WO2019124973A1 - Protein conjugate and fusion protein which comprise albumin and lysosomal enzyme - Google Patents

Protein conjugate and fusion protein which comprise albumin and lysosomal enzyme Download PDF

Info

Publication number
WO2019124973A1
WO2019124973A1 PCT/KR2018/016240 KR2018016240W WO2019124973A1 WO 2019124973 A1 WO2019124973 A1 WO 2019124973A1 KR 2018016240 W KR2018016240 W KR 2018016240W WO 2019124973 A1 WO2019124973 A1 WO 2019124973A1
Authority
WO
WIPO (PCT)
Prior art keywords
albumin
ids
protein
protein conjugate
fusion protein
Prior art date
Application number
PCT/KR2018/016240
Other languages
French (fr)
Korean (ko)
Inventor
김성근
강관엽
김태윤
유창선
박나영
이재현
정명은
류재환
김성미
Original Assignee
재단법인 목암생명과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 목암생명과학연구소 filed Critical 재단법인 목암생명과학연구소
Publication of WO2019124973A1 publication Critical patent/WO2019124973A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)

Definitions

  • the present invention relates to protein conjugates and fusion proteins including albumin and lysosomal enzymes. BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]
  • the present invention relates to protein conjugates and fusion proteins comprising albumin and a lysosomal enzyme. More particularly, the invention relates to a protein gal conjugate or fusion protein comprising albumin and an euduronate-2-sulfatase. Background technology
  • GAG glycosaminoglycan
  • IDS iduronate-2-sulfatase
  • LSD Lysosomal storage diseases
  • Hunter syndrome is a recessive hereditary disease caused by abnormalities of the sex chromosome (Xq28.1 locus), which is reported to occur at a frequency of approximately 1 in every 200,000 people.
  • Shire's Elaprase (R) was first approved as an alternative therapy (ERT).
  • Hunterase® was developed in the world's second-largest Green Cross.
  • the IDS protein is diluted in physiological saline at a dose of 0.5 mg / kg and infused for 2 to 3 hours.
  • it is costly and time-consuming to patients and caregivers. Therefore, if the number of drug injections is reduced or a hypodermic injection is developed,
  • albumin has a long half-life characteristic similar to that of an antibody. It is also known to have relatively low immunogenicity (immiinogenicity) 2019/124973 1 (1 ⁇ ⁇ 2018/016240). In the current market (CSL's Idelvion®, Eperzan®, etc.) products that integrate with albumin in the development of medicines are being marketed, and albumin is bound to the drug as a delirium vehicle (Cel lgene abraxane ®) is currently in use.
  • the present inventors intend to develop a next-generation enzyme-based therapeutic agent capable of subcutaneous administration and having an extended administration period (Biweekly or Monthly).
  • the inventors of the present invention have conducted studies to develop a therapeutic agent for Hunter's syndrome with improved persistence in the body. As a result, the present inventors have found that a protein conjugate (albuminated IDS, ALBIDS) or a fusion protein (albuminated IDS, ALB IDS fusion) Confirming that the persistence of the body is improved, thereby completing the present invention.
  • a protein conjugate albuminated IDS, ALBIDS
  • a fusion protein (albuminated IDS, ALB IDS fusion) Confirming that the persistence of the body is improved, thereby completing the present invention.
  • One aspect of the present invention provides a protein conjugate having the following general formula (1) or general formula (2).
  • Ai is an albumin or albumin derivative (derivat ives);
  • 3 ⁇ 4 is a lysosomal enzyme.
  • Another aspect of the present invention provides a pharmaceutical composition for preventing or treating Hunter's syndrome comprising the protein conjugate as an active ingredient.
  • Another aspect of the present invention provides a method for preventing or treating Hunter's syndrome comprising administering the protein conjugate to a subject.
  • Another aspect of the present invention provides an expression vector comprising the polynucleotide.
  • Another aspect of the present invention provides a transformant transformant into which the above expression vector has been introduced and transformed.
  • Another aspect of the present invention is a method for culturing a transformant, comprising culturing the transformant to obtain a culture; And recovering the fusion protein from the culture.
  • Another aspect of the present invention provides a pharmaceutical composition for preventing or treating Hunter's syndrome comprising the fusion protein as an active ingredient.
  • Yet another aspect of the present invention provides a method of preventing or treating Hunter's syndrome comprising administering the fusion protein to a subject.
  • the albumin-bound protein conjugate or fusion protein according to the present invention has a long persistence in the body and can prolong the administration period of the therapeutic agent currently used.
  • the protein conjugate or fusion protein was developed as a subcutaneous injectable formulation, and glycosaminoglycan 1 (: 033 ) 110 1 3 11 accumulated in the urine and tissues can be efficiently reduced through subcutaneous administration . Therefore, the protein conjugate or fusion protein of albumin and first order fusion of the present invention can be usefully used as a treatment agent for lysosomal accumulation diseases.
  • FIG. 1 is a diagram showing a protein conjugate and a fusion protein which are combined with a silver-binding albumin and a first-order fusion,
  • FIG. 2 is a schematic diagram showing a process for preparing a protein conjugate having a 1-mer structure with recombinant albumin.
  • FIG. 3 is a graph showing the activity of a protein conjugate (monovalent) bound to silver-binding albumin.
  • FIG. 4 is an analysis of the protein conjugate bound to recombinant albumin and monovalent protein.
  • FIG. 5 is a graphical representation of a functional group in which a protein conjugate or fusion protein bound to recombinant albumin is increased in half-life by the receptor.
  • FIG. 6 is a graph showing the concentration of mouse 105 in blood after administration of a protein conjugate conjugated with recombinant albumin in a mouse.
  • FIG. 7 is a cross- And the recombinant albumin And the molecular weight of the coupled protein conjugate is measured.
  • Figure 9 is a graph showing the effect of recombinant human serum albumin or recombinant mouse serum albumin
  • FIG. 2 is a graph showing the content of 1-amino acid that is absorbed into a cell of a mouse skin fibroblast treated with a conjugated protein conjugate.
  • FIG. 10 is a graph showing the content of intracellularly absorbed 1 after treating a skin fibroblast of a patient suffering from Hunter's syndrome with a protein conjugate conjugated with recombinant human serum albumin or mouse serum albumin.
  • FIG. 11 shows the results of the administration of 1 well or conjugate of recombinant albumin and 1 order to iduronate-2-sulfatase knockout mouse 0 (0) or normal mouse at week intervals, followed by 25 days Urine glycosaminoglycans (for example, 0331 110 , 1 3 11, and urine excretion amount
  • FIG. 12 shows a graph showing the results of immunohistochemical analysis after one week has elapsed after administering a protein conjugate bound unilaterally to recombinant albumin or ichiyoshi firstly to iduronate-2-sulfatase knockout mouse (1) or normal mouse , And the activity of one function in the liver of each mouse.
  • FIG. 13 shows the results of immunohistochemical staining of the mouse kidney of each mouse when one week was elapsed after administration of a protein conjugate in which 1 or recombinant albumin and 1 protein were bound to normal mice or dyrupate-2-sulfatase knockout mouse 1 This is a comparative analysis of the activity.
  • FIG. 15 is a diagram showing an animal experiment schedule using this duroate-2-sulfatase knockout mouse for confirming the amount of GAG released into the urine when the recombinant albumin-IDS-conjugated protein conjugate is administered every two weeks .
  • FIG. 16 is a graph showing changes in creatinine released into the urine after administration of IDU or recombinant albumin and IDS-conjugated protein conjugate to iduronate-2-sulfatase knockout mouse (K0) (G GAG / g creatinine) corrected for the amount of the GAG.
  • FIG. 17 is a diagram illustrating an animal experiment schedule using the duroate-2-sulfatase knockout mouse to confirm the amount of GAG accumulated in each organ when the protein conjugate of the combination of albumin and IDS is administered every two weeks.
  • FIG. 18 is a graph showing the effect of the IDS or recombinant albumin-IDS-conjugated protein conjugate on the euduronate-2-sulfatase knockout mouse (K0) or normal mouse (1 or 2 weeks) And the accumulated amount of GAG and FGF after liver was sacrificed.
  • FIG. 19 is a graph showing the results of immunohistochemical staining of IDU-conjugated albumin and IDS-conjugated protein conjugate to iduronate-2-sulfatase knockout mouse (K0) or normal mouse (WT) In which the mouse was sacrificed and kidney was collected and the accumulated amount of GAG total protein was measured.
  • FIG. 20 shows the results of immunohistochemical staining of IDU or recombinant albumin and protein conjugate conjugated with IDS to iduronate-2-sulfatase knockout mouse (K0) or normal mouse (WT)
  • FIG. 2 is a graph showing the amount of accumulated GAG and FGF after collecting the lungs at the sacrifice of a mouse.
  • FIG. 21 shows an animal experiment schedule using this duroate-2-sulfatase knockout mouse to confirm the amount of GAG released in the small intestine or the amount of GAG accumulated in each organ upon single administration of the protein conjugate conjugated with the recombinant albumin and IDS
  • FIG. 22 is a graph showing the amount of GAG in the urine when a single dose of recombinant albumin and IDS-conjugated protein conjugate is administered at a dose of 1 rag / kg.
  • Figure 23 shows that when a single dose of IDS is administered at a dose of 1 mg / kg, 2019/124973 1: (1 1 2018/016240).
  • FIG. 26 is a graph showing the results of immunohistochemical staining for durotonate-2-sulfatase knockout mouse
  • FIG. 1 A first figure.
  • FIG. 27 shows the results of repeated administration of the protein conjugate of the combination of albumin and 1-mer.
  • Fig. 28 is a graph showing the relationship between recombinant albumin and 1-mer protein binding at 1 /
  • FIG. 32 shows the results of a protein binding assay in which a recombinant albumin and a first order fusion protein
  • FIG. 37 is a graph showing the presence or absence of ADA (antidrug antibody) production by repeated administration of recombinant albumin and IDS-conjugated protein conjugate.
  • FIG. 38 is a diagram showing six kinds of fusion proteins in which recombinant albumin and IDS are combined.
  • 39 is a diagram showing a process of purifying and separating six types of fusion proteins in which recombinant albumin and IDS are bound.
  • 40 is an S-PAGE analysis of six kinds of fusion proteins in which IDS and recombinant albumin are bound to IDS.
  • FIG. 41 is a view showing Western blotting using six anti-IDS antibodies or anti-human serum recombinant albumin antibodies against six kinds of IDS-conjugated fusion proteins with IDS and recombinant albumin. Best Mode for Carrying Out the Invention
  • One aspect of the present invention provides a protein conjugate having the following general formula (1) or general formula (2).
  • Ai is an albumin or albumin derivative (derivat ives);
  • Xi is a lysosomal enzyme.
  • the lysosomal enzyme may be selected from the group consisting of iduronate-2-sul datase (IDS), beta-gal actosidase, Galactose-6-sulphatase, Beta-glucuronidase, N-acetylgalactosamine-6 sul datase, N-acetylgalactosamine- Glucocerebrosidase, alpha-galactosidase A, alpha-L-iduronidase (alpha-L- iduronidase, Alpha-N-acetylglucosaminidase Heparai-alpha-glucosaminide, N-acetyl transferase, N-acetyl N-acetylglucosamine 6- sul datase, hyaluronidase, and the like.
  • the lysosomal enzyme may be the duroate 2-sulfatase.
  • the IDS is an enzyme involved in the degradation of heparan sulfate and dermatan sulfate, which can lead to Hunter's syndrome or type 2 mucosal saccharification upon IDS deficiency.
  • the IDS may have the amino acid sequence of SEQ ID NO: 2 and may have an amino acid sequence having 95%, 96%, 97%, 98% or 99% homology with SEQ ID NO: 2.
  • the albumin may be serum albumin or recombinant albumin.
  • the serum albumin is albumin in the plasma, accounting for more than 50% of plasma proteins.
  • serum albumin is produced in the liver and is involved in the transport of water or metabolites in tissues. Specifically, serum albumin plays an important role in controlling blood volume by maintaining colloid osmotic pressure.
  • serum albumin contains some drugs such as water-soluble hormones, bile salts, unconjugated bilirubin, free fatty acids (apoprotein), calcium, ions (transferrin) and warfarin, .
  • albumin is naturally mutated frequently, and there are 79 albumin mutants found so far [Hum Mutat. 2008 Aug; 29 (8): 1007-16).
  • competition between drugs for the albumin binding site increases the free fraction of one of the drugs, thereby affecting drug efficacy, leading to drug interactions.
  • the serum albumin may be human serum albumin (HSA) or mouse serum albumin, but is not limited thereto.
  • the albumin may include an amino acid represented by SEQ ID NO: 1.
  • the albumin derivative may have 90% or more homology with the amino acid sequence of SEQ ID NO: 1. Specifically, the albumin derivative may have 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% homology with the amino acid sequence of SEQ ID NO: . 2019/124973 1 »(: 1 ⁇ 1 ⁇ 2018/016240
  • Bacterial cells such as Salmonella typhimurium C? / / 3 ⁇ 43 ; 3 e // a typhimurium); Yeast cells such as Saccharomyces cerevisiae, Schi zosaccharomyces pombe); Fungal cells such as P / c / z / a pastor is; Insect cells such as Drosophila (Z? Rosop / z // a), Spodoptera frugiperidae now USpodoptera frugiperda cel l / Sf9 cel l); CHO, COS, NSO,
  • the linker may be a polyethylene glycol (PEG) having a size of more than 0 kDa and not more than 5 kDa.
  • PEG polyethylene glycol
  • the linker is more than 0 kDa to less than 5 kDa, more than 0.1 kDa to less than 4.9 kDa, more than 0.2 kDa to less than 4.8 kDa, more than 0.3 kDa to less than 4.7 kDa, more than 0.4 kDa .
  • From about 0.4 kDa or more to about 4.3 kDa from about 0.8 kDa to about 4.2 kDa, from about 0.9 kDa or more to about 4.
  • 1 kDa or less or from 1 kDa or more to about 4.0 kDa or less To 4 kDa or less; Not less than 1 kDa and not more than 3.9 kDa, not less than 1.2 kDa but not more than 3.8 kDa, not less than 1.3 kDa and not more than 3.7 kDa, not less than 1.4 kDa,
  • the protein conjugate may be albumin and IDS bound through a linker.
  • the linker can form an amide bond with the IDS.
  • the amide bond may be bonded through an NHS ester amine reaction.
  • the NHS ester amine reaction is carried out by reacting N-hydroxysuccinic de-ester with primary amines under physiological conditions or weakly alkaline conditions (pH 7.2 to 9).
  • the amide bond may be a primary amine, which is a residue in a lysine among the amino acids constituting the IDS, via a NHS ester amine reaction.
  • the amide bond constitutes IDS and can be formed from any one of 19 lysines in amino acids.
  • 2019/124973 1 (1: 1) 2018/016240 The combination is selected from the group consisting of 57th, 124th, 164th, 169th, 199th, 211th, 213th, 236th, 240th, 295th, 376th, 436th, 440th, 483th or 486th position of the lysine residue.
  • the other end of the linker may form a thioether bond with albumin.
  • the thioether bond may be bonded through maleimide thiol reacting.
  • the maleimide thiol reaction is carried out by reacting with a SH group (sul fhydryl group) under a maleimide group weighted pH condition (pH 6.5 to 7).
  • the thioether bond may be a bond in an amino acid-rich cysteine constituting albumin through a maleimide thiol reaction.
  • the thioether bond may be formed in one of the 36 cysteines in the amino acid constituting albumin.
  • the thioether linkage can be made in one free cysteine (C34) naturally present in the albumin domain I.
  • the protein conjugate of the invention comprises: i) reacting with a primary amine group in the lysine of IDS and an NHS ester at the PEG terminus to form a stable amide bond; And i) adding serum albumin to prepare a stable thioether bond by reacting the maleimide group at the other PEG end with the anticipation of free cysteine of albumin.
  • the protein conjugate may be one to fifteen albumin combined with IDS.
  • the protein conjugate may comprise one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, It may be that albumin is bound to IDS.
  • the protein conjugate may be one or two albumin conjugated to IDS.
  • the protein conjugate may be one in which one IDS and one albumin are bound (IDS-PEG-albumin).
  • the protein conjugate may be one in which one IDS and two albumin are bound (IDS-PEG- (albumin) 2) .
  • the protein conjugate is prepared in the form of IDS-PEG-albumin and IDS-PEG- (albumin) 2 at a ratio of 3: 1 when prepared via steps i) and ii) .
  • the present inventors have studied to develop a therapeutic agent for type 2 mucosal saccharosis or Hunter's syndrome disease with increased persistence and stability. As a result, Protein conjugate was prepared (Fig. 7).
  • the protein conjugate of the present invention is a recombinant protein that is monovalently linked to albumin, and it has been confirmed that the protein conjugate is superior to the conventional one in terms of persistence and 1 activity in the body. Therefore, the protein conjugate can be used as an active ingredient of a pharmaceutical composition for preventing or treating Hunter's syndrome.
  • Another aspect of the present invention provides a pharmaceutical composition for preventing or treating Hunter's syndrome comprising the protein conjugate as an active ingredient.
  • the protein conjugate (Albumin) 2 or a combination thereof.
  • the protein conjugate according to the present invention which is an active ingredient, may be contained in an amount of 10 to 95% by weight based on the total weight of the pharmaceutical composition.
  • the pharmaceutical composition of the present invention may be formulated to contain at least one pharmaceutically acceptable carrier in addition to the active ingredient described above for administration.
  • the dosage of the pharmaceutical composition may vary depending on factors such as the type of the disease, the severity of the disease, the kind and amount of the active ingredient and other ingredients contained in the composition, the form and the kind, and the patient's age, weight, general health status, sex and diet, The route and fraction of the composition, the duration of the treatment, the drug being co-administered, and the like.
  • the pharmaceutical composition may be administered to a subject by various methods known in the art.
  • the administration route can be appropriately selected by a person skilled in the art in consideration of the administration method, the volume of the body fluid, the viscosity, and the like.
  • the pharmaceutical composition may be administered to a patient suffering from Hunter's syndrome according to known methods.
  • Yet another aspect of the present invention provides a method for preventing or treating Hunter's syndrome comprising administering the protein conjugate to a subject.
  • the protein conjugate is the same as described above.
  • the object The subject may be a mammal, including Hunter syndrome.
  • Such administration can be by intravenous, subcutaneous, intradermal, intramuscular, intranasal, intracerebral or intrathecal administration.
  • the administration can be administered once every three months, once every two months, once every month, once every three weeks, once every two weeks, or once a week.
  • Yet another aspect of the present invention provides a fusion protein comprising an albumin or albumin derivative and a lysosomal enzyme.
  • the fusion protein may have any structure selected from the following structures:
  • a 2 or A 3 is an independent albumin or albumin derivative, respectively;
  • L 2 or L 3 are each independently a linker
  • the albumin, the albumin derivative and the lysosomal enzyme are the same as described above.
  • the lysosomal enzyme may be an iduronate-2-sulfatase (IDS).
  • IDS is the same as described above.
  • the fusion protein may be one in which albumin and IDS are directly linked.
  • the linker may be a peptide linker.
  • the peptide linker may be composed of 1 to 100, 3 to 50 or 5 to 40 amino acids.
  • the peptide linker may be a non-flexible linker or a flexible linker.
  • the peptide linker may be a non-flexible linker, a flexible linker, a cleavable linker, or a dipeptide, either singly or in combination.
  • the peptide linker may have any one of the amino acid sequences of SEQ ID NOS: 4-6.
  • the non-compliant linker may have an amino acid sequence of A (EMAK) nA, wherein n may be an integer of 1 to 5.
  • the non-compliant linker may be one having an amino acid sequence of PAPAP or (XP) n.
  • X is May be alanine (Ala), lysine (Lys) or glutamic acid (Glu), and the above may be an integer of 5 to 17.
  • the non-compliant linker may comprise the amino acid sequence of SEQ ID NO: 4 or 5.
  • the flexible linker may have an amino acid sequence of (GGGGS) n, wherein n may be an integer of 1 to 5.
  • the flexible linker may have an amino acid sequence of (G) n, wherein n may be an integer of 6 to 8.
  • the flexible linker may comprise the amino acid sequence of SEQ ID NO: 6.
  • the peptide linker may be one comprising a cleavable linker.
  • the cleavable linker may be a cathepsin B cleavage sequence, a Furin cleavage motif sequence or a Thrombin cleavage sequence.
  • the cathepsin B truncation sequence may be one having an amino acid sequence of GFLG (Gly-Phe-Leu-Gly) or FKFL (Phe-Lys-Phe-Leu) specifically degraded to cathepsin B.
  • the purine cleavage sequence may have a sequence of R- (R / K / X) -R comprising a purine cleavage motif, wherein the amino acid may be naturally occurring.
  • the sequence comprising the purine cleavage motif may comprise a sequence of RXRRR, RXKXR or RXR.
  • the thrombin cleavage sequence may be one having the amino acid sequence of AB-Pro-Arg-XY,
  • the A and B may be hydrophobic amino acids, and the X may be a non-acidic amino acid.
  • the cleavable linker may comprise any of the amino acid sequences of SEQ ID NOS: 7 to 12.
  • the peptide linker may include any one of the amino acid sequences of SEQ ID NOS: 7-12.
  • the C-terminus of the peptide linker may be linked to the N-terminus of the IDS, and the N-terminus of the peptide linker may be linked to the C-terminus of the albumin. Terminal of the peptide linker, wherein the C-terminus of the peptide linker may be linked to the N-terminus of the albumin.
  • the fusion protein is selected from the group consisting of IDS-HSA, IDS- (G4S) 3 -HSA, IDS-A (EMAK) 4A-HSA, HSA- IDS, HSA- (G4S) ) ≪ / RTI > 4A-IDS, 2019/124973 1 (1 ⁇ ⁇ 2018/016240 Not limited.
  • the fusion protein is?
  • a gene the art prepared by a chemical peptide synthesis method known in the art, or encoding the fusion protein 111 (1) 0 1 5 sheets 6 36 ⁇ 8111 Can be amplified using.
  • An expression vector can be synthesized by a known method using the gene amplified by the above-mentioned method.
  • the synthetic expression vector can be cloned and then expressed in cells.
  • Another aspect of the present invention relates to a method for producing the fusion protein using the polynucleotide encoding the fusion protein, the expression vector comprising the polynucleotide, the transformant into which the expression vector is introduced, and the transformant .
  • the polynucleotide may comprise a single nucleotide sequence selected from the group consisting of SEQ ID NO: 13 to SEQ ID NO: 18.
  • the polynucleotide is 1 Ah ⁇ I (SEQ ID NO: 13), 1 -1 ⁇ 24 ⁇ 3- ⁇ show (SEQ ID NO: 14), 1 ⁇ - ⁇ four £ ⁇ 04- ⁇ show (SEQ ID NO: 15), 1 ( SEQ ID NO: 16), ⁇ 1 ⁇ 243) 3 -1 ⁇ ( SEQ ID NO: 17), HSA-a (EAAAK ) 4 a-IDS ( SEQ ID NO: 18) can contain a DNA sequence encoding.
  • 1 when 1 is preceded by a terminal, 1 may comprise a signal peptide.
  • the amino acid sequence of one amino acid including the signal peptide is shown in SEQ ID NO: 2.
  • 1 when 1 is followed to the 0 terminal, 1 may not include a signal peptide.
  • the first amino acid sequence that does not include the signal peptide may be the amino acid sequence of SEQ ID NO: 2 in which 25 amino acids have been deleted from the terminal.
  • one amino acid sequence that does not contain a signal peptide is shown in SEQ ID NO: 3.
  • the polynucleotide may be mutated by substitution, deletion, insertion, or a combination thereof, of one or more bases.
  • a synthetic method well known in the art e.g., literature ( ⁇ 26 1 3 ⁇ 81111, is 0 1 ⁇ 2111 1 £ (1 £ 1 ⁇ 1. , 37: 73-127, 1988) can be used, and the triester, phosphite, phosphoramidite and table-phosphate method, And other auto primer methods, oligonucleotide synthesis methods on solid supports, and the like.
