔽结构,其中横向通道为传送样品通道。图中④为调速管,安装在微波头机架内,⑤为固态调制器,⑥为水冷机组室内机,上述三个分系统组件安装在右侧舱中,调速管出口端通过波导件连接到中间舱的加速管,从而实现微波功率的馈入。最左侧的舱中包含⑧传送通道,图中⑨为探测器所在位置,方便样品在照射之后迅速进行探测,图中⑩为样品自动传送装置。在三个集装箱舱右侧为水冷机组室外机⑦。
在现有技术中,加速器系统为不可移动式的系统,一般情况下加速器系统的外舱为一体式结构。根据本发明的用于矿产成分分析的加速器系统,加速器系统内部的各个部件分别位于不同的可移动的集装箱舱中,各个舱之间通过加速器系统内部的部件进行定位安装,使得该加速器系统便于拆装移动,从而可以将该加速器系统在矿区现场进行拆装,以便在矿区进行现场测量,适用于更多场景的要求。
图3是根据一示例性实施例示出的一种用于矿产成分分析的加速器系统的水冷系统的示意图。水冷系统300连接如图3所示,水冷系统300包括:分流器302、四端环流器及波导水负载312、脉冲变压器314、温控系统316、以及汇流器318。
其中,加速器系统10中需要恒温水冷系统冷却或恒温的部件有加速管104、复合靶106、加速管窗308、微波窗(图中未示出)、调速管310、四端环流器312、三端负载(图中未示出)、聚焦线圈(图中未示出)等。
图4-图7是根据一示例性实施例示出的一种用于矿产成分分析的加速器系统中抽拉机构的示意图。
本实施例中,如图4至图7所示,承载装置中包括框架机构10和抽拉机构20。框架机构10用于安装加速管104。抽拉机构20与框架机构10连接,且框架机构10能够相对于抽拉机构20运动。
承载装置可应用于加速器舱体结构,如图8、9所示,加速器舱体结构可包括舱体30、屏蔽机构110及上述用于加速器的抽拉式承载装置,舱体30具有工作区A1和维修区A2,屏蔽机构110设置于工作区A1,屏蔽机构110具有朝向维修区A2的侧开门41,当侧开门41打开时,框 架机构10能够自屏蔽机构110内抽出进入维修区A2。
因此,需要对加速器系统100进行调试或维修时,可将拉动承载加速器系统100的框架机构10,使得位于工作区A1的加速器系统100相对于抽拉机构20运动至维修区A2,可在舱体30内完成调试或维修。
因此,与现有技术相比,本发明以抽拉方式移动加速器系统100,大幅减轻操作难度,提高大功率加速器系统100的维修调试效率。并且,通过利用本发明的抽拉式承载装置,在加速器舱体结构的内部即可完成调试或维修,因此,无需在加速器系统100舱体30外预留空间体积,从而提高舱体30内部空间的利用率,避免舱体30外部空间的浪费。
本实施例中,如图4、5所示,框架机构10可包括主框架11和至少一个固定支撑座12,固定支撑座12固定于主框架11的上侧,固定支撑座12用于支撑并固定加速器系统100。
本实施例中,主框架11可包括上支撑架111、下支撑架112和连接于上支撑架111与下支撑架112之间的立柱113,上支撑架111的一端与下支撑架112的一端沿纵向对齐,上支撑架111的另一端沿纵向突出于下支撑架112的另一端,固定支撑座12固定于上支撑架111。
本实施例中,加速器系统100包括加速管104和靶防护组件120,靶防护组件120的一端连接于加速管104的一端。框架机构10还可包括屏蔽机构13,屏蔽机构13可拆卸的连接于上支撑架111,并突出于上支撑架111的另一端,屏蔽机构13能够包覆靶防护组件120的另一端。
本实施例中,屏蔽机构13可包括罩体131和连接部132,连接部132突出的固定于上支撑架111的另一端,罩体131与连接部132可拆卸的连接。其中,罩体131的外侧材料可为不锈钢,内衬材料可为铅。
在实际出束时,屏蔽机构13被拆下,靶防护组件120外露。加速器系统100在维修过程中,将屏蔽机构13连接于上支撑架111,使其罩住靶防护组件120的一端。特别是对于产生X射线的加速器系统100来说,屏蔽机构13的设置可提供出束时的辐射防护屏蔽保护,以及停束之后对活化靶材的隔离防护,防止维修人员被辐射。
本实施例中,抽拉机构20可包括沿框架机构10的纵向连续布置的第 一轨道21、第二轨道22及第三轨道23,框架机构10的下方设有至少一对滚轮14,滚轮14能够在第一轨道21、第二轨道22及第三轨道23上滚动,从而带动框架机构10相对于抽拉机构20沿纵向线性运动。
其中,第一轨道21设置于工作区A1内,第三轨道23设置于维修区A2内,一部分第二轨道22位于工作区A1内,另一部分第二轨道22位于维修区A2内。
如图8所示,当加速器系统100处于工作状态时,框架机构10位于屏蔽机构110内,屏蔽机构110的侧开门41关闭,第二轨道22未安装。
当需要维修或调试加速器系统100时,将屏蔽机构110的侧开门41打开,安装第二轨道22,使得第二轨道22横跨工作区A1和维修区A2,并与第一轨道21和第三轨道23沿直线连续布置,从而构成完整的轨道式抽拉机构20,框架机构10能够沿着第一轨道21、第二轨道22及第三轨道23运动至进入维修区A2。
本实施例中,可根据实际需要拆卸或安装相应的轨道,轨道的安装简便、快捷,且无需对现有的加速器舱体结构进行大幅改动。因此,本实施例的加速器舱体结构的可操作性佳、适用性高。
