WO2019127707A1 - 微结构、显示装置及其显示面板 - Google Patents

微结构、显示装置及其显示面板 Download PDF

Info

Publication number
WO2019127707A1
WO2019127707A1 PCT/CN2018/073056 CN2018073056W WO2019127707A1 WO 2019127707 A1 WO2019127707 A1 WO 2019127707A1 CN 2018073056 W CN2018073056 W CN 2018073056W WO 2019127707 A1 WO2019127707 A1 WO 2019127707A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstructure
microstructures
array
units
adjacent
Prior art date
Application number
PCT/CN2018/073056
Other languages
English (en)
French (fr)
Inventor
邓泽方
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/752,774 priority Critical patent/US20200132891A1/en
Publication of WO2019127707A1 publication Critical patent/WO2019127707A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1601Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
    • G06F1/1607Arrangements to support accessories mechanically attached to the display housing
    • G06F1/1609Arrangements to support accessories mechanically attached to the display housing to support filters or lenses
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a microstructure, a display device, and a display panel thereof.
  • the display device is usually provided with a cover glass on the surface.
  • the display device operates under strong external ambient light due to the reflection of the cover glass of the display device, the ambient light is reflected on the surface of the display device to reflect.
  • the reflectance is high, it will seriously affect the viewing effect of the display screen, and even the display screen cannot be seen at all.
  • the anti-reflection film can reduce the reflectivity of the surface of the cover glass
  • the method also has a large limitation; in general, the evaporation of a single-layer anti-reflection film on the surface of the glass can only reduce the reflection of a single wavelength, and the visual cover
  • the plate glass will have a relatively obvious color shift phenomenon; in addition, although the evaporation of the multilayer anti-reflection film on the surface of the cover glass can reduce the reflectance of the cover glass in the visible wavelength range (380 nm to 780 nm), the complex film layer
  • the structure will greatly increase the processing cost and its performance stability will also decrease.
  • the surface of the moth eye has a hexagonal honeycomb nanostructure, and the feature size of the structure is on the order of 100 nanometers, which is smaller than the wavelength of the incident light.
  • the microstructure cannot be recognized, so that the refractive index of the surface of the material continuously changes along the depth direction, which can reduce the reflection phenomenon caused by the sharp change of the refractive index, thereby effectively reducing the reflection phenomenon.
  • the reflectivity of the material The three-dimensional topography and spatial distribution of the 'moth eye' structure have a great influence on the reflectivity of the cover glass. Therefore, it is necessary to provide a 'moth eye' structural design that enables the cover glass to have a lower reflectance.
  • the present invention provides a display device and a display panel thereof, which can reduce the reflectance of the surface of the cover glass and improve the display effect of the display panel.
  • a specific technical solution proposed by the present invention is to provide a microstructure array, the microstructure array including a plurality of microstructure units arranged in a first direction, each of the microstructure units including a line arranged in a second direction a plurality of microstructures, the first direction is perpendicular to the second direction, and the microstructure units located in the odd rows in the array of microstructures are arranged in a straight line along the first direction, and the microstructure units located in the even rows in the array of microstructures are along the first One direction is arranged in a straight line, and any two adjacent microstructure units in the microstructure array are staggered by a predetermined distance in the second direction.
  • the present invention also provides a display panel, the display panel includes a display assembly and a cover glass disposed on the display assembly, and a side of the cover glass facing away from the display assembly is provided with a microstructure array, the micro
  • the array of structures includes a plurality of microstructure units arranged in a first direction, each of the microstructure units including a plurality of microstructures arranged in a line along a second direction, the first direction being perpendicular to the second direction, the microstructure array
