WO2019124906A1 - Method for mass production of three-dimensional crumpled graphene, three-dimensional crumpled graphene produced thereby, and supercapacitor electrode comprising same - Google Patents
Method for mass production of three-dimensional crumpled graphene, three-dimensional crumpled graphene produced thereby, and supercapacitor electrode comprising same Download PDFInfo
- Publication number
- WO2019124906A1 WO2019124906A1 PCT/KR2018/016016 KR2018016016W WO2019124906A1 WO 2019124906 A1 WO2019124906 A1 WO 2019124906A1 KR 2018016016 W KR2018016016 W KR 2018016016W WO 2019124906 A1 WO2019124906 A1 WO 2019124906A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene
- dimensional
- solution
- reducing agent
- present
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
Definitions
- a method of manufacturing a three-dimensional wrinkled graphene particle by a reducing agent including a halogen element there is provided a method of manufacturing a three-dimensional wrinkled graphene particle by a reducing agent including a halogen element.
- the introduction is preferably carried out at a feed rate of 100 to 800 mL / h. If it is less than 100 mL / h, there may be a problem that the process becomes too slow, and when it exceeds 800 mL / h, there is a problem that crumpled graphene is not formed well, which is not preferable.
- the concentration of the oxidized graphene solution is preferably 0.1 to 15 g / L. If it is less than 0.1 g / L, there may be a problem that the amount of water used is too large, and if it exceeds 15 g / L, there is a problem that coagulated graphene may be produced.
- the two-dimensional graphene used in the present invention means that graphite is dispersed in a solution form using a chemical peeling method.
- the reducing agent containing a halogen element may be referred to as hydriodic acid (HI) dispersed in water.
- a method for preparing a dispersion comprising the steps of: (a) preparing a first dispersion solution in which a reducing agent containing a halogen element is dispersed in water by controlling its concentration; (b) a second dispersion solution preparation step in which a two-dimensional oxidized graphene solution is dispersed in water by controlling its concentration; And (c) scattering and injecting the second dispersion solution into the first dispersion solution using a spray or droplet method; (d) a step of producing an electrode using a three-dimensional wrinkled graphene, and a method of manufacturing a supercapacitor electrode including the wrinkled graphene particle.
- a reducing agent containing a halogen element is diluted to 1/3 of a three-necked flask. Further, the temperature is heated using a hot plate or a heating mantle so as to be 60 to 100 ⁇ ⁇ . At this time, the stirring speed is maintained at a speed of 600 to 1000 rpm, and the reducing agent containing the halogen element is dispersed well. The first dispersion solution can be obtained through this step.
- a second dispersion solution is sprayed to a three-necked flask containing the first dispersion solution.
- the sprayed second dispersion solution enters the first dispersion solution, it is sprayed while maintaining a constant velocity so as to achieve a three-dimensional structure.
- the reaction is carried out for about 4 to 16 hours. This is the time to keep the two-dimensional graphene from forming a three-dimensional wrinkled graphene particle above a certain temperature.
- the three-dimensional wrinkled graphene particle solution after the reaction is purified using a solvent.
- the solvent may be at least one kind selected from water, ethanol and acetone.
- the three-dimensional crumpled graphene particles may be finally dispersed in water or ethanol.
- the first solvent may be ethanol
- the second solvent may be ethanol or distilled water
- Another aspect of the present invention relates to an electrode material of an electrochemical device including three-dimensional wrinkled graphene particles according to the present invention.
- the electrochemical device may be one selected from the group consisting of a fuel cell, a secondary battery, and a supercapacitor, but is not limited thereto.
- a supercapacitor Preferably a supercapacitor.
- the three-dimensional wrinkled graphene particles prepared in the step (d) are coated on the carbon foil coated with aluminum to a thickness of 5 to 10 mm at room temperature, and the sample is punched by a punching machine, Can be produced.
- the method of manufacturing the electrode is not limited thereto, and various changes and modifications can be made within the scope and spirit of the present invention.
