WO2019128751A1 - 一种控制信道的检测方法、装置及系统 - Google Patents

一种控制信道的检测方法、装置及系统 Download PDF

Info

Publication number
WO2019128751A1
WO2019128751A1 PCT/CN2018/121396 CN2018121396W WO2019128751A1 WO 2019128751 A1 WO2019128751 A1 WO 2019128751A1 CN 2018121396 W CN2018121396 W CN 2018121396W WO 2019128751 A1 WO2019128751 A1 WO 2019128751A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
control area
beam recovery
configuration change
area
Prior art date
Application number
PCT/CN2018/121396
Other languages
English (en)
French (fr)
Inventor
陈艺戬
高波
鲁照华
张楠
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019128751A1 publication Critical patent/WO2019128751A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method, an apparatus, and a system for detecting a control channel.
  • a base station utilizes beamforming capabilities of multiple antennas and uses narrow beam transmission to effectively improve transmission efficiency.
  • narrow beam transmission is sensitive to user equipment (UE) mobility and beam link blocking, especially in high frequencies, where blocking is more serious and often causes beam link failure. Therefore, when the wireless channel generates a channel change due to the above reasons, the communication system needs to quickly switch and recover the beam link to provide a good user experience.
  • UE user equipment
  • the beam recovery technology mainly includes the following steps:
  • Beam monitoring mainly to perform beam failure judgment
  • Beam selection selecting a new beam for reconstructing the transmission link
  • Information reporting reporting beam recovery related information, such as terminal indication information, beam indication information, etc.
  • DCI detection DCI is detected on the control channel.
  • FIG. 1 is a schematic diagram of a control channel detection manner in the related art of the present disclosure.
  • a control channel detection mode of a terminal is: before a beam recovery occurs, a terminal detects a base station. The first control region is configured; during beam recovery, the terminal detects the second control region configured by the base station; after the beam recovery, the terminal detects the third control region configured by the base station.
  • control channel detection mode is a serial detection mode.
  • the problem of this detection mode is that only the process of performing control channel detection according to a control area configuration can be monitored in the same time window, resulting in low robustness. .
  • the embodiments of the present disclosure provide a method, an apparatus, and a system for detecting a control channel, so as to at least solve the technical problem that the control channel detection mode is a serial detection mode in the related art, resulting in low robustness.
  • a first aspect of the disclosure provides a method for detecting a control channel, where the method includes: reporting indication information of beam recovery;
  • the control channel is detected according to the configuration change signaling.
  • the M control areas include: at least one first control area and at least one second control area, wherein the first control area is a control area that needs to be detected before reporting the beam recovery indication information
  • the second control region is a control region for receiving a beam recovery response.
  • the first control area is detected outside the detection time window corresponding to the second control area, and if the configuration change signaling of the control area parameter is detected, the control channel is detected according to the configuration change signaling. .
  • the method further includes: ending the process of beam recovery.
  • the method further includes at least one of the following:
  • the second aspect of the disclosure provides a detection device for a control channel, including a reporting module and a detection module.
  • the reporting module is configured to report indication information of beam recovery
  • the detecting module is configured to detect M control areas after reporting the indication information, where M>1, M is an integer; and is further configured to detect a control area parameter in any one of the M control areas
  • the configuration change signaling the detecting module performs detection of the control channel according to the configuration change signaling.
  • the M control areas include: at least one first control area and at least one second control area, wherein the first control area is a control area that needs to be detected before reporting the beam recovery indication information
  • the second control region is a control region for receiving a beam recovery response.
  • the detecting module is further configured to detect the first control area outside the detection time window corresponding to the second control area, and if the configuration change signaling of the control area parameter is detected, change according to the configuration. Signaling performs detection of the control channel.
  • the apparatus further includes an end beam recovery module, where the end beam recovery module is configured to end beam recovery after detecting any configuration change signaling of the control region parameter in any one of the M control regions the process of.
  • any one of the M control areas detects the configuration change signaling of the control area parameter, it is also used for at least one of the following:
  • a third aspect of the present disclosure provides a detection system for a control channel, the system comprising the apparatus and receiver of any of the above.
  • a fourth aspect of the present disclosure provides a beam recovery exception processing method, the method comprising:
  • the beam recovery is interrupted when one of the following configuration changes exists:
  • the monitored object in the beam monitoring is configured to be changed
  • the beam selection reference signal configuration is changed
  • the resource configuration reported by the beam is changed.
  • the M control areas include: at least one first control area or at least one second control area, where the first control area is a control area that needs to be detected before reporting the beam recovery indication information, where the The second control region is a control region for receiving a beam recovery response.
  • the method further includes:
  • the configuration change is made based on the first control region and/or the second control region.
  • interrupting the beam recovery includes at least one of the following:
  • Terminating the detection of the second control region or the second control region is invalid
  • the method further comprises:
  • the re/continuous beam recovery includes at least one of the following:
  • a fifth aspect of the present disclosure provides a beam recovery exception processing apparatus, where the apparatus includes: a reporting module, a detecting module, and an exception processing module;
  • the reporting module is configured to report indication information of beam recovery
  • the detecting module is configured to detect one or more control regions of the M control regions, where M ⁇ 1, and M is an integer;
  • the exception handling module is configured to interrupt the beam recovery when one of the following configuration changes is present:
  • the monitored object in the beam monitoring is configured to be changed
  • the beam selection reference signal configuration is changed
  • the resource configuration reported by the beam is changed.
  • the M control areas include: at least one first control area or at least one second control area, where the first control area is a control area that needs to be detected before reporting the beam recovery indication information
  • the second control region is a control region for receiving a beam recovery response.
  • the detecting module is further configured to detect the first control area and/or the second control area before the reporting information of the beam recovery is reported;
  • the configuration change is made based on the first control region and/or the second control region.
  • the interrupting the beam recovery includes at least one of the following:
  • Terminating the detection of the second control region or the second control region is invalid
  • the method further includes a re/slave beam recovery module, where the abnormal combing module is further configured to restart/sequence beam recovery after interrupting the beam recovery;
  • the re/continuous beam recovery includes at least one of the following:
  • a sixth aspect of the present disclosure provides a beam recovery abnormality processing system, comprising the apparatus and the receiving end according to any of the above.
  • the detection of the control channel is performed according to the configuration change signaling, so that the robustness of the control channel detection can be improved, thereby reducing the probability of link failure in the communication system, and the indication information of the reported beam recovery is adopted by the present disclosure.
  • the process is more optimized, and the abnormal situation in the detection process of the control channel can be further solved, so that the process of the control channel detection is more optimized, and the user experience is improved.
  • FIG. 1 is a schematic diagram of a control channel detection mode in the related art of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for detecting a control channel according to Embodiment 1 of the present disclosure
  • FIG. 3 is a schematic diagram of a method for detecting a control channel according to Embodiment 2 of the present disclosure
  • FIG. 4 is a schematic diagram of a method for detecting a control channel according to Embodiment 3 of the present disclosure
  • FIG. 5 is a schematic structural diagram of a device for detecting a control channel according to Embodiment 4 of the present disclosure
  • FIG. 6 is a schematic flowchart of a beam recovery exception processing method according to Embodiment 6 of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a beam recovery abnormality processing apparatus according to Embodiment 7 of the present disclosure.
  • the 5G receiving end adopts a large-scale antenna array, and focuses the energy of the wireless signal by beamforming technology to form a directional beam (Beam), to ensure the final Obtaining sufficient signal gain, the beam generated by the large-scale antenna array usually needs to be narrowed.
  • the price is that the receiving end (base station) needs to use a large number of narrow beams to ensure that users in any direction in the cell can be effectively obtained. Coverage, ie the narrower the beam, the greater the signal gain.
  • narrow beam transmission is sensitive to user equipment (UE) mobility and beam link blocking, especially in high frequencies, where blocking is more serious and often causes beam link failure. Therefore, when the wireless channel generates a channel change due to the above reasons, the transmitting end (terminal) in the communication system needs to quickly switch and recover the beam link with the receiving end (base station) to provide a good user experience.
  • UE user equipment
  • the first embodiment provides a method for detecting a control channel, which is applied to a transmitting end (terminal).
  • terminal a transmitting end
  • Step S101 Reporting the indication information of the beam recovery.
  • the transmitting end (terminal) monitors the beam, and the monitoring process mainly determines the beam failure by using the reference signal. If the beam recovery is required, the transmitting end (terminal) reports the beam for the beam.
  • the indication information of the restoration which may be, for example, indication information of the transmitting end (terminal), beam indication information, and the like.
  • Step S102 After reporting the indication information, detecting M control areas, where M>1, M is an integer.
  • the transmitting end starts to detect the M control areas after the indication information is reported, where M>1 and M are integers, and M control areas can be configured according to the actual situation of beam recovery, for example: according to The three processes of beam recovery are configured with a first control area before beam recovery.
  • the first control area is generally configured by the receiving end (base station) through high layer signaling, and the CORESET(s) that needs to be detected during normal communication (control resources)
  • the collection may be one or more, and the resources included in each CORESET may be discontinuous in time and frequency, and the resources included in the multiple CORESETs may overlap; configuring a second control region during beam recovery,
  • the second control area is also generally configured by the receiving end (base station) through high-level signaling.
  • the CORESETs that need to be detected during beam recovery may be one or more, and the resources included in each CORESET may be discontinuous in time and frequency;
  • the third control region is generally also configured by the receiving end (base station) through high layer signaling, which is required for beam recovery.
  • Measured CORESETs it may be one or more resources may be contained within each CORESET on discontinuous frequency; however, not limited thereto.
  • the M control areas include: at least one first control area and at least one second control area, where the first control area is a control area that needs to be detected before the indication information of the beam recovery is reported.
  • the second control region is a control region for receiving a beam recovery response.
  • the detection of the M control areas includes at least two control areas, which may be a first control area and a second control area, where the first control area is a control that needs to be detected before the indication information of the beam recovery is reported.
  • the first control area is generally configured by the receiving end (base station) through high layer signaling, and the CORESET(s) (control resource set) that needs to be detected during normal communication may be one or more, and is included in each CORESET.
  • the resources may be discontinuous in time and frequency, and the resources included in the multiple CORESETs may overlap;
  • the second control area is a control area for receiving a beam recovery response, and the second control area is generally also configured by the receiving end (base station) through high layer signaling.
  • the CORESETs that need to be detected during beam recovery may be one or more, and the resources included in each CORESET may be discontinuous in time and frequency; before the beam recovery, the receiving end (base station) sends corresponding configuration signaling, when the beam After the failure, the transmitting end (terminal) selects a new beam and reports it to the receiving end (base station). After reporting the new beam indication information, the delay is extended.
  • the second control area is started to be detected in a few time slots.
  • the time periods in which the first control area and the second control area are respectively detected may be partially overlapped or all overlapped, but are not limited thereto.
