WO2019125126A1 - Multi-carrier communication system for doubly selective channels using frequency dispersion and non-linear interference cancellation - Google Patents

Multi-carrier communication system for doubly selective channels using frequency dispersion and non-linear interference cancellation Download PDF

Info

Publication number
WO2019125126A1
WO2019125126A1 PCT/MX2018/000151 MX2018000151W WO2019125126A1 WO 2019125126 A1 WO2019125126 A1 WO 2019125126A1 MX 2018000151 W MX2018000151 W MX 2018000151W WO 2019125126 A1 WO2019125126 A1 WO 2019125126A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
data
channel
detection
decomposition
Prior art date
Application number
PCT/MX2018/000151
Other languages
Spanish (es)
French (fr)
Inventor
Fernando PEÑA CAMPOS
Joaquín CORTEZ GONZÁLEZ
Ramón PARRA MICHEL
José Alberto DEL PUERTO FLORES
Original Assignee
Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional filed Critical Centro De Investigación Y De Estudios Avanzados Del Instituto Politécnico Nacional
Publication of WO2019125126A1 publication Critical patent/WO2019125126A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26

Definitions

  • Multi-carrier communication system for doubly selective channels using frequency dispersion and non-linear interference cancellation.
  • the present invention is related to the field of telecommunications, specifically to the implementation of a muiti-carrier communication system using orthogonal frequency modulation (OFDM: orthogonal frequency multiplexing division) that allows establishing broadband wireless links in environments with high mobilities such as vehicle-to-vehicle connections (V2V: vehicle ⁇ o vehicie).
  • OFDM orthogonal frequency modulation
  • V2V vehicle ⁇ o vehicie
  • V2V wireless communications links has had a great boom in recent years, this due to its main applications in terms of control and road safety as it is: avoid congestion of main roads, crash prevention, autonomous vehicles, remote tracking of vehicles, etc.
  • Different campaigns of measurements and sounding of the channel in V2V environments verify the existence of high frequencies of Doppier dispersion (greater than 600 Hz) and non-stationary statistics of the channel, which causes that the interference between subpor ⁇ adoras ( ⁇ CI: in ⁇ ercarrier interference) is one of the main problems that affect the performance of the various stages in the receiver.
  • the 802.11p standard retains a frame structure equal to that of the 802.11a / g / n standard, that is, it was not specifically designed to support the V2V channel conditions, which causes the received signal to experience high levels of ICI that eventually impact significantly reducing the performance of the system.
  • US20100098146 and US9621389 present systems with data estimators that include the iCI and offer better performance than conventional receivers. However, they strictly require the modification of! standard 802.1 1 p to be able to introduce extra training sequences, which decreases the spectral efficiency of! system and represents a compatibility problem. A) Yes same, they use cane estimators! with an observation window that covers a large number of GFDM symbols, which greatly impacted the memory required for its implementation, as well as the system's presence.
  • MI maximum likelihood detector
  • EP0521744A3 has the best performance, but its complexity increases abruptly with the constellation size and the number of subcarriers of data, so its implementation in a system that operates In real time it is not viable.
  • MIMO multiple input multiple output
  • DFE decision feedback equalizer
  • Figure 1 shows a diagram generated! of a vehicle-to-vehicle communication link.
  • Figure 2 shows the structure of the transmitter! communication system proposed for V2V communication incorporating a frequency dispersion scheme.
  • Figure 3 shows the structure of! receiver of the low complexity communications system proposed for V2V communication using frequency dispersion and non-linear interference cancellation.
  • Figure 4 shows a diagram exemplifying the search tree used by the algorithm M to perform the detection of the data.
  • Figure 5 shows the performance of a V2V link using the system proposed in this invention compared to the performance obtained using other reception techniques for existing V2V systems.
  • FIG. 1 shows the vehicle-to-vehicle transmitter (101) that incorporates data modulation along with digital baseband processing and analog conversion for transmitting the signal on the transmitting antenna (103), the signal The carrier travels through the V2V channel Wirelessly by electromagnetic waves to the receiving antenna (104).
  • the V2V receiver (102) the signal is demodulated and the analog / digital processing is performed to detect the sent data.
  • x '- n ⁇ is the transmitted OFDM block, is the received signal, is the answer of the cane! in the "-th", for an impulse as input into the ⁇ -th previous sample;
  • ⁇ ' N denotes the operation of modulus N, it is the additive circular Gaussian white noise and symmetric, with zero mean and variance cr, - circular convocation between the response to! channel impulse (R! G) and x M can be rewritten in terms of matrices and vectors such as:
  • H is a dimension matrix x ⁇ composed of the elements of the RiC in the form:
  • u Gs -fz, (VI!)
  • TDF discrete Fourier transform
  • MFC matrix channel response in the frequency domain
  • G takes the form of a diagonal matrix involving an ICI free system for which data defection is simple, however, in V2V environments due to the high mobility both of the transmitter and the receiver, the Doppler spread is significant, causing the matrix G to have energy in the components outside the main diagonal, causing ICI.
  • the receiver described in the following section of this invention combines the time-variant channel estimator iteratively coupled to the non-linear detection of data and a precoding scheme that allows obtaining ICI-free pilots in a single iteration, exploitation of the channel diversity and rapid convergence in the data detection stage.
  • DPSS discrete prolate spheroidai sequences
  • band system is the maximum dispersion of! delay time and D is the maximum frequency of Doppler scattering.
  • the subscript p denotes the sub-sampling of the vectors and matrices in the rows and columns corresponding to the position of the pilots.
  • index variable i q + M r) (r- ⁇ ⁇ 0 £ r £ M T 0 £ q £ M n - ⁇ la
  • any of the representations such as the impulse response and the channel transfer function can be calculated directly by performing the weighted sum of the functions of the base.
  • the estimated MFC can be calculated using the expression: Dispersion DF T.
  • the selectivity of the cane! V2V renders detection errors susceptible to OFDM systems because the local power of some subcarriers may be low due to deep fading, which makes it impossible to detect the transmitted data.
  • DFTS frequency spreading pre-coding technique
  • FFT fast Fourier transform
  • the elements transmitted in frequency in the positions of the data are constructed by applying to the data symbols in the vector ⁇ the Fourier matrix whose elements are determined by:
  • D and D are the vector of the received signal and the noise vector respectively, each in the
  • the matrix D is obtained by taking the columns and rows of t G " at the positions of the data carriers
  • the term ⁇ 3 ⁇ 4 pSp represents the interference in the carriers with data from the carriers with pilots.
  • the main point of innovation in the present invention is the efficient integration of DFTS precoding into e! process of the detection of the data in the receiver.
  • One of the problems of using DFTS in the receiver is reflected in the difficulty to apply non-linear detection algorithms while maintaining low computational complexity since the channel equivalent matrix It does not conserve structure in band, A solution to this disadvantage is to find an operator such that, when applied to the received signal, it reestablishes the band structure of the equivalent channel matrix.
  • the inverse Fourier transform D tai is used that the Cramer-Loéve operator in the channel matrix is completed.
  • the vector received at the position of the data is obtained as:
  • the detection of data using the maximum likelihood criterion can be obtained by finding the values that optimize the following expression; where is the set with all the possible combinations of transmitted symbols and% is the vector with the estimated data symbols.
  • This method of data detection is of great computational complexity due to the exhaustive calculation of all Euclidean distances.
  • the following describes two different methods of data detection that exploit the particular structure of the K matrix in the form of a band to obtain the defection of data in a suboptimal way with reduced computational complexity.
  • the non-line detection method! of low complexity proposed in the present invention consists of two main steps:
  • the QR decomposition is used to obtain the matrices Q and R from the channel matrix with precoding K such that the relation is fulfilled:
  • P is a permutation matrix with reordering as a function of the signal to interference ratio.
  • This decomposition can be carried out using different methods, however, in this invention a variant of the Gram-Schmidt algorithm is used.
  • permutations are made in the position of the columns with the objective that the lines resulting in matrix R are arranged according to their signal-to-noise ratio.
  • the quasibanda structure of the K-matrix is exploited to reduce the computational complexity to the maximum in the calculation of the QR decomposition.
  • K [K
  • the extended matrix is constructed in such a way that it includes noise statistics in the form: rxxxn
  • the advantage of using unit rotations in the orthogonalization process for obtaining the QR decomposition is that it conserves the original energy of all the elements of the original matrix K maintaining the dynamic range of all the variables used in the process. This feature facilitates the implementation of this method in devices for real-time execution using fixed-point arithmetic.
  • the resulting matrix after Ions can be expressed as:
  • the extended matrix is constructed according to the criterion to be used, either LS or MMSE.
  • the matrix is initialized , in which the permutations used for ordering the data elements. 4, The matrix is initialized
  • the band structure of the K matrix implies that one can do without the calculations relating to the large number of elements that are equal to zero. OSiC data detection.
  • the QR decomposition serves as the preprocessing stage in data detection.
  • An effective method to subsequently perform the interference cancellation is the OSiC algorithm which, in combination with the QR decomposition described above, allows the suboptimal detection of data with very low computational complexity.
  • the performance of these two techniques together in V2V systems with DFTS gives very low erroneous bit rates.
  • the QR decomposition of - provides an upper triangular matrix R, an orthogonal matrix of unitary norm Q as well as a. permutation vector P, such that . Ai replace this decomposition in equation (XXVII), you get:
  • the elements of! vector v can be expressed individually as: where! to notation they indicate the ⁇ -th element of the vector and the b - th element of the a - th row of a matrix according to e! case. In this way the detection of each of the data can be done in an iterative manner using the following expression;
  • the operator is used to specify quantization towards the closest symbol of the constellation used by the transmitter W, assuming that in each iteration the previous decisions are correct, the interference of previously detected symbols can be subtracted prior to the detection of the symbol.
  • the decoded symbols are reordered according to the permutation matrix R ,
  • ⁇ "" D as its ancestor nodes.
  • the distance between each node of a ⁇ -th level and the root is defined as the accumulated metric value, which represents the addition of all the metrics of branches from the root to the indicated node.
  • the accumulated metric is obtained from:
  • the optimal vector es is the one whose path minimizes (XLI).
  • the design of the NML detector for the V2V multi-carrier system is based on the incorporation of! algorithm
  • an iterative method of ICi cancellation is used; the main ideal is to use the G- channel matrix estimated in a first iteration to calculate the ICI that contaminates the pilot subcarriers and eliminate it. These pilots with lower ICI are used again to perform channel estimation and data detection. This process can be repeated iteratively for GFDM providing the same symbol in each of the iterations best performance 'in estimating the cana! and the detection of the data.
  • the structure of the transmitter is shown in Figure 2, the bits (201) of data that are input to a convolutional encoder (202) in order to add redundancy to the data. Subsequently the encoded data (203) are scattered using an interleaving block (204), then the interleaved data is modulated in phase and quadrature by means of the modulator (206) which delivers symbols belonging to a certain constellation. The modulated symbols (207) are grouped in blocks by means of the serial to parallel converter (208) to construct a block or vector (209) that is processed by the DFTS precoder (210).
  • the precoded data is input to a carrier dispatcher (212) which assigns the elements to data carriers or piiots as the case may be, likewise assigns the guardians in the corresponding indexes.
  • the output of (212) is then modulated in a conventional orthogonal frequency multiplexing scheme (GFDM) with the help of the IFFT (213), after which the cyclic prefix in (215) is appended to it.
  • GFDM orthogonal frequency multiplexing scheme
  • the converter block parallel to series takes each of the samples of! GFDM block to be delivered as output from the baseband digital processing stage of the receiver.
  • the received signal (301) is converted into blocks with the help of the serial to parallel converter (302), then the prefix cycle is eliminated in the block (303).
  • the received signal is demodulated in a conventional orthogonal frequency multiplexing scheme (GFDM) with the help of the fast Fourier transform block (304).
  • GFDM orthogonal frequency multiplexing scheme
  • the GFDM block in the frequency domain is introduced to a demapping device (308) for extracting the pilot symbols therefrom.
  • the pilots vector (307) is used to perform the estimation of the channel matrices in the domain of time (309) and in the frequency domain (310).
  • the time channel matrix (309) is truncated into major diagonal bands in truncation block (311).
  • the interference from the pilot carriers (312) to the OFDM vector in the frequency domain is subtracted, in order to subsequently perform the inverse operation of DFTS in the e! block called IDFT (314).
  • the proposed GRM block (315) performs the GR decomposition of the temporal channel matrix according to the selected method: LS (ZF) or MMSE, then the detection of data symbols is executed in the proposed Near-lvILD detector (316). (317) by the proposed signal model.
  • deinterlacing (318) and decoding (319) are performed to obtain the vector with the received data.
  • figure 5 is included with the comparison between the performance of the invention described here (NML tag) using only one iteration against the proposed system in EP20100450186 and ER2383985 ⁇ 1 (LMMSE tag) using several iterations. It also shows the maximum performance that a system can achieve in the exact knowledge of the response of! channel (ideal channel label).
  • the evaluation metric is the erroneous bit rate (BER) while the evaluation parameter is the signal-to-noise ratio in the receiver.
  • BER bit rate
  • the proposed invention achieves better performance while requiring a lower number of iterations