- a reducing agent containing a halogen element was prepared in an amount of 3% by weight in Examples 1 to 3.
- Three-dimensional wrinkled graphene grains can be prepared at various concentrations, but in Examples 1 to 3, the graphene grains were compared only under the condition of 3 wt%.
- a three-necked flask containing 3% by weight of hydriodic acid (HI) was heated in a heating mantle or an oil bath. The heating was carried out at 60 to 100 ° C.
- oxidized graphene solution When the oxidized graphene solution was polydispersed, the reaction was maintained for at least 4 hours for 24 hours depending on the amount of graphene oxide. Oxidized graphene was reduced by hydriodic acid (HI), resulting in three - dimensional wrinkled graphene grains.
- HI hydriodic acid
- the three - dimensional crushed graphene particle solution was purified by using ethanol and distilled water. Vacuum filtration was performed with ethanol for 5 to 10 times to neutralize impurities and high acidity. Thereafter, it was rinsed three times or more with distilled water. The resulting three-dimensional wrinkled graphene particle solution was placed in a suitable container and frozen with liquid nitrogen. The freeze-dried three-dimensional wrinkled graphene particle solution was evaporated in the freeze dryer for 3 to 7 days to finally obtain a three-dimensional wrinkled graphene powder.
- the two-dimensional reduced graphene particles were prepared in the same manner as in Example 1 except that an aqueous solution having a reducing agent dispersed therein was injected into the oxidized graphene solution.
- the three-dimensional wrinkled graphene particles prepared in Example 1 and Comparative Example 1 were pulverized with a ball mill to make fine grains.
- a ball mill is a device used to refine solid materials. When a spherical or ceramic sphere made of steel is put into a cylinder together with a sample, the sample is crushed by the impact of rotation and pulverized.
- the three-dimensional wrinkled graphene particle powder and the polymer binder are mixed at a ratio of 9: 1, and then subjected to another ball milling process.
- the reason for using the polymer binder in this process is to help the electrons move between the three-dimensionally crushed graphene particle powders by grabbing the three-dimensional wrinkled graphene grains.
- the slurry-type three-dimensional wrinkled graphene particles obtained through a ball mill and the polymer binder samples were bar-coated at 5 to 1 ⁇ m on an aluminum foil for a carbon-coated electrode.
- the bar coated samples were dried in a vacuum oven at 100 ° C. Finally, the dried sample was punched to obtain a coin-shaped sample. The thus prepared sample was used as a supercapacitor electrode.
- FIG. 1 is a photograph of three-dimensional wrinkled graphene particles produced from Examples 1 to 3 of the present invention
- FIG. 2 is a schematic view showing a manufacturing process of FIG. More specifically, FIG. 1 shows a case where a graphene solution is contained in a syringe provided in a syringe pump, and a spray nozzle is connected to a hydriodic acid (HI)
- FIG. 2 is a schematic view of the manufacturing process of FIG. 1;
- FIG. 2 is a photograph showing a state in which a graphene oxide solution is sprayed through a spray nozzle; FIG. In FIG.
- FIG. 3 shows the results of nitrogen adsorption experiments showing the specific surface area of crumpled three-dimensional graphene obtained through Example 1, which shows a high specific surface area of 884 m 2 / g. It can be confirmed that the material has a higher specific surface area than the specific surface area ( ⁇ 550 m 2 / g) of the three-dimensional wrinkled graphene obtained through the conventional mold particles, thereby achieving higher energy storage performance.
- FIG. 4 is a flowchart illustrating a process of manufacturing a supercapacitor electrode according to embodiments 4 to 5 of the present invention.
- (4) a punched sample and a separator are assembled and measured in a cell to obtain graphs and tables as shown in FIGS. 7 to 14.
- FIGS. 5 and 6 are scanning electron microscope (SEM) images of graphene particles prepared from Comparative Example 1 and Example 1 of the present invention.
- FIG. 5 shows a first embodiment using a spray nozzle
- FIG. 6 shows a first comparative example in which a reducing agent solution is injected onto a graphene oxide solution in a short time.
