WO2019125088A1 - Apparatus for monitoring air blowing state of molten iron - Google Patents

Apparatus for monitoring air blowing state of molten iron Download PDF

Info

Publication number
WO2019125088A1
WO2019125088A1 PCT/KR2018/016547 KR2018016547W WO2019125088A1 WO 2019125088 A1 WO2019125088 A1 WO 2019125088A1 KR 2018016547 W KR2018016547 W KR 2018016547W WO 2019125088 A1 WO2019125088 A1 WO 2019125088A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
charcoal
signal processing
measured
sensor unit
Prior art date
Application number
PCT/KR2018/016547
Other languages
French (fr)
Korean (ko)
Inventor
황원호
최상우
박지성
배호문
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2019125088A1 publication Critical patent/WO2019125088A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/14Discharging devices, e.g. for slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices

Definitions

  • the present invention relates to a leaning condition monitoring apparatus for monitoring a leaning condition of a brick exit.
  • the aesthetic means the phenomenon that the filling gas generated by the reaction of the hot air introduced into the blast furnace and the coke in the furnace through the tuyere with the melted material is discharged to the outlet port as the level of the melted material decreases at the end of the melted material in the blast furnace.
  • the conventional afore-mentioned predictive method discharges charcoal and slag through a piercing operation through an outlet through an iron bar and a bit during an opening work, and since the operator determines the occurrence time of the anorem at the time of completion of the exit, There is a problem.
  • a charter condition monitoring apparatus capable of monitoring a chartered state of a chartered ship leaving the blast furnace in real time to determine a situation in the furnace.
  • an apparatus for monitoring a leaning condition of a leaning vessel comprising: a sensor unit for measuring a temperature and an image of a leaser line at an exit; A signal processing unit for signal processing an image to measure an auditory ailment of the outgoing charter line, and a control unit for controlling the position of the sensor unit according to the position of the charcoal measured by the signal processing unit.
  • FIG. 1 is a schematic configuration diagram of an apparatus for monitoring a leaning activity state according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of an azimuth determination according to a temperature change of a charter state monitoring apparatus according to an embodiment of the present invention.
  • FIG. 3 to FIG. 7 are conceptual diagrams showing an anomaly determination according to the image analysis of the apparatus for monitoring the state of the hot springs of the present invention.
  • FIG. 1 is a schematic configuration diagram of an apparatus for monitoring a leaning activity state according to an embodiment of the present invention.
  • an apparatus 100 for monitoring a leaning activity state may include a sensor unit 110, a signal processing unit 120, a controller 130, and a display unit 140.
  • the sensor unit 110 can measure the temperature and the image of the molten iron at the exit port.
  • the sensor unit 110 may include a thermometer 111 for measuring a temperature change of the molten iron at the exit and a high speed camera 112 for measuring an image of molten iron at the exit.
  • the signal processing unit 112 can process the temperature and the image of the hot wire measured by the sensor unit 110 to measure the audibility of the hot wire.
  • the result of the arousal determination can be output to the outside via the display unit 140.
  • the control unit 130 controls the position of the thermometer 111 and the high speed camera 112 of the sensor unit 110 according to the position of the charcoal measured by the signal processing unit 120 to determine the optimum measurement position of the charcoal Tracking can be performed.
  • FIG. 2 is a conceptual diagram of an azimuth determination according to a temperature change of a charter state monitoring apparatus according to an embodiment of the present invention.
  • the signal processing unit 120 of the charter condition monitoring apparatus 100 includes a signal processor 120 for monitoring the charac- teristic of the charcoal measured by the thermometer 111 of the sensor unit 110, It is possible to judge the anomaly based on the temperature change such as the periodic temperature variation and the temperature distribution.
  • Fig. 2 (a) is a temperature graph of the chartered line to be taken out, and Figs. 2 (b), 2 (c) and 2 (d) respectively show an image at the beginning of the exit, an image at the middle of the exit and an image at the end of the exit.
  • FIG. 3 to FIG. 7 are conceptual diagrams showing an anomaly determination according to the image analysis of the apparatus for monitoring the state of the hot springs of the present invention.
