WO2019128655A1 - 无线移动终端及天线 - Google Patents

无线移动终端及天线 Download PDF

Info

Publication number
WO2019128655A1
WO2019128655A1 PCT/CN2018/119308 CN2018119308W WO2019128655A1 WO 2019128655 A1 WO2019128655 A1 WO 2019128655A1 CN 2018119308 W CN2018119308 W CN 2018119308W WO 2019128655 A1 WO2019128655 A1 WO 2019128655A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
metal
metal surface
curved edge
arm
Prior art date
Application number
PCT/CN2018/119308
Other languages
English (en)
French (fr)
Inventor
黄奂衢
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2019128655A1 publication Critical patent/WO2019128655A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system

Definitions

  • the present disclosure relates to the technical field of communication applications, and in particular, to a wireless mobile terminal and an antenna.
  • millimeter-wave antenna array design In order to have better antenna radiation coverage, millimeter-wave antenna arrays are often composed of antenna elements that are complementary to the radiation pattern (such as tail-flame or end-fire and broadside). In order to overcome the path loss of the millimeter wave high frequency, the millimeter wave antenna array hopes to have better gain on the radiation lobes in all directions in space to achieve a better wireless transmission distance. Therefore, under sufficient gain, the ideal radiation lobe coverage is an important research topic for millimeter wave antenna design.
  • the global 5G millimeter wave commonly used frequency band basically has two sections, one is a millimeter wave low frequency frequency section of 26.5 GHz to 29.5 GHz, and the other is a millimeter wave high frequency frequency section of 37 GHz to 42.5 GHz. Therefore, in the above wireless transmission distance and space coverage considerations, if you want to roam the global 5G millimeter wave band, you need to support the above two millimeter wave band.
  • the mainstream solution of the 5G millimeter wave antenna array is to form an antenna package (AiP) through a system in package (SiP), that is, the millimeter wave antenna array and the radio frequency chip are packaged into one module.
  • the tail-fire antenna in the conventional 5G millimeter wave antenna array AiP module is often a passive director and a quasi-eight-wood antenna (quasi-Yagi) with a flat and flat reflector.
  • Uda antenna due to the lack of a standard Yagi antenna guide, and its radiation lobes tend to be narrow, resulting in narrow wireless coverage, and often only support a single millimeter wave frequency in the frequency band, unable to roam globally, and affect User wireless experience and product competitiveness.
  • an antenna comprising:
  • a first antenna operating in a first millimeter wave band
  • the second antenna is located on a first side of the first antenna, the second antenna operates in a second millimeter wave band, and a frequency in the second millimeter wave band is greater than the first millimeter wave Frequency within the frequency band;
  • a metal surface disposed on a second side of the first antenna on a side away from the second antenna direction, the metal surface including at least one curved edge, the at least one curved edge facing the first antenna The direction is curved, the first antenna being located between the second antenna and the curved edge.
  • the present disclosure also provides a wireless mobile terminal comprising the antenna of any of the above.
  • FIG. 1 is a schematic structural diagram of an antenna according to an embodiment of the present disclosure
  • FIG 2 is another schematic structural diagram of an antenna according to an embodiment of the present disclosure
  • FIG 3 is another schematic structural diagram of an antenna according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a millimeter wave radio frequency front end according to an embodiment of the present disclosure.
  • the purpose of the present disclosure is to provide a wireless mobile terminal and an antenna for solving the problem that the radiation lobes of the tail flame antenna are often narrow in the related art, resulting in narrow wireless coverage and supporting only a single millimeter wave frequency.
  • an antenna is provided, as shown in FIGS. 1 to 3, including:
  • a first antenna 10 the first antenna 10 operating in a first millimeter wave band
  • the second antenna 20 is located on a first side of the first antenna 10 on a side in the Y-axis forward direction (+Y direction), and the second antenna 20 operates in a second millimeter wave band.
  • the frequency in the second millimeter wave frequency band is greater than the frequency in the first millimeter wave frequency band;
  • a metal surface 30 disposed on a second side of the first antenna 10 on a side away from a Y-axis negative direction ( ⁇ Y direction) of the second antenna, the metal surface 30 including at least one bend An edge 31, the at least one curved edge 31 is curved in a direction in which the first antenna 10 is located, and the first antenna 10 is located between the second antenna 20 and the curved edge 31.
  • the metal surface 30 on the second side of the first antenna 10 can serve as a reflector of the first antenna 10, and the second antenna 20 on the first side of the first antenna 10 can simultaneously serve as the first antenna 10.
  • the director can increase the radiation directivity and gain of the first antenna 10 and promote the expansion of the radiation lobes on the basis of the multiplexing structure, thereby improving the wireless transmission distance and spatial wireless coverage of the first antenna 10.
  • the first antenna 10 can serve as a reflector of the second antenna 20, so that the radiation directivity and gain of the second antenna 20 can be increased on the basis of the multiplexing structure, and the second antenna can be improved.
  • the wireless transmission distance of the antenna 20 can be improved.
  • the antenna can expand the radiation lobes of the tail-flaming antenna under sufficient gain, achieve wider spatial wireless coverage, and support multi-frequency (such as dual-band) millimeter band, which can achieve global roaming capability. Have better product competitiveness and improve the user's wireless experience.
  • the first antenna 10 operates in a first millimeter wave band
  • the first millimeter wave band can be a low frequency millimeter wave
  • the second antenna 20 operates in a second millimeter wave band
  • the second millimeter wave band can be a high frequency millimeter wave.
  • the first antenna 10 is a low frequency millimeter wave antenna
  • the second antenna 20 is a high frequency millimeter wave antenna
  • the antenna constitutes a set of low frequency and high frequency dual frequency tail flame radiation antennas.
  • the curved edge 31 is parabolic.
  • the curved edge 31 of the metal surface 30 is parabolic, the parabola is curved in the direction in which the first antenna 10 is located, and the metal surface 30 can serve as a reflector of the first antenna 10.
  • the distance between the vertex of the curved edge 31 and the focus of the curved edge 31 is equal to the distance between the vertex of the curved edge 31 and the first antenna 10.
  • the distance between the vertex of the curved edge 31 and the focus is equal to the distance between the vertex of the curved edge 31 and the first antenna 10, which improves the antenna performance.
  • the first antenna 10 and the second antenna 20 respectively include at least one metal arm, but are not limited thereto.
  • the metal arms of the first antenna 10 are disposed on the same non-metal surface or on different non-metal surfaces, and the metal arms of the second antenna 20 are disposed on the same non-metal surface or on different non-metal surfaces.
  • the metal arm of the first antenna 10 and the metal arm of the second antenna 20 are disposed on the same non-metal surface 100; the metal surface 30 and the The non-metallic faces 100 are coplanar.
  • the antenna 10 and the second antenna 20 are connected in series through an antenna feed line 40; the antenna further includes:
  • a metal plate 50 disposed perpendicularly to the non-metallic surface 100, the metal surface 30 and the first antenna 10 are located on the same side of the metal plate 50, the metal plate 50 includes a non-conductive region 60, the antenna The feed line 40 is connected to the first antenna 10 and the second antenna 20 via the non-conductive region 60, respectively.