应当理解,轨道的数量不限于此,可以为1个、2个或3个以上,可根据实际情况进行调整。并且,轨道的排布不限于此,也可为曲线排布,框架机构10的运动方式不限于线性运动,其也可为曲线运动。
本实施例中,如图8、9所示,屏蔽机构110可包括屏蔽腔42,第一轨道21与屏蔽腔42对齐设置,框架机构10能够沿着第一轨道21进入工作区A1,且靶防护组件120进入屏蔽腔42。因此,轨道不仅用于抽拉传送,还为加速管104和靶防护组件120的安装提供对位功能,从而提高安装效率,防止由于靶防护组件120安装错位导致靶材损坏。
本实施例中,如图4、7所示,第一轨道21、第二轨道22及第三轨道23均包括一对连续且对齐的导向槽24,导向槽24的高度与滚轮14的高度相同,该对导向槽24的间距等于该对滚轮14的间距,该对滚轮14能够在导向槽24内滑动,从而带动框架机构10相对于抽拉机构20沿纵向线性运动,且导向槽24能够对框架机构10的运动起到导向、限位的作 用,防止框架机构10偏离轨道。
本实施例中,如图4、7所示,框架机构10还可包括固定部15,其位于主框架11的两端,并突出于主框架11的下侧。
第一轨道21还包括第一座体211,第一轨道21的导向槽24固定于第一座体211上,第一座体211的一端设有第一限位部212,当框架机构10运动到第一位置时(图5中右端),主框架11的一端的固定部15被第一限位部212抵顶,并能够与第一限位部212固定连接。
第三轨道23还包括第三座体231,第三轨道23的导向槽24固定于第三座体231上,第三座体231的远离第一轨道21的一端设有第二限位部232,当框架机构10运动到第二位置时(图5中左端),主框架11的另一端的固定部15被第二限位部232抵顶,并能够与第二限位部232固定连接。
本实施例中,框架机构10的两端固定部15与抽拉机构20两端的限位部配合,能够限定框架机构10在抽拉机构20上滑动的最大位移量,并且,在极限位置时,固定部15与对应的限位部固定连接,从而能够实现框架机构10的紧固,防止其晃动,提高操作的准确性和安全性。
应当理解,抽拉机构20的形式不限于轨道形式,任意能够实现运动的方案均可适用于本发明,例如传送带、液压缸等。
具体的,抽拉机构可包括液压缸,液压缸的活塞杆与框架机构固定连接,活塞杆伸缩过程中能够带动框架机构相对于液压缸的缸体进行线性运动。
综上所述,与现有技术相比,本发明以抽拉方式移动加速器,大幅减轻操作难度,提高大功率加速器的维修调试效率。并且,通过利用本发明的抽拉式承载装置,在加速器舱体结构的内部即可完成调试或维修,因此,无需在加速器舱体外预留空间体积,从而提高舱体内部空间的利用率,避免舱体外部空间的浪费。
图10是根据另一示例性实施例示出的一种矿产成分分析的方法的流程图。
如图10所示,在S002中,通过加速器产生预定能量的放射性射线, 所述预定能量包括8.5MeV-14MeV。
在S004中,通过所述预定能量的放射性射线照射参考物质和含有目标元素的样品。
在S006中,通过探测器获取来自所述样品的第一检测数据与来自所述参考物的第二检测数据。
在S008中,通过比较所述第一检测数据与所述第二检测数据进而确定所述目标元素在所述样品中的含量。
根据本发明的矿产成分分析的方法,能够快速准确完成对待测样品金含量的分析,且无放射性残留。
以上具体地示出和描述了本发明的示例性实施例。应可理解的是,本发明不限于这里描述的详细结构、设置方式或实现方法;相反,本发明意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。
Claims (11)
- 一种用于矿产成分分析的加速器系统,其中,包括:电子枪,用于产生电子束;加速管,用于将所述电子枪发出的电子束加速到预定能量;复合靶,用于接收电子束以在所述复合靶上产生放射性射线;以及屏蔽机构,用于对所述放射性射线进行屏蔽。
- 如权利要求1所述的用于矿产成分分析的加速器系统,其中,还包括:微波系统,用于为所述加速管提供微波电磁场以将所述电子束加速到所述预定能量。
- 如权利要求1所述的用于矿产成分分析的加速器系统,其中,所述加速管加速后的电子束的预定能量为8.5MeV-14MeV,其中,加速管加速后的电子束的能量连续可调。
- 如权利要求1所述的用于矿产成分分析的加速器系统,其中,所述复合靶产生的放射性射线包括X射线。
- 如权利要求1所述的用于矿产成分分析的加速器系统,其中,所述屏蔽机构包括第一屏蔽层与第二屏蔽层;所述第一屏蔽层的材料为铅材料和钨材料,所述第二屏蔽层的材料为含硼聚乙烯材料。
- 一种用于矿产成分分析的系统,其包括如权利要求1至5所述的用于矿产成分分析的加速器系统,还包括:探测器,用于接收所述放射性射线,并生成射线数据以进行后续分析;以及传送装置,用于将待测样品在所述复合靶的前端与探测器之间进行位置移动。
- 如权利要求6所述的用于矿产成分分析的系统,其中,还包括整体舱结构,其包括并排布置的第一舱、第二舱与第三舱;所述探测器与所述传送装置位于第一舱;所述复合靶、所述电子枪、所述加速管与所述屏蔽机构位于第二舱; 以及所述微波系统位于第三舱。