Abstract

The invention relates to a communication system and method for overcoming the distortions and effects introduced by the V2V communication channels. In contrast to any existing invention operating under the same conditions, the described apparatus uses a completely novel receiving technique based on the concept of non-linear detection of signals with frequency dispersion. The receiver of this apparatus can achieve a level of performance such that it efficiently exploits the diversity in frequency, together with the band structure of the equivalent channel matrix. The performance achieved in terms of noise immunity is much better than any technique that has been found up to now and also requires a much smaller number of calculations in the receiver.

Description

Sistema de comunicación muitiportadora para canales doblemente selectivos utilizando dispersión en frecuencia y cancelación no lineal de interferencia.  Multi-carrier communication system for doubly selective channels using frequency dispersion and non-linear interference cancellation.
Campo de la invención.  Field of the invention.
La presente invención está relacionada ai campo de las telecomunicaciones, específicamente a ia implemeníación de un sistema de comunicaciones muitiportadora utilizando modulación de frecuencias ortogonales (OFDM: ortogonal frequency división multipíexing) que permita establecer enlaces inalámbricos de banda ancha en ambientes con altas movilidades tales como las conexiones de vehículo a vehículo (V2V: vehicle ío vehicie).  The present invention is related to the field of telecommunications, specifically to the implementation of a muiti-carrier communication system using orthogonal frequency modulation (OFDM: orthogonal frequency multiplexing division) that allows establishing broadband wireless links in environments with high mobilities such as vehicle-to-vehicle connections (V2V: vehicle ío vehicie).
Antecedentes de la invención. BACKGROUND OF THE INVENTION
El desarrollo de enlaces de comunicaciones inalámbricas V2V ha tenido un gran auge en los últimos años, esto debido a sus principales aplicaciones en materia de control y seguridad vial como lo es: evitar congestionamiento de vías principales, prevención de choques, vehículos autónomos, seguimiento remoto de vehículos, etc. Diversas campañas de mediciones y sondeo del canal en ambientes V2V comprueban ¡a existencia de altas frecuencias de dispersión Doppier (mayores a 600 Hz) y estadísticas no estacionarias del canal, lo cual provoca que la interferencia entre subporíadoras (ÍCI: iníercarrier interference) sea uno de los principales problemas que afectan el desempeño de ías diversas etapas en receptor.  The development of V2V wireless communications links has had a great boom in recent years, this due to its main applications in terms of control and road safety as it is: avoid congestion of main roads, crash prevention, autonomous vehicles, remote tracking of vehicles, etc. Different campaigns of measurements and sounding of the channel in V2V environments verify the existence of high frequencies of Doppier dispersion (greater than 600 Hz) and non-stationary statistics of the channel, which causes that the interference between subporíadoras (ÍCI: iníercarrier interference) is one of the main problems that affect the performance of the various stages in the receiver.
El estándar 802.11p conserva una estructura de trama igual a la del estándar 802.11a/g/n, es decir, no fue diseñado específicamente para soportar las condiciones del canal V2V, lo que provoca que la señal recibida experimente altos niveles de ICI que finalmente impactan de manera significativa reduciendo ei desempeño del sistema.  The 802.11p standard retains a frame structure equal to that of the 802.11a / g / n standard, that is, it was not specifically designed to support the V2V channel conditions, which causes the received signal to experience high levels of ICI that eventually impact significantly reducing the performance of the system.
El problema específico de la estimación de los parámetros del canal en ei receptor se complica en los sistemas V2V dado que la iCI también afecta las piloto requeridas para efectuar dicha tarea. Entre las invenciones relacionadas a atacar este problema se encuentran EP20100450186 y EP2363985A1, que proponen un receptor con estimador de canal iterativo basado en un modelo de expansión con bases de! canal (BEM: basis expansión modei) en dos dimensiones. Un problema que presenta dicha invención es e! que solo puede reconstruir las variaciones de cana! a resolución de bloque OFDM y utiliza un esquema de detección de datos que no contempla ia ICI. Además, requiere de un gran número de iteraciones para converger á su mejor desempeño en términos de BER.  The specific problem of estimating channel parameters in the receiver is complicated in V2V systems since the ICI also affects the pilot required to perform this task. Among the inventions related to attacking this problem are EP20100450186 and EP2363985A1, which propose a receiver with iterative channel estimator based on an expansion model with bases of! channel (BEM: basis expansion modei) in two dimensions. A problem presented by said invention is e! that can only reconstruct the variations of cane! to OFDM block resolution and uses a data detection scheme that does not include the ICI. In addition, it requires a large number of iterations to converge to its best performance in terms of BER.
Las invenciones en US20100098146 y US9621389 presentan sistemas con estimadores de datos que incluyen la iCI y ofrecen mejor desempeño que los receptores convencionales. Sin embargo, requieren estrictamente de la modificación de! estándar 802.1 1 p para poder introducir secuencias de entrenamiento extra, lo cual disminuye la eficiencia espectral de! sistema y representa un problema compatibilidad. Así mismo, utilizan estimadores de cana! con ventana de observación que cubre una gran cantidad de símbolos GFDM lo que impacía en gran medida en la memoria que requiere su implementación, así como en la laíencia del sistema. The inventions in US20100098146 and US9621389 present systems with data estimators that include the iCI and offer better performance than conventional receivers. However, they strictly require the modification of! standard 802.1 1 p to be able to introduce extra training sequences, which decreases the spectral efficiency of! system and represents a compatibility problem. A) Yes same, they use cane estimators! with an observation window that covers a large number of GFDM symbols, which greatly impacted the memory required for its implementation, as well as the system's presence.
Dado que el detector de datos es la operación más compleja del receptor en términos computacionales, la viabilidad práctica de cualquier sistema que pretenda operar en canales V2V depende principalmente de la complejidad computacional de esta etapa. El detector de máxima verosimilitud (MI; máximum likelihood) en la invención EP0521744A3 tiene el mejor desempeño, pero su complejidad aumenta de manera abrupta con el tamaño de constelación y el número de subportadoras de datos, por lo que su implementación en un sistema que opere en tiempo real es poco viable. También es posible adaptar técnicas de sistemas de múltiples entradas y múltiples· salidas (MIMO: múltiple input múltiple output) tales como la cancelación decisión ordenada con retroalimentación (DFE: decisión feedback equalizer) en US20120121045 y EP2234361A1, para reducir la IC! en sistemas OFDM, pero su rendimiento ha resultado pobre. Se han propuesto una serie de detectores, con menos complejidad que MI, pero con un mejor rendimiento que el DFE. Algunos de estos algoritmos fueron diseñados para V-BLAST (Vertical-Bel! Laboratories Layered Space-Tlme) EP1587223A1 , EP1587223B1. Otros son algoritmos generales cercanos a ML, como el detector esférico en la invención US8117522,  Given that the data detector is the most complex operation of the receiver in computational terms, the practical feasibility of any system that intends to operate in V2V channels depends mainly on the computational complexity of this stage. The maximum likelihood detector (MI) in the invention EP0521744A3 has the best performance, but its complexity increases abruptly with the constellation size and the number of subcarriers of data, so its implementation in a system that operates In real time it is not viable. It is also possible to adapt multi-input and multi-output systems (MIMO: multiple input multiple output) techniques such as cancellation of the decision ordered with feedback (DFE: decision feedback equalizer) in US20120121045 and EP2234361A1, to reduce the IC! in OFDM systems, but its performance has been poor. A series of detectors have been proposed, with less complexity than MI, but with a better performance than the DFE. Some of these algorithms were designed for V-BLAST (Vertical-Bel! Laboratories Layered Space-Tlme) EP1587223A1, EP1587223B1. Others are general algorithms close to ML, such as the spherical detector in the invention US8117522,
Recientemente, ¡os algoritmos de búsqueda en árbol se han aplicado a la detección en sistemas multiportadora como se reporta en US8428159; éstos han permitido tener un rendimiento cercano a la detección ML con una complejidad reducida en comparación con el detector esférico. También se pueden encontrar las invenciones como W02008151337A1 y EP2QG3833A1 con detectores basados en el aigoritmo-M combinado con ia descomposición GR de la matriz de canales que explotar» la estructura en banda de la matriz del canal.  Recently, tree search algorithms have been applied to detection in multi-carrier systems as reported in US8428159; these have allowed to have a performance close to the ML detection with a reduced complexity in comparison with the spherical detector. One can also find inventions such as W02008151337A1 and EP2QG3833A1 with detectors based on the M-aigorithm combined with the GR decomposition of the channel matrix that exploit »the band structure of the channel matrix.
Un factor importante que impacta el desempeño de los sistemas multiportadora es la selectividad en frecuencia. Esta característica del canal de banda ancha dificulta la recuperación de algunos símbolos aún en condiciones de alta relación señal a ruido (SNR: signa! ío noise ratio). Las invenciones antes mencionadas atacan este problema en las etapas de codificación de cana! con el costo adicional de pérdida de eficiencia espectral. Sin embargo, a nivel señal no se han incorporado esquemas que permitan explotar la selectividad en frecuencia en forma de diversidad para obtener mejor desempeño del sistema sin impactar de manera significativa la eficiencia espectral del sistema  An important factor that impacts the performance of multi-carrier systems is frequency selectivity. This characteristic of the broadband channel makes it difficult to recover some symbols even under conditions of high signal-to-noise ratio (SNR: signa! Io noise ratio). The aforementioned inventions attack this problem in the coding stages of cana! with the additional cost of loss of spectral efficiency. However, at the signal level, no schemes have been incorporated to exploit the frequency selectivity in the form of diversity to obtain better performance of the system without significantly impacting the spectral efficiency of the system.