  • the antenna feed line 40 is connected to the first antenna 10 and the second antenna 20 via the non-conductive region 60 on the metal plate 50, and the first antenna 10 and the second antenna 20 are respectively fed through the antenna feed line 40.
  • the antenna feed line 40 specifically includes two antenna feed metal lines, and at least one of the two antenna feed metal lines is not located on the non-metal surface 100.
  • the first antenna 10 and the second antenna 20 respectively comprise two metal arms
  • the first metal arm of the first antenna 10 and the first metal arm of the second antenna 20 are connected by a first antenna feeding metal wire
  • the first antenna The second metal arm of 10 and the second metal arm of the second antenna 20 are connected by a second antenna feeding wire.
  • the first antenna feeding metal line is located on the non-metal surface.
  • the second antenna feeding metal wire is located on other non-metal surfaces; if the first metal arm and the second metal arm of the first antenna 10, and the first metal arm and the second metal arm of the second antenna 20 All of them are located on the non-metal surface 100.
  • the first antenna feeding metal wire may be disposed on the non-metal surface 100, and the second antenna feeding metal wire may be disposed above the non-metal surface 100 and perforated through the downward direction.
  • a metal arm Connected to the second metal arm of the first antenna 10 and the second antenna 20 a metal arm; if the first metal arm of the first antenna 10 and the first metal arm of the second antenna 20 are located on a first non-metallic surface other than the metal surface 100, and the second metal arm and the first antenna 10 The second metal arm of the two antennas 20 is located on the second non-metal surface except the metal surface 100.
  • the first antenna feeding metal wire is located on the first non-metal surface, and the second antenna feeding metal wire is located at the second antenna.
  • Non-metallic surface Connected to the second metal arm of the first antenna 10 and the second antenna 20 a metal arm; if the first metal arm of the first antenna 10 and the first metal arm of the second antenna 20 are located on a first non-metallic surface other than the metal surface 100, and
  • the antenna of the embodiment of the present disclosure includes a first antenna 10 (a low frequency millimeter wave antenna) and a second antenna 20 (a high frequency millimeter wave antenna) disposed on the non-metal surface 100, and the second antenna 20 is located at the An antenna 10 is more +Y, that is, the second antenna 20 is located in front of the first antenna 10 (on the first side of the first antenna 10) in the +Y direction, and is behind the first antenna 10 (the first antenna 10)
  • the second side) is provided with a metal surface 30 comprising a parabolic curved edge 31 which is curved in the direction in which the first antenna 10 is located, ie the curved edge 31 is convexly parabolic with respect to the first antenna 10,
  • the metal surface 30 is coplanar with the non-metallic surface 100, and the curved edge 31 is located on the non-metallic surface 100.
  • the first antenna 10 is further disposed with a metal plate 50 perpendicular to the non-metallic surface 100.
  • the metal plate 50 includes a non-conductive region 60.
  • the antenna feed line 40 passes through the non-conductive region 60 and the first antenna 10 and the second antenna, respectively. 20 connections.
  • the metal surface 30 located behind the first antenna 10 can serve as a reflector of the first antenna 10
  • the second antenna 20 located in front of the first antenna 10 can simultaneously serve as a director of the first antenna 10.
  • the radiation directivity and gain of the first antenna 10 are increased and the radiation lobes are expanded, so that the wireless transmission distance of the first antenna 10 and the range of spatial wireless coverage can be improved;
  • the first antenna 10 can serve as a reflector of the second antenna 20, so that the radiation directivity and gain of the second antenna 20 can be increased on the basis of the multiplexing structure, and the wireless transmission distance of the second antenna 20 can be increased.
  • the first antenna 10 and the second antenna 20 respectively comprise two metal arms, each of the metal arms of the first antenna 10 has an arm length L1 and an arm width W1; and the arm length of each metal arm of the second antenna 20 For L2, the arm width is W2.
  • Behind the first antenna 10 is a metal convex parabolic area, that is, a metal surface 30, which is a reflector of the first antenna 10, and the apex of the convex parabola of the metal convex parabolic area and the first antenna
  • the distance between 10 is D1
  • the distance between the first antenna 10 and the second antenna 20 is D2
  • the height of the metal plate 50 behind the metal convex parabolic area is H.
  • L1 and L2 are ⁇ g/4 (ie, one quarter of the guided wave wavelength) of the intermediate frequency of the corresponding frequency band, and W1 and W2 are in the range of 0.0001 mm to 30 mm, and D1 is ⁇ g/4 of the intermediate frequency of the low frequency corresponding frequency band. (ie, a quarter of the guided wave wavelength), and D2 is the ⁇ g/4 of the intermediate frequency of the high frequency corresponding band, and the convex parabola is shaped by the distance between D1 as its focal point and the apex.
  • the height H of the metal plate 50 behind the metal convex parabolic linear region can be designed according to the layer thickness of the actual AiP process, and preferably, H ranges from 0.0001 mm to 30 mm.
  • the metal plate 50 can extend downward in the -Z direction, and the antenna feed line 40 passes through the non-conductive region 60 on the metal plate 50 to feed into the first antenna 10.
  • 4 is a main functional module of the millimeter wave radio frequency front end.
  • the millimeter wave antenna of the embodiment of the present disclosure can be combined with the front end radio frequency system to achieve signal transmission by referring to the functional module shown in FIG. 4 .
  • the metal arm of the first antenna 10 and the metal arm of the second antenna 20 are disposed on the same non-metal surface 100; the metal surface 30 and The non-metallic face 100 is perpendicular and at least one curved edge 31 is located on a plane parallel to the non-metallic face 100.
  • first antenna 10 and the second antenna 20 are connected in series through an antenna feed line 40; the metal surface 30 includes a non-conductive region 60, and the antenna feed line 40 travels through the metal surface 30.
  • Conductive regions 60 are connected to the first antenna 10 and the second antenna 20, respectively.
  • the antenna feed line 40 is connected to the first antenna 10 and the second antenna 20 via the non-conductive region 60 on the metal surface 30, and the first antenna 10 and the second antenna 20 are respectively fed through the antenna feed line 40.
  • the antenna feed line 40 may specifically feed the antenna into the metal line.
  • the antenna of the embodiment of the present disclosure includes a first antenna 10 (a low frequency millimeter wave antenna) and a second antenna 20 (a high frequency millimeter wave antenna) disposed on the non-metal surface 100, and the second antenna 20 is located at the An antenna 10 is more +Y, that is, the second antenna 20 is located in front of the first antenna 10 (on the first side of the first antenna 10) in the +Y direction, and is behind the first antenna 10 (the first antenna 10)
  • the second side) is provided with a metal surface 30 which forms two curved edges 31 in the upper and lower planes (XY plane) parallel to the non-metallic surface 100, and the lower curved edge 31 extends into the metal along the +Z axis
  • the face 30, the metal face 30 is perpendicular to the non-metallic face 100, and the curved edge 31 is curved toward the direction in which the first antenna 10 is located, that is, the curved edge 31 is convexly parabolic with respect to the first antenna 10.
  • the metal face 30 includes a non-conductive region 60, and the antenna feedthrough 40 is connected to the first antenna 10 and the second antenna 20 via the non-conductive region 60, respectively.
  • the metal surface 30 located behind the first antenna 10 can serve as a reflector of the first antenna 10
  • the second antenna 20 located in front of the first antenna 10 can simultaneously serve as a director of the first antenna 10.