  • Step S103 If the configuration change signaling of the control region parameter is detected in any one of the M control regions, the control channel is detected according to the configuration change signaling.
  • the configuration change signaling of the control area parameter is detected in any one of the control areas of the M control areas, and includes: first control area configuration change signaling, for example, the information of the configuration change signaling may be a configuration change.
  • a control area may be configured to change a beam of a first control area or a time-frequency resource location, etc., and according to the indication information in the configuration change signaling, the beam of the first control area is generally changed by using a Transmission State Indication. Information is not limited to this.
  • the transmitting end receives the control channel configuration change signaling in the first control area, and the transmitting end (terminal) performs the control channel detection according to the control channel configuration change signaling.
  • the configuration change signaling is a beam of the first control area, and the transmitting end (terminal) detects the first control area according to the new beam configuration, and the second control area fails, and the detection of the second control area may be ended.
  • the sender (terminal) can reset the timer and/or counter used for the beam recovery process.
  • the transmitting end (terminal) receives the control channel configuration change signaling in the second control area, and the transmitting end (terminal) performs the control channel detection according to the control channel configuration change signaling.
  • the configuration change signaling is a beam of the first control area, and the transmitting end (terminal) detects the first control area according to the new beam configuration, and the second control area fails, and the detection of the second control area may be ended.
  • the sender (terminal) can reset the timer and/or counter used for the beam recovery process.
  • the transmitting end (terminal) receives the control channel configuration change signaling in the first control area, and the transmitting end (terminal) performs the control channel detection according to the control channel configuration change signaling.
  • the configuration change signaling is the indication information of the new control area (the third control area), the sender (terminal) configuration change signaling detects the third control area, and the first and second control areas are invalid, and the Detection of one and second control regions.
  • the sender (terminal) can reset the timer and/or counter used for the beam recovery process.
  • the transmitting end (terminal) receives the control channel configuration change signaling in the second control region, and the transmitting end (terminal) performs the control channel detection according to the control channel configuration change signaling.
  • the configuration change signaling is the indication information of the new control area (the third control area), the sending end (terminal) configuration change signaling detects the third control area, the first and second control areas are invalid, and the sending end (terminal) can Ending the detection of the first and second control regions, the transmitting end (terminal) can reset the timer and/or counter for the beam recovery process.
  • the transmitting end terminal only configures to change the beam of the first control area
  • the third control area and the first control area are actually the same.
  • An embodiment of the present disclosure provides a method for detecting a control channel. After reporting the indication information, detecting M control regions, where M>1, M is an integer, if any one of the M control regions is controlled.
  • M is an integer
  • the control channel is detected according to the configuration change signaling, so that the robustness of the control channel detection can be improved, thereby reducing the probability of link failure in the communication system.
  • FIG. 3 is a schematic diagram of a method for detecting a control channel according to Embodiment 2 of the present disclosure.
  • M is 3, and a beam recovery is configured.
  • the first first control area, the first control area is generally configured by the receiving end (base station) through high layer signaling, and the CORESET(s) (control resource set) that needs to be detected during normal communication may be one or more, each The resources included in the CORESET may be discontinuous in time and frequency, and the resources included in the multiple CORESETs may overlap; the second control region in the beam recovery is configured, and the second control region is generally configured by the base station through the high layer signaling.
  • the CORESETs that need to be detected during beam recovery may be one or more, and the resources included in each CORESET may be discontinuous in time and frequency; before the beam recovery, the receiving end (base station) sends corresponding configuration signaling, when the beam After the failure, the transmitting end (terminal) selects a new beam and reports it to the receiving end (base station). After reporting the new beam indication information, delaying several time slots will start.
  • the base station is configured by the high-level signaling, and the CORESETs that need to be detected after the beam recovery may be one or more, and the resources included in each CORESET may be discontinuous in time and frequency; wherein the transmitting end (terminal) is detecting the first
  • the time of the control area is T1
  • the time for detecting the second control area is T2
  • the time for detecting the third control area is T3.
  • T1 and T2 are overlapped most of the time, that is, sent.
  • the terminal (terminal) simultaneously detects the first control region and the second control region during the time when T1 and T2 overlap.
  • the transmitting end detects the first control area in T1 and the second control area in T2, respectively, if any one of the first control area and the second control area is controlled within T1 time or T2 time.
  • the area configuration detects the configuration change signaling of the control area parameter, where the configuration change signaling includes: the first control area configuration change signaling, for example, the information of the configuration change signaling may be a configuration change first control area, or may be a configuration change
  • the beam of the first control area or the location of the time-frequency resource, etc., according to the indication information in the configuration change signaling, is generally implemented by using the Transmission State Indication information. This is limited.
  • the transmitting end receives the control channel configuration change signaling in the first control area, and the transmitting end (terminal) performs the control channel detection according to the control channel configuration change signaling.
  • the configuration change signaling is a beam of the first control area, and the transmitting end (terminal) detects the first control area according to the new beam configuration, and the second control area fails, and the detection of the second control area may be ended.
  • the sender (terminal) can reset the timer and/or counter used for the beam recovery process.
  • the transmitting end (terminal) receives the control channel configuration change signaling in the second control area, and the transmitting end (terminal) performs the control channel detection according to the control channel configuration change signaling.
  • the configuration change signaling is a beam of the first control area, and the transmitting end (terminal) detects the first control area according to the new beam configuration, and the second control area fails, and the detection of the second control area may be ended.
  • the sender (terminal) can reset the timer and/or counter used for the beam recovery process.
  • the transmitting end (terminal) receives the control channel configuration change signaling in the first control area, and the transmitting end (terminal) performs the control channel detection according to the control channel configuration change signaling.
  • the configuration change signaling is the indication information of the new control area (the third control area), the sender (terminal) configuration change signaling detects the third control area, and the first and second control areas are invalid, and the Detection of one and second control regions.
  • the sender (terminal) can reset the timer and/or counter used for the beam recovery process.
  • the transmitting end (terminal) receives the control channel configuration change signaling in the second control area, and the transmitting end (terminal) performs the control channel detection according to the control channel configuration change signaling.
  • the configuration change signaling is the indication information of the new control area (the third control area)
  • the sending end (terminal) configuration change signaling detects the third control area
  • the first and second control areas are invalid
  • the sending end (terminal) can Ending the detection of the first and second control regions, the transmitting end (terminal) can reset the timer and/or counter for the beam recovery process.
  • FIG. 4 is a schematic diagram of a method for detecting a control channel according to Embodiment 3 of the present disclosure.
  • M is 3, and a beam recovery is configured.
  • the first first control area, the first control area is generally configured by the receiving end (base station) through high layer signaling, and the CORESET(s) (control resource set) that needs to be detected during normal communication may be one or more, each The resources included in the CORESET may be discontinuous in time and frequency, and the resources included in the multiple CORESETs may overlap; the second control region in the beam recovery is configured, and the second control region is generally configured by the base station through the high layer signaling.
  • the CORESETs that need to be detected during beam recovery may be one or more, and the resources included in each CORESET may be discontinuous in time and frequency; a third control region after beam recovery is configured, and the third control region is also generally
  • the base station is configured by high-level signaling, and the CORESETs that need to be detected after beam recovery may be one or more, and the resources included in each CORESET may be Discontinuous in time-frequency; wherein, the time at which the transmitting end (terminal) detects the first control region is T1, the time window for detecting the second control region is T2, and the time for detecting the third control region is T3,
  • the T2 time window is a fixed time value, that is, the transmitting end (terminal) detects the second control area while detecting the first control area in the T2 time window.
  • the transmitting end (terminal) can detect the first control area to obtain the detection time window T2 corresponding to the second control area, if the reconfiguration information is not received in the second control area.
  • the configuration change signaling that is, when the transmitting end (terminal) detects the first control area outside the T2 time window, if the configuration change signaling of the control area parameter is detected, the control channel is detected according to the configuration change signaling. And believe that the beam recovery is successful.
  • the beam recovery process has a time window. If the beam recovery time window is exceeded, the control region configuration change information is still not received. After a period of time, the sender (terminal) determines that the link fails to initiate re-access, but before the re-access is initiated, the receiver (base station) can still detect the first control area to obtain configuration change information, if a configuration change is detected. The information is transmitted according to the reconfiguration signaling sent by the base station, and the beam recovery is successful. The transmitting end (terminal) temporarily does not trigger the re-access procedure corresponding to the radio link failure RLF. The value of the parameter used for radio link failure RLF judgment is generally modified.
  • the first, second, and third control areas in the foregoing embodiment are not necessarily in the time dimension, and the resources in the same control area are configured by using the same set of configuration signaling.
  • the control region may have a period, a slot offset, and a frequency band subband (BWP, bandwidth part)/communication carrier (CC, carrier) and other parameters.
  • BWP frequency band subband
  • CC communication carrier
  • the method further includes: ending the beam recovery process.
  • the transmitting end may end the beam recovery process after detecting any configuration change signaling of the control area parameter in any one of the M control areas.
  • the method further includes at least one of the following:
  • the transmitting end after the first control region or the second control region detects the configuration change signaling of the control region parameter, the transmitting end (terminal) also ends the beam recovery process, where the ending beam recovery process includes at least one of the following :
  • FIG. 5 is a schematic structural diagram of a device for detecting a control channel according to Embodiment 4 of the present disclosure. As shown in FIG. 5, the fourth embodiment provides a device for detecting a control channel, where the device includes: a reporting module 10, and a detecting module 20 ;
  • the reporting module 10 is configured to report indication information of beam recovery.
  • the detecting module 20 is configured to detect M control areas after reporting the indication information, where M>1, M is an integer; and is further configured to detect a control area parameter in any one of the M control areas.
  • the configuration change signaling the detection module 20 performs detection of the control channel according to the configuration change signaling.
  • the M control areas include: at least one first control area and at least one second control area, where the first control area is a control area that needs to be detected before the indication information of the beam recovery is reported.
  • the second control region is a control region for receiving a beam recovery response.
  • the detecting module 20 is further configured to detect the first control area outside the detection time window corresponding to the second control area, and if the configuration change signaling of the control area parameter is detected, according to the The configuration change signaling performs detection of a control channel.
  • the apparatus further includes an end beam recovery module 30, and the end beam recovery module 30 is configured to end after the configuration change signaling of the control area parameter is detected by any one of the M control areas. Beam recovery process.
  • the end beam recovery module 30 is further used for at least one of the following:
  • An embodiment of the present disclosure provides a control device for detecting a channel. After reporting the indication information, the device detects a M control region by using a detection module, where M>1, M is an integer, and the M When any one of the control areas of the control area detects the configuration change signaling of the control area parameter, the control channel is detected according to the configuration change signaling, so that the robustness of the control channel detection can be improved, thereby reducing the link in the communication system. The probability of failure.
  • the fifth embodiment provides a detection system for a control channel, which system includes the apparatus and the receiving end according to any of the above embodiments.
  • the device may be a terminal, and the receiving end may be a base station.
  • An embodiment of the present disclosure provides a detection system for a control channel, the system comprising the apparatus according to any one of the preceding embodiments, after detecting the indication information by the apparatus, detecting M control areas, where M>1 If M is an integer, if the configuration change signaling of the control region parameter is detected in any one of the M control regions, the control channel is detected according to the configuration change signaling, so that the control channel detection can be improved. Robustness, thereby reducing the probability of link failure in a communication system.
  • FIG. 6 is a schematic flowchart of a beam recovery abnormality processing method according to Embodiment 6 of the present disclosure. As shown in FIG. 6, the sixth embodiment provides a beam recovery exception processing method, which is applied to a transmitting end (terminal). include:
  • Step S601 reporting information of reporting beam recovery
  • the transmitting end (terminal) monitors the beam, and the monitoring process mainly determines the beam failure by using the reference signal. If the beam recovery is required, the transmitting end (terminal) reports the beam for the beam.
  • the indication information of the restoration which may be, for example, indication information of the transmitting end (terminal), beam indication information, and the like.
  • Step S602 Detect one or more control regions of the M control regions, where M ⁇ 1, and M is an integer.
  • the transmitting end starts to detect the M control areas after the indication information is reported, where M ⁇ 1, M is an integer, and M control areas can be configured according to the actual situation of beam recovery, for example: according to The three processes of beam recovery are configured with a first control area before beam recovery.
  • the first control area is generally configured by the receiving end (base station) through high layer signaling, and the CORESET(s) that needs to be detected during normal communication (control resources)
  • the collection may be one or more, and the resources included in each CORESET may be discontinuous in time and frequency, and the resources included in the multiple CORESETs may overlap; configuring a second control region during beam recovery,
  • the second control area is also configured by the base station through high-level signaling.
  • the CORESETs that need to be detected during the beam recovery may be one or more, and the resources included in each CORESET may be discontinuous in time and frequency; configuring one after beam recovery
  • the third control area, the third control area is generally also configured by the base station through high-level signaling, and is required to detect CORESETs after beam recovery. That one or more resources may be contained within each CORESET on discontinuous frequency; however, not limited thereto.
  • the M control areas include: at least one first control area or at least one second control area, where the first control area is a control area that needs to be detected before the indication information of the beam recovery is reported.
  • the second control region is a control region for receiving a beam recovery response.
  • the transmitting end detects at least one first control area or at least one second control area of the M control areas, which may be a first control area or a second control area, where the first control area A control area that needs to be detected before the indication information of the beam recovery is reported.
  • the first control area is generally configured by the receiving end (base station) through high layer signaling, and the CORESET(s) (control resource set) that needs to be detected during normal communication may be For one or more resources included in each CORESET may be discontinuous in time and frequency, resources included in multiple CORESETs may overlap; the second control region is a control region for receiving beam recovery response, and the second control region is generally
  • the base station is configured by the high-level signaling, and the CORESETs that need to be detected during the beam recovery may be one or more.
  • the resources included in each CORESET may be discontinuous in time and frequency, but not limited thereto.
  • Step S603 interrupting the beam recovery when one of the following configuration changes exists:
  • the monitored object in the beam monitoring is configured to be changed
  • the beam selection reference signal configuration is changed
  • the resource configuration reported by the beam is changed.
  • the transmitting end (terminal) performs beam failure judgment, and generally compares the quality measurement result of the monitored reference signal with the quality threshold. If the quality threshold is not met, the result beam is invalid, and beam recovery needs to be initiated.
  • the transmitting end (terminal) performs beam selection, the transmitting end (terminal) performs beam indication information reporting, and the transmitting end (terminal) performs control signaling detection, but in this process, the transmitting end (terminal) and the receiving end (base station) There may be some asymmetry in the understanding of the current link state and parameters. Therefore, some abnormal conditions may occur and the beam recovery needs to be interrupted.
  • the interrupt beam recovery mentioned here includes at least one of the following:
  • the monitored object in the beam monitoring is configured to change
  • Any one of the M control areas is configured to be changed, for example, the first control area or the second control area.
  • the method before the reporting the information about the beam recovery, the method further includes:
  • the configuration change is made based on the first control region and/or the second control region.
  • interrupting the beam recovery includes at least one of the following:
  • Terminating the detection of the second control region or the second control region is invalid
  • the method further includes:
  • the re/continuous beam recovery includes at least one of the following:
  • the transmitting end needs to detect the first control area used for normal communication before the new beam is reported. At this time, it is possible to receive the monitored object configuration change information in the beam monitoring. If the information is received, the monitoring result of the previously monitored beam is meaningless.
  • the beam recovery should be interrupted.
  • the transmitting end (terminal) should re-evaluate the beam failure according to the new configuration, and the transmitting end (terminal) can reset the beam. The timer and/or counter of the recovery process.
  • the transmitting end (terminal) After the beam is invalidated, after the new beam is reported, the transmitting end (terminal) still needs to detect the first control area used for normal communication. At this time, it is also possible to receive the monitored object configuration change information in the beam monitoring. If the information is received, the beam recovery is interrupted, the transmitting end (terminal) should re-determine the beam failure, and the transmitting end (terminal) can reset the timer and/or counter of the beam recovery process.
  • the transmitting end After determining the beam failure, after the new beam is reported, the transmitting end (terminal) needs to detect the second control area for beam recovery. At this time, it is possible to receive the monitored object configuration change information in the beam monitoring, if received. For this information, the sender (terminal) should re-determine the beam failure, and the sender (terminal) can reset the timer and/or counter of the beam recovery process.
  • the transmitting end (terminal) After determining the beam failure, the transmitting end (terminal) performs new beam selection. Before selecting a new beam and reporting it, the transmitting end (terminal) needs to detect the first control area used for normal communication. At this time, it may be received. The information of the reference signal configuration change of the beam selection. If the information is received, the transmitting end (terminal) should interrupt the current beam recovery process, terminate the current beam selection, abandon the current beam selection result, and perform beam selection again. The transmitting end (terminal) can Reset the timer and/or counter of the beam recovery process.
  • the transmitting end (terminal) After the beam indication information starts to be reported, the transmitting end (terminal) needs to detect the first control area used for normal communication. At this time, it is possible to receive the information of the reference signal configuration change of the beam selection. If the information is received, the transmitting end (terminal) should terminate the reporting, re-select the beam and report it, and the transmitting end (terminal) can reset the timer and/or counter of the beam recovery process.
  • the transmitting end (terminal) After the beam indication information starts to be reported, the transmitting end (terminal) needs to detect the second control area used for beam recovery. At this time, it is possible to receive the information of the reference signal configuration change of the beam selection. If the information is received, the transmitting end (terminal) should terminate the reporting, re-select the beam and report it, and the transmitting end (terminal) can reset the timer and/or counter of the beam recovery process.
  • the transmitting end (terminal) needs to detect the first control area used for normal communication. At this time, it is possible to receive information for the beam reporting uplink resource configuration change. If the information is received, the sender (terminal) should terminate the current report and report according to the configuration, and the sender (terminal) can reset the timer and/or counter of the beam recovery process.
  • the transmitting end After the beam indication information is reported, the transmitting end (terminal) needs to detect the first control area and the second control area used for normal communication. At this time, it is possible to receive the information of the second control area configuration change. If the information is received, the transmitting end (terminal) should interrupt the detection in the current second control area and switch to the reconfigured second control area detection.
  • the embodiment of the present disclosure provides a beam recovery abnormality processing method, which detects one or more control regions of M control regions by reporting the beam recovery indication information, where M ⁇ 1, M is an integer, when there is a special configuration change
  • the beam recovery is interrupted, so that the abnormal condition in the beam recovery can be solved, the process in the beam recovery is more optimized, and the abnormal condition in the detection process of the control channel can be further solved, so that the process of the control channel detection is more optimized and improved.
  • FIG. 7 is a schematic structural diagram of a beam recovery abnormality processing apparatus according to Embodiment 7 of the present disclosure.
  • the fourth embodiment provides a beam recovery abnormality processing apparatus, where the apparatus includes: a reporting module 71, and a detection module. 72, exception processing module 73;
  • the reporting module 71 is configured to report indication information of beam recovery
  • the detecting module 72 is configured to detect one or more control regions of the M control regions, where M ⁇ 1, M is an integer
  • the exception handling module 73 is configured to interrupt the beam recovery when one of the following configuration changes is present:
  • the monitored object in the beam monitoring is configured to be changed
  • the beam selection reference signal configuration is changed
  • the resource configuration reported by the beam is changed.
  • the M control areas include: at least one first control area or at least one second control area, where the first control area is a control area that needs to be detected before the indication information of the beam recovery is reported.
  • the second control region is a control region for receiving a beam recovery response.
  • the detecting module 72 is further configured to detect the first control area and/or the second control area before the reporting information of the beam recovery is reported;
  • the configuration change is made based on the first control region and/or the second control region.
  • the interrupting the beam recovery includes at least one of the following:
  • Terminating the detection of the second control region or the second control region is invalid
  • the exception processing module 73 is further configured to restart/sequence beam recovery after the beam recovery is interrupted;
  • the re/continuous beam recovery includes at least one of the following:
  • the embodiment of the present disclosure provides a beam recovery abnormality processing device, where the device is used to report indicator information of beam recovery by using a reporting module, and the detecting module is configured to detect one or more control regions of the M control regions, where M ⁇ 1, M is an integer, and the exception processing module is configured to interrupt the beam recovery when there is a special configuration change, so that the abnormal condition in the beam recovery can be solved, so that the process in the beam recovery is more optimized, and the detection process of the control channel can be further solved.
  • the abnormal condition makes the process of control channel detection more optimized and improves the user experience.
  • the eighth embodiment provides a detection system for beam recovery abnormality processing, which comprises the apparatus and the receiving end according to any of the above embodiments.
  • the receiving end can be a base station.
  • the device may be a terminal, and the receiving end may be a base station.
  • the M control areas are detected, and if the configuration change signaling of the control area parameter is detected in any one of the M control areas, the configuration change signal is followed.
  • the detection of the control channel is made such that the robustness of the control channel detection can be improved, thereby reducing the probability of link failure in the communication system.