Breve descripción de las figuras. Brief description of the figures.
La figura 1 muestra un diagrama genera! de un enlace de comunicación vehículo a vehículo.  Figure 1 shows a diagram generated! of a vehicle-to-vehicle communication link.
La figura 2 muestra la estructura del transmisor de! sistema de comunicaciones propuesto para la comunicación V2V incorporando un esquema de dispersión en ia frecuencia. La figura 3 muestra la estructura de! receptor del sistema de comunicaciones de baja complejidad propuesto para ¡a comunicación V2V utilizando dispersión en frecuencia y cancelación no lineal de interferencia.Figure 2 shows the structure of the transmitter! communication system proposed for V2V communication incorporating a frequency dispersion scheme. Figure 3 shows the structure of! receiver of the low complexity communications system proposed for V2V communication using frequency dispersion and non-linear interference cancellation.
La figura 4 muestra un diagrama que ejemplifica el árbol de búsqueda que utiliza el algoritmo M para realizar la detección de ios datos. Figure 4 shows a diagram exemplifying the search tree used by the algorithm M to perform the detection of the data.
La figura 5 muestra el desempeño de un enlace V2V utilizando el sistema propuesto en esta invención en comparación con el desempeño obtenido utilizando otras técnicas de recepción para sistemas V2V existentes. Figure 5 shows the performance of a V2V link using the system proposed in this invention compared to the performance obtained using other reception techniques for existing V2V systems.
Descripción detallada de la invención, Detailed description of the invention,
Los detalles característicos dei sistema de comunicación muitiportadora para enlaces de comunicación V2V utiiizando dispersión en frecuencia y cancelación no lineal de interferencia, se muestran claramente en la siguiente descripción y en los dibujos ilustrativos que se anexan, sirviendo los mismos signos de referencia para señalar las mismas partes. The characteristic details of the muiti-carrier communication system for V2V communication links using frequency dispersion and non-linear interference cancellation are clearly shown in the following description and in the accompanying illustrative drawings, the same reference signs serving to indicate the same. parts.
En ¡a figura 1 se muestra el transmisor vehículo a vehículo (101) que incorpora ¡a modulación de ios datos junto con el procesamiento digital banda base y la conversión analógica para la transmisión de la señal en la antena transmisora (103), La señal portadora viaja por el canal V2V de manera Inalámbrica por ondas electromagnéticas hasta la antena receptora (104). En el receptor V2V (102) se realiza la demodulación de la señal y el procesamiento analógico/digital para la detección de los datos enviados.  Figure 1 shows the vehicle-to-vehicle transmitter (101) that incorporates data modulation along with digital baseband processing and analog conversion for transmitting the signal on the transmitting antenna (103), the signal The carrier travels through the V2V channel Wirelessly by electromagnetic waves to the receiving antenna (104). In the V2V receiver (102) the signal is demodulated and the analog / digital processing is performed to detect the sent data.
Sea un símbolo GFDM enviado por el transmisor V2V (101) conforme al estándar 802.1 1 p con longitud
Figure imgf000005_0001
muestras, donde N y ^ g son el número de subportadoras y ia longitud dei prefijo cíclico (CP: cyclic prefix), respectivamente. En el lado del receptor, (Rx) (102) asumiendo que se ba realizado la demodulación analógica y posterior conversión a representación compleja pasabajas, se tiene que un bloque OFDM de señal recibida omitiendo el CP está dado por la expresión:
Figure imgf000005_0002
Be a GFDM symbol sent by the V2V transmitter (101) according to the 802.1 1 p standard with length
Figure imgf000005_0001
samples, where N and ^ g are the number of subcarriers and the length of the cyclic prefix (CP: cyclic prefix), respectively. On the receiver side, (Rx) (102) assuming that the analog demodulation and subsequent conversion to low-pass complex representation has been performed, an OFDM block of received signal having omitted the CP is given by the expression:
Figure imgf000005_0002
donde x'-n ^ es el bloque OFDM transmitido,
Figure imgf000005_0004
es la señal recibida,
Figure imgf000005_0003
es la respuesta del cana! en el «-ésimo, para un impulso como entrada en la ^ -ésima muestra previa; ^ ' N denota la operación de módulo N , es el ruido aditivo Gaussiano blanco circular y simétrico, con media cero y varianza cr, -
Figure imgf000005_0005
convoiución circular entre la respuesta a! impulso dei canal (R!G) y x M puede ser reescrita en términos de matrices y vectores como:
where x '- n ^ is the transmitted OFDM block,
Figure imgf000005_0004
is the received signal,
Figure imgf000005_0003
is the answer of the cane! in the "-th", for an impulse as input into the ^ -th previous sample; ^ ' N denotes the operation of modulus N, it is the additive circular Gaussian white noise and symmetric, with zero mean and variance cr, -
Figure imgf000005_0005
circular convocation between the response to! channel impulse (R! G) and x M can be rewritten in terms of matrices and vectors such as:
y ~ Hx + w and ~ Hx + w
(II) donde y = [tfoj [íj · · · [N -i]f
Figure imgf000006_0001
w = [w[0] w[l] ·· · w[N - l]]r ,
(II) where y = [tfoj [íj · · · [N -i] f
Figure imgf000006_0001
w = [w [0] w [l] ·· · w [N - l]] r ,
(V) (V)
H es una matriz de dimensión
Figure imgf000006_0002
x ^ compuesta por ios elementos de la RiC en la forma:
Figure imgf000006_0003
H is a dimension matrix
Figure imgf000006_0002
x ^ composed of the elements of the RiC in the form:
Figure imgf000006_0003
Utilizando la transformada de Fourier, el símbolo OFDM recibido en el dominio de la frecuencia (DF) se calcula como;  Using the Fourier transform, the OFDM symbol received in the frequency domain (DF) is calculated as;
u = Gs -f z, (VI !) donde es la transformada discreta de Fourier (TDF) del vector de ruido. es ei vector de elementos transmitidos en el dominio de ¡a frecuencia compuesto ¡
Figure imgf000006_0004
N símbolos de datos especificados por el vector ¾ , N‘’ p t símbolos pilotos y N a ". G símbolos de guarda. G - FHF es la matriz con la respuesta del canal en el dominio de la frecuencia (MFC), Cuando la respuesta del canal es invariante en el periodo de duración de un símbolo OFDM, G adopta la forma de una matriz diagonal implicando un sistema libre de ICI para el cual la defección de datos es simple. Sin embargo, en ambientes V2V debido a la gran movilidad tanto del transmisor como del reoeptor, la dispersión Doppler es significativa originando que la matriz G tenga energía en los componentes fuera de la diagonal principal, provocando ICI.
u = Gs -fz, (VI!) where is the discrete Fourier transform (TDF) of the noise vector. is the vector of elements transmitted in the composite frequency domain!
Figure imgf000006_0004
N data symbols specified by the vector ¾, N '' p t pilot symbols and N "G symbols guard G -.. FHF is the matrix channel response in the frequency domain (MFC) When channel response is invariant in the period of duration of an OFDM symbol, G takes the form of a diagonal matrix involving an ICI free system for which data defection is simple, however, in V2V environments due to the high mobility both of the transmitter and the receiver, the Doppler spread is significant, causing the matrix G to have energy in the components outside the main diagonal, causing ICI.
El receptor descrito en la siguiente sección de esta invención combina el estimador de canal variante en el tiempo acoplado en forma iterativa a la detección no lineal de datos y un esquema de precodificación que permite obtener pilotos libres de ICI en una sola iteración, explotación de la diversidad del canal y rápida convergencia en la etapa de detección de datos.  The receiver described in the following section of this invention combines the time-variant channel estimator iteratively coupled to the non-linear detection of data and a precoding scheme that allows obtaining ICI-free pilots in a single iteration, exploitation of the channel diversity and rapid convergence in the data detection stage.
Método de recepción propuesto, Proposed reception method,
Método de estimación de canal.  Channel estimation method.
La reducida cantidad de pilotos en un solo símbolo OFDM y el hecho de que estos experimentan ICI dificultan la tarea de estimar ¡a C!R variante en el tiempo. Para contrarrestar esto, se utiliza ei algoritmo propuesto en [F. Pena-Campos, R. Carrasco-Alvarez, O, Longoria-Gandara, and R. Parra-Michel,“Estimation of fast tlme- varying channels in OFDM Systems using two-dimensional prolate,” IEEE Trans. Wireless Commun,, vol. 12, no. 2, pp. 898-907, 2013.] donde el modelo de observación del receptor se extiende para incluir símbolos OFDM adyacentes en e! proceso de estimación de canal de la siguiente forma:
Figure imgf000007_0001
(VI! I) donde el súper índice ^ hace referencia a! símbolo OFDM del cual se desea estimar la respuesta del canal. Para integrar en el modelo características de la dispersión del canal y reducir los parámetros en el estimador se descompone el canal utilizando BEM en la forma:
Figure imgf000007_0002
donde son los coeficientes de la
Figure imgf000007_0003
The small number of pilots in a single OFDM symbol and the fact that they experience ICI make it difficult to estimate C! R variant over time. To counteract this, the algorithm proposed in [F. Pena-Campos, R. Carrasco-Alvarez, O, Longoria-Gandara, and R. Parra-Michel, "Estimation of fast tlme-varying channels in OFDM Systems using two-dimensional prolate," IEEE Trans. Wireless Commun ,, vol. 12, no. 2, pp. 898-907, 2013.] where the receiver's observation model is extended to include adjacent OFDM symbols in e! Channel estimation process in the following way:
Figure imgf000007_0001