  • the signal processing unit 120 of the charter condition monitoring apparatus 100 includes a charger 120, It is possible to judge the saturation of the charcoal based on the image.
  • the signal processing unit 120 sets an area where a hot line extends from the area of the normal exit of the hot line image measured by the high-speed camera 112 of the sensor unit 110, , It is possible to judge the saturation of the charcoal line according to the ratio between the detected charcoal area and the area where the charcoal line is set.
  • an area where a hot wire is spread is set on the basis of a normal exit area, It is possible to judge the saturation of the charcoal according to the ratio between the detected charcoal area and the area where the charcoal is spread. Considering that the gas generated inside the blast furnace is ejected along with the outlet during the outage, the area where the hotline is spread can be set to the upper side of the image based on the normal exit.
  • the signal processing unit 120 may calculate the average and standard deviation of the height of the exit image as in the area A, and judge that the deviation is an avalanche if the deviation is equal to or greater than a preset reference value.
  • the mean and standard deviation of the height may be as shown in Equation 2 below.
  • the signal processing unit 120 may process the image of the measured charcoal to adjust the saturation measurement area to a shape that takes into consideration the boundary line of the polygon or the charcoal.
  • the signal processing unit 120 processes the image of the hotline measured by the sensor unit 110 to obtain the boundary value of the image of the hotline and the background, and obtains the differential value of the obtained boundary value So that it is possible to determine an aural value. It is desirable to calculate the derivative value of the boundary portion value of the upper end of the exit line, considering that the gas generated inside the blast furnace is ejected along with the exit line during the exit.
  • FIG. 5 (a) is an image in which no anomaly occurs
  • FIG. 5 (b) is an image in which an anomaly is generated
  • FIG. 5 (c) is a graph in which an anomaly occurs in the measured image .
  • the signal processing unit 120 processes the image of the hotline measured by the sensor unit 110 to obtain the boundary value of the image of the hotline and the background, And the standard deviation to determine the anatomy. It is desirable to calculate the mean, variance, and standard deviation of the boundary value of the upper end of the exit, taking into account the situation where the gas generated inside the blast furnace is ejected along with the exit during the exit.
  • FIG. 6 (a) is an image of a charcoal
  • FIG. 6 (b) is a graph showing an interval in which an anomaly occurs in the measured image.
  • Equation 1 The calculation of the mean, variance, and standard deviation of the boundary portion values at the upper end of the outgoing line may be the same as in Equation 1 described above.
  • the signal processing unit 120 processes the image of the hotline measured by the sensor unit 110 to obtain the boundary value of the image of the hotline and the background,
  • the averages can be determined by calculating the average.
  • FIG. 7 (a) is an image of a charcoal
  • FIG. 7 (b) is a graph showing an interval in which a sound is generated in the measured image.
  • Equation 3 The calculation of the mean, variance, and standard deviation of the boundary portion values at the upper end of the exit can be as shown in Equation 3 below.
  • the above-described anomaly determination method of Figs. 5 to 7 can detect the boundary of the charcoal irrespective of the position shift of the exit port.
  • At least one determination method or a plurality of determination methods may be selected depending on the circumstances, such as the above-described determination of the anomaly according to the temperature change and the determination of the anomaly according to the image of Figs. 3 to 7, May be selected.
  • monitoring not only the temperature of the molten iron at the blast furnace outlet but also the exhausted condition of the outlet charcoal can be used as an important factor .
  • the beginning and end of the departure are related to the gas in the furnace.
  • the ending of the end of the furnace is an important factor in judging the end of the opening (closing time) It is also an important criterion for the determination of the temperature coherence of the crucible, which is an important factor, and can be utilized for controlling the furnace heat control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Radiation Pyrometers (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