Abstract

本申请提出一种控制信道的检测方法、装置及系统,通过在上报所述指示信息之后,检测M个控制区域,其中,M>1,M为整数,若在所述M个控制区域的任意一个控制区域检测到控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测,使得可以提高控制信道检测的鲁棒性,从而降低通信系统中链路失效的概率。

Description

一种控制信道的检测方法、装置及系统 技术领域
本公开涉及通信领域,尤其涉及一种控制信道的检测方法、装置及系统。
背景技术
在无线通信系统中,基站会利用多根天线的波束成型能力,采用窄波束传输来有效提升传输效率。但是,利用窄波束传输对用户设备(UE)移动和波束链路的阻塞会比较敏感,尤其是在高频中,阻塞现象比较严重,经常会引起波束链路的失效。因此,当无线信道因为上述原因产生信道变化时,通信系统需要快速进行波束链路的切换和恢复,才能提供好的用户体验。
一般来说,波束恢复技术的主要包括以下几个步骤:
波束监测:主要是进行波束失效(beam failure)判断;
波束选择:选择新的波束用于重建传输链路;
信息上报:上报波束恢复相关信息,如终端指示信息、波束指示信息等;
下行控制信道(DCI)检测:在控制信道上检测DCI。
图1是本公开相关技术中控制信道检测方式的示意图,如图1所示,在相关技术中,如果启用了波束恢复的机制,终端的控制信道检测方式为在发生波束恢复之前,终端检测基站配置的第一控制区域;在波束恢复期间,终端检测基站配置的第二控制区域;在波束恢复之后,终端检测基站配置的第三控制区域。
由此可知,上述控制信道检测方式为串行检测方式,这种检测方式的问题是,在同一时间窗口内仅能监测按照一种控制区域配置进行控制信道检测的过程,导致鲁棒性不高。
发明内容
本公开实施例提供了一种控制信道的检测方法、装置及系统,以至少解决相关技术中控制信道检测方式为串行检测方式,导致鲁棒性不高的技术问题。
本公开第一方面提供一种控制信道的检测方法,该方法包括:上报波束恢复的指示信息;
在上报所述指示信息之后,检测M个控制区域,其中,M>1,M为整数;
若在所述M个控制区域的任意一个控制区域检测到控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测。
如上所述,所述M个控制区域中,包括:至少一个第一控制区域和至少一个第二控制区域,其中,所述第一控制区域为在上报波束恢复的指示信息之前需要检测的控制区域,所述第二控制区域为用于接收波束恢复响应的控制区域。
如上所述,在所述第二控制区域对应的检测时间窗外,检测所述第一控制区域,如果 检测到控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测。
如上所述,在所述M个控制区域中的任意一个控制区域检测到控制区域参数的配置变更信令之后,所述方法还包括:结束波束恢复的过程。
如上所述,在所述M个控制区域中的任意一个控制区域检测到控制区域参数的配置变更信令之后,所述方法还包括以下至少之一:
重置用于波束恢复过程的定时器和/或计数器;
修改用于无线链路失效RLF判断的参数取值。
本公开第二方面提供一种控制信道的检测装置,包括上报模块、检测模块;
所述上报模块用于上报波束恢复的指示信息;
所述检测模块用于在上报所述指示信息之后,检测M个控制区域,其中,M>1,M为整数;还用于在所述M个控制区域的任意一个控制区域检测到控制区域参数的配置变更信令,所述检测模块按照所述配置变更信令进行控制信道的检测。
如上所述,所述M个控制区域中,包括:至少一个第一控制区域和至少一个第二控制区域,其中,所述第一控制区域为在上报波束恢复的指示信息之前需要检测的控制区域,所述第二控制区域为用于接收波束恢复响应的控制区域。
如上所述,所述检测模块还用于在所述第二控制区域对应的检测时间窗外,检测所述第一控制区域,如果检测到控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测。
如上所述,所述装置还包括结束波束恢复模块,所述结束波束恢复模块用于在所述M个控制区域中的任意一个控制区域检测到控制区域参数的配置变更信令之后,结束波束恢复的过程。
如上所述,在所述M个控制区域中的任意一个控制区域检测到控制区域参数的配置变更信令之后,还用于以下至少之一:
重置用于波束恢复过程的定时器和/或计数器;
修改用于无线链路失效RLF判断的参数取值。
本公开第三方面提供一种控制信道的检测系统,所述系统包括上述任一项所述的装置和接收端。
本公开第四方面提供一种波束恢复异常处理方法,该方法包括:
上报波束恢复的指示信息;
检测M个控制区域的一个或者多个控制区域,其中,M≥1,M为整数;
当存在以下配置变更之一时,中断所述波束恢复:
所述波束监测中的被监测的对象被配置变更;
所述波束选择的参考信号配置变更;
所述M个控制区域中的任意一个控制区域配置变更;
所述波束上报的资源配置变更。
所述M个控制区域中,包括:至少一个第一控制区域或至少一个第二控制区域,其中,所述第一控制区域为在上报波束恢复的指示信息之前需要检测的控制区域,所述第二控制区域为用于接收波束恢复响应的控制区域。
如上所述,在所述上报波束恢复的指示信息之前,还包括:
检测所述第一控制区域和/或第二控制区域;
基于所述第一控制区域和/或第二控制区域进行所述配置变更。
如上所述,中断所述波束恢复包括以下至少之一:
终止检测第二控制区域或第二控制区域失效;
终止当前波束选择;
终止当前波束上报;
重置用于波束恢复过程的定时器和/或计数器。
如上所述,该方法还包括:
在中断所述波束恢复之后,重新/接续波束恢复;
所述重新/接续波束恢复包括以下至少之一:
重新进行波束失效判断;
重新进行波束选择;
重新进行波束上报;
在重新配置的第二控制区域进行检测;
重启用于波束恢复过程的定时器和/或计数器。
本公开第五方面提供一种波束恢复异常处理装置,所述装置包括:上报模块、检测模块、异常处理模块;
所述上报模块用于上报波束恢复的指示信息;
所述检测模块用于检测M个控制区域的一个或者多个控制区域,其中,M≥1,M为整数;
所述异常处理模块用于当存在以下配置变更之一时,中断所述波束恢复:
所述波束监测中的被监测的对象被配置变更;
所述波束选择的参考信号配置变更;
所述M个控制区域中的任意一个控制区域配置变更;
所述波束上报的资源配置变更。
如上所述,所述M个控制区域中,包括:至少一个第一控制区域或至少一个第二控制区域,其中,所述第一控制区域为在上报波束恢复的指示信息之前需要检测的控制区域,所述第二控制区域为用于接收波束恢复响应的控制区域。
如上所述,所述检测模块还用于在所述上报波束恢复的指示信息之前,检测所述第一控制区域和/或第二控制区域;
基于所述第一控制区域和/或第二控制区域进行所述配置变更。
如上所述,所述中断所述波束恢复包括以下至少之一:
终止检测第二控制区域或第二控制区域失效;
终止当前波束选择;
终止当前波束上报;
重置用于波束恢复过程的定时器和/或计数器。
如上所述,还包括重新/接续波束恢复模块,所述异常梳理模块还用于在中断所述波束恢复之后,重新/接续波束恢复;
所述重新/接续波束恢复包括以下至少之一:
重新进行波束失效判断;
重新进行波束选择;
重新进行波束上报;
在重新配置的第二控制区域进行检测;
重启用于波束恢复过程的定时器和/或计数器。
本公开第六方面提供一种波束恢复异常处理系统,所述系统包括上述任一项所述的装置和接收端。
通过本公开,在上报所述指示信息之后,检测M个控制区域,其中,M>1,M为整数,若在所述M个控制区域的任意一个控制区域检测到控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测,使得可以提高控制信道检测的鲁棒性,从而降低通信系统中链路失效的概率,并且通过本公开,采用上报波束恢复的指示信息,检测M个控制区域的一个或者多个控制区域,其中,M≥1,M为整数,当存在特殊配置变更时,中断所述波束恢复,使得可以解决波束恢复中的异常状况,使得波束恢复中过程更加优化,进一步也可以解决控制信道的检测过程中的异常状况,使得控制信道检测的过程更加优化,提高了用户体验度。
附图说明
图1是本公开相关技术中控制信道检测方式的示意图;
图2为本公开实施例一提供的一种控制信道的检测方法的流程示意图;
图3为本公开实施例二提供的一种控制信道的检测方式的示意图;
图4为本公开实施例三提供的一种控制信道的检测方式的示意图;
图5为本公开实施例四提供的一种控制信道的检测装置结构示意图;
图6为本公开实施例六提供的一种波束恢复异常处理方法的流程示意图;
图7为本公开实施例七提供的一种波束恢复异常处理装置的结构示意图。
具体实施方式
为使本公开的发明目的、技术方案和有益效果更加清楚明了,下面结合附图对本公开 的实施例进行说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以相互任意组合。