(VI! I) where the super index ^ refers to! OFDM symbol from which we want to estimate the response of the channel. To integrate the characteristics of the channel dispersion into the model and reduce the parameters in the estimator, the channel is decomposed using BEM in the form:
Figure imgf000007_0002
where are the coefficients of the
Figure imgf000007_0003
{ w$r t\ Lΐ b\ Vr MG0 - M _ i] n i son ¡as funciones que expanden el dominio de tiempo y tiempo de retardo respectivamente. El error de modelado para esta representación en subespacios está concentrado en el término e ^ ^ . Dado que en escenarios V2V la dispersión Doppler y de retardo presenta estadísticas dentro de un conjunto muy diverso. Las secuencias prolate esferoidales discretas (DPSS: discrete prolate spheroidai sequences) se utilizan como funciones base ya que concentran de manera óptima la energía en una ventana finita de tiempo y ancho de banda se utilizan como funciones base. {W $ r t \ Lΐ b \ Vr Mg0 - M _ i] n i are as functions expand the time domain and delay time respectively. The modeling error for this representation in subspaces is concentrated in the term e ^ ^. Given that in V2V scenarios, the Doppler and delay dispersion presents statistics within a very diverse set. The discrete spheroidal prolate sequences (DPSS: discrete prolate spheroidai sequences) are used as base functions since they optimally concentrate energy in a finite window of time and bandwidth are used as base functions.
Para determinar el número de funciones necesarias en cada uno de los dominios de la CIR se utiliza la aproximación:
Figure imgf000007_0004
To determine the number of functions required in each of the CIR domains, the approximation is used:
Figure imgf000007_0004
P M M  P M M
donde denota el operador de redondeo hacia arriba, J r y 1 D son la cantidad de funciones utilizadas where the rounding operator denotes upwards, J r and 1 D are the number of functions used
F  F
para la expansión del dominio del tiempo de retardo y el dominio del tiempo respectivamente. es el ancho
Figure imgf000007_0005
F
for the expansion of the time domain of the delay and the time domain respectively. is the width
Figure imgf000007_0005
F
de banda del sistema,. es ia dispersión máxima de! tiempo de retardo y D es ja frecuencia máxima de dispersión Doppler. band system. is the maximum dispersion of! delay time and D is the maximum frequency of Doppler scattering.
A! sustituir e! canal por su BEM en (VIII) se obtiene la expresión:
Figure imgf000007_0006
TO! replace e! channel by its BEM in (VIII) you get the expression:
Figure imgf000007_0006
La información de la BEM en los dominios de frecuencia y frecuencia Doppler se encuentra de manera compacta en la matriz doblemente índexada:
Figure imgf000007_0007
ü!l) con
Figure imgf000008_0001
The information of the BEM in the Doppler frequency and frequency domains is compactly found in the dually indexed matrix:
Figure imgf000007_0007
ü! l) with
Figure imgf000008_0001
y los coeficientes de la BEM dados por la expresión
Figure imgf000008_0002
and the coefficients of the BEM given by the expression
Figure imgf000008_0002
Al anexar esta representación del canal en la ecuación XII y considerando únicamente las posiciones
Figure imgf000008_0003
se encuentran los pilotos transmitidos y recibidos (denotados por el conjunto P ) se obtiene:
Figure imgf000008_0004
By annexing this representation of the channel in equation XII and considering only the positions
Figure imgf000008_0003
are the transmitted and received pilots (denoted by the set P) you get:
Figure imgf000008_0004
donde: where:
Figure imgf000008_0005
Figure imgf000008_0005
El subíndice p denota el submuestreo de los vectores y matrices en las filas y columnas correspondientes a la posición de los pilotos. Por motivos de simplificación en la notación se utilizó la variable de indexado i = q+Mr)(r-í\ 0 £r £MT 0£q£Mn-~l a The subscript p denotes the sub-sampling of the vectors and matrices in the rows and columns corresponding to the position of the pilots. For reasons of simplification in the notation we used the index variable i = q + M r) (r-í \ 0 £ r £ M T 0 £ q £ M n - ~ la
¾ D ! , donde r y ¾ ΰ ^ es el vector que concentra las contribuciones del ruido, error de modelado e interferencia intersimbóiica a fin de simplificar las expresiones. ¾ D! , where r and ¾ ΰ ^ is the vector that concentrates noise contributions, modeling error and intersymbolic interference in order to simplify expressions.
Contando con la información conocida a prior! por el receptor de la matriz L y el vector recibido ^ , el cálculo del vector coeficientes de la BEM estimados del canal se realiza utilizando el algoritmo de mínimos cuadrados mediante la expresión: Counting on information known a prior! For the receiver of the matrix L and the vector received ^, the calculation of the vector coefficients of the estimated BEM of the channel is made using the least squares algorithm by means of the expression:
p = (A^A)’Au  p = (A ^ A) 'Au
(XXI) (XXI)
Una vez obtenido estos coeficientes, cualquiera de las representaciones como la respuesta variante al impulso y la función de transferencia del canal se pueden calcular de manera directa realizando la suma ponderada de las funciones de la base. De este modo la MFC estimada se puede calcular utilizando la expresión:
Figure imgf000008_0006
Dispersión DF T.
Once these coefficients are obtained, any of the representations such as the impulse response and the channel transfer function can be calculated directly by performing the weighted sum of the functions of the base. In this way the estimated MFC can be calculated using the expression:
Figure imgf000008_0006
Dispersion DF T.
La selectividad del cana! V2V vuelve susceptible a los sistemas OFDM a errores de detección debido a que la potencia local de algunas subportadoras puede ser baja a causa de los desvanecimientos profundos io cual hace imposible la detección del dato transmitido. Para contrarrestar este problema ia técnica de precodificación por dispersión en frecuencia (DFTS: direct Foulrer transform spreading) se utiliza en ia presente invención ya que distribuye de manera uniforme la energía de cada símbolo en todo el ancho de banda y se puede calcular con baja complejidad por medio de la transformada rápida de Fourier (FFT; fast Fourier transform).  The selectivity of the cane! V2V renders detection errors susceptible to OFDM systems because the local power of some subcarriers may be low due to deep fading, which makes it impossible to detect the transmitted data. In order to counteract this problem, the frequency spreading pre-coding technique (DFTS: direct Foulrer transform spreading) is used in the present invention since it uniformly distributes the energy of each symbol throughout the bandwidth and can be calculated with low complexity by means of the fast Fourier transform (FFT; fast Fourier transform).
Dicha operación se puede representar formalmente del lado del trasmlsor en la forma:  Said operation can be formally represented on the trasmlsor side in the form:
SD = FD (XXIII) S D = F D (XXIII)
Es decir, los elementos transmitidos en frecuencia en las posiciones de los datos se construyen aplicando a los símbolos de datos en el vector ^ la matriz de Fourier cuyos elementos están determinados por:
Figure imgf000009_0001
That is, the elements transmitted in frequency in the positions of the data are constructed by applying to the data symbols in the vector ^ the Fourier matrix whose elements are determined by:
Figure imgf000009_0001
(I1UN  (I1UN
para d, 7d'={ ' ' UJ . De esta manera la expresión para la señal en el receptor en las posiciones de los de modifica de la siguiente manera:
Figure imgf000009_0002
for d, 7 d '= {''UJ . In this way the expression for the signal in the receiver at the positions of the modifies as follows:
Figure imgf000009_0002
O z  O z
donde D y D son el vector de la señal recibida y el vector de ruido respectivamente, cada uno en las where D and D are the vector of the received signal and the noise vector respectively, each in the
G  G
posición de las subportadoras de datos. La matriz D se obtiene ai tomar las columnas y filas de t G " en las posiciones de las portadoras de datos. El término ^¾pSp representa ia interferencia en las portadoras con datos proveniente de las portadoras con pilotos. position of the data subcarriers. The matrix D is obtained by taking the columns and rows of t G " at the positions of the data carriers The term ^ ¾ pSp represents the interference in the carriers with data from the carriers with pilots.
Método para la detección de datos. Method for data detection.
El punto principal de innovación en la presente invención es ia integración eficiente de la precodificación DFTS en e! proceso de ia detección de los datos en el receptor. Uno de los problemas de utilizar DFTS en el receptor se ve reflejado en ia dificultad para aplicar algoritmos no lineales de detección manteniendo baja complejidad computacional ya que la matriz equivalente de canal
Figure imgf000009_0003
no conserva estructura en banda, Una solución a este inconveniente es el encontrar un operador tal que, ai ser aplicado a la señal recibida, reestablezca la estructura en banda de ia matriz de canal equivalente. En el caso de la presente Invención se utiliza la transformada de Fourier inversa D tai que el operador de Cramer-Loéve en la matriz de canal se completa. En términos matemáticos, el vector recibido en la posición de los datos se obtiene como:
Figure imgf000010_0001
The main point of innovation in the present invention is the efficient integration of DFTS precoding into e! process of the detection of the data in the receiver. One of the problems of using DFTS in the receiver is reflected in the difficulty to apply non-linear detection algorithms while maintaining low computational complexity since the channel equivalent matrix
Figure imgf000009_0003
It does not conserve structure in band, A solution to this disadvantage is to find an operator such that, when applied to the received signal, it reestablishes the band structure of the equivalent channel matrix. In the case of the present invention the inverse Fourier transform D tai is used that the Cramer-Loéve operator in the channel matrix is completed. In mathematical terms, the vector received at the position of the data is obtained as:
Figure imgf000010_0001
V :  V:
donde ¾¾
Figure imgf000010_0002
y es la matriz equivalente de canal después de aplicar transformada inversa de Fourier a los símbolos recibidos en la posición de los datos con precodificación lineal, Por cuestiones de simplicidad en la notación el vector de ruido D se mantiene con la misma nomenclatura dado que las transformaciones ortonormales no afectan las estadísticas del mismo. Nótese
where ¾¾
