WO2019125106A1 - Model for generating learning paths - Google Patents

Model for generating learning paths Download PDF

Info

Publication number
WO2019125106A1
WO2019125106A1 PCT/MX2017/000163 MX2017000163W WO2019125106A1 WO 2019125106 A1 WO2019125106 A1 WO 2019125106A1 MX 2017000163 W MX2017000163 W MX 2017000163W WO 2019125106 A1 WO2019125106 A1 WO 2019125106A1
Authority
WO
WIPO (PCT)
Prior art keywords
student
concepts
learning
concept
platform
Prior art date
Application number
PCT/MX2017/000163
Other languages
Spanish (es)
French (fr)
Inventor
Diana PACHECO NAVARRO
Mercedes SERNA FELIX
Marcos Antonio SANCHEZ GONZALEZ
Dino Alejandro Pardo Guzman
Original Assignee
Pacheco Navarro Diana
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacheco Navarro Diana filed Critical Pacheco Navarro Diana
Priority to PCT/MX2017/000163 priority Critical patent/WO2019125106A1/en
Publication of WO2019125106A1 publication Critical patent/WO2019125106A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B5/00Electrically-operated educational appliances

Definitions

  • the present invention has its predominant field of application in the field of education, more specifically in the determination of individualized learning trajectories after identification of the level of skills of the users of an educational platform, which have the option of creating their own trajectory. according to the learning objectives established in a school curriculum.
  • the invention US9406239 describes a method / apparatus / system for the recommendation of a learning trajectory based on the context of a learning vector.
  • An incident learning object and a target learning object are identified, learning paths are established between both objects including a plurality of objects and vectors.
  • the magnitude of the learning paths is calculated by summing the magnitudes of the learning vectors in each learning trajectory.
  • the magnitudes of the learning trajectories are compared and one of the learning paths is selected from the comparison of learning trajectories.
  • the technology described in the invention US20140024009 generates personalized evaluations based on educational content to adapt to the needs and learning styles of each student.
  • the educational content can be identified and provided to a user based on user profile information, such as grade, age and / or level of education.
  • the described technology can adapt the educational content for an individual user based on a user's preferred learning style.
  • the application US20120040326 provides methods and systems to optimize the individualized instruction and its evaluation.
  • the user base component contains an electronic record of student data.
  • the knowledge base component contains knowledge management data.
  • the standards base component contains curriculum data and criteria data.
  • the inference engine module uses the student's electronic student record, knowledge management data and curriculum data and criteria data to create an individualized lesson plan for the individual.
  • US20110177480 provides a method and an apparatus for a learning management platform. Based on the student profile information and the determination of similarities between students, a learning experience engine provides an individualized learning recommendation to a student.
  • US20090197237 a system for generating a sequence of learning objects comprising an e-Learning course is provided.
  • the system may include one or more processors and a memory unit for electronically storing data comprising a plurality of learning objects.
  • the system may include a sequence constructor configured to run on at least one processor.
  • the sequence constructor can be configured to generate a sequence comprising at least a portion of the plurality of learning objects based on a measurable relevance of the user and / or a measurable query relevance of each learning object contained in the sequence.
  • a method / system is described in the invention US9412281 for the self-optimization of a learning system.
  • the learning system can include a plurality of learning objects that are connected to each other by a plurality of learning vectors.
  • Learning vectors can identify a relationship of prerequisite between the connected learning objects and include data referring to a probability of success of a student when traversing the learning vector and / or an expected speed to traverse said vector.
  • the data generated from a student's journey through one of the learning vectors can be used to strengthen or weaken the learning vector based on the student's experience.
  • US20120308980 a system and method for educating students is presented so that each student can learn the material individually and progress through the lessons at their own pace.
  • the system can present to the student different versions of each lesson with alternative explanations of the educational concepts taught by the lesson.
  • the system can allow each student to progress to the next lesson only when the system confirms that the student understands the educational concepts taught by the lesson, and can provide additional explanations of any material the student has difficulty understanding.
  • a system shown in the invention US20130260351 presents a sequence of learning objectives to a student according to one or more target dates.
  • the target dates can be set by an academic institution, a teacher or a parent of the student.
  • the system adjusts the sequence of learning objectives according to the target dates assigned to one or more of the learning objectives.
  • the system calculates how long it will take the student to progress through a sequence of learning objectives and will notify the administrator if the student is behind schedule. Notification to the administrator may include recommendations for corrective actions.
  • US20140248597 computer-based educational systems, methods and media for children from 1 to 10 years of age are presented and comprise: an educational environment of at least three subjects appropriate for the child, a plurality of learning levels and activities of learning associated with each subject. In the plurality of learning activities, one or more educational objectives are taught. It includes a module to create an avatar that represents the child, a module to monitor the progress of the child, a learning path that includes a sequence of lessons or learning activities and interactive elements configured to teach facts related to the environment.
  • the examples described in the invention WO201609379 involve the organization of training sequences for training courses.
  • LOJ described examples include the analysis of a user profile comprising a list of skills learned by the user, the analysis of a curriculum of a training course comprising lessons and the organization of a sequence of training lessons based on the profile and the curriculum.
  • US201 0188574 there is presented a system for the objective evaluation of learning results comprising a data repository with at least one hierarchical arrangement of a plurality of learning objectives, a report generator coupled to the data repository, a learning engine, analysis coupled to the data repository, a rules engine coupled to the data, a repository and an application server adapted to receive application-specific requests from a plurality of client applications and coupled to the data repository.
  • the application server is further adapted to provide an administrative interface for viewing, editing or deleting a plurality of learning objectives and relationships among them, learning evaluation tools, learning results reports and learning rates and the rules engine performs a plurality of consistency checks to ensure alignment between learning goals. It includes learning assessment tools, learning outcomes and learning rates.
  • the application server receives learning evaluation data and the analysis engine performs analysis to generate a plurality of learning indices.
  • the invention US20160321939 provide customized evaluation and / or learning systems and techniques.
  • the system can select the tasks and the content of the task for a user according to the learning regime suggested by the administrator for the user, at the same time that it adapts the selection of tasks and the content of the same according to the performance and / or context of the user when the user is not supervised by an administrator.
  • Figure 1 shows the interaction flow diagram of the student with the platform.
  • Figure 2 shows the elements that make up the trajectory specification model.
  • figure 1 shows the flow diagram indicating that the interaction of the system with the students is carried out through a series of interactions between the platform and the user.
  • the platform guides in this way a personalized school trajectory, by preventing students from having to face concepts that are very complicated or that require mastery of previous concepts.
  • the stimulus and reward system seeks to guide this trajectory intelligently and gives the student the freedom to make decisions about their learning, making them an active subject in decision-making (although limited) about their learning.
  • This decision-making power aims to increase the student's self-esteem and motivation to use the platform.
  • the elements that make up the trajectory specification model can be found in figure 2 where, from the point of view of learning environments, the decisions are subdivided into 5 actions: graph of concepts, student model, positive reinforcement, selection of activities and difficulty of exercises.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Electrically Operated Instructional Devices (AREA)