- the graphene structure in which the reducing agent solution is injected into the oxidized graphene solution is injected in a shorter period of time than that of the graphene structure shown in FIG. 5 by using a spray nozzle, It can be confirmed that the degree of wrinkling of graphene particles is more clear and three-dimensional. 6 shows that three-dimensionally crushed graphene grains of FIG. 5 are more suitable as energy storage electrodes than the graphene structure of FIG. 6 because of the existence of a relatively flat portion in the form of a sheet. And the image of Fig.
- FIG. 9 and 13 are graphs showing specific capacitance values according to the current density of the supercapacitor electrodes manufactured in Example 1 and Comparative Example 1 of the present invention.
- Figs. 10 and 14 are tables showing the results of Figs. 9 and 13. Fig.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
The present invention relates to a method for producing a three-dimensional graphene composite, a three-dimensional graphene composite produced thereby, and a supercapacitor electrode comprising the same. In greater detail, three-dimensional crumpled graphene particles produced finely and uniformly even without a template can be produced on a mass scale in a short period of time and can be used in application to a supercapacitor electrode which is free from the problem of a conventional two-dimensional graphene production process wherein electrical and mechanical properties are lowered due to cohesion and lamination.
Description
본 발명은 3차원의 구겨진 그래핀 제조방법, 이에 의하여 제조된 3차원 구겨진 그래핀 및 이를 포함하는 슈퍼커패시터 전극(A process of preparing three dimensional crumpled graphene, three dimensional crumpled graphene prepared thereby, and supercapacitor electrode comprising the same)에 관한 것으로, 보다 상세하게는 할로겐 원소를 포함하는 환원제 수용액에 2차원의 산화그래핀(Graphene oxide) 용액을 비산하여 입자들이 각각 다르게 용액에서 빠른 시간 내에 환원되면서 수용액 상에서의 소수성의 증가로 인한 수축을 통해 3차원의 구겨진 그래핀 입자를 대량으로 생산하는 방법과 이에 의해 제조된 3차원의 구겨진 그래핀 입자를 포함하는 에너지 저장 시스템의 활성 전극 구조체 제작에 관한 것이다.The present invention relates to a three-dimensional crumpled graphene manufacturing method, a three-dimensional crumpled graphene produced thereby, and a super-capacitor electrode comprising the same. More particularly, the present invention relates to a method of dispersing a two-dimensional graphene oxide solution into a reducing agent aqueous solution containing a halogen element, thereby reducing the particles in the solution in a short period of time and increasing the hydrophobicity in the aqueous solution Dimensional crumpled graphene particles through the shrinkage of the three-dimensional wrinkled graphene particles and the production of the active electrode structure of the energy storage system including the three-dimensional wrinkled graphene particles produced thereby.
그래핀은 원자 수준의 두께를 가지고 있는 판상 구조의 탄소의 동소체이다. 두께가 매우 얇으므로, 비표면적이 매우 높으며(> 2600m2/g) 전도성이 매우 높은 특성을 지니고 있다.Graphene is a plate-like carbon isotope with atomic-level thickness. Since the thickness is very thin, the specific surface area is very high (> 2600 m 2 / g) and the conductivity is very high.
이를 수득하기 위한 방법으로, 화학적인 방법으로 층상 탄소 구조체인 흑연(Graphite)을 산화시켜 박리시킬 수 있으며, 이때 만들어지는 것을 산화 그래핀(graphene oxide, GO)이라 한다. 이러한 산화 그래핀은 용액 공정 및 저가로 대량 생산이 가능하고, 전도도 및 용해도 등 물성의 제어가 용이하기 때문에, 카본 기반 기능성 나노구조 및 하이브리드 구조체로 각광을 받고 있다.As a method for obtaining this, graphite, which is a layered carbon structure, can be oxidized and peeled by a chemical method, and what is produced at this time is called graphene oxide (GO). Such graphene grains are attracting attention as carbon-based functional nanostructures and hybrid structures because they can be mass-produced in a solution process and at low cost, and are easy to control physical properties such as conductivity and solubility.