Figure imgf000010_0002
and is the equivalent matrix of channel after applying inverse Fourier transform to the symbols received in the position of the data with linear precoding. For reasons of simplicity in the notation the noise vector D is maintained with the same nomenclature given that the transformations orthonormal do not affect its statistics. Note
G w que las características de correlación y estructura cuasi banda de la matriz D implican que la matriz K también mantiene estructura en banda lo que permite ei acoplamiento con algoritmos de detección de eficiente ejecución. G w that the correlation characteristics and quasi-band structure of matrix D imply that the K matrix also maintains structure in band which allows coupling with efficient execution detection algorithms.
Criterio de detección de máxima verosimilitud. Criteria for detection of maximum likelihood.
Partiendo de la ecuación (XXVII), la detección de datos utilizando el criterio de máxima verosimilitud se puede obtener encontrando los valores que optimicen la siguiente expresión;
Figure imgf000010_0003
donde es el conjunto con todas las posibles combinaciones de símbolos transmitidos y % es el vector con los símbolos de datos estimados. Este método de detección de datos es de gran complejidad computaclonal debido al cálculo exhaustivo de todas las distancias euclidianas, A continuación se describen dos métodos diferentes de detección de datos que explotan la estructura particular de la matriz K en forma de banda para obtener la defección de ios datos de manera subóptima con complejidad computacional reducida.
Starting from equation (XXVII), the detection of data using the maximum likelihood criterion can be obtained by finding the values that optimize the following expression;
Figure imgf000010_0003
where is the set with all the possible combinations of transmitted symbols and% is the vector with the estimated data symbols. This method of data detection is of great computational complexity due to the exhaustive calculation of all Euclidean distances. The following describes two different methods of data detection that exploit the particular structure of the K matrix in the form of a band to obtain the defection of data in a suboptimal way with reduced computational complexity.
Detección no linea! de baja complejidad. Detection not line! of low complexity.
El método de detección no-linea! de baja complejidad propuesto en la presente invención se compone de dos pasos principales: The non-line detection method! of low complexity proposed in the present invention consists of two main steps:
1. Aplicar la descomposición QR de la matriz pseudoinversa de K ; Este proceso se puede realizar bajo el criterio de mínimos cuadrados (LS: least squares) o el de mínimo error cuadrático medio (MMSE; mínimum mean squared error). 2. Realizar ei proceso de detección no lineal: para esta etapa se proponen en esta invención tres métodos diferentes: la detección QR-ML, la detección subópíima QR-ML (NML: near ML) y la cancelación sucesiva de interferencia ordenada (QSIC: ordered successíve interference cancellation), 1. Apply the QR decomposition of the pseudoinverse matrix of K; This process can be performed under the criterion of least squares (LS: least squares) or the least squared error (MMSE, minimum squared error). 2. Perform the non-linear detection process: for this stage, three different methods are proposed in this invention: the QR-ML detection, the QR-ML subopic detection (NML: near ML) and the successive cancellation of ordered interference (QSIC: ordered successíve interference cancellation),
Descomposición QR ordenada. Decomposition QR ordered.
La descomposición QR se utiliza para obtener las matrices Q y R a partir de la matriz de canal con precodificacíón K tal que se cumpla la relación:  The QR decomposition is used to obtain the matrices Q and R from the channel matrix with precoding K such that the relation is fulfilled:
KP = QR (XXIX) donde Q es una matriz ortonorma! que cumple con la propiedad
Figure imgf000011_0001
= 5 y R es una matriz triangular superior. P es una matriz de permutación con ei reordenamiento en función de la relación señal a interferencia. Esta descomposición se puede realizar utilizando diferentes métodos, sin embargo, en esta invención se utilizar una variante del algoritmo de Gram-Schmidt, En cada paso de la ortonormalización de Q se realizan permutaciones en la posición de las columnas con el objetivo de que los renglones resultantes en ia matriz R estén ordenados según su relación señal a ruido. Se explota la estructura cuasibanda de la matriz K- para reducir al máximo la complejidad computacional en el cálculo de la descomposición QR.
KP = QR (XXIX) where Q is an orthonormal matrix! that meets the property
Figure imgf000011_0001
= 5 and R is a superior triangular matrix. P is a permutation matrix with reordering as a function of the signal to interference ratio. This decomposition can be carried out using different methods, however, in this invention a variant of the Gram-Schmidt algorithm is used. At each step of the orthonormalization of Q, permutations are made in the position of the columns with the objective that the lines resulting in matrix R are arranged according to their signal-to-noise ratio. The quasibanda structure of the K-matrix is exploited to reduce the computational complexity to the maximum in the calculation of the QR decomposition.
Para realizar dicha descomposición según el criterio de LS, se parte de una matriz ampliada:  To perform said decomposition according to the criterion of LS, we start from an extended matrix:
K = [K| v] /YYY. K = [K | v] / YYY .
A ia cual se le aplican una secuencia de rotaciones unitarias, también llamadas rotaciones de Givens. En el caso de utilizar el criterio de MMSE ia matriz ampliada se construye de tal manera que incluya las estadísticas del ruido en la forma:
Figure imgf000011_0002
rxxxn
To which a sequence of unit rotations, also called Givens rotations, are applied. In the case of using the MMSE criterion, the extended matrix is constructed in such a way that it includes noise statistics in the form:
Figure imgf000011_0002
rxxxn
La ventaja de usar rotaciones unitarias en ei proceso de ortogonalszación para la obtención de la descomposición QR es que conserva la energía original de todos los elementos de la matriz original K manteniendo ei rango dinámico de todas las variables utilizadas en el proceso. Esta característica facilita la implemeníación de este método en dispositivos para su ejecución en tiempo real utilizando aritmética de punto-fijo. The advantage of using unit rotations in the orthogonalization process for obtaining the QR decomposition is that it conserves the original energy of all the elements of the original matrix K maintaining the dynamic range of all the variables used in the process. This feature facilitates the implementation of this method in devices for real-time execution using fixed-point arithmetic.
El proceso secuencia! en la ejecución de las rotaciones de Givens parte de ia matriz:  The sequence process! in the execution of Givens rotations part of the matrix:
(XXXII) en la iteración cero, La rotación aplicada en la ^-ésima iteración se puede expresar en términos de una matriz de transformación j ia cual está calculada de ta! manera que se anule un elemento de ía matriz , N„ (XXXII) in iteration zero, the rotation applied in the ith iteration can be expressed in terms of a transformation matrix j which is calculated from ta! so that an element of the matrix is canceled, N "
calculada en la iteración anterior. Después de ύ rotaciones se obtiene que para el caso del criteriocalculated in the previous iteration. After ύ rotations you get that for the criterion case
LS:
Figure imgf000012_0001
LS:
Figure imgf000012_0001
En el caso de utilizar el criterio MMSE, la matriz resultante después de
Figure imgf000012_0002
Iones se puede expresar como:
Figure imgf000012_0003
In the case of using the MMSE criterion, the resulting matrix after
Figure imgf000012_0002
Ions can be expressed as:
Figure imgf000012_0003
El método completo se describe de manera detalla de la secuencia de pasos a continuación:  The complete method is described in detail of the sequence of steps below:
1. Se toma la matriz cuasibanda K , de la cual solo se conservan la diagonal principal y diagonales adyacentes, el resto se truncan a valor cero.  1. Take the quasibanda K matrix, of which only the main diagonal and adjacent diagonals are conserved, the rest are truncated to zero value.
2. Se construye la matriz ampliada ^ acorde al criterio a utilizar ya sea LS o MMSE.  2. The extended matrix is constructed according to the criterion to be used, either LS or MMSE.
3, Se íniciaiiza la matriz
Figure imgf000012_0004
, en la cual se almacenarán las permutaciones utilizadas para el ordenamiento de los
Figure imgf000012_0005
elementos de datos. 4, Se íniciaiiza la matriz
Figure imgf000012_0006
3, The matrix is initialized
Figure imgf000012_0004
, in which the permutations used for ordering the
Figure imgf000012_0005
data elements. 4, The matrix is initialized
Figure imgf000012_0006
A!  TO!
5. Se Iniciaiiza el vector ^ con las normas euclidianas de las J D columnas de la matriz 5. Start the vector ^ with the Euclidean norms of the JD columns of the matrix
6. Para J ~ 1 se determina la columna de la matriz ' - que posee la menor norma y se almacena su índice como ~~ l . 6. For J ~ 1 the column of the matrix '- which has the smallest norm is determined and its index is stored as ~~ l .
7. Se intercambian las columnas J y - ~ l en e! vector b y la matriz P . 7. The columns J and - ~ l are exchanged in e! vector by the matrix P.
· M— 'V + /— 1 X. · M- ' V + / - 1 X.
8. Se intercambian los columnas J y
Figure imgf000012_0007
en ios primeros 1 " D J renglones de J~l para el caso del criterio MMSE o los primeros M=N D renglones en el caso del criterio LS.
8. Columns J and
Figure imgf000012_0007
in first ios 1 "D J J ~ l lines for the case of the MMSE criterion or the first M = N D lines in the case of criterion LS.
0  0
9. Se calcula el conjunto de matrices de rotación de Givens J tai que se cumpla
Figure imgf000012_0008
9. The set of rotation matrices of Givens J tai that is fulfilled is calculated
Figure imgf000012_0008
matrices se ha utilizado para hacer referencia a los elementos de X contenidos en los renglones dentro del rango ja,c] y las columnas dentro del rango [b,d], 10. Se aplica e! conjunto de matrices de rotación de Givens J a los elementos de las columnas restantes
Figure imgf000013_0001
matrices has been used to refer to the elements of X contained in the rows within the range ja, c] and the columns within the range [b, d], 10. It applies e! Set of rotation matrices of Givens J to the elements of the remaining columns