The present invention relates to an apparatus for monitoring an air blowing state of molten iron, capable of monitoring an air blowing state of molten iron tapped out of a blast furnace in real time to determine a situation in the blast furnace. An apparatus for monitoring an air blowing state of molten iron, according to one embodiment of the present invention, comprises: a sensor part for measuring a temperature and an image of molten iron in a tap hole; a signal processing part for signal processing the temperature and the image of the molten iron measured by the sensor part to measure air blowing of the tapped molten iron; and a control part for controlling the position of the sensor part according to the position of the molten iron measured by the signal processing part.

Description

용선 공취 상태 모니터링 장치Charging condition monitoring device
본 발명은 고로 출선구의 용선 공취 상태를 모니터링하는 용선 공취 상태 모니터링 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a leaning condition monitoring apparatus for monitoring a leaning condition of a brick exit.
공취란 고로 내의 용융물 출선말기에 용융물의 레벨이 저하됨에 따라 풍구를 통해 고로 내부로 유입된 열풍과 로내의 코크스와의 반응으로 생성된 충진가스가 용융물과 함께 출선구로 분출되는 현상을 말한다.The aesthetic means the phenomenon that the filling gas generated by the reaction of the hot air introduced into the blast furnace and the coke in the furnace through the tuyere with the melted material is discharged to the outlet port as the level of the melted material decreases at the end of the melted material in the blast furnace.
종래의 공취 예측 방법은 출선 작업중 철봉 및 비트 등으로 출선구를 관통하는 개공작업을 거쳐 용선과 슬래그를 배출하고, 출선완료시점에서 작업자가 공취발생시점을 경험 측에서 판별하기 때문에 그 정확성이 현저히 떨어지는 문제점이 있다.The conventional afore-mentioned predictive method discharges charcoal and slag through a piercing operation through an outlet through an iron bar and a bit during an opening work, and since the operator determines the occurrence time of the anorem at the time of completion of the exit, There is a problem.
이러한 종래 기술에 대해서는, 대한민국 등록특허공보 제10-0347599호 및 일본 등록특허공보 5692109호 등을 참조하여 쉽게 이해할 수 있다.Such conventional techniques can be easily understood with reference to Korean Patent Registration No. 10-0347599 and Japanese Patent Publication No. 5692109, for example.
본 발명의 일 실시예에 따르면, 고로에서 출선되는 용선의 공취 상태를 실시간으로 모니터링하여 고로 노내 상황을 판단할 수 있는 용선 공취 상태 모니터링 장치가 제공된다.According to an embodiment of the present invention, there is provided a charter condition monitoring apparatus capable of monitoring a chartered state of a chartered ship leaving the blast furnace in real time to determine a situation in the furnace.
상술한 본 발명의 과제를 해결하기 위해, 본 발명의 일 실시예에 따른 용선 공취 상태 모니터링 장치는 출선구의 용선의 온도 및 이미지를 측정하는 센서부, 상기 센서부에 의해 측정된 용선의 온도 및 이미지를 신호 처리하여 출선 용선의 공취를 측정하는 신호 처리부, 상기 신호 처리부에 의해 측정된 용선 위치에 따라 상기 센서부의 위치를 제어하는 제어부를 포함할 수 있다. According to another aspect of the present invention, there is provided an apparatus for monitoring a leaning condition of a leaning vessel, the apparatus comprising: a sensor unit for measuring a temperature and an image of a leaser line at an exit; A signal processing unit for signal processing an image to measure an auditory ailment of the outgoing charter line, and a control unit for controlling the position of the sensor unit according to the position of the charcoal measured by the signal processing unit.
본 발명의 일 실시예에 따르면, 고로 노내 상황을 판단하고, 노황을 안정화하여 생산성 향상 및 환원제비를 절감할 수 있는 효과가 있다.According to one embodiment of the present invention, it is possible to determine the situation in the blast furnace and stabilize the aging to improve the productivity and reduce the reduction ratio.
도 1은 본 발명의 일 실시예에 따른 용선 공취 상태 모니터링 장치의 개략적인 구성도이다.FIG. 1 is a schematic configuration diagram of an apparatus for monitoring a leaning activity state according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 용선 공취 상태 모니터링 장치의 온도 변화에 따른 공취 판정 개념도이다.FIG. 2 is a conceptual diagram of an azimuth determination according to a temperature change of a charter state monitoring apparatus according to an embodiment of the present invention. FIG.
도 3 내지 도 7은 본 발명의 용선 공취 상태 모니터링 장치의 영상 분석에 따른 공취 판정 개념도이다.FIG. 3 to FIG. 7 are conceptual diagrams showing an anomaly determination according to the image analysis of the apparatus for monitoring the state of the hot springs of the present invention.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, in order that those skilled in the art can easily carry out the present invention.