Abstract

The proposed operating model is based on offering a student a degree of freedom to be able to construct his or her own learning path, with the guidance of the system, preventing the student from having to tackle concepts that are very advanced for his or her skill level and motivating the student to pursue more complex concepts once he or she has mastered a concept at a certain level. The purpose of specifying paths at concept level is for the student to construct a personalised path at a high level of abstraction. To achieve this, once the student's skill level has been assessed, he or she is presented with the concepts that can be selected. The student has the option of creating his or her own path, within the limits that allow him or her to meet the learning objectives.

Description

MODELO DE GENERACION DE TRAYECTORIAS DE APRENDIZAJE  MODEL OF LEARNING TRAJECTORIES GENERATION
CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente invención tiene su campo de aplicación preponderante en el ámbito de la educación, más específicamente en la determinación de trayectorias de aprendizaje individualizadas previa identificación del nivel de habilidades de los usuarios de una plataforma educativa, los cuales tienen la opción de crear su propia trayectoria acorde a los objetivos de aprendizaje establecidos en un currículo escolar. ANTECEDENTES DE LA INVENCIÓN The present invention has its predominant field of application in the field of education, more specifically in the determination of individualized learning trajectories after identification of the level of skills of the users of an educational platform, which have the option of creating their own trajectory. according to the learning objectives established in a school curriculum. BACKGROUND OF THE INVENTION
En general, los entornos modernos de aprendizaje que buscan mecanismos de adaptación a los estudiantes no se basan únicamente en el conocimiento experto, describiendo y desarrollando a priorí una serie de objetos de aprendizaje (OA) y ejercicios en forma lineal (tal como un libro tradicional), sino que buscan modelos para la especificación de trayectorias y su adaptación con la información disponible.  In general, modern learning environments that seek mechanisms of adaptation to students are not based solely on expert knowledge, describing and developing a series of learning objects (OA) and exercises in a linear fashion (such as a traditional book). ), but they look for models for the specification of trajectories and their adaptation with the available information.
Existen diferentes enfoques que buscan definir entornos y trayectorias de aprendizaje, algunos sistemas como los filtros colaborativos utilizan la información histórica mientras que otros sistemas están basados en métodos de aprendizaje supervisado y/o no supervisado, mediante los cuales se trata de predecir el desempeño de los estudiantes ante diferentes objetos de aprendizaje (OA). En general, estos enfoques tienen como principal desventaja el depender, en gran medida, de una fuerte inicialización y normalmente no integran claramente los objetivos pedagógicos y/o el conocimiento experto. A continuación se presentan patentes que se enfocan en el problema de definir trayectorias de aprendizaje. There are different approaches that seek to define learning environments and trajectories, some systems such as collaborative filters use historical information while other systems are based on supervised and / or unsupervised learning methods, through which the aim is to predict the performance of students facing different learning objects (OA). In general, these approaches have as their main disadvantage the reliance, to a great extent, on a strong initialization and usually do not clearly integrate pedagogical objectives and / or expert knowledge. Below are patents that focus on the problem of defining learning trajectories.
La invención US9406239 describe un método / aparato / sistema para la recomendación de una trayectoria de aprendizaje basada en el contexto de un vector de aprendizaje. Se identifica un objeto de aprendizaje incidente y un objeto de aprendizaje de destino, se establecen caminos de aprendizaje entre ambos objetos incluyendo una pluralidad de objetos y vectores. Se calcula la magnitud de los trayectos de aprendizaje por suma de las magnitudes de los vectores de aprendizaje en cada trayectoria de aprendizaje. Se comparan las magnitudes de las trayectorias de aprendizaje y se selecciona una de las vías de aprendizaje a partir de la comparación de las trayectorias de aprendizaje. La tecnología descrita en la invención US20140024009 genera evaluaciones personalizadas basadas en contenido educativo para adaptarse a las necesidades y estilos de aprendizaje de cada estudiante. El contenido educativo puede ser identificado y proporcionado a un usuario basándose en información de perfil de usuario, como grado, edad y / o nivel de educación. Además, la tecnología descrita puede adaptar el contenido educativo para un usuario individual en base a un estilo de aprendizaje preferido del usuario. The invention US9406239 describes a method / apparatus / system for the recommendation of a learning trajectory based on the context of a learning vector. An incident learning object and a target learning object are identified, learning paths are established between both objects including a plurality of objects and vectors. The magnitude of the learning paths is calculated by summing the magnitudes of the learning vectors in each learning trajectory. The magnitudes of the learning trajectories are compared and one of the learning paths is selected from the comparison of learning trajectories. The technology described in the invention US20140024009 generates personalized evaluations based on educational content to adapt to the needs and learning styles of each student. The educational content can be identified and provided to a user based on user profile information, such as grade, age and / or level of education. In addition, the described technology can adapt the educational content for an individual user based on a user's preferred learning style.
