WO2019128406A1 - Robot speed control method and system - Google Patents

Robot speed control method and system Download PDF

Info

Publication number
WO2019128406A1
WO2019128406A1 PCT/CN2018/111110 CN2018111110W WO2019128406A1 WO 2019128406 A1 WO2019128406 A1 WO 2019128406A1 CN 2018111110 W CN2018111110 W CN 2018111110W WO 2019128406 A1 WO2019128406 A1 WO 2019128406A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
robot
preset
speed
target
Prior art date
Application number
PCT/CN2018/111110
Other languages
French (fr)
Chinese (zh)
Inventor
胡陟
李佳艺
李�杰
Original Assignee
上海物景智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海物景智能科技有限公司 filed Critical 上海物景智能科技有限公司
Publication of WO2019128406A1 publication Critical patent/WO2019128406A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1651Programme controls characterised by the control loop acceleration, rate control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Definitions

  • the method further includes: step S000, constructing the travel map information according to the robot travel target position, and setting the second preset speed information to the corresponding target position.
  • step S500 includes: step S510: acquiring current posture information of the robot in real time during the traveling of the robot; step S520 acquiring posture deviation information according to the current posture information of the robot and the target posture information; step S530 is based on Obtaining the posture deviation information, acquiring the regulation information of the robot travel by using the first preset algorithm; and controlling the robot to travel to the next target position according to the regulation information.
  • step S000 constructs the travel map information according to the robot travel target position and sets the corresponding target position to be reached. Describe the second preset speed information; step S100 acquires distance information between the current position of the robot and each target position that is not reached in the travel map information, and first preset speed information of the current position; step S200 is based on the current travel of the robot First preset speed information and distance information of each target position that is not reached, acquiring corresponding second speed information when the robot travels to each of the unreached target positions; the step S300 will acquire the obtained non-arrival The second speed information corresponding to each target position is compared with the corresponding second preset speed information; step S400 acquires the unreached target position that meets the preset condition according to the result of the step S300 comparison, The unreached target position that satisfies the preset condition is set as the next target position that the robot travels; step S510 is in the machine During travel, acquired in real time
  • Each point is set v1 m , v2 m , v3 m ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

A robot speed control method and system. The method comprises: obtaining distance information between a current position of a robot and each as-yet-unreached target position in travel map information and first preset speed information of the current position; obtaining, according to the first preset speed information of the currently travelling robot and the distance information for travelling to each as-yet-unreached target position, corresponding second speed information when the robot travels to each as-yet-unreached target position; comparing the obtained second speed information corresponding to each as-yet-unreached target position with corresponding second preset speed information; obtaining, according to a comparison result, an as-yet-unreached target position that satisfies a preset condition, and setting the as-yet-unreached target position that satisfies the preset condition as the next target position to which the robot will travel; and controlling the robot to travel to the next target position.