  • the radiation directivity and gain of the first antenna 10 are increased, and the wireless transmission distance of the first antenna 10 can be increased; on the other hand, the first antenna 10 can serve as a reflector of the second antenna 20, Therefore, the radiation directivity and gain of the second antenna 20 can be increased on the basis of the multiplexing structure, and the wireless transmission distance of the second antenna 20 can be increased.
  • the first antenna 10 and the second antenna 20 respectively comprise two metal arms.
  • the first antenna 10 has a single arm length L1 and an arm width W1.
  • the second antenna 20 has a single arm length L2 and an arm width W2.
  • Behind the first antenna 10 is a metal convex parabolic linear wall surface, that is, a metal surface 30, which is a reflector of the first antenna 10, and the apex of the convex parabola of the metal convex parabolic linear wall (apex)
  • the distance between one antenna 10 is D1
  • the distance between the first antenna 10 and the second antenna 20 is D2
  • the height of the metal convex parabolic wall surface (metal surface 30) is H.
  • L1 and L2 are ⁇ g/4 (ie, one quarter of the guided wave wavelength) of the intermediate frequency of the corresponding frequency band, and W1 and W2 are in the range of 0.0001 mm to 30 mm, and D1 is ⁇ g/4 of the intermediate frequency of the low frequency corresponding frequency band. And D2 is ⁇ g/4 of the intermediate frequency of the high frequency corresponding band, and the convex parabola is shaped by D1 as the distance between the focus and the apex, and the metal convex paraboloid wall surface (metal surface 30)
  • the height H can be designed according to the layer thickness of the actual AiP process, preferably H ranges from 0.0001 mm to 30 mm. Of course, the metal face 30 can extend downward in the -Z direction.
  • the metal arm of the first antenna 10 and the metal arm of the second antenna 20 are disposed on the same non-metal surface 100; the metal surface 30 and The non-metallic faces 100 intersect and the at least one curved edge 31 lies on a plane perpendicular to the non-metallic face 100.
  • first antenna 10 and the second antenna 20 are connected in series through an antenna feed line 40; the metal surface 30 includes a non-conductive region 60, and the antenna feed line 40 travels through the metal surface 30.
  • Conductive regions 60 are connected to the first antenna 10 and the second antenna 20, respectively.
  • the antenna feed line 40 is connected to the first antenna 10 and the second antenna 20 via the non-conductive region 60 on the metal surface 30, and the first antenna 10 and the second antenna 20 are respectively fed through the antenna feed line 40.
  • the antenna feed line 40 may specifically feed the antenna into the metal line.
  • the antenna of the embodiment of the present disclosure includes a first antenna 10 (a low frequency millimeter wave antenna) and a second antenna 20 (a high frequency millimeter wave antenna) disposed on the non-metal surface 100, and the second antenna 20 is located at the An antenna 10 is more +Y, that is, the second antenna 20 is located in front of the first antenna 10 (on the first side of the first antenna 10) in the +Y direction, and is behind the first antenna 10 (the first antenna 10)
  • the second side) is provided with a metal surface 30 which forms two curved edges 31 on the left and right planes (YZ plane) perpendicular to the non-metallic surface 100, and the curved edge 31 on the right side extends along the +X axis
  • the metal surface 30, the metal surface 30 is perpendicular to the non-metal surface 100, and the curved edge 31 is curved toward the direction in which the first antenna 10 is located, that is, the curved edge 31 is convexly parabolic with respect to the first antenna 10.
  • the metal face 30 includes a non-conductive region 60, and the antenna feedthrough 40 is connected to the first antenna 10 and the second antenna 20 via the non-conductive region 60, respectively.
  • the metal surface 30 located behind the first antenna 10 can serve as a reflector of the first antenna 10
  • the second antenna 20 located in front of the first antenna 10 can simultaneously serve as a director of the first antenna 10.
  • the radiation directivity and gain of the first antenna 10 are increased and the radiation lobes are expanded, so that the wireless transmission distance of the first antenna 10 and the range of spatial wireless coverage can be improved;
  • the first antenna 10 can serve as a reflector of the second antenna 20, so that the radiation directivity and gain of the second antenna 20 can be increased on the basis of the multiplexing structure, and the wireless transmission distance of the second antenna 20 can be increased.
  • the first antenna 10 and the second antenna 20 respectively comprise two metal arms.
  • the first antenna 10 has a single arm length L1 and an arm width W1.
  • the second antenna 20 has a single arm length L2 and an arm width W2.
  • Behind the first antenna 10 is a metal convex parabolic linear wall surface, that is, a metal surface 30, which is a reflector of the first antenna 10, and the apex of the convex parabola of the metal convex parabolic linear wall (apex)
  • the distance between one antenna 10 is D1
  • the distance between the first antenna 10 and the second antenna 20 is D2
  • the height of the metal convex parabolic wall surface (metal surface 30) is H.
  • L1 and L2 are ⁇ g/4 of the intermediate frequency of the respective corresponding frequency bands, and W1 and W2 are in the range of 0.0001 mm to 30 mm, D1 is ⁇ g/4 of the intermediate frequency of the low frequency corresponding frequency band, and D2 is the intermediate frequency of the high frequency corresponding frequency band.
  • ⁇ g/4 and the convex parabola is shaped by D1 as the distance between the focus and the apex, and the height H of the metal convex parabolic wall surface (metal surface 30) can be regarded as the layer thickness of the actual AiP process. Designing, preferably, H ranges from 0.0001 mm to 30 mm.
  • the metal face 30 can extend downward in the -Z direction.
  • An antenna includes a first antenna and a second antenna, wherein the first antenna operates in a first millimeter wave band, the second antenna operates in a second millimeter wave band, and the frequency in the second millimeter wave band is greater than the first a frequency in the millimeter wave band, and the second antenna is located on the first side of the first antenna, the second side of the first antenna is provided with a metal surface, the metal surface includes at least one curved edge, and at least one curved edge faces the first antenna The direction is curved and the first antenna is located between the second antenna and the curved edge.
  • the metal surface located on the second side of the first antenna can be used as the reflector of the first antenna, and the second antenna located on the first side of the first antenna can simultaneously serve as the director of the first antenna, so that the structure can be used in the multiplexing structure.
  • the radiation directivity and gain of the first antenna are increased and the radiation lobes are expanded, so that the wireless transmission distance of the first antenna and the range of the spatial wireless coverage can be improved; on the other hand, the first antenna can be used as the second
  • the reflector of the antenna can also increase the radiation directivity and gain of the second antenna on the basis of the multiplexing structure, and can improve the wireless transmission distance of the second antenna.
  • the antenna of the embodiment of the present disclosure can more effectively utilize the space (area and volume) in the antenna module without substantially increasing the cost, and the antenna can expand the radiation lobes of the tail-flaming antenna under sufficient gain. Achieve a wider space wireless coverage, and support multi-frequency (such as dual-band) millimeter band, can achieve global roaming ability, to have better product competitiveness, and improve the user's wireless experience.
  • a wireless mobile terminal comprising the antenna of any of the above.
  • the implementation examples of the antenna are applicable to the embodiment of the wireless mobile terminal, and the same technical effects can be achieved.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开提供了一种无线移动终端及天线。本公开的天线包括:第一天线,第一天线工作在第一毫米波频段;第二天线,第二天线位于第一天线的第一侧,第二天线工作在第二毫米波频段,第二毫米波频段内的频率大于第一毫米波频段内的频率;金属面,金属面设置于第一天线的远离第二天线一侧的第二侧,金属面包括至少一个弯曲边缘,至少一个弯曲边缘朝第一天线所在的方向弯曲,第一天线位于第二天线和弯曲边缘之间。