도 1은 본 발명의 일 실시예에 따른 용선 공취 상태 모니터링 장치의 개략적인 구성도이다.FIG. 1 is a schematic configuration diagram of an apparatus for monitoring a leaning activity state according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 용선 공취 상태 모니터링 장치(100)는 센서부(110), 신호 처리부(120), 제어부(130) 및 표시부(140)를 포함할 수 있다.Referring to FIG. 1, an apparatus 100 for monitoring a leaning activity state according to an exemplary embodiment of the present invention may include a sensor unit 110, a signal processing unit 120, a controller 130, and a display unit 140.
센서부(110)는 출선구의 용선의 온도 및 이미지를 측정할 수 있다.The sensor unit 110 can measure the temperature and the image of the molten iron at the exit port.
센서부(110)는 출선구의 용선의 온도 변화를 측정하는 온도계(111)와, 출선구의 용선의 이미지를 측정하는 고속 카메라(112)를 포함할 수 있다.The sensor unit 110 may include a thermometer 111 for measuring a temperature change of the molten iron at the exit and a high speed camera 112 for measuring an image of molten iron at the exit.
신호 처리부(112)는 센서부(110)에 의해 측정된 용선의 온도 및 이미지를 신호 처리하여 출선 용선의 공취를 측정할 수 있다.The signal processing unit 112 can process the temperature and the image of the hot wire measured by the sensor unit 110 to measure the audibility of the hot wire.
공취 판정의 결과를 표시부(140)를 통해 외부에 출력될 수 있다.The result of the arousal determination can be output to the outside via the display unit 140. [
제어부(130)는 신호 처리부(120)에 의해 측정된 용선 위치에 따라 센서부(110)의 온도계(111) 및 고속 카메라(112)의 위치를 제어하여, 고로에서 출선되는 용선의 최적 측정 위치를 트랙킹(Tracking)할 수 있다.The control unit 130 controls the position of the thermometer 111 and the high speed camera 112 of the sensor unit 110 according to the position of the charcoal measured by the signal processing unit 120 to determine the optimum measurement position of the charcoal Tracking can be performed.
도 2는 본 발명의 일 실시예에 따른 용선 공취 상태 모니터링 장치의 온도 변화에 따른 공취 판정 개념도이다.FIG. 2 is a conceptual diagram of an azimuth determination according to a temperature change of a charter state monitoring apparatus according to an embodiment of the present invention. FIG.
도 1과 함께, 도 2를 참조하면, 본 발명의 일 실시예에 따른 용선 공취 상태 모니터링 장치(100)의 신호 처리부(120)는 센서부(110)의 온도계(111)에 의해 측정된 용선의 주기적인 온도 변동, 온도 분포와 같은 온도 변화에 기초하여 공취를 판정할 수 있다.2, the signal processing unit 120 of the charter condition monitoring apparatus 100 according to an embodiment of the present invention includes a signal processor 120 for monitoring the charac- teristic of the charcoal measured by the thermometer 111 of the sensor unit 110, It is possible to judge the anomaly based on the temperature change such as the periodic temperature variation and the temperature distribution.
도 2의 (a)는 출선되는 용선의 온도 그래프이고, 도 2의 (b), (c) 및 (d)는 각각 출선 초기의 이미지, 출선 중기의 이미지 및 출선 말기의 이미지를 나타낸다.Fig. 2 (a) is a temperature graph of the chartered line to be taken out, and Figs. 2 (b), 2 (c) and 2 (d) respectively show an image at the beginning of the exit, an image at the middle of the exit and an image at the end of the exit.
도 2의 (b) 및 (d)의 출선 초기 및 출선 말기의 이미지와 도 2의 (a)의 이때의 온도 그래프를 보면 출선 초기 및 말기에 온도 변화가 급격한 것을 볼 수 있고, 이때의 이미지 또한 공취가 발생되는 것을 볼 수 있다. 2 (b) and 2 (d) and the temperature graph at this time in FIG. 2 (a), it can be seen that the temperature change is abrupt at the beginning and the end of the departure, You can see that the ailment occurs.
도 3 내지 도 7은 본 발명의 용선 공취 상태 모니터링 장치의 영상 분석에 따른 공취 판정 개념도이다.FIG. 3 to FIG. 7 are conceptual diagrams showing an anomaly determination according to the image analysis of the apparatus for monitoring the state of the hot springs of the present invention.
도 1과 함께, 도 3을 참조하면, 본 발명의 일 실시예에 따른 용선 공취 상태 모니터링 장치(100)의 신호 처리부(120)는 센서부(110)의 고속 카메라(112)에 의해 측정된 용선 이미지에 기초하여 용선의 공취를 판정할 수 있다.Referring to FIG. 3, the signal processing unit 120 of the charter condition monitoring apparatus 100 according to an exemplary embodiment of the present invention includes a charger 120, It is possible to judge the saturation of the charcoal based on the image.
즉, 신호 처리부(120)는 센서부(110)의 고속 카메라(112)에 의해 측정된 용선 이미지 중 정상 출선의 영역을 기준으로 용선이 퍼지는 영역을 설정하고, 설정된 용선이 퍼지는 영역에서 용선이 검출되면, 검출된 용선 영역과 설정된 용선이 퍼지는 영역 간의 비율에 따라 용선의 공취를 판정할 수 있다.That is, the signal processing unit 120 sets an area where a hot line extends from the area of the normal exit of the hot line image measured by the high-speed camera 112 of the sensor unit 110, , It is possible to judge the saturation of the charcoal line according to the ratio between the detected charcoal area and the area where the charcoal line is set.