  • Yet another aspect of the present invention provides an expression vector comprising the polynucleotide.
  • the term "expression vector" refers to a recombinant vector capable of expressing a desired protein in a desired host cell, and includes a necessary regulatory element operatively linked to the expression of the gene insert.
  • the vector may include expression control elements such as initiation codon, termination codon, promoter, operator, etc.
  • the initiation codon and termination codon are generally considered to be part of the nucleotide sequence encoding the polypeptide, It must exhibit an action, .
  • the promoter of the vector may be constitutive or inducible.
  • nucleic acid expression control sequence and the nucleic acid sequence encoding the desired protein or protein are functionally 11 and 3 Ding 6) is meant a state in which.
  • a nucleic acid sequence encoding a promoter and a protein or 1/4 peach may be operatively linked to affect the expression of the coding sequence.
  • Operational linkage with an expression vector can be made using recombinant techniques well known in the art, and site-specific cleavage and linkage can be achieved using enzymes generally known in the art.
  • the expression vector may include a signal sequence for the release of the fusion polypeptide to facilitate the separation of the protein from the cell culture medium .
  • a specific initiation signal may also be required for efficient translation of the inserted nucleic acid sequence. These signals include four initiation codons and contiguous sequences.
  • an exogenous translational control signal which may include the initiation codon, should be provided. These exogenous translational control signals and initiation codons can be of various natural and synthetic sources. Expression efficiency can be increased by the introduction of appropriate transcriptional or translational enhancers.
  • the expression vector comprises a polynucleotide encoding the fusion protein 2019/124973 1 (1 ⁇ ⁇ 2018/016240).
  • the vector used is not particularly limited as long as it can produce the fusion protein of the present invention.
  • the expression vector may be plasmid 0, phage 0, or the like. More preferably, the expression vector comprises the commercially developed plasmid ( 1 ) X18, ??? 3.4, etc.), within one derived from E.
  • the amount of expression of the protein and the expression of the expression vector are different depending on the host cell, it is preferable to select and use the host cell most suitable for the purpose .
  • the host cell most suitable for the purpose .
  • 0 3.4 vectors with show 3 (: 1 and Pacl restriction sites were used.
  • Yet another aspect of the present invention provides a transformant into which the expression vector is introduced.
  • the transformant can be produced by introducing an expression vector into a host and transforming the vector.
  • the fusion protein of the present invention can be produced by expressing the polynucleotide contained in the expression vector.
  • the transformation can be carried out by various methods. Not limited to one that can produce a fusion protein of the present invention, particularly to, particularly, the transformation method 03 01 2 precipitation method, a precipitation method 03 01 2 »(111 11
  • the host cell used for the production of the transformant is not particularly limited as long as it can produce the fusion protein of the present invention.
  • the host cell is E. coli. 00 10, streptomyces, Salmonella typhimurium; Sakaromasse Serebijia, ski survey Karamoisse Pombe, etc. 2019/124973 1 »(1 ⁇ 1 ⁇ 2018/016240 yeast cells; Fungal cells such as Pichia pastoris; Insect cells such as Drosophila and Spodoptera Sf9 cells; Animal cells such as CHO, COS, NS0, 293, Bowmanella cells; Or plant cells.
  • the fusion protein production method comprises the steps of: i) culturing the transformant to obtain a culture; And i) recovering the fusion protein of the present invention from the culture.
  • the term "cultivation " of the present invention means a method of growing a microorganism under an appropriately artificially controlled environmental condition.
  • the method for culturing the transformant may be carried out using a method well known in the art.
  • the culture is not particularly limited as long as it can be produced by expressing the fusion protein of the present invention.
  • the culturing can be continuously performed in a batch process, an injection batch, or a repeated batch or batch fed batch process.
  • the medium used for culturing can meet the requirements of a specific strain in an appropriate manner while controlling the temperature, pH and the like under aerobic conditions in a conventional medium containing an appropriate carbon source, nitrogen source, amino acid, vitamin, and the like.
  • a mixed sugar of glucose and xylose can be used as a main carbon source.
  • carbon sources include sugars and carbohydrates such as sucrose, lactose, fructose, maltose, starch and cellulose, oils and fats such as soybean oil, sunflower oil, castor oil and coconut oil, palmitic acid, stearic acid and linoleic acid Alcohols such as fatty acids, glycerol, ethanol, and organic acids such as acetic acid.
  • the carbon sources may be used individually or as a mixture.
  • Nitrogen sources that may be used include inorganic sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine and glutamine, and organic substances such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, carcaen hydrolyzate, fish or their degradation products, defatted soybean cake, The nitrogen sources may be used alone or in combination.
  • inorganic sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate
  • Amino acids such as glutamic acid, methionine and glutamine
  • organic substances such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, carcaen hydrolyzate, fish or
  • the culture medium is supplemented with potassium phosphate, potassium phosphate, 2019/124973 1 (1) ⁇ 2018/016240 Sodum-containing salts may be included.
  • the number of people that can be used may include potassium dihydrogenphosphate or dipotassium hydrogenphosphate or the corresponding sodium-containing salts.
  • Examples of the inorganic compound include sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate.
  • essential growth substances such as amino acids and vitamins can be added to the medium.
  • suitable precursors may be used in the culture medium.
  • the above-mentioned raw materials can be added to the culture in the culture process in a batch manner, in an oil-feeding manner or in a continuous manner by an appropriate method, but it is not particularly limited thereto.
  • Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia, or acid compounds such as phosphoric acid or sulfuric acid can be used in a suitable manner to control the egg of the culture.
  • bubble formation can be suppressed by using a defoaming agent such as a fatty acid polyglycol ester.
  • An oxygen or oxygen-containing gas e.g., air
  • the step of recovering the fusion protein from the culture can be carried out by a method known in the art.
  • the recovering method is not particularly limited as long as it can recover the produced fusion protein of the present invention.
  • the recovery method is carried out by centrifugation, filtration, extraction, spraying, drying, evaporation, precipitation, crystallization, electrophoresis, fractional dissolution (eg ammonium sulfate precipitation), chromatography (eg ion exchange, affinity , Hydrophobicity and size exclusion), and the like.
  • Yet another aspect of the present invention provides a pharmaceutical composition for preventing or treating Hunter's syndrome comprising the fusion protein as an active ingredient.
  • the fusion protein is the same as described above.
  • the protein conjugate or fusion protein according to the present invention which is an active ingredient, may be contained in an amount of 10 to 95% by weight based on the total weight of the pharmaceutical composition.
  • the pharmaceutical composition may be formulated to contain at least one pharmaceutically acceptable carrier in addition to the above-described effective ingredients for administration.
  • the dosage of the pharmaceutical composition may vary depending on the kind of the disease, the severity of the disease, the kind and amount of the active ingredient and other ingredients contained in the composition, the type of the formulation and the age, It can be adjusted according to various factors including weight, general health status, sex and diet, time of administration, route of administration and fraction of composition, duration of treatment, concurrent medication, etc. have.
  • the pharmaceutical composition may be administered to a subject by various methods known in the art.
  • the administration route can be appropriately selected by a person skilled in the art in consideration of the administration method, the volume of the body fluid, the viscosity, and the like.
  • the pharmaceutical composition may be administered to a patient suffering from Hunter's syndrome according to known methods.
  • Yet another aspect of the present invention provides a method of preventing or treating Hunter's syndrome comprising administering the fusion protein to a subject.
  • the pharmaceutical composition is the same as described above.
  • the subject may be a mammal, including a human. Specifically, the subject may be a human suffering from Hunter's syndrome.
  • Such administration can be by intravenous, subcutaneous, intradermal, intramuscular, intranasal, intracerebral or intrathecal administration.
  • the administration can be administered once every three months, once every two months, once every month, once every three weeks, once every two weeks, or once a week.
  • Another aspect of the present invention provides the use of a protein conjugate of the invention for treating Hunter's syndrome.
  • Another aspect of the present invention provides the use of a protein conjugate of the invention for the manufacture of a medicament for the treatment of Hunter's syndrome.
  • Another aspect of the invention provides the use of a fusion protein of the invention to treat Hunter's syndrome.
  • Another aspect of the present invention provides the use of a fusion protein of the invention for the manufacture of a medicament for the treatment of Hunter's syndrome.
  • Production Example 1 Production of recombinant albumin and protein conjugate conjugated with iuduronate-2-sulfatase
  • IDS activity of the protein conjugate prepared in Preparation Example 1 was measured. Specifically, the activity measurement was performed using a synthetic substrate, 4-methylumbelliferyl-L-iduronide-2-sulfate (4-methylumbel liferyl- doA-2S) was reacted with IDS for 4 hours, and the sulfate was firstly liberated from the substrate (first reaction). After the first reaction, aldulazide of Genzyme was added and reacted for 24 hours. Subsequently, the substrate, 4-methylumbelliferyl-L-iduronide (reactant free of sulfate in the first reaction) and the secondary enzyme The reaction was allowed to proceed. As a result, the activity of IDS was evaluated by measuring the intensity of fluorescence of 4-methylumbelliferyl (Ex.355 nm / Em.460 nm) in which L-iduronide was liberated and finally remained.
  • the isoelectric point of the albumin-IDS-conjugated protein conjugate prepared in Preparation Example 1 was confirmed. Specifically, the IEF gel forming the pH gradient is called XCel l
  • the upper chamber was filled with 200 m IEF IEF cathode buffer and the lower chamber was filled with 600 M anode buffer (anode buffer) .
  • a mixture of sample 10 containing albumin and the IDS-conjugated protein conjugate and IEF sample buffer 10 was loaded into each well (well) and loaded with 5 IEF marker. Thereafter, the electrophoresis was carried out while varying the voltage in three steps of 100 V / 1 hour, 200 V / 1 hour and 500 V / 30 min, and fixed with 12% TCA solution for 30 minutes.
  • the isoelectric point of the olfactory sample decolored with a destaining solution was determined by staining with coomassie blue staining buffer for 30 minutes or more.
  • pH 3-10 IEF gel from Invitron was used, and IEF markers 3-10 and SERVA Liquid Mix from SERVA were used as standard markers.
  • the IDS or albumin and IDS conjugate were diluted by 1 nM to 128 nM concentration, and then treated with cells for a certain period of time to be absorbed into the cells. Then, the content of IDS or albumin and IDS conjugate absorbed into the cells was measured by ELISA. At this time, the saturation curve for the intracellular absorbed content was determined according to the treatment concentration of IDS or albumin and IDS conjugate, and the maximum content (Vmax) of the intracellularly absorbed protein was determined using a saturation curve. (Km, Kuptake) at the rate corresponding to 1/2 of the maximum rate at which a specific substance is absorbed, by converting it into a reciprocal graph of the absorbed content of the IDS or the albumin and the IDS conjugate Respectively.
  • each of anti-IDS ant i body was added to each well to a final concentration of 1 mg / M in a 96-well plate, . After 16 hours, the solution was removed and washed with IX PBS.
  • a medium for the culture IMDM, 10 v / v3 ⁇ 4 FBS , 1 v / v% Ant i -ant i) normal mouse fibroblasts (NIH / 3T3) or cells of patients with Hunter syndrome (C0RIELL 1 113 1 to; 6 ⁇ Lt; / RTI > 13203).
  • Dissolve 2-M wells to a 12-well-plate at 1.0x10 5 cells / well and incubate at 37 ° C, 5% CO 2 . And cultured in an incubator for 24 hours.
  • IDS or albumin and IDS conjugate was labeled with 128 nM, 64 nM, 32 nM, 16 nM, 8 nM, and 1 nM using dilution media (IMDM, 5 v / 4 nM, 2 nM and 1 nM concentration. After 24 hours, the medium on the plate was removed and IDS or albumin and IDS conjugate at the respective concentrations were added to each well in an amount of 2 1 / well , followed by culturing in an incubator at 37 ° C and 5% C0 2 for 6 hours.
  • IMDM dilution media
  • IDU or IDS was added to the iduronate-2-sulfatase knockout mouse (K0) and normal mouse (WT) Albumin and IDS-conjugated protein conjugates (ALBIDS) were administered weekly for one month at a dose of 0.5 mg / kg (based on IDS). Experiments with mice were carried out for 25 days, and urine collection was performed on day 6 after administration of IDS or protein conjugate.
  • iridonate-2-sulfatase knockout mice (K0) and normal mice (WT) Or albumin and IDS-conjugated protein conjugates (ALBIDS) were administered weekly at a dose of 0.5 mg / kg (by IDS) for one month.
  • Tissue harvesting was performed on the 7th day (one week after the last drug administration). The tissues collected were stored in a freezer at a temperature of -80 ° C.
  • the stored tissues were homogenized with homogenizer (BIOPEC PRODUCTS INC. Model 398) and then disrupted using an ultrasonic disrupter (Fischer Scientific Model 500). Thereafter, the amount of GAG accumulation in tissues was measured using sGAG assay kit (BP-004) from K-ASSAY. In addition, total protein content in tissues was analyzed using Pierce BCA assay kit. The amount of GAG measured was corrected by dividing by the total protein amount measured in the same sample.
  • mice administered with the first primer or the protein conjugate There was a significant decrease in all tissues except the brain. Particularly, in mice administered with the protein conjugate, Lower.
  • Experimental Example 7 After administration of the albumin and 1 < nd > conjugated protein conjugate,
  • albumin-1 protein-binding protein conjugate When the albumin-1 protein-binding protein conjugate was administered weekly, the activity of ioduronate-2-sulfapatase knockout mouse 0 (0) and normal mouse (1) or albumin And 1-mer protein conjugate ( ⁇ ) were administered weekly for one month at a dosage of 0.5 / 1 3 ⁇ 4 ( 1 weight).
  • the stored tissues were homogenized with homogenizer (BIOPEC PRODUCTS INC. Model 398) and then disrupted using an ultrasonic disrupter (Fi sher Scientific Model 500). Thereafter, the activity of IDS was measured in the same manner as in Experimental Example 1.
  • the tissues were homogenized with a homogenizer (BIOPEC PRODUCTS INC. Model 398) and then disrupted using an ultrasonic disrupter (FiSer Scientific Model 500). Thereafter, the amount of GAG accumulation in tissues was measured using sGAG assay kit (BP-004) from K-ASSAY. In addition, total protein content in tissues was analyzed using Pierce BCA assay kit. The amount of GAG measured was also divided by the total amount of protein measured. As a result, in the case of a group administered with protein conjugate at a dose of 1.0 and 2.0 mg / kg in the group administered with biweekly IDS or protein conjugate, the GAG amount of the positive control group (weekly, 0.5 mpk IDS) And were measured at similar levels.
  • GAG g GAG / g creatinine
  • a single dose of iduronate-2-sulfatase GAG reductions were compared for 4 weeks after intravenous administration of a protein conjugate (ALBIDS) conjugated with IDS or albumin and IDS to out-mice (K0) and normal mice (WT).
  • ABIDS protein conjugate conjugate conjugated with IDS or albumin and IDS to out-mice (K0) and normal mice (WT).
  • the urine was collected according to the schedule shown in Fig.
  • gag / creatinine (g / g) reduction in the urine of group 1 or group 2 was compared by repeated measurement ANOVA.
  • 2-sulfatase knockout mouse (K0) and normal mouse (WT) were injected intravenously with IDS to determine the amount of GAG accumulated in the tissue when the albumin-IDS conjugated protein conjugate was intravenously administered once.
  • albumin and IDS-conjugated protein conjugates (ALBIDS) were intravenously injected for 4 weeks. Liver tissue was collected on day 28. The tissues were stored at -80 ° C.
  • the stored tissues were homogenized with homogenizer (BIOPEC PRODUCTS INC. Model 398) and then disrupted using an ultrasonic disrupter (FiSer Scientific Model 500). Thereafter, the amount of GAG accumulation in tissues was measured using sGAG assay kit (BP-004) from K-ASSAY. In addition, total protein content in tissues was analyzed using Pierce BCA assay kit. The amount of GAG measured was also divided by the total amount of protein measured.
  • a group of 0.5 mg / kg of IDS which is currently being used as a clinical dose, was used as a positive control and repeated at a dose of 1.0 mg / kg, 2.0 mg / kg, 3.0 mg / kg and 4.0 mg / (G / g) reduction in intraperitoneal urine administered IDS or protein conjugates administered intravenously (4 times) were compared by repeated measurement ANOVA.
  • the stored tissue was homogenized with a homogenizer (BIOPEC PRODUCTS INC. Model 398) and then disrupted using an ultrasonic disrupter (Fisher Scientific Model 500). Thereafter, the amount of GAG accumulation in tissues was measured using sGAG assay kit (BP-004) from K-ASSAY. In addition, total protein content in tissues was analyzed using Pierce BCA assay kit. The amount of GAG measured was also divided by the total amount of protein measured. As a result, it was found that the amount of GAG accumulation at the current clinical dose of 0.5 mg / kg IDS was similar to that of GAG accumulation in a group of 2.0 mg / kg or more (in terms of IDS weight) protein conjugate repeatedly administered.
  • Mouse blood obtained by administering PBS, IDS or ALBIDS for 4 months in the same manner as in Example 12 was reacted on a plate coated with IDS, and IDS-peroxidase conjugated body fluid was added thereto. After the addition of the substrate solution, the color reaction was confirmed according to the concentration of the antibody against IDS.
  • the plate was washed six times with physiological saline containing 0.1% Tween 20 (0.1% PBST). Thereafter, the cells were blocked with physiological saline (1% BSAPBS) containing 1% BSA for 1 hour at room temperature, And washed six times with 0.11% PBST.
  • physiological saline 1% BSAPBS
  • Each mouse serum and IDS-HRP were dispensed into the coated wells in an IDS-coated well to give a total of 100 in each well.
  • Serum was diluted 10-fold with 1% BSAPBS and reacted at 37 ⁇ 1 ° C for 2 hours.
  • the substrate was washed six times with 0.1% PBST and incubated for 30 minutes at room temperature (18 ° C to 25 ° C). The absorbance was measured at a wavelength of 450 nm and a reference wavelength of 620 nm and was performed within 10 minutes after the reaction was stopped.
  • an albumin comprising the amino acid sequence of SEQ ID NO: 1 and a vector expressing an euduronate-2-sulfatase comprising the amino acid sequence of SEQ ID NO: was used to prepare a fusion protein.
  • fusion proteins were prepared as shown in Figure 38 to maintain optimal expression and activity.
  • Albumin at the C-terminus of the IDS was directly or indirectly linked to a known labelable inker, G4S l inker or r igid l inker, EAAAK.
  • a fusion protein linked to IDS was designed using the same linker at the C-terminus of albumin (FIG. 38).
  • Gene expression vectors were synthesized to contain Ascl and Pad restriction sites.
  • the expression vector containing the nucleotide sequence encoding the fusion protein was pcDNA 3.4 (ThermoFisher Scientific).
  • the expression vector contained a signal sequence for secretion of the fusion protein to be synthesized.
  • the prepared expression vector was transformed into ExpiCHO-STM cells (ThermoFi sher 2019/124973 1 »(: 1 ⁇ 1 ⁇ 2018/016240
  • ExpiCHO-STM cells were subcultured to the required number one day before transfection. On the day of transfection, cells were prepared to have a cell number of 6x10 6 cells / m 2. While the expression vector DNA containing the gene encoding the fusion protein, 30 // g (l // g / me) into the culture medium and cultured in a few days 8% C0 2 and 37 ° C temperature. After completion of the culturing, the cells were centrifuged and the culture liquid was subjected to purification. The recovered culture supernatant was confirmed by SDS-PAGE and Western blotting using IDS antibody and albumin antibody.
  • fusion proteins produced in Production Example 2.2 can be utilized to purify the various types of fusion proteins produced in Production Example 2.2.
  • the expressed fusion protein is secreted into the medium and can be isolated by an albumin affinity chromatography (CaptureSelect TM Human albumin affinity matrix, Thermo scientific).
  • albumin affinity chromatography CaptureSelect TM Human albumin affinity matrix, Thermo scientific.
  • purification was carried out by three-step column chromatography.
  • the culture solution was loaded through ion exchange (Q) chromatography, which was equilibrated with 20 mM sodium phosphate buffer (pH 7.2), and then eluted with a 20 mM sodium phosphate buffer containing 0.3 M sodium chloride.
  • Sodium chloride was added to the eluate to prepare a sodium phosphate buffer solution containing 2.0 M sodium chloride.
  • the diluted solution was loaded into a hydrophobic chromatography buffer, butyl sepharose, and the sodium chloride concentration was changed from 2.0 M to 0.0, Respectively.
  • the eluted protein was subjected to size exclusion chromatography using Superdex 200 column and PBS buffer to obtain a fusion protein having a degree of purification of 90% or more (FIG. 39).
  • EXPERIMENTAL EXAMPLE 15 Confirmation of Production of a Fusion Protein Bound by Albumin-iduronate-2-sulfatase SDS-PAGE was performed in order to confirm that the fusion protein bound with iduronate-iduronate-2-sulfatase was properly prepared.
  • the culture supernatant 30 obtained in Production Example 2.2 ! d was mixed with 10 samples of sample buffer containing 5% mercaptoethanol, and then reacted at 951 for 10 minutes. Each sample was then loaded with 15-25 fA on a 4% to 12% Bi s-Tr is gel.
  • Each sample was also separated by electrophoresis on a 4% to 12% Bis-Trs gel and transferred to iBlot TM 2 Transfer stack, PVDF, polyvinylidene membrane (ThermoFisher Scientif ic)
  • the protein was transferred by electrophoresis using an iBlotTM 2 Transfer device (ThermoFisher Scientif ic) on the idene fuoride membrane.
  • Protein-transferred fluorovinylidene membrane was blocked for 30 minutes with 5% skim milk and biotin-conjugated anti-IDS antibody or anti-albumin antibody was added and incubated at 4 ° C Lt; / RTI > overnight.
  • the cells were then washed three times for 10 min each with 0.1% PBST (137 mM NaCl, 2.7 mM KCl, Na2HPO4 10 mM, KH2PO4 1.8 mM, 0.1% Tween 20) buffer and incubated with avidin and horseradish peroxidase in ° C temperature, the reaction was carried out for 2 hours. After washing three times with 0.1% PBST buffer for 10 minutes, the immunoreacted proteins were visualized using a chemiluminescence detection system (GE Amersham) according to the manufacturer's protocol (FIG. 41). In addition, as shown in FIG.
  • PBST 137 mM NaCl, 2.7 mM KCl, Na2HPO4 10 mM, KH2PO4 1.8 mM, 0.1% Tween 20
  • Lane 2 was a fusion protein directly linked to IDS-HSA without a linker, and it was confirmed that there were fragments in which a considerable amount of the culture solution was cleaved by IDS and albumin.
  • IDS- (G4S) 3- HSA in lane 3 HSA- 2019/124973 1 »(: 1/10/06 018/016240