- 如权利要求7所述的用于矿产成分分析的系统,其中,还包括承载装置,所述加速管通过承载装置固定于所述第二舱,所述承载装置中包括框架机构与抽拉机构。
- 如权利要求8所述的用于矿产成分分析的系统,其中,所述加速管安装于所述框架机构;所述抽拉机构与所述框架机构连接,且所述框架机构能够相对于所述抽拉机构进行线性运动。
- 如权利要求7所述的用于矿产成分分析的系统,其中,所述第一舱,所述第二舱以及所述第三舱分别为独立可移动集装箱舱结构;以及所述第一舱,所述第二舱以及所述第三舱之间的连接方式包括:所述第一舱与所述第二舱通过样品传送装置进行定位安装;所述第二舱和所述第三舱通过微波系统中的波导位置进行定位安装。
- 一种矿产成分分析的方法,包括:通过加速器产生预定能量的放射性射线;通过所述预定能量的放射性射线照射一参考物质和含有目标元素的样品;通过探测器获取来自所述样品的第一检测数据与来自所述参考物的第二检测数据;以及通过比较所述第一检测数据与所述第二检测数据进而确定所述目标元素在所述样品中的含量。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18894631.3A EP3734258A4 (en) | 2017-12-26 | 2018-12-24 | ACCELERATOR SYSTEM AND PROCESS FOR ANALYSIS OF MINERAL COMPONENTS |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711435413.2A CN107884425A (zh) | 2017-12-26 | 2017-12-26 | 用于矿产成分分析的系统及方法 |
CN201711435413.2 | 2017-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019128942A1 true WO2019128942A1 (zh) | 2019-07-04 |
Family
ID=61772628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/123254 WO2019128942A1 (zh) | 2017-12-26 | 2018-12-24 | 用于矿产成分分析的加速器系统、用于矿产成分分析的系统及方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10825643B2 (zh) |
EP (1) | EP3734258A4 (zh) |
CN (1) | CN107884425A (zh) |
AU (4) | AU2018102195A4 (zh) |
CA (1) | CA3028509C (zh) |
WO (1) | WO2019128942A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2730600C1 (ru) * | 2017-06-23 | 2020-08-24 | Крисос Корпорейшен Лимитед | Защитный экран для рентгеновской установки |
CN107884425A (zh) * | 2017-12-26 | 2018-04-06 | 同方威视技术股份有限公司 | 用于矿产成分分析的系统及方法 |
CN107979911B (zh) | 2017-12-26 | 2024-06-14 | 同方威视技术股份有限公司 | 用于加速器的抽拉式承载装置和加速器舱体结构 |
KR20230034340A (ko) * | 2020-07-06 | 2023-03-09 | 티에이이 테크놀로지스, 인크. | 빔 타겟 교환 및 휘발성 물체 보관을 위한 시스템, 디바이스 및 방법 |
CN112924485B (zh) * | 2021-01-25 | 2021-10-29 | 中国科学院地质与地球物理研究所 | 一种电子探针二次标样校正法测定尖晶石Fe3+/∑Fe的方法 |
CN114486945B (zh) * | 2022-01-10 | 2022-11-04 | 哈尔滨工业大学 | 一种辐射防护材料屏蔽性能的检测装置及其测试方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101349660A (zh) * | 2008-09-17 | 2009-01-21 | 丹东东方测控技术有限公司 | 一种在线矿物料铁品位分析检测方法 |
CN101788508A (zh) * | 2010-02-03 | 2010-07-28 | 北京矿冶研究总院 | 矿浆品位在线测量装置 |
CN103226111A (zh) * | 2012-01-31 | 2013-07-31 | X射线精密有限公司 | X射线检查装置 |
CN104717821A (zh) * | 2015-03-30 | 2015-06-17 | 同方威视技术股份有限公司 | 电子帘加速器安装结构 |