보다 상세하게는 도 3의 (a) 및 (b)에서 영역 B와 같이 정상 출선의 영역을 기준으로 용선이 퍼지는 영역을 설정하고, 용선이 퍼지는 영역인 영역 B에서 용선이 검출된 영역 A와 같이 검출된 용선 영역과 설정된 용선이 퍼지는 영역 간의 비율에 따라 용선의 공취를 판정할 수 있다. 공취가 출선 중 고로 내부에서 발생한 가스가 출선과 함께 분출되는 상황임을 고려하면, 용선이 퍼지는 영역은 정상 출선을 기준으로 이미지 중 상측으로 영역을 설정할 수 있다. More specifically, as shown in FIG. 3 (a) and FIG. 3 (b), an area where a hot wire is spread is set on the basis of a normal exit area, It is possible to judge the saturation of the charcoal according to the ratio between the detected charcoal area and the area where the charcoal is spread. Considering that the gas generated inside the blast furnace is ejected along with the outlet during the outage, the area where the hotline is spread can be set to the upper side of the image based on the normal exit.
상술한 영역간 비율은 하기의 수식1과 같을 수 있다.The above-described inter-region ratios may be as shown in the following equation (1).
(수식1)(Equation 1)
Figure PCTKR2018016547-appb-I000001
Figure PCTKR2018016547-appb-I000001
한편, 신호 처리부(120)는 영역 A와 같이 출선 이미지의 높이의 평균 및 표준 편차를 계산하여 표분 편차가 사전에 설정된 기준값 이상이면 공취로 판정할 수 있다.On the other hand, the signal processing unit 120 may calculate the average and standard deviation of the height of the exit image as in the area A, and judge that the deviation is an avalanche if the deviation is equal to or greater than a preset reference value.
높이의 평균 및 표준 편차는 하기의 수식 2와 같을 수 있다.The mean and standard deviation of the height may be as shown in Equation 2 below.
(수식2)(Equation 2)
Figure PCTKR2018016547-appb-I000002
Figure PCTKR2018016547-appb-I000002
Figure PCTKR2018016547-appb-I000003
Figure PCTKR2018016547-appb-I000003
Figure PCTKR2018016547-appb-I000004
Figure PCTKR2018016547-appb-I000004
상술한 바와 같이 이미지에 기초하여 공취를 판정하는 방법은 용선이 퍼지는 영역을 설정하여 영역 내에서 용선이 검출되면 공취로 판정하므로 그 공취 판정이 용이할 수 있으나, 출선구의 위치가 상하로 이동하는 경우 공취 검출 영역 설정이 불가능한 경우가 발생할 수 있다.As described above, in the method of determining the audibility on the basis of the image, it is easy to determine the saturation by determining the area where the hot wire is spread out, and if the hot wire is detected in the area, It may happen that the setting of the audible detection area is impossible.
도 4의 (a) 및 (b)를 참조하면, 신호 처리부(120)는 측정된 용선의 이미지를 신호처리하여 공취 측정 영역을 다각형 또는 용선의 경계선을 고려한 형상으로 조정할 수 있다.Referring to FIGS. 4A and 4B, the signal processing unit 120 may process the image of the measured charcoal to adjust the saturation measurement area to a shape that takes into consideration the boundary line of the polygon or the charcoal.
도 5를 참조하면, 신호 처리부(120)는 센서부(110)에 의해 측정된 용선의 이미지를 신호처리하여 용선의 이미지와 배경의 경계부분 값을 획득하고, 획득한 경계 부분값의 미분값을 계산하여 공취를 판정할 수 있다. 공취가 출선 중 고로 내부에서 발생한 가스가 출선과 함께 분출되는 상황임을 고려하면, 출선 상단부의 경계 부분값의 미분값을 계산하는 것이 바람직할 수 있다.Referring to FIG. 5, the signal processing unit 120 processes the image of the hotline measured by the sensor unit 110 to obtain the boundary value of the image of the hotline and the background, and obtains the differential value of the obtained boundary value So that it is possible to determine an aural value. It is desirable to calculate the derivative value of the boundary portion value of the upper end of the exit line, considering that the gas generated inside the blast furnace is ejected along with the exit line during the exit.
도 5의 (a)는 공취가 미발생된 이미지이며, 도 5의 (b)는 공취가 발생된 이미지이고, 도 5의 (c)는 측정된 이미지에서 공취가 발생된 구간을 그래프로 나타내었다.5 (a) is an image in which no anomaly occurs, FIG. 5 (b) is an image in which an anomaly is generated, and FIG. 5 (c) is a graph in which an anomaly occurs in the measured image .
도 6을 참조하면, 신호 처리부(120)는 센서부(110)에 의해 측정된 용선의 이미지를 신호처리하여 용선의 이미지와 배경의 경계부분 값을 획득하고, 획득한 경계 부분값의 평균, 분산 및 표준 편차를 계산하여 공취를 판정할 수 있다. 공취가 출선 중 고로 내부에서 발생한 가스가 출선과 함께 분출되는 상황임을 고려하면, 출선 상단부의 경계 부분값의 평균, 분산 및 표준 편차를 계산하는 것이 바람직할 수 있다.Referring to FIG. 6, the signal processing unit 120 processes the image of the hotline measured by the sensor unit 110 to obtain the boundary value of the image of the hotline and the background, And the standard deviation to determine the anatomy. It is desirable to calculate the mean, variance, and standard deviation of the boundary value of the upper end of the exit, taking into account the situation where the gas generated inside the blast furnace is ejected along with the exit during the exit.