Description

无线移动终端及天线
相关申请的交叉引用
本申请主张在2017年12月29日在中国提交的中国专利申请No.201711482114.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信应用的技术领域,尤其涉及一种无线移动终端及天线。
背景技术
由于5G(第五代移动通信)的脚步日益接近,故5G相关的天线需求便日益旺盛与受到瞩目,其中,对终端天线设计最具挑战性与新颖性的便是毫米波的天线阵列设计。而为了有更好的天线辐射空间覆盖,毫米波天线阵列往往会由辐射方向图互补(如尾焰式或称为端射(end-fire)与宽边辐射(broadside))的天线单元所组成,且为了克服毫米波高频的路径损耗,毫米波天线阵列在空间中的各方向的辐射波瓣上都希望有较好的增益以达到更佳的无线传输距离。故在足够增益之下,同时具有理想的辐射波瓣覆盖对毫米波天线设计是个重要的研究课题。
全球的5G毫米波常用频段基本有两区段,一个是26.5GHz到29.5GHz的毫米波低频频率区段,另一个是37GHz到42.5GHz的毫米波高频频率区段。故在上述的无线传输距离与空间覆盖的考量下,若要漫游全球5G毫米波频段,则需支持上述两毫米波频段。而5G毫米波天线阵列目前主流方案为透过系统封装(system in package,SiP)的方式,形成天线封装(Antenna in Package,AiP),即毫米波天线阵列与射频芯片封装成一模块。
目前传统的5G毫米波天线阵列AiP模块中的尾焰式天线,往往由无源引向器(director)加上形状为平面且平直式的反射器(reflector)的准八木天线(quasi-Yagi Uda antenna)所形成,因缺少标准八木天线的引向器,而其辐射波瓣往往较窄,造成无线覆盖较窄,且在频段上往往只支持单一毫米波频率,无法全球漫游,而影响到用户无线体验与产品竞争力。
发明内容
本公开提供了一种天线,包括:
第一天线,所述第一天线工作在第一毫米波频段;
第二天线,所述第二天线位于所述第一天线的第一侧,所述第二天线工作在第二毫米波频段,所述第二毫米波频段内的频率大于所述第一毫米波频段内的频率;
金属面,所述金属面设置于所述第一天线的远离第二天线方向一侧的第二侧,所述金属面包括至少一个弯曲边缘,所述至少一个弯曲边缘朝所述第一天线所在的方向弯曲,所述第一天线位于所述第二天线和所述弯曲边缘之间。
本公开还提供了一种无线移动终端,包括如上任一项所述的天线。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的天线的结构示意图;
图2为本公开实施例的天线的另一结构示意图;
图3为本公开实施例的天线的另一结构示意图;
图4为本公开实施例的毫米波射频前端的结构示意图。
具体实施方式
本公开的目的在于提供一种无线移动终端及天线,用以解决相关技术中尾焰式天线辐射波瓣往往较窄,造成无线覆盖较窄,且仅支持单一毫米波频率的问题。
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例及附图进行详细描述。
在本公开的一些实施例中,提供了一种天线,如图1至图3所示,包括:
第一天线10,所述第一天线10工作在第一毫米波频段;
第二天线20,所述第二天线20位于所述第一天线10在Y轴正向方向(+Y方向)一侧的第一侧,所述第二天线20工作在第二毫米波频段,所述第二毫米波频段内的频率大于所述第一毫米波频段内的频率;
金属面30,所述金属面设置于所述第一天线10在的远离第二天线的Y轴负向方向(-Y方向)一侧的第二侧的,所述金属面30包括至少一个弯曲边缘31,所述至少一个弯曲边缘31朝所述第一天线10所在的方向弯曲,所述第一天线10位于所述第二天线20和所述弯曲边缘31之间。
本公开实施例的天线,位于第一天线10第二侧的金属面30可作为第一天线10的反射器,位于第一天线10第一侧的第二天线20可同时兼当第一天线10的引向器,故可在复用结构的基础上,增加第一天线10的辐射方向性与增益且有助辐射波瓣的扩展,故可提升第一天线10的无线传输距离与空间无线覆盖的范围;另一方面,第一天线10可作为第二天线20的反射器,故同样地可在复用结构的基础上,增加第二天线20的辐射方向性与增益,而可提升第二天线20的无线传输距离。故此设计,天线可在足够增益之下,扩展了尾焰式天线的辐射波瓣,达到了更广的空间无线覆盖,且支持多频(如双频)毫米波段,可达成全球漫游能力,以有更好的产品竞争力,提高了用户的无线体验。
其中,第一天线10工作在第一毫米波频段,第一毫米波频段如可为低频毫米波,第二天线20工作在第二毫米波频段,第二毫米波频段如可为高频毫米波,此时第一天线10为低频毫米波天线,第二天线20为高频毫米波天线,该天线组成了一组低频与高频的双频尾焰式辐射天线。
可选地,如图1至图3所示,所述弯曲边缘31呈抛物线。
此时,金属面30的弯曲边缘31呈抛物线,抛物线朝第一天线10所在的方向弯曲,金属面30可作为第一天线10的反射器。
具体地,所述弯曲边缘31的顶点与所述弯曲边缘31的焦点之间的距离等于所述弯曲边缘31的顶点与所述第一天线10之间的距离。
此时,弯曲边缘31的顶点与焦点之间的距离等于弯曲边缘31的顶点与 第一天线10之间的距离,提升了天线性能。
可选地,所述第一天线10和所述第二天线20分别包括至少一个金属臂,但不限于此。所述第一天线10的金属臂设置在同一非金属面或设置在不同的非金属面上,所述第二天线20的金属臂设置在同一非金属面或设置在不同的非金属面上。