在最新5G无线通讯系统中,5G接收端(基站)则采用了大规模天线阵列,通过波束形成(beamforming)技术对无线信号的能量产生聚焦,即形成一个指向性波束(Beam),为保证最终得到足够的信号增益,大规模天线阵列所产生的波束通常需要变得很窄,付出的代价是,接收端(基站)需要使用大量的窄波束才能保证小区内任意方向上的用户都能得到有效覆盖,即波束越窄,信号增益越大。但是,利用窄波束传输对用户设备(UE)移动和波束链路的阻塞会比较敏感,尤其是在高频中,阻塞现象比较严重,经常会引起波束链路的失效。因此,当无线信道因为上述原因产生信道变化时,通信系统中的发送端(终端)需要快速与接收端(基站)进行波束链路的切换和恢复,才能提供好的用户体验。
实施例一
图2为本公开实施例一提供的一种控制信道的检测方法的流程示意图,如图2所示,本实施例一提供一种控制信道的检测方法,应用于发送端(终端),该方法包括:
步骤S101:上报波束恢复的指示信息。
示例性的,发送端(终端)对波束进行监测,该监测过程主要是通过参考信号进行波束失效(beam failure)的判断,如果在需要进行波束恢复时,发送端(终端)会上报用于波束恢复的指示信息,该指示信息例如可以是发送端(终端)的指示信息、波束指示信息等。
步骤S102:在上报所述指示信息之后,检测M个控制区域,其中,M>1,M为整数。
示例性的,发送端(终端)在上报所述指示信息之后,开始检测M个控制区域,其中,M>1,M为整数,可以根据波束恢复的实际情况配置M个控制区域,例如:根据波束恢复的三个过程,配置一个波束恢复前的第一控制区域,该第一控制区域一般是接收端(基站)通过高层信令配置的,正常通信期间需要检测的CORESET(s)(控制资源集合),可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的,多个CORESETs包含的资源可以存在重叠;配置一个在波束恢复时的第二控制区域会,第二控制区域一般也是接收端(基站)通过高层信令配置,为波束恢复期间需要检测的CORESETs,可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的;配置一个在波束恢复后的第三控制区域,第三控制区域一般也是接收端(基站)通过高层信令配置,为波束恢复后需要检测的CORESETs,可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的;但并不以此为限。
可选的,所述M个控制区域中,包括:至少一个第一控制区域和至少一个第二控制区域,其中,所述第一控制区域为在上报波束恢复的指示信息之前需要检测的控制区域,所述第二控制区域为用于接收波束恢复响应的控制区域。
示例性的,检测这M个控制区域中,至少包括两个控制区域,可以是第一控制区域 和第二控制区域,其中,该第一控制区域为上报波束恢复的指示信息之前需要检测的控制区域,该第一控制区域一般是接收端(基站)通过高层信令配置的,正常通信期间需要检测的CORESET(s)(控制资源集合),可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的,多个CORESETs包含的资源可以存在重叠;第二控制区域为接收波束恢复响应的控制区域,第二控制区域一般也是接收端(基站)通过高层信令配置,为波束恢复期间需要检测的CORESETs,可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的;波束恢复之前接收端(基站)会发送相应的配置信令,当波束失效后,发送端(终端)会选择新的波束并上报给接收端(基站),在上报新的波束指示信息之后,延迟几个时隙就会开始检测第二控制区域,虽然开始检测第二控制区域,但第一控制区域内仍然进行检测,接收基站发送的控制信令,由此可见,发送端(终端)在分别检测第一控制区域和第二控制区域的时间段可以是部分重叠也可以是全部重叠,但并不以此为限。
步骤S103:若在所述M个控制区域的任意一个控制区域检测到控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测。
示例性的,在M个控制区域的任意一个控制区域检测到控制区域参数的配置变更信令,包括:第一控制区域配置变更信令,例如:该配置变更信令的信息可以是配置变更第一控制区域,可以是配置变更第一控制区域的波束或者时频资源位置等,具体根据配置变更信令里的指示信息,变更第一控制区域的波束一般是采用传输状态指示(Transmission State Indication)信息来实现的,并不以此为限。
例如,发送端(终端)在第一控制区域内收到了控制信道配置变更信令,发送端(终端)根据控制信道配置变更信令进行控制信道检测。配置变更信令为第一控制区域的波束,发送端(终端)按照新的波束配置对第一控制区域进行检测,第二控制区域失效,可以结束对第二控制区域的检测。发送端(终端)可以重置用于波束恢复过程的定时器和/或计数器。
例如,发送端(终端)在第二控制区域内收到了控制信道配置变更信令,发送端(终端)根据控制信道配置变更信令进行控制信道检测。配置变更信令为第一控制区域的波束,发送端(终端)按照新的波束配置对第一控制区域进行检测,第二控制区域失效,可以结束对第二控制区域的检测。发送端(终端)可以重置用于波束恢复过程的定时器和/或计数器。
例如,发送端(终端)在第一控制区域内收到了控制信道配置变更信令,发送端(终端)根据控制信道配置变更信令进行控制信道检测。配置变更信令为新的控制区域(第三控制区域)的指示信息,发送端(终端)配置变更信令对该第三控制区域进行检测,第一和第二控制区域失效,可以结束对第一和第二控制区域的检测。发送端(终端)可以重置用于波束恢复过程的定时器和/或计数器。
例如,发送端(终端)在第二控制区域内收到了控制信道配置变更信令,发送端(终 端)根据控制信道配置变更信令进行控制信道检测。配置变更信令为新控制区域(第三控制区域)的指示信息,发送端(终端)配置变更信令对第三控制区域进行检测,第一和第二控制区域失效,发送端(终端)可以结束对第一和第二控制区域的检测,发送端(终端)可以重置用于波束恢复过程的定时器和/或计数器。
上述实施例中提到的失效,意味着即使在该区域检测到控制信令也不会被认为是有用控制信令。
然后,发送端(终端)如果只是配置变更第一控制区域的波束,那么第三控制区域和第一控制区域实际是相同的。
本公开实施例提供一种控制信道的检测方法,通过在上报所述指示信息之后,检测M个控制区域,其中,M>1,M为整数,若在所述M个控制区域的任意一个控制区域检测到控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测,使得可以提高控制信道检测的鲁棒性,从而降低通信系统中链路失效的概率。
实施例二
图3为本公开实施例二提供的一种控制信道的检测方式的示意图,如图3所示,在本实施例二中,根据波束恢复的三个过程,假设M为3,配置一个波束恢复前的第一控制区域,该第一控制区域一般是接收端(基站)通过高层信令配置的,正常通信期间需要检测的CORESET(s)(控制资源集合),可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的,多个CORESETs包含的资源可以存在重叠;配置一个在波束恢复时的第二控制区域,第二控制区域一般也是基站通过高层信令配置,为波束恢复期间需要检测的CORESETs,可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的;波束恢复之前接收端(基站)会发送相应的配置信令,当波束失效后,发送端(终端)会选择新的波束并上报给接收端(基站),在上报新的波束指示信息之后,延迟几个时隙就会开始检测第二控制区域,虽然开始检测第二控制区域,但第一控制区域内仍然进行检测,接收基站发送的控制信令,配置一个在波束恢复后的第三控制区域,第三控制区域一般也是基站通过高层信令配置,为波束恢复后需要检测的CORESETs,可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的;其中,发送端(终端)在检测第一控制区域的时间为T1,在检测第二控制区域的时间为T2,在检测第三控制区域的时间为T3,可以从图3中看出,T1和T2是大部分时间是重叠的,即发送端(终端)在T1和T2重叠的时间内同时检测第一控制区域和第二控制区域。
发送端(终端)分别在T1时间内检测第一控制区域和在T2时间内检测第二控制区域时,如果在在T1时间内或者T2时间内在第一控制区域和第二控制区域中任意一个控制区域检测到控制区域参数的配置变更信令,该配置变更信令包括:第一控制区域配置变更信令,例如:该配置变更信令的信息可以是配置变更第一控制区域,可以是配置变更第 一控制区域的波束或者时频资源位置等,具体根据配置变更信令里的指示信息,变更第一控制区域的波束一般是采用传输状态指示(Transmission State Indication)信息来实现的,并不以此为限。