도 6의 (a)는 용선의 이미지이며, 도 6의 (b)는 측정된 이미지에서 공취가 발생된 구간을 그래프로 나타내었다.FIG. 6 (a) is an image of a charcoal, and FIG. 6 (b) is a graph showing an interval in which an anomaly occurs in the measured image.
출선 상단부의 경계 부분값의 평균, 분산 및 표준 편차의 계산은 상술한 수식 1과 같을 수 있다.The calculation of the mean, variance, and standard deviation of the boundary portion values at the upper end of the outgoing line may be the same as in Equation 1 described above.
도 7을 참조하면, 신호 처리부(120)는 센서부(110)에 의해 측정된 용선의 이미지를 신호처리하여 용선의 이미지와 배경의 경계부분 값을 획득하고, 획득한 경계 부분값의 미분값의 평균을 계산하여 공취를 판정할 수 있다. 마찬가지로, 공취가 출선 중 고로 내부에서 발생한 가스가 출선과 함께 분출되는 상황임을 고려하면, 출선 상단부의 경계 부분값의 미분값의 평균을 계산하는 것이 바람직할 수 있다.Referring to FIG. 7, the signal processing unit 120 processes the image of the hotline measured by the sensor unit 110 to obtain the boundary value of the image of the hotline and the background, The averages can be determined by calculating the average. Likewise, it may be desirable to calculate the average of the derivative values of the boundary portion values of the exit upper end, taking into account the situation where gas generated inside the blast furnace during ejection is ejected along with the exit.
도 7의 (a)는 용선의 이미지이며, 도 7의 (b)는 측정된 이미지에서 공취가 발생된 구간을 그래프로 나타내었다.FIG. 7 (a) is an image of a charcoal, and FIG. 7 (b) is a graph showing an interval in which a sound is generated in the measured image.
출선 상단부의 경계 부분값의 평균, 분산 및 표준 편차의 계산은 하기의 수식3과 같을 수 있다.The calculation of the mean, variance, and standard deviation of the boundary portion values at the upper end of the exit can be as shown in Equation 3 below.
(수식3)(Equation 3)
Figure PCTKR2018016547-appb-I000005
Figure PCTKR2018016547-appb-I000005
Figure PCTKR2018016547-appb-I000006
Figure PCTKR2018016547-appb-I000006
Figure PCTKR2018016547-appb-I000007
Figure PCTKR2018016547-appb-I000007
상술한 도 5 내지 도 7의 공취 판정 방법은 출선구의 위치 이동과 무관하게 용선의 경계부 검출이 가능할 수 있다.The above-described anomaly determination method of Figs. 5 to 7 can detect the boundary of the charcoal irrespective of the position shift of the exit port.
상술한 도 2의 온도 변화에 따른 공취 판정과 도 3 내지 도 7의 영상에 따른 공취 판정을 각각은 상황에 따라 적어도 하나의 판정 방법 또는 복수의 판정 방법이 선택될 수 있고, 전체의 판정 방법이 선택될 수도 있다. At least one determination method or a plurality of determination methods may be selected depending on the circumstances, such as the above-described determination of the anomaly according to the temperature change and the determination of the anomaly according to the image of Figs. 3 to 7, May be selected.
상술한 바와 같이, 본 발명에 따르면, 고로 노황의 안정화를 위해 고로 출선구의 용선 온도 뿐만아니라 출선 용선의 공취 상태를 실시간으로 모니터링하면 고로 노내 상황을 판단하고 노황을 안정화 할 수 있는 중요한 인자로 활용될 수 있다.As described above, according to the present invention, in order to stabilize the blast furnace sulfur content, monitoring not only the temperature of the molten iron at the blast furnace outlet but also the exhausted condition of the outlet charcoal can be used as an important factor .
또한, 출선 초기와 출선 말기의 공취는 노내 가스 상태와 관련이 있고 특히 출선 말기의 공취는 출선 종료 시점(개공 폐쇠 시점) 판단의 중요한 인자가 되며, 고로 노황 안정화 및 조업 안정화를 위한 고로 노열제어의 중요한 인자인 실시간 용선온도 정합성 판단에도 중요한 판단 기준이 되어 고로 노열 제어에 활용될 수 있다.In addition, the beginning and end of the departure are related to the gas in the furnace. Especially, the ending of the end of the furnace is an important factor in judging the end of the opening (closing time) It is also an important criterion for the determination of the temperature coherence of the crucible, which is an important factor, and can be utilized for controlling the furnace heat control.
더하여, 고로 노황 안정화에 의한 생산성 향상, 환원제비를 절감할 수 있다.In addition, it is possible to improve the productivity and reduce the reduction ratio by stabilization of the bulan sulfur.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고 후술하는 특허청구범위에 의해 한정되며, 본 발명의 구성은 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 그 구성을 다양하게 변경 및 개조할 수 있다는 것을 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 쉽게 알 수 있다.It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not intended to limit the invention to the particular forms disclosed. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (8)