Description

一种机器人的速度控制方法及系统Speed control method and system for robot 技术领域Technical field
本发明涉及搬运机器人的速度控制,特别涉及一种机器人的速度控制方法及系统。The invention relates to speed control of a handling robot, in particular to a speed control method and system of a robot.
背景技术Background technique
搬运机器人是可以进行自动化搬运作业的工业机器人。搬运机器人可安装不同的末端执行器以完成各种不同形状和状态的工件搬运工作,大大减轻了人类繁重的体力劳动。搬运机器人工作中,需要给其设置速度上限,以防止搬运过程中出现各种事故。而不同的搬运场景下,对搬运速度的安全要求不一样,需要给搬运机器人设置不同的速度上限。The handling robot is an industrial robot that can perform automated handling operations. The handling robot can be equipped with different end effectors to complete the workpiece handling work in various shapes and states, which greatly reduces the heavy manual labor of human beings. In the work of the handling robot, it is necessary to set an upper speed limit to prevent various accidents during the handling. In different handling scenarios, the safety requirements for the handling speed are different. It is necessary to set different speed limits for the handling robot.
针对此种情况,本申请提供解决以上技术问题的技术方案。In response to such a situation, the present application provides a technical solution to solve the above technical problems.
发明内容Summary of the invention
本发明的目的是提供一种机器人的速度控制方法及系统,通过获取机器人当前位置信息、行进路线上的工作状况,以及最大的线速度信息,来获取机器人目标的位置信息,从而确定机器人的行进路线;因此可以保证机器人在工作过程中,根据路况的不同进行及时调整目标位置;能够根据不同的速度上限,自适应调整路径上的下一个目标点距离和加速度,保证搬运机器人速度平滑变化,可以减小搬运过程中发生事故的概率。An object of the present invention is to provide a speed control method and system for a robot, which acquires position information of a robot target by acquiring current position information of the robot, working conditions on the travel route, and maximum line speed information, thereby determining the travel of the robot. Route; therefore, it can ensure that the robot can adjust the target position in time according to different road conditions during the working process; it can adaptively adjust the distance and acceleration of the next target point on the path according to different speed upper limits to ensure smooth movement of the handling robot. Reduce the probability of accidents during handling.
本发明提供的技术方案如下:The technical solution provided by the present invention is as follows:
一种机器人的速度控制方法,包括:步骤S100获取机器人当前位置与行进地图信息中未到达的各目标位置之间的距离信息以及所述当前位置的第一 预设速度信息;步骤S200根据机器人当前行进的第一预设速度信息以及行进到所述未到达的各目标位置的距离信息,获取机器人行进到所述未到达的各目标位置时的对应第二速度信息;步骤S300将获取的所述未到达的各目标位置时对应的所述第二速度信息与对应的第二预设速度信息进行比对;步骤S400根据步骤S300比对的结果,获取满足预设条件的未到达的目标位置,将所述满足预设条件的未到达的目标位置设定为机器人行进的下一目标位置;步骤S500控制所述机器人行进至所述下一目标位置。A speed control method for a robot includes: step S100: acquiring distance information between a current position of the robot and each target position that is not reached in the travel map information, and first preset speed information of the current position; and step S200 according to the current robot a first preset speed information that travels and distance information that travels to the unreceived target positions, and acquires corresponding second speed information when the robot travels to each of the unreached target positions; the step S300 will acquire the acquired The second speed information corresponding to each target position that is not reached is compared with the corresponding second preset speed information; step S400 acquires the unreached target position that meets the preset condition according to the result of the comparison of step S300, The unreached target position that satisfies the preset condition is set as the next target position that the robot travels; step S500 controls the robot to travel to the next target position.
进一步的,在所述步骤S100之前还包括:步骤S000根据所述机器人行进目标位置,构建所述行进地图信息以及设定到达相应的所述目标位置所述第二预设速度信息。Further, before the step S100, the method further includes: step S000, constructing the travel map information according to the robot travel target position, and setting the second preset speed information to the corresponding target position.
进一步的,所述步骤S500包括:步骤S510在机器人的行进过程中,实时获取所述机器人当前的姿态信息;步骤S520根据所述机器人的当前姿态信息与目标姿态信息获取姿态偏差信息;步骤S530根据获取的所述姿态偏差信息,利用第一预设算法获取所述机器人行进的调控信息;步骤S540根据所述调控信息控制机器人行进至所述下一目标位置。Further, the step S500 includes: step S510: acquiring current posture information of the robot in real time during the traveling of the robot; step S520 acquiring posture deviation information according to the current posture information of the robot and the target posture information; step S530 is based on Obtaining the posture deviation information, acquiring the regulation information of the robot travel by using the first preset algorithm; and controlling the robot to travel to the next target position according to the regulation information.
进一步的,所述姿态偏差信息包括:Further, the posture deviation information includes:
Figure PCTCN2018111110-appb-000001
Figure PCTCN2018111110-appb-000001
P r(x r,y rr)--目标姿态信息,P(x,y,θ)--当前姿态信息,
Figure PCTCN2018111110-appb-000002
--姿态偏差信息。
P r (x r , y r , θ r )--target attitude information, P(x, y, θ)--current attitude information,
Figure PCTCN2018111110-appb-000002
-- Posture deviation information.
进一步的,获取所述调控信息的第一预设算法的数学模型包括:以所述姿态偏差信息中ρ,α为第一预设算法的数学模型的参变量;Further, the mathematical model of the first preset algorithm for acquiring the regulation information includes: taking ρ, α in the posture deviation information as a parameter of a mathematical model of the first preset algorithm;
Figure PCTCN2018111110-appb-000003
Figure PCTCN2018111110-appb-000003
Figure PCTCN2018111110-appb-000004
Figure PCTCN2018111110-appb-000004
Figure PCTCN2018111110-appb-000005
Figure PCTCN2018111110-appb-000005
k 1,k 2---为预设常量;v---机器人的线速度;ω---机器人的角速度;ρ---目标点距离。 k 1 , k 2 --- is a preset constant; v---the linear velocity of the robot; ω---the angular velocity of the robot; ρ---the distance of the target point.
一种机器人的速度控制系统,包括:可执行权利要以上所述机器人的速度控制方法;第一预设信息获取模块,获取机器人当前位置与行进地图信息中未到达的各目标位置之间的距离信息以及所述当前位置的第一预设速度信息;第二预设信息获取模块,与所述第一预设信息获取模块通讯连接;根据机器人当前行进的第一预设速度信息以及行进到所述未到达的各目标位置的距离信息,获取机器人行进到所述未到达的各目标位置时的对应第二速度信息;信息比对模块,与所述第二预设信息获取模块通讯连接,获取的所述未到达的各目标位置时对应的所述第二速度信息与对应的第二预设速度信息进行比对;目标位置获取模块,与所述信息比对模块通讯连接,获取满足预设条件的未到达的目标位置,将所述满足预设条件的未到达的目标位置设定为机器人行进的下一目标位置;控制模块,控制所述机器人行进至所述下一目标位置。A speed control system for a robot includes: a speed control method capable of executing the robot as described above; and a first preset information acquisition module that acquires a distance between a current position of the robot and each target position that is not reached in the travel map information Information and the first preset speed information of the current location; the second preset information acquiring module is in communication with the first preset information acquiring module; according to the first preset speed information that the robot currently travels and travels to the location Decoding the distance information of each target position that is not reached, acquiring corresponding second speed information when the robot travels to each of the unreached target positions; and the information comparison module is in communication with the second preset information acquiring module to obtain The second speed information corresponding to the unreceived target positions is compared with the corresponding second preset speed information; the target position acquiring module is connected with the information comparison module to obtain the preset The unreached target position of the condition, the unreached target position that satisfies the preset condition is set as the robot traveling The next target position; and a control module that controls the robot proceeds to the next target position.
进一步,还包括:预设信息设定模块,与所述第一预设信息获取模块通讯连接,根据所述机器人行进目标位置,构建所述行进地图信息以及设定到达相应的所述目标位置所述第二预设速度信息。Further, the method further includes: a preset information setting module, and a communication connection with the first preset information acquiring module, constructing the traveling map information according to the robot traveling target position, and setting the reaching the corresponding target location The second preset speed information is described.