Figure imgf000013_0001
N— i  Neither
11. Se actualizan los últimos ; D J valores del vector
Figure imgf000013_0002
11. The last ones are updated ; DJ vector values
Figure imgf000013_0002
12. Se incrementa J ^ J +
Figure imgf000013_0003
, 1 D se termina el proceso, de lo contrario se regresa ai Paso 6.
12. J ^ J + is increased
Figure imgf000013_0003
, 1 D the process is completed, otherwise it will be returned to Step 6.
13. Se obtienen la matriz R y el vector v a partir de la matriz Xl¾> , así también se regresa la matriz de permutaciones P . 13. The matrix R and the vector v are obtained from the matrix X l¾> , thus the matrix of permutations P is also returned.
Nótese que en la ejecución de este método, la estructura en banda de la matriz K implica que se puede prescindir de los cálculos relativos a la gran cantidad de elementos que son igual a cero. Detección de datos OSiC.  Note that in the execution of this method, the band structure of the K matrix implies that one can do without the calculations relating to the large number of elements that are equal to zero. OSiC data detection.
Como se mencionó anteriormente en este documento, la descomposición QR sirve de etapa de preprocesamiento en la detección de datos. Un método efectivo para realizar posteriormente la cancelación de Interferencia es el algoritmo OSiC que en combinación con la descomposición QR antes descrita permite hacer la detección subóptima de los datos con muy baja complejidad computacional. El desempeño de estás dos técnicas en conjunto en los sistemas V2V con DFTS otorga tasas de bit erróneos muy bajas. La descomposición QR de - proporciona una matriz triangular superior R , una matriz ortogonal de norma unitaria Q así como un. vector de permutación P , tal que
Figure imgf000013_0004
. Ai sustituir esta descomposición en la ecuación (XXVII), se obtiene:
Figure imgf000013_0005
As mentioned earlier in this document, the QR decomposition serves as the preprocessing stage in data detection. An effective method to subsequently perform the interference cancellation is the OSiC algorithm which, in combination with the QR decomposition described above, allows the suboptimal detection of data with very low computational complexity. The performance of these two techniques together in V2V systems with DFTS gives very low erroneous bit rates. The QR decomposition of - provides an upper triangular matrix R, an orthogonal matrix of unitary norm Q as well as a. permutation vector P, such that
Figure imgf000013_0004
. Ai replace this decomposition in equation (XXVII), you get:
Figure imgf000013_0005
Ai premuitíplicar ambos lados de esta ecuación por Q se obtiene un sistema de ecuaciones en la forma:
Figure imgf000013_0006
donde ^
Figure imgf000013_0007
es el vector con los elementos de Información ordenados de conformidad con la relación señal a ruido/interferencia estimada en la descomposición QR. El vector de ruido "D mantiene sus estadísticas,
First, to distinguish both sides of this equation by Q, we obtain a system of equations in the form:
Figure imgf000013_0006
where ^
Figure imgf000013_0007
is the vector with the elements of Information ordered according to the signal to noise / interference ratio estimated in the QR decomposition. The noise vector " D keeps its statistics,
Debido a la estructura triangular de ja matriz R los elementos de! vector v se pueden expresar de manera individual como:
Figure imgf000014_0001
donde !a notación
Figure imgf000014_0002
indican el ^-ésimo elemento del vector y el b - ésimo elemento de la a- éslma fila de una matriz según sea e! caso. De esta manera la detección de cada uno de los datos se puede realizar de manera Iterativa utilizando la siguiente expresión;
Due to the triangular structure of the matrix R the elements of! vector v can be expressed individually as:
Figure imgf000014_0001
where! to notation
Figure imgf000014_0002
they indicate the ^ -th element of the vector and the b - th element of the a - th row of a matrix according to e! case. In this way the detection of each of the data can be done in an iterative manner using the following expression;
Figure imgf000014_0003
Figure imgf000014_0003
donde el operador
Figure imgf000014_0004
se utiliza para especificar cuantización hacia el símbolo más cercado de la constelación utilizada por el transmisor W , Asumiendo que en cada iteración las decisiones previas son correctas, la Interferencia de los símbolos previamente detectados se puede restar previo la detección del símbolo. Como último paso en el proceso de detección, ios símbolos decodificados son reordenados acorde con la matriz de permutación R ,
Figure imgf000014_0005
where the operator
Figure imgf000014_0004
is used to specify quantization towards the closest symbol of the constellation used by the transmitter W, assuming that in each iteration the previous decisions are correct, the interference of previously detected symbols can be subtracted prior to the detection of the symbol. As a last step in the detection process, the decoded symbols are reordered according to the permutation matrix R ,
Figure imgf000014_0005
Utilizando e! preproeesamienío que proporciona la descomposición QR, el algoritmo óptimo de detección ML se puede adaptar para explotar las propiedades de la matriz R reformulando la ecuación (XXVIII) como;  Using e! preproeesamienío that provides the decomposition QR, the optimal algorithm of ML detection can be adapted to exploit the properties of the matrix R reformulating the equation (XXVIII) as;
Figure imgf000014_0006
Figure imgf000014_0006
La búsqueda de la solución ML basada en (XL) puede reflejarse en la construcción de un árbol de búsqueda b?]í t  The search for the ML solution based on (XL) can be reflected in the construction of a search tree b?] Í t
cuyos nodos en el *-ésimo nivel corresponden a los posibles candidatos lA ‘'Nb έ +i5 , para poder calcular el mínimo en (XL) se define la siguiente métrica de rama:
Figure imgf000014_0007
(XLI
whose nodes in the * -thmost level correspond to the possible candidates lA ' ' Nb έ + i 5, in order to calculate the minimum in (XL) the following branch metric is defined:
Figure imgf000014_0007
(XLI
donde es la valor de la métrica de rama de un nodo LA:Í! que tiene a
Figure imgf000014_0008
where is the value of the branch metric of a node LA: Í! who has a
Figure imgf000014_0008
(y e€1 i + 1 k N ¡ (e € 1 i + 1 k N
^ “ " D como sus nodos antecesores. La distancia entre cada nodo de un ^-ésimo nivel y la raíz se define como el valor métrico acumulado, el cual representa ia adición de todas ia métricas de ramas desde la raíz hasta el nodo indicado. Para un nivel determinado n , la métrica acumulada se obtiene a partir de:
Figure imgf000015_0001
^ "" D as its ancestor nodes.The distance between each node of a ^ -th level and the root is defined as the accumulated metric value, which represents the addition of all the metrics of branches from the root to the indicated node. For a given level n , the accumulated metric is obtained from:
Figure imgf000015_0001
n  n
De acuerdo con (XL), el vector ¾ óptimo es aquel cuya ruta que minimice a (XLI!) cuandc
Figure imgf000015_0002
According to (XL), the optimal vector es is the one whose path minimizes (XLI!) When
Figure imgf000015_0002
Detección QR-NML QR-NML detection
El diseño del detector NML para el sistema multiportadora V2V se basa en la incorporación de! algoritmo  The design of the NML detector for the V2V multi-carrier system is based on the incorporation of! algorithm
M a la detección ML con descomposición QR convencional. Como se ilustra en la figura 4 el símbolo
Figure imgf000015_0003
se ubica en el nodo raíz del árbol, y los nodos hijo que emanan del mismo son una solución posible para í UhAflJ; r -U fLy/J]A¾ - -2’ · · · > MLAJ2’ MLÁJI )/ ^ ¡a ap¡iCaCn ¡ el algoritmo M radica en seleccionar en cada nivel del árbol un máximo de M (para M <P\ candidatos para la detección del ?-ésimo símbolo del vector ¾ estimado, descartando los P~~M nodos restantes del nivel actual, A cada rama se le asigna una métrica de distancia definida por:
Figure imgf000015_0004
M to ML detection with conventional QR decomposition. As illustrated in figure 4 the symbol
Figure imgf000015_0003
it is located in the root node of the tree, and the child nodes that emanate from it are a possible solution for UHAflJ Í ¾ r - U fLy / J] A ¾ - -2 '· · · > MLAJ2' ML Á J I ) / CaC ^ aa p¡i tio n M the algorithm is selecting at each level of the tree up to M (for M <P \ candidates for the detection of? -th estimated symbol vector ¾, discarding P ~ ~ M remaining nodes of the current level, Each branch is assigned a distance metric defined by:
Figure imgf000015_0004
seleccionando los M nodos que mantengan una distancia menor entre cada nodo de! ^-ésimo nivel y el nodo raíz, Por lo tanto a! finalizar la defección se tendrán tan solo M rutas posibles, cada una con una distancia tota! igual a:
Figure imgf000015_0005
selecting the M nodes that maintain a smaller distance between each node of! ^ -th level and the root node, Therefore a! end the defection will have only M possible routes, each with a total distance! equal to:
Figure imgf000015_0005
La solución ^ está dada por la ruta que cumpla con el criterio de optimización:
Figure imgf000015_0006
The solution ^ is given by the path that meets the optimization criteria:
Figure imgf000015_0006
Valores pequeños en disminuyen la cantidad de nodos de búsqueda en el detector, resultando en una disminución de la complejidad, pero a costa de disminución en el desempeño en términos de tasa de error de bit, A medida que el valor de M es incrementado, el desempeño de! algoritmo propuesto se acerca al desempeño del detector ML óptimo, Método iterativo de estimación de canal y cancelación de ICi. Small values in decrease the number of search nodes in the detector, resulting in a decrease in complexity, but at the cost of decrease in performance in terms of bit error rate, As the value of M is increased, the performance of! proposed algorithm approaches the performance of the optimal ML detector, Iterative method of channel estimation and cancellation of ICi.
Dentro de ios dos principales problemas que enfrentan los sistemas coherentes son: la degradación de la información que proporciona ios símbolos pilotos debido a la selectividad del canal y a la distorsión de ICi procedentes de la subporíadoras de datos y el ruido AWGN presente en ellos ocasionando un bajo desempeño en las etapas de estimación de cana! y detección de datos en el receptor.  Among the two main problems that coherent systems face are: the degradation of the information provided by the pilot symbols due to the selectivity of the channel and the distortion of ICi coming from the data subpopulations and the AWGN noise present in them causing a low performance in the cane estimation stages! and detection of data in the receiver.