CN104865283A (zh) * | 2015-04-30 | 2015-08-26 | 中国科学院地质与地球物理研究所 | 一种对矿物进行无标样氩-氩定年的方法 |
CN105879246A (zh) * | 2016-05-31 | 2016-08-24 | 山东新华医疗器械股份有限公司 | 医用加速器高强度射束治疗装置及治疗方法 |
CN107884425A (zh) * | 2017-12-26 | 2018-04-06 | 同方威视技术股份有限公司 | 用于矿产成分分析的系统及方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5442678A (en) | 1990-09-05 | 1995-08-15 | Photoelectron Corporation | X-ray source with improved beam steering |
US5326970A (en) * | 1991-11-12 | 1994-07-05 | Bayless John R | Method and apparatus for logging media of a borehole |
US5401973A (en) * | 1992-12-04 | 1995-03-28 | Atomic Energy Of Canada Limited | Industrial material processing electron linear accelerator |
US6002734A (en) | 1997-07-22 | 1999-12-14 | Steinman; Don K. | Method and systems for gold assay in large ore samples |
US20050117683A1 (en) * | 2000-02-10 | 2005-06-02 | Andrey Mishin | Multiple energy x-ray source for security applications |
EP2229805B1 (en) * | 2007-12-21 | 2011-10-12 | Elekta AB (PUBL) | X-ray apparatus |
JP5193594B2 (ja) * | 2007-12-28 | 2013-05-08 | 東芝Itコントロールシステム株式会社 | X線検査装置 |
CN101349662B (zh) * | 2008-09-17 | 2010-12-08 | 丹东东方测控技术有限公司 | 一种便携式金属元素分析仪 |
JP5404143B2 (ja) * | 2009-04-07 | 2014-01-29 | 株式会社東芝 | 密閉容器の非破壊検査方法及び非破壊検査装置 |
JP5352335B2 (ja) | 2009-04-28 | 2013-11-27 | 株式会社日立ハイテクノロジーズ | 複合荷電粒子線装置 |
RU2452143C2 (ru) * | 2010-07-05 | 2012-05-27 | Демидова Елена Викторовна | Способ генерации тормозного излучения с поимпульсным переключением энергии и источник излучения для его осуществления |
US8541756B1 (en) * | 2012-05-08 | 2013-09-24 | Accuray Incorporated | Systems and methods for generating X-rays and neutrons using a single linear accelerator |
US9123519B2 (en) * | 2012-06-01 | 2015-09-01 | Rapiscan Systems, Inc. | Methods and systems for time-of-flight neutron interrogation for material discrimination |
US9326366B2 (en) * | 2013-03-14 | 2016-04-26 | The Board Of Trustees Of The Leland Stanford Junior University | Intra pulse multi-energy method and apparatus based on RF linac and X-ray source |
CN104244561A (zh) * | 2013-06-21 | 2014-12-24 | 同方威视技术股份有限公司 | 驻波电子直线加速器及集装箱/车辆检查系统 |
GB201322365D0 (en) * | 2013-12-18 | 2014-02-05 | Commw Scient Ind Res Org | Improved method for repid analysis of gold |