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a protein conjugate and a fusion protein which comprise albumin and a lysosomal enzyme. A protein conjugate or a fusion protein, of the present invention, in which albumin and IDS are bound, has long in vivo persistence, thereby enabling the administration period to be extended more than that of a currently used therapeutic agent. In addition, the protein conjugate or the fusion protein is developed in a dosage form, which can be injected subcutaneously, and can effectively reduce accumulated glycosaminoglycan (GAG) in urine and tissues even when administered subcutaneously. Therefore, a protein conjugate or a fusion protein, of the present invention, in which albumin and IDS are bound, can be effectively used as an agent for treating lysosomal storage disorders.

Description

2019/124973 1»(:1^1{2018/016240 명세서 알부민및리소좀효소를포함하는단백질접합체및융합단백질 기술분야  TECHNICAL FIELD The present invention relates to protein conjugates and fusion proteins including albumin and lysosomal enzymes. BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]
본 발명은 알부민.및 리소좀 효소 ( lysosomal enzyme)를포함하는 단백질 접합체 및융합단백질에 관한것이다. 보다상세하게는, 알부민 및 이듀로네이트 -2 -설파타제를포함하는단백걸접합체또는융합단백질에 관한것이다. 배경기술  The present invention relates to protein conjugates and fusion proteins comprising albumin and a lysosomal enzyme. More particularly, the invention relates to a protein gal conjugate or fusion protein comprising albumin and an euduronate-2-sulfatase. Background technology
헌터증후군 또는 제 2형 뮤코다당증 (혹은 뮤코다당증 2형) Hunter syndrome or type 2 mucosal saccharosis (or type 2 mucosal saccharosis)
(Mucopolysaccharidosi s type I I)은 이듀로네이트- 2 -설파타제 (Iduronate-2- sul fatase, IDS)의 결핍으로 인해 글리코스아미노글리칸 (Glycosaminoglycan, GAG)과같은뮤코다당체가분해되지 못하여 리소좀내에 축적되는리소좀축적질 환 (Lysosomal storage di seases, LSD) 중하나이다. GAG는신체의 모든세포내 에 축적되어 여러 가지 증상을초래한다. 이러한증상에는큰머리, 간이나비장 의 비대로 인한복부팽만등이 포함되며, 청력 상실, 심장판막질환, 폐쇄성 호 흡기질환, 수면무호흡둥도동반한다. . (Mucopolysaccharidosi s type II) has been reported to accumulate in lysosomes due to the lack of degradation of mucopolysaccharides such as glycosaminoglycan (GAG) due to the deficiency of iduronate-2-sulfatase (Iduronate-2-sul fatase, IDS) Lysosomal storage diseases (LSD) are among the most common. GAG accumulates in all cells of the body and causes various symptoms. These symptoms include heaviness, swelling of the abdomen due to hypertrophy of the hepatic nervosa, and hearing loss, heart valve disease, obstructive respiratory disease, and sleep apnea. .
헌터증후군은 성염색체 (Xq28.1 locus) 이상에 의해 발병되는 열성유전질 환으로 대략 인구 20만명당 1명의 빈도로발병되는것으로보고되고 있다. 관련 치료제로는 2006년 6월 Shire사의 엘라프레이즈 (Elaprase® )가 효소대체치료제 (ERT)로승인되면서 처음도입되었다. 또한, 2012년에는세계에서 2번째로녹십 자에서 헌터라제 (Hunterase®)가 개발되었다. 현재는 효소대체치료를 위해 매주 병원에 방문하여 0.5 mg/kg의 용량으로 IDS단백질을생리식염수에 희석하여 2시 간내지 3시간동안투입 (infusion) 투여 받고 있다. 그러나, 이러한치료를평 생 치료받아야하는 질환특성상환자및 보호자에게 시간적 경제적으로큰부담 이 되고 있어, 약물 투입횟수를 줄이거나 피하주사제가 개발된다면 환자들에게 큰혜택이 될수있을것이다.  Hunter syndrome is a recessive hereditary disease caused by abnormalities of the sex chromosome (Xq28.1 locus), which is reported to occur at a frequency of approximately 1 in every 200,000 people. In June 2006, Shire's Elaprase (R) was first approved as an alternative therapy (ERT). In 2012, Hunterase® was developed in the world's second-largest Green Cross. Currently, we visit the hospital every week for the substitute therapy of the enzyme, and the IDS protein is diluted in physiological saline at a dose of 0.5 mg / kg and infused for 2 to 3 hours. However, because of the nature of the disease that requires treatment of such treatment, it is costly and time-consuming to patients and caregivers. Therefore, if the number of drug injections is reduced or a hypodermic injection is developed,
한편, 알부민은 항체와유사하게 혈중 반감기가 긴 특성을 가지고 있다. 또한, 상대적으로 낮은 면역원성 (immiinogeni ci tyV^ 가지고 있는 것으로 알려져 2019/124973 1»(:1^1{2018/016240 있다. 의약품 개발시 알부민과융합하여 기능을높인 제품이 현재 시장 (CSL사 Idelvion® , 사 Eperzan®등)에 나와있으며 , 알부민이 약물전달체 (del ivery vehicle)로써 연결된 (bound)는 항암제 (Cel lgene사 abraxane®)도 현재 사용되고 있다. On the other hand, albumin has a long half-life characteristic similar to that of an antibody. It is also known to have relatively low immunogenicity (immiinogenicity) 2019/124973 1 (1 ^ {2018/016240). In the current market (CSL's Idelvion®, Eperzan®, etc.) products that integrate with albumin in the development of medicines are being marketed, and albumin is bound to the drug as a delirium vehicle (Cel lgene abraxane ®) is currently in use.
이에 본 발명자들은 피하투여가 가능하고, 투여주기가 연장된 (Biweekly or Monthly)차세대효소대체치료제제를개발하고자한다. 기술적 과제  Accordingly, the present inventors intend to develop a next-generation enzyme-based therapeutic agent capable of subcutaneous administration and having an extended administration period (Biweekly or Monthly). Technical Challenge
본발명자들은체내 지속성이 향상된헌터증후군의 치료제를개발하기 위 해 연구한 결과, 알부민과 IDS사끼에 링커를 통해 결합시킨 단백질 접합체 (Album inated IDS, ALBIDS)또는융합단백질 (Albuminated IDS, ALB IDS fusion)이 체내지속성이 향상된것을확인함으로써 본발명을완성하였다. 과제해결수단  The inventors of the present invention have conducted studies to develop a therapeutic agent for Hunter's syndrome with improved persistence in the body. As a result, the present inventors have found that a protein conjugate (albuminated IDS, ALBIDS) or a fusion protein (albuminated IDS, ALB IDS fusion) Confirming that the persistence of the body is improved, thereby completing the present invention. Task solution
본발명의 일 측면은, 하기 일반식 1또는 일반식 2를갖는단백질 접합 체를제공한다.  One aspect of the present invention provides a protein conjugate having the following general formula (1) or general formula (2).
[일반식 1]  [Formula 1]
Ai-LrXi  Ai-LrXi
[일반식到  [General expression
X]_Lr~Ai X ] _Lr ~ Ai
상기 식에서,  In this formula,
Ai은알부민또는알부민유도체 (derivat ives)이고;  Ai is an albumin or albumin derivative (derivat ives);
은링커이고;  Is a linker;
¾은리소좀효소이다.  ¾ is a lysosomal enzyme.
본발명의 다른측면은, 상기 단백질 접합체를유효성분으로포함하는헌 터증후군의 예방또는치료용약학조성물을제공한다.  Another aspect of the present invention provides a pharmaceutical composition for preventing or treating Hunter's syndrome comprising the protein conjugate as an active ingredient.
본발명의 또 다른측면은, 상기 단백질 접합체를 개체에 투여하는단계 를포함하는헌터증후군의 예방또는치료하는방법을제공한다.  Another aspect of the present invention provides a method for preventing or treating Hunter's syndrome comprising administering the protein conjugate to a subject.
본발명의 또다른측면은, 알부민 또는 알부민 유도체와리소좀효소를 포함하는융합단백질을제공한다. 2019/124973 1»(:1^1{2018/016240 본 발명의 또 다른측면은, 상기 융합단백질을코딩하는폴리뉴클레오티 드를제공한다. Yet another aspect of the present invention provides a fusion protein comprising an albumin or albumin derivative and a lysosomal enzyme. Another aspect of the present invention provides a polynucleotide encoding said fusion protein.
본 발명와또 다른측면은, 상기 폴리뉴클레오티드를포함하는 발현벡터 를제공한다.  Another aspect of the present invention provides an expression vector comprising the polynucleotide.
본발명의 또다른측면은, 상기 발현벡터가도입되어 형질전환된 형질전 환체를제공한다.  Another aspect of the present invention provides a transformant transformant into which the above expression vector has been introduced and transformed.
본발명의 또다른측면은, 상기 형질전환체를배양하여 배양물을수득하 는단계; 및 상기 배양물로부터 융합단백질을회수하는단계를포함하는융합단 백질을생산하는방법을제공한다.  Another aspect of the present invention is a method for culturing a transformant, comprising culturing the transformant to obtain a culture; And recovering the fusion protein from the culture.
본발명의 또다른측면은, 상기 융합단백질을유효성분으로포함하는헌 터증후군의 예방또는치료용약학조성물을제공한다.  Another aspect of the present invention provides a pharmaceutical composition for preventing or treating Hunter's syndrome comprising the fusion protein as an active ingredient.
본 발명의 또 다른 측면은, 상기 융합단백질을 개체에 투여하는 단계를 포함하는헌터증후군의 예방또는치료방법을제공한다. 발명의 효과  Yet another aspect of the present invention provides a method of preventing or treating Hunter's syndrome comprising administering the fusion protein to a subject. Effects of the Invention
본발명에 따른알부민과 으가결합된 단백질 접합체 또는융합단백질은 체내에서 지속성이 길어 현재 사용되고 있는 치료제보다 투여 주기를 연장시킬 수 있다. 또한, 상기 단백질 접합체 또는융합단백질을피하주사가가능한제형 으로개발하였으며, 피하투여를통해 소변및조직의 축적된글리코사미노글리칸 ½1(:033110요1 311 , 쇼이을 효율적으로 감소시킬 수 있다. 따라서, 본 발명의 알부민과 1將가결합된 단백질 접합체 또는융합단백질은 리소좀축적질환의 치 료제로서유용하게사용할수있다. 도면의간단한설명 The albumin-bound protein conjugate or fusion protein according to the present invention has a long persistence in the body and can prolong the administration period of the therapeutic agent currently used. In addition, the protein conjugate or fusion protein was developed as a subcutaneous injectable formulation, and glycosaminoglycan 1 (: 033 ) 110 1 3 11 accumulated in the urine and tissues can be efficiently reduced through subcutaneous administration . Therefore, the protein conjugate or fusion protein of albumin and first order fusion of the present invention can be usefully used as a treatment agent for lysosomal accumulation diseases. Brief Description of Drawings
도 1은재조합알부민과 1將가결합된 단백질 접합체 및 융합단백질을도 식화한도면이다,  FIG. 1 is a diagram showing a protein conjugate and a fusion protein which are combined with a silver-binding albumin and a first-order fusion,
도 2는 재조합 알부민과 1此가결합된 단백질 접합체의 제조과정을도식 화한도면이다.  FIG. 2 is a schematic diagram showing a process for preparing a protein conjugate having a 1-mer structure with recombinant albumin.
도 3은재조합알부민과 결합된 단백질 접합체(1이的)의 1此활성 을측정한도면이다. 2019/124973 1»(:1^1{2018/016240 도 4는 재조합 알부민과 1 가 결합된 단백질 접합체를況 3 쇼0£:로분석 한도면이다. Fig. 3 is a graph showing the activity of a protein conjugate (monovalent) bound to silver-binding albumin. Fig. FIG. 4 is an analysis of the protein conjugate bound to recombinant albumin and monovalent protein. FIG.
도 5는 재조합 알부민과 가결합된 단백질 접합체 또는융합단백질이 수용체에 의해 혈중반감기가증가하는작용기작을도식화한도면이다. 도 6은 재조합알부민과 1的가결합된 단백질 접합체를마우스에 투여한 후, 마우스의 혈중 105농도를측정한도면이다.  FIG. 5 is a graphical representation of a functional group in which a protein conjugate or fusion protein bound to recombinant albumin is increased in half-life by the receptor. FIG. 6 is a graph showing the concentration of mouse 105 in blood after administration of a protein conjugate conjugated with recombinant albumin in a mouse. FIG.
도 7은다각도광산란검출기
Figure imgf000006_0001
이용하여 재조합알부민과
Figure imgf000006_0002
가결합된단백질접합체의 분자량을측정한도면이다.
FIG. 7 is a cross-
Figure imgf000006_0001
And the recombinant albumin
Figure imgf000006_0002
And the molecular weight of the coupled protein conjugate is measured.
도 8은 재조합알부민과 1將가결합된 단백질 접합체의 등전점을분석한 도면이다.  8 is an isoelectric point analysis of the protein conjugate of recombinant albumin and first order fusion protein.
도 9는 재조합인간혈청 알부민 또는 재조합마우스 혈청 알부민과
Figure imgf000006_0003
가결합된단백질 접합체를마우스피부섬유아세포에 처리한후, 세포내 흡수된 1此의 함량을측정한도면이다.
Figure 9 is a graph showing the effect of recombinant human serum albumin or recombinant mouse serum albumin
Figure imgf000006_0003
FIG. 2 is a graph showing the content of 1-amino acid that is absorbed into a cell of a mouse skin fibroblast treated with a conjugated protein conjugate. FIG.
도 10은재조합인간혈청 알부민또는마우스혈청 알부민과 1此가결합 된 단백질 접합체를 헌터증후군을 앓고 있는 환자의 피부섬유아세포에 처리한 후, 세포내흡수된 1 의 함량을측정한도면이다.  FIG. 10 is a graph showing the content of intracellularly absorbed 1 after treating a skin fibroblast of a patient suffering from Hunter's syndrome with a protein conjugate conjugated with recombinant human serum albumin or mouse serum albumin.
도 11은 이듀로네이트- 2 -설파타제 넉아웃 마우스 0(0) 또는 정상마우스 (肝)에 1 또는 재조합알부민과 1將가결합된 단백잘접합체를 일주일 간격으 로투여한후, 25일간의 소변내 글리코사미노글리칸(이(:0331 110용1 311 , 요 의 배설량을나타낸도면이다 FIG. 11 shows the results of the administration of 1 well or conjugate of recombinant albumin and 1 order to iduronate-2-sulfatase knockout mouse 0 (0) or normal mouse at week intervals, followed by 25 days Urine glycosaminoglycans (for example, 0331 110 , 1 3 11, and urine excretion amount
도 12는 이듀로네이트- 2 -설파타제 넉아웃 마우스(1的) 또는 정상마우스 (肝)에千요 1將 또는 재조합 알부민과 1的가 결합된 단백질 접합체를 투여한 후, 일주일이 경과되었을때, 각마우스의 간조직에서 1能의 활성을비교분석 한도면이다.  FIG. 12 shows a graph showing the results of immunohistochemical analysis after one week has elapsed after administering a protein conjugate bound unilaterally to recombinant albumin or ichiyoshi firstly to iduronate-2-sulfatase knockout mouse (1) or normal mouse , And the activity of one function in the liver of each mouse.
도 13은 이듀로네이트- 2 -설파타제 넉아웃 마우스 ½0) 또는 정상마우스 에 요 1 또는 재조합 알부민과 1此가 결합된 단백질 접합체를 투여한 후, 일주일이 경과되었을때, 각마우스의 신장조직에서 1此의 활성을비교분 석한도면이다.  FIG. 13 shows the results of immunohistochemical staining of the mouse kidney of each mouse when one week was elapsed after administration of a protein conjugate in which 1 or recombinant albumin and 1 protein were bound to normal mice or dyrupate-2-sulfatase knockout mouse 1 This is a comparative analysis of the activity.
도 14는 이듀로네이트- 2 -설파타제 넉아웃 마우스(}於) 또는 정상마우스 에 표 1此 또는 재조합 알부민과 1 가 결합된 단백질 접합체를 투여한 2019/124973 1»(:1^1{2018/016240 후, 일주일이 경과되었을때 , 각마우스의 폐 조직에서 IDS의 활성을비교분석 한도면이다. 14 shows the results of administration of a conjugate of protein conjugated with monoclonal antibody or recombinant albumin to iduronate-2-sulfatase knockout mouse or normal mouse This is a comparative analysis of the activity of IDS in the lung tissues of each mouse after 1 week after 2019/124973 1: 1 {2018/016240.
도 15는 재조합 알부민과 IDS가 결합된 단백질 접합체의 격주 투여 시, 소변으로배출되는 GAG양을확인하기 위한이듀로네이트- 2 -설파타제 넉아웃마우 스를이용한동물실험스케줄을도식화한도면이다.  FIG. 15 is a diagram showing an animal experiment schedule using this duroate-2-sulfatase knockout mouse for confirming the amount of GAG released into the urine when the recombinant albumin-IDS-conjugated protein conjugate is administered every two weeks .
도 16은 이듀로네이트- 2 -설파타제 넉아웃 마우스 (K0) 또는 정상마우스 에 IDS또는재조합알부민과 IDS가결합된 단백질 접합체를 1주또는격주 로투여한후, 소변으로 배출되는크레아티닌 (creatinine) 양으로보정된 GAG양 (g GAG/g creatinine)을나타낸도면이다.  FIG. 16 is a graph showing changes in creatinine released into the urine after administration of IDU or recombinant albumin and IDS-conjugated protein conjugate to iduronate-2-sulfatase knockout mouse (K0) (G GAG / g creatinine) corrected for the amount of the GAG.
도 17은재조합알부민과 IDS가결합된단백질 접합체의 격주투여 시 각 기관에 축적되는 GAG양을확인하기 위한이듀로네이트- 2 -설파타제 넉아웃마우스 를이용한동물실험 스케줄을도식화한도면이다.  FIG. 17 is a diagram illustrating an animal experiment schedule using the duroate-2-sulfatase knockout mouse to confirm the amount of GAG accumulated in each organ when the protein conjugate of the combination of albumin and IDS is administered every two weeks.
도 18은 이듀로네이트- 2 -설파타제 넉아웃 마우스 (K0) 또는 정상마우스 ( 에 IDS또는재조합알부민과 IDS가결합된 단백질 접합체를 1주또는 격주 로투여한후, 2개월 경과시점에 마우스를희생시켜 간을채취한후축적된 GAG 및총단백량을측정한도면이다.  FIG. 18 is a graph showing the effect of the IDS or recombinant albumin-IDS-conjugated protein conjugate on the euduronate-2-sulfatase knockout mouse (K0) or normal mouse (1 or 2 weeks) And the accumulated amount of GAG and FGF after liver was sacrificed.
도 19는 이듀로네이트- 2 -설파타제 넉아웃 마우스 (K0) 또는 정상마우스 (WT)에 IDS또는채조합알부민과 IDS가결합된 단백질 접합체를 1주또는격주 로 투여한후, 2개월 경과시점에 마우스를 희생시켜 신장을 채취한후축적된 GAG및총단백량을측정한도면이다.  FIG. 19 is a graph showing the results of immunohistochemical staining of IDU-conjugated albumin and IDS-conjugated protein conjugate to iduronate-2-sulfatase knockout mouse (K0) or normal mouse (WT) In which the mouse was sacrificed and kidney was collected and the accumulated amount of GAG total protein was measured.
도 20은 이듀로네이트- 2 -설파타제 넉아웃 마우스 (K0) 또는 정상마우스 (WT)에 IDS또는재조합알부민과 IDS가결합된 단백질 접합체를 1주또는격주 로투여한후, 2개월 경과시점에 마우스를희생시켜 폐를채취한후축적된 GAG 및총단백량을측정한도면이다.  FIG. 20 shows the results of immunohistochemical staining of IDU or recombinant albumin and protein conjugate conjugated with IDS to iduronate-2-sulfatase knockout mouse (K0) or normal mouse (WT) FIG. 2 is a graph showing the amount of accumulated GAG and FGF after collecting the lungs at the sacrifice of a mouse.
도 21은재조합알부민과 IDS가결합된단백질 접합체의 단회 투여 시 소 변내 GAG배출량또는각기관에 축적되는 GAG양을확인하기 위한이듀로네이트 -2 -설파타제 넉아웃마우스를이용한동물실험스케줄을도식화한도면이다. 도 22는 1 rag/kg의 용량으로 재조합 알부민과 IDS가결합된 단백질 접합 체를단회 투여할경우소변내 GAG양을확인한도면이다.  FIG. 21 shows an animal experiment schedule using this duroate-2-sulfatase knockout mouse to confirm the amount of GAG released in the small intestine or the amount of GAG accumulated in each organ upon single administration of the protein conjugate conjugated with the recombinant albumin and IDS Fig. 22 is a graph showing the amount of GAG in the urine when a single dose of recombinant albumin and IDS-conjugated protein conjugate is administered at a dose of 1 rag / kg.
도 23은 1 mg/kg의 용량으로 IDS를단회 투여할경우소변내 GAG양을확 2019/124973 1»(:1 1{2018/016240 인한도면이다.
Figure imgf000008_0001
Figure 23 shows that when a single dose of IDS is administered at a dose of 1 mg / kg, 2019/124973 1: (1 1 2018/016240).
Figure imgf000008_0001
인한도면이다. Is a drawing caused by.
도 26은 이듀로네이트- 2 -설파타제 넉아웃 마우스(狀)) 또는 정상마우스
Figure imgf000008_0002
FIG. 26 is a graph showing the results of immunohistochemical staining for durotonate-2-sulfatase knockout mouse)
Figure imgf000008_0002
정한도면이다. FIG.
도 27은재조합알부민과 1將가결합된단백질 접합체의 반복투여 시 소
Figure imgf000008_0003
FIG. 27 shows the results of repeated administration of the protein conjugate of the combination of albumin and 1-mer.
Figure imgf000008_0003
-2 -설파타제 넉아웃마우스를이용한동물실험 스케줄을도식화한도면이다. 도 28은 1 /1¾의 용량으로 재조합 알부민과 1將가결합된 단백질 접합 -2-sulfatase knockout mouse. Fig. 28 is a graph showing the relationship between recombinant albumin and 1-mer protein binding at 1 /
Figure imgf000008_0004
Figure imgf000008_0004
인한도면이다. Is a drawing caused by.
도 32는 3 /^의 용량으로 재조합 알부민과 1將가결합된 단백질 접합  FIG. 32 shows the results of a protein binding assay in which a recombinant albumin and a first order fusion protein
Figure imgf000008_0005
Figure imgf000008_0005
인한도면이다. Is a drawing caused by.
도 36은 끼듀로네이트- 2 -설파타제 넉아웃 마우스(制) 또는 정상마우스 에 1 또는재조합알부민과 1此가결합된 단백질 접합체를반복투여하고 2019/124973 1»(:1^1{2018/016240 네 달후, 마우스를희생시켜 간을채취한후축적된 GAG및총단백량을측정한 도면이다. FIG. 36 shows the results of repeated administration of a protein conjugate of 1 or recombinant albumin and 1 < RTI ID = 0.0 > Nuclease < / RTI > conjugated to chimeric-2-sulfatase knockout mouse 2019/124973 1: (: 1 ^ {2018/016240 After four months, it is the measurement of the amount of accumulated GAG total amount of the liver after taking the liver at the sacrifice of the mouse.
도 37은 재조합 알부민과 IDS가결합된 단백질 접합체의 반복투여로 인 한 ADA (ant i -drug ant ibody)생성유무를확인한도면이다.  FIG. 37 is a graph showing the presence or absence of ADA (antidrug antibody) production by repeated administration of recombinant albumin and IDS-conjugated protein conjugate.
도 38은 재조합 알부민과 IDS가결합된 6종류의 융합단백질을도식화한 도면이다.  FIG. 38 is a diagram showing six kinds of fusion proteins in which recombinant albumin and IDS are combined.
도 39는 재조합 알부민과 IDS가 결합된 6 종류의 융합단백질을 정제 및 분리하는과정을나타낸도면이다.  39 is a diagram showing a process of purifying and separating six types of fusion proteins in which recombinant albumin and IDS are bound.
도 40은 IDS 및 재조합 알부민과 IDS가 결합된 6 종류의 융합단백질을 況 S-PAGE로분석한도면이다.  40 is an S-PAGE analysis of six kinds of fusion proteins in which IDS and recombinant albumin are bound to IDS.
도 41은 IDS및 재조합알부민과 IDS가결합된 6종류의 융합단백질을항 -IDS항체 또는항-인간혈청 재조합알부민 항체를 이용하여 웨스턴 블랏을수 행한도면이다. 발명의실시를위한최선의 형태  FIG. 41 is a view showing Western blotting using six anti-IDS antibodies or anti-human serum recombinant albumin antibodies against six kinds of IDS-conjugated fusion proteins with IDS and recombinant albumin. Best Mode for Carrying Out the Invention
이하, 본발명을상세히 설명한다.  Hereinafter, the present invention will be described in detail.
본 발명의 일 측면은, 하기 일반식 1 또는 일반식 2를 갖는 단백질 접합체를제공한다.  One aspect of the present invention provides a protein conjugate having the following general formula (1) or general formula (2).
[일반식 1]  [Formula 1]
Ai-Li-Xi  Ai-Li-Xi
[일반식到  [General expression
Xi-Li-Ai  Xi-Li-Ai
상기 식에서,  In this formula,
Ai은알부민또는알부민유도체 (derivat ives)이고;  Ai is an albumin or albumin derivative (derivat ives);
은링커이고;  Is a linker;
Xi은리소좀효소이다.  Xi is a lysosomal enzyme.
상기 리소좀 효소는 이듀로네이트 2 -설파타제 (iduronate-2-sul fatase, IDS) , 베타갈락토시다제 (beta-gal actosidase) , 갈락토스- 6 -설파타제 (Galactose- 6-sul fatase) , 베타-글루쿠로니다제 (beta-glucuronidase) , N-아세틸갈락토사민- 6 -설파타제 (N-acetylgalactosamine-6 sul fatase) , 2019/124973 1»(:1^1{2018/016240 글루코세레브로시다제 (glucocerebrosidase) , 알파-갈락토시다제 -A(Alpha galactosidase A) , 알파- L-이두로니다제 (alpha-L-iduronidase) , 알파- N- 아세틸글루코사미니다제 (Alpha-N-acetylglucosaminidase) 헤파란-알파_ 글루코사미나이드 (Heparaii-alpha-glucosaminide) , N-아세틸트랜스퍼라제 (N- acetyl transferase) , N-아세틸글루코사민 6 -설파타제 (N-acetylglucosamine 6- sul fatase) , 히알루로니다아제 (hyaluronidase)로 이루어진 군으로부터 선택되는 것일수 있다. 바람직하게는, 상기 리소좀효소는이듀로네이트 2 -설파타제일수 있다. The lysosomal enzyme may be selected from the group consisting of iduronate-2-sul fatase (IDS), beta-gal actosidase, Galactose-6-sulphatase, Beta-glucuronidase, N-acetylgalactosamine-6 sul fatase, N-acetylgalactosamine- Glucocerebrosidase, alpha-galactosidase A, alpha-L-iduronidase (alpha-L- iduronidase, Alpha-N-acetylglucosaminidase Heparai-alpha-glucosaminide, N-acetyl transferase, N-acetyl N-acetylglucosamine 6- sul fatase, hyaluronidase, and the like. Preferably, the lysosomal enzyme may be the duroate 2-sulfatase.
상기 IDS는 헤파란 설페이트 및 더마탄 설페이트의 분해에 관여하는 효소로서, IDS 결핍시 헌터증후군 또는 제 2형 뮤코다당증을 유발될 수 있다. 상기 IDS는서열번호 2의 아미노산서열을 가질 수 있으며, 서열번호 2와 95%, 96%, 97%, 98%또는 99%상동성을갖는아미노산서열을가질수있다.  The IDS is an enzyme involved in the degradation of heparan sulfate and dermatan sulfate, which can lead to Hunter's syndrome or type 2 mucosal saccharification upon IDS deficiency. The IDS may have the amino acid sequence of SEQ ID NO: 2 and may have an amino acid sequence having 95%, 96%, 97%, 98% or 99% homology with SEQ ID NO: 2.