  • the microstructure units located in the odd rows are arranged in a straight line along the first direction, and the microstructure units located in the even rows in the array of microstructures are arranged in a straight line along the first direction, and any two adjacent microstructures in the array of microstructures
  • the unit is staggered by a predetermined distance in the second direction.
  • the cross-sectional shape of the microstructure is a triangle.
  • the projection shape of the microstructure on the cover glass is square, rectangular, circular or triangular.
  • the projection shape of the microstructure on the cover glass is square or rectangular.
  • the microstructure has a height of 500 to 1000 nm.
  • the projection of the microstructure on the cover glass has a length in the first direction or the second direction of 400 to 600 nm.
  • the spacing between any two adjacent microstructures in each of the microstructure units is equal.
  • the predetermined distance is not more than 50% of an interval between any two adjacent microstructures in each of the microstructure units, and/or any two adjacent ones in each of the microstructure units
  • the spacing between the structures is 400-600 nm, and/or the spacing of any adjacent two microstructure units in the microstructure array in the first direction is 400-600 nm.
  • the present invention also provides a display device comprising the display panel of any of the above.
  • the side of the cover glass in the display panel of the present invention facing away from the display component is provided with a microstructure array, and the microstructure array comprises a plurality of microstructure units arranged in a first direction, and any phase in the microstructure array
  • the two adjacent microstructure units are staggered by a predetermined distance in the second direction, and the reflectivity of the cover glass can be reduced by the microstructure array, thereby improving the display effect of the display panel.
  • 1 is a schematic structural view of a display device
  • FIG. 2 is a schematic structural view of a display panel
  • Figure 3 is a plan view of the display panel of Figure 2;
  • Figure 4 is a spectrogram of the reflectivity of the cover glass.
  • the display device provided in this embodiment includes a display panel 1 and a substrate 2 , and the display panel 1 is disposed on the top of the substrate 2 .
  • the display panel 1 includes a display assembly 11 and a cover glass 12 disposed on the display assembly 11.
  • a side of the cover glass 12 facing away from the display assembly 11 is provided with a microstructure array 13 including a plurality of arrays 13 arranged in a first direction.
  • each of the microstructure units 10 includes a plurality of microstructures 100 arranged in a line along a second direction, the first direction being perpendicular to the second direction, and the microstructure units 10 of the microstructure array 13 located in the odd rows
  • One direction is linearly arranged, and the microstructure units 10 in the even rows in the microstructure array 13 are arranged in a straight line in the first direction, and any two adjacent microstructure units 10 in the microstructure array 13 are staggered by a predetermined distance in the second direction.
  • the first direction is the y direction as shown in FIG. 2
  • the second direction is the x direction as shown in FIG. 2.
  • the display component 11 in this embodiment may be an LCD component, or may be an OLED component, that is, the display device may be an LCD or an OLED.
  • the microstructures 100 in this embodiment are of the order of nanometers, and the cross-sectional shape thereof may be triangular or trapezoidal, and the cross section herein refers to a section of the microstructure 100 along a direction perpendicular to the x-axis and the y-axis.
  • the cross-sectional shape of the microstructures 100 is a triangle.
  • the projection shape of the microstructure 100 on the cover glass 12 is square, rectangular, circular or triangular, that is, the shape of the bottom surface of the microstructure 100 is square, rectangular, circular or triangular, and the shape of the corresponding microstructure 100 is a regular pyramid. , quadrangular pyramid, cone, triangular pyramid.
  • the shape of the microstructure 100 is a regular quadrangular pyramid or a quadrangular pyramid. Since the refractive index of the surface of the material continuously changes along the depth direction, and the shape of the microstructure 100 is a regular quadrangular pyramid or a quadrangular pyramid, the positive quadrangular pyramid or the quadrangular pyramid can be simultaneously reduced. The reflection phenomenon caused by a sharp change in the refractive index of the four sides.
  • the height of the microstructure 100 is 500 to 1000 nm, that is, the distance from the apex to the bottom of the microstructure 100 is 500 to 1000 nm.