作为一种可选的实现方式,如图1所示,所述第一天线10的金属臂和所述第二天线20的金属臂设置在同一非金属面100;所述金属面30与所述非金属面100共平面。
此时,金属面30上的至少一个弯曲边缘31位于非金属面100上,金属面30与第一天线10共平面。
进一步地,所述第一天线10和所述第二天线20通过天线馈入线40串联;所述天线还包括:
与所述非金属面100垂直设置的金属板50,所述金属面30与所述第一天线10位于所述金属板50的同一侧,所述金属板50包括非导电区域60,所述天线馈入线40行经所述非导电区域60分别与所述第一天线10和第二天线20连接。
此时,天线馈入线40行经金属板50上的非导电区域60分别与第一天线10和第二天线20连接,第一天线10和第二天线20两毫米波天线经由天线馈入线40串接成一组双频尾焰式辐射的天线。
其中,天线馈入线40具体包括两个天线馈入金属线,两个天线馈入金属线中至少有一个天线馈入金属线不位于所述非金属面100上。当第一天线10和第二天线20分别包括两个金属臂时,第一天线10的第一金属臂和第二天线20的第一金属臂通过第一天线馈入金属线连接,第一天线10的第二金属臂和第二天线20的第二金属臂通过第二天线馈入金属线连接,此时,若第一天线10的第一金属臂和第二天线20的第一金属臂位于非金属面100上,而第一天线10的第二金属臂和第二天线20的第二金属臂位于除非金属面100之外的其他非金属面上,则第一天线馈入金属线位于非金属面100上,第二天线馈入金属线位于其他非金属面上;若第一天线10的第一金属臂和第二金属臂,以及第二天线20的第一金属臂和第二金属臂均位于非金属面100上, 此时,可将第一天线馈入金属线设置于非金属面100上,将第二天线馈入金属线设置于非金属面100的上方,并通过向下穿孔连接至第一天线10的第二金属臂和第二天线20的第二金属臂;若第一天线10的第一金属臂和第二天线20的第一金属臂位于除非金属面100之外的第一非金属面上,以及第一天线10的第二金属臂和第二天线20的第二金属臂位于除非金属面100之外的第二非金属面,此时,第一天线馈入金属线位于第一非金属面上,第二天线馈入金属线位于第二非金属面上。
下面对本公开实施例的天线的一具体结构举例说明如下:
如图1所示,本公开实施例的天线包括设置于非金属面100上的第一天线10(低频毫米波天线)和第二天线20(高频毫米波天线),第二天线20位于第一天线10更为+Y的方向,即在+Y方向上第二天线20位于第一天线10的前方(第一天线10的第一侧),且第一天线10的后方(第一天线10的第二侧)设置有金属面30,金属面30包括一个呈抛物线的弯曲边缘31,弯曲边缘31朝第一天线10所在的方向弯曲,即弯曲边缘31相对于第一天线10呈凸抛物线,且金属面30与非金属面100共平面,弯曲边缘31位于非金属面100上。第一天线10的后方还设置有与非金属面100垂直的金属板50,金属板50上包括非导电区域60,天线馈入线40行经非导电区域60分别与第一天线10和第二天线20连接。该天线中,位于第一天线10后方的金属面30可作为第一天线10的反射器,位于第一天线10前方的第二天线20可同时兼当第一天线10的引向器,故可在复用结构的基础上,增加第一天线10的辐射方向性与增益且有助辐射波瓣的扩展,故可提升第一天线10的无线传输距离与空间无线覆盖的范围;另一方面,第一天线10可作为第二天线20的反射器,故同样地可在复用结构的基础上,增加第二天线20的辐射方向性与增益,而可提升第二天线20的无线传输距离。
其中第一天线10和第二天线20分别包括两个金属臂,第一天线10的每个金属臂的臂长为L1,臂宽为W1;而第二天线20的每个金属臂的臂长为L2,臂宽为W2。在第一天线10后方有一金属凸抛物线形区,即金属面30,做为是第一天线10的反射器(reflector),而金属凸抛物线形区的凸抛物线的顶点(apex)与第一天线10之间的距离为D1,第一天线10与第二天线20 之间的距离为D2;金属凸抛物线形区后方的金属板50的高度为H。优选地,L1与L2为各自对应频段中间频率的λg/4(即四分之一的导波波长),而W1与W2范围为0.0001mm到30mm,D1为低频对应频段中间频率的λg/4(即四分之一的导波波长),而D2为高频对应频段中间频率的λg/4,而凸抛物线则是以D1作为其焦点(focus)与顶点之间的距离进行形状设计,而金属凸抛物线形区后方的金属板50的高度H可视实际AiP工艺的层厚进行设计,优选地,H的范围为0.0001mm到30mm。当然,此金属板50可向下往-Z方向延伸,而天线馈入线40从此金属板50上的非导电区域60穿出而馈入第一天线10。图4为毫米波射频前端的主要功能模块,本公开实施例的毫米波天线可参考图4所示的功能模块,与前端射频系统进行搭配以达成信号传输。
作为另一种可选的实现方式,如图2所示,所述第一天线10的金属臂和所述第二天线20的金属臂设置在与同一非金属面100;所述金属面30与所述非金属面100垂直,且至少一个弯曲边缘31位于与所述非金属面100平行的平面上。
此时,金属面30上的至少一个弯曲边缘31位于与非金属面100平行的平面(X-Y平面)上,至少一个弯曲边缘31沿Z轴方向延伸成金属面30,金属面30与非金属面100垂直。
进一步地,所述第一天线10和所述第二天线20通过天线馈入线40串联;所述金属面30包括非导电区域60,所述天线馈入线40行经所述金属面30的非导电区域60分别与所述第一天线10和第二天线20连接。