상기 알부민은 혈청 알부민 또는 재조합 알부민일 수 있다. 상기 혈청 알부민은 혈장 속에 있는 알부민으로, 혈장 단백질 중 50% 이상을 차지한다. 또한, 혈청 알부민은 간에서 생산되며 조직에서 수분 혹은 대사산물의 이동에 관여한다. 구체적으로, 혈청 알부민은 교질삼투압 (col loid osmot i c pressure)을 유지함으로써 혈액량을 조절하는데 중요한 역할을 한다. 또한, 혈청 알부민은 수용성 호르몬, 담즙 염, 비결합된 빌리루빈, 유리 지방산 (아포프로틴), 칼슘, 이온 (트랜스페린) 및 와파린과 같은 일부 약물을 포함하여 소수성을 분리하여 낮은수용해도 분자에 대한 매개체 역할을 한다. 한편, 알부민은 자연적으로도 돌연변이가 자주 발생하며, 현재까지 발견된 알부민 돌연변이체가 79개에 이른다[Hum Mutat. 2008 Aug; 29(8) : 1007-16) . 또한, 알부민 결합부위에 대한 약물간의 경쟁은약물중하나의 자유분율을증가시킴으로써 약물상호작용을 야기할수있어 효력에 영향을미친다.  The albumin may be serum albumin or recombinant albumin. The serum albumin is albumin in the plasma, accounting for more than 50% of plasma proteins. In addition, serum albumin is produced in the liver and is involved in the transport of water or metabolites in tissues. Specifically, serum albumin plays an important role in controlling blood volume by maintaining colloid osmotic pressure. In addition, serum albumin contains some drugs such as water-soluble hormones, bile salts, unconjugated bilirubin, free fatty acids (apoprotein), calcium, ions (transferrin) and warfarin, . On the other hand, albumin is naturally mutated frequently, and there are 79 albumin mutants found so far [Hum Mutat. 2008 Aug; 29 (8): 1007-16). In addition, competition between drugs for the albumin binding site increases the free fraction of one of the drugs, thereby affecting drug efficacy, leading to drug interactions.
상기 혈청 알부민은 인간 혈청 알부민 (human serum albumin, HSA) 또는 마우스 혈청 알부민일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 알부민은서열번호 1로표시되는아미노산을포함하는것일수있다. 또한, 상기 알부민유도체는서열번호 1의 아미노산서열과 90%이상의 상동성을 갖는 것일 수 있다. 구체적으로, 상기 알부민유도체는서열번호 1의 아미노산서열과 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%또는 99%상동성을갖는것일수있다. 2019/124973 1»(:1^1{2018/016240
Figure imgf000011_0001
The serum albumin may be human serum albumin (HSA) or mouse serum albumin, but is not limited thereto. In addition, the albumin may include an amino acid represented by SEQ ID NO: 1. In addition, the albumin derivative may have 90% or more homology with the amino acid sequence of SEQ ID NO: 1. Specifically, the albumin derivative may have 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% homology with the amino acid sequence of SEQ ID NO: . 2019/124973 1 »(: 1 ^ 1 {2018/016240
Figure imgf000011_0001
살모넬라 티피뮤리움 C¾//¾33e//a typhimurium) 등의 박테리아 세포; 사카로마이세스 세레비지애 ( Saccharomyces cereviae) , 스키조사카로마이세스 폼비 K Schi zosaccharomyces pombe) 등의 효모 세포; 피치아 파스토리스 (P/c/z/a pastor is) 등의 균류세포; 드로조필라 (Z?rosop/z//a) , 스포도프테라프루기페르다 入今 USpodoptera frugiperda cel l/ Sf9 cel l)등의 곤충 세포; CHO, COS, NSO,
Figure imgf000011_0002
Bacterial cells such as Salmonella typhimurium C? / / ¾3 ; 3 e // a typhimurium); Yeast cells such as Saccharomyces cerevisiae, Schi zosaccharomyces pombe); Fungal cells such as P / c / z / a pastor is; Insect cells such as Drosophila (Z? Rosop / z // a), Spodoptera frugiperidae now USpodoptera frugiperda cel l / Sf9 cel l); CHO, COS, NSO,
Figure imgf000011_0002
오리자 자포니카 (必丁 a japonica) 등의 식물 세포로부터 유전자 재조합을 통해 제조한알부민일수있다. And albumin produced through gene recombination from plant cells such as Oriza japonica.
상기 링커는 0 kDa 초과 내지 5 kDa 이하의 크기를 갖는 폴리에틸렌 글리콜 (po lyethyl ene glycol , PEG)일수있다. 바람직하게는, 상기 링커는 0 kDa 초과내지 5 kDa이하, 0. 1 kDa이상내지 4.9 kDa이하, 0.2 kDa이상내지 4.8 kDa 0 .3 kDa이상내지 4.7 kDa이하, 0.4 kDa이상.내지 4.6 kDa이하, 0.5 kDa 이상내지 4.5 kDa이하, 0.6 kDa 이상내지 4.4 kDa이하, 0.7 kDa이상내지 4.3 kDa 이하, 0.8 kDa 이상 내지 4.2 kDa 이하, 0.9 kDa 이상 내지 4. 1 kDa 이하, 1 kDa 이상내지 4 kDa이하, 1 . 1 kDa이상내지 3.9 kDa이하, 1.2 kDa 초과 이상 3.8 kDa이하, 1 .3 kDa이상내지 3.7 kDa이하, 1 .4 kDa 이상내지The linker may be a polyethylene glycol (PEG) having a size of more than 0 kDa and not more than 5 kDa. Preferably, the linker is more than 0 kDa to less than 5 kDa, more than 0.1 kDa to less than 4.9 kDa, more than 0.2 kDa to less than 4.8 kDa, more than 0.3 kDa to less than 4.7 kDa, more than 0.4 kDa . From about 0.4 kDa or more to about 4.3 kDa, from about 0.8 kDa to about 4.2 kDa, from about 0.9 kDa or more to about 4. 1 kDa or less, or from 1 kDa or more to about 4.0 kDa or less To 4 kDa or less; Not less than 1 kDa and not more than 3.9 kDa, not less than 1.2 kDa but not more than 3.8 kDa, not less than 1.3 kDa and not more than 3.7 kDa, not less than 1.4 kDa,
3.6 kDa이하, 1.5 kDa이상내지 3.5 kDa 이하의 크기를 갖는 PEG일 수 있다. 바람직하게는 3.4
Figure imgf000011_0003
3.6 kDa or less, and 1.5 kDa or more to 3.5 kDa or less. Preferably 3.4
Figure imgf000011_0003
구체적으로, 상기 단백질 접합체는 알부민과 IDS가링커를통해 결합하는 것일수있다.  Specifically, the protein conjugate may be albumin and IDS bound through a linker.
상기 링커의 한쪽 말단은 IDS와 아마이드 결합 (ami de bond)을 이룰 수 있다. 이때, 상기 아마이드 결합은 NHS 에스테르 아민 반응 (NHS ester amine react ion)을 통해 결합을 이룬 것일 수 있다. 상기 NHS 에스테르 아민 반응은 NHS 에스테르 (N-hydroxysucc inimi de-ester)가 생리학적 조건 또는 약 알칼리성 조건 (pH 7.2내지 9)에서 1차아민 (pr imary amines )과반응하여 이루어진다. 구체적으로, 상기 아마이드 결합은 IDS를 구성하고 있는 아미노산 중 리신 (lysine)에 있는잔기인 1차아민이 NHS에스테르아민 반응을통해 결합을 이룬 것일 수 있다. 이때, 상기 아마이드 결합은 IDS를 구성하고 아미노산에서 19개의 리신 중 어느 하나에서 이루어질 수 있다. 구체적으로, 상기 아마이드 2019/124973 1»(:1^1{2018/016240 결합은 IDS를 구성하고 있는 리신 중 57번째, 124번째, 164번째, 169번째, 199번째, 211번째, 213번째, 236번째, 240번째, 295번째, 376번째, 436번째, 440번째, 483번째또는 486번째위치의 리신에서 이루어질수있다. One end of the linker can form an amide bond with the IDS. At this time, the amide bond may be bonded through an NHS ester amine reaction. The NHS ester amine reaction is carried out by reacting N-hydroxysuccinic de-ester with primary amines under physiological conditions or weakly alkaline conditions (pH 7.2 to 9). Specifically, the amide bond may be a primary amine, which is a residue in a lysine among the amino acids constituting the IDS, via a NHS ester amine reaction. At this time, the amide bond constitutes IDS and can be formed from any one of 19 lysines in amino acids. Specifically, 2019/124973 1 (1: 1) 2018/016240 The combination is selected from the group consisting of 57th, 124th, 164th, 169th, 199th, 211th, 213th, 236th, 240th, 295th, 376th, 436th, 440th, 483th or 486th position of the lysine residue.
또한, 상기 링커의 나머지 한쪽 말단은 알부민과 티오에테르 결합 (thioether bond)을 이룰 수 있다. 이때, 상기 티오에테르 결합은 말레이미드 티올 반응 (maleimide thiol react ion)을 통해 결합을 이룬 것일 수 있다. 구체적으로, 상기 말레이미드 티올 반응은 말레이미드기 (maleimide group)가중성 pH조건 (pH 6.5내지 7)에서 SH기 (sul fhydryl group)와반응하여 이루어진다.  In addition, the other end of the linker may form a thioether bond with albumin. At this time, the thioether bond may be bonded through maleimide thiol reacting. Specifically, the maleimide thiol reaction is carried out by reacting with a SH group (sul fhydryl group) under a maleimide group weighted pH condition (pH 6.5 to 7).
구체적으로, 상기 티오에테르 결합은 알부민을 구성하고 있는 아미노산 중시스테인 (cysteine)에 있는況기가말레이미드티올반응을통해 결합을이룬 것일 수 있다. 이때, 상기 티오에티르 결합은 알부민을 구성하고 있는 아미노산에서 36개의 시스테인중아느하나에서 이루어질수 있다. 구체적으로, 상기 티오에테르 결합은 알부민 도메인 I에 자연적으로 존재하고 있는 하나의 자유시스테인 (C34)에서 이루어질수있다.  Specifically, the thioether bond may be a bond in an amino acid-rich cysteine constituting albumin through a maleimide thiol reaction. At this time, the thioether bond may be formed in one of the 36 cysteines in the amino acid constituting albumin. Specifically, the thioether linkage can be made in one free cysteine (C34) naturally present in the albumin domain I.
일 구체예로, 본 발명의 단백질 접합체는 i ) IDS의 라이신 (lysine)에 있는 1차아민기와 PEG말단에 있는 NHS에스테르와반응시켜 안정적인아마이드 결합을이루는단계; 및 i i ) 혈청 알부민을넣어 나머지 한쪽의 PEG말단에 있는 말레미드기와 알부민의 자유 시스테인의 예기를 반응시켜 안정적인 티오에테르 결합을이루는단계를통해제조할수있다.  In one embodiment, the protein conjugate of the invention comprises: i) reacting with a primary amine group in the lysine of IDS and an NHS ester at the PEG terminus to form a stable amide bond; And i) adding serum albumin to prepare a stable thioether bond by reacting the maleimide group at the other PEG end with the anticipation of free cysteine of albumin.
상기 단백질 접합체는 1개 내지 15개의 알부민이 IDS와 결합된 것일 수 있다. 구체적으로, 상기 단백질 접합체는 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개, 11개, 12개, 13개, 14개 또는 15개의 알부민이 IDS와 결합된 것일 수 있다. 바람직하게는, 상기 단백질 접합체는 1개 또는 2개의 알부민이 IDS와결합된것일수있다.  The protein conjugate may be one to fifteen albumin combined with IDS. Specifically, the protein conjugate may comprise one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, It may be that albumin is bound to IDS. Preferably, the protein conjugate may be one or two albumin conjugated to IDS.
일 구체예로서, 상기 단백질 접합체는 1개의 IDS와 1개의 알부민이 결합된 것 (IDS-PEG-알부민)일수있다. 또한, 상기 단백질 접합체는 1개의 IDS와 2개의 알부민이 결합된 것 (IDS-PEG- (알부민) 2)일 수 있다. 일 구체예로서, 상기 단백질 접합체는상기 i ) 및 i i) 단계를통해 제조할경우, 3: 1의 비율로 IDS- PEG-알부민과 IDS-PEG- (알부민) 2의 형태로제조되는것을확인하였다. 2019/124973 1»(:1^1{2018/016240 본 발명자들은 지속성 및 안정성이 증가된 제 2형 뮤코다당증 또는 헌터증후군질환의 치료제를개발하기 위해 연구한결과, 알부민과 1敗가결합된 단백질 접합체를 제조하였다(도 7). 또한, 상기 제조한 단백질 접합체의 1此 활성을측정한결과 1將활성이 유지되는 것을확인하였다(도 3). 나아가, 상기 제조한 단백질 접합체를 이듀로네이트- 2 -설파타제 넉아웃 마우스에 다양한 주기로투여한결과, 소변 및 각조직에서
Figure imgf000013_0001
양이 감소하는 것을확인하였다. 특히, 기존의 1將보다투여주기가늘어나투여횟수가감소함에도불구하고 체내 효과적으로감소시키는것을확인하였다(도 11내지 도 36).
In one embodiment, the protein conjugate may be one in which one IDS and one albumin are bound (IDS-PEG-albumin). In addition, the protein conjugate may be one in which one IDS and two albumin are bound (IDS-PEG- (albumin) 2) . In one embodiment, the protein conjugate is prepared in the form of IDS-PEG-albumin and IDS-PEG- (albumin) 2 at a ratio of 3: 1 when prepared via steps i) and ii) . The present inventors have studied to develop a therapeutic agent for type 2 mucosal saccharosis or Hunter's syndrome disease with increased persistence and stability. As a result, Protein conjugate was prepared (Fig. 7). In addition, 1 activity of the protein conjugate prepared above was measured, and it was confirmed that the 1 potential activity was maintained (FIG. 3). Further, the protein conjugate prepared above was administered to the euduronate-2-sulfatase knockout mouse at various intervals, and as a result,
Figure imgf000013_0001
And the amount decreased. In particular, it was confirmed that the administration frequency was increased and the number of administration was decreased, but it was effectively reduced in the body (Figs. 11 to 36).
본 발명의 단백질 접합체는 알부민과 1 가 연결된 재조합 단백질로 기존의 1^보다체내에서 지속성 및 1的활성이 우수한것을확인하였다. 따라서 , 상기 단백질 접합체는 헌터증후군의 예방 또는 치료용 약학 조성물의 유효성분으로사용될수있다.  The protein conjugate of the present invention is a recombinant protein that is monovalently linked to albumin, and it has been confirmed that the protein conjugate is superior to the conventional one in terms of persistence and 1 activity in the body. Therefore, the protein conjugate can be used as an active ingredient of a pharmaceutical composition for preventing or treating Hunter's syndrome.
본 발명의 다른 측면은, 상기 단백질 접합체를 유효성분으로 포함하는 헌터증후군의 예방또는치료용약학조성물을제공한다.  Another aspect of the present invention provides a pharmaceutical composition for preventing or treating Hunter's syndrome comprising the protein conjugate as an active ingredient.
이때, 상기 단백질 접합체는
Figure imgf000013_0002
부민, 1此 표(}-(알부민) 2 또는 이들의 혼합형태일 수 있다. 상기 약학조성물의 총 중량에 대하여 유효성분인 본발명에 따른단백질 접합체를 10내지 95중량%로포함할수있다. 상가약학 조성물은 투여를 위해 상가 기재한 유효성분 이외에 추가로 약학적으로 허용 가능한담체를 1종이상포함하여 제제화할수있다.
At this time, the protein conjugate
Figure imgf000013_0002
(Albumin) 2, or a combination thereof. The protein conjugate according to the present invention, which is an active ingredient, may be contained in an amount of 10 to 95% by weight based on the total weight of the pharmaceutical composition. The pharmaceutical composition of the present invention may be formulated to contain at least one pharmaceutically acceptable carrier in addition to the active ingredient described above for administration.
상기 약학 조성물의 투여량은 질환의 종류, 질환의 중증도, 조성물에 포함된 유효성분 및 다른성분의 종류 및 함량, 제형와종류 및 환자의 연령, 체중, 일반건강상태, 성별 및식이, 투여 시간, 투여경로및조성물의 분비율, 치료기간, 동시사용되는약물을비롯한다양한인자에 따라조절될수있다. 또한, 상기 약학 조성물은 당업계에 공지된 다양한 방법으로 개체에 투여될 수 있다. 상기 투여 경로는 투여 방법, 체액의 부피, 점성도 등을 고려하여 통상의 기술자가 적절히 선택할수 있다. 상기 약학조성물은 공지된 방법에 따라헌터증후군을앓고있는환자에 투여될수있다.  The dosage of the pharmaceutical composition may vary depending on factors such as the type of the disease, the severity of the disease, the kind and amount of the active ingredient and other ingredients contained in the composition, the form and the kind, and the patient's age, weight, general health status, sex and diet, The route and fraction of the composition, the duration of the treatment, the drug being co-administered, and the like. In addition, the pharmaceutical composition may be administered to a subject by various methods known in the art. The administration route can be appropriately selected by a person skilled in the art in consideration of the administration method, the volume of the body fluid, the viscosity, and the like. The pharmaceutical composition may be administered to a patient suffering from Hunter's syndrome according to known methods.
본 발명의 또 다른 측면은, 상기 단백질 접합체를 개체에 투여하는 단계를포함하는헌터증후군을예방또는치료하는방법을제공한다.  Yet another aspect of the present invention provides a method for preventing or treating Hunter's syndrome comprising administering the protein conjugate to a subject.
상기 단백질 접합체는 상술한 바와 동일하다. 상기 개체는 인간을 2019/124973 1»(:1^1{2018/016240 포함하는포유류일수있으며, 구체적으로, 상기 개체는헌터증후군을앓고있는 인간일수있다. The protein conjugate is the same as described above. The object The subject may be a mammal, including Hunter syndrome. The term " Hunter "
상기 투여는 정맥, 피하, 피내, 근육내, 비강내, 뇌실내 또는 척수강내 투여하는것일수있다. 또한, 상기 투여는 3개월마다 1회, 2개월마다 1회, 매달 1회, 3주에 1회, 2주마다 1회 또는매주 1회 투여될수있다.  Such administration can be by intravenous, subcutaneous, intradermal, intramuscular, intranasal, intracerebral or intrathecal administration. In addition, the administration can be administered once every three months, once every two months, once every month, once every three weeks, once every two weeks, or once a week.
본 발명의 또 다른 측면은, 알부민 (albumin) 또는 알부민 유도체와 및 리소좀효소를포함하는융합단백질을제공한다.  Yet another aspect of the present invention provides a fusion protein comprising an albumin or albumin derivative and a lysosomal enzyme.
상기 융합단백질이 하기 구조에서 선택되는 어느 하나의 구조를 가지는 것일수있다:  The fusion protein may have any structure selected from the following structures:
A2-X2 , X2~A2 , A2-L2-X2, X2 ~L2 _A2 , X2 _A2 _X2 , k fd 2_1쎄父2 ,2 -쇼2_七2- A 2 -X 2, X 2 ~ A 2, A 2- L 2 -X 2, X 2 ~ L 2 _ A 2, X 2 _ A 2 _ X2, k fd 2 _1 theta父 2, 2 - Shows 2 _ 7 2 -
X32, 父2 _12_公2니 - X22-1 - 2ᄀ¾3, 쇼2-父2 _1 -쇼3, ᅀ2-1 ᅥ( 2 _1게3 ; X3 2 , Father 2 _ 1 2 _ Public 2 - X 2 , 2 -1 - 2 ᄀ ¾3, Show 2 - Father 2 _ 1 - Show 3, ᅀ 2 -1 ᅥ ( 2 _ 1 Crave 3;
A2또는 A3는각각독립적인알부민또는알부민유도체이고; A 2 or A 3 is an independent albumin or albumin derivative, respectively;
L2또는 L3는각각독립적인링커이며; L 2 or L 3 are each independently a linker;
¾는리소좀효소이다.  Is a lysosomal enzyme.
상기 알부민, 알부민 유도체 및 리소좀 효소는 상술한 바와 동일하다. 구체적으로, 상기 리소좀 효소는 이듀로네이트- 2 -설파타제 (IDS)일 수 있다. 상기 IDS는상술한바와동일하다.  The albumin, the albumin derivative and the lysosomal enzyme are the same as described above. Specifically, the lysosomal enzyme may be an iduronate-2-sulfatase (IDS). The IDS is the same as described above.
상기 융합단백질은 알부민과 IDS가 직접 연결된 것일 수 있다. 또한, 상기 링커는 펩타이드 링커일 수 있다. 구체적으로, 상기 펩타이드 링커는 1개 내지 100개, 3개 내지 50개 또는 5개 내지 40개의 아미노산으로 이루어진 것일 수있다.  The fusion protein may be one in which albumin and IDS are directly linked. In addition, the linker may be a peptide linker. Specifically, the peptide linker may be composed of 1 to 100, 3 to 50 or 5 to 40 amino acids.
상기 펩타이드 링커는 비유연성 링커 (r igid l inker) 또는 유연성 링커 ( f lexible l inker)일수있다. 상기 펩타이드링커는비유연성링커, 유연성 링커, 절단성 링커 또는 디펩타이드가 단독 또는 복합적으로 연결한 것일 수 있다. 구체적으로, 상기 펩타이드 링커는서열번호 4내지 6중선택되는 어느 하나의 아미노산서열을갖는것일수있다.  The peptide linker may be a non-flexible linker or a flexible linker. The peptide linker may be a non-flexible linker, a flexible linker, a cleavable linker, or a dipeptide, either singly or in combination. Specifically, the peptide linker may have any one of the amino acid sequences of SEQ ID NOS: 4-6.
구체적으로, 상기 비유연성 링커는 A(EMAK)nA의 아미노산 서열을 갖는 것일 .수 있으며, 이때, 상기 n은 1 내지 5의 정수일 수 있다. 상기 비유연성 링커는 PAPAP또는 (XP)n의 아미노산서열을갖는것일수있다. 이때, 상기 X는 2019/124973 1»(:1^1{2018/016240 알라닌 (Ala),리신 (Lys)또는글루탐산 (Glu)일수 있으며, 상기 은 5내지 17의 정수일 수 있다. 일 구체예로서, 상기 비유연성 링커는 서열번호 4또는 5의 아미노산서열을포함하는것일수있다. Specifically, the non-compliant linker may have an amino acid sequence of A (EMAK) nA, wherein n may be an integer of 1 to 5. The non-compliant linker may be one having an amino acid sequence of PAPAP or (XP) n. At this time, X is May be alanine (Ala), lysine (Lys) or glutamic acid (Glu), and the above may be an integer of 5 to 17. In one embodiment, the non-compliant linker may comprise the amino acid sequence of SEQ ID NO: 4 or 5.
상기 유연성 링커는 (GGGGS)n의 아미노산 서열을 갖는 것일 수 있으며, 이때, 상기 n은 1내지 5의 정수일 수 있다. 또한, 상기 유연성 링커는 (G)n의 아미노산서열을 갖는 것일 수 있으며, 이때, 상기 n은 6내지 8의 정수일 수 있다. 일 구체예로서, 상기 유연성 링커는 서열번호 6의 아미노산 서열을 포함하는것일수있다.  The flexible linker may have an amino acid sequence of (GGGGS) n, wherein n may be an integer of 1 to 5. In addition, the flexible linker may have an amino acid sequence of (G) n, wherein n may be an integer of 6 to 8. In one embodiment, the flexible linker may comprise the amino acid sequence of SEQ ID NO: 6.
상기 펩타이드 링커는 절단성 링커를 포함하는 것일 수 있다. 상기 절단성 링커는카텝신 B절단서열 (Cathepsin B cleavage sequence) , 퓨린 절단 서열 (Furin cleavage motif sequence)또는트름빈 절단서열 (Thrombin cleavage sequence)일 수 있다. 상기 카텝신 B 절단 서열은 카텝신 B(cathepsin 에 특이적으로 분해되는 GFLG(Gly-Phe-Leu-Gly) 또는 FKFL(Phe-Lys-Phe-Leu)의 아미노산서열을 갖는 것일 수 있다. 또한, 상기 퓨린 절단서열은 퓨린 절단 모티프 (Furin cleavage motif)를 포함하는 R-(R/K/X)-R의 서열을 갖는 것일 수 있으며, 이때,상기 는자연에 존재하는아미노산일수있다.구체적으로, 상기 퓨린 절단 모티프를 포함하는 서열은 RXRRR, RXKXR 또는 狀 RXR의 서열을 포함하는 것일 수 있다. 나아가, 상기 트롬빈 절단 서열은 A-B-Pro-Arg-X-Y의 아미노산서열을갖는것일 수 있으며, 이때,상기 A및 B는소수성 아미노산일 수있으며,상기 X밑 는비산성 아미노산일수있다.  The peptide linker may be one comprising a cleavable linker. The cleavable linker may be a cathepsin B cleavage sequence, a Furin cleavage motif sequence or a Thrombin cleavage sequence. The cathepsin B truncation sequence may be one having an amino acid sequence of GFLG (Gly-Phe-Leu-Gly) or FKFL (Phe-Lys-Phe-Leu) specifically degraded to cathepsin B. Furthermore, The purine cleavage sequence may have a sequence of R- (R / K / X) -R comprising a purine cleavage motif, wherein the amino acid may be naturally occurring. The sequence comprising the purine cleavage motif may comprise a sequence of RXRRR, RXKXR or RXR. Further, the thrombin cleavage sequence may be one having the amino acid sequence of AB-Pro-Arg-XY, The A and B may be hydrophobic amino acids, and the X may be a non-acidic amino acid.
일 구체예로서 ,상기 절단성 링커는서열번호 7내지 12의 아미노산서열 중 어느 하나를포함하는 것일 수 있다. 또한, 상기 펩타미드 링커는서열번호 서열번호 7내지 12중선택되는어느하나의 아미노산서열을포함하는것일수 있다.  In one embodiment, the cleavable linker may comprise any of the amino acid sequences of SEQ ID NOS: 7 to 12. In addition, the peptide linker may include any one of the amino acid sequences of SEQ ID NOS: 7-12.
상기 펩타이드 링커의 C-말단은 IDS의 N-말단에 연결된 것일 수 있으며, 이때,상기 펩타이드링커의 N-말단은알부민의 C-말단과연결될수 있다.또한, 상기 펩타이드 링커의 N-말단은 IDS의 C-말단에 연결된 것일 수 있으며, 이때, 상기 펩타이드 링커의 C-말단은 알부민의 N-말단과 연결될 수 있다. 일 구체예로서, 상기 융합단백질은 IDS-HSA, IDS-(G4S)3-HSA, IDS-A(EMAK)4A-HSA, HSA-IDS, HSA-(G4S)3-IDS 또는 HSA-A(EAAAK)4A-IDS의 형태일 수 있으나, 이에 2019/124973 1»(:1^1{2018/016240 제한되는것은아니다. The C-terminus of the peptide linker may be linked to the N-terminus of the IDS, and the N-terminus of the peptide linker may be linked to the C-terminus of the albumin. Terminal of the peptide linker, wherein the C-terminus of the peptide linker may be linked to the N-terminus of the albumin. In one embodiment, the fusion protein is selected from the group consisting of IDS-HSA, IDS- (G4S) 3 -HSA, IDS-A (EMAK) 4A-HSA, HSA- IDS, HSA- (G4S) ) ≪ / RTI > 4A-IDS, 2019/124973 1 (1 ^ {2018/016240 Not limited.
상기 융합단백질은 당해 분야에 공지된 화학적 펩타이드 합성방법으로 제조하거나 , 상기 융합단백질을 코딩하는 유전자를 111?(1015636 ^8111
Figure imgf000016_0001
이용해 증폭할수있다. 상기 등의 방법으로증폭시킨유전자를 이용하여 공지된방법으로발현벡터를합성할수있다. 또한, 합성한발현벡터를 클로닝한후, 세포에서 발현시켜 제조할수있다.
The fusion protein is? A gene the art prepared by a chemical peptide synthesis method known in the art, or encoding the fusion protein 111 (1) 0 1 5 sheets 6 36 ^ 8111
Figure imgf000016_0001
Can be amplified using. An expression vector can be synthesized by a known method using the gene amplified by the above-mentioned method. Alternatively, the synthetic expression vector can be cloned and then expressed in cells.
본 발명의 또 다른 측면은 , 상기 융합 단백질을 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현벡터, 상기 발현벡터가 도입된 형질전환체 및 상기 형질전환체를 이용하여 상기 융합단백질을생산하는방법을제공한다.  Another aspect of the present invention relates to a method for producing the fusion protein using the polynucleotide encoding the fusion protein, the expression vector comprising the polynucleotide, the transformant into which the expression vector is introduced, and the transformant .
본 발명의 또 다른 측면은 상기 융합단백질을 코딩하는 폴리뉴클레오티드를 제공한다. 상기 폴리뉴클레오티드는 서열번호 13 내지 서열번호 18로이루어진군으로부터 선택되는하나의 염기서열을포함할수있다. 구체적으로, 상기 폴리뉴클레오티드는 1아狀요(서열번호 13), 1 -½4幻3- 狀쇼(서열번호 14), 1的-사£始 04-狀쇼(서열번호 15), 此 1 (서열번호 16), 狀 ½43)3-1此(서열번호 17), HSA-A(EAAAK)4A-IDS(서열번호 18)을 코딩하는 염기서열을포함할수있다. Another aspect of the invention provides a polynucleotide encoding said fusion protein. The polynucleotide may comprise a single nucleotide sequence selected from the group consisting of SEQ ID NO: 13 to SEQ ID NO: 18. Specifically, the polynucleotide is 1 Ah狀I (SEQ ID NO: 13), 1 -½4幻3-狀show (SEQ ID NO: 14), 1的-此four £始04-狀show (SEQ ID NO: 15), 1 ( SEQ ID NO: 16),狀½43) 3 -1此( SEQ ID NO: 17), HSA-a (EAAAK ) 4 a-IDS ( SEQ ID NO: 18) can contain a DNA sequence encoding.