La aplicación US20120040326 proporciona métodos y sistemas para optimizar la instrucción individualizada y su evaluación. El componente de la base de usuarios contiene un registro electrónico de datos del estudiante. El componente de base de conocimientos contiene datos de gestión del conocimiento. El componente de base de estándares contiene datos de currículo y datos de criterios. El módulo del motor de la inferencia utiliza el expediente electrónico del estudiante del individuo, los datos de la gerencia del conocimiento y los datos del curriculum y los datos de los criterios para crear un plan individualizado de la lección para el individuo.  The application US20120040326 provides methods and systems to optimize the individualized instruction and its evaluation. The user base component contains an electronic record of student data. The knowledge base component contains knowledge management data. The standards base component contains curriculum data and criteria data. The inference engine module uses the student's electronic student record, knowledge management data and curriculum data and criteria data to create an individualized lesson plan for the individual.
La invención US20110177480 proporciona un método y un aparato para una plataforma de gestión del aprendizaje. Sobre la base de la información del perfil del estudiante y la determinación de que existen similitudes entre los estudiantes, un motor de experiencia de aprendizaje proporciona una recomendación de aprendizaje individualizada a un estudiante.  The invention US20110177480 provides a method and an apparatus for a learning management platform. Based on the student profile information and the determination of similarities between students, a learning experience engine provides an individualized learning recommendation to a student.
En la invención US20090197237 se proporciona un sistema para generar una secuencia de objetos de aprendizaje que comprende un curso de e-Learning. El sistema puede incluir uno o más procesadores y una unidad de memoria para almacenar electrónicamente datos que comprenden una pluralidad de objetos de aprendizaje. Además, el sistema puede incluir un constructor de secuencia configurado para ejecutar en al menos un procesador. El constructor de secuencia puede configurarse para generar una secuencia que comprende al menos una porción de la pluralidad de objetos de aprendizaje basándose en una relevancia medible del usuario y / o una relevancia de la consulta medible de cada objeto de aprendizaje contenido en la secuencia.  In the invention US20090197237 a system for generating a sequence of learning objects comprising an e-Learning course is provided. The system may include one or more processors and a memory unit for electronically storing data comprising a plurality of learning objects. In addition, the system may include a sequence constructor configured to run on at least one processor. The sequence constructor can be configured to generate a sequence comprising at least a portion of the plurality of learning objects based on a measurable relevance of the user and / or a measurable query relevance of each learning object contained in the sequence.
Se describe un método / sistema en la invención US9412281 para la auto-optimización de un sistema de aprendizaje. El sistema de aprendizaje puede incluir una pluralidad de objetos de aprendizaje que están conectados entre sí por una pluralidad de vectores de aprendizaje. Los vectores de aprendizaje pueden identificar una relación de requisito previo entre los objetos de aprendizaje conectados e incluir datos referentes a una probabilidad de éxito de un estudiante al atravesar el vector de aprendizaje y / o una velocidad esperada para atravesar dicho vector. Los datos generados a partir del recorrido de un estudiante por uno de los vectores de aprendizaje pueden ser usados para fortalecer o debilitar el vector de aprendizaje basado en la experiencia del estudiante. A method / system is described in the invention US9412281 for the self-optimization of a learning system. The learning system can include a plurality of learning objects that are connected to each other by a plurality of learning vectors. Learning vectors can identify a relationship of prerequisite between the connected learning objects and include data referring to a probability of success of a student when traversing the learning vector and / or an expected speed to traverse said vector. The data generated from a student's journey through one of the learning vectors can be used to strengthen or weaken the learning vector based on the student's experience.