此时,天线馈入线40行经金属面30上的非导电区域60分别与第一天线10和第二天线20连接,第一天线10和第二天线20两毫米波天线经由天线馈入线40串接成一组双频尾焰式辐射的天线。
其中,天线馈入线40具体可为天线馈入金属线。
下面对本公开实施例的天线的另一具体结构举例说明如下:
如图2所示,本公开实施例的天线包括设置于非金属面100上的第一天线10(低频毫米波天线)和第二天线20(高频毫米波天线),第二天线20位于第一天线10更为+Y的方向,即在+Y方向上第二天线20位于第一天线10 的前方(第一天线10的第一侧),且第一天线10的后方(第一天线10的第二侧)设置有金属面30,金属面30在与非金属面100平行的上下两个平面(X-Y平面)形成两个弯曲边缘31,下方的弯曲边缘31沿着+Z轴延伸成金属面30,金属面30与非金属面100垂直,且弯曲边缘31朝第一天线10所在的方向弯曲,即弯曲边缘31相对于第一天线10呈凸抛物线。金属面30上包括非导电区域60,天线馈入线40行经非导电区域60分别与第一天线10和第二天线20连接。该天线中,位于第一天线10后方的金属面30可作为第一天线10的反射器,位于第一天线10前方的第二天线20可同时兼当第一天线10的引向器,故可在复用结构的基础上,增加第一天线10的辐射方向性与增益,而可提升第一天线10的无线传输距离;另一方面,第一天线10可作为第二天线20的反射器,故同样地可在复用结构的基础上,增加第二天线20的辐射方向性与增益,而可提升第二天线20的无线传输距离。
其中第一天线10和第二天线20分别包括两个金属臂,第一天线10的单臂长为L1,臂宽为W1;而第二天线20的单臂长为L2,臂宽为W2。在第一天线10后方有一金属凸抛物线形墙面,即金属面30,做为是第一天线10的反射器(reflector),而金属凸抛物线形墙面的凸抛物线的顶点(apex)与第一天线10之间的距离为D1,第一天线10与第二天线20之间的距离为D2;金属凸抛物线形墙面(金属面30)的高度为H。优选地,L1与L2为各自对应频段中间频率的λg/4(即四分之一的导波波长),而W1与W2范围为0.0001mm到30mm,D1为低频对应频段中间频率的λg/4,而D2为高频对应频段中间频率的λg/4,而凸抛物线则是以D1作为其焦点(focus)与顶点之间的距离进行形状设计,而金属凸抛物线形墙面(金属面30)的高度H可视实际AiP工艺的层厚进行设计,优选地,H的范围为0.0001mm到30mm。当然,此金属面30可向下往-Z方向延伸。
作为另一种可选的实现方式,如图3所示,所述第一天线10的金属臂和所述第二天线20的金属臂设置在与同一非金属面100;所述金属面30与所述非金属面100相交,且所述至少一个弯曲边缘31位于与所述非金属面100垂直的平面上。
此时,金属面30上的至少一个弯曲边缘31位于与非金属面100垂直的 平面(Y-Z平面)上,弯至少一个曲边缘31沿X轴方向延伸成金属面30,金属面30与非金属面100相交。
进一步地,所述第一天线10和所述第二天线20通过天线馈入线40串联;所述金属面30包括非导电区域60,所述天线馈入线40行经所述金属面30的非导电区域60分别与所述第一天线10和第二天线20连接。
此时,天线馈入线40行经金属面30上的非导电区域60分别与第一天线10和第二天线20连接,第一天线10和第二天线20两毫米波天线经由天线馈入线40串接成一组双频尾焰式辐射的天线。
其中,天线馈入线40具体可为天线馈入金属线。
下面对本公开实施例的天线的另一具体结构举例说明如下:
如图3所示,本公开实施例的天线包括设置于非金属面100上的第一天线10(低频毫米波天线)和第二天线20(高频毫米波天线),第二天线20位于第一天线10更为+Y的方向,即在+Y方向上第二天线20位于第一天线10的前方(第一天线10的第一侧),且第一天线10的后方(第一天线10的第二侧)设置有金属面30,金属面30在与非金属面100垂直的左右两个平面(Y-Z平面)形成两个弯曲边缘31,右侧的弯曲边缘31沿着+X轴延伸成金属面30,金属面30与非金属面100垂直,且弯曲边缘31朝第一天线10所在的方向弯曲,即弯曲边缘31相对于第一天线10呈凸抛物线。金属面30上包括非导电区域60,天线馈入线40行经非导电区域60分别与第一天线10和第二天线20连接。该天线中,位于第一天线10后方的金属面30可作为第一天线10的反射器,位于第一天线10前方的第二天线20可同时兼当第一天线10的引向器,故可在复用结构的基础上,增加第一天线10的辐射方向性与增益且有助辐射波瓣的扩展,故可提升第一天线10的无线传输距离与空间无线覆盖的范围;另一方面,第一天线10可作为第二天线20的反射器,故同样地可在复用结构的基础上,增加第二天线20的辐射方向性与增益,而可提升第二天线20的无线传输距离。
其中第一天线10和第二天线20分别包括两个金属臂,第一天线10的单臂长为L1,臂宽为W1;而第二天线20的单臂长为L2,臂宽为W2。在第一天线10后方有一金属凸抛物线形墙面,即金属面30,做为是第一天线10的 反射器(reflector),而金属凸抛物线形墙面的凸抛物线的顶点(apex)与第一天线10之间的距离为D1,第一天线10与第二天线20之间的距离为D2;金属凸抛物线形墙面(金属面30)的高度为H。优选地,L1与L2为各自对应频段中间频率的λg/4,而W1与W2范围为0.0001mm到30mm,D1为低频对应频段中间频率的λg/4,而D2为高频对应频段中间频率的λg/4,而凸抛物线则是以D1作为其焦点(focus)与顶点之间的距离进行形状设计,而金属凸抛物线形墙面(金属面30)的高度H可视实际AiP工艺的层厚进行设计,优选地,H的范围为0.0001mm到30mm。当然,此金属面30可向下往-Z方向延伸。