또한, 상기 융합단백질에서 1此가 말단 쪽에 선행되는 경우, 1 는 시그널 펩타이드를 포함할 수 있다. 이때 시그널 펩타이:드를 포함하는 1的의 아미노산서열은 서열번호 2와 같다. 반면, 상기 융합단백질에서 1此가 0말단 쪽에 후행되는 경우, 1 는 시그널 펩타이드를 포함하지 않을 수 있다. 이때, 상기 시그널 펩타이드를 포함하지 않는 1將의 아미노산 서열은 서열번호 2로 표시되는 아미노산서열에서 말단에서부터 25개의 아미노산이 결실된 것일 수 있다. 구체적으로, 시그널 펩타이드를 포함하지 않는 1敗의 아미노산 서열은 서열번호 3과같다.  Also, in the fusion protein, when 1 is preceded by a terminal, 1 may comprise a signal peptide. In this case, the amino acid sequence of one amino acid including the signal peptide is shown in SEQ ID NO: 2. On the other hand, in the fusion protein, when 1 is followed to the 0 terminal, 1 may not include a signal peptide. In this case, the first amino acid sequence that does not include the signal peptide may be the amino acid sequence of SEQ ID NO: 2 in which 25 amino acids have been deleted from the terminal. Specifically, one amino acid sequence that does not contain a signal peptide is shown in SEQ ID NO: 3.
상기 폴리뉴클레오티드는 하나 이상의 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있다. 폴리뉴클레오티드를 화학적으로 합성하여 제조하는 경우, 당업계에 널리 공지된 합성법, 예를 들어 문헌(此2613 ^^81111, 은 0½111 1 £(1 £1塔1. , 37:73-127, 1988)에 기술된방법을이용할수 있으며, 트리에스테르,포스파이트, 포스포르아미다이트 및 표-포스페이트 방법, 2019/124973 1»(:1^1{2018/016240 及및 기타오토프라이머 방법, 고체 지지체상의 올리고뉴클레오타이드합성법 등을들수있다. The polynucleotide may be mutated by substitution, deletion, insertion, or a combination thereof, of one or more bases. When prepared by chemical synthesis with a polynucleotide, a synthetic method well known in the art, e.g., literature (此26 1 3 ^^ 81111, is 0 ½111 1 £ (1 £ 1 塔1. , 37: 73-127, 1988) can be used, and the triester, phosphite, phosphoramidite and table-phosphate method, And other auto primer methods, oligonucleotide synthesis methods on solid supports, and the like.
본 발명의 또 다른 측면은, 상기 폴리뉴클레오티드를 포함하는 발현벡터를제공한다.  Yet another aspect of the present invention provides an expression vector comprising the polynucleotide.
본 발명에서 사용하는 용어 ”발현벡터"란, 목적하는 숙주세포에서 목적 단백질을 발현할 수 있는 재조합 벡터로서, 유전자 삽입물이 발현되도록 작동하게 연결된 필수적인 조절 요소를 포함하는 유전자 제작물을 의미한다. 상기 발현벡터는 개시코돈, 종결코돈, 프로모터, 오퍼레이터 등의 발현조절 요소들을포함할수 있다. 상기 개시 코돈및 종결 코돈은 일반적으로 폴리펩타이드를 암호화하는 뉴클레오티드 서열의 일부로 간주되며, 유전자 제작물이 투여되었을 때 개체에서 반드시 작용을 나타내야 하며 코딩 서열과 인프레
Figure imgf000017_0001
있어야한다. 벡터의 프로모터는구성적 또는유도성일수 있다.
As used herein, the term " expression vector "refers to a recombinant vector capable of expressing a desired protein in a desired host cell, and includes a necessary regulatory element operatively linked to the expression of the gene insert. The vector may include expression control elements such as initiation codon, termination codon, promoter, operator, etc. The initiation codon and termination codon are generally considered to be part of the nucleotide sequence encoding the polypeptide, It must exhibit an action,
Figure imgf000017_0001
. The promoter of the vector may be constitutive or inducible.
본 발명에서 사용하는 용어 "작동가능하게
Figure imgf000017_0002
The term "operably "
Figure imgf000017_0002
일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질 또는 쇼를 코딩하는 핵산 서열이 기능적으로
Figure imgf000017_0003
11 36)되어 있는 상태를 의미한다. 예를들어 프로모터와단백질 또는 1¾桃를코딩하는핵산서열이 작동 가능하게 연결되어 코딩서열의 발현에 영향을 미칠 수 있다. 발현벡터와의 작동적 연결은 당해 기술분야메서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 에요 절단 및 연결은 당해 기술 분야에서 일반적으로알려진효소등을사용할수있다.
The nucleic acid expression control sequence and the nucleic acid sequence encoding the desired protein or protein are functionally
Figure imgf000017_0003
11 and 3 Ding 6) is meant a state in which. For example, a nucleic acid sequence encoding a promoter and a protein or 1/4 peach may be operatively linked to affect the expression of the coding sequence. Operational linkage with an expression vector can be made using recombinant techniques well known in the art, and site-specific cleavage and linkage can be achieved using enzymes generally known in the art.
또한, 상기 발현벡터는 세포 배양액으로부터 단백질의 분리를 촉진하기 위하여 융합 폴리펩타이드의 배출을 위한 시그널 서열을 포함할 수 있다. 특이적인 개시 시그널은또한삽입된 핵산서열의 효율적인 번역에 필요할수도 있다. 이들 시그널은 사 개시 코돈 및 인접한 서열들을 포함한다. 어떤 경우에는, ^ 개시 코돈을 포함할 수 있는 외인성 번역 조절 시그널이 제공되어야 한다. 이들 외인성 번역 조절 시그널들 및 개시 코돈들은 다양한 천연 및 합성 공급원일 수 있다. 발현 효율은 적당한 전사 또는 번역 강화 인자의 도입에 의하여 증가될수있다. In addition, the expression vector may include a signal sequence for the release of the fusion polypeptide to facilitate the separation of the protein from the cell culture medium . A specific initiation signal may also be required for efficient translation of the inserted nucleic acid sequence. These signals include four initiation codons and contiguous sequences. In some cases, an exogenous translational control signal, which may include the initiation codon, should be provided. These exogenous translational control signals and initiation codons can be of various natural and synthetic sources. Expression efficiency can be increased by the introduction of appropriate transcriptional or translational enhancers.
상기 발현벡터는상기 융합단백질을코딩하는폴리뉴클레오티드를포함할 2019/124973 1»(:1^1{2018/016240 수 있다. 이때, 사용되는 벡터는 본 발명의 융합단백질을 생산할 수 있는 한, 특별히 이에 제한되지 않는다. 바람직하게는, 상기 발현벡터는플라스미드 0 , 파아지 0 등이 될 수 있다. 보다 바람직하게는, 상기 발현벡터는상업적으로 개발된 플라스미드(1)X18,
Figure imgf000018_0001
3.4 등), 대장균 유래 플라스미드 060내1?322, ?8요325, 1)1018, p\]Cll9 등), 바실러스 서브틸리스 유래 플라스미드(!>1]6110, 5등), 효모-유래 플라스미드作묘1)13, YEp24, ¥0?50 등), 파아지 ·(幻 !·이요, ¾3】"0112:1」\, £¾1 3 ,
Figure imgf000018_0002
入· 10 , 入 1: 11, 入· 등) , 동물 바이러스 벡터(레트로바이러스 10\^1113) , 아데노바이러스(크선해 배) , 백시니아 바이러스 0\ (;(:111 배) 등), 곤충 바이러스 벡터(배큘로바이러스 0330110 1113) 등) 등이 될 수 있다. 상기 발현벡터는숙주세포에 따라서 단백질의 발현량과수식 등이 다르게 나타나므로, 목적에 가장 적합한 숙주세포를 선택하여 사용함이 바람직하다. 예를 들어, 본 발명의 실시예에서는쇼3(:1와 Pacl 제한효소 절단부위가 있는 0 3.4 벡터를 사용하였다.
Wherein the expression vector comprises a polynucleotide encoding the fusion protein 2019/124973 1 (1 ^ {2018/016240). Here, the vector used is not particularly limited as long as it can produce the fusion protein of the present invention. Preferably, the expression vector may be plasmid 0, phage 0, or the like. More preferably, the expression vector comprises the commercially developed plasmid ( 1 ) X18,
Figure imgf000018_0001
??? 3.4, etc.), within one derived from E. coli plasmid 060 322 8 John 325, 1) 1018, p \ ] Cll9 etc.), Bacillus subtilis-derived plasmids (> 1] 6110, 5, etc.), yeast-derived plasmids 1 , 13, YEp24, ¥ 0 ? 50, etc.), phage (幻 3 !, ¾3】 "0112:
Figure imgf000018_0002
入· 10,入1: 11 ,入· etc.), animal virus vectors (retrovirus 10 \ ^ 1113), adenovirus (greater seonhae times), vaccinia virus 0 \ (; (: 111 times), etc.) Insect virus vector (baculovirus 0 330110 1113 ), etc.) and the like. Since the amount of expression of the protein and the expression of the expression vector are different depending on the host cell, it is preferable to select and use the host cell most suitable for the purpose . For example , in an embodiment of the present invention, 0 3.4 vectors with show 3 (: 1 and Pacl restriction sites were used.
본 발명의 또 다른 측면은, 상기 발현벡터가 도입된 형질전환체를 제공한다. 상기 형질전환체는 발현벡터를 숙주에 도입하여 형질전환시켜서 제작될수있다. 또한, 상기 발현벡터에 포함된폴리뉴클레오티드를발현시켜 본 발명의 융합단백질을생산할수있다.  Yet another aspect of the present invention provides a transformant into which the expression vector is introduced. The transformant can be produced by introducing an expression vector into a host and transforming the vector. In addition, the fusion protein of the present invention can be produced by expressing the polynucleotide contained in the expression vector.
상기 형질전환은 다양한 방법에 의하여 수행될 수 있다. 본 발명의 융합단백질을 생산할 수 있는 한, 특별히 이에 제한되지 않는다, 구체적으로, 상기 형질전환 방법은 03012 침전법, 03012 침전법에 » ( 111 11The transformation can be carried out by various methods. Not limited to one that can produce a fusion protein of the present invention, particularly to, particularly, the transformation method 03 01 2 precipitation method, a precipitation method 03 01 2 »(111 11
3110 (16)라는 환원물질을 사용함으로써 효율을 높인 11811311311 방법, 전기천공법(616 1010대1^011), 인산칼슘 침전법, 원형질 융합법, 실리콘 카바이드 섬유를 이용한 교반법, 아그로박테리아 매개된 형질전환법,
Figure imgf000018_0003
이용한 형질전환법, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환방법 등이사용될수있다.
311 1 £ 0 (1 6 ) 11 811311311 method by using a reducing material, electric drilling method ( 616 101 ) 0 0 1 011 ), calcium phosphate precipitation method, protoplast fusion method, stirring using silicon carbide fiber Methods, Agrobacterium-mediated transformation,
Figure imgf000018_0003
Transgenic transformation methods, dextran sulfate, lipofectamine and dry / inhibition-mediated transformation methods can be used.
또한, 상기 형질전환체의 제작에 사용되는 숙주세포 역시 본 발명의 융합단백질을 생산할 수 있는 한, 특별히 이에 제한되지 않는다. 구체적으로 상기 숙주세포는 대장균犯. 0010 , 스트렙토마이세스, 살모넬라티피뮤리움등의 박테리아 세포; 사카로마이세스 세레비지애, 스키조사카로마이세스 폼베 등의 2019/124973 1»(:1^1{2018/016240 효모 세포; 피치아 파스토리스 등의 균류 세포; 드로조필라, 스포도프테라 Sf9 세포등의 곤충세포; CHO, COS, NS0, 293, 보우멜라노마세포등의 동물세포; 또는식물세포일수있다. Also, the host cell used for the production of the transformant is not particularly limited as long as it can produce the fusion protein of the present invention. Specifically, the host cell is E. coli. 00 10, streptomyces, Salmonella typhimurium; Sakaromasse Serebijia, ski survey Karamoisse Pombe, etc. 2019/124973 1 »(1 ^ 1 {2018/016240 yeast cells; Fungal cells such as Pichia pastoris; Insect cells such as Drosophila and Spodoptera Sf9 cells; Animal cells such as CHO, COS, NS0, 293, Bowmanella cells; Or plant cells.
본발명의 또다른측면은, 상기 융합단백질을생산하는방법을제공한다. 상기 융합단백질 생산방법은 i )상기 형질전환체를배양하여 배양물을수득하는 단계; 및 i i ) 상기 배양물로부터 본 발명의 융합단백질을 회수하는 단계를 포함할수있다.  Yet another aspect of the present invention provides a method for producing the fusion protein. The fusion protein production method comprises the steps of: i) culturing the transformant to obtain a culture; And i) recovering the fusion protein of the present invention from the culture.
본 발명의 용어 "배양'’이란, 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는방법을의미한다.  The term "cultivation " of the present invention means a method of growing a microorganism under an appropriately artificially controlled environmental condition.
상기 형질전환체를 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로, 상기 배양은 본 발명의 융합단백질을 발현시켜서 생산할수 있는한특별히 이에 제한되지 않는다. 구체적으로, 상기 배양은 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정 ( fed batch or repeated fed batch process)에서 연속식으로배양할수있다.  The method for culturing the transformant may be carried out using a method well known in the art. Specifically, the culture is not particularly limited as long as it can be produced by expressing the fusion protein of the present invention. Specifically, the culturing can be continuously performed in a batch process, an injection batch, or a repeated batch or batch fed batch process.
배양에 사용되는 배지는 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족시킬 수 있다. 사용될 수 있는 탄소원으로는글루코즈 및 자일로즈의 혼합당을주 탄소원으로사용할수 있다. 이외에 탄소원으로는 수크로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은당및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유등과같은오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은유기산이 포함될 수 있다. 또한, 상기 탄소원은 개별적으로또는혼합물로서사용될수있다.  The medium used for culturing can meet the requirements of a specific strain in an appropriate manner while controlling the temperature, pH and the like under aerobic conditions in a conventional medium containing an appropriate carbon source, nitrogen source, amino acid, vitamin, and the like. As the carbon source that can be used, a mixed sugar of glucose and xylose can be used as a main carbon source. In addition, carbon sources include sugars and carbohydrates such as sucrose, lactose, fructose, maltose, starch and cellulose, oils and fats such as soybean oil, sunflower oil, castor oil and coconut oil, palmitic acid, stearic acid and linoleic acid Alcohols such as fatty acids, glycerol, ethanol, and organic acids such as acetic acid. In addition, the carbon sources may be used individually or as a mixture.
사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과같은아미노산및 펩톤, NZ-아민, 육류추출물, 효모추출물, 맥아추출물, 옥수수 침지액, 카세안가수분해물, 어류또는그의 분해생성물, 탈지 대두케이크또는그의 분해생성물등유기질소원이 사용될수 있다.상기 질소원은단독또는조합되어 사용될수있다.  Nitrogen sources that may be used include inorganic sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine and glutamine, and organic substances such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, carcaen hydrolyzate, fish or their degradation products, defatted soybean cake, The nitrogen sources may be used alone or in combination.
상기 배지에는 인원으로서 인산 제 1칼륨, 인산 제 2칼륨 및 대응되는 2019/124973 1»(:1^1{2018/016240 소둠-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있다. 또한, 무기화합물로는염화나트륨 , 염화칼슘, 염화철 , 황산마그네슘, 황산철 , 황산망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 배지에 아미노산 및 비타민과같은필수성장물질을더 첨가할수있다. The culture medium is supplemented with potassium phosphate, potassium phosphate, 2019/124973 1 (1) {2018/016240 Sodum-containing salts may be included. The number of people that can be used may include potassium dihydrogenphosphate or dipotassium hydrogenphosphate or the corresponding sodium-containing salts. Examples of the inorganic compound include sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate. Finally, essential growth substances such as amino acids and vitamins can be added to the medium.
또한, 배양배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식, 유가식 또는 연속식으로 첨가될 수 있으나, 특별히 이에 제한되지는 않는다. 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산또는 황산과 같은산화합물을 적절한 방식으로사용하여 배양물의卵를조절할수있다.  In addition, suitable precursors may be used in the culture medium. The above-mentioned raw materials can be added to the culture in the culture process in a batch manner, in an oil-feeding manner or in a continuous manner by an appropriate method, but it is not particularly limited thereto. Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia, or acid compounds such as phosphoric acid or sulfuric acid can be used in a suitable manner to control the egg of the culture.
또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체(예, 공기)를 주입한다. 배양물의 온도는
Figure imgf000020_0001
내지 37°0 , 바람직하게는 30方 내지 35 이다.
In addition, bubble formation can be suppressed by using a defoaming agent such as a fatty acid polyglycol ester. An oxygen or oxygen-containing gas (e.g., air) is injected into the culture to maintain aerobic conditions. The temperature of the culture is
Figure imgf000020_0001
To < RTI ID = 0.0 > 370, < / RTI >
아울러, 배양물로부터 상기 융합단백질을 회수하는 단계는 당업계에 공지된 방법에 의해 수행될 수 있다. 구체적으로, 상기 회수 방법은 생산된 본 발명의 융합단백질을 회수할 수 있는 한, 특별히 이에 제한되지 않는다. 바람직하게는, 상기 회수방법은원심분리, 여과, 추출, 분무, 건조, 증발, 침전, 결정화, 전기영동, 분별용해(예를 들면 암모늄설페이트 침전), 크로마토그래피(예를들면 이온교환, 친화성, 소수성 및크기배제)등의 방법일 수있다.  In addition, the step of recovering the fusion protein from the culture can be carried out by a method known in the art. Specifically, the recovering method is not particularly limited as long as it can recover the produced fusion protein of the present invention. Preferably, the recovery method is carried out by centrifugation, filtration, extraction, spraying, drying, evaporation, precipitation, crystallization, electrophoresis, fractional dissolution (eg ammonium sulfate precipitation), chromatography (eg ion exchange, affinity , Hydrophobicity and size exclusion), and the like.
본 발명의 또 다른 측면은, 상기 융합단백질을 유효성분으로 포함하는 헌터증후군의 예방또는치료용약학조성물을제공한다.  Yet another aspect of the present invention provides a pharmaceutical composition for preventing or treating Hunter's syndrome comprising the fusion protein as an active ingredient.
상기 융합단백질은상술한바와동일하다.  The fusion protein is the same as described above.
이때, 상기 약학조성물의 총중량에 대하여 유효성분인 본 발명에 따른 단백질 접합체 또는 융합단백질을 10 내지 95 중량%로 포함할 수 있다. 상기 약학 조성물은 투여를 위해 상기 기재한 유효성분 이외에 추가로 약학적으로 허용가능한담체를 1종이상포함하여 제제화할수있다.  At this time, the protein conjugate or fusion protein according to the present invention, which is an active ingredient, may be contained in an amount of 10 to 95% by weight based on the total weight of the pharmaceutical composition. The pharmaceutical composition may be formulated to contain at least one pharmaceutically acceptable carrier in addition to the above-described effective ingredients for administration.
상기 약학 조성물의 투여량은 질환의 종류, 질환의 중증도, 조성물에 포함된 유효성분 및 다른성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 2019/124973 1»(:1^1{2018/016240 체중, 일반건강상태, 성별 및식이, 투여 시간, 투여경로및조성물의 분비율, 치료기간, 동시사용되는약물을비롯한다양한인자에 따라조절될수있다. 또한, 상기 약학 조성물은 당업계에 공지된 다양한 방법으로 개체에 투여될 수 있다. 상기 투여 경로는 투여 방법, 체액의 부피, 점성도 등을 고려하여 통상의 기술자가 적절히 선택할수 있다. 상기 약학조성물은 공지된 방법에 따라헌터증후군을앓고있는환자에 투여될수있다. The dosage of the pharmaceutical composition may vary depending on the kind of the disease, the severity of the disease, the kind and amount of the active ingredient and other ingredients contained in the composition, the type of the formulation and the age, It can be adjusted according to various factors including weight, general health status, sex and diet, time of administration, route of administration and fraction of composition, duration of treatment, concurrent medication, etc. have. In addition, the pharmaceutical composition may be administered to a subject by various methods known in the art. The administration route can be appropriately selected by a person skilled in the art in consideration of the administration method, the volume of the body fluid, the viscosity, and the like. The pharmaceutical composition may be administered to a patient suffering from Hunter's syndrome according to known methods.
본 발명의 또 다른 측면은, 상기 융합단백질을 개체에 투여하는 단계를 포함하는헌터증후군을예방또는치료하는방법을제공한다.  Yet another aspect of the present invention provides a method of preventing or treating Hunter's syndrome comprising administering the fusion protein to a subject.
상기 약학조성물은상술한바와동일하다. 상기 개체는인간을포함하는 포유류일 수 있으며, 구체적으로, 상기 개체는 헌터증후군을 앓고 있는 인간일 수있다.  The pharmaceutical composition is the same as described above. The subject may be a mammal, including a human. Specifically, the subject may be a human suffering from Hunter's syndrome.
상기 투여는 정맥, 피하, 피내, 근육내, 비강내, 뇌실내 또는 척수강내 투여하는것일수있다. 또한, 상기 투여는 3개월마다 1회, 2개월마다 1회, 매달 1회, 3주에 1회, 2주마다 1회또는매주 1회 투여될수있다.  Such administration can be by intravenous, subcutaneous, intradermal, intramuscular, intranasal, intracerebral or intrathecal administration. In addition, the administration can be administered once every three months, once every two months, once every month, once every three weeks, once every two weeks, or once a week.
본 발명의 또 다른 측면은, 헌터증후군을 치료하기 위한 본 발명의 단백질접합체의 용도를제공한다.  Another aspect of the present invention provides the use of a protein conjugate of the invention for treating Hunter's syndrome.
본 발명의 또다른측면은, 헌터증후군 치료용 약제를 제조하기 위한본 발명의 단백질접합체의 용도를제공한다.  Another aspect of the present invention provides the use of a protein conjugate of the invention for the manufacture of a medicament for the treatment of Hunter's syndrome.
본 발명의 또 다른 측면은, 헌터증후군을 치료하기 위한 본 발명의 융합단백질의 용도를제공한다.  Another aspect of the invention provides the use of a fusion protein of the invention to treat Hunter's syndrome.
본 발명의 또다른측면은, 헌터증후군치료용 약제를 제조하기 위한본 발명의 융합단백질의 용도를제공한다. 발명의실시를위한형태  Another aspect of the present invention provides the use of a fusion protein of the invention for the manufacture of a medicament for the treatment of Hunter's syndrome. DETAILED DESCRIPTION OF THE INVENTION
이하, 본발명을실시예에 의해 상세히 설명한다. 단, 하기 실시예는본 발명을예시하기 위한것일뿐, 본발명이 하기 실시예로한정되는것은아니다. 제조예 1. 재조합 알부민과 이듀로네이트- 2 -설파타제가 결합된 단백질 접합체제조  Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are intended to illustrate the present invention, and the present invention is not limited to the following examples. Production Example 1. Production of recombinant albumin and protein conjugate conjugated with iuduronate-2-sulfatase
재조합 알부민(쇼-6608, @ 打 !!)과 이듀로네이트- 2 - 2019/124973 1»(:1^1{2018/016240 설파타제 (Iduronate-2-sul fatase, IDS)를 PEG (polyethylene glycol)를 이용하여 단백질 접합체 (chemical conjugat ion)를 제조하는 과정을 도 2에 나타내었다. 이때, PEG는 일본의 사의 heterofunct ional PEGCsunbr ight MA-034TS)제품을 이용하였다. Recombinant albumin (Sho - 6608, @ 打 !!) and euduronate - 2 - The process of preparing a protein conjugate using PEG (polyethylene glycol) using Iduronate-2-sul fatase (IDS) is shown in FIG. 2 Respectively. At this time, PEG was purchased from Japan's heterofunctional PEGCsunbright MA-034TS).
먼저, IDS의 라이신 (lysine)에 있는 1차 아민 (primary amine)과 PEG 말단에 있는 NHS 에스테르 (N-hydroxysuccinimide ester)와 반응하여 안정적인 아마이드 결합을 이룬 후에 음이온 교환수지를 이용하여 남아있는 PEG를 제거하였다. 그 후, 마우스 또는 인간 혈청 알부민을 넣어 한쪽의 PEG에 있는 말레미드 (maleimide)와 알부민의 자유 시스테인의 SH기 (Sul fhydryl group) 부분이 반응하여 안정적인 티오에테르 (thioether) 결합을 이루게 반응시켰다. 알부민과 결합된 IDS는 음이온교환수지 및 크기 배제 크로마토크래피 (size exclusion chromatography)를이용하여 분리 및정제하였다. 실험예 1. 알부민과 IDS가결합된단백질접합체의활성 확인  First, the primary amine in the lysine of IDS is reacted with the NH-ester (N-hydroxysuccinimide ester) at the end of PEG to form a stable amide bond and then the remaining PEG is removed using anion exchange resin Respectively. After that, a mouse or human serum albumin was added to react the maleimide on one PEG with the SH group of the free cysteine of albumin to form a stable thioether bond. IDS bound to albumin was isolated and purified using anion exchange resin and size exclusion chromatography. Experimental Example 1. Identification of activity of albumin-IDS conjugated protein conjugate
제조예 1에서 제조한 단백질 접합체의 IDS 활성을 측정하았다. 구체적으로 , 활성측정은 합성기질인 4 -메틸움벨리페릴- L-이듀로니드- 2- 설페이트 (4-methylumbel l i feryl -L- i dur on i de-2-su 1 f at e , 4MlK[doA-2S)와 IDS를 4시간 동안 반응시킨 후, 기질로부터 설페이트를 1차적으로 유리시켰다 (1차 반응) . 1차 반응 후, 젠자임사의 알두라자임을 첨가하고 24시간동안 반응시킨 후, 기질인 4 -메틸움벨리페릴- L-이듀로니드 (1차 반응 시 설페이트가 유리된 반응물)와 2차 효소반응을 진행시켰다. 그 결과, L-이듀로니드가 유리되고 최종적으로남아있는 4 -메틸움벨리페릴의 형광의 세기를측정 (Ex.355 nm/Em.460 nm)하여 IDS의 활성을평가하였다.  IDS activity of the protein conjugate prepared in Preparation Example 1 was measured. Specifically, the activity measurement was performed using a synthetic substrate, 4-methylumbelliferyl-L-iduronide-2-sulfate (4-methylumbel liferyl- doA-2S) was reacted with IDS for 4 hours, and the sulfate was firstly liberated from the substrate (first reaction). After the first reaction, aldulazide of Genzyme was added and reacted for 24 hours. Subsequently, the substrate, 4-methylumbelliferyl-L-iduronide (reactant free of sulfate in the first reaction) and the secondary enzyme The reaction was allowed to proceed. As a result, the activity of IDS was evaluated by measuring the intensity of fluorescence of 4-methylumbelliferyl (Ex.355 nm / Em.460 nm) in which L-iduronide was liberated and finally remained.