例如,发送端(终端)在第一控制区域内收到了控制信道配置变更信令,发送端(终端)根据控制信道配置变更信令进行控制信道检测。配置变更信令为第一控制区域的波束,发送端(终端)按照新的波束配置对第一控制区域进行检测,第二控制区域失效,可以结束对第二控制区域的检测。发送端(终端)可以重置用于波束恢复过程的定时器和/或计数器。
例如,发送端(终端)在第二控制区域内收到了控制信道配置变更信令,发送端(终端)根据控制信道配置变更信令进行控制信道检测。配置变更信令为第一控制区域的波束,发送端(终端)按照新的波束配置对第一控制区域进行检测,第二控制区域失效,可以结束对第二控制区域的检测。发送端(终端)可以重置用于波束恢复过程的定时器和/或计数器。
例如,发送端(终端)在第一控制区域内收到了控制信道配置变更信令,发送端(终端)根据控制信道配置变更信令进行控制信道检测。配置变更信令为新的控制区域(第三控制区域)的指示信息,发送端(终端)配置变更信令对该第三控制区域进行检测,第一和第二控制区域失效,可以结束对第一和第二控制区域的检测。发送端(终端)可以重置用于波束恢复过程的定时器和/或计数器。
例如,发送端(终端)在第二控制区域内收到了控制信道配置变更信令,发送端(终端)根据控制信道配置变更信令进行控制信道检测。配置变更信令为新控制区域(第三控制区域)的指示信息,发送端(终端)配置变更信令对第三控制区域进行检测,第一和第二控制区域失效,发送端(终端)可以结束对第一和第二控制区域的检测,发送端(终端)可以重置用于波束恢复过程的定时器和/或计数器。
上述实施例中提到的失效,意味着即使在该区域检测到控制信令也不会被认为是有用控制信令。
可以从图3中看出,发送端(终端)如果只是配置变更第一控制区域的波束,那么第三控制区域和第一控制区域实际是相同的。
实施例三
图4为本公开实施例三提供的一种控制信道的检测方式的示意图,如图4所示,在本实施例三中,根据波束恢复的三个过程,假设M为3,配置一个波束恢复前的第一控制区域,该第一控制区域一般是接收端(基站)通过高层信令配置的,正常通信期间需要检测的CORESET(s)(控制资源集合),可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的,多个CORESETs包含的资源可以存在重叠;配置一个在波束恢复时的第二控制区域,第二控制区域一般也是基站通过高层信令配置,为波束恢复期间 需要检测的CORESETs,可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的;配置一个在波束恢复后的第三控制区域,第三控制区域一般也是基站通过高层信令配置,为波束恢复后需要检测的CORESETs,可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的;其中,发送端(终端)在检测第一控制区域的时间为T1,在检测第二控制区域的时间窗为T2,在检测第三控制区域的时间为T3,可以从图4中看出,T2时间窗是一段固定的时间值,即发送端(终端)在T2时间窗内在检测第一控制区域的同时也在检测第二控制区域。
从图4中可以看出,发送端(终端)在检测该第二控制区域对应的检测时间窗T2内,如果第二控制区域中没有收到重配信息,仍然可以检测第一控制区域来获取配置变更信令,即在T2时间窗外,发送端(终端)检测所述第一控制区域时,如果检测到控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测,并且认为波束恢复成功。
由上述实施例可知,波束恢复过程是有时间窗的,如果波束恢复时间窗超过后,仍然没有收到控制区域配置变更信息。发送端(终端)在一段时间后会判断链路失效发起重新接入,但在发起重新接入之前,接收端(基站)仍然可以检测第一控制区域来获取配置变更信息,如果检测到配置变更信息,则按照基站发送的重配信令进行控制信道检测,并且认为波束恢复成功,发送端(终端)暂时不会触发无线链路失效RLF对应的重新接入过程。一般会修改用于无线链路失效RLF判断的参数取值。
需要说明的是,上述实施例中的第一、二、三控制区域在时间维度上并不一定是每个时隙都存在的,同一控制区域内的资源是采用同一套配置信令进行配置的,控制区域可以存在周期、时隙偏移,所属的频域子带(BWP,bandwidth part)/通信载波(CC,carrier)等参数。
可选地,发送端(终端)在所述M个控制区域中的任意一个控制区域检测到控制区域参数的配置变更信令之后,该方法还包括:结束波束恢复过程。
示例性的,发送端(终端)在所述M个控制区域中的任意一个控制区域检测到控制区域参数的配置变更信令之后,可以结束波束恢复过程。
可选的,在所述M个控制区域中的任意一个控制区域检测到控制区域参数的配置变更信令之后,该方法还包括以下至少之一:
重置用于波束恢复过程的定时器和/或计数器;
修改用于无线链路失效(Radio Linke Failure,简称:RLF)判断的参数取值。
示例性的,发送端(终端)在第一控制区域或第二控制区域检测到控制区域参数的配置变更信令之后,还会结束波束恢复过程,其中,该结束波束恢复过程包括以下至少之一:
重置用于波束恢复过程的定时器和/或计数器;
修改用于无线链路失效RLF判断的参数取值。
实施例四
图5为本公开实施例四提供的一种控制信道的检测装置结构示意图,如图5所示,本实施例四提供一种控制信道的检测装置,该装置包括:上报模块10、检测模块20;
该上报模块10用于上报波束恢复的指示信息;
该检测模块20用于在上报所述指示信息之后,检测M个控制区域,其中,M>1,M为整数;还用于在所述M个控制区域的任意一个控制区域检测到控制区域参数的配置变更信令,该检测模块20按照所述配置变更信令进行控制信道的检测。
可选的,所述M个控制区域中,包括:至少一个第一控制区域和至少一个第二控制区域,其中,所述第一控制区域为在上报波束恢复的指示信息之前需要检测的控制区域,所述第二控制区域为用于接收波束恢复响应的控制区域。
在本实施例中,所述检测模块20还用于在所述第二控制区域对应的检测时间窗外,检测所述第一控制区域,如果检测到控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测。
在本实施例中,该装置还包括结束波束恢复模块30,所述结束波束恢复模块30用于在该M个控制区域中的任意一个控制区域检测到控制区域参数的配置变更信令之后,结束波束恢复过程。
可选的,所述结束波束恢复模块30在所述M个控制区域中的任意一个控制区域检测到控制区域参数的配置变更信令之后,还用于以下至少之一:
重置用于波束恢复过程的定时器和/或计数器;
修改用于无线链路失效RLF判断的参数取值。
本公开实施例提供一种控制信道的检测装置,该装置通过上报模块在上报所述指示信息之后,采用检测模块检测M个控制区域,其中,M>1,M为整数,在所述M个控制区域的任意一个控制区域检测到控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测,使得可以提高控制信道检测的鲁棒性,从而降低通信系统中链路失效的概率。
实施例五
本实施例五提供一种控制信道的检测系统,该系统包括上述实施例中任一项所述的装置和接收端。
示例性的,该装置可以是终端,该接收端可以是基站。
本公开实施例提供一种控制信道的检测系统,该系统包括上述实施例中任一项所述的装置,通过该装置在上报所述指示信息之后,检测M个控制区域,其中,M>1,M为整 数,若在所述M个控制区域的任意一个控制区域检测到控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测,使得可以提高控制信道检测的鲁棒性,从而降低通信系统中链路失效的概率。
实施例六
图6为本公开实施例六提供的一种波束恢复异常处理方法的流程示意图,如图6所示,本实施例六提供一种波束恢复异常处理方法,应用于发送端(终端),该方法包括:
步骤S601、上报波束恢复的指示信息;
示例性的,发送端(终端)对波束进行监测,该监测过程主要是通过参考信号进行波束失效(beam failure)的判断,如果在需要进行波束恢复时,发送端(终端)会上报用于波束恢复的指示信息,该指示信息例如可以是发送端(终端)的指示信息、波束指示信息等。
步骤S602、检测M个控制区域的一个或者多个控制区域,其中,M≥1,M为整数。
示例性的,发送端(终端)在上报所述指示信息之后,开始检测M个控制区域,其中,M≥1,M为整数,可以根据波束恢复的实际情况配置M个控制区域,例如:根据波束恢复的三个过程,配置一个波束恢复前的第一控制区域,该第一控制区域一般是接收端(基站)通过高层信令配置的,正常通信期间需要检测的CORESET(s)(控制资源集合),可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的,多个CORESETs包含的资源可以存在重叠;配置一个在波束恢复时的第二控制区域会,第二控制区域一般也是基站通过高层信令配置,为波束恢复期间需要检测的CORESETs,可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的;配置一个在波束恢复后的第三控制区域,第三控制区域一般也是基站通过高层信令配置,为波束恢复后需要检测的CORESETs,可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的;但并不以此为限。