하지만, 산화그래핀 자체에는 매우 높은 빈도로 결함이 존재하여 전도도가 없으므로 환원 공정을 거쳐야 하는데, 이 때 환원그래핀 간의 강한 반데르발스 상호작용에 의해 일반적으로 비가역성 응집 및 나노층간의 적층 현상이 생겨나고, 비표면적을 크게 감소시키고 공정성도 떨어지게 하므로, 이는 산화그래핀의 응용에 있어서 방해요소가 된다.However, the graphene oxide itself has defects at a very high frequency, and therefore, it must undergo a reduction process because there is no conductivity. In this case, due to the strong Van der Waals interactions between reducing grains, irreversible aggregation and lamination between nano- Which greatly reduces the specific surface area and lowers the processability, which is an obstacle to the application of the oxidized graphene.
한편, 슈퍼커패시터는 전기이중층 커패시터(electric double layer capacitor; EDLC), 슈퍼커패시터(super-capacitor) 또는 울트라커패시터(ultra-capacitor)라고도 일컬어지며, 이는 전극 및 도전체와, 그것에 함침된 전해질 용액의 계면에 각각 부호가 다른 한 쌍의 전하층(전기이중층)이 물리적으로 흡착되어 생성된 것을 이용하는 것으로, 충전/방전 동작의 반복으로 인한 열화가 매우 작아 장기안정성이 매우 뛰어난 에너지 저장 소자이다. 이에 따라 슈퍼커패시터는 각종 전기ㆍ전자기기의 IC(integrated circuit) 백업을 하는 형태로 주로 사용되고 있으며, 최근에는 그 용도가 확대되어 장난감, 태양열 에너지 저장, HEV(hybrid electric vehicle) 전원 등에까지 폭넓게 응용되고 있다.On the other hand, the super capacitor is also referred to as an electric double layer capacitor (EDLC), a super-capacitor, or an ultra-capacitor, which is an electrode and a conductor, and an interface (Electric double layer) physically adsorbed and generated in different codes, respectively. This is an energy storage element having very long-term stability due to extremely low deterioration due to repeated charging / discharging operations. As a result, supercapacitors are widely used in IC (integrated circuit) backup of various electric and electronic devices. Recently, they have been widely used for toys, solar energy storage, HEV (hybrid electric vehicle) have.
슈퍼커패시터의 성능을 향상시키기 위해서는 전극 소재에 이온을 흡착할 수 있는 유효면적을 늘려야 하는데, 그래핀의 경우 앞에서 서술하였듯이 환원 공정 시에 비표면적이 크게 감소하게 되어 전극으로 사용하였을 경우 슈퍼커패시터의 성능을 증가시키기 못하게 된다.In order to improve the performance of the supercapacitor, it is necessary to increase the effective area for adsorbing ions to the electrode material. In the case of graphene, as described above, the specific surface area decreases greatly during the reduction process. . ≪ / RTI >
이를 위해 환원 그래핀의 나노구조를 제어하여 유효 비표면적을 크게 유지시키는 방향으로 많은 연구가 진행되었으며, 구겨진 그래핀 나노구조가 대표적인 구조이다. 이를 위해서 구겨진 그래핀을 만들 수 있는 방법으로 제안된 여러 가지 방법으로, 스프레이 노즐을 통해 만들어진 산화그래핀 액적을 열을 통해 건조하며 환원시키는 방법과, 산화철 마이크로 입자를 주형으로 화학적으로 환원시키며 구김을 형성하는 방법이 있다.For this purpose, many researches have been carried out in the direction of maintaining the effective specific surface area by controlling the nanostructure of the reduced graphene, and the wrinkled graphene nanostructure is a typical structure. For this purpose, several methods have been proposed to make wrinkled graphenes. One is a method of drying and reducing the graphene graphene droplets made by spray nozzles through heat, the method of chemically reducing the iron oxide micropowder to a mold, There is a method of forming.