그 결과, 단백질 접합체는 비활성 (speci f i c act ivity) IDS 비교하여 96% 수준으로 활성이 유지되어, 알부민 결합에 따른 활성감소는 크지 않음을 확인하였다 (도 3) . 실험예 2. 알부민과 IDS가결합된단백질접합체의분자량확인  As a result, it was confirmed that the activity of the protein conjugate was 96% as compared to the specific activity of IDS, and the activity decrease due to albumin binding was not significant (FIG. 3). Experimental Example 2. Determination of molecular weight of protein conjugate conjugated with albumin and IDS
알부민과 IDS가결합된 단백질 접합체의 분자량을확인하기 위해, 다각도 광산란검출기 (SEC-MALS)를이용하여 측정하였다. 2019/124973 1»(:1^1{2018/016240 구체적으로, 제조예 1에서 제조한 알부민과 IDS가 결합된 단백질 접합체를포함하는 100成의 시료를 TSK-ge卜 G3000SWXL컬럼이 장착된 Shimadzu HPLC에 0.5 M/min의 속도로 흘려주었다. 그후, Shimadzu HPLC와 연결된 MALS 시스템인 Wyatt DAWN Heleos 11(18 angles) , Wyatt Opt i lab T-Rex(RI)을 통과하면서 생성된신호를 ASTRA 6소프트웨어를이용해분석하였다. To determine the molecular weight of protein conjugates conjugated with albumin and IDS, measurements were made using a multi-angle light scattering detector (SEC-MALS). Specifically, 100 samples containing albumin-IDS-conjugated protein conjugate prepared in Preparation Example 1 were subjected to Shimadzu HPLC (manufactured by Shimadzu Corporation) equipped with a TSK-geut G3000SWXL column At a rate of 0.5 M / min. The signals generated by passing through Wyatt DAWN Heleos 11 (18 angles) and Wyatt Optilab T-Rex (RI), a MALS system linked to Shimadzu HPLC, were analyzed using ASTRA 6 software.
분석결과는 ALBIDS IDS-PEG-알부민 단백질 접합체)의 이론적 분자량 계산치와 매우 유사한 값을 나타내었다. 또한, IDS-PEG-알부민과 IDS-PEG- (알부민) 2의 비율이 대략 3:1의 비율로 결합 형태로 구성되는 것을 확인하였다 (도 7) . 실험예 3. 알부민과 IDS가결합된단백질접합체의등전점분석 The results were very similar to the calculated theoretical molecular weights of the ALBIDS IDS-PEG-albumin protein conjugate. In addition, it was confirmed that the ratio of IDS-PEG-albumin to IDS-PEG- (albumin) 2 was approximately 3: 1 in a combined form (FIG. 7). Experimental Example 3: Isotope analysis of albumin-IDS conjugated protein conjugate
제조예 1에서 제조한 알부민과 IDS가 결합된 단백질 접합체의 등전점을 확인하였다. 구체적으로, pH기울기 (gradient)를형성하고 있는 IEF gel을 XCel l The isoelectric point of the albumin-IDS-conjugated protein conjugate prepared in Preparation Example 1 was confirmed. Specifically, the IEF gel forming the pH gradient is called XCel l
SureLock™ Mini-Cel l Electrophoresis System에 결합하고, 상부 챔버 (chamber)에 200 m요의 lx IEF 음극버퍼 (cathode buf fer)를 채워주고, 하부 챔버에 600 M의 양극버퍼 (anode buf fer)를 채워주었다. 알부민과 IDS가결합된 단백질 접합체를포함하는 샘플 10 와 IEF 샘플버퍼 10成를섞은혼합물 15 4를 각 웰 (wel l)에 로딩하고, IEF marker 5 id를 로딩하였다. 그 후, 전압을 100 V/1 hour, 200 V/1 hour, 500 V/ 30 min으로 3단계에 걸쳐 변화시키면서 전기영동을 수행하였으며, 12% TCA 용액으로 30분 동안 고정하였다. 그 후, 코마시블루 염색버퍼 (coomassie blue staining buf fer)로 30분 이상 염색한후 탈색용액 (destaining solut ion)으로탈색시킨후각샘플의 등전점을확인하였다. 이때, Invi tron사의 pH 3-10 IEF gel을사용하였으며, 표준.마커로는 SERVA사의 IEF markers 3-10, SERVA Liquid Mix를사용하였다. Coupled to a SureLock ™ Mini-Cel Electrophoresis System, the upper chamber was filled with 200 m IEF IEF cathode buffer and the lower chamber was filled with 600 M anode buffer (anode buffer) . A mixture of sample 10 containing albumin and the IDS-conjugated protein conjugate and IEF sample buffer 10 was loaded into each well (well) and loaded with 5 IEF marker. Thereafter, the electrophoresis was carried out while varying the voltage in three steps of 100 V / 1 hour, 200 V / 1 hour and 500 V / 30 min, and fixed with 12% TCA solution for 30 minutes. Thereafter, the isoelectric point of the olfactory sample decolored with a destaining solution was determined by staining with coomassie blue staining buffer for 30 minutes or more. At this time, pH 3-10 IEF gel from Invitron was used, and IEF markers 3-10 and SERVA Liquid Mix from SERVA were used as standard markers.
그 결과, 마우스 혈청 알부민 (MSA) 또는 인간 혈청 알부민 (HSA)와 IDS가 결합된단백질 접합체 모두약 4.2부터 4.5사이에 등전점이 위치함을확인하였다. 이는 IDS (<3.5)와알부민 (~5.0)중간에 위치하고있음을확인하였다 (도 8) . 실험예 4. 알부민과 IDS가 결합된 단백질 접합체의 in-vitro cel lular 2019/124973 1»(:1^1{2018/016240 uptake분석 As a result, it was confirmed that the isoelectric point was located between about 4.2 and 4.5 in both the mouse serum albumin (MSA) or the protein conjugate bound to human serum albumin (HSA) and IDS. It was found that it was located between IDS (<3.5) and albumin (~ 5.0) (FIG. 8). Experimental Example 4: In-vitro cel lular of albumin-IDS-conjugated protein conjugate 2019/124973 1 »(: 1 ^ 1 {2018/016240 uptake analysis
IDS또는알부민과 IDS접합체를 1 nM내지 128 nM농도별로희석한후, 일정시간 세포에 처리하여 세포 내로 흡수되도록 한 다음 ELISA를 통해 세포 내에 흡수된 IDS 또는 알부민과 IDS 접합체의 함량을 측정하였다. 이때, IDS 또는 알부민과 IDS 접합체의 처리 농도에 따른 세포 내 흡수된 함량에 대한 포화곡선을 결정하고, 포화곡선을 이용하여 세포 내 흡수된 단백의 최대 함량 (Vmax)을구하였다. IDS또는알부민과 IDS접합체의 처리 농도대비 흡수된 함량의 역수 그래프 (Hanes-wool f Plot)로 변환하여 특정물질이 흡수되는 최대 속도의 1/2에 해당하는속도일때의 기질농도인 (Km, Kuptake)를구하였다.  The IDS or albumin and IDS conjugate were diluted by 1 nM to 128 nM concentration, and then treated with cells for a certain period of time to be absorbed into the cells. Then, the content of IDS or albumin and IDS conjugate absorbed into the cells was measured by ELISA. At this time, the saturation curve for the intracellular absorbed content was determined according to the treatment concentration of IDS or albumin and IDS conjugate, and the maximum content (Vmax) of the intracellularly absorbed protein was determined using a saturation curve. (Km, Kuptake) at the rate corresponding to 1/2 of the maximum rate at which a specific substance is absorbed, by converting it into a reciprocal graph of the absorbed content of the IDS or the albumin and the IDS conjugate Respectively.
구체적으로, ELISA 분석을 위하여 96 -웰-플레이트에 ant i -IDS ant i body (R&D, AF2449)를 최종농도가 1 mg/M이 되도록 각 웰에 100 成씩 첨가하여 냉장온도에서 16시간동안반응시켰다. 16시간후, 용액을제거하고 IX PBS로 세척하였다. 배양용 배지 (IMDM, 10 v/v¾ FBS, 1 v/v% Ant i -ant i )에 정상 마우스 섬유아세포 (NIH/3T3) 또는 헌터증후군을 앓고 있는환자의 세포 (C0RIELL 1113 1; 6八¾13203)를재현탁하였다. 12 -웰-플레이트에 각웰당 1.0x105 cel Is이 되도록 2 M씩 분주 하고, 37 °C 온도, 5% C02 조건의. 인큐베이터에서 24시간 배양하였다. Specifically, for each ELISA assay, 100 μl each of anti-IDS ant i body (R & D, AF 2449) was added to each well to a final concentration of 1 mg / M in a 96-well plate, . After 16 hours, the solution was removed and washed with IX PBS. A medium for the culture (IMDM, 10 v / v¾ FBS , 1 v / v% Ant i -ant i) normal mouse fibroblasts (NIH / 3T3) or cells of patients with Hunter syndrome (C0RIELL 1 113 1 to; 6八Lt; / RTI &gt; 13203). Dissolve 2-M wells to a 12-well-plate at 1.0x10 5 cells / well and incubate at 37 ° C, 5% CO 2 . And cultured in an incubator for 24 hours.
각각의 IDS또는 알부민과 IDS접합체는희석용 배지 (IMDM, 5 v/v%抑 1 v/v% Ant i—ant i)를이용하여 128 nM, 64 nM, 32 nM, 16 nM, 8 nM, 4 nM, 2 nM 및 1 nM 농도로 희석하였다. 24시간 후, 플레이트에 있는 배지를 제거하고 각각의 농도의 IDS또는알부민과 IDS접합체를각웰에 2 1此씩 넣어준후 6시간 동안 37 °C온도 5 % C02조건의 인큐베이터에서 배양하였다. Each IDS or albumin and IDS conjugate was labeled with 128 nM, 64 nM, 32 nM, 16 nM, 8 nM, and 1 nM using dilution media (IMDM, 5 v / 4 nM, 2 nM and 1 nM concentration. After 24 hours, the medium on the plate was removed and IDS or albumin and IDS conjugate at the respective concentrations were added to each well in an amount of 2 1 / well , followed by culturing in an incubator at 37 ° C and 5% C0 2 for 6 hours.
6시간후, 남아 있는 배지를 제거하고실온 보관 중인 IX PBS로 각각의 웰을 1회 세척하였다. 이때, 웰에 부착한 세포가 떨어지지 않도록 조심스럽게 수행하였다. 그후, 각 웰에 M-PER Mammal ian Protein Extract ion Reagent 200 After 6 hours, the remaining medium was removed and each well was washed once with IX PBS at room temperature. At this time, care was taken so that the cells attached to the well did not fall off. Then, M-PER Mammalian Extract Reagent 200
UJL를 첨가하여 웰에 골고루 퍼지도록 하고 플레이트를 2°C 내지 8°C 온도의 냉장고에서 10분 내지 20분간 두었다. 그 후, 플레이트를 40° 내지 50。정도 기울여 아래쪽으로 세포 용해물을 모은 후, 새로운 용기에 옮겨 ELISA 분석을 진행하였다. 2019/124973 1»(:1^1{2018/016240 구체적으로, ELISA 플레이트에 biotinylated anti-human IDS antibody(R&D, BAF2449)를 처리하고 IX PBS로 세척한 후, streptoavidin- peroxidase(Sigraa, S-2438)를처리하고실온에서 1시간동안반응시켰다. 그후, 각웰에 세척액(0.05% PBST)을 200成씩 멀티 파이펫을이용하여 4회 세척하였다. 세척 후, 각 웰에 TMB peroxidase substrate(KPL, 52-00-00) 용액을 처리하여 발색시킨후, 450 nra파장에서 흡광도를측정하여농도를구하였다. UJL was added to spread well in the wells and the plates were left in the refrigerator at 2 ° C to 8 ° C for 10 minutes to 20 minutes. Thereafter, the cell lysate was collected downward by tilting the plate by about 40 to 50 degrees, and transferred to a new container to conduct ELISA analysis. Specifically, ELISA plates were treated with biotinylated anti-human IDS antibody (R & D, BAF 2449), washed with IX PBS, and then streptoavidin-peroxidase (Sigraa, S-2438 ) And reacted at room temperature for 1 hour. Thereafter, washings (0.05% PBST) were washed four times in 200 wells of each well using a multipipette. After washing, each well was treated with a solution of TMB peroxidase substrate (KPL, 52-00-00), and the concentration was determined by measuring the absorbance at 450 nra wavelength.
그 결과, 두 세포 모두 IDS의 양과 활성이 증가함을 확인하였다. 이를 통해, IDS의 세포내흡수능력을확인하였다 (도 9및도 10). 실험예 5. 알부민 및 IDS가결합된 단백질 접합체를투여한후, 소변내 As a result, the amount and activity of IDS were increased in both cells. This confirmed the intracellular absorption capacity of IDS (FIGS. 9 and 10). Experimental Example 5 After administration of albumin and IDS-conjugated protein conjugate,
GAG양감소효과확인 Confirming the effect of reducing the amount of GAG
알부민과 IDS가결합된 단백질 접합체를 매주 1회 투여하였을 때, 소변 내 GAG양이 감소하는지 확인하기 위해, 이듀로네이트-2-설파타제 넉아웃 마우스(K0) 및 정상마우스(WT)에 IDS 또는 알부민과 IDS가 결합된 단백질 접합체(ALBIDS)를 0.5 mg/kg(IDS 무게 기준) 투여용량으로 한달 동안 매주 투여하였다. 마우스를 이용한 실험은 25일 동안 진행되었으며, 소변의 채취는 IDS또는단백질접합체투여후 6일차에 실시하였다.  In order to confirm that the amount of GAG in the urine was decreased when the albumin and IDS conjugated protein conjugate were administered once a week, IDU or IDS was added to the iduronate-2-sulfatase knockout mouse (K0) and normal mouse (WT) Albumin and IDS-conjugated protein conjugates (ALBIDS) were administered weekly for one month at a dose of 0.5 mg / kg (based on IDS). Experiments with mice were carried out for 25 days, and urine collection was performed on day 6 after administration of IDS or protein conjugate.
그결과, IDS및 단백질 접합체 투여 후소변 내 GAG함량은 넉아웃(K0) 그룹에 비해 크게 감소되었으며, 투여 후 2주 후부터는 소변 .내 GAG 함량이 정상마우스수준으로 감소하였다. 이를통해, 넉아웃마우스에 IDS또는단백질 접합체를 투여함으로써 소변 내 GAG함량을 정상의 범위까지 저하시키는 것을 확인하였다 (도 11) . 실험예 6. 알부민 및 IDS가결합된 단백질 접합체를투여한후, 조직 내 GAG축적양감소효과확인 As a result, urinary GAG content after IDS and protein conjugate administration was significantly decreased compared to the knockout (K0) group . My GAG content decreased to normal mouse level. Thus, it was confirmed that the intragastric GAG content was lowered to the normal range by administering the IDS or protein conjugate to the knockout mouse (FIG. 11). Experimental Example 6. Confirmation of reduction effect of GAG accumulation in tissues after administering albumin and IDS-conjugated protein conjugate
알부민과 IDS가 결합된 단백질 접합체를 매주 1회 투여하였을 때, 조직 내 GAG 축적양이 감소하는지 확인하기 위해, 이듀로네이트-2-설파타제 넉아웃 마우스(K0) 및 정상마우스(WT)에 IDS 또는 알부민과 IDS가 결합된 단백질 접합체(ALBIDS)를 0.5 mg/kg(IDS 무게 기준) 투여용량으로 한달 동안 매주 투여하였다. 조직의 채취는마지막약물투여 후 7일째 (일주일후)에 실시하였다. 2019/124973 1»(:1^1{2018/016240 채취한조직은 -80°C온도의 냉동고에 보관하였다. In order to confirm that the amount of GAG accumulation in the tissues decreased when the albumin-IDS-conjugated protein conjugate was administered once a week, iridonate-2-sulfatase knockout mice (K0) and normal mice (WT) Or albumin and IDS-conjugated protein conjugates (ALBIDS) were administered weekly at a dose of 0.5 mg / kg (by IDS) for one month. Tissue harvesting was performed on the 7th day (one week after the last drug administration). The tissues collected were stored in a freezer at a temperature of -80 ° C.
보관된조직은 homogeni ze!· (BIOPEC PRODUCTS INC. Model 398)로균질화한 후초음파파쇄기 (Fi sher Scient i f i c Model 500)를 이용해 세포파쇄하였다. 그 후, K-ASSAY사의 sGAG Assay ki t (BP-004)를 이용하여 조직 내 GAG 축적양을 측정하였다. 또한, Pierce BCA assay ki t을 이용하여 조직 내 총 단백량을 분석하였다. 측정된 GAG양은 동일한 샘플에서 측정된 총 단백량으로 나누어 보정하였다.  The stored tissues were homogenized with homogenizer (BIOPEC PRODUCTS INC. Model 398) and then disrupted using an ultrasonic disrupter (Fischer Scientific Model 500). Thereafter, the amount of GAG accumulation in tissues was measured using sGAG assay kit (BP-004) from K-ASSAY. In addition, total protein content in tissues was analyzed using Pierce BCA assay kit. The amount of GAG measured was corrected by dividing by the total protein amount measured in the same sample.
【표 1] [Table 1]
Figure imgf000026_0005
그 결과, 표 1에 나타난 바와 같이 , 각 조직 내
Figure imgf000026_0001
야생형 마우스 대비 이듀로네이트- 2 -설파타제 넉아웃마우스의 경우모든조직에서
Figure imgf000026_0002
축적양이 증가하였다. 반면, 1將또는단백질 접합체를투여한마우스의 각조직 내
Figure imgf000026_0003
뇌를 제외한모든 조직에서 유의미한 감소가나타났다. 특히, 단백질 결합체를투여한그룹의 마우스에서 社必투여한그룹의 마우스보다조직
Figure imgf000026_0004
더 낮았다. 실험예 7. 알부민 및 1此가결합된 단백질 접합체를투여한후, 조직 내 108활성 확인
Figure imgf000026_0005
As a result, as shown in Table 1,
Figure imgf000026_0001
In the case of iduronate-2-sulfatase knockout mice versus wild-type mice,
Figure imgf000026_0002
The accumulation amount increased. On the other hand, in the mice administered with the first primer or the protein conjugate,
Figure imgf000026_0003
There was a significant decrease in all tissues except the brain. Particularly, in mice administered with the protein conjugate,
Figure imgf000026_0004
Lower. Experimental Example 7. After administration of the albumin and 1 &lt; nd &gt; conjugated protein conjugate,
알부민과 1將가 결합된 단백질 접합체를 매주 투여하였을 때, 조직 내 활성을 확인하기 위해, 이듀로네이트- 2 -설ᅭ파타제 넉아웃 마우스 0(0) 및 _ 정상마우스 ( )에 1 또는알부민과 1將가결합된단백질 접합체 (此이 )를 0.5 /1¾(1 무게 기준) 투여용량으로 한달동안매주투여하였다. 조직의 채취는 2019/124973 1»(:1^1{2018/016240 마지막 약물투여 후 7일째 (일주일 후)에 실시하였다. 채취한 조직은 -80°C 온도의 넁동고에 보관하였다. When the albumin-1 protein-binding protein conjugate was administered weekly, the activity of ioduronate-2-sulfapatase knockout mouse 0 (0) and normal mouse (1) or albumin And 1-mer protein conjugate (此) were administered weekly for one month at a dosage of 0.5 / 1 ¾ ( 1 weight). The collection of tissue 2019/124973 1: (1 ^ {2018/016240) was performed on the 7th day (one week after the last drug administration). The tissues were stored at -80 ° C.
보관된조직은 homogeni zer (BIOPEC PRODUCTS INC . Model 398)로균질화한 후초음파파쇄기 (Fi sher Sc i ent i f i c Model 500)를 이용해 세포파쇄하였다. 그 후, 실험예 1과동일한방법으로 IDS의 활성을측정하였다.  The stored tissues were homogenized with homogenizer (BIOPEC PRODUCTS INC. Model 398) and then disrupted using an ultrasonic disrupter (Fi sher Scientific Model 500). Thereafter, the activity of IDS was measured in the same manner as in Experimental Example 1.
그 결과, 파쇄된 조직에서의 IDS 활성은 간, 신장, 폐 조직에서 IDS를 투여한그룹 대비 단백질 접합체를투여한그룹에서 높게 측정아되었다. 특히, IDS를 투여한 그룹의 경우, 신장 및 폐 조직의 경우 투여 후 일주일 경과된 시점에서 IDS활성이 거의 나타나지 않은반면, 단백질 접합체를투여한그룹의 경우, 상당부분조직 내 IDS활성이 존속하고있음을확인하였다 (도 12내지 도 14) . 실험예 8. 알부민 및 IDS가 결합된 단백질 접합체를 격주 투여한 후, 소변내 GAG양감소효과확인  As a result, the IDS activity in the crushed tissue was highly measured in the group administered the IDS-to-protein conjugate in liver, kidney, and lung tissues. In particular, in the group administered with IDS, in the kidney and lung tissues, IDS activity was hardly observed at one week after administration, whereas in the group administered protein conjugate, tissue IDS activity persisted to a considerable extent (Figs. 12 to 14). Experimental Example 8. Confirmation of the effect of decreasing the amount of GAG in the urine after two weeks administration of albumin and IDS-conjugated protein conjugate
알부민과 IDS가결합된 단백질 접합체를 격주투여하였을 때, 소변으로 배출되는크레아티닌 양으로보정된 GAG양 (g GAG/g creat inine)을확인하기 위해, 이듀로네이트- 2 -설파타제 넉아웃 마우스 (K0) 및 정상마우스 에 IDS 또는 알부민과 IDS가 결합된 단백질 접합체 (ALBIDS)를 0.5 rag/kg( IDS 무게 기준) 투여용량으로 매주 또는 격주 투여하였다. 마우스를 이용한 실험은 60일 동안 진행되었으며, 소변은도 15에 표시된스케줄로채취하였다.  2-sulfatase knockout mouse (GAG / g creatinine), which was calibrated to the amount of creatinine excreted in the urine when bovine albumin and IDS conjugated protein conjugate were administered every other day K0) and a protein conjugate (ALBIDS) conjugated with IDS or albumin and IDS to normal mice were administered weekly or biweekly at a dose of 0.5 rag / kg (by weight of IDS). The experiment using the mouse was carried out for 60 days, and the urine was collected on the schedule shown in Fig.
그 결과, IDS 및 단백질 접합체 투여 후 소변 내 크레아티닌 양으로 보정된 GAG양 (g GAG/g creat inine)은 유의미하게 감소되었으며, 특히, 격주로 투여하였음에도 불구하고 단백질 접합체 투여한 그룹에서는 IDS보다 낮은 크레아티닌 양으로보정된 GAG양 (g GAG/g creat inine)이 측정되었다. 이를통해 단백질 접합체를투여할경우, 투여 간격을늘리거나투여횟수를줄일 수있음을 확인하였다 (도 16) . 실험예 9. 알부민과 IDS가결합된단백질 접합체를격주투여한후, 조직 내 GAG축적양감소효과확인  As a result, the amount of GAG (g GAG / g creatinine) corrected by urinary creatinine amount after administration of IDS and protein conjugate was significantly decreased, and in particular, in the group administered with protein conjugate, The amount of corrected GAG (g GAG / g creatinine) was measured. It was confirmed that when the protein conjugate is administered, the administration interval can be increased or the number of administrations can be reduced (FIG. 16). Experimental Example 9. Determination of the effect of decreasing the amount of GAG accumulation in tissues after bi-weekly administration of albumin-IDS conjugated protein conjugate
알부민과 IDS가 결합된 단백질 접합체를 격주 투여하였을 때, 조직내 2019/124973 1»(:1^1{2018/016240 축적되는 GAG양을 확인하기 위해, 이듀로네이트- 2 -설파타제 넉아웃 마우스 (K0) 및 정상마우스 (WT)에 IDS또는 알부민과 IDS가결합된 단백질 접합체 (ALBIDS)를 0.5 rag/kg( IDS무게 기준) 투여용량으로 매주 또는 격주 투여하였다. 마우스를 이용한 실험은 60일 동안 진행되었으며, 조직의 채취는 마지막 약물투여 후 7일째 (일주일 후)에 실시하였다. 채취한 조직은 -80°C 온도의 넁동고에 보관하였다 (도 17) . When the albumin and IDS-conjugated protein conjugate were administered every other day, IDS or albumin and IDS were transfected with iduronate-2-sulfatase knockout mouse (K0) and normal mouse (WT) in order to confirm the amount of accumulated GAG accumulated. The combined protein conjugate (ALBIDS) was administered weekly or biweekly at a dose of 0.5 rag / kg (by weight of IDS). Experiments with mice were carried out for 60 days, and tissue samples were collected on the 7th day (one week after the last drug administration). The collected tissues were stored at a temperature of -80 ° C (Fig. 17).
보관된조직은 homogenizer(BIOPEC PRODUCTS INC. Model 398)로균질화한 후 초음파 파쇄기 (Fi sher Scient i f ic Model 500)를 이용해 세포를 파쇄하였다. 그 후, K-ASSAY사의 sGAG Assay ki t (BP-004)를 이용하여 조직 내 GAG축적양을 측정하였다. 또한, Pierce BCA assay ki t를 이용하여 조직 내 총 단백량을 분석하였다. 측정된 GAG양은역시 측정된총단백량으로나누어 보정하였다. 그 결과, 격주로 IDS또는 단백질 접합체를투여한그룹 중 1.0 및 2.0 mg/kg의 용량으로 단백질 접합체를 투여한그룹의 경우, 측정된 모든 장기에서 양성대조군 그룹 (매주, 0.5 mpk IDS)의 GAG양과 유사한 수준으로 측정되었다. 반면, IDS의 농도를 2배로 늘려 1.0 mg/kg로 투여할 경우, 일부 장기 (l iver, lung)에서 양성대조군 대비 높은 GAG축적이 관찰되었다. 따라서, 2주간격 투여 시 단백질 접합체에 기존의 IDS투여보다장기에서 GAG축적양을 감소시키는효과가우수함을 확인하였다 (도 18내지 도 20) . 다만, 뇌 (brain)의경우는현재의투여조건에서는 GAG감소효과를확인할수는없었다. 실험예 10. 알부민 및 IDS가 결합된 단백질 접합체를 단회투여한 후, 소변내 GAG양감소효과확인  The tissues were homogenized with a homogenizer (BIOPEC PRODUCTS INC. Model 398) and then disrupted using an ultrasonic disrupter (FiSer Scientific Model 500). Thereafter, the amount of GAG accumulation in tissues was measured using sGAG assay kit (BP-004) from K-ASSAY. In addition, total protein content in tissues was analyzed using Pierce BCA assay kit. The amount of GAG measured was also divided by the total amount of protein measured. As a result, in the case of a group administered with protein conjugate at a dose of 1.0 and 2.0 mg / kg in the group administered with biweekly IDS or protein conjugate, the GAG amount of the positive control group (weekly, 0.5 mpk IDS) And were measured at similar levels. On the other hand, when the concentration of IDS was doubled to 1.0 mg / kg, GAG accumulation was observed in some organs (lungs) compared to the positive control. Therefore, it was confirmed that the protein conjugate was more effective in reducing the amount of GAG accumulation in the organs than the conventional IDS when administered at intervals of two weeks (FIG. 18 to FIG. 20). However, in the brain, the GAG reduction effect could not be confirmed under the current administration conditions. Experimental Example 10. Determination of the effect of decreasing the amount of GAG in the urine after a single administration of albumin and IDS-conjugated protein conjugate
알부민과 IDS가결합된 단백질 접합체를정맥주사로단회 투여하였을때, 소변으로 배출되는 크레아티닌 양으로 보정된 GAG양 (g GAG/g creat inine)을 확인하기 위해, 이듀로네이트- 2 -설파타제 넉아웃 마우스 (K0) 및 정상마우스 (WT)에 IDS 또는 알부민과 IDS가 결합된 단백질 접합체 (ALBIDS)를 정맥주사로 단회 투여한 후 4주 동안 GAG 감소를 비교하였다. 소변은 도 21에 표시된스케줄대로채취하였다.  To determine the amount of GAG (g GAG / g creatinine) corrected to the amount of creatinine excreted in the urine when albumin and IDS conjugated protein conjugate were administered intravenously, a single dose of iduronate-2-sulfatase GAG reductions were compared for 4 weeks after intravenous administration of a protein conjugate (ALBIDS) conjugated with IDS or albumin and IDS to out-mice (K0) and normal mice (WT). The urine was collected according to the schedule shown in Fig.
구체적으로, 현재 임상 투여 용량으로 사용되고 있는 0.5 mg/kg용량의 IDS를 매주투여한그룹과 1.0 mg/kg또는 2.0 mg/kg용량으로단회 투여한 IDS 2019/124973 1»(:1^^018/016240 또는 단백질 접합체 (ALBIDS) 그룹의 소변 내 GAG/creat inine(g/g) 감소효과를반복측정 분산분석 (repeated measurement AN0VA)을통해비교하였다. Specifically, the current dose of 0.5 mg / kg of IDS and the single dose of 1.0 mg / kg or 2.0 mg / kg of IDS The effect of gag / creatinine (g / g) reduction in the urine of group 1 or group 2 (ALBIDS) was compared by repeated measurement ANOVA.