本公开实施例具有以下有益效果:
本公开实施例的天线,包括第一天线和第二天线,其中第一天线工作在第一毫米波频段,第二天线工作在第二毫米波频段,第二毫米波频段内的频率大于第一毫米波频段内的频率,且第二天线位于第一天线的第一侧,第一天线的第二侧设置有金属面,金属面包括至少一个弯曲边缘,至少一个弯曲边缘朝第一天线所在的方向弯曲,第一天线位于第二天线和弯曲边缘之间。如此位于第一天线第二侧的金属面可作为第一天线的反射器,位于第一天线第一侧的第二天线可同时兼当第一天线的引向器,故可在复用结构的基础上,增加第一天线的辐射方向性与增益且有助辐射波瓣的扩展,故可提升第一天线的无线传输距离与空间无线覆盖的范围;另一方面,第一天线可作为第二天线的反射器,故同样地可在复用结构的基础上,增加第二天线的辐射方向性与增益,而可提升第二天线的无线传输距离。本公开实施例的天线,可在基本不增加成本下,更有效率地利用天线模块里的空间(面积与体积),天线可在足够增益之下,扩展了尾焰式天线的辐射波瓣,达到了更广的空间无线覆盖,并且支持多频(如双频)毫米波段,可达成全球漫游能力,以有更好的产品竞争力,而提高用户的无线体验。
在本公开的一些实施例中,还提供了一种无线移动终端,包括如上任一项所述的天线。
其中,上述天线的所述实现实例均适用于该无线移动终端的实施例中,也能达到相同的技术效果。
本公开专利保护范围包含但不仅局限于上述提出的实施例与其内的结构形状,尺寸,方向,位置,实现形式,及接地脚位的排列组合与数目,与金属条数量和组合,或天线放置,频段,架构,与组合等,其他基于本专利发明的基础思维精神上的应用与设计皆在本专利保护涵盖的范围内。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种天线,包括:
    第一天线(10),所述第一天线(10)工作在第一毫米波频段;
    第二天线(20),所述第二天线(20)位于所述第一天线(10)的第一侧,所述第二天线(20)工作在第二毫米波频段,所述第二毫米波频段内的频率大于所述第一毫米波频段内的频率;
    金属面(30),所述金属面(30)设置于所述第一天线(10)的远离第二天线方向一侧的第二侧,所述金属面(30)包括至少一个弯曲边缘(31),所述至少一个弯曲边缘(31)朝所述第一天线(10)所在的方向弯曲,所述第一天线(10)位于所述第二天线(20)和所述弯曲边缘31之间。
  2. 根据权利要求1所述的天线,其中,所述弯曲边缘(31)呈抛物线。
  3. 根据权利要求2所述的天线,其中,所述弯曲边缘(31)的顶点与所述弯曲边缘(31)的焦点之间的距离等于所述弯曲边缘(31)的顶点与所述第一天线(10)之间的距离。
  4. 根据权利要求1所述的天线,其中,所述第一天线(10)和所述第二天线(20)分别包括至少一个金属臂;
    所述第一天线(10)的金属臂设置在同一非金属面或设置在不同的非金属面上,所述第二天线(20)的金属臂设置在同一非金属面或设置在不同的非金属面上。
  5. 根据权利要求4所述的天线,其中,所述第一天线(10)的金属臂和所述第二天线(20)的金属臂设置在同一非金属面(100);所述金属面(30)与所述非金属面(100)共平面。
  6. 根据权利要求5所述的天线,其中,所述第一天线(10)和所述第二天线(20)通过天线馈入线(40)串联;所述天线还包括:
    与所述非金属面(100)垂直设置的金属板(50),所述金属面(30)与所述第一天线(10)位于所述金属板(50)的同一侧,所述金属板(50)包括非导电区域(60),所述天线馈入线(40)行经所述非导电区域(60)分别与所述第一天线(10)和第二天线(20)连接。
  7. 根据权利要求4所述的天线,其中,所述第一天线(10)的金属臂和所述第二天线(20)的金属臂设置在同一非金属面(100);所述金属面(30)与所述非金属面(100)垂直,且至少一个弯曲边缘(31)位于与所述非金属面(100)平行的平面上。
  8. 根据权利要求4所述的天线,其中,所述第一天线(10)的金属臂和所述第二天线(20)的金属臂设置在同一非金属面(100);所述金属面(30)与所述非金属面(100)相交,且至少一个弯曲边缘(31)位于与所述非金属面(100)垂直的平面上。
  9. 根据权利要求7或8所述的天线,其中,所述第一天线(10)和所述第二天线(20)通过天线馈入线(40)串联;所述金属面(30)包括非导电区域(60),所述天线馈入线(40)行经所述金属面(30)的非导电区域(60)分别与所述第一天线(10)和第二天线(20)连接。
  10. 一种无线移动终端,包括如权利要求1至9任一项所述的天线。
PCT/CN2018/119308 2017-12-29 2018-12-05 无线移动终端及天线 WO2019128655A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711482114.4 2017-12-29
CN201711482114.4A CN108288757B (zh) 2017-12-29 2017-12-29 一种无线移动终端及天线