进一步,所述控制模块包括:当前的姿态信息获取子模块,在机器人的行进过程中,实时获取所述机器人当前的姿态信息;姿态偏差信息获取子模块,根据所述机器人的当前姿态信息与目标姿态信息获取姿态偏差信息;调控信息获取子模块,根据获取的所述姿态偏差信息,利用第一预设算法获取所述机器人行进的调控信息,根据所述调控信息控制机器人行进至所述下一目标位置。Further, the control module includes: a current attitude information acquisition sub-module, which acquires current posture information of the robot in real time during the traveling of the robot; the attitude deviation information acquisition sub-module, according to the current posture information and target of the robot The posture information acquisition posture deviation information; the regulation information acquisition sub-module, according to the acquired posture deviation information, acquiring the regulation information of the robot travel by using the first preset algorithm, and controlling the robot to travel to the next according to the regulation information target location.
进一步,所述姿态偏差信息包括:Further, the attitude deviation information includes:
Figure PCTCN2018111110-appb-000006
P r(x r,y rr)--目标姿态信息, P(x,y,θ)--当前姿态信息,
Figure PCTCN2018111110-appb-000007
--姿态偏差信息。
Figure PCTCN2018111110-appb-000006
P r (x r , y r , θ r )--target attitude information, P(x, y, θ)--current attitude information,
Figure PCTCN2018111110-appb-000007
-- Posture deviation information.
进一步,获取所述调控信息的第一预设算法的数学模型包括:以所述姿态偏差信息中ρ,α为第一预设算法的数学模型的参变量;Further, the mathematical model of the first preset algorithm for acquiring the regulation information includes: using ρ, α in the posture deviation information as a parameter of a mathematical model of the first preset algorithm;
Figure PCTCN2018111110-appb-000008
Figure PCTCN2018111110-appb-000008
Figure PCTCN2018111110-appb-000009
Figure PCTCN2018111110-appb-000009
Figure PCTCN2018111110-appb-000010
Figure PCTCN2018111110-appb-000010
k 1,k 2---为预设常量;v---机器人的线速度;ω---机器人的角速度;ρ---目标点距离。 k 1 , k 2 --- is a preset constant; v---the linear velocity of the robot; ω---the angular velocity of the robot; ρ---the distance of the target point.
本发明提供的一种机器人的速度控制方法及系统,能够带来以下至少一种The speed control method and system for a robot provided by the present invention can bring at least one of the following
有益效果:Beneficial effects:
1、在本发明中,通过获取机器人当前位置信息、行进路线上的工作状况,以及最大的线速度信息,来获取机器人目标的位置信息,从而确定机器人的行进路线;因此可以保证机器人在工作过程中,根据路况的不同进行及时调整目标位置;能够根据不同的速度上限,自适应调整路径上的下一个目标点距离和加速度,保证搬运机器人速度平滑变化,可以减小搬运过程中发生事故的概率。1. In the present invention, by acquiring the current position information of the robot, the working condition on the traveling route, and the maximum line speed information, the position information of the robot target is acquired, thereby determining the traveling route of the robot; thus, the robot can be guaranteed in the working process. In the middle, according to different road conditions, the target position can be adjusted in time; the next target point distance and acceleration can be adaptively adjusted according to different speed upper limits to ensure smooth movement of the handling robot, which can reduce the probability of accidents during the handling process. .
2、在本发明中,当设定的最大速度发生改变时,机器人在运动过程中,加速过程会受到限制,可实现,当目标点距离过小时,按照设定的速度实现对目标点的重新进行调整,因此根据目标点距离的大小,实现了机器人加速可调。2. In the present invention, when the set maximum speed changes, the acceleration process of the robot during the movement is limited, and can be realized. When the target point distance is too small, the target point is re-allocated according to the set speed. The adjustment is made, so that the robot acceleration is adjustable according to the distance of the target point.
3、在发明中,由于每个机器人的工作环境不同,因此对机器人行进的路线做出预先的规划,同时根据达到的目标点不同,设定不同的最大速度,因此实现了对机器人的方便管理;另外,可是保证机器人安全有效的运行。3. In the invention, since the working environment of each robot is different, the advance planning of the robot's travel route is made, and different maximum speeds are set according to different target points, thereby realizing convenient management of the robot. In addition, it ensures the safe and efficient operation of the robot.
4、在本发明中,通过实际的行进偏差信息以及设定的第一预设算法机器人,获取行进路线的偏差信息,进而实现不同目标点的角速度以及线速度的更 新,为机器人的自适应调速提供可靠的参数信息,从而实现机器人在不同目标点的平稳运行。4. In the present invention, the actual travel deviation information and the set first preset algorithm robot are used to obtain the deviation information of the travel route, thereby realizing the angular velocity of different target points and the update of the linear velocity, which is an adaptive adjustment of the robot. Provide reliable parameter information at a fast speed to achieve smooth operation of the robot at different target points.
5、在本发明中,公开的技术特征,可以实现能够根据速度上限自适应调整速度变化过程的方法,使得不同场景下,搬运机器人运动速度上限发生变化后仍然能够平稳地完成速度变化和运动。5. In the present invention, the disclosed technical features can realize a method capable of adaptively adjusting the speed change process according to the upper limit of the speed, so that the speed change and the motion can be smoothly completed after the upper limit of the moving speed of the transporting robot changes in different scenarios.
附图说明DRAWINGS
下面将以明确易懂的方式,结合附图说明优选实施方式,对一种机器人的速度控制方法及系统的上述特性、技术特征、优点及其实现方式予以进一步说明。The above-described characteristics, technical features, advantages and implementation manners of a robot speed control method and system will be further described below in a clear and understandable manner with reference to the accompanying drawings.
图1是本发明一种机器人的速度控制方法的一个实施例;1 is an embodiment of a speed control method of a robot according to the present invention;
图2是本发明一种机器人的速度控制方法的另一个实施例;2 is another embodiment of a speed control method of a robot according to the present invention;
图3是本发明一种机器人的速度控制方法的另一个实施例;3 is another embodiment of a speed control method of a robot according to the present invention;
[根据细则26改正30.11.2018]  
图4是本发明一种机器人的速度控制方法的另一个实施例。
[Correct according to Rule 26 30.11.2018]
4 is another embodiment of a speed control method of a robot of the present invention.
具体实施方式Detailed ways
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。In order to more clearly illustrate the embodiments of the present invention or the technical solutions of the prior art, the specific embodiments of the present invention will be described below with reference to the accompanying drawings. Obviously, the drawings in the following description are only some embodiments of the present invention, and those skilled in the art can obtain other drawings according to the drawings without obtaining creative labor, and obtain Other embodiments.
为使图面简洁,各图中只示意性地表示出了与本实用新型相关的部分,它们并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了其中的一个。在本文中,“一个”不仅表示“仅此一个”,也可以表示“多于一个”的 情形。In order to succinctly the drawings, only the parts related to the present invention are schematically shown in the drawings, and they do not represent the actual structure of the product. In addition, in order to make the drawings simple and easy to understand, components having the same structure or function in some of the figures are only schematically illustrated, or only one of them is marked. In this paper, "a" means not only "only this one" but also "more than one".
本发明提供了一种机器人的速度控制方法的实施例,参考图1所示;包括:步骤S100获取机器人当前位置与行进地图信息中未到达的各目标位置之间的距离信息以及所述当前位置的第一预设速度信息;步骤S200根据机器人当前行进的第一预设速度信息以及行进到所述未到达的各目标位置的距离信息,获取机器人行进到所述未到达的各目标位置时的对应第二速度信息;步骤S300将获取的所述未到达的各目标位置时对应的所述第二速度信息与对应的第二预设速度信息进行比对;步骤S400根据步骤S300比对的结果,获取满足预设条件的未到达的目标位置,将所述满足预设条件的未到达的目标位置设定为机器人行进的下一目标位置;步骤S500控制所述机器人行进至所述下一目标位置。The present invention provides an embodiment of a speed control method for a robot, as shown in FIG. 1 . The method includes: Step S100: acquiring distance information between a current position of the robot and each target position that is not reached in the travel map information, and the current position. First preset speed information; step S200, according to the first preset speed information that the robot is currently traveling and the distance information that travels to the unreached target positions, acquire the robot when traveling to the unreached target positions Corresponding to the second speed information; step S300 compares the acquired second speed information corresponding to each of the unreceived target positions with the corresponding second preset speed information; step S400 compares the result according to step S300 Obtaining an unreached target position that satisfies a preset condition, setting the unreached target position that satisfies the preset condition as a next target position that the robot travels; step S500 controlling the robot to travel to the next target position.