하지만, 이러한 방법은 공정이 복잡하고, 구겨진 환원그래핀을 대량생산 하는 방법으로는 적합하지 않으며, 열을 통한 환원시 비가역적인 재적층 현상이 구겨진 그래핀에서도 일어나 높은 성능을 가지는 슈퍼커패시터의 전극으로 적합하지 못하다는 단점을 지니고 있다.However, this method is not suitable for mass production of wrinkled reduction graphene, and it is not suitable for mass production of wrinkled reduction graphene. Irreversible re-layering phenomenon occurs in wrinkled graphene when heat is reduced, It is not suitable.
따라서 본 발명자는 기존의 2차원 그래핀의 제조공정에서 발생했던 응집 및 적층으로 인한 전기적, 기계적 물성의 감소를 해결할 수 있는 3차원의 구겨진 그래핀을 간단한 공정으로 대량 생산이 가능하면서도 단시간 내에 제조할 수 있는 공정을 개발하고, 이를 이용하여 높은 충방전 용량 및 안정적인 수명특성을 갖는 슈퍼커패시터 전극으로 응용하고자 한다.Therefore, the present inventors have succeeded in producing a three-dimensional wrinkled graphene capable of solving the reduction in electrical and mechanical properties due to coagulation and lamination which have occurred in the conventional process of manufacturing two-dimensional graphene, And to apply it as a supercapacitor electrode with high charge / discharge capacity and stable lifetime characteristics.
본 발명은 상기와 같은 종래기술의 문제점을 고려하여 안출된 것으로, 본 발명의 목적은 기존의 2차원 그래핀의 제조공정에서 발생했던 응집 및 적층으로 인한 전기적, 기계적 물성의 감소를 해결할 수 있는 3차원의 구겨진 그래핀을 간단한 공정으로 대량 생산이 가능하면서도 단시간 내에 제조하고, 이를 슈퍼커패시터 전극에 응용하고자 하는 것이다.DISCLOSURE Technical Problem The present invention has been made in view of the above problems of the prior art, and it is an object of the present invention to provide a method of manufacturing a two-dimensional graphene, which is capable of solving the reduction of electrical and mechanical properties Dimensional crumpled graphene can be mass produced in a simple process while being manufactured in a short time and applied to a supercapacitor electrode.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 일 측면은 템플릿을 포함하지 않는 2차원의 산화그래핀이 할로겐 원소를 포함하는 환원제에 의해서 3차원의 구겨진 그래핀 입자로 제조됨에 관한 것이다.According to an aspect of the present invention, there is provided a method of manufacturing a three-dimensional wrinkled graphene particle by a reducing agent including a halogen element.
본 발명의 다른 측면은 (a) 할로겐 원소를 포함하는 환원제를 농도를 제어하여 물에 분산시킨 제1 분산 용액 제조 단계; (b) 2차원 산화그래핀 용액을 농도를 제어하여 물에 분산시킨 제 2 분산 용액 제조단계; 및 (c) 제2 분산 용액을 스프레이 또는 액적 방법을 이용하여 제1 분산 용액에 비산, 주입하는 단계; (d) 균일한 구겨진 그래핀 입자를 얻기위해 교반시키는 단계;를 포함하는 3차원 구겨진 그래핀 입자의 제조방법에 관한 것이다.According to another aspect of the present invention, there is provided a method for preparing a dispersion, comprising the steps of: (a) preparing a first dispersion solution in which a reducing agent containing a halogen element is dispersed in water by controlling its concentration; (b) a second dispersion solution preparation step in which a two-dimensional oxidized graphene solution is dispersed in water by controlling its concentration; And (c) scattering and injecting the second dispersion solution into the first dispersion solution using a spray or droplet method; (d) agitating to obtain uniformly wrinkled graphene grains. The present invention also relates to a method for producing three-dimensional wrinkled graphene grains.
본 발명의 또 다른 측면은 본 발명에 따른 3차원의 구겨진 그래핀 입자를 포함하는 전기화학소자의 전극재료에 관한 것이다.Another aspect of the present invention relates to an electrode material of an electrochemical device including three-dimensional wrinkled graphene particles according to the present invention.