Publications (1)

Publication Number Publication Date
WO2019128655A1 true WO2019128655A1 (zh) 2019-07-04

Family

ID=62832242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119308 WO2019128655A1 (zh) 2017-12-29 2018-12-05 无线移动终端及天线

Country Status (2)

Country Link
CN (1) CN108288757B (zh)
WO (1) WO2019128655A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108232422B (zh) * 2017-12-29 2019-12-06 维沃移动通信有限公司 一种天线及无线移动终端
CN108288757B (zh) * 2017-12-29 2020-02-07 维沃移动通信有限公司 一种无线移动终端及天线
CN111129712A (zh) 2020-01-10 2020-05-08 深圳市信维通信股份有限公司 5g毫米波双极化天线模组及手持设备
CN111129713A (zh) 2020-01-10 2020-05-08 深圳市信维通信股份有限公司 一种5g毫米波双极化天线模组及终端设备
CN111129711A (zh) 2020-01-10 2020-05-08 深圳市信维通信股份有限公司 5g双极化天线模组及终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205429148U (zh) * 2014-10-22 2016-08-03 三星电子株式会社 无线设备和无线设备的天线
CN106374226A (zh) * 2016-09-30 2017-02-01 深圳市信维通信股份有限公司 用于第五代无线通信的双频阵列天线
CN106876879A (zh) * 2017-03-02 2017-06-20 广东欧珀移动通信有限公司 一种天线组件和终端
CN206271859U (zh) * 2016-10-24 2017-06-20 深圳市信维通信股份有限公司 第五代天线阵列与第四代天线共存的终端
CN108288757A (zh) * 2017-12-29 2018-07-17 维沃移动通信有限公司 一种无线移动终端及天线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964453B (zh) * 2009-07-23 2013-05-22 宏达国际电子股份有限公司 平面可重置式天线
CN102044756B (zh) * 2009-10-26 2014-07-02 雷凌科技股份有限公司 双频印刷式八木天线
US9843110B2 (en) * 2015-10-29 2017-12-12 Cisco Technology, Inc. Mitigating co-channel interference in multi-radio devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205429148U (zh) * 2014-10-22 2016-08-03 三星电子株式会社 无线设备和无线设备的天线
CN106374226A (zh) * 2016-09-30 2017-02-01 深圳市信维通信股份有限公司 用于第五代无线通信的双频阵列天线
CN206271859U (zh) * 2016-10-24 2017-06-20 深圳市信维通信股份有限公司 第五代天线阵列与第四代天线共存的终端
CN106876879A (zh) * 2017-03-02 2017-06-20 广东欧珀移动通信有限公司 一种天线组件和终端
CN108288757A (zh) * 2017-12-29 2018-07-17 维沃移动通信有限公司 一种无线移动终端及天线

Also Published As

Publication number Publication date
CN108288757B (zh) 2020-02-07
CN108288757A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2019128655A1 (zh) 无线移动终端及天线
EP4016742A1 (en) Antenna module and electronic device
JP6400839B2 (ja) 移動通信サービス用オムニアンテナ
CN110915062A (zh) 具有带射频扼流器的反射器组件的基站天线
TWI518992B (zh) 高增益天線及無線裝置
US11936116B2 (en) Dual polarized omni-directional antenna and base station including same
WO2019128654A1 (zh) 天线及无线移动终端
JP2011244440A (ja) 広角マルチビーム
CN108987944A (zh) 一种终端设备
TW201345045A (zh) 天線系統
TWI629835B (zh) 天線單元、天線系統及天線控制方法
CN114639950A (zh) 双极化天线
CN110112561B (zh) 一种单极化天线
KR101798628B1 (ko) 기지국용 배열 안테나
KR102274497B1 (ko) 파라볼릭-하이퍼볼릭 반사기를 포함하는 안테나 장치
TWI692148B (zh) 天線系統及其天線結構
KR101151892B1 (ko) 빔틸트 지향성을 갖는 수평 편파 평면 구조 안테나 및 이를 이용한 수평 편파 평면 구조 배열 안테나
CN110740002A (zh) 一种电子设备
JP2019009708A (ja) アンテナ
TWI697154B (zh) 天線結構
CN110635234A (zh) 天线结构
CN210224292U (zh) 一种超宽带毫米波天线
KR102293354B1 (ko) 이동통신 서비스용 옴니 안테나
KR101284228B1 (ko) 위상 반전된 거울 대칭형 시어핀스키 프랙탈 구조의 이중 대역 안테나
US20240039158A1 (en) Multiband antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894736

Country of ref document: EP

Kind code of ref document: A1