  • the projection of the apex of the microstructure 100 on the bottom surface coincides with the center of the bottom surface.
  • the projection of the microstructure 100 on the cover glass 12 has a length in the first direction or the second direction of 400 to 600 nm, that is, the length of the bottom surface of the microstructure 100 in the y direction or the x direction is 400 to 600 nm, for example,
  • the shape of the microstructure 100 is a regular quadrangular pyramid, and the side length of the bottom surface of the microstructure 100 is 400-600 nm, and the shape of the microstructure 100 is a quadrangular pyramid.
  • the length and width of the bottom surface of the microstructure 100 are 400-600 nm, and the microstructure 100 is When the shape is a cone, the diameter of the bottom surface of the microstructure 100 is 400-600 nm, and the shape of the microstructure 100 is a triangular pyramid, and the height of the bottom surface of the microstructure 100 is 400-600 nm.
  • the spacing d 1 between any two adjacent microstructures 100 in each microstructure unit 10 is equal, and any adjacent two of the microstructure arrays 13
  • the microstructure unit 10 is staggered in the second direction, that is, the x direction, by a predetermined distance d 2 which is not more than 50% of the interval d 1 between any adjacent two microstructures in each of the microstructure units, that is, 0 ⁇ d 2 ⁇ d 1 /2, wherein the interval d 1 between any two adjacent microstructures 100 in each of the microstructure units 10 is 400 to 600 nm.
  • the spacing d 3 of any two adjacent microstructure units 10 in the microstructure array 13 in the first direction, that is, the y direction, is 400 to 600 nm.
  • the microstructure array 13 in this embodiment will be described below by three specific examples. Cover glass 12-position quartz glass.
  • the microstructure 100 is a regular quadrangular pyramid, the side of the square of the regular pyramid is 450 nm, the height of the regular pyramid is 600 nm, and any adjacent two regular pyramids in each microstructure unit 10
  • the spacing d 1 is 400 nm, and any two adjacent microstructure units 10 in the microstructure array 13 are staggered in the x direction by a predetermined distance d 2 of 200 nm, and any adjacent two microstructure units 10 in the microstructure array 13 are
  • the pitch d 3 in the y direction is 400 nm.
  • the microstructure 100 is a cone
  • the diameter of the bottom surface of the cone is 450 nm
  • the height of the cone is 600 nm
  • the spacing d 1 between any two adjacent cones in each microstructure unit 10 is 400 nm
  • the microstructure array 13 Any two adjacent adjacent two microstructure units 10 are shifted by a predetermined distance d 2 in the x direction to be 200 nm, and a pitch d 3 of any adjacent two microstructure units 10 in the microstructure array 13 in the y direction is 400 nm.
  • the microstructure 100 is a triangular pyramid, the height of the bottom surface of the triangular pyramid is 450 nm, the height of the triangular pyramid is 600 nm, and the interval d 1 between any adjacent two triangular pyramids in each microstructure unit 10 is 400 nm.
  • Any two adjacent microstructure units 10 in the microstructure array 13 are staggered in the x direction by a predetermined distance d 2 of 200 nm, and the spacing d 3 of any adjacent two microstructure units 10 in the microstructure array 13 in the y direction is 400 nm. .
  • the 4 is a reflectance spectrum of the cover glass 12 and the cover glass 12 not provided with the microstructure array 13 in three examples, wherein 104 is the reflectance spectrum of the cover glass 12 without the microstructure array 13
  • the curve, 105 is the reflectance spectrum curve of the first example
  • 106 is the reflectance spectrum curve of the second example
  • 107 is the reflectance spectrum curve of the third example.
  • the average reflectance of the cover glass 12 not provided with the microstructure array 13 is 10.5%
  • the average reflectance of the cover glass 12 of the second example and the third example is 5.5%
  • the average reflectance of 12 is about 1.5%.
  • the display panel of the present embodiment can be used as a display panel of a mobile display terminal such as a mobile phone or a tablet, which can effectively improve the display performance deterioration caused by ambient light reflection, and has a very broad application prospect in outdoor display and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种微结构(100)、显示装置及其显示面板(1),显示面板(1)包括显示组件(11)及设于显示组件(11)上的盖板玻璃(12),盖板玻璃(12)背离显示组件(11)的一面设置有微结构阵列(13),微结构阵列(13)包括沿第一方向排列的多个微结构单元(10),每一个微结构单元(10)包括沿第二方向呈直线排列的多个微结构(100),第一方向与第二方向垂直,微结构阵列(13)中位于奇数行的微结构单元(10)沿第一方向呈直线排列,微结构阵列(13)中位于偶数行的微结构单元(10)沿第一方向呈直线排列,微结构阵列(13)中任意相邻两个微结构单元(10)在第二方向上错开预定距离。显示面板(1)中的微结构阵列(13)中任意相邻两个微结构单元(10)在第二方向上错开预定距离,通过微结构阵列(13)可以减少盖板玻璃(12)的反射率,从而改善显示面板(1)的显示效果。