본 발명에 따르면, 할로겐 원소를 포함하는 환원제 용액에 2차원 산화그래핀 용액을 스프레이 방법으로 주입함에 따라, 스프레이 노즐을 통해 나가는 극소량의 2차원 산화그래핀 용액들이 할로겐 원소를 포함하는 환원제 용액에 비산되어, 입자들이 각각 다르게 용액에서 빠른 시간 내에 환원되면서, 수용액 상에서의 소수성의 증가로 인한 수축이 일어나, 3차원의 구겨진 그래핀 입자를 대량으로 생산할 수 있어, 기존의 2차원 그래핀의 제조공정에서 발생했던 응집 및 적층으로 인한 전기적, 기계적 물성의 감소를 해결할 수 있다. 이 발명을 통해 3차원 구겨진 그래핀 입자를 대량 제조하고, 이를 이용한 슈퍼커패시터 전극을 제공할 수 있다.According to the present invention, by injecting a two-dimensional graphene graphene solution into a reducing agent solution containing a halogen element by spraying, a very small amount of two-dimensional graphene grains flowing through a spray nozzle are scattered in a reducing agent solution containing a halogen element As the particles are differently reduced in the solution in a short time, shrinkage due to the increase of hydrophobicity in the aqueous solution is caused and a large amount of three-dimensional crumpled graphene particles can be produced. It is possible to solve the reduction of the electrical and mechanical properties due to the aggregation and lamination that have occurred. According to the present invention, it is possible to mass-produce three-dimensional wrinkled graphene particles and provide a supercapacitor electrode using the same.
도 1은 본 발명의 실시예 1 내지 3으로부터 제조된 3차원 구겨진 그래핀 입자의 사진, 1 is a photograph of three-dimensional wrinkled graphene particles prepared from Examples 1 to 3 of the present invention,
도 2는 도 1의 제조과정을 나타낸 모식도,FIG. 2 is a schematic view showing the manufacturing process of FIG. 1,
도 3은 실시예 1 을 통해서 수득되는 구겨진 3차원 그래핀의 비표면적을 나타내는 질소 흡착 실험 결과에 대한 도면,FIG. 3 is a graph showing the results of nitrogen adsorption experiments showing the specific surface area of crumpled three-dimensional graphene obtained through Example 1,
도 4는 본 발명의 실시예 4 내지 5로부터 슈퍼커패시터 전극을 제조하는 과정을 나타낸 흐름도,4 is a flowchart illustrating a process of manufacturing a supercapacitor electrode according to embodiments 4 to 5 of the present invention,
도 5 및 도 6은 본 발명의 비교예 1 및 실시예 1로부터 제조된, 그래핀 입자의 주사전자현미경(SEM) 이미지,5 and 6 are scanning electron microscope (SEM) images of graphene particles prepared from Comparative Example 1 and Example 1 of the present invention,
도 7 내지 도 10은 실시예 1(스프레이노즐(Spray nozzle) 분사)에 대한 측정값을 설명하는 도면, Figs. 7 to 10 are diagrams for explaining measurement values for Example 1 (Spray nozzle injection)
도 11 내지 도 14는 비교예 1(주사기(Syringe)로 떨어뜨림)에 대한 측정값을 설명하는 도면이다.Figs. 11 to 14 are diagrams for explaining measurement values for Comparative Example 1 (dropping to a syringe).
이하에서, 본 발명의 여러 측면 및 다양한 구현예에 대해 더욱 구체적으로 살펴보도록 한다.Hereinafter, various aspects and various embodiments of the present invention will be described in more detail.
본 발명의 일 측면은 (A) 환원제 용액에 산화그래핀 용액을 투입하는 단계, (B) 상기 산화그래핀 용액이 투입된 환원제 용액에 대해 반응을 수행하는 단계를 포함하는 것을 특징으로 하는 구겨진 그래핀 제조방법에 관한 것이다.According to an aspect of the present invention, there is provided a method for producing a graphene graphene graphene comprising the steps of (A) introducing a graphene oxide solution into a reducing agent solution, and (B) performing a reaction on a reducing agent solution into which the graphene oxide solution is introduced And a manufacturing method thereof.