具体的,本发明中机器人可以应用于搬运机器人,可以实现包括运动路径规划,计算运动路径上的最近点,目标距离的判定。运动路径规划:在搬运机器人的整个运动过程中,需要根据目标位置和路况及时进行路径规划,将整个运动路径离散成多个边,确定边的起点、终点、长度,该边里允许的最大速度和角速度。计算路线上的最近点:搬运机器人可能偏离的运动路线,此时需要寻找离当前位置最近的路线上位置,并以最近点作为下一个目标点。该过程中利用运动路径规划中每个运动路径的终点进行比较判断,寻找与搬运机器人当前位置最近的边的终点,作为搬运机器人的下一运动目标点。根据最大速度自动调整目标点距离。Specifically, in the present invention, the robot can be applied to the handling robot, and can realize the determination including the motion path planning, the calculation of the nearest point on the motion path, and the target distance. Motion path planning: During the whole movement of the handling robot, it is necessary to timely plan the path according to the target position and the road condition, and divide the entire motion path into multiple edges to determine the starting point, end point and length of the edge, and the maximum speed allowed in the edge. And angular velocity. Calculate the closest point on the route: the moving route that the handling robot may deviate. At this time, you need to find the position on the route closest to the current position, and use the nearest point as the next target point. In this process, the end point of each motion path in the motion path planning is compared and judged, and the end point of the side closest to the current position of the transport robot is searched for as the next moving target point of the transport robot. The target point distance is automatically adjusted according to the maximum speed.
在本发明中,通过获取机器人当前位置信息、行进路线上的工作状况,以及最大的线速度信息,来获取机器人目标的位置信息,从而确定机器人的行进路线;因此可以保证机器人在工作过程中,根据路况的不同进行及时调整目标位置;能够根据不同的速度上限,自适应调整路径上的下一个目标点距离和加速度,保证搬运机器人速度平滑变化,可以减小搬运过程中发生事故的概率。In the present invention, by acquiring the current position information of the robot, the working condition on the travel route, and the maximum line speed information, the position information of the robot target is acquired, thereby determining the travel route of the robot; thus, the robot can be guaranteed during the work. According to different road conditions, the target position can be adjusted in time; the next target point distance and acceleration can be adaptively adjusted according to different speed upper limits to ensure smooth movement of the handling robot, which can reduce the probability of accidents during transportation.
在本发明中,当设定的最大速度发生改变时,机器人在运动过程中,加速过程会受到限制,可实现,当目标点距离过小时,按照设定的速度实现对目标点的重新进行调整,因此根据目标点距离的大小,实现了机器人加速可调。In the present invention, when the set maximum speed changes, the acceleration process of the robot is limited during the movement, and can be realized. When the target point distance is too small, the target point is re-adjusted according to the set speed. Therefore, according to the distance of the target point, the acceleration of the robot is adjustable.
优选的,在所述步骤S100之前还包括:步骤S000根据所述机器人行进目标位置,构建所述行进地图信息以及设定到达相应的所述目标位置所述第二预设速度信息;步骤S100获取机器人当前位置与行进地图信息中未到达的各目标位置之间的距离信息以及所述当前位置的第一预设速度信息;步骤S200根据机器人当前行进的第一预设速度信息以及行进到所述未到达的各目标位置的距离信息,获取机器人行进到所述未到达的各目标位置时的对应第二速度信息;步骤S300将获取的所述未到达的各目标位置时对应的所述第二速度信息与对应的第二预设速度信息进行比对;步骤S400根据步骤S300比对的结果,获取满足预设条件的未到达的目标位置,将所述满足预设条件的未到达的目标位置设定为机器人行进的下一目标位置;步骤S500控制所述机器人行进至所述下一目标位置。Preferably, before the step S100, the method further includes: step S000, constructing the travel map information according to the robot travel target position, and setting the second preset speed information to the corresponding target position; Distance information between the current position of the robot and each target position not reached in the travel map information and the first preset speed information of the current position; step S200 according to the first preset speed information that the robot is currently traveling and proceeding to the Distance information of each target position that has not arrived, acquiring corresponding second speed information when the robot travels to each of the unreached target positions; and step S300, the second corresponding to the acquired target positions that are not reached The speed information is compared with the corresponding second preset speed information; step S400 acquires the unreached target position that meets the preset condition according to the result of the step S300, and the unreached target position that meets the preset condition is obtained. Set to the next target position where the robot travels; step S500 controls the robot to travel to the next target position
在发明中,由于每个机器人的工作环境不同,因此对机器人行进的路线做出预先的规划,同时根据达到的目标点不同,设定不同的最大速度,因此实现了对机器人的方便管理;另外,可是保证机器人安全有效的运行。In the invention, since the working environment of each robot is different, the route for the robot to travel is pre-planned, and different maximum speeds are set according to different target points, thereby facilitating convenient management of the robot; , but to ensure the safe and effective operation of the robot.
在上述实施例的基础上,本本发明还提供了一个实施例;参考图2所示;步骤S000根据所述机器人行进目标位置,构建所述行进地图信息以及设定到达相应的所述目标位置所述第二预设速度信息;步骤S100获取机器人当前位置与行进地图信息中未到达的各目标位置之间的距离信息以及所述当前位置的第一预设速度信息;步骤S200根据机器人当前行进的第一预设速度信息以及行进到所述未到达的各目标位置的距离信息,获取机器人行进到所述未到达的各目标位置时的对应第二速度信息;步骤S300将获取的所述未到达的各目标位置时对应的所述第二速度信息与对应的第二预设速度信息进行比对;步骤 S400根据步骤S300比对的结果,获取满足预设条件的未到达的目标位置,将所述满足预设条件的未到达的目标位置设定为机器人行进的下一目标位置;步骤S510在机器人的行进过程中,实时获取所述机器人当前的姿态信息;步骤S520根据所述机器人的当前姿态信息与目标姿态信息获取姿态偏差信息;通过数学模型(1)获得
Figure PCTCN2018111110-appb-000011
姿态偏差信息,
Figure PCTCN2018111110-appb-000012
为目标姿态信息,P(x,y,θ)为当前姿态信息。根据获取的所述姿态偏差信息
Figure PCTCN2018111110-appb-000013
利用第一预设算法获取所述机器人行进的调控信息;以所述姿态偏差信息中ρ,α为第一预设算法的数学模型的参变量;
Based on the above embodiment, the present invention further provides an embodiment; referring to FIG. 2; step S000 constructs the travel map information according to the robot travel target position and sets the corresponding target position to be reached. Describe the second preset speed information; step S100 acquires distance information between the current position of the robot and each target position that is not reached in the travel map information, and first preset speed information of the current position; step S200 is based on the current travel of the robot First preset speed information and distance information of each target position that is not reached, acquiring corresponding second speed information when the robot travels to each of the unreached target positions; the step S300 will acquire the obtained non-arrival The second speed information corresponding to each target position is compared with the corresponding second preset speed information; step S400 acquires the unreached target position that meets the preset condition according to the result of the step S300 comparison, The unreached target position that satisfies the preset condition is set as the next target position that the robot travels; step S510 is in the machine During travel, acquired in real time the current robot posture information; step S520 attitude deviation information obtaining posture information based on the current posture of the robot and the target information; mathematical model obtained by (1)
Figure PCTCN2018111110-appb-000011
Attitude deviation information,
Figure PCTCN2018111110-appb-000012
For the target pose information, P(x, y, θ) is the current pose information. According to the obtained posture deviation information
Figure PCTCN2018111110-appb-000013
Obtaining, by using a first preset algorithm, the regulation information of the robot traveling; wherein ρ, α in the posture deviation information is a parameter of a mathematical model of the first preset algorithm;
Figure PCTCN2018111110-appb-000014
Figure PCTCN2018111110-appb-000014
Figure PCTCN2018111110-appb-000015
Figure PCTCN2018111110-appb-000015
Figure PCTCN2018111110-appb-000016
Figure PCTCN2018111110-appb-000016