En la invención US20120308980 se presenta un sistema y un método para educar a los estudiantes de manera que cada estudiante pueda aprender el material individualmente y progresar a través de las lecciones a su propio ritmo. El sistema puede presentar al estudiante diferentes versiones de cada lección con explicaciones alternativas de ios conceptos educativos enseñados por la lección. El sistema puede permitir que cada estudiante progrese a la siguiente lección sólo cuando el sistema confirme que el estudiante entiende los conceptos educativos enseñados por la lección, y puede proporcionar explicaciones adicionales de cualquier material que el estudiante tenga dificultad para entender.  In the invention US20120308980 a system and method for educating students is presented so that each student can learn the material individually and progress through the lessons at their own pace. The system can present to the student different versions of each lesson with alternative explanations of the educational concepts taught by the lesson. The system can allow each student to progress to the next lesson only when the system confirms that the student understands the educational concepts taught by the lesson, and can provide additional explanations of any material the student has difficulty understanding.
Un sistema mostrado en la invención US20130260351 presenta una secuencia de objetivos de aprendizaje a un estudiante de acuerdo con una o más fechas objetivo. Las fechas objetivo pueden ser fijadas por una institución académica, un maestro o un padre del estudiante. El sistema ajusta la secuencia de objetivos de aprendizaje en función de las fechas objetivo asignado a uno o más de los objetivos de aprendizaje. El sistema calcula cuánto tardará el estudiante en progresar a través de una secuencia de objetivos de aprendizaje y notificará al administrador si el estudiante está retrasado. La notificación al administrador puede incluir recomendaciones para acciones correctivas.  A system shown in the invention US20130260351 presents a sequence of learning objectives to a student according to one or more target dates. The target dates can be set by an academic institution, a teacher or a parent of the student. The system adjusts the sequence of learning objectives according to the target dates assigned to one or more of the learning objectives. The system calculates how long it will take the student to progress through a sequence of learning objectives and will notify the administrator if the student is behind schedule. Notification to the administrator may include recommendations for corrective actions.
En la invención US20140248597 se presentan sistemas, métodos y medios educativos basados en computadoras para niños de 1 a 10 años de edad y comprenden: un entorno educativo de al menos tres materias apropiadas para el niño, una pluralidad de niveles de aprendizaje y de actividades de aprendizaje asociadas con cada materia. En la pluralidad de actividades de aprendizaje se enseña hacia uno o más objetivos educativos. Incluye un módulo para crear un avatar que represente al niño, un módulo para supervisar el progreso del niño, una ruta de aprendizaje que comprende una secuencia de lecciones o actividades de aprendizaje y elementos interactivos configurados para enseñar hechos relacionados con el medio ambiente. Los ejemplos descritos en la invención WO201609379 implican la organización de secuencias de entrenamiento para cursos de formación. LOJ ejemplos descritos incluyen el análisis de un perfil de usuario que comprende una lista de habilidades aprendidas por el usuario, el análisis de un plan de estudios de un curso de formación que comprende lecciones y la organización de una secuencia de formación de las lecciones basadas en el perfil y el plan de estudios. In the invention US20140248597 computer-based educational systems, methods and media for children from 1 to 10 years of age are presented and comprise: an educational environment of at least three subjects appropriate for the child, a plurality of learning levels and activities of learning associated with each subject. In the plurality of learning activities, one or more educational objectives are taught. It includes a module to create an avatar that represents the child, a module to monitor the progress of the child, a learning path that includes a sequence of lessons or learning activities and interactive elements configured to teach facts related to the environment. The examples described in the invention WO201609379 involve the organization of training sequences for training courses. LOJ described examples include the analysis of a user profile comprising a list of skills learned by the user, the analysis of a curriculum of a training course comprising lessons and the organization of a sequence of training lessons based on the profile and the curriculum.
En la invención US201 0188574 se presenta un sistema para la evaluación objetiva de resultados de aprendizaje que comprende un repositorio de datos con al menos una disposición jerárquica de una pluralidad de objetivos de aprendizaje, un generador de informes acoplado al repositorio de datos, un motor de análisis acoplado al repositorio de datos, un motor de reglas acoplado a los datos, un repositorio y un servidor de aplicaciones adaptado para recibir solicitudes específicas de aplicación desde una pluralidad de aplicaciones de cliente y acopladas al repositorio de datos. El servidor de aplicación está adaptado además para proporcionar una interfaz administrativa para ver, editar o suprimir una pluralidad de objetivos de aprendizaje y relaciones entre ellos, herramientas de evaluación de aprendizaje, informes de resultados de aprendizaje e índices de aprendizaje y el motor de reglas realiza una pluralidad de comprobaciones de coherencia para asegurar la alineación entre las metas de aprendizaje. Se incluyen las herramientas de evaluación del aprendizaje, los resultados del aprendizaje y los índices de aprendizaje. El servidor de aplicaciones recibe datos de evaluación de aprendizaje y el motor de análisis realiza análisis para generar una pluralidad de índices de aprendizaje.  