산화그래핀 용액에 환원제 용액을 투입하는 방식에 비해 형성되는 구겨진 그래핀의 응집도를 크게 낮출 수 있어 바람직하다. 두 용액을 바꾸어 실험을 진행하게 되면, 다른 모든 조건이 동일하더라도(물론 가열과 교반은 바뀐 산화그래핀 용액에 대해서 이루어진다), 훨씬 응집도가 높아진 상태로 구겨진 그래핀이 생성된다는 점을 확인하였다.The agglomeration degree of the crumpled graphene formed is lower than that of the method in which the reducing agent solution is injected into the oxidized graphene solution. By experimenting with the two solutions, we confirmed that graphene was formed in a state of increased agglomeration, even though all other conditions were the same (of course, heating and agitation took place on the altered oxidized graphene solution).
일 구현예에 따르면, 상기 환원제는 할로겐 포함 환원제이다. 본 발명에서 환원제 중에서도 특히 할로겐 포함 환원제를 사용하는 경우 환원된 구겨진 그래핀의 기계적인 측면과 구겨진 구조적인 측면에서 유리하다. 본 발명에서 사용 가능한 할로겐 포함 환원제의 예에는 아이오딘화수소 등이 포함되나, 이에 한정되지 않는다. According to one embodiment, the reducing agent is a halogen-containing reducing agent. Among the reducing agents used in the present invention, particularly, when a halogen-containing reducing agent is used, it is advantageous in view of the mechanical side of crushed wrinkled graphene and the crumpled structural aspect. Examples of the halogen-containing reducing agent usable in the present invention include, but are not limited to, hydrogen iodine and the like.
다른 구현예에 따르면, 상기 투입은 스프레이 노즐을 통한 분사에 의해 수행된다. 주사기(syringe)에 의한 첨가 또는 적가(dropwise addition)에 비해 형성된 2차원 그래핀의 입경 크기를 낮게 유지할 수 있어 유리하다.According to another embodiment, the injection is carried out by injection through a spray nozzle. It is advantageous to keep the particle size of the formed two-dimensional graphene lower than the addition or dropwise addition by the syringe.
또 다른 구현예에 따르면, 상기 투입은 100 내지 800mL/h의 공급속도로 수행되는 바람직하다. 만일 100mL/h 미만인 경우 공정이 너무 느려지는 문제가 있을 수 있고, 800mL/h를 초과하는 경우에는 구겨진 그래핀이 잘 형성되지 않는 문제가 있을 수 있어, 바람직하지 않다.According to another embodiment, the introduction is preferably carried out at a feed rate of 100 to 800 mL / h. If it is less than 100 mL / h, there may be a problem that the process becomes too slow, and when it exceeds 800 mL / h, there is a problem that crumpled graphene is not formed well, which is not preferable.
또 다른 구현예에 따르면, 상기 분사에 의해서 투입되는 액적의 평균 입경은 1㎛ 내지 100㎛인 것이 바람직하다. 상기 수치 범위를 벗어나는 경우에는 분산성 문제가 있을 수 있어 바람직하지 않다.According to another embodiment, it is preferable that the average particle diameter of droplets injected by the jet is 1 to 100 탆. If the value is out of the above range, there may be a problem of dispersibility, which is not preferable.
또 다른 구현예에 따르면, 상기 (A) 단계는 상기 환원제 용액이 40 내지 100℃로 승온되어 있는 상태에서 수행되는 것이 바람직하다. 만일 40℃ 미만이면 반응이 느리게 일어나는 문제가 있을 수 있고, 100℃를 초과하면 용액의 증발 문제가 있을 수 있어 바람직하지 않다.According to another embodiment, the step (A) is preferably performed while the temperature of the reducing agent solution is raised to 40 to 100 ° C. If the temperature is lower than 40 deg. C, there may be a problem that the reaction occurs slowly, and if it exceeds 100 deg. C, there is a problem of evaporation of the solution, which is not preferable.