Description

微结构、显示装置及其显示面板 技术领域
本发明涉及显示器技术领域,尤其涉及一种微结构、显示装置及其显示面板。
背景技术
显示装置通常在表面设置有一层盖板玻璃,由于显示装置盖板玻璃的反射作用,显示装置在较强的外部环境光下工作时,环境光照射到显示装置表面会发生反射。当反射率较高时,将严重影响显示画面的观看效果,甚至根本看不清显示画面。
为了解决这一问题,需要对盖板玻璃表面进行防反射处理;在盖板上蒸镀各种防反射薄膜是当前最常用的方法。虽然防反射薄膜可降低盖板玻璃表面的反射率,但是,该方法也存在较大局限性;一般情况下,在玻璃表面蒸镀单层防反射薄膜只能降低单一波长的反射,目视盖板玻璃会出现比较明显的色偏现象;此外,尽管在盖板玻璃表面蒸镀多层防反射薄膜可以降低盖板玻璃在可见光波长范围内(380nm~780nm)的反射率,但是复杂的膜层结构会大大增加加工成本且其性能稳定性也会有所下降。
目前,受飞蛾眼睛的启发,人们提出了一种在盖板玻璃表面制备周期性微纳结构的方法,通过这些微纳结构可在可见光范围内降低盖板玻璃的反射率。蛾眼表面具有一层六角蜂窝状纳米结构,该结构的特征尺寸在百纳米量级,小于入射光波长。在该尺度范围内,光波入射到微纳结构表面时无法辨认出该微结构,使得材料表面的折射率沿深度方向呈连续变化,能够减小折射率急剧变化所造成的反射现象,从而有效降低材料的反射率。‘蛾眼’结构的三维形貌以及空间分布对盖板玻璃的反射率有很大影响,因此,需要提供一种能够使得盖板玻璃具有较低反射率的‘蛾眼’结构设计。
发明内容
为了解决现有技术的不足,本发明提供一种显示装置及其显示面板,能够降低盖板玻璃表面的反射率、改善显示面板的显示效果。
本发明提出的具体技术方案为:提供一种微结构阵列,所述微结构阵列包括沿第一方向排列的多个微结构单元,每一个所述微结构单元包括沿第二方向呈直线排列的多个微结构,第一方向与第二方向垂直,所述微结构阵列中位于奇数行的微结构单元沿第一方向呈直线排列,所述微结构阵列中位于偶数行的微结构单元沿第一方向呈直线排列,所述微结构阵列中任意相邻两个微结构单元在第二方向上错开预定距离。
本发明还提供一种显示面板,所述显示面板包括显示组件及设于所述显示组件上的盖板玻璃,所述盖板玻璃背离所述显示组件的一面设置有微结构阵列,所述微结构阵列包括沿第一方向排列的多个微结构单元,每一个所述微结构单元包括沿第二方向呈直线排列的多个微结构,第一方向与第二方向垂直,所述微结构阵列中位于奇数行的微结构单元沿第一方向呈直线排列,所述微结构阵列中位于偶数行的微结构单元沿第一方向呈直线排列,所述微结构阵列中任意相邻两个微结构单元在第二方向上错开预定距离。
可选地,所述微结构的截面形状为三角形。
可选地,所述微结构在所述盖板玻璃上的投影形状为正方形、长方形、圆形或三角形。
可选地,所述微结构在所述盖板玻璃上的投影形状为正方形或长方形。
可选地,所述微结构的高度为500~1000nm。
可选地,所述微结构在所述盖板玻璃上的投影在第一方向或第二方向上的长度均为400~600nm。