4주 동안 관찰을 통해 단백질 접합체를 단회 투여한 그룹과 IDS를 매주 (4회)투여한그룹간에 소변으로배출되는 GAG수준에 차이를보이지 않았다. 반면, 1.0 mg/kg용량의 IDS를투여한그룹의 경우에는통계적으로유의하게 GAG수준이 증가 (p=0.0227)가 관찰되었다. 다만, 2.0 mg/kg 용량의 IDS를 투여한 그룹의 경우 소변으로 배출되는 GAG 수준에 차이를 보이지 않았다 (p=0.053) . 특히, IDS를 0.5 mg/kg투여한마우스의 경우 2주후부터 GAG배설량이 현격하게 감소하였다. 또한, 단백질 접합체를 1.0 mg/kg 이상 투여한 마우스의 경우 첫 주째부터 GAG배설양의 감소하였으며, 중간에 별도의 투여 없이도소변 내 GAG 양이 한달 동안 낮게 수준으로 유지되었다. 이를 통해, 한 달에 1회 알부민과 IDS가 결합된 단백질 접합체를 적정한 용량으로 투여함으로써 소변 내 GAG 함량을정상의 범위로저하시키는것을확인하였다 (도 22내지도 25) . 실험예 11. 알부민및 IDS가결합된단백질 접합체를단회 투여한후, 간 조직내 GAG축적양감소효과확인  There was no difference in the level of GAG released into the urine between the single-protein-conjugated group and the IDS-administered group (4 times) after 4 weeks of observation. On the other hand, the group receiving 1.0 mg / kg of IDS showed a statistically significant increase in GAG levels (p = 0.0227). However, there was no difference in urinary GAG levels between the groups receiving IDS at 2.0 mg / kg (p = 0.053). Particularly, in the case of mice administered with 0.5 mg / kg of IDS, the GAG excretion was significantly decreased after 2 weeks. In addition, the amount of GAG excretion decreased from the first week in mice administered 1.0 mg / kg protein conjugate, and the amount of GAG in the urine was kept low for one month without additional administration in the middle. Thus, it was confirmed that the intracellular GAG content was reduced to a normal range by administering a protein conjugate with albumin and IDS once a month at an appropriate dose (FIGS. 22 to 25). Experimental Example 11. Determination of the effect of decreasing the amount of GAG accumulation in liver tissues after single administration of albumin and IDS-conjugated protein conjugate
알부민과 IDS가결합된단백질 접합체를정맥주사로단회 투여하였을때, 조직내 축적되는 GAG 양을 확인하기 위해, 이듀로네이트- 2-설파타제 넉아웃 마우스 (K0) 및 정상마우스 (WT)에 IDS 또는 알부민과 IDS가 결합된 단백질 접합체 (ALBIDS)를 정맥주사로단회 투여한후 4주동안 GAG감소를 비교하였다. 간 조직은 28일째에 채취하였다. 채취한 조직은 -80°C 온도의 넁동고에 보관하였다. 2-sulfatase knockout mouse (K0) and normal mouse (WT) were injected intravenously with IDS to determine the amount of GAG accumulated in the tissue when the albumin-IDS conjugated protein conjugate was intravenously administered once. Or albumin and IDS-conjugated protein conjugates (ALBIDS) were intravenously injected for 4 weeks. Liver tissue was collected on day 28. The tissues were stored at -80 ° C.
보관된조직은 homogeni zer (BIOPEC PRODUCTS INC. Model 398)로균질화한 후초음파파쇄기 (Fi sher Scient i f ic Model 500)를 이용해 세포파쇄하였다. 그 후, K-ASSAY사의 sGAG Assay ki t (BP-004)를 이용하여 조직 내 GAG 축적양을 측정하였다. 또한, Pierce BCA assay ki t을 이용하여 조직 내 총 단백량을 분석하였다. 측정된 GAG양은역시 측정된총단백량으로나누어 보정하였다.  The stored tissues were homogenized with homogenizer (BIOPEC PRODUCTS INC. Model 398) and then disrupted using an ultrasonic disrupter (FiSer Scientific Model 500). Thereafter, the amount of GAG accumulation in tissues was measured using sGAG assay kit (BP-004) from K-ASSAY. In addition, total protein content in tissues was analyzed using Pierce BCA assay kit. The amount of GAG measured was also divided by the total amount of protein measured.
그 결과, 단백질 접합체를 단회투여한 그룹의 경우, 간 조직에서 양성대조군 그룹 (매주, 0.5 mpk IDS)의 GAG양과 유사한 수준으로 측정되었다. 반면, IDS를단회투여한그룹의 경우, 농도와관계없이 양성대조군보다높은 GAG 2019/124973 1»(:1^1{2018/016240 축적양이 관찰되었다 (도 26) . 실험예 12. 알부민 및 IDS가 결합된 단백질 접합체를 반복 투여한 후, 소변내 GAG양감소효과확인 As a result, in the case of a single administration of the protein conjugate, the level of GAG in the positive control group (weekly, 0.5 mpk IDS) in the liver tissue was measured at a level similar to that of the GAG. On the other hand, in the case of a single-group administration of IDS, a GAG The accumulation amount of 2019/124973 was observed (FIG. 26). Experimental Example 12. Determination of the effect of decreasing the amount of GAG in urine after repeated administration of albumin and IDS-conjugated protein conjugate
알부민과 IDS가결합된 단백질 접합체를 한달 간격으로 4개월 동안반복 투여할 때, 소변으로 배출되는 크레아티닌 양으로 보정된 GAG양 (g GAG/g creat inine)을 확인하였다. 구체적으로, 이듀로네이트- 2 -설파타제 넉아웃 마우스 (K0) 및 정상마우스 (방 에 IDS 또는 알부민과 IDS가 결합된 단백질 접합체 (ALBIDS)를 한달 간격으로 4개월 동안 반복 투여한 후 GAG 감소를 비교하였다. 소변은 최초투여 3일 전, 투여 후에는 한달간격으로 4개월 동안 채취하였다.  When albumin and IDS conjugated protein conjugate were repeatedly administered at monthly intervals for 4 months, the amount of corrected GAG (g GAG / g creatinine) was confirmed by the amount of urine creatinine released. Specifically, the repeated administration of iduronate-2-sulfatase knockout mouse (K0) and normal mouse (IDS or albumin-IDS conjugated protein conjugate (ALBIDS) The urine was collected 3 days before the first administration and 4 months after the administration.
구체적으로, 현재 임상 투여 용량으로 사용되고 있는 0.5 mg/kg 용량의 IDS를 매주 투여한 그룹을 양성 대조군으로 하였으며, 1.0 mg/kg , 2.0 mg/kg, 3.0 mg/kg, 4.0 mg/kg 용량으로 반복 (4회) 투여한 IDS 또는 단백질 접합체를 투여한 그룹간 소변 내 GAG/ creat inine(g/g) 감소효과를 반복측정 분산분석 (repeated measurement AN0VA)을통해비교하였다.  Specifically, a group of 0.5 mg / kg of IDS, which is currently being used as a clinical dose, was used as a positive control and repeated at a dose of 1.0 mg / kg, 2.0 mg / kg, 3.0 mg / kg and 4.0 mg / (G / g) reduction in intraperitoneal urine administered IDS or protein conjugates administered intravenously (4 times) were compared by repeated measurement ANOVA.
한 달 간격으로 단백질 접합체를 4회 반복 투여한 그룹의 경우, 투여용량에 무관하게 양성대조군 대비 소변으로 배출되는 GAG 양이 차이를 보이지 않았다. 반면, IDS를 투여한 그룹의 경우, 대부분 용량 (3.0 mg/kg 투여그룹 제외)의 IDS를 투여한 그룹에서 소변으로 배출되는 GAG 수치가 양성대조군 대비 높게 관찰되었다 (p<0.05) . 이를 통해, 한 달에 1회 (MontWy) 적정한 용량의 단백질 접합체를 투여하는 것으로도 소변 내 GAG함량을 정상의 범위로유지가가능한것을확인하였다 (도 28내지도 35) . 실험예 13. 알부민및 IDS가결합된단백질접합체를반복투여한후, 간 조직 내 GAG축적양감소효과확인  Regardless of the dose, there was no difference in the amount of GAG released into the urine compared to the positive control group in the case of the protein conjugate administered repeatedly four times at one month intervals. On the other hand, in IDS-administered groups, the GAG levels in urine were significantly higher in the IDS-treated group than in the positive control group (p <0.05). Thus, it was confirmed that the GAG content in the urine can be maintained within the normal range by administering a protein conjugate having an appropriate dose once a month (MontWy) (FIGS. 28 to 35). Experimental Example 13. Determination of the effect of decreasing the amount of GAG accumulation in liver tissues after repeated administration of albumin and IDS-conjugated protein conjugate
알부민과 IDS가결합된 단백질 접합체를 4개월동안한달간격으로반복 투여하였을 때, 조직내 축적되는 GAG 양을 확인하기 위해, 이듀로네이트- 2- 설파타제 넉아웃 마우스 (K0) 및 정상마우스 에 IDS 또는 알부민과 IDS가 결합된 단백질 접합체 (ALBIDS)를 4개월 동안 한 달 간격으로 반복 투여하였다. 2019/124973 1»(:1^1{2018/016240 양성대조군인 매주 IDS를투여한그룹은마지막투여 후 7일째 되는 날, 한달간격으로 IDS또는 단백질 접합체를투여한그룹의 경우마지막투여 후 28일 경과되는시점에서 부검을통해 간조직를 채취하여 -80 °C 온도의 냉동고에 보관하였다. 2-sulfatase knockout mouse (K0) and normal mice were injected with IDS (2-mercaptoethanol) to determine the amount of GAG accumulated in the tissues when albumin and IDS-conjugated protein conjugate were repeatedly administered at intervals of one month for 4 months. (ALBIDS) conjugated with albumin and IDS were repeatedly administered at intervals of one month for 4 months. The group receiving the IDS every week for the positive control group (2019/124973) and the group receiving the IDS or protein conjugate every month for 28 days after the last administration At the time of the passage, liver tissues were collected by autopsy and stored in a freezer at -80 ° C.
보관된조직은 homogenizer (BIOPEC PRODUCTS INC. Model 398)로균질화한 후초음파파쇄기 (Fisher Scient i f ic Model 500)를 이용해 세포파쇄하였다. 그 후, K-ASSAY사의 sGAG Assay ki t (BP-004)를 이용하여 조직 내 GAG 축적양을 측정하였다. 또한, Pierce BCA assay kit을 이용하여 조직 내 총 단백량을 분석하였다. 측정된 GAG양은역시 측정된총단백량으로나누어보정하였다. 그 결과, 2.0 mg/kg 이상 ( IDS 무게기준) 단백질 접합체를 반복 투여한 그룹에서 현재 임상용량인 0.5 mg/kg IDS매주투여 시의 GAG축적양과유사한 수준으로 분석됨을 알 수 있었다. 반면, 기존 IDS의 경우 투여 농도를 4.0 mg/kg로 투여한 경우에도, 매주 투여되는 대조군 대비 GAG가 많이 축적이 됨을 확인할 수 있었다. 이를 통해, 단백질 접합체의 투여가 기존의 IDS투여 보다 조직 내의 GAG를감소시키는효과가우수함을확인하였다 (도 36) . 실험예 14. 알부민과 IDS가 결합된 단백질 접합체를 반복 투여한 후, The stored tissue was homogenized with a homogenizer (BIOPEC PRODUCTS INC. Model 398) and then disrupted using an ultrasonic disrupter (Fisher Scientific Model 500). Thereafter, the amount of GAG accumulation in tissues was measured using sGAG assay kit (BP-004) from K-ASSAY. In addition, total protein content in tissues was analyzed using Pierce BCA assay kit. The amount of GAG measured was also divided by the total amount of protein measured. As a result, it was found that the amount of GAG accumulation at the current clinical dose of 0.5 mg / kg IDS was similar to that of GAG accumulation in a group of 2.0 mg / kg or more (in terms of IDS weight) protein conjugate repeatedly administered. On the other hand, in the case of the conventional IDS, even when the administration concentration was 4.0 mg / kg, it was confirmed that GAG was accumulated more than the control group administered every week. As a result, it was confirmed that administration of the protein conjugate was superior to the conventional IDS administration in reducing the GAG in the tissues (FIG. 36). Experimental Example 14. After repeated administration of albumin and IDS-conjugated protein conjugate,
ADA( anti -drug antibody)생성유무확인 Check for the generation of ADA (anti-drug antibody)
반복 투여로 생성될 수 있는 항- IDS 항체 (ant i-IDS ant ibody)를 검출하고자 실험을 진행하였다. IDS가 코팅되어있는 플레이트에 마우스 혈청 (serum)를반응시켰을때, 혈액중 IDS효소에 대한항체가존재하면코팅된 IDS와반응하는원리를이용하였다.  An experiment was conducted to detect an anti-IDS antibody (anti-IDS ant ibody) that can be generated by repeated administration. When a mouse serum was reacted with a plate coated with IDS, the principle of reacting with coated IDS was used in the presence of an antibody against IDS enzyme in blood.
실시예 12와 동일하게 PBS, IDS 또는 ALBIDS를 4개월간 투여한 마우스 혈액을 채취하여 IDS가 코팅된 플레이트에 반응시킨 후 IDS-과산화 효소 접합체액을 넣어주었다. 그 후 기질액을 첨가하면 IDS에 대한 항체의 농도에 따라발색반응을확인하였다. Mouse blood obtained by administering PBS, IDS or ALBIDS for 4 months in the same manner as in Example 12 was reacted on a plate coated with IDS, and IDS-peroxidase conjugated body fluid was added thereto. After the addition of the substrate solution, the color reaction was confirmed according to the concentration of the antibody against IDS.
Figure imgf000031_0001
Figure imgf000031_0001
분주하여 4°C 온도에서 18시간 동안 코팅한 후, 0.1% Tween 20이 포함된 생리식염수 (0.1% PBST)로 6회 세척하였다. 그후, 1% BSA가포함된생리식염수 (1% BSAPBS)로 상온에서 1시간 동안 블로킹 (blocking) 과정을 진행하였으며, 2019/124973 1»(:1^1{2018/016240 세척액 (0.1% PBST)을이용하여 6회 세척하였다. After coating at 4 ° C for 18 hours, the plate was washed six times with physiological saline containing 0.1% Tween 20 (0.1% PBST). Thereafter, the cells were blocked with physiological saline (1% BSAPBS) containing 1% BSA for 1 hour at room temperature, And washed six times with 0.11% PBST.
IDS가코팅된 웰에 각각의 마우스혈청과 IDS-HRP를각각 50 4씩 총 100 가 되도록 분주하였다. 혈청은 1% BSAPBS로 10배 희석하였으며, 37±1°C 온도에서 2시간반응시켰다. 마지막으로세척액 (0.1% PBST)으로 6회 세척 후 TMB 기질용액을 넣고 30분간 실온 (18°C 내지 25°C )에서 반응시킨 후 반응정지액을 100 ¹ 넣어 반응을 정지시켰다. 흡광도는 측정파장 450 nm, 참조파장 620 nm 파장을사용하였으며, 반응정지후 10분이내에수행하였다. Each mouse serum and IDS-HRP were dispensed into the coated wells in an IDS-coated well to give a total of 100 in each well. Serum was diluted 10-fold with 1% BSAPBS and reacted at 37 ± 1 ° C for 2 hours. Finally, the substrate was washed six times with 0.1% PBST and incubated for 30 minutes at room temperature (18 ° C to 25 ° C). The absorbance was measured at a wavelength of 450 nm and a reference wavelength of 620 nm and was performed within 10 minutes after the reaction was stopped.
그 결과, 양성 대조군으로 사용된 항- hIDS ant i body (BAF2449, R&D system)의 경우 농도 의존성으로 450 nm 파장에서 발색을 보였다. 반면, IDS 또는 단백질 접합체를 4개월간 반복 투여하여도 마우스 체내에서 이에 대한 항체가생기지 않는것을확인하였다 (도 37) . 제조예 2. 알부민과이듀로네이트- 2 -설파타제가결합된융합단백질제조 제조예 2.1.융합단백질설계  As a result, the anti-hIDS ant i body (BAF2449, R & D system) used as a positive control showed color development at a wavelength of 450 nm due to concentration dependency. On the other hand, it was confirmed that even when the IDS or protein conjugate was repeatedly administered for 4 months, no antibody was generated in the mouse body (FIG. 37). Preparation Example 2. Preparation of albumin-iduronate-2-sulfatase-conjugated fusion protein Preparation Example 2.1 Preparation of fusion protein
알부민과 이듀로네이트- 2 -설파타제가 결합된 융합단백질을 제조하기 위하여, 서열번호 1의 아미노산 서열로 이루어진 알부민과 서열번호 2의 아미노산서열로이루어진 이듀로네이트- 2 -설파타제를발현하는벡터를이용하여 융합단백질을제조하였다.  In order to prepare an albumin-iduronate-2-sulfatase conjugated fusion protein, an albumin comprising the amino acid sequence of SEQ ID NO: 1 and a vector expressing an euduronate-2-sulfatase comprising the amino acid sequence of SEQ ID NO: Was used to prepare a fusion protein.
최적의 발현 .및 활성을 유지하기 위하여 도 38에 나타난 바와 같이 다양한 융합단백질을 제조하였다. IDS의 C-말단에 알부민이 직접 또는 공지된 f lexible l inker인 G4S l inker 또는 r igid l inker인 EAAAK로 연결하여 제작하였다. 이와는 별도로 알부민의 C-말단에 동일한 링커를 사용하여 IDS와 연결된융합단백질을설계하였다 (도 38) .  Various fusion proteins were prepared as shown in Figure 38 to maintain optimal expression and activity. Albumin at the C-terminus of the IDS was directly or indirectly linked to a known labelable inker, G4S l inker or r igid l inker, EAAAK. Separately, a fusion protein linked to IDS was designed using the same linker at the C-terminus of albumin (FIG. 38).
유전자 발현벡터에는 Ascl와 Pad 제한효소 절단부위를 포함하도록 합성하였다. 융합단백질을 코딩하는 염기서열을 포함하는 발현벡터는 pcDNA 3.4(ThermoFi sher Scient i f ic)을 사용하였다. 또한, 상기 발현벡터는 합성되는 융합단백질의 분비를위해각각분비유전자 (signal sequence)를포함하였다.  Gene expression vectors were synthesized to contain Ascl and Pad restriction sites. The expression vector containing the nucleotide sequence encoding the fusion protein was pcDNA 3.4 (ThermoFisher Scientific). In addition, the expression vector contained a signal sequence for secretion of the fusion protein to be synthesized.
제조예 2.2.융합단백질생산  Production Example 2.2 Production of fusion protein
상기 제작된 발현벡터를 발현용 세포인 ExpiCHO-STM 세포 (ThermoFi sher 2019/124973 1»(:1^1{2018/016240 The prepared expression vector was transformed into ExpiCHO-STM cells (ThermoFi sher 2019/124973 1 »(: 1 ^ 1 {2018/016240
Scientific)에 Exp i Feet ami nTM CHO Transfection Kit(ThermoFisherScientific) with Exp i Feet Ami nTM CHO Transfection Kit (ThermoFisher
Scientific)를이용하여 형질주입시켜융합단백질을발현시켰다. Scientific) to express the fusion protein.
구체적으로, 융합단백질 발현은 동물유래 성분이 포함되지 않은 ExpiCHOTM Expression 배지 (ThermoFisher Scientific) 기준 30 M 수준으로 배양을 실시하였다. 형질주입 하루 전에 ExpiCHO-STM세포를 필요한수에 맞춰 계대배양하였다.형질주입 수행 당일,세포수가 6xl06 cells/m요이 되도록세포를 준비하였다. 융합단백질을 코딩하는 유전자가 포함된 발현벡터 DNA를 30 //g(l //g/me)을 배양액 넣고 수일 동안 8% C02 및 37 °C 온도에서 배양하였다. 배양을 종료한 후, 세포를 원심 분리하여 배양액을 각각 화수하였다. 회수된 배양 상등액은 SDS-PAGE 및 IDS 항체와 알부민 항체를 이용한 웨스턴 블럿을 통해 융합단백질을확인하였다. Specifically, expression of the fusion protein was performed at a level of 30 M based on ExpiCHOTM Expression medium (ThermoFisher Scientific) without animal-derived components. ExpiCHO-STM cells were subcultured to the required number one day before transfection. On the day of transfection, cells were prepared to have a cell number of 6x10 6 cells / m 2. While the expression vector DNA containing the gene encoding the fusion protein, 30 // g (l // g / me) into the culture medium and cultured in a few days 8% C0 2 and 37 ° C temperature. After completion of the culturing, the cells were centrifuged and the culture liquid was subjected to purification. The recovered culture supernatant was confirmed by SDS-PAGE and Western blotting using IDS antibody and albumin antibody.
제조예 2.3.융합단백질정제  Production Example 2.3 Purification of Fusion Protein
제조예 2.2에서 생산된 다양한 형태의 융합단백질을 정제하기 .위해 여러 정제방법을 활용할 수 있다. 발현된 융합단백은 배지로 분비되고 알부민 친화크로마토 그래피 (CaptureSelectTM Human albumin affinity matrix, Thermo scientific)등에 의해 분리할 수 있다. 본 실험에서는 3단계의 컬럼 크로마토그래피를통해정제하였다.  Various purification methods can be utilized to purify the various types of fusion proteins produced in Production Example 2.2. The expressed fusion protein is secreted into the medium and can be isolated by an albumin affinity chromatography (CaptureSelect ™ Human albumin affinity matrix, Thermo scientific). In this experiment, purification was carried out by three-step column chromatography.
구체적으로, 배양액을 20 mM 농도의 인산나트륨 완충액 (pH 7.2)으로 평형화 시킨 이온교환 (Q)크로마토그래피를 통해 넣은 후 0.3 M 염화나트륨을 포함하는 20 mM 농도의 인산나트륨 완충액을 흘려주어 용출하였다. 용출액에 염화나트륨을추가하여 최종 2.0 M염화나트륨을포함한 인산나트륨 완충액으로 제조하여 소수성 크로마토그래피인 부틸 세파로즈에 넣고 (loading) 염화나트륨 농도를 2.0 M에서 0.0 로 변화시키는 직선 농도구배 방법으로 흘려주어 추가 정제를 수행하였다. 용출된 단백질은 슈퍼덱스 200 컬럼과 PBS 완충액을 사용하는 크기배제 크로마토그래피를 이용하여 90% 이상의 정제도를 가진 융합단백질을수득하였다 (도 39). 실험예 15. 알부민과이듀로네이트- 2-설파타제가결합된융합단백질 제조 확인 2019/124973 1»(:1^1{2018/016240 알부민과 이듀로네이트- 2 -설파타제가 결합된 융합단백질이 제대로 제조되었는지 확인하기 위해, SDS-PAGE를 수행하였다. 제조예 2.2에서 수득한 배양 상등액 30 !d를 5% 메르갑토에탄올 (mercaptoethanol)이 들어있는 샘플 완충액 10成와혼합후, 951 온도에서 10분간반응시켰다. 그후각각샘플 15 내지 25 fA를 4%내지 12% Bi s-Tr i s 겔에 로딩하였다. 150V전압 (EC250-90, E-C apparatus corporat ion)으로 1시간 10분 동안 전기 영동을 수행하여 단백질을 크기에 따라 분리시킨 후, 염색용액 (Sun-Gel staining solut ion, LPS solut ion)으로 염색하여 단백질을 시각화하였다. 이때, 전기영동은 Novex Xcel l SureLock전기영동장치를이용하여 수행하였다 (도 40) . Specifically, the culture solution was loaded through ion exchange (Q) chromatography, which was equilibrated with 20 mM sodium phosphate buffer (pH 7.2), and then eluted with a 20 mM sodium phosphate buffer containing 0.3 M sodium chloride. Sodium chloride was added to the eluate to prepare a sodium phosphate buffer solution containing 2.0 M sodium chloride. The diluted solution was loaded into a hydrophobic chromatography buffer, butyl sepharose, and the sodium chloride concentration was changed from 2.0 M to 0.0, Respectively. The eluted protein was subjected to size exclusion chromatography using Superdex 200 column and PBS buffer to obtain a fusion protein having a degree of purification of 90% or more (FIG. 39). EXPERIMENTAL EXAMPLE 15 Confirmation of Production of a Fusion Protein Bound by Albumin-iduronate-2-sulfatase SDS-PAGE was performed in order to confirm that the fusion protein bound with iduronate-iduronate-2-sulfatase was properly prepared. The culture supernatant 30 obtained in Production Example 2.2 ! d was mixed with 10 samples of sample buffer containing 5% mercaptoethanol, and then reacted at 951 for 10 minutes. Each sample was then loaded with 15-25 fA on a 4% to 12% Bi s-Tr is gel. Gel electrophoresis was performed for 1 hour and 10 minutes with a 150V voltage (EC250-90, EC apparatus corporation) to separate the proteins according to their sizes and stained with a staining solution (Sun-Gel staining solution, LPS solution) . At this time, electrophoresis was performed using a Novex Xcel l SureLock electrophoresis apparatus (Fig. 40).
도 40에 나타난 바와 같이, 배양 상등액에 대하여 SDS-PAGE를 수행한 결과, 레인 4의 IDS-A(EAAAK)4A-HSA의 경우를제외하고알부민융합단백질이 CH0 세포시스템에서 배양배지로정상적으로발현됨을확인하였다. As shown in FIG. 40, SDS-PAGE was performed on the culture supernatant. As a result, except for IDS-A (EAAAK) 4 A-HSA of lane 4, albumin fusion protein was expressed normally in culture medium in CHO cell system .
또한, 각각의 시료들을 4% 내지 12% Bis-Tr i s 겔 상에서 전기영동으로 분리하고, iBlotTM 2 Transfer stack, PVDF, regular si ze 제품 (ThermoFi sher Scient i f ic)의 플루오르화 폴리비닐리덴 멤브레인 (polyvinyl idene f luoride membrane)상으로 iBlotTM 2 Transfer device (ThermoFisher Scient i f ic) 제품을 이용하여 전기영동 방법으로 단백질을 이동시켰다. 단백질이 이동된 플루오르화 폴리비닐리덴멤브레인을 30분동안 5%탈지유 (skim mi lk)로차단 (blocking)시킨 후, 바이오틴이 컨쥬게이션된 항- IDS 항체 또는 항-알부민 항체를 넣고 4°C 온도에서 하룻밤동안반응시켰다. 그후 0.1% PBST (137 mM NaCl , 2.7 mM KC1 , Na2HP04 10 mM, KH2P04 1.8 mM, 0.1% Tween 20)완충액으로 10분씩 3번세척하고, HRP(horseradi sh peroxidase)가 표지된 아비딘 (avidin)과 4°C 온도에서 2시간 동안 반응시켰다. 그 후 다시 0.1% PBST 완충액으로 10분씩 3번 세척한 후 면역반응된단백질을 GE Amersham사의 화학발광검출시스템 (chemi luminescence detect ion system)을제조사의프로토콜에 따라사용하여 시각화하였다 (도 41) . 또한, 도 41에 나타난 바와 같이, 융합단백질은 항- IDS 항체 및 항- 알부민 항체에 의해 동일한 위치에서 반응을 하며, 두 가지 물질에 대한 융합단백의 존재를확인하였다. 레인 2는링커가없이 IDS-HSA직접 연결된융합 단백으로서, 발현되면서 배양액상 상당한 양이 IDS와 알부민으로 절단된 절편들이 있음을 확인하였다. 그 외 레인 3의 IDS-(G4S)3-HSA, 레인 7의 HSA- 2019/124973 1»(:1/10公018/016240
Figure imgf000035_0001
Each sample was also separated by electrophoresis on a 4% to 12% Bis-Trs gel and transferred to iBlot ™ 2 Transfer stack, PVDF, polyvinylidene membrane (ThermoFisher Scientif ic) The protein was transferred by electrophoresis using an iBlotTM 2 Transfer device (ThermoFisher Scientif ic) on the idene fuoride membrane. Protein-transferred fluorovinylidene membrane was blocked for 30 minutes with 5% skim milk and biotin-conjugated anti-IDS antibody or anti-albumin antibody was added and incubated at 4 ° C Lt; / RTI &gt; overnight. The cells were then washed three times for 10 min each with 0.1% PBST (137 mM NaCl, 2.7 mM KCl, Na2HPO4 10 mM, KH2PO4 1.8 mM, 0.1% Tween 20) buffer and incubated with avidin and horseradish peroxidase in ° C temperature, the reaction was carried out for 2 hours. After washing three times with 0.1% PBST buffer for 10 minutes, the immunoreacted proteins were visualized using a chemiluminescence detection system (GE Amersham) according to the manufacturer's protocol (FIG. 41). In addition, as shown in FIG. 41, the fusion protein was reacted at the same position by the anti-IDS antibody and the anti-albumin antibody, and the presence of the fusion protein for the two substances was confirmed. Lane 2 was a fusion protein directly linked to IDS-HSA without a linker, and it was confirmed that there were fragments in which a considerable amount of the culture solution was cleaved by IDS and albumin. Other IDS- (G4S) 3- HSA in lane 3 , HSA- 2019/124973 1 »(: 1/10/06 018/016240
Figure imgf000035_0001
확인하였다. Respectively.