En esta invención se utiliza una un método iterativo de cancelación de ICi; la ideal principal es utilizar la matriz de canal G estimada en una primera iteración para calcular el ICI que contamina las subportadoras piloto y eliminarlo. Estos pilotos con menor ICI se utilizan nuevamente para realizar la estimación de canal y detección de los datos. Este proceso se puede repetir de manera iterativa para el mismo símbolo GFDM proporcionando en cada una de las iteraciones mejor desempeño en la estimación del cana! y la detección de ios datos. In this invention, an iterative method of ICi cancellation is used; the main ideal is to use the G- channel matrix estimated in a first iteration to calculate the ICI that contaminates the pilot subcarriers and eliminate it. These pilots with lower ICI are used again to perform channel estimation and data detection. This process can be repeated iteratively for GFDM providing the same symbol in each of the iterations best performance 'in estimating the cana! and the detection of the data.
Funcionamiento del sistema dei transmisor. Operation of the transmitter system.
La estructura del transmisor se muestra en la figura 2, ios bits (201) de datos que son introducidos a un codificador convolucional (202) con el fin de agregar redundancia a los datos. Posteriormente los datos codificados (203) son dispersados utilizando un bloque de entrelazado (204), a continuación, ios datos entrelazados son modulados en fase y cuadratura por medio del modulador (206) el cual entrega símbolos pertenecientes a una determinada constelación. Los símbolos modulados (207) son agrupados en bloques por medio del conversor serie a paralelo (208) para construir un bloque o vector (209) que es procesado por el precodificador DFTS (210), Los datos precodificados son Introducidos a un asignador de portadoras (212) el cual asigna los elementos a portadoras de datos o piiots según sea el caso, así mismo asigna las portadoras guardas en los índices correspondientes. La salida de (212) es entonces modulada en un esquema convencional de multipiexaje de frecuencias ortogonales (GFDM) con ayuda de la IFFT (213), posteriormente se le anexa el prefijo cíclico en (215), Por último, el bloque conversor paralelo a serie toma cada una de las muestras de! bloque GFDM para entregarlas como salida de la etapa de procesamiento digital en banda base del receptor.  The structure of the transmitter is shown in Figure 2, the bits (201) of data that are input to a convolutional encoder (202) in order to add redundancy to the data. Subsequently the encoded data (203) are scattered using an interleaving block (204), then the interleaved data is modulated in phase and quadrature by means of the modulator (206) which delivers symbols belonging to a certain constellation. The modulated symbols (207) are grouped in blocks by means of the serial to parallel converter (208) to construct a block or vector (209) that is processed by the DFTS precoder (210). The precoded data is input to a carrier dispatcher (212) which assigns the elements to data carriers or piiots as the case may be, likewise assigns the guardians in the corresponding indexes. The output of (212) is then modulated in a conventional orthogonal frequency multiplexing scheme (GFDM) with the help of the IFFT (213), after which the cyclic prefix in (215) is appended to it. Finally, the converter block parallel to series takes each of the samples of! GFDM block to be delivered as output from the baseband digital processing stage of the receiver.
Funcionamiento del sistema del receptor. Operation of the receiver system.
La estructura dei receptor se muestra en la figura 3, la señal recibida (301) es convertida en bloques con ayuda del conversor serie a paralelo (302), posteriormente el prefijo ciclo es eliminado en el bloque (303). Una vez realizada la extracción del prefijo cíclico ia señal recibida es demodulada en un esquema convencional de multipiexaje de frecuencias ortogonales (GFDM) con ayuda del bloque de transformada rápida de Fourier (304), El bloque GFDM en ei dominio de la frecuencia es introducido a un demapeador (308) para extraer los símbolos pilotos del mismo. Ei vector de pilotos (307) es utilizado para realizar la estimación de las matrices de canal en eí domino del tiempo (309) y en el dominio de la frecuencia (310). La matriz de canal temporal (309) es truncada en bandas de diagonales principales en bloque de truncamiento (311). Como parte de un preprocesamienio para la detección de datos se resta la interferencia proveniente de las portadoras piloto (312) al vector OFDM en el dominio de la frecuencia, para posteriormente realizar la operación inversa de DFTS en e! bloque llamado IDFT (314). El bloque GRM (315) propuesto realiza la descomposición GR de la matriz de canal temporal según el método seleccionado: LS (ZF) o MMSE, a continuación, en el detector Near-lvILD (316) propuesto se ejecuta la detección de símbolos de datos (317) mediante el modelo de señal propuesto. Como etapas finales en vector de datos estimados se realiza el desentrelazado (318) y decodlflcación (319) para obtener el vector con los datos recibidos. The structure of the receiver is shown in Figure 3, the received signal (301) is converted into blocks with the help of the serial to parallel converter (302), then the prefix cycle is eliminated in the block (303). Once the extraction of the cyclic prefix has been performed, the received signal is demodulated in a conventional orthogonal frequency multiplexing scheme (GFDM) with the help of the fast Fourier transform block (304). The GFDM block in the frequency domain is introduced to a demapping device (308) for extracting the pilot symbols therefrom. The pilots vector (307) is used to perform the estimation of the channel matrices in the domain of time (309) and in the frequency domain (310). The time channel matrix (309) is truncated into major diagonal bands in truncation block (311). As part of a preprocessing for the detection of data, the interference from the pilot carriers (312) to the OFDM vector in the frequency domain is subtracted, in order to subsequently perform the inverse operation of DFTS in the e! block called IDFT (314). The proposed GRM block (315) performs the GR decomposition of the temporal channel matrix according to the selected method: LS (ZF) or MMSE, then the detection of data symbols is executed in the proposed Near-lvILD detector (316). (317) by the proposed signal model. As final stages in the estimated data vector, deinterlacing (318) and decoding (319) are performed to obtain the vector with the received data.
A fin de mostrar las-ganancias que se obtienen con este aparato operando en un enlace típico V2V se incluye la figura 5 con la comparación entre el desempeño de la invención aquí descrita (etiqueta NML) utilizando solo una iteración contra el sistema propuesto en EP20100450186 y ER2383985Ά1 (etiqueta LMMSE) utilizando varias iteraciones. También se muestra el desempeño máximo que puede alcanzar un sistema en el conocimiento exacto de la respuesta de! canal (etiqueta canal ideal). La métrica de evaluación es la tasa de bits erróneos (BER) mientras que el parámetro de evaluación es la relación señal a ruido en el receptor, La invención propuesta alcanza un desempeño mejor a la vez de requerir un número menor iteraciones, In order to show the gains obtained with this apparatus operating in a typical V2V link, figure 5 is included with the comparison between the performance of the invention described here (NML tag) using only one iteration against the proposed system in EP20100450186 and ER2383985Ά1 (LMMSE tag) using several iterations. It also shows the maximum performance that a system can achieve in the exact knowledge of the response of! channel (ideal channel label). The evaluation metric is the erroneous bit rate (BER) while the evaluation parameter is the signal-to-noise ratio in the receiver. The proposed invention achieves better performance while requiring a lower number of iterations,
Los métodos y los diagramas de procesos que se presentan en esta invención, se proporcionan simplemente como ejemplos ilustrativos y no necesariamente están destinados para requerir o implicar que los pasos de las diversas definiciones se deben realizar en el orden presentado. Como se apreciará por un experto en la técnica, los pasos de las diversas definiciones anteriores se pueden realizar en cualquier orden. Las palabras tales como "entonces", "siguiente", etc., no están destinados a limitar e! orden de los pasos; estas palabras se utilizan simplemente para guiar al lector a través de la descripción de los métodos. The methods and process diagrams presented in this invention are simply provided as illustrative examples and are not necessarily intended to require or imply that the steps of the various definitions must be performed in the order presented. As will be appreciated by a person skilled in the art, the steps of the various previous definitions can be carried out in any order. Words such as "then", "following", etc., are not intended to limit e! order of the steps; These words are used simply to guide the reader through the description of the methods.
Los diversos bloques, módulos, circuitos y etapas de algoritmo lógicos ilustrativos descritos en conexión con las definiciones descritas en el presente documento pueden i plementarse como hardware electrónico, software informático, o combinaciones de ambos. Para ilustrar claramente esta intercambiabüidad de hardware y software, diversos componentes ilustrativos, bloques, módulos, circuitos y etapas han sido descritos anteriormente generalmente en términos de su funcionalidad. Si tai funcionalidad se implementa como hardware o software depende de las limitaciones de la aplicación y/o del diseño en particular impuestos por un sistema en general. Los expertos pueden implementar la funcionalidad descrita de diversas maneras para cada aplicación en particular, pero tales decisiones de ¡mpiementación no deberían interpretarse como causantes de un alejamiento del alcance de la presente invención.  The various illustrative logic blocks, modules, circuits, and logic stages described in connection with the definitions described herein may be supplemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends on the limitations of the application and / or the particular design imposed by a system in general. The experts can implement the described functionality in various ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.