可选地,每一个所述微结构单元中任意相邻两个微结构之间的间隔相等。
可选地,所述预定距离不大于每一个所述微结构单元中任意相邻两个微结构之间的间隔的50%,和/或每一个所述微结构单元中任意相邻两个微结构之间的间隔为400~600nm,和/或所述微结构阵列中任意相邻两个微结构单元在第一方向上的间距为400~600nm。
本发明还提供了一种显示装置,所述显示装置包括如上任一所述的显示面板。
本发明提出的显示面板中的盖板玻璃背离所述显示组件的一面设置有微结构阵列,所述微结构阵列包括沿第一方向排列的多个微结构单元,所述微结构阵列中任意相邻两个微结构单元在第二方向上错开预定距离,通过微结构阵列可以减少盖板玻璃的反射率,从而改善显示面板的显示效果。
附图说明
图1为显示装置的结构示意图;
图2为显示面板的结构示意图;
图3为图2中显示面板的俯视图;
图4为盖板玻璃的反射率频谱图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。在附图中,相同的标号将始终被用于表示相同的元件。
参照图1、图2及图3,本实施例提供的显示装置包括显示面板1和基板2,显示面板1设于基板2的顶部。显示面板1包括显示组件11及设于显示组件11上的盖板玻璃12,盖板玻璃12背离显示组件11的一面设置有微结构阵列13,微结构阵列13包括沿第一方向排列的多个微结构单元10,每一个微结构单元10包括沿第二方向呈直线排列的多个微结构100,第一方向与第二方向垂直,微结构阵列13中位于奇数行的微结构单元10沿第一方向呈直线排列,微结构阵列13中位于偶数行的微结构单元10沿第一方向呈直线排列,微结构阵列13中任意相邻两个微结构单元10在第二方向上错开预定距离。这里,第一方向为如图2中所示的y方向,第二方向为如图2中所示的x方向。本实施例中的显示组件11可以为LCD组件,也可以为OLED组件即显示装置可以为LCD,也可以为OLED。
本实施例中的微结构100为纳米量级,其截面形状可以为三角形或梯形,这里的截面指的是微结构100沿垂直于x轴、y轴方向上的截面。较佳地,微结构100的截面形状为三角形。
微结构100在盖板玻璃12上的投影形状为正方形、长方形、圆形或三角形,即微结构100底面的形状为正方形、长方形、圆形或三角形,对应的微结构100的形状分别为正四棱锥、四棱锥、圆锥、三棱锥。优选地,微结构100的形状为正四棱锥或四棱锥,由于材料表面的折射率沿深度方向呈连续变化,微结构100的形状为正四棱锥或四棱锥时,可以同时减小正四棱锥或四棱锥的四个侧面的折射率急剧变化所造成的反射现象。
微结构100的高度为500~1000nm,即微结构100的顶点到底面的距离为500~1000nm。微结构100的顶点在底面的投影与底面的中心重合。微结构100在盖板玻璃12上的投影在第一方向或第二方向上的长度均为400~600nm,即微结构100的底面在y方向或x方向的长度均为400~600nm,例如,微结构100的形状为正四棱锥,则微结构100底面的边长为400~600nm,微结构100的形状为四棱锥,则微结构100底面的长、宽均为400~600nm,微结构100的形状为圆锥,则微结构100底面的直径为400~600nm,微结构100的形状为三棱锥,则微结构100底面的高为400~600nm。