Claims

2019/124973 1»(:1^1{2018/016240 특허청구범위 2019/124973 1 »(: 1 ^ 1 {2018/016240 Patent Claims
1. 하기 일반식 1또는일반식 2를갖는단백질 접합체:  1. A protein conjugate having the following general formula 1 or general formula 2:
[일반식 1]  [Formula 1]
Ai-LrXi  Ai-LrXi
[일반식到  [General expression
Xi-Li-Ai  Xi-Li-Ai
상기 식에서, In this formula ,
Ai은알부민또는알부민유도체 (der ivat ives)이고; Ai is an albumin or albumin derivative (der ivat ives);
은링커이고;  Is a linker;
¾은리소좀효소이다.  ¾ is a lysosomal enzyme.
2. 제 1항에 있어서,  2. The method of claim 1,
상기 리소좀 효소는 이듀로네이트 2 -설파타제 (iduronate-2-sul fatase, IDS) , 베타갈락토시다제 (beta-galactosidase) , 갈락토스- 6 -설파타제 (Galactose- 6-sul fatase) , 베타-글루쿠로니다제 (beta-glucuronidase) , N-아세틸갈락토사민- 6 -설파타제 (N-acetylgalactosamine-6 sul fatase) , 글루코세레브로시다제 The lysosomal enzyme may be selected from the group consisting of iduronate-2-sul fatase (IDS), beta-galactosidase, galactose-6-sulphatase, Beta-glucuronidase, N-acetylgalactosamine-6 sul fatase, glucocerebrosidase,
(glucocerebrosidase) , 알파-갈락토시다제 _A(Alpha galactosidase A) , 알파- L-이 두로니다제 ( a 1 pha L- i dur on i das e ) , 알파- N-아세틸글루코사미니다제 (Alpha-N- acetylglucosaminidase) 헤파란-알파-글루코사미나이드 (Heparan-alpha- glucosaminide) , N-아세틸트랜스퍼라제 (N-acetyltransferase) , N-아세틸글루코사 민 6 -설파타제 (N-acetylghicosamine 6-sul fatase) , 히알루로니다아제glucuronidase, glucocerebrosidase, alpha-galactosidase A, alpha-L-auronidase, alpha-N-acetylglucosaminidase, N-acetylglucosaminidase) Heparan-alpha- glucosaminide, N-acetyltransferase, N-acetylghicosamine 6-sul fatase ), Hyaluronidase
(hyaluronidase)로이루어진군으로부터 선택되는것인, 단백질접합체. (hyaluronidase). &lt; / RTI &gt;
3. 제 1항에 있어서,  3. The method of claim 1,
상기 리소좀효소가이듀로네이트 2 -설파타제인것인, 단백질접합체. Wherein the lysosomal enzyme is gyuduronate 2-sulfatase.
4. 제 1항에 있어서, 4. The method of claim 1,
상기 알부민은서열번호 1의 아미노산서열을포함하는 것인, 단백질 접 합체.  Wherein the albumin comprises the amino acid sequence of SEQ ID NO: 1.
5. 제 1항에 있어서,  5. The method of claim 1,
상기 알부민 유도체는서열번호 1의 아미노산서열과 90% 이상의 상동성 을갖는것인, 단백질접합체.  Wherein the albumin derivative has 90% or more homology with the amino acid sequence of SEQ ID NO: 1.
6. 제 1항에 있어서, 2019/124973 1»(:1^1{2018/016240 상기 링커는 0 kDa초과내지 5 kDa이하의 크기를갖는폴리에틸렌글리 콜 (polyethylene glycol )인것인. 단백질접합체. 6. The method of claim 1, Wherein the linker is a polyethylene glycol having a size of greater than 0 kDa and less than or equal to 5 kDa. Protein conjugate.
7. 제 1항에 있어서,  7. The method of claim 1,
상기 링커는 이듀로네이트 2 -설파타제와아마이드결합 (amide bond)을 이 루는것인, 단백질접합체.  Wherein the linker comprises an amide bond with an euduronate 2-sulfatase.
8. 제 1항에 있어서,  8. The method of claim 1,
상기 링커는 재조합 알부민과 티오에테르결합 (thioether bond)를 이루는 것인, 단백질접합체.  Wherein the linker comprises a recombinant albumin with a thioether bond.
9. 제 1항에 있어서,  9. The method of claim 1,
상기 단백질 접합체는 1개 내지 15개의 알부민이 이듀로네이트 2 -설파타 제에 결합된것인, 단백질접합체.  Wherein the protein conjugate is one to fifteen albumin bound to the euduronate 2-sulfatase.
10. 제 1항에 있어서,  10. The method of claim 1,
상기 단백질 접합체는 1개 또는 2개의 알부민이 이듀로네이트 2 -설파타제 와결합된것인, 단백질접합체.  Wherein the protein conjugate is one in which one or two albumin is bound to the euduronate 2-sulfatase.
11. 제 1항의 단백질 접합체를유효성분으로포함하는헌터증후군의 예방또는 치료용약학조성물.  11. A pharmaceutical composition for preventing or treating Hunter syndrome comprising the protein conjugate of claim 1 as an active ingredient.
12. 제 1항의 단백질 접합체를개체에 투여하는단계를포함하는헌터증후군의 예방또는치료방법 .  12. A method for preventing or treating Hunter's syndrome comprising administering the protein conjugate of claim 1 to a subject.
13. 제 12항에 있어서,  13. The method of claim 12,
상기 투여는 정맥, 피하, 피내, 근육내, 비강내, 뇌실내 또는 척수강내 투여하는것인, 헌터증후군의 예방또는치료방법.  Wherein said administration is intravenous, subcutaneous, intradermal, intramuscular, intranasal, intracerebral or intrathecal administration.
14. 제 12항에 있어서,  14. The method of claim 12,
상기 투여는 3개월마다 1회, 2개월마다 1회, 매달 1회, 3주에 1회, 2주마 다 1회 또는매주 1회 투여하는것인, 헌터증후군의 예방또는치료방법.  Wherein said administration is administered once every three months, once every two months, once every month, once every three weeks, once every two weeks, or once a week.
15. 알부민 (albumin) 또는알부민유도체와리소좀효소를포함하는융합단백 질.  15. A fusion protein comprising an albumin or albumin derivative and a lysosomal enzyme.
16. 제 15항에 있어서,  16. The method of claim 15,
상기 융합단백질이 하기 구조에서 선택되는 어느 하나의 구조를 가지는 것인, 융합단백질:  Wherein the fusion protein has any one of the structures selected from the following structures:
A2-X2 , X2 _A2, A2-L2-X2, 표2 _1 _公2 , 22 , A2 _X2 ~A2 , , 不石 ~ 2019/124973 1»(:1^1{2018/016240 A 2- X 2, X 2 _ A 2, A 2 -L 2 -X 2, Table 2 _ 1 _ 2, 2 group 2, A 2 _ X 2 ~ A 2,,不石~ 2019/124973 1 »(: 1 ^ 1 {2018/016240
L2-A2-L3-X32 , A2-L2-X2- A3, A2-X2-L2-A3 , A2-L2-X2 - L3-A3 ; L 2 -A 2 -L 3 -X3 2 , A 2 -L 2- X 2 - A 3, A 2 -X 2 -L 2 -A 3, A 2 -L 2 -X 2 - L 3 -A 3 ;
상기 구조에서 In the above structure,
A2또는 A3는각각독립적인알부민또는알부민유도체이고; A 2 or A 3 is an independent albumin or albumin derivative, respectively;
L2또는 는각각독립적인링커이며; L 2 or are each independently a linker;
X2는각각독립적인는리소좀효소이다. Each X 2 is independently a lysosomal enzyme.
17. 제 15항에 있어서,  17. The method of claim 15,
상기 리소좀 효소는 이듀로네이트 2 -설파타제(iduronate-2-sul fatase, IDS) , 베타갈락토시다제 (beta-galactosidase) , 갈락토스- 6 -설파타제 (Galactose- 6-sul fatase) , 베타-글루쿠로니다제 (beta-glucuronidase) , N-아세틸갈락토사민- 6-설파타제 (N-acetylgalactosamine-6 sul fatase) , 글루코세레브로시다제 The lysosomal enzyme may be selected from the group consisting of iduronate-2-sul fatase (IDS), beta-galactosidase, galactose-6-sulphatase, Beta-glucuronidase, N-acetylgalactosamine-6 sul fatase, glucocerebrosidase,
(glucocerebrosidase) , 알파-갈락토시다제- A(Alpha galactosidase A) , 알파- L-이 두로니다제 (alpha-L-iduronidase), 알파- N-아세틸글루코사미니다제 (Alpha-N- acetylglucosaminidase) 헤파란-알파-글루코사미나이드 (Heparan-alpha- glucosaminide) , N-아세틸트랜스퍼라제 (N-acetyl transferase) , N-아세틸글루코사 민 6 -설파타제 (N-acetylglucosamine 6-sul fatase) , 히알루로니다아제glucuronidase, glucocerebrosidase, alpha-galactosidase A, alpha-L-iduronidase, alpha- N-acetylglucosaminidase, N-acetyl transferase, N-acetylglucosamine 6-sulphate, Hyaluronan, and the like. Azime
(hyaluronidase)로이루어진군으로부터 선택되는것인,융합단백질. (hyaluronidase). &lt; / RTI &gt;
18. 제 15항에 있어서,  18. The method of claim 15,
상기 리소좀효소가이듀로네이트 2 -설파타제인것인,융합단백질.  Wherein the lysosomal enzyme is a diuronate 2-sulfatase.
19. 제 15항에 있어서,  19. The method of claim 15,
상지 알부민은 서열번호 1의 아미노산 서열을 포함하는 것인, 융합단백 질.  Wherein the topoisomerase comprises the amino acid sequence of SEQ ID NO: &lt; RTI ID = 0.0 &gt; 1. &lt; / RTI &gt;
20. 15항에 있어서,  20. The method of claim 15,
상기 알부민 유도체는서열번호 1의 아미노산서열과 90% 이상의 상동성 을갖는것인, 융합단백질.  Wherein the albumin derivative has 90% or more homology with the amino acid sequence of SEQ ID NO: 1.
21. 제 16항에 있어서,  21. The method of claim 16,
상기 링커는펩타이드링커인것인,융합단백질.  Wherein the linker is a peptide linker.
22. 제 21항에 있어서,  22. The method of claim 21,
상기 펩타이드 링커가 5개 내지 40개의 아미노산으로 이루어진 것인, 융 합단백질.  Wherein said peptide linker is comprised of 5 to 40 amino acids.
23. 제 21항에 있어서, 2019/124973 1»(:1^1{2018/016240 상기 펩타이드 링커는 비유연성 링커 (rigid linker), 유연성 링커 (flexible linker),절단성 링커 (cleavable linker)인것인,융합단백질. 23. The method of claim 21, Wherein said peptide linker is a rigid linker, a flexible linker, or a cleavable linker.
24. 제 23항에 있어서,  24. The method of claim 23,
상기 비유연성 링커는 i) A(EAAAK)nA 은 1내지 5의 정수), ii) PAPAP 또는 iii) (XP)n (X=Ala, Lys, Glu, n은 5내지 17의 정수)의 아미노산서열을 갖는것인,융합단백질.  (I) A (EAAAK) nA is an integer from 1 to 5, ii) PAPAP or iii) (XP) n (X = Ala, Lys, Glu, n is an integer of 5 to 17) &Lt; / RTI &gt;
25. 제 23항에 있어서,  25. The method of claim 23,
상기 유연성 링커는 i) (GGGGS)n 은 1내지 5의 정수)또는 ii) (G)n (n은 6내지 8의 정수)의 아미노산서열을갖는것인,융합단백질.  Wherein the flexible linker has an amino acid sequence of i) (GGGGS) n is an integer of 1 to 5 or ii) (G) n (n is an integer of 6 to 8).
26. 제 21항께 있어서,  26. The method of claim 21,
상기 펩타이드링커는절단성 링커를포함하는것인,융합단백질.  Wherein said peptide linker comprises a cleavable linker.
27. 제 26항에 있어서,  27. The method of claim 26,
상기 절단성 링커는 카텝신 B 절단 서열 (Cathepsin B cleavage sequence) , 퓨린 절단서열 (Furin cleavage motif sequence)또는 트롬빈 절단 서열 (Thrombin cleavage sequence)인것인,융합단백질.  Wherein the cleavable linker is a Cathepsin B cleavage sequence, a Furin cleavage motif sequence, or a Thrombin cleavage sequence.
28. 제 21항에 있어서 ,  28. The method of claim 21,
상기 펩타이드 링커는서열번호 4내지 6중선택되는어느하나의 아미 노산서열을갖는것인, 융합단백질.  Wherein said peptide linker has the amino acid sequence of any of SEQ ID NOS: 4-6.
29. 제 21항에 있어서,  29. The method of claim 21,
상기 펩타이드링커는서열번호 7내지 12중선택되는어느하나의 아미 노산서열을포함하는것인,융합단백질.  Wherein said peptide linker comprises any of the amino acid sequences selected from SEQ ID NOS: 7-12.
30. 제 15항내지 제 29항중 어느 한항의 융합단백질을코딩하는폴리뉴클레 오티드.  30. A polynucleotide encoding the fusion protein of any one of claims 15 to 29.
31. 제 30항에 있어서,  31. The method of claim 30,
상기 폴리뉴클레오티드는서열번호 13내지 서열번호 18로이루어진 군으 로부터 선택되는하나의 염기서열을포함하는,폴리뉴클레오티드.  Wherein the polynucleotide comprises a single nucleotide sequence selected from the group consisting of SEQ ID NO: 13 to SEQ ID NO: 18.
32. 제 30항의 폴리뉴클레오티드를포함하는발현벡터 .  32. An expression vector comprising the polynucleotide of claim 30.
33. 제 32항의 발현벡터가도입되어 형질전환된형질전환체 .  33. A transformant transformed by the introduction of the expression vector of claim 32.
34. i)제 33항의 형질전환체를배양하여 배양물을수득하는단계;및  34. A method for culturing a transformant, comprising: i) culturing the transformant of claim 33 to obtain a culture; and
ii)상기 배양물로부터 제 15항의 융합단백질을회수하는단계를포함하는 2019/124973 1»(:1^1{2018/016240 융합단백질생산방법. ii) recovering the fusion protein of claim 15 from said culture 2019/124973 DISCLOSURE OF INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION 1. A method for producing a fusion protein.
35. 제 15항의 융합단백질을 유효성분으로 포함하는 헌터증후군의 예방 또는 치료용약학조성물.  35. A pharmaceutical composition for preventing or treating Hunter syndrome comprising the fusion protein of claim 15 as an active ingredient.
36. 제 15항의 융합단백질을 개체에 투여하는 단계를 포함하는 헌터증후군의 예방또는치료방법.  36. A method for preventing or treating Hunter's syndrome comprising administering the fusion protein of claim 15 to a subject.
37. 헌터증후군을치료하기 위한제 1항의 단백질접합체의 용도.  37. Use of the protein conjugate of claim 1 to treat Hunter's syndrome.
38. 헌터증후군을치료하기 위한제 15항의융합단백질의 용도.  38. The use of the fusion protein of claim 15 to treat Hunter's syndrome.
39. 헌터증후군치료용약제를제조하기 위한제 1항의 단백질접합체의 용도. 39. Use of the protein conjugate of claim 1 for the manufacture of a Hunter syndrome therapeutic agent.
40. 헌터증후군치료용약제를제조하기 위한제 15항의 융합단백질의 용도. 40. Use of the fusion protein of claim 15 for the manufacture of a Hunter syndrome therapeutic agent.
PCT/KR2018/016240 2017-12-19 2018-12-19 Protein conjugate and fusion protein which comprise albumin and lysosomal enzyme WO2019124973A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762607573P 2017-12-19 2017-12-19
US62/607,573 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019124973A1 true WO2019124973A1 (en) 2019-06-27

Family

ID=66994127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016240 WO2019124973A1 (en) 2017-12-19 2018-12-19 Protein conjugate and fusion protein which comprise albumin and lysosomal enzyme

Country Status (1)

Country Link
WO (1) WO2019124973A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228348A1 (en) * 2005-04-06 2006-10-12 Genzyme Corporation Targeting of glycoprotein therapeutics
US20140017212A1 (en) * 2012-07-11 2014-01-16 Sangamo Biosciences, Inc. Methods and compositions for the treatment of lysosomal storage diseases
KR20170091056A (en) * 2016-01-29 2017-08-08 한미약품 주식회사 Conjugate of therapeutic enzymes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228348A1 (en) * 2005-04-06 2006-10-12 Genzyme Corporation Targeting of glycoprotein therapeutics
US20140017212A1 (en) * 2012-07-11 2014-01-16 Sangamo Biosciences, Inc. Methods and compositions for the treatment of lysosomal storage diseases
KR20170091056A (en) * 2016-01-29 2017-08-08 한미약품 주식회사 Conjugate of therapeutic enzymes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE PROTEIN 3 May 2016 (2016-05-03), ANONYMOUS: "iduronate 2-sulfatase isoform a preproprotein [Homo sapiens", XP055620229, retrieved from NCBI Database accession no. NP_000193 *
DATABASE PROTEIN 5 April 2005 (2005-04-05), ANONYMOUS: "serum albumin (Homo sapiens)", XP055620227, retrieved from NCBI Database accession no. AAX63425 *

Similar Documents

Publication Publication Date Title
ES2224178T3 (en) COBINATION OF PDGF, KGF, IGF AND IGFBP FOR WOUND CICATRIZATION.
US11008392B2 (en) HANP-Fc-containing molecular conjugate
JP6704358B2 (en) Compositions and methods of use for treating metabolic disorders
US9238878B2 (en) Aldehyde-tagged protein-based drug carriers and methods of use
EP2910570B1 (en) Protease stabilized, acylated insulin analogues
CN103328502B (en) The method of the disease that treatment FGF21 is relevant
CN104394882B (en) FGF2 1 albumen
JP6995627B2 (en) Compositions for treating pathological calcification conditions and methods of using them
JP2017222651A (en) Composition, use, and method for treatment of metabolic disorder and disease
JP5875990B2 (en) Produced enzyme containing methionine gamma lyase enzyme and pharmacological preparation thereof
JP2018508504A (en) Sustained insulin or insulin analogue conjugate
KR20160067219A (en) Polynucleotides encoding low density lipoprotein receptor
KR20100014850A (en) Activin-actriia antagonists and uses for promoting bone growth in cancer patients
EA024507B1 (en) Highly soluble leptins
JP2021000142A (en) CYSTATHIONINE β-SYNTHASE ENZYME FOR TREATMENT OF HOMOCYSTINURIA
WO2018032787A1 (en) Highly glycosylated human growth hormone fusion protein, and manufacturing method and application of same
BRPI0615538A2 (en) fusion protein, isolated nucleic acid, vector, host cell, method of producing a polypeptide, pharmaceutical composition, food composition, method for reducing body weight, method for treating diabetes, method for increasing the average life of a peptide or a recombinant therapeutic protein in a subject, a method for increasing the efficacy of a peptide or a therapeutic protein, a method for treating diabetes or reducing body weight.
ES2861059T3 (en) New mutant of human serum albumin
JP2021177779A (en) Novel insulin derivatives and medical uses hereof
CN105121462B (en) Stabilized insulin-like growth factor polypeptides
JPH03224490A (en) Gene vector for expression of nerve growth factor in eucalyote cell
JP2018531901A (en) Novel insulin derivatives and their medical use
KR20190036956A (en) A long acting single chain insulin analog and a conjugate thereof
TW201838647A (en) A conjugate of insulin analog with reduced affinity to insulin receptor and use thereof
KR20230136147A (en) Compositions and methods for treating hereditary angioedema

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893088

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18893088

Country of ref document: EP

Kind code of ref document: A1