In the invention US201 0188574 there is presented a system for the objective evaluation of learning results comprising a data repository with at least one hierarchical arrangement of a plurality of learning objectives, a report generator coupled to the data repository, a learning engine, analysis coupled to the data repository, a rules engine coupled to the data, a repository and an application server adapted to receive application-specific requests from a plurality of client applications and coupled to the data repository. The application server is further adapted to provide an administrative interface for viewing, editing or deleting a plurality of learning objectives and relationships among them, learning evaluation tools, learning results reports and learning rates and the rules engine performs a plurality of consistency checks to ensure alignment between learning goals. It includes learning assessment tools, learning outcomes and learning rates. The application server receives learning evaluation data and the analysis engine performs analysis to generate a plurality of learning indices.
La invención US20160321939 proporcionan sistemas y técnicas de evaluación y / o aprendizaje personalizados. El sistema puede seleccionar las tareas y el contenido de la tarea para un usuario de acuerdo con el régimen de aprendizaje sugerido por el administrador para el usuario, al mismo tiempo que adapta la selección de tareas y el contenido de la misma según el rendimiento y / o contexto del usuario cuando el usuario no está supervisado por un administrador.  The invention US20160321939 provide customized evaluation and / or learning systems and techniques. The system can select the tasks and the content of the task for a user according to the learning regime suggested by the administrator for the user, at the same time that it adapts the selection of tasks and the content of the same according to the performance and / or context of the user when the user is not supervised by an administrator.
DESCRIPCION DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos de la presente invención, se muestran claramente en la siguiente descripción y en las figuras que se acompañan, las cuales se mencionan a manera de ejemplo, por lo que no deben considerarse como una limitante para dicha invención. The characteristic details of the present invention are clearly shown in the following description and in the accompanying figures, which are mentioned example way, so they should not be considered as a limitation for said invention.
Breve descripción de las figuras: Brief description of the figures:
La figura 1 muestra el diagrama de flujo de interacción del estudiante con la plataforma. Figure 1 shows the interaction flow diagram of the student with the platform.
La Figura 2 muestra los elementos que componen el modelo de especificación de trayectorias. Con respecto a las figuras antes enlistadas, la figura 1 muestra el diagrama de flujo señalando que la interacción del sistema con los estudiantes se realiza a través de una serie de interacciones entre la plataforma y el usuario. La plataforma guía de esta manera una trayectoria escolar personalizada, al evitar que los estudiantes tengan que enfrentarse a conceptos que les resulten muy complicados o que requieran el dominio de conceptos anteriores. Si bien la plataforma restringe las posibles trayectorias de aprendizaje, el sistema de estímulos y recompensas busca guiar en forma inteligente dicha trayectoria y al estudiante le brinda la libertad de tomar decisiones sobre su aprendizaje, convirtiéndolo en un sujeto activo en la toma de decisión (aunque limitada) sobre su aprendizaje. Este poder de decisión tiene como objetivo el aumentar la autoestima y la motivación del estudiante para utilizar la plataforma. Los elementos que componen el modelo de especificación de trayectorias se encuentra en la figura 2 donde, desde el punto de vista de entornos de aprendizaje, las decisiones se subdividen en 5 acciones: gráfica de conceptos, modelo del estudiante, refuerzo positivo, selección de actividades y dificultad de ejercicios.  Figure 2 shows the elements that make up the trajectory specification model. With respect to the figures listed above, figure 1 shows the flow diagram indicating that the interaction of the system with the students is carried out through a series of interactions between the platform and the user. The platform guides in this way a personalized school trajectory, by preventing students from having to face concepts that are very complicated or that require mastery of previous concepts. Although the platform restricts the possible trajectories of learning, the stimulus and reward system seeks to guide this trajectory intelligently and gives the student the freedom to make decisions about their learning, making them an active subject in decision-making (although limited) about their learning. This decision-making power aims to increase the student's self-esteem and motivation to use the platform. The elements that make up the trajectory specification model can be found in figure 2 where, from the point of view of learning environments, the decisions are subdivided into 5 actions: graph of concepts, student model, positive reinforcement, selection of activities and difficulty of exercises.