如图3所示,以微结构100的形状为正四棱锥为例,每一个微结构单元10中任意相邻两个微结构100之间的间隔d 1相等,微结构阵列13中任意相邻两个微结构单元10在第二方向即x方向上错开预定距离d 2不大于每一个微结构单元中任意相邻两个微结构之间的间隔d 1的50%,即0≤d 2≤d 1/2,其中,每一个微结构单元10中任意相邻两个微结构100之间的间隔d 1为400~600nm。微结构阵列13中任意相邻两个微结构单元10在第一方向即y方向上的间距d 3为400~600nm。
下面通过三个具体示例来对本实施例中的微结构阵列13进行描述。盖板玻璃12位石英玻璃,第一个示例中微结构100为正四棱锥,正四棱锥底面的边长为450nm,正四棱锥的高为600nm,每一个微结构单元10中任意相邻两个正四棱锥之间的间隔d 1为400nm,微结构阵列13中任意相邻两个微结构单元10在x方向上错开预定距离d 2为200nm,微结构阵列13中任意相邻两个微结构单元10在y方向上的间距d 3为400nm。
第二个示例中微结构100为圆锥,圆锥底面的直径为450nm,圆锥的高为600nm,每一个微结构单元10中任意相邻两个圆锥之间的间隔d 1为400nm,微结构阵列13中任意相邻两个微结构单元10在x方向上错开预定距离d 2为200nm,微结构阵列13中任意相邻两个微结构单元10在y方向上的间距d 3为400nm。
第三个示例中微结构100为三棱锥,三棱锥底面的高为450nm,三棱锥的高为600nm,每一个微结构单元10中任意相邻两个三棱锥之间的间隔d 1为400nm,微结构阵列13中任意相邻两个微结构单元10在x方向上错开预定距离d 2为200nm,微结构阵列13中任意相邻两个微结构单元10在y方向上的间距d 3为400nm。
图4为三个示例中盖板玻璃12以及未设有微结构阵列13的盖板玻璃12的反射率频谱曲线,其中,104为未设有微结构阵列13的盖板玻璃12的反射率频谱曲线,105为第一个示例的反射率频谱曲线,106为第二个示例的反射率频谱曲线,107为第三个示例的反射率频谱曲线。未设有微结构阵列13的盖板玻璃12的平均反射率为10.5%,第二个示例和第三个示例的盖板玻璃12的平均反射率为5.5%,第一个示例的盖板玻璃12的平均反射率约为1.5%,微结构100的形状为四棱锥时盖板玻璃12的反射率要低于微结构100的形状为圆锥和三棱锥时盖板玻璃12的反射率,而微结构100的形状为圆锥和三棱锥时盖板玻璃12的反射率相对未设有微结构阵列13的盖板玻璃12的反射率有明显下降。因此,将本实施例中的显示面板作为手机、平板等移动显示终端的显示面板,可有效改善由于环境光反射造成的显示效果变差问题,在室外显示等方面有非常广泛的应用前景。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (20)