可选的,所述M个控制区域中,包括:至少一个第一控制区域或至少一个第二控制区域,其中,所述第一控制区域为在上报波束恢复的指示信息之前需要检测的控制区域,所述第二控制区域为用于接收波束恢复响应的控制区域。
示例性的,发送端(终端)检测这M个控制区域中,至少一个第一控制区域或至少一个第二控制区域,可以是第一控制区域或第二控制区域,其中,该第一控制区域为上报波束恢复的指示信息之前需要检测的控制区域,该第一控制区域一般是接收端(基站)通过高层信令配置的,正常通信期间需要检测的CORESET(s)(控制资源集合),可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的,多个CORESETs包含的资源可以存在重叠;第二控制区域为接收波束恢复响应的控制区域,第二控制区域一般也是基站通过高层信令配置,为波束恢复期间需要检测的CORESETs,可以为一个或者多个,每个CORESET内包含的资源可以在时频上不连续的,但并不以此为限。
步骤S603、当存在以下配置变更之一时,中断所述波束恢复:
所述波束监测中的被监测的对象被配置变更;
所述波束选择的参考信号配置变更;
所述M个控制区域中的任意一个控制区域配置变更;
所述波束上报的资源配置变更。
示例性的,发送端(终端)进行波束失效判断,一般根据被监测参考信号的质量测量结果与质量门限进行比较,若不满足质量门限要求,则判断结果波束失效,需要发起波束恢复,后续步骤包括发送端(终端)进行波束选择,发送端(终端)进行波束指示信息上报,发送端(终端)进行控制信令检测,但在此过程中由于发送端(终端)和接收端(基站)对于目前的链路状态及参数的理解可能出现一些不对称,因此,可能会出现一些异常状况,需要中断波束恢复,这里说的中断波束恢复包括以下至少之一:
1、波束监测中的被监测的对象被配置变更;
2、波束选择的参考信号配置变更;
3、M个控制区域中的任意一个控制区域配置变更,例如可以是第一控制区域,或者第二控制区域。
4、波束上报的资源配置变更。
可选的,在所述上报波束恢复的指示信息之前,还包括:
检测所述第一控制区域和/或第二控制区域;
基于所述第一控制区域和/或第二控制区域进行所述配置变更。
可选的,中断所述波束恢复包括以下至少之一:
终止检测第二控制区域或第二控制区域失效;
终止当前波束选择;
终止当前波束上报;
重置用于波束恢复过程的定时器和/或计数器。
可选的,该方法还包括:
在中断所述波束恢复之后,重新/接续波束恢复;
所述重新/接续波束恢复包括以下至少之一:
重新进行波束失效判断;
重新进行波束选择;
重新进行波束上报;
在重新配置的第二控制区域进行检测;
重启用于波束恢复过程的定时器和/或计数器。
示例性的,例如:判断波束失效后,还没有上报新的波束之前,发送端(终端)需要对正常通信使用的第一控制区域进行检测。此时有可能收到,波束监测中的被监测的对象配置变更信息。如果收到该信息,说明之前监控的波束测量到的监控结果没有意义,应该 中断波束恢复,发送端(终端)应该按照新的配置重新进行波束失效判断,并且发送端(终端)可以重置波束恢复过程的定时器和/或计数器。
判断波束失效后,上报新波束之后,发送端(终端)仍然需要对正常通信使用的第一控制区域进行检测,此时,也有可能收到波束监测中的被监测的对象配置变更信息。如果收到该信息,波束恢复中断,发送端(终端)应该重新进行波束失效判断,并且发送端(终端)可以重置波束恢复过程的定时器和/或计数器。
判断波束失效后,上报新波束之后,发送端(终端)需要对用于波束恢复第二控制区域进行检测,此时,有可能收到波束监测中的被监测的对象配置变更信息,如果收到该信息,发送端(终端)应该重新进行波束失效判断,并且发送端(终端)可以重置波束恢复过程的定时器和/或计数器。
这里的波束监测对象变更有两种情况,一种是显式的方式,直接变更需要监测的参考信号,还有一种情况是变更第一控制区域的发送波束。
判断波束失效后,发送端(终端)进行新波束选择,在选到新的波束并上报之前,发送端(终端)需要对正常通信使用的第一控制区域进行检测,此时,有可能收到波束选择的参考信号配置变更的信息,如果收到该信息,发送端(终端)应该中断当前波束恢复过程,终止当前波束选择,放弃当前波束选择结果,重新进行波束选择,发送端(终端)可以重置波束恢复过程的定时器和/或计数器。
波束指示信息开始上报后,发送端(终端)需要对正常通信使用的第一控制区域进行检测,此时,有可能收到波束选择的参考信号配置变更的信息。如果收到该信息,发送端(终端)应该终止上报,重新进行波束选择并上报,并且发送端(终端)可以重置波束恢复过程的定时器和/或计数器。
波束指示信息开始上报后,发送端(终端)需要对用于波束恢复的第二控制区域进行检测,此时,有可能收到波束选择的参考信号配置变更的信息。如果收到该信息,发送端(终端)应该终止上报,重新进行波束选择并上报,并且发送端(终端)可以重置波束恢复过程的定时器和/或计数器。
波束指示信息开始上报后,发送端(终端)需要对正常通信使用的第一控制区域进行检测,此时,有可能收到用于波束上报上行资源配置变更的信息。如果收到该信息,发送端(终端)应该终止当前上报并按照该配置进行上报,并且发送端(终端)可以重置波束恢复过程的定时器和/或计数器。
波束指示信息上报后,发送端(终端)需要对正常通信使用的第一控制区域和第二控制区域进行检测,此时,有可能收到第二控制区域配置变更的信息。如果收到该信息,发送端(终端)应该中断在当前第二控制区域的检测,切换至重新配置的第二控制区域检测。
本公开实施例提供一种波束恢复异常处理方法,通过上报波束恢复的指示信息,检测M个控制区域的一个或者多个控制区域,其中,M≥1,M为整数,当存在特殊配置变更 时,中断所述波束恢复,使得可以解决波束恢复中的异常状况,使得波束恢复中过程更加优化,进一步也可以解决控制信道的检测过程中的异常状况,使得控制信道检测的过程更加优化,提高了用户体验度。
实施例七
图7为本公开实施例七提供的一种波束恢复异常处理装置的结构示意图,如图7所示,本实施例四提供一种波束恢复异常处理装置,该装置包括:上报模块71、检测模块72、异常处理模块73;
所述上报模块71用于上报波束恢复的指示信息;
所述检测模块72用于检测M个控制区域的一个或者多个控制区域,其中,M≥1,M为整数
所述异常处理模块73用于当存在以下配置变更之一时,中断所述波束恢复:
所述波束监测中的被监测的对象被配置变更;
所述波束选择的参考信号配置变更;
所述M个控制区域中的任意一个控制区域配置变更;
所述波束上报的资源配置变更。
可选的,所述M个控制区域中,包括:至少一个第一控制区域或至少一个第二控制区域,其中,所述第一控制区域为在上报波束恢复的指示信息之前需要检测的控制区域,所述第二控制区域为用于接收波束恢复响应的控制区域。
在本实施例中,所述检测模块72还用于在所述上报波束恢复的指示信息之前,检测所述第一控制区域和/或第二控制区域;
基于所述第一控制区域和/或第二控制区域进行所述配置变更。
可选的,所述中断所述波束恢复包括以下至少之一:
终止检测第二控制区域或第二控制区域失效;
终止当前波束选择;
终止当前波束上报;
重置用于波束恢复过程的定时器和/或计数器。
在一个实施例中,所述异常处理模块73还用于在中断所述波束恢复之后,重新/接续波束恢复;
所述重新/接续波束恢复包括以下至少之一:
重新进行波束失效判断;
重新进行波束选择;
重新进行波束上报;
在重新配置的第二控制区域进行检测;
重启用于波束恢复过程的定时器和/或计数器。
本公开实施例提供一种波束恢复异常处理装置,该装置通过上报模块用于上报波束恢复的指示信息,检测模块用于检测M个控制区域的一个或者多个控制区域,其中,M≥1,M为整数,异常处理模块用于当存在特殊配置变更时,中断所述波束恢复,使得可以解决波束恢复中的异常状况,使得波束恢复中过程更加优化,进一步也可以解决控制信道的检测过程中的异常状况,使得控制信道检测的过程更加优化,提高了用户体验度。
实施例八
本实施例八提供一种波束恢复异常处理的检测系统,该系统包括上述实施例中任一项所述的装置和接收端。示例性的,该接收端可以是基站。
示例性的,该装置可以是终端,该接收端可以是基站。
虽然本公开所揭示的实施方式如上,但其内容只是为了便于理解本公开的技术方案而采用的实施方式,并非用于限定本公开。任何本公开所属技术领域内的技术人员,在不脱离本公开所揭示的核心技术方案的前提下,可以在实施的形式和细节上做任何修改与变化,但本公开所限定的保护范围,仍须以所附的权利要求书限定的范围为准。
工业实用性
根据本公开提供的控制信道的检测方案,在上报指示信息之后,检测M个控制区域,若在M个控制区域的任意一个控制区域检测到控制区域参数的配置变更信令,则按照配置变更信令进行控制信道的检测,使得可以提高控制信道检测的鲁棒性,从而降低通信系统中链路失效的概率。