Claims

REIVINDICACIONES
1. Una implementación del sistema de una plataforma educativa para la elaboración de trayectorias de aprendizaje, por grado, por concepto o por curso escolar. El objetivo del sistema es construir trayectorias a alto nivel de abstracción con las siguientes características: 1. An implementation of the system of an educational platform for the development of learning trajectories, by grade, by concept or by school year. The objective of the system is to build trajectories at a high level of abstraction with the following characteristics:
• Modelo de almacenamiento en gratos dirigidos que sea fác!lmente modificable.• Model of guided storage that is easy ! modifiable
• Estructura de conceptos ordenada de manera jerárquica predeterminada y modificable. • Structure of concepts ordered in a predetermined and modifiable hierarchical way.
· Exámenes diagnósticos para cada grado, de tal manera que cada concepto aparezca en al menos uno de los exámenes. · Diagnostic tests for each grade, so that each concept appears in at least one of the exams.
• Selección de conceptos adecuados según el nivel de habilidad del estudiante con el fin de crear las trayectorias.  • Selection of appropriate concepts according to the level of skill of the student in order to create trajectories.
• Trayectorias construidas con las restricciones de la estructura de conceptos y del grafo generado para cada estudiante.  • Trajectories built with the restrictions of the structure of concepts and the generated graph for each student.
2. El sistema de conformidad con la reivindicación No. 1 , donde la estructura de conceptos esta preestablecida por expertos de un organismo oficial; 2. The system according to claim 1, wherein the structure of concepts is pre-established by experts of an official body;
3. El sistema de conformidad con la reivindicación No. 2, donde la estructura de conceptos tiene un orden parcial, es decir, que dado dos conceptos o bien no están relacionados en orden (se pueden estudiar de forma separada) o bien se puede decidir cual tiene que estudiarse primero;  3. The system according to claim 2, where the structure of concepts has a partial order, ie, given that two concepts are either not related in order (can be studied separately) or can be decided which has to be studied first;
4. El sistema de conformidad con la reivindicación No. 3, donde la noción de concepto se interpreta como unidad de aprendizaje mínima y tiene asociado una lista de objetos de ejercicios, problemas y reactivos que la plataforma va seleccionando según las necesidades de aprendizaje del estudiante; 4. The system according to claim No. 3, where the notion of concept is interpreted as a minimum learning unit and has associated a list of objects of exercises, problems and reagents that the platform selects according to the student's learning needs ;
5. El sistema de conformidad con la reivindicación No. 4, donde los conceptos están relacionados entre sí siguiendo el esquema de un grafo dirigido el cual es determinado por expertos;  5. The system according to claim 4, wherein the concepts are related to each other following the scheme of a directed graph which is determined by experts;
6. El sistema de conformidad con la reivindicación No. 5, donde el esquema de grafo permite la elaboración de trayectorias de aprendizaje siguiendo una sucesión de conceptos; 6. The system according to claim 5, wherein the graph scheme allows the development of learning trajectories following a succession of concepts;
7. El sistema de conformidad con la reivindicación No. 6, donde el grafo de conceptos tiene estructura de árbol dirigido, esto es, un grafo dirigido sin ciclos;The system according to claim 6, wherein the concept graph has a directed tree structure, that is, a directed graph without cycles;
8. El sistema de conformidad con la reivindicación No. 7, donde la estructura de grafo dirigido acíclico no permite que conceptos más avanzados sean prerrequisitos de otros; 8. The system according to claim No. 7, wherein the acyclic directed graph structure does not allow more advanced concepts to be prerequisites of others;
9. El sistema de conformidad con la reivindicación No. 7, donde la estructura de grafo dirigido acíclico no permite que los conceptos más básicos tengan prerrequisitos;  9. The system according to claim No. 7, wherein the acyclic directed graph structure does not allow the most basic concepts to have prerequisites;
10. El sistema de conformidad con la reivindicación No. 9, donde la estructura de grafo permite que se agreguen, se quiten o se cambien corceptos;  10. The system according to claim 9, wherein the graph structure allows components to be added, removed or changed;
1 . El sistema de conformidad con la reivindicación No. 1 , donde la aplicación de exámenes diagnósticos se efectúa para calcular el nivel de habilidad del alumno en un concepto dado;  one . The system according to claim 1, wherein the application of diagnostic tests is performed to calculate the skill level of the student in a given concept;
12. El sistema de conformidad con la reivindicación No. 11 , donde según los resultados de los exámenes diagnósticos se seleccionan objetos de aprendizaje que se proponen al estudiante para que siga con la trayectoria propuesta por la plataforma;  12. The system according to claim No. 11, where according to the results of the diagnostic tests, learning objects are selected that are proposed to the student to continue with the trajectory proposed by the platform;
13. El sistema de conformidad con la reivindicación No. 12, donde la selección de los objetos de aprendizaje se hace según los conceptos que se deben estudiar y está restringida por las condiciones del árbol de conceptos  13. The system according to claim No. 12, where the selection of learning objects is made according to the concepts to be studied and is restricted by the conditions of the concept tree
14. El sistema de conformidad con la reivindicación No. 13, donde la medición del nivel de habilidad del estudiante se hace mediante un algoritmo con modelo de Rasen llamado CAT;  14. The system according to claim No. 13, wherein the measurement of the skill level of the student is made by means of an algorithm with Rasen model called CAT;
15. El sistema de conformidad con la reivindicación No. 14, donde los conceptos para cuales el estudiante muestra un nivel de conocimiento del 95% se declaran dominados por el estudiante y no se consideran en las futuras selecciones de ejercicios.  15. The system according to claim No. 14, where the concepts for which the student shows a level of knowledge of 95% are declared dominated by the student and are not considered in the future selections of exercises.