k 1,k 2---为预设常量;v---机器人的线速度;ω---机器人的角速度;ρ---目标点距离。步骤S540根据所述调控信息控制机器人行进至所述下一目标位置。 k 1 , k 2 --- is a preset constant; v---the linear velocity of the robot; ω---the angular velocity of the robot; ρ---the distance of the target point. Step S540 controls the robot to travel to the next target position according to the regulation information.
具体的,为了保证机器人能平稳有效的行进到满足条件的目标位置;参考图1-3所示;需要不断的调整机器人的加速度、角度进行误差调整;以图N为例进行说明;假设机器人当前的位置信息为P(x,y,θ),需要历遍到地图上的其他目标点,假设包括P1(x1,y1,θ2)、P2(x2,y2,θ2)、P3(x3,y3,θ3)…;P到其他点之间距离为S1,S2,S3…;对应各个点的系统中设定的最大速度v1 m,v2 m,v3 m…,根据P到其他点系统中设定的加速度为a1,a2,a3…;利用S=v 2/2a;以当前P的a(加速度)可以求得P到各点的速度为v1,v2,v3…;将v1,v2,v3…与各点设定v1 m,v2 m,v3 m…进行比较,判断哪个求出的
Figure PCTCN2018111110-appb-000017
3哪个速度符合 v1 m,v2 m,v3 m…,假设v1与P3设定的速度v3 m相符时,此时机器人将P3设为将行进的下一目标点;但是由于机器人在行进过程中受到各种信息的干扰,会偏离实际目标定;由于机器人在工作过程中需要走到目标点时,需要摆正对应的位置,也即空间位置,也即目标姿态信息P r(x r,y rr);需要不断的调整机器人的空间姿态信息;那么假如获取机器人为当前姿态信息P(x,y,θ);求取偏差信息
Figure PCTCN2018111110-appb-000018
选取状态变量ρ,α为镇定对象,取Lyapunov纯量函数为公式(2),由此可以看出函数V>0,当且仅当(ρ,α) T=0时,V=0;将Lyapunov函数对时间求导数,并确定闭环系统的控制律根据公式(3);由此点镇定的速度计算公式(4);v机器人的线速度;ω机器人的角速度;本发明首先通过实验调试得到五种不同速度上限下的点镇定参数,并对其进行多项式拟合,得到不同速度下的点镇定参数k 1和k 2计算公式。对于不同的最大速度上限,则使用计算公式(4),得到相应的点镇定参数。当速度上限发生变化后,加速度也需要做相应的修正,才能保证搬运机器人能够平稳地到达指定的目标点。本发明根据实验得到不同最大速度下,需要给出的加速度值,进行拟合,得到不同最大速度下的加速度计算函数。在最大速度发生改变时,根据不同最大速度,计算相应的加速度。根据最大速度自动调整最大目标点距离的模块:当速度上限发生变化后,搬运机器人每次运动的目标点需要进行调整,才能保证搬运机器人能够平稳地到达目标位置。
Specifically, in order to ensure that the robot can smoothly and effectively travel to the target position that satisfies the condition; refer to FIG. 1-3; the acceleration and angle of the robot need to be constantly adjusted for error adjustment; Figure N is taken as an example; The position information is P(x, y, θ), which needs to be traversed to other target points on the map, assuming P1(x1, y1, θ2), P2(x2, y2, θ2), P3(x3, y3, Θ3)...;P The distance between other points is S1, S2, S3...; the maximum speed v1 m , v2 m , v3 m ... set in the system corresponding to each point, according to the setting of P to other point systems The acceleration is a1, a2, a3...; using S=v 2 /2a; with the current P a (acceleration), the velocity of P to each point can be obtained as v1, v2, v3...; v1, v2, v3... Each point is set v1 m , v2 m , v3 m ... for comparison, and which one is determined
Figure PCTCN2018111110-appb-000017
3 Which speed meets v1 m , v2 m , v3 m ..., assuming that v1 matches the speed v3 m set by P3, the robot sets P3 as the next target point to be traveled; however, since the robot is subjected to the course of travel The interference of various information will deviate from the actual target; since the robot needs to go to the target point during the work, it needs to correct the corresponding position, that is, the spatial position, that is, the target attitude information P r (x r , y r , θ r ); need to constantly adjust the space attitude information of the robot; then if the acquisition robot is the current attitude information P (x, y, θ);
Figure PCTCN2018111110-appb-000018
Select the state variable ρ, α is the calming object, take the Lyapunov scalar function as the formula (2), from which we can see that the function V>0, if and only if (ρ,α) T =0, V=0; The Lyapunov function deduces the time and determines the control law of the closed-loop system according to the formula (3); the point-calculated speed calculation formula (4); the linear velocity of the robot; the angular velocity of the ω robot; The point stabilization parameters at five different speed upper limits are fitted to the polynomial to obtain the point stabilization parameters k 1 and k 2 at different speeds. For different maximum speed upper limits, use the calculation formula (4) to obtain the corresponding point stabilization parameters. When the upper speed limit is changed, the acceleration also needs to be corrected accordingly to ensure that the handling robot can smoothly reach the specified target point. According to the experiment, according to the experiment, the acceleration values which need to be given at different maximum speeds are obtained, and the acceleration calculation functions at different maximum speeds are obtained. When the maximum speed changes, the corresponding acceleration is calculated according to the different maximum speeds. The module that automatically adjusts the maximum target point distance according to the maximum speed: When the speed upper limit changes, the target point of each movement of the transport robot needs to be adjusted to ensure that the transport robot can smoothly reach the target position.
在本发明中,通过实际的行进偏差信息以及设定的第一预设算法机器人,获取行进路线的偏差信息,进而实现不同目标点的角速度以及线速度的更新,为机器人的自适应调速提供可靠的参数信息,从而实现机器人在不同目标点的平稳运行。In the present invention, the deviation information of the travel route is obtained through the actual travel deviation information and the set first preset algorithm robot, thereby realizing the angular velocity of different target points and the update of the linear velocity, thereby providing the adaptive speed regulation of the robot. Reliable parameter information for smooth operation of the robot at different target points.
本发明还提供了一种机器人的速度控制系统的一个实施例,参考图4所示;包括:可执行以上所述机器人的速度控制方法的实施例;第一预设信息获取模块,获取机器人当前位置与行进地图信息中未到达的各目标位置之间的距离信 息以及所述当前位置的第一预设速度信息;第二预设信息获取模块,与所述第一预设信息获取模块通讯连接;根据机器人当前行进的第一预设速度信息以及行进到所述未到达的各目标位置的距离信息,获取机器人行进到所述未到达的各目标位置时的对应第二速度信息;信息比对模块,与所述第二预设信息获取模块通讯连接,获取的所述未到达的各目标位置时对应的所述第二速度信息与对应的第二预设速度信息进行比对;目标位置获取模块,与所述信息比对模块通讯连接,获取满足预设条件的未到达的目标位置,将所述满足预设条件的未到达的目标位置设定为机器人行进的下一目标位置;控制模块,控制所述机器人行进至所述下一目标位置。The present invention also provides an embodiment of a speed control system for a robot, as shown in FIG. 4; comprising: an embodiment of a speed control method capable of executing the above-described robot; a first preset information acquisition module for acquiring a current robot The distance information between the location and the target location that is not reached in the travel map information, and the first preset speed information of the current location; the second preset information acquisition module is in communication with the first preset information acquisition module. Obtaining corresponding second speed information when the robot travels to each of the unreached target positions according to the first preset speed information that the robot currently travels and the distance information that travels to the unreached target positions; information comparison The module is connected to the second preset information acquiring module, and the second speed information corresponding to the acquired target positions that are not reached is compared with the corresponding second preset speed information; a module that communicates with the information comparison module to obtain an unreached target location that meets a preset condition, and the It does not reach the target position setting conditions is set as the next target position of the robot travel; and a control module that controls the robot proceeds to the next target position.
优选的,还包括:预设信息设定模块,与所述第一预设信息获取模块通讯连接,根据所述机器人行进目标位置,构建所述行进地图信息以及设定到达相应的所述目标位置所述第二预设速度信息。Preferably, the method further includes: a preset information setting module, in communication with the first preset information acquiring module, constructing the traveling map information according to the robot traveling target position, and setting the reaching the corresponding target position The second preset speed information.
优选的,所述控制模块包括:当前的姿态信息获取子模块,在机器人的行进过程中,实时获取所述机器人当前的姿态信息;姿态偏差信息获取子模块,根据所述机器人的当前姿态信息与目标姿态信息获取姿态偏差信息;调控信息获取子模块,根据获取的所述姿态偏差信息,利用第一预设算法获取所述机器人行进的调控信息,根据所述调控信息控制机器人行进至所述下一目标位置。Preferably, the control module includes: a current attitude information acquisition sub-module, which acquires current posture information of the robot in real time during the traveling of the robot; and an attitude deviation information acquisition sub-module according to the current posture information of the robot The target posture information acquires the posture deviation information; the regulation information acquisition sub-module acquires the regulation information of the robot travel by using the first preset algorithm according to the acquired posture deviation information, and controls the robot to travel to the lower part according to the regulation information. A target location.