Claims

Reivindicaciones. 1 Un sistema de comunicaciones multiportadora para enlaces de comunicación V2V que comprende: a. Una estructura de transmisor donde los datos son dispersados en frecuencia y posteriormente modulados utilizando OFDM, para lograr lo anterior se requiere de lo siguiente: i. Se realiza ia codificación convolucional de ios bits a ser transmitidos. ii. Se realiza e! entrelazamiento de los bits codificados, iii. Los bits resultantes se asignan a símbolos en el plano complejo de acuerdo a la constelación que se utilizará. g IV, Bloques de " D símbolos son dispersados en frecuencia utilizando la transformada de Fourier o la transformada rápida de Fourier en la forma: v. Los símbolos dispersados se modulan utilizando QFDM, Una estructura de receptor donde los datos son detectados aplicando algoritmos no lineales en los símbolos con dispersión en frecuencia para lograr lo anterior se requiere de lo siguiente: i Se toman muestras de la señal recibida a la salida del acopiamiento anaiógico-digitai, ií. Se forman bloques de ^ muestras a los cuales se les ha removido la parte correspondiente al prefijo cíclico ili. Cada bloque es convertido al dominio de la frecuencia utilizando la transformada de Fourier, iv, Se toman las portadoras con pilotos del bloque OFDM actual, así como las del bloque inmediatamente anterior y uno posterior para realizar ia estimación de canal. Este proceso se realiza mediante ei cálculo de ios coeficientes de canal: Y la posterior reconstrucción de la matriz de canal en ia frecuencia realizando la operación: · - ( A-^AV1 A Claims 1 A multi-carrier communication system for V2V communication links comprising: a. A transmitter structure where the data is dispersed in frequency and then modulated using OFDM, to achieve the above, the following is required: i. The convolutional coding of the bits to be transmitted is carried out. ii. It is done e! interleaving of the coded bits, iii. The resulting bits are assigned to symbols in the complex plane according to the constellation to be used. g IV, Blocks of "D symbols are scattered in frequency using the Fourier transform or the fast Fourier transform in the form: v. The scattered symbols are modulated using QFDM, A receiver structure where the data are detected by applying nonlinear algorithms In the symbols with frequency dispersion to achieve the above, the following is required: i Samples of the received signal are taken at the exit of the anayogic-digitai storage, blocks of samples are formed which have been removed from the sample. part corresponding to the cyclic prefix ili Each block is converted to the frequency domain using the Fourier transform, iv, The carriers are taken with pilots of the current OFDM block, as well as those of the immediately preceding block and a subsequent block to perform the estimation of This process is carried out by means of the calculation of the channel coefficients: and the subsequent reconstruction of the channel matrix in i to frequency performing the operation: · - (A- ^ AV1 A
1. La matriz de estimación de coeficientes del canal 1 } se obtiene fuera de ejecución, es decir, el proceso se realiza en ia etapa de diseño y la matriz Inversa se guarda simplemente en el receptor, de tai forma que el receptor solo requiere de la ejecución de un producto matriz-vector para obtener estimaciones de los coeficientes de! canal. v Se utiliza la respuesta estimada del canal para eliminar la interferencia en los datos proveniente de las portadoras piloto, 1. The coefficient estimation matrix of channel 1} is obtained out of execution, that is, the process is carried out in the design stage and the Inverse matrix is simply stored in the receiver, in such a way that the receiver only requires the execution of a matrix-vector product to obtain estimates of the coefficients of! channel. v The estimated response of the channel is used to eliminate the interference in the data coming from the pilot carriers,
vi Se aplica la operación de dispersión en frecuencia inversa a ias portadoras de datos con la cual se obtiene una modelo de la señal recibida en la forma:  vi The inverse frequency dispersion operation is applied to the data carriers with which a model of the received signal is obtained in the form:
V = ¾+F"G PSP +zD, vil, Se utilizan los símbolos de datos recibidos v la matriz del cana! equivalente K para realizar la descomposición QR ordenada. Esta operación se puede ejecutar utilizando alguno de los siguientes criterios: V = ¾ + F "G P S P + z D , vil, The received data symbols are used v the matrix of the equivalent K channel to perform ordered QR decomposition This operation can be executed using any of the following criteria:
1. Con el criterio LS se inicia el proceso de descomposición sobre la matriz aumentada  1. With the LS criterion the decomposition process on the augmented matrix starts
K = [K| v]  K = [K | v]
2 Con el criterio MMSE se inicia el proceso de descomposición sobre ia matriz aumentada
Figure imgf000019_0001
2 With the MMSE criterion the decomposition process on the augmented matrix begins
Figure imgf000019_0001
viii. Se utilizan sos símbolos de datos recibidos v y la matriz del cana! equivalente K para realizar la descomposición QR utilizando cualquier criterio viii. You use sos received data symbols v and the matrix of the cane! K equivalent to perform the QR decomposition using any criteria
ix. El proceso de descomposición ordenada puede ser ejecutado sobre versiones truncadas de ia matriz
Figure imgf000019_0002
es decir, matrices solo se han conservado algunas diagonales con energía significativa de la señal de manera que se reduce en gran medida la cantidad de operaciones necesarias.
ix. The ordered decomposition process can be executed on truncated versions of the matrix
Figure imgf000019_0002
that is to say, matrices only some diagonals with significant energy of the signal have been conserved so that the amount of necessary operations is greatly reduced.
x. Se realiza la detección de los datos ^ utilizando ias matrices Q y F resultado de la descomposición QR ordenada, así como e! vector v = Q"v para ¡a ejecución de este procéso se puede utilizar alguna de las siguientes variantes: x. The detection of the data is performed using the matrices Q and F resulting from the ordered QR decomposition, as well as e! vector v = Q "ara vp to implement this process can be used any of the following variants:
1. Detección utilizando el método QSIC el cual se basa en el cálculo iterativo de los datos estimados usando la fórmula:  1. Detection using the QSIC method which is based on the iterative calculation of the estimated data using the formula:
Figure imgf000019_0003
Figure imgf000019_0003
2 Detección utilizando ei método subóptimo NML, el cual se ejecuta utilizando un árbol de búsqueda cuyas ramas se caracterizan por las métricas
Figure imgf000020_0001
2 Detection using the sub-optimal NML method, which is executed using a search tree whose branches are characterized by the metrics
Figure imgf000020_0001
que se utilizan para realizar la detección de los datos optimizando la expresión:
Figure imgf000020_0002
which are used to perform the detection of the data by optimizing the expression:
Figure imgf000020_0002
xi. El proceso de detección se puede realizar de forma iterativa reíroalimentando los datos para eliminar ia ICI en las portadoras piloto y repetir los pasos de estimación de canal y detección.  xi. The detection process can be performed iteratively by re-feeding the data to eliminate the ICI in the pilot carriers and repeat the steps of channel estimation and detection.
2. Otros criterios diferentes a ios ejemplos mostrados en este documento se pueden utilizar para ia descomposición QR en el receptor de la reivindicación 1 , considerándose estas como variantes de la presente invención.  2. Other criteria than the examples shown in this document can be used for QR decomposition in the receptor of claim 1, these being considered as variants of the present invention.
3. Otros algoritmos diferentes a ios ejemplos mostrados en este documento se pueden utilizar para realizar el cálculo de la descomposición QR en el receptor de la reivindicación 1 , considerándose estas como variantes de ¡a presente invención.  3. Other algorithms than the examples shown in this document can be used to calculate the QR decomposition in the receiver of claim 1, these being considered variants of the present invention.
4. Otros algoritmos diferentes a los ejemplos mostrados en este documento para la cancelación de interferencia se pueden utilizar partiendo de del modelo de observación:
Figure imgf000020_0003
4. Other algorithms than the examples shown in this document for the cancellation of interference can be used starting from the observation model:
Figure imgf000020_0003
considerándose estas como variantes de la presente invención.  these being considered as variants of the present invention.
PCT/MX2018/000151 2017-12-20 2018-12-14 Multi-carrier communication system for doubly selective channels using frequency dispersion and non-linear interference cancellation WO2019125126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2017016960A MX2017016960A (en) 2017-12-20 2017-12-20 Multi-carrier communication system for doubly selective channels using frequency dispersion and non-linear interference cancellation.
MXMX/A/2017/016960 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019125126A1 true WO2019125126A1 (en) 2019-06-27

Family

ID=66994134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2018/000151 WO2019125126A1 (en) 2017-12-20 2018-12-14 Multi-carrier communication system for doubly selective channels using frequency dispersion and non-linear interference cancellation

Country Status (2)

Country Link
MX (1) MX2017016960A (en)
WO (1) WO2019125126A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115426223B (en) * 2022-08-10 2024-04-23 华中科技大学 Low-orbit satellite channel estimation and symbol detection method and system
CN116484180B (en) * 2023-06-21 2023-09-22 中国人民解放军国防科技大学 System and method for extracting communication signal gene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090116590A1 (en) * 2007-11-06 2009-05-07 Samsung Electronics Co. Ltd. Apparatus and method for detecting signal in multi-antenna system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090116590A1 (en) * 2007-11-06 2009-05-07 Samsung Electronics Co. Ltd. Apparatus and method for detecting signal in multi-antenna system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BANAWAN, K. ET AL.: "Enhanced SIC and Initial Guess ML Receivers for Collaborative MIMO of the LTE Uplink", 2011 IEEE VEHICULAR TECHNOLOGY CONFERENCE (VTC FALL), 5 September 2011 (2011-09-05), pages 1 - 5, XP032029628, DOI: 10.1109/VETECF.2011.6093144 *
LAI, T. ET AL.: "Performance Analysis and Multi-Stage Iterative Receiver Design for Concatenated Space-Frequency Block Coding Schemes", IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, vol. 7, no. 11, November 2008 (2008-11-01), pages 4208 - 4214, XP011238621, DOI: 10.1109/T-WC.2008.070222 *

Also Published As

Publication number Publication date
MX2017016960A (en) 2019-06-21

Similar Documents

Publication Publication Date Title
Cui et al. Joint data detection and channel estimation for OFDM systems
CN101621327A (en) Radio communication method and device in single-carrier transmission system
EP3169028B1 (en) Semi-exhaustive recursive block decoding method and device
Mishra et al. SBL-based joint sparse channel estimation and maximum likelihood symbol detection in OSTBC MIMO-OFDM systems
WO2019125126A1 (en) Multi-carrier communication system for doubly selective channels using frequency dispersion and non-linear interference cancellation
US10291438B2 (en) Methods and devices for decoding data signals
JP5235932B2 (en) Signal detection method, signal detection program, signal detection circuit, and radio station
Foster et al. Polynomial matrix QR decomposition for the decoding of frequency selective multiple-input multiple-output communication channels
Al-Naffouri Receiver design for MIMO OFDM transmission over time variant channels
Elghariani et al. Successive interference cancellation for large-scale MIMO OFDM
US10819468B2 (en) Stochastic linear detection
Pham et al. Equalization for MIMO-OFDM systems with insufficient cyclic prefix
CN109639301A (en) A kind of FTN equalization methods based on reliability estimating
Zhu et al. Joint transceiver optimization for wireless communication PHY with convolutional neural network
Chen et al. Layered turbo space-time coded MIMO-OFDM systems for time varying channels
Noh et al. An iterative MMSE-ML detector for MIMO SC-FDMA system
Hedayati et al. SAGE algorithm for semi-blind channel estimation and symbol detection for STBC MIMO OFDM systems
WO2007061066A1 (en) Method for decoding symbol
Xu et al. Factor graph based detection and channel estimation for MIMO-OFDM systems in doubly selective channel
Wang et al. MMSE soft-interference-cancellation aided iterative center-shifting K-best sphere detection for MIMO channels
Ma et al. Hybrid BP-EP based iterative receiver for faster-than-Nyquist with index modulation
Yue et al. Model-Driven Deep Learning Assisted Detector for OTFS with Channel Estimation Error
Namboodiri et al. Successive interference cancelation and MAP decoding for mobile MIMO OFDM systems and their convergence behavior
Boronka et al. Improving MIMO detection by L-value analysis and adaptive threshold-based cancellation
Prakash et al. Single tree search sphere decoding algorithm for MIMO communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892878

Country of ref document: EP

Kind code of ref document: A1