  1. 출선구의 용선의 온도 및 이미지를 측정하는 센서부;A sensor unit for measuring the temperature and the image of the molten iron of the outlet;
    상기 센서부에 의해 측정된 용선의 온도 및 이미지를 신호 처리하여 출선 용선의 공취를 측정하는 신호 처리부; 및A signal processing unit for signal processing the temperature and the image of the molten iron measured by the sensor unit to measure the anomaly of the ironing board; And
    상기 신호 처리부에 의해 측정된 용선 위치에 따라 상기 센서부의 위치를 제어하는 제어부And a control unit for controlling the position of the sensor unit according to the position of the charcoal measured by the signal processing unit
    를 포함하는 용선 공취 상태 모니터링 장치.And a charger for monitoring the charac- terized state.
  2. 제1항에 있어서,The method according to claim 1,
    상기 신호 처리부는 상기 센서부에 의해 측정된 용선의 온도의 변동을 이용하여 출선 용선의 공취를 측정하는 용선 공취 상태 모니터링 장치.Wherein the signal processing unit measures the saturation of the chartering line using the variation of the temperature of the charter line measured by the sensor unit.
  3. 제1항에 있어서,The method according to claim 1,
    상기 신호 처리부는 상기 센서부에 의해 측정된 용선의 이미지를 신호처리하여 정상 출선 대비 사전에 설정된 영역에 용선이 차지하는 비율에 따라 공취를 판정하는 용선 공취 상태 모니터링 장치.Wherein the signal processing unit processes the image of the charcoal measured by the sensor unit and judges an audible according to a ratio occupied by a charcoal in a predetermined area compared to a normal departure.
  4. 제3항에 있어서,The method of claim 3,
    상기 신호 처리부는 상기 센서부에 의해 측정된 용선의 이미지를 신호처리하여 이미지 전체 면적 대비 출선 영상 영역을 설정하고, 상기 출선 영상 영역의 높이의 평균 및 표준 편차를 계산하여 상기 표준 편차가 사전에 설정된 기준 값 이상이면 공취로 판단하는 용선 공취 상태 모니터링 장치.Wherein the signal processing unit processes an image of a hotline measured by the sensor unit to set an exit image area to an entire image area and calculates an average and a standard deviation of the height of the exit image area, And judges that it is an unsatisfied value if the value is equal to or greater than a reference value.
  5. 제3항에 있어서,The method of claim 3,
    상기 신호 처리부는 상기 센서부에 의해 측정된 용선의 이미지를 신호처리하여 공취 측정 영역을 다각형 또는 용선의 경계선을 고려한 형상으로 조정하는 용선 공취 상태 모니터링 장치.Wherein the signal processing unit processes the image of the charcoal measured by the sensor unit to adjust the saturation measurement area to a shape that takes into account the boundary of the polygon or the charcoal.
  6. 제3항에 있어서,The method of claim 3,
    상기 신호 처리부는 상기 센서부에 의해 측정된 용선의 이미지를 신호처리하여 용선의 이미지와 배경의 경계부분 값을 획득하고, 획득한 경계 부분값의 미분값을 계산하여 공취를 판정하는 용선 공취 상태 모니터링 장치.Wherein the signal processing unit processes the image of the charcoal measured by the sensor unit to obtain a boundary part value of the image of the charcoal and the background, calculates a differential value of the obtained boundary part value, Device.
  7. 제3항에 있어서,The method of claim 3,
    상기 신호 처리부는 상기 센서부에 의해 측정된 용선의 이미지를 신호처리하여 용선의 이미지와 배경의 경계부분 값을 획득하고, 획득한 경계 부분값의 평균, 분산 및 표준 편차를 계산하여 공취를 판정하는 용선 공취 상태 모니터링 장치.The signal processing unit processes the image of the charcoal measured by the sensor unit to obtain the boundary part value of the image of the charcoal and the background, and calculates the average, variance and standard deviation of the obtained boundary part value to determine the audible Charging condition monitoring device.
  8. 제3항에 있어서,The method of claim 3,
    상기 신호 처리부는 상기 센서부에 의해 측정된 용선의 이미지를 신호처리하여 용선의 이미지와 배경의 경계부분 값을 획득하고, 획득한 경계 부분값의 미분값의 평균을 계산하여 공취를 판정하는 용선 공취 상태 모니터링 장치.Wherein the signal processing unit processes the image of the charcoal measured by the sensor unit to obtain a boundary part value of the image of the charcoal and the background, calculates a mean value of the derivative value of the obtained boundary part value, State monitoring device.
PCT/KR2018/016547 2017-12-22 2018-12-21 Apparatus for monitoring air blowing state of molten iron WO2019125088A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170178479A KR102065222B1 (en) 2017-12-22 2017-12-22 Monitoring apparatus for splash status of molten steel
KR10-2017-0178479 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019125088A1 true WO2019125088A1 (en) 2019-06-27