优选的,所述姿态偏差信息包括:Preferably, the attitude deviation information includes:
Figure PCTCN2018111110-appb-000019
Figure PCTCN2018111110-appb-000019
P r(x r,y rr)--目标姿态信息,P(x,y,θ)--当前姿态信息,
Figure PCTCN2018111110-appb-000020
--姿态偏差信息。
P r (x r , y r , θ r )--target attitude information, P(x, y, θ)--current attitude information,
Figure PCTCN2018111110-appb-000020
-- Posture deviation information.
优选的,获取所述调控信息的第一预设算法的数学模型包括:Preferably, the mathematical model of the first preset algorithm for acquiring the regulation information comprises:
以所述姿态偏差信息中ρ,α为第一预设算法的数学模型的参变量;Taking ρ,α in the posture deviation information as a parameter of a mathematical model of the first preset algorithm;
Figure PCTCN2018111110-appb-000021
Figure PCTCN2018111110-appb-000021
Figure PCTCN2018111110-appb-000022
Figure PCTCN2018111110-appb-000022
Figure PCTCN2018111110-appb-000023
Figure PCTCN2018111110-appb-000023
k 1,k 2---为预设常量;v---机器人的线速度;ω---机器人的角速度;ρ---目标点距离。 k 1 , k 2 --- is a preset constant; v---the linear velocity of the robot; ω---the angular velocity of the robot; ρ---the distance of the target point.
在本发明中,通过实际的行进偏差信息以及设定的第一预设算法机器人,获取行进路线的偏差信息,进而实现不同目标点的角速度以及线速度的更新,为机器人的自适应调速提供可靠的参数信息,从而实现机器人在不同目标点的平稳运行。In the present invention, the deviation information of the travel route is obtained through the actual travel deviation information and the set first preset algorithm robot, thereby realizing the angular velocity of different target points and the update of the linear velocity, thereby providing the adaptive speed regulation of the robot. Reliable parameter information for smooth operation of the robot at different target points.
本申请还提供了一个实施例;参考图3所示;为了保证机器人能平稳有效的行进到满足条件的目标位置;需要不断的调整机器人的加速度、角度进行误差调整;以图N为例进行说明;假设机器人当前的位置信息为P(x,y,θ),需要历遍到地图上的其他目标点,假设包括P1(x1,y1,θ2)、P2(x2,y2,θ2)、P3(x3,y3,θ3)…;P到其他点之间距离为S1,S2,S3…;对应各个点的系统中设定的最大速度v1 m,v2 m,v3 m…,根据P到其他点系统中设定的加速度为a1,a2,a3…;利用S=v 2/2a;以当前P的a(加速度)可以求得P到各点的速度为v1,v2,v3…;将v1,v2,v3…与各点设定v1 m,v2 m,v3 m…进行比较,判断哪个求出的v1,v2,v3…哪个速度符合v1 m,v2 m,v3 m…,假设v1与P3设定的速度v3 m相符时,此时机器人将P3设为将行进的下一目标点;但是由于机器人在行进过程中受到各种信息的干扰,会偏离实际目标定;由于机器人在工作过程中需要走到目标点时,需要摆正对应的位置,也即空间位置,也即目标姿态信息P r(x r,y rr);需要不断的调整机器人的空间姿态信息;那么假如获取机器人为当前姿态信息P(x,y,θ);求取偏差信息
Figure PCTCN2018111110-appb-000024
选取状态变量ρ,α为镇定对象,取Lyapunov纯量函数为公式(2),由此可以看出函数V>0,当且仅当 (ρ,α) T=0时,V=0;将Lyapunov函数对时间求导数,并确定闭环系统的控制律根据公式(3);由此点镇定的速度计算公式(4);v机器人的线速度;ω机器人的角速度;本发明首先通过实验调试得到五种不同速度上限下的点镇定参数,并对其进行多项式拟合,得到不同速度下的点镇定参数k 1和k 2计算公式。对于不同的最大速度上限,则使用计算公式(4),得到相应的点镇定参数。当速度上限发生变化后,加速度也需要做相应的修正,才能保证搬运机器人能够平稳地到达指定的目标点。本发明根据实验得到不同最大速度下,需要给出的加速度值,进行拟合,得到不同最大速度下的加速度计算函数。在最大速度发生改变时,根据不同最大速度,计算相应的加速度。根据最大速度自动调整最大目标点距离的模块:当速度上限发生变化后,搬运机器人每次运动的目标点需要进行调整,才能保证搬运机器人能够平稳地到达目标位置。
The present application also provides an embodiment; referring to FIG. 3; in order to ensure that the robot can smoothly and effectively travel to the target position that meets the condition; it is necessary to continuously adjust the acceleration and angle of the robot for error adjustment; Assume that the current position information of the robot is P(x, y, θ), and it needs to go through other target points on the map, assuming P1(x1, y1, θ2), P2(x2, y2, θ2), P3 ( X3, y3, θ3)...; The distance between P and other points is S1, S2, S3...; the maximum speed v1 m , v2 m , v3 m ... set in the system corresponding to each point, according to P to other point systems The acceleration set in is a1, a2, a3...; using S=v 2 /2a; with the current P a (acceleration), the velocity of P to each point can be obtained as v1, v2, v3...; v1, v2 , v3... Compare with each point setting v1 m , v2 m , v3 m ... to determine which v1, v2, v3... which speed meets v1 m , v2 m , v3 m ..., assuming v1 and P3 are set When the speed v3 m matches, the robot sets P3 as the next target point to be traveled; but because the robot is interfered by various information during the travel, it will deviate from the actual target; When the robot needs to go to the target point in the working process, it needs to correct the corresponding position, that is, the spatial position, that is, the target posture information P r (x r , y r , θ r ); the space of the robot needs to be constantly adjusted. Attitude information; then if the acquiring robot is the current attitude information P(x, y, θ);
Figure PCTCN2018111110-appb-000024
Select the state variable ρ, α is the calming object, take the Lyapunov scalar function as the formula (2), from which we can see that the function V>0, if and only if (ρ,α) T =0, V=0; The Lyapunov function deduces the time and determines the control law of the closed-loop system according to the formula (3); the point-calculated speed calculation formula (4); the linear velocity of the robot; the angular velocity of the ω robot; The point stabilization parameters at five different speed upper limits are fitted to the polynomial to obtain the point stabilization parameters k 1 and k 2 at different speeds. For different maximum speed upper limits, use the calculation formula (4) to obtain the corresponding point stabilization parameters. When the upper speed limit is changed, the acceleration also needs to be corrected accordingly to ensure that the handling robot can smoothly reach the specified target point. According to the experiment, according to the experiment, the acceleration values which need to be given at different maximum speeds are obtained, and the acceleration calculation functions at different maximum speeds are obtained. When the maximum speed changes, the corresponding acceleration is calculated according to the different maximum speeds. The module that automatically adjusts the maximum target point distance according to the maximum speed: When the speed upper limit changes, the target point of each movement of the transport robot needs to be adjusted to ensure that the transport robot can smoothly reach the target position.
在本发明中,公开的技术特征,可以实现能够根据速度上限自适应调整速度变化过程的方法,使得不同场景下,搬运机器人运动速度上限发生变化后仍然能够平稳地完成速度变化和运动。In the present invention, the disclosed technical features can realize a method capable of adaptively adjusting the speed change process according to the upper limit of the speed, so that the speed change and the motion can be smoothly completed after the upper limit of the moving speed of the transporting robot changes in different scenarios.
在本发明中,如果以软件功能单元的形式实现并作为独立的产品销售或者使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术的贡献的部分或者该技术方案的全部或者部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可是个人计算机,服务器,或者网络设备),或者处理器执行本申请个实施例所述方法的全部或部分步骤。而前述的存储价值包数据服务器,云端服务器,只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动通信设备,或者光盘、或者U盘等各种可以存储代码的介质。In the present invention, if it is implemented in the form of a software functional unit and sold or used as a stand-alone product, it can be stored in a computer readable storage medium. Based on such an understanding, a part of the technical solution of the present application or the contribution to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium. A number of instructions are included to cause a computer device (either a personal computer, a server, or a network device), or a processor to perform all or part of the steps of the methods described in this application. The foregoing storage value package data server, cloud server, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile communication device, or optical disc, or U disk, etc. The medium in which the code is stored.
应当说明的是,上述实施例均可根据需要自由组合。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离 本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。It should be noted that the above embodiments can be freely combined as needed. The above description is only a preferred embodiment of the present invention, and it should be noted that those skilled in the art can also make several improvements and retouchings without departing from the principles of the present invention. It should be considered as the scope of protection of the present invention.