Claims (22)

  1. 一种控制信道的检测方法,包括:
    上报波束恢复的指示信息;
    检测M个控制区域,其中,M>1,M为整数;
    在所述M个控制区域的任意一个控制区域检测到控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测。
  2. 根据权利要求1所述的方法,其中,所述M个控制区域中,包括:至少一个第一控制区域和至少一个第二控制区域,其中,所述第一控制区域为在上报波束恢复的指示信息之前需要检测的控制区域,所述第二控制区域为用于接收波束恢复响应的控制区域。
  3. 根据权利要求2所述的方法,其中,在所述第二控制区域对应的检测时间窗外,检测所述第一控制区域,如果检测到所述M个控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测。
  4. 根据权利要求1所述的方法,其中,在所述M个控制区域中的任意一个控制区域检测到控制区域参数的配置变更信令之后,所述方法还包括:结束波束恢复的过程。
  5. 根据权利要求1所述的方法,其中,在所述M个控制区域中的任意一个控制区域检测到控制区域参数的配置变更信令之后,所述方法还包括以下至少之一:
    重置用于波束恢复过程的定时器和/或计数器;
    修改用于无线链路失效RLF判断的参数取值。
  6. 一种控制信道的检测装置,包括:上报模块、检测模块;
    所述上报模块用于上报波束恢复的指示信息;
    所述检测模块用于在上报所述指示信息之后,检测M个控制区域,其中,M>1,M为整数;还用于在所述M个控制区域的任意一个控制区域检测到控制区域参数的配置变更信令,所述检测模块按照所述配置变更信令进行控制信道的检测。
  7. 根据权利要求6所述的装置,其中,所述M个控制区域中,包括:至少一个第一控制区域和至少一个第二控制区域,其中,所述第一控制区域为在上报波束恢复的指示信息之前需要检测的控制区域,所述第二控制区域为用于接收波束恢复响应的控制区域。
  8. 根据权利要求7所述的装置,其中,所述检测模块还用于在所述第二控制区域对应的检测时间窗外,检测所述第一控制区域,如果检测到控制区域参数的配置变更信令,则按照所述配置变更信令进行控制信道的检测。
  9. 根据权利要求6所述的装置,其中,所述装置还包括结束波束恢复模块,所述结束波束恢复模块用于在所述M个控制区域中的任意一个控制区域检测到控制区域参数的配置变更信令之后,结束波束恢复的过程。
  10. 根据权利要求6所述的装置,其中,所述结束波束恢复模块在所述M个控制区域中的任意一个控制区域检测到控制区域参数的配置变更信令之后,还用于以下至少之一:
    重置用于波束恢复过程的定时器和/或计数器;
    修改用于无线链路失效RLF判断的参数取值。
  11. 一种控制信道的检测系统,包括权利要求6-10任一项所述的装置和接收端。
  12. 一种波束恢复异常处理方法,包括:
    上报波束恢复的指示信息;
    检测M个控制区域的一个或者多个控制区域,其中,M≥1,M为整数;
    当存在以下配置变更之一时,中断所述波束恢复:
    所述波束监测中的被监测的对象被配置变更;
    所述波束选择的参考信号配置变更;
    所述M个控制区域中的任意一个控制区域配置变更;
    所述波束上报的资源配置变更。
  13. 根据权利要求12所述的方法,其中,所述M个控制区域中,包括:至少一个第一控制区域或至少一个第二控制区域,其中,所述第一控制区域为在上报波束恢复的指示信息之前需要检测的控制区域,所述第二控制区域为用于接收波束恢复响应的控制区域。
  14. 根据权利要求13所述的方法,其中,在所述上报波束恢复的指示信息之前,还包括:
    检测所述第一控制区域和/或第二控制区域;
    基于所述第一控制区域和/或第二控制区域进行所述配置变更。
  15. 根据权利要求13或14所述的方法,其中,中断所述波束恢复包括以下至少之一:
    终止检测第二控制区域或第二控制区域失效;
    终止当前波束选择;
    终止当前波束上报;
    重置用于波束恢复过程的定时器和/或计数器。
  16. 根据权利要求13-15任一项所述的方法,其中,该方法还包括:
    在中断所述波束恢复之后,重新/接续波束恢复;
    所述重新/接续波束恢复包括以下至少之一:
    重新进行波束失效判断;
    重新进行波束选择;
    重新进行波束上报;
    在重新配置的第二控制区域进行检测;
    重启用于波束恢复过程的定时器和/或计数器。
  17. 一种波束恢复异常处理装置,包括:上报模块、检测模块、异常处理模块;
    所述上报模块用于上报波束恢复的指示信息;
    所述检测模块用于检测M个控制区域的一个或者多个控制区域,其中,M≥1,M为整数;
    所述异常处理模块用于当存在以下配置变更之一时,中断所述波束恢复:
    所述波束监测中的被监测的对象被配置变更;
    所述波束选择的参考信号配置变更;
    所述M个控制区域中的任意一个控制区域配置变更;
    所述波束上报的资源配置变更。
  18. 根据权利要求17所述的装置,其中,所述M个控制区域中,包括:至少一个第一控制区域或至少一个第二控制区域,其中,所述第一控制区域为在上报波束恢复的指示信息之前需要检测的控制区域,所述第二控制区域为用于接收波束恢复响应的控制区域。
  19. 根据权利要求18所述的装置,其中,所述检测模块还用于在所述上报波束恢复的指示信息之前,检测所述第一控制区域和/或第二控制区域;
    基于所述第一控制区域和/或第二控制区域进行所述配置变更。
  20. 根据权利要求17或18所述的装置,其中,所述中断所述波束恢复包括以下至少之一:
    终止检测第二控制区域或第二控制区域失效;
    终止当前波束选择;
    终止当前波束上报;
    重置用于波束恢复过程的定时器和/或计数器。
  21. 根据权利要求17-19任一项所述的装置,其中,所述异常处理模块还用于在中断所述波束恢复之后,重新/接续波束恢复;
    所述重新/接续波束恢复包括以下至少之一:
    重新进行波束失效判断;
    重新进行波束选择;
    重新进行波束上报;
    在重新配置的第二控制区域进行检测;
    重启用于波束恢复过程的定时器和/或计数器。
  22. 一种波束恢复异常处理系统,系统包括权利要求17-21任一项所述的装置和接收端。
PCT/CN2018/121396 2017-12-29 2018-12-17 一种控制信道的检测方法、装置及系统 WO2019128751A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711484866.4 2017-12-29
CN201711484866.4A CN108260212A (zh) 2017-12-29 2017-12-29 一种控制信道的检测方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2019128751A1 true WO2019128751A1 (zh) 2019-07-04

Family

ID=62725381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121396 WO2019128751A1 (zh) 2017-12-29 2018-12-17 一种控制信道的检测方法、装置及系统

Country Status (2)

Country Link
CN (1) CN108260212A (zh)
WO (1) WO2019128751A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115023980A (zh) * 2020-06-30 2022-09-06 中兴通讯股份有限公司 控制信道监测过程

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108260212A (zh) * 2017-12-29 2018-07-06 中兴通讯股份有限公司 一种控制信道的检测方法、装置及系统
US10952215B2 (en) * 2018-07-10 2021-03-16 Huawei Technologies Co., Ltd. Method and system for transmission over multiple carriers
US11588534B2 (en) 2018-07-16 2023-02-21 Beijing Xiaomi Mobile Software Co., Ltd. Timer control method and timer control apparatus
CN110798864B (zh) * 2018-08-01 2021-03-02 维沃移动通信有限公司 用于波束失败恢复的方法和终端设备
WO2020051890A1 (zh) * 2018-09-14 2020-03-19 富士通株式会社 评估无线链路质量的方法、参数配置方法、装置和系统
WO2020073160A1 (en) * 2018-10-08 2020-04-16 Qualcomm Incorporated Radio link and beam failure management
CN111278166B (zh) * 2018-12-27 2022-07-22 维沃移动通信有限公司 一种波束失败处理方法及相关设备
CN111615118B (zh) * 2019-04-30 2022-06-07 维沃移动通信有限公司 波束恢复方法及设备
WO2021022421A1 (zh) * 2019-08-02 2021-02-11 富士通株式会社 针对参考信号配置信息的处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079459A (zh) * 2015-08-11 2017-08-18 瑞典爱立信有限公司 从波束故障中恢复
WO2017206910A1 (zh) * 2016-05-31 2017-12-07 中兴通讯股份有限公司 信息反馈方法、装置及系统
CN108260212A (zh) * 2017-12-29 2018-07-06 中兴通讯股份有限公司 一种控制信道的检测方法、装置及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107005858B (zh) * 2015-02-13 2020-09-29 联发科技(新加坡)私人有限公司 波束追踪以及恢复的方法以及用户设备
TWI674017B (zh) * 2016-05-20 2019-10-01 國立臺灣大學 巨型輔助系統中的行動性管理方法以及使用者設備

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079459A (zh) * 2015-08-11 2017-08-18 瑞典爱立信有限公司 从波束故障中恢复
WO2017206910A1 (zh) * 2016-05-31 2017-12-07 中兴通讯股份有限公司 信息反馈方法、装置及系统
CN108260212A (zh) * 2017-12-29 2018-07-06 中兴通讯股份有限公司 一种控制信道的检测方法、装置及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining Details on Beam Failure Recovery", 3GPP TSG RAN WGI MEETING 91 R1-1719423, 18 November 2017 (2017-11-18), XP051369330 *
SAMSUNG: "Discussion on Recovery from Beam Failure", 3GPP TSG RAN WG1 MEETING #88BIS R1-1705343, 2 April 2017 (2017-04-02), XP051243473 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115023980A (zh) * 2020-06-30 2022-09-06 中兴通讯股份有限公司 控制信道监测过程

Also Published As

Publication number Publication date
CN108260212A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
WO2019128751A1 (zh) 一种控制信道的检测方法、装置及系统
US11310648B2 (en) Method for triggering transmission of user equipment (UE)-to-network relay indication
FI127394B (en) Determination of coverage holes using inter-RAT transfer measurements
CN110419231B (zh) 决定波束方向的方法与装置
TWI682640B (zh) Rlm和bfr間之協調操作方法及使用者設備
CN110268791B (zh) 用于无线网络的连接设置恢复
CN107431544B (zh) 用于设备到设备通信的方法和装置
US10979127B2 (en) Apparatus and mechanism to perform beam management and beam failure recovery in NR system
US11528596B2 (en) Method for reporting user equipment capability information and apparatus
CN110913419B (zh) 用于辅链路的波束失败恢复方法及装置、存储介质、终端
WO2018228468A1 (zh) 一种无线链路监控方法和装置
US11290905B2 (en) Measurement method and device
KR102624923B1 (ko) 무선 통신 방법, 단말 디바이스 및 칩
EP3691321B1 (en) Method for reporting signal quality, storage medium, and processor
EP3780864A1 (en) User equipment and beam failure recovery method
TWI771345B (zh) 用於傳輸數據的方法、終端設備和網絡設備
EP3761694B1 (en) Data transmission method and device
US11463213B2 (en) Processing device for beam monitoring on serving downlink beams and methods thereof
US20220045736A1 (en) Systems, methods, and apparatus for inactive state beam failure recovery
CN111742579A (zh) 执行波束失败恢复过程的方法及用户装置
WO2018202777A1 (en) Communication apparatus in dual connectivity, method and computer program
EP3595351B1 (en) Uplink transmission method and device
KR20190054055A (ko) 통신 방법, 단말 설비와 네트워크 설비
WO2015109490A1 (zh) 通信方法、用户设备和基站
WO2018028675A1 (zh) 随机接入信号配置方法、装置、设备、系统和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18895530

Country of ref document: EP

Kind code of ref document: A1