Family

ID=66993969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016547 WO2019125088A1 (en) 2017-12-22 2018-12-21 Apparatus for monitoring air blowing state of molten iron

Country Status (2)

Country Link
KR (1) KR102065222B1 (en)
WO (1) WO2019125088A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612765A (en) * 2022-10-14 2023-01-17 合肥视展光电科技有限公司 Real-time detection control method and system for state of blast furnace taphole

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268425A (en) * 1994-03-30 1995-10-17 Nippon Steel Corp Hot repair device for large trough of blast furnace
KR19990042422A (en) * 1997-11-26 1999-06-15 이구택 Detecting point of furnace and its method
KR100212025B1 (en) * 1995-10-23 1999-08-02 이구택 Method for operating of blast furnace
KR20120044751A (en) * 2010-10-28 2012-05-08 재단법인 포항산업과학연구원 Method and apparatus for monitoring an operation of iron & steel-making furnace
KR101412550B1 (en) * 2012-07-31 2014-06-26 현대제철 주식회사 Method for controlling skimming of slag

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692109A (en) 1979-12-27 1981-07-25 Sumitomo Electric Ind Ltd Manufacture of alpha-type silicon nitride powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268425A (en) * 1994-03-30 1995-10-17 Nippon Steel Corp Hot repair device for large trough of blast furnace
KR100212025B1 (en) * 1995-10-23 1999-08-02 이구택 Method for operating of blast furnace
KR19990042422A (en) * 1997-11-26 1999-06-15 이구택 Detecting point of furnace and its method
KR20120044751A (en) * 2010-10-28 2012-05-08 재단법인 포항산업과학연구원 Method and apparatus for monitoring an operation of iron & steel-making furnace
KR101412550B1 (en) * 2012-07-31 2014-06-26 현대제철 주식회사 Method for controlling skimming of slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612765A (en) * 2022-10-14 2023-01-17 合肥视展光电科技有限公司 Real-time detection control method and system for state of blast furnace taphole

Also Published As

Publication number Publication date
KR20190076573A (en) 2019-07-02
KR102065222B1 (en) 2020-01-10

Similar Documents

Publication Publication Date Title
WO2014017714A1 (en) Apparatus for predicting slab quality and method for same
WO2019125088A1 (en) Apparatus for monitoring air blowing state of molten iron
WO2019124931A1 (en) Furnace condition control apparatus and method
RU2630111C2 (en) Method of operation of a vacuum fuel unit and the vacuum fuel unit operated by this method
WO2019132495A1 (en) Device for monitoring tapping amount of molten iron
US4229412A (en) Apparatus for the determination of bond forms of gases
WO2018097499A1 (en) Device and method for measuring surface level of molten metal
US4749171A (en) Method and apparatus for measuring slag-foam conditions within a converter
EP1486271B1 (en) A method and a device for detecting slag
US7639150B2 (en) Method and a device for detecting slag
CN114838830A (en) Method, device and system for detecting temperature of iron-donating process section
KR20090067891A (en) Apparatus for detecting level of molteniron
US4149877A (en) Controlling pig iron refining
CA2907867C (en) Lance and method for the determination of reaction data of a reaction sequence
JPS6362812A (en) Detector for slag foaming in converter
KR20050111422A (en) Complex probe for level measurement of melting iron
WO2020096157A1 (en) Device for controlling end position of oxygen lance in electric furnace
CN112899432A (en) Converter smelting method based on flue gas analysis
KR20220120054A (en) Monitoring device for slag volume in TLC
JPS5825413A (en) Monitoring method for slag formation in refining furnace
JPH06248321A (en) Method for predicting slopping in refining furnace
JPS6210282B2 (en)
JPH02149610A (en) Detection of slopping in molten iron treating furnace
JPH01215918A (en) Method for detecting slag foaming in converter
JPS63203708A (en) Blast furnace operation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890775

Country of ref document: EP

Kind code of ref document: A1