CN106132060A (zh) | 2016-08-31 | 2016-11-16 | 中广核达胜加速器技术有限公司 | 一种屏蔽体可拆卸的加速器 |
CN106908464A (zh) * | 2017-03-01 | 2017-06-30 | 四川新先达测控技术有限公司 | 煤矿分析系统及方法 |
CN106879156B (zh) | 2017-04-13 | 2024-02-02 | 北京华力兴科技发展有限责任公司 | 加速器位置调整机构及电子感应加速器屏蔽容器 |
CN207911115U (zh) | 2017-12-26 | 2018-09-25 | 同方威视技术股份有限公司 | 用于加速器的抽拉式承载装置和加速器舱体结构 |
CN107979911B (zh) | 2017-12-26 | 2024-06-14 | 同方威视技术股份有限公司 | 用于加速器的抽拉式承载装置和加速器舱体结构 |
-
2017
- 2017-12-26 CN CN201711435413.2A patent/CN107884425A/zh active Pending
-
2018
- 2018-12-21 CA CA3028509A patent/CA3028509C/en active Active
- 2018-12-24 AU AU2018102195A patent/AU2018102195A4/en active Active
- 2018-12-24 WO PCT/CN2018/123254 patent/WO2019128942A1/zh unknown
- 2018-12-24 US US16/231,672 patent/US10825643B2/en active Active
- 2018-12-24 AU AU2018286570A patent/AU2018286570A1/en active Pending
- 2018-12-24 EP EP18894631.3A patent/EP3734258A4/en active Pending
-
2020
- 2020-10-22 AU AU2020257130A patent/AU2020257130A1/en not_active Abandoned
-
2022
- 2022-10-06 AU AU2022246426A patent/AU2022246426B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101349660A (zh) * | 2008-09-17 | 2009-01-21 | 丹东东方测控技术有限公司 | 一种在线矿物料铁品位分析检测方法 |
CN101788508A (zh) * | 2010-02-03 | 2010-07-28 | 北京矿冶研究总院 | 矿浆品位在线测量装置 |
CN103226111A (zh) * | 2012-01-31 | 2013-07-31 | X射线精密有限公司 | X射线检查装置 |
CN104717821A (zh) * | 2015-03-30 | 2015-06-17 | 同方威视技术股份有限公司 | 电子帘加速器安装结构 |
CN104865283A (zh) * | 2015-04-30 | 2015-08-26 | 中国科学院地质与地球物理研究所 | 一种对矿物进行无标样氩-氩定年的方法 |
CN105879246A (zh) * | 2016-05-31 | 2016-08-24 | 山东新华医疗器械股份有限公司 | 医用加速器高强度射束治疗装置及治疗方法 |
CN107884425A (zh) * | 2017-12-26 | 2018-04-06 | 同方威视技术股份有限公司 | 用于矿产成分分析的系统及方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3734258A4 * |
Also Published As
Publication number | Publication date |
---|---|
AU2020257130A1 (en) | 2020-11-19 |
US20190198285A1 (en) | 2019-06-27 |
CA3028509A1 (en) | 2019-06-26 |
CA3028509C (en) | 2022-12-13 |
AU2022246426B2 (en) | 2024-10-24 |
US10825643B2 (en) | 2020-11-03 |
EP3734258A1 (en) | 2020-11-04 |
AU2018286570A1 (en) | 2019-07-11 |
AU2022246426A1 (en) | 2022-11-03 |
AU2018286570A2 (en) | 2020-11-19 |
CN107884425A (zh) | 2018-04-06 |
EP3734258A4 (en) | 2021-09-08 |