  1. 一种微结构阵列,其中,包括沿第一方向排列的多个微结构单元,每一个所述微结构单元包括沿第二方向呈直线排列的多个微结构,第一方向与第二方向垂直,所述微结构阵列中位于奇数行的微结构单元沿第一方向呈直线排列,所述微结构阵列中位于偶数行的微结构单元沿第一方向呈直线排列,所述微结构阵列中任意相邻两个微结构单元在第二方向上错开预定距离。
  2. 一种显示面板,其中,包括显示组件及设于所述显示组件上的盖板玻璃,所述盖板玻璃背离所述显示组件的一面设置有微结构阵列,所述微结构阵列包括沿第一方向排列的多个微结构单元,每一个所述微结构单元包括沿第二方向呈直线排列的多个微结构,第一方向与第二方向垂直,所述微结构阵列中位于奇数行的微结构单元沿第一方向呈直线排列,所述微结构阵列中位于偶数行的微结构单元沿第一方向呈直线排列,所述微结构阵列中任意相邻两个微结构单元在第二方向上错开预定距离。
  3. 根据权利要求2所述的显示面板,其中,所述微结构的截面形状为三角形。
  4. 根据权利要求3所述的显示面板,其中,所述微结构在所述盖板玻璃上的投影形状为正方形、长方形、圆形或三角形。
  5. 根据权利要求4所述的显示面板,其中,所述微结构在所述盖板玻璃上的投影形状为正方形或长方形。
  6. 根据权利要求3所述的显示面板,其中,所述微结构的高度为500~1000nm。
  7. 根据权利要求6所述的显示面板,其中,所述微结构在所述盖板玻璃上的投影在第一方向或第二方向上的长度均为400~600nm。
  8. 根据权利要求2所述的显示面板,其中,每一个所述微结构单元中任意相邻两个微结构之间的间隔相等。
  9. 根据权利要求3所述的显示面板,其中,每一个所述微结构单元中任意相邻两个微结构之间的间隔相等。
  10. 根据权利要求4所述的显示面板,其中,每一个所述微结构单元中任意相邻两个微结构之间的间隔相等。
  11. 根据权利要求8所述的显示面板,其中,所述预定距离不大于每一个所述微结构单元中任意相邻两个微结构之间的间隔的50%,和/或每一个所述微结构单元中任意相邻两个微结构之间的间隔为400~600nm,和/或所述微结构阵列中任意相邻两个微结构单元在第一方向上的间距为400~600nm。
  12. 一种显示装置,其中,包括显示面板,所述显示面板包括显示组件及设于所述显示组件上的盖板玻璃,所述盖板玻璃背离所述显示组件的一面设置有微结构阵列,所述微结构阵列包括沿第一方向排列的多个微结构单元,每一个所述微结构单元包括沿第二方向呈直线排列的多个微结构,第一方向与第二方向垂直,所述微结构阵列中位于奇数行的微结构单元沿第一方向呈直线排列,所述微结构阵列中位于偶数行的微结构单元沿第一方向呈直线排列,所述微结构阵列中任意相邻两个微结构单元在第二方向上错开预定距离。
  13. 根据权利要求12所述的显示装置,其中,所述微结构的截面形状为三角形。
  14. 根据权利要求13所述的显示装置,其中,所述微结构在所述盖板玻璃上的投影形状为正方形、长方形、圆形或三角形。
  15. 根据权利要求14所述的显示装置,其中,所述微结构在所述盖板玻璃上的投影形状为正方形或长方形。
  16. 根据权利要求13所述的显示装置,其中,所述微结构的高度为500~1000nm。
  17. 根据权利要求16所述的显示装置,其中,所述微结构在所述盖板玻璃上的投影在第一方向或第二方向上的长度均为400~600nm。
  18. 根据权利要求12所述的显示装置,其中,每一个所述微结构单元中任意相邻两个微结构之间的间隔相等。
  19. 根据权利要求13所述的显示装置,其中,每一个所述微结构单元中任意相邻两个微结构之间的间隔相等。
  20. 根据权利要求18所述的显示装置,其中,所述预定距离不大于每一个所述微结构单元中任意相邻两个微结构之间的间隔的50%,和/或每一个所述微结构单元中任意相邻两个微结构之间的间隔为400~600nm,和/或所述微结构阵列中任意相邻两个微结构单元在第一方向上的间距为400~600nm。
PCT/CN2018/073056 2017-12-28 2018-01-17 微结构、显示装置及其显示面板 WO2019127707A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/752,774 US20200132891A1 (en) 2017-12-28 2018-01-17 Micro structure, display apparatus and display panel thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711457524.3A CN107976728A (zh) 2017-12-28 2017-12-28 微结构、显示装置及其显示面板
CN201711457524.3 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019127707A1 true WO2019127707A1 (zh) 2019-07-04