Claims (10)

  1. 一种机器人的速度控制方法,其特征在于,包括:A method for controlling a speed of a robot, comprising:
    步骤S100获取机器人当前位置与行进地图信息中未到达的各目标位置之间的距离信息以及所述当前位置的第一预设速度信息;加速度Step S100: acquiring distance information between a current position of the robot and each target position that is not reached in the travel map information, and first preset speed information of the current position; acceleration
    步骤S200根据机器人当前行进的第一预设速度信息以及行进到所述未到达的各目标位置的距离信息,获取机器人行进到所述未到达的各目标位置时的对应第二速度信息;预设的速度Step S200, according to the first preset speed information that the robot currently travels and the distance information that travels to the unreached target positions, acquire corresponding second speed information when the robot travels to each of the unreached target positions; speed
    步骤S300将获取的所述未到达的各目标位置时对应的所述第二速度信息与对应的第二预设速度信息进行比对;Step S300: comparing the acquired second speed information corresponding to each of the unreceived target positions with the corresponding second preset speed information;
    步骤S400根据步骤S300比对的结果,获取满足预设条件的未到达的目标位置,将所述满足预设条件的未到达的目标位置设定为机器人行进的下一目标位置;Step S400 acquires an unreached target position that satisfies a preset condition according to the result of the step S300, and sets the unreached target position that satisfies the preset condition as the next target position that the robot travels;
    步骤S500控制所述机器人行进至所述下一目标位置。Step S500 controls the robot to travel to the next target position.
  2. 根据权利要求1所述的机器人的速度控制方法,其特征在于,在所述步骤S100之前还包括:The speed control method of the robot according to claim 1, wherein before the step S100, the method further comprises:
    步骤S000根据所述机器人行进目标位置,构建所述行进地图信息以及设定到达相应的所述目标位置所述第二预设速度信息。Step S000 constructs the travel map information according to the robot travel target position and sets the second preset speed information to reach the corresponding target position.
  3. 根据权利要求1所述的机器人的速度控制方法,其特征在于,所述步骤S500包括:The speed control method of the robot according to claim 1, wherein the step S500 comprises:
    步骤S510在机器人的行进过程中,实时获取所述机器人当前的姿态信息;Step S510: acquiring current posture information of the robot in real time during the traveling of the robot;
    步骤S520根据所述机器人的当前姿态信息与目标姿态信息获取姿态偏差信息;Step S520: acquiring posture deviation information according to current posture information of the robot and target posture information;
    步骤S530根据获取的所述姿态偏差信息,利用第一预设算法获取所述机器人行进的调控信息;Step S530: Acquire, according to the obtained posture deviation information, the regulation information of the traveling of the robot by using a first preset algorithm;
    步骤S540根据所述调控信息控制机器人行进至所述下一目标位置。Step S540 controls the robot to travel to the next target position according to the regulation information.
  4. 根据权利要求3所述的机器人的速度控制方法,其特征在于,所述姿态偏差信息包括:The speed control method of the robot according to claim 3, wherein the posture deviation information comprises:
    Figure PCTCN2018111110-appb-100001
    Figure PCTCN2018111110-appb-100001
    P r(x r,y rr)--目标姿态信息,P(x,y,θ)--当前姿态信息,
    Figure PCTCN2018111110-appb-100002
    姿态偏差信息。
    P r (x r , y r , θ r )--target attitude information, P(x, y, θ)--current attitude information,
    Figure PCTCN2018111110-appb-100002
    Posture deviation information.
  5. 根据权利要求4所述的机器人的速度控制方法,其特征在于,获取所述调控信息的第一预设算法的数学模型包括:The speed control method of the robot according to claim 4, wherein the mathematical model of the first preset algorithm for acquiring the regulation information comprises:
    以所述姿态偏差信息中ρ,α为第一预设算法的数学模型的参变量;Taking ρ,α in the posture deviation information as a parameter of a mathematical model of the first preset algorithm;
    Figure PCTCN2018111110-appb-100003
    Figure PCTCN2018111110-appb-100003
    Figure PCTCN2018111110-appb-100004
    Figure PCTCN2018111110-appb-100004
    Figure PCTCN2018111110-appb-100005
    Figure PCTCN2018111110-appb-100005
    k 1,k 2---为预设常量;v---机器人的线速度;ω---机器人的角速度;ρ---目标点距离。 k 1 , k 2 --- is a preset constant; v---the linear velocity of the robot; ω---the angular velocity of the robot; ρ---the distance of the target point.
  6. 一种机器人的速度控制系统,其特征在于,包括:可执行权利要求1-5任意一项所述机器人的速度控制方法A speed control system for a robot, comprising: a speed control method capable of executing the robot according to any one of claims 1-5
    第一预设信息获取模块,获取机器人当前位置与行进地图信息中未到达的各目标位置之间的距离信息以及所述当前位置的第一预设速度信息;a first preset information acquiring module, configured to acquire distance information between a current location of the robot and each target location that is not reached in the travel map information, and first preset speed information of the current location;
    第二预设信息获取模块,与所述第一预设信息获取模块通讯连接;根据机器人当前行进的第一预设速度信息以及行进到所述未到达的各目标位置的 距离信息,获取机器人行进到所述未到达的各目标位置时的对应第二速度信息;The second preset information acquiring module is communicably connected to the first preset information acquiring module; and acquiring the robot traveling according to the first preset speed information that the robot currently travels and the distance information that travels to the unreached target positions Corresponding second speed information to each of the unreached target positions;
    信息比对模块,与所述第二预设信息获取模块通讯连接,获取的所述未到达的各目标位置时对应的所述第二速度信息与对应的第二预设速度信息进行比对;The information comparison module is in communication with the second preset information acquiring module, and the second speed information corresponding to the acquired target positions that are not reached is compared with the corresponding second preset speed information;
    目标位置获取模块,与所述信息比对模块通讯连接,获取满足预设条件的未到达的目标位置,将所述满足预设条件的未到达的目标位置设定为机器人行进的下一目标位置;a target location acquisition module, configured to communicate with the information comparison module, acquire an unreached target location that meets a preset condition, and set the unreached target location that meets the preset condition as a next target location of the robot to travel ;
    控制模块,控制所述机器人行进至所述下一目标位置。And a control module that controls the robot to travel to the next target location.
  7. 根据权利要求6所述的机器人的速度控制系统,其特征在于,还包括:The speed control system of the robot according to claim 6, further comprising:
    预设信息设定模块,与所述第一预设信息获取模块通讯连接,根据所述机器人行进目标位置,构建所述行进地图信息以及设定到达相应的所述目标位置所述第二预设速度信息。a preset information setting module, in communication with the first preset information acquiring module, constructing the traveling map information according to the traveling target position of the robot, and setting the second preset to reach the corresponding target position Speed information.
  8. 根据权利要求6所述的机器人的速度控制系统,其特征在于,所述控制模块包括:The speed control system of the robot according to claim 6, wherein the control module comprises:
    当前的姿态信息获取子模块,在机器人的行进过程中,实时获取所述机器人当前的姿态信息;The current attitude information acquisition sub-module acquires the current posture information of the robot in real time during the traveling of the robot;
    姿态偏差信息获取子模块,根据所述机器人的当前姿态信息与目标姿态信息获取姿态偏差信息;The attitude deviation information acquisition sub-module acquires the posture deviation information according to the current posture information of the robot and the target posture information;
    调控信息获取子模块,根据获取的所述姿态偏差信息,利用第一预设算法获取所述机器人行进的调控信息,根据所述调控信息控制机器人行进至所述下一目标位置。The regulation information acquisition sub-module acquires the regulation information of the robot travel by using the first preset algorithm according to the obtained posture deviation information, and controls the robot to travel to the next target position according to the regulation information.
  9. 根据权利要求8所述的机器人的速度控制系统,其特征在于,所述姿 态偏差信息包括:The speed control system for a robot according to claim 8, wherein the posture deviation information comprises:
    Figure PCTCN2018111110-appb-100006
    Figure PCTCN2018111110-appb-100006
    P r(x r,y rr)--目标姿态信息,P(x,y,θ)--当前姿态信息,
    Figure PCTCN2018111110-appb-100007
    姿态偏差信息。
    P r (x r , y r , θ r )--target attitude information, P(x, y, θ)--current attitude information,
    Figure PCTCN2018111110-appb-100007
    Posture deviation information.
  10. 根据权利要求9所述的机器人的速度控制系统,其特征在于,获取所述调控信息的第一预设算法的数学模型包括:The speed control system of the robot according to claim 9, wherein the mathematical model of the first preset algorithm for acquiring the regulation information comprises:
    以所述姿态偏差信息中ρ,α为第一预设算法的数学模型的参变量;Taking ρ,α in the posture deviation information as a parameter of a mathematical model of the first preset algorithm;
    Figure PCTCN2018111110-appb-100008
    Figure PCTCN2018111110-appb-100008
    Figure PCTCN2018111110-appb-100009
    Figure PCTCN2018111110-appb-100009
    Figure PCTCN2018111110-appb-100010
    Figure PCTCN2018111110-appb-100010
    k 1,k 2---为预设常量;v---机器人的线速度;ω---机器人的角速度;ρ---目标点距离。 k 1 , k 2 --- is a preset constant; v---the linear velocity of the robot; ω---the angular velocity of the robot; ρ---the distance of the target point.
PCT/CN2018/111110 2017-12-25 2018-10-19 Robot speed control method and system WO2019128406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711422242.X 2017-12-25
CN201711422242.XA CN108015775A (en) 2017-12-25 2017-12-25 The method for control speed and system of a kind of robot