AU2018102195A4 (en) | 2021-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019128942A1 (zh) | 用于矿产成分分析的加速器系统、用于矿产成分分析的系统及方法 | |
Benedikt et al. | LHC Design Report, volume III, The LHC injector chain | |
EP2825000B1 (en) | Self-shielded vertical proton linear accelerator for proton-therapy | |
Kutsaev et al. | Compact X-Band electron linac for radiotherapy and security applications | |
Zavadtsev et al. | A dual-energy linac cargo inspection system | |
US11183354B2 (en) | Drawer-type carrying device for accelerator and cabin structure for accelerator | |
Tecker et al. | Experimental study of the effect of beam loading on RF breakdown rate in CLIC high-gradient accelerating structures | |
CN207816859U (zh) | 用于矿产成分分析的系统 | |
Mosnier et al. | Present status and developments of the linear IFMIF prototype accelerator (LIPAc) | |
CN109362169B (zh) | 一种电子加速器x射线转换靶的支承转换装置 | |
US8884256B2 (en) | Septum magnet and particle beam therapy system | |
Ermakov et al. | Linacs for industry, cargo inspection and medicine designed by Moscow University | |
Smith et al. | Status update on the low-energy demonstration accelerator (leda) | |
Cho | First year operation of the KOMAC | |
Cho | Beam Commissioning of 100-MeV KOMAC Linac | |
Sui et al. | Overview of Beam Instrumentation for the CADS Injector I Proton Linac | |
Lumpkin et al. | Mitigation of Emittance Dilution Due to Wakefields in Accelerator Cavities Using Advanced Diagnostics with Machine Learning Techniques | |
Mambelli et al. | GlideinWMS and IAM | |
Mosnier | Status of the IFMIF/EVEDA 9 MeV 125 mA deuteron linac | |
Bigelow et al. | Recent operation of the ORELA electron LINAC at ORNL for neutron crosssection research | |
Buki et al. | Research complex LINAC-300 upgrade project and the lines of nuclear research | |
Ipe | Radiological aspects of the SSRL 3 GeV injector | |
D’Auria et al. | Installation and commissioning of the 100 MeV preinjector Linac of the New Elettra Injector | |
Cappi et al. | GEB report on PSB consolidation | |
Lin | Three types of linacs for customs large container inspection application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18894631 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018894631 Country of ref document: EP Effective date: 20200727 |