16. El sistema de conformidad con la reivindicación No. 15, donde los objetos de aprendizaje que se seleccionan son los donde el estudiante muestra un nivel de habilidad de entre 10% y 95% y para cuales el estudiante tiene un nivel de habilidad de al menos 60% en los conceptos previos.  16. The system according to claim No. 15, wherein the learning objects selected are those where the student shows a skill level of between 10% and 95% and for which the student has a skill level of at least 15%. minus 60% in the previous concepts.
17. El sistema de conformidad con la reivindicación No. 16, donde los conceptos propuestos al estudiante por el sistema cambian en tiempo real después de cada interacción entre el alumno y la plataforma. 17. The system according to claim No. 16, where the concepts proposed to the student by the system change in real time after each interaction between the student and the platform.
18. El sistema de conformidad con la reivindicación No. 17, donde si un estudiante muestra un nivel de habilidad menor de 10% para cierto concepto C, este último se elimina, así como todos los conceptos más avanzados relacionados con él. Por otra parte, se reactivan todos los conceptos que son prerrequisitos al concepto C reajustando el nivel de habilidad del estudiante para estos conceptos a un 90%, obligando así el alumno a reforzar su conocimiento en estos temas;18. The system according to claim No. 17, where if a student shows a skill level of less than 10% for certain concept C, the latter is eliminated, as well as all the more advanced concepts related to it. On the other hand, all the concepts that are prerequisites to the C concept are reactivated, adjusting the student's skill level for these concepts to 90%, obliging the student to reinforce his knowledge in these subjects;
19. El sistema de conformidad con la reivindicación No. 1 , donde el conjunto de conceptos seleccionable para un estudiante para la formación de trayectoria de aprendizaje está sujeto a criterios establecidos por expertos en pedagogía; 19. The system according to claim 1, wherein the set of selectable concepts for a student for learning path formation is subject to criteria established by experts in pedagogy;
20. El sistema de conformidad con la reivindicación No. 19, donde la diferencia de grados máxima que se puede alcanzar entre dos conceptos es 2, permitiendo así una selección más rápida y adecuada; 20. The system according to claim 19, wherein the maximum degree difference that can be reached between two concepts is 2, thus allowing a more rapid and adequate selection;
21. El sistema de conformidad con la reivindicación No. 20, donde no se permite la selección de conceptos si el estudiante no tiene un nivel de habilidad suficiente en todos los conceptos previos a él;  21. The system according to claim No. 20, where the selection of concepts is not allowed if the student does not have a sufficient skill level in all the concepts prior to him;
22. El sistema de conformidad con la reivindicación No. 21, donde siempre que el estudiante realiza una actividad, se calcula su nuevo nivel de habilidad y se seleccionan otros conceptos que se le presentan de manera inmediata;  22. The system according to claim No. 21, where whenever the student performs an activity, their new skill level is calculated and other concepts are selected that are presented immediately;
23. El sistema de conformidad con la reivindicación No. 22, donde se le permite siempre al estudiante escoger los temas que quiere estudiar creando así su propia trayectoria siempre y cuando cumple con los criterios de aprendizaje establecidos;  23. The system in accordance with claim No. 22, where the student is always allowed to choose the subjects that he wants to study, thus creating his own trajectory as long as he meets the established learning criteria;
24. El sistema de conformidad con la reivindicación No. 23 donde se utiliza un sistema de recompensas con el fin que el estudiante este orientado a escoger los conceptos que la plataforma considera los más adecuados para su buen aprendizaje;  24. The system according to claim No. 23 where a reward system is used in order that the student is oriented to choose the concepts that the platform considers most appropriate for good learning;
25. El sistema de conformidad con la reivindicación No. 24, donde el estudiante tiene la libertad de escoger otros conceptos que los propuestos por la plataforma convirtiéndolo en parte activa de su propio aprendizaje. Sin embargo, el modelo de recompensas es un estímulo para que siga trayectorias más adaptadas a su aprendizaje;  25. The system according to claim No. 24, where the student has the freedom to choose other concepts than those proposed by the platform making it an active part of their own learning. However, the reward model is a stimulus to follow trajectories more adapted to their learning;
26. El sistema de conformidad con la reivindicación No. 25, donde cuando el estudiante haya escogido un concepto a estudiar se escoge una lista de objetos de aprendizaje en función de su nivel de habilidad y de su secuencia de los conceptos que estudio previamente; 26. The system according to claim No. 25, where when the student has chosen a concept to study a list of objects is chosen of learning based on their level of ability and their sequence of concepts that I have previously studied;
27. El sistema de conformidad con la reivindicación No. 26, donde para la primera selección de objetos de aprendizaje dentro de un concepto se utilizan los resultados que el estudiante haya obtenido en el examen diagnostico asociado a él;  27. The system according to claim No. 26, where for the first selection of learning objects within a concept the results that the student has obtained in the diagnostic test associated with it are used;
28. El sistema de conformidad con la reivindicación No. 27, donde el poder de decisión del estudiante tiene como objetivo aumentar la autoestima y motivación para utilizar la plataforma.  28. The system according to claim No. 27, where the power of decision of the student aims to increase self-esteem and motivation to use the platform.
PCT/MX2017/000163 2017-12-19 2017-12-19 Model for generating learning paths WO2019125106A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MX2017/000163 WO2019125106A1 (en) 2017-12-19 2017-12-19 Model for generating learning paths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2017/000163 WO2019125106A1 (en) 2017-12-19 2017-12-19 Model for generating learning paths