Publications (1)

Publication Number Publication Date
WO2019128406A1 true WO2019128406A1 (en) 2019-07-04

Family

ID=62074682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111110 WO2019128406A1 (en) 2017-12-25 2018-10-19 Robot speed control method and system

Country Status (2)

Country Link
CN (1) CN108015775A (en)
WO (1) WO2019128406A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108015775A (en) * 2017-12-25 2018-05-11 上海物景智能科技有限公司 The method for control speed and system of a kind of robot
CN108445893A (en) * 2018-06-07 2018-08-24 浙江国自机器人技术有限公司 A kind of Movement Controller of Mobile Robot and mobile robot
CN112008720A (en) * 2020-08-17 2020-12-01 国为(南京)软件科技有限公司 Intelligent efficient transfer robot system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130178979A1 (en) * 2012-01-05 2013-07-11 Kabushiki Kaisha Yaskawa Denki Transfer system
US20160000511A1 (en) * 2014-07-03 2016-01-07 GM Global Technology Operations LLC Dynamical system-based robot velocity control
CN106584462A (en) * 2016-12-22 2017-04-26 南京埃斯顿自动化股份有限公司 Method for adjusting running speed of robot in real time
CN107214705A (en) * 2017-07-22 2017-09-29 深圳市萨斯智能科技有限公司 A kind of robot movement speed control method and robot
CN107368639A (en) * 2017-07-10 2017-11-21 深圳市同川科技有限公司 Speed planning method, apparatus, computer equipment and storage medium
CN108015775A (en) * 2017-12-25 2018-05-11 上海物景智能科技有限公司 The method for control speed and system of a kind of robot

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130178979A1 (en) * 2012-01-05 2013-07-11 Kabushiki Kaisha Yaskawa Denki Transfer system
US20160000511A1 (en) * 2014-07-03 2016-01-07 GM Global Technology Operations LLC Dynamical system-based robot velocity control
CN106584462A (en) * 2016-12-22 2017-04-26 南京埃斯顿自动化股份有限公司 Method for adjusting running speed of robot in real time
CN107368639A (en) * 2017-07-10 2017-11-21 深圳市同川科技有限公司 Speed planning method, apparatus, computer equipment and storage medium
CN107214705A (en) * 2017-07-22 2017-09-29 深圳市萨斯智能科技有限公司 A kind of robot movement speed control method and robot
CN108015775A (en) * 2017-12-25 2018-05-11 上海物景智能科技有限公司 The method for control speed and system of a kind of robot

Also Published As

Publication number Publication date
CN108015775A (en) 2018-05-11

Similar Documents

Publication Publication Date Title
US7228227B2 (en) Bezier curve flightpath guidance using moving waypoints
US10061316B2 (en) Control policy learning and vehicle control method based on reinforcement learning without active exploration
Yang et al. An efficient path planning and control algorithm for RUAV’s in unknown and cluttered environments
US10065654B2 (en) Online learning and vehicle control method based on reinforcement learning without active exploration
WO2019128406A1 (en) Robot speed control method and system
Burri et al. Real-time visual-inertial mapping, re-localization and planning onboard mavs in unknown environments
Saska et al. Coordination and navigation of heterogeneous UAVs-UGVs teams localized by a hawk-eye approach
WO2019242718A1 (en) Vehicle lane change control method and device
McGee et al. Path planning and control for multiple point surveillance by an unmanned aircraft in wind
Huskić et al. GeRoNa: generic robot navigation: a modular framework for robot navigation and control
CN111813117A (en) Robot line patrol priority navigation method, device and equipment
Bayuwindra et al. Extended look-ahead tracking controller with orientation-error observer for vehicle platooning
Yang et al. Generation of dynamically feasible and collision free trajectory by applying six-order Bezier curve and local optimal reshaping
CN114771551A (en) Method and device for planning track of automatic driving vehicle and automatic driving vehicle
CN110109363B (en) Neural network self-adaptive control method for wheeled mobile robot formation
JP2007257200A (en) Mobile body and control method for it
Sarcinelli-Filho et al. Motion control
CN107450308A (en) storage device, robot
US20230409035A1 (en) Method for building controller for robot, method, device for controlling motion of robot, and robot
US20230321831A1 (en) Systems and Methods for Model-free Safety Control in Robotics Platforms
Soltani-Zarrin et al. Pointwise angle minimization: A method for guiding wheeled robots based on constrained directions
CN114475652B (en) Vehicle motion planning method, device, equipment and medium
WO2019186815A1 (en) Self-propelled device, self-propelling method, and recording medium
CN112925323B (en) Rule-based mobile robot speed adjusting method and system
Zips et al. Fast optimization based motion planning and path-tracking control for car parking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18895237

Country of ref document: EP

Kind code of ref document: A1