Family

ID=62008086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073056 WO2019127707A1 (zh) 2017-12-28 2018-01-17 微结构、显示装置及其显示面板

Country Status (3)

Country Link
US (1) US20200132891A1 (zh)
CN (1) CN107976728A (zh)
WO (1) WO2019127707A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856835B (zh) * 2018-12-07 2021-10-01 万维科研有限公司 一种防止液晶显示器漏光的玻璃盖板及其制作方法
CN112951078A (zh) * 2021-01-28 2021-06-11 业成科技(成都)有限公司 用于显示装置的盖板及其制造方式

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2874533Y (zh) * 2006-03-23 2007-02-28 长兴化学工业股份有限公司 抗刮聚光片
US20070297728A1 (en) * 2006-06-07 2007-12-27 Samsung Electronics Co., Ltd. Anti-reflective optical film
CN101178442A (zh) * 2006-11-08 2008-05-14 日产自动车株式会社 防水性防反射结构及其制造方法
CN203888316U (zh) * 2014-06-20 2014-10-22 山东科技大学 带表面微结构的贴膜
CN105511000A (zh) * 2015-12-28 2016-04-20 昆山国显光电有限公司 光提取膜及其制备方法
US20160313474A1 (en) * 2014-01-10 2016-10-27 Dexerials Corporation Anti-reflective structure and method for designing same
CN107300807A (zh) * 2017-06-01 2017-10-27 武汉华星光电技术有限公司 一种光学元件、液晶显示模组及蛾眼微结构的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7108681B2 (en) * 2000-10-16 2006-09-19 Corium International, Inc. Microstructures for delivering a composition cutaneously to skin
JP4255334B2 (ja) * 2003-08-20 2009-04-15 シャープ株式会社 表示装置
CN102016651B (zh) * 2008-06-06 2013-05-22 夏普株式会社 防反射膜和具备防反射膜的光学元件、压模和压模的制造方法以及防反射膜的制造方法
CN102410495B (zh) * 2011-12-07 2014-10-15 丹阳博昱科技有限公司 具有不同取向微结构区域的光学片及其制作方法
JP6482120B2 (ja) * 2015-03-31 2019-03-13 デクセリアルズ株式会社 原盤の製造方法、光学体の製造方法、光学部材の製造方法、および表示装置の製造方法
CN106094076A (zh) * 2016-08-19 2016-11-09 武汉华星光电技术有限公司 增亮膜以及背光模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2874533Y (zh) * 2006-03-23 2007-02-28 长兴化学工业股份有限公司 抗刮聚光片
US20070297728A1 (en) * 2006-06-07 2007-12-27 Samsung Electronics Co., Ltd. Anti-reflective optical film
CN101178442A (zh) * 2006-11-08 2008-05-14 日产自动车株式会社 防水性防反射结构及其制造方法
US20160313474A1 (en) * 2014-01-10 2016-10-27 Dexerials Corporation Anti-reflective structure and method for designing same
CN203888316U (zh) * 2014-06-20 2014-10-22 山东科技大学 带表面微结构的贴膜
CN105511000A (zh) * 2015-12-28 2016-04-20 昆山国显光电有限公司 光提取膜及其制备方法
CN107300807A (zh) * 2017-06-01 2017-10-27 武汉华星光电技术有限公司 一种光学元件、液晶显示模组及蛾眼微结构的制备方法

Also Published As

Publication number Publication date
CN107976728A (zh) 2018-05-01
US20200132891A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
CN104360534B (zh) 彩膜基板的制作方法、彩膜基板及显示装置
WO2016173018A1 (zh) 偏光片及其制备方法、液晶面板
WO2020073380A1 (zh) 一种显示装置、保护盖板
JP2006201782A (ja) ワイヤグリッド偏光フィルム、偏光フィルムの製造方法、これを用いた液晶ディスプレイ及びワイヤグリッド偏光フィルムのグリッド製造用モールドの製造方法
JP2008268940A5 (zh)
US10193103B2 (en) Organic light emitting device having protrusion formed of transparent material and display apparatus
CN103329643A (zh) 具有变暗的多层导体迹线的图案化基底
CN109994504A (zh) 一种像素排布结构及相关装置
US20150070762A1 (en) Polarizer, display device having the same, and method of manufacturing the same
CN102792247A (zh) 透明导电元件、输入装置及显示装置
WO2019127707A1 (zh) 微结构、显示装置及其显示面板
CN104950375A (zh) 一种液晶显示器用的上偏光板、液晶显示器
TWI420163B (zh) 線柵偏光板及包含其之液晶顯示器
WO2020143217A1 (zh) 掩膜单元及具有该掩膜单元的掩膜板组件
US20170219866A1 (en) Liquid Crystal Display Panel
WO2020087625A1 (zh) 光学复合膜、显示面板和显示装置
TWI461795B (zh) 液晶顯示器
CN102804110A (zh) 透明导电元件、输入装置以及显示装置
US20170307783A1 (en) Optical element, optical composite element, and optical composite element having protective film
WO2020087630A1 (zh) 光学复合膜、显示面板和显示装置
CN112201681A (zh) 像素排布结构、电致发光显示面板、显示装置及掩模板
US10877203B2 (en) Light guide plate and method for fabricating the same, backlight module and display panel
WO2012073867A1 (ja) 光拡散部材およびその製造方法、表示装置
WO2021102925A1 (zh) 阵列基板及其制作方法、显示装置
WO2021203524A1 (zh) 透光基板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897381

Country of ref document: EP

Kind code of ref document: A1