Publications (1)

Publication Number Publication Date
WO2019125106A1 true WO2019125106A1 (en) 2019-06-27

Family

ID=66994950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2017/000163 WO2019125106A1 (en) 2017-12-19 2017-12-19 Model for generating learning paths

Country Status (1)

Country Link
WO (1) WO2019125106A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130266922A1 (en) * 2010-01-15 2013-10-10 Apollo Group, Inc. Recommending Competitive Learning Objects
CN103455576A (en) * 2013-08-22 2013-12-18 西安交通大学 Thinking-map-based e-learning resource recommendation method
US20160086498A1 (en) * 2014-09-18 2016-03-24 International Business Machines Corporation Recommending a Set of Learning Activities Based on Dynamic Learning Goal Adaptation
CN106205248A (en) * 2016-08-31 2016-12-07 北京师范大学 A kind of representative learning person generates system and method at the on-line study cognitive map of domain-specific knowledge learning and mastering state

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130266922A1 (en) * 2010-01-15 2013-10-10 Apollo Group, Inc. Recommending Competitive Learning Objects
CN103455576A (en) * 2013-08-22 2013-12-18 西安交通大学 Thinking-map-based e-learning resource recommendation method
US20160086498A1 (en) * 2014-09-18 2016-03-24 International Business Machines Corporation Recommending a Set of Learning Activities Based on Dynamic Learning Goal Adaptation
CN106205248A (en) * 2016-08-31 2016-12-07 北京师范大学 A kind of representative learning person generates system and method at the on-line study cognitive map of domain-specific knowledge learning and mastering state

Similar Documents

Publication Publication Date Title
Taylor et al. Personalized and adaptive learning
McTighe et al. Upgrade your teaching: Understanding by design meets neuroscience
Sottilare et al. An updated concept for a Generalized Intelligent Framework for Tutoring (GIFT)
Lapsley et al. Post-truth and science identity: A virtue-based approach to science education
Shute et al. Stealth assessment: Measuring and supporting learning in video games
Marshall Succeeding with inquiry in science and math classrooms
Dai et al. Design research on learning and thinking in educational settings
Sheikh et al. A model of personal professional development in the systematic training of clinical psychologists
Day Historical perspectives on coaching
Katiyar et al. Ai-Driven Personalized Learning Systems: Enhancing Educational Effectiveness
Sale The challenge of reframing engineering education
Vendlinski et al. Templates and objects in authoring problem-solving assessments
Peddycord-Liu et al. Learning Curve Analysis in a Large-Scale, Drill-and-Practice Serious Math Game: Where Is Learning Support Needed?
Visconti Problem-based learning: Teaching skills for evidence-based practice
Robinson Science content knowledge: A component of teacher effectiveness in a primary school in Jamaica
WO2019125106A1 (en) Model for generating learning paths
Goldberg et al. Instructional Management for Adaptive Training and Education in Support of the US Army Learning Model: Research Outline
Ellis et al. Effective teaching principles and the design of quality tools for educators
WO2018111065A1 (en) Model for the specification of school paths
Gorycheva et al. Structural and content characteristic of didactic competency of a modern educator
Siddiquei et al. The Psychology of E-learning
Shepherd et al. Revisiting the impact of education philosophies and theories in experiential learning
Montazemi et al. On the effectiveness of a neural network for adaptive external pacing
Ritter et al. ‒Personalized Content in Intelligent Tutoring Systems
Parker et al. Free Learning: A Student-directed Pedagogy in Asia and Beyond

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935257

Country of ref document: EP

Kind code of ref document: A1