또 다른 구현예에 따르면, 상기 (A) 단계는 상기 환원제 용액을 600 내지 1,000rpm으로 교반하는 상태에서 수행되는 것이 바람직하다. 만일 600rpm 미만이면 불균일한 구겨진 그래핀의 제조 문제가 있을 수 있고, 1,000rpm을 초과하면 반응기의 물리적 문제가 있을 수 있어 바람직하지 않다.According to another embodiment, the step (A) is preferably performed while stirring the reducing agent solution at 600 to 1,000 rpm. If it is less than 600 rpm, there may be a problem of manufacturing uneven crumpled graphene, and if it exceeds 1,000 rpm, there may be a physical problem of the reactor, which is undesirable.
또 다른 구현예에 따르면, 상기 산화그래핀 용액의 농도는 0.1 내지 15g/L인 것이 바람직하다. 만일 0.1g/L 미만이면 물의 사용량이 너무 많은 문제가 있을 수 있고, 15g/L를 초과하면 뭉쳐진 그래핀이 제조되는 문제가 있을 수 있어 바람직하지 않다.According to another embodiment, the concentration of the oxidized graphene solution is preferably 0.1 to 15 g / L. If it is less than 0.1 g / L, there may be a problem that the amount of water used is too large, and if it exceeds 15 g / L, there is a problem that coagulated graphene may be produced.
또 다른 구현예에 따르면, 상기 (B) 단계는 상기 산화그래핀 용액이 투입된 환원제 용액을 40℃ 내지 100℃ 온도에서 4 내지 16시간 동안 교반함으로써 수행되는 것이 바람직하다. 만일 상기 온도 또는 시간의 수치 범위를 벗어나는 경우에는 불균일한 반응 문제가 있을 수 있어 바람직하지 않다.According to another embodiment, the step (B) is preferably performed by stirring the reducing agent solution into which the oxidized graphene solution has been added at a temperature of 40 ° C to 100 ° C for 4 to 16 hours. If the temperature or time deviates from the numerical range, there may be a non-uniform reaction problem, which is undesirable.
본 발명의 가장 바람직한 구현예에 따르면, 본 발명에 따라 환원제 용액에 산화그래핀 용액을 투입하고 이 혼합 용액에 대해 반응을 수행함에 있어서, (1) 아이오딘화수소를 환원제로 사용하고, (2) 상기 투입은 스프레이 노즐을 통한 분사에 의해 (3) 투입은 100 내지 800mL/h의 공급속도로 수행하며, (4) 상기 환원제 용액이 40 내지 100℃로 승온되어 있고 (5) 600 내지 1,000rpm으로 교반되는 상태에서 산화그래핀 용액을 분사하며, (6) 상기 산화그래핀 용액의 농도는 1 내지 10g/L로 조절된 상태로 분사하는 것이 매우 중요하다.According to the most preferred embodiment of the present invention, the graphene oxide solution is introduced into the reducing agent solution according to the present invention, and the reaction is carried out with respect to the mixed solution, (1) using hydrogen iodine as a reducing agent, (2) (4) the reducing agent solution is heated to 40 to 100 DEG C; (5) the reducing agent solution is heated to 600 to 1,000 rpm; It is very important to spray the oxidized graphene solution in the agitated state and (6) to spray the graphene oxide grains in a controlled concentration of 1 to 10 g / L.
위 (1) 내지 (6)의 경우를 모두 만족하는 경우에는, 투입되는 산화그래핀 용액의 액적과 초기 운동속도에 영향을 받지 않고 균일한 입경의 구겨진 그래핀 입자를 얻을 수 있는 반면, 만일 위 (1) 내지 (6) 중에서 어느 하나라도 충족하지 않는 경우에는, 구겨진 그래핀 입자 크기가 투입되는 산화그래핀 용액의 액적과 초기 운동속도에 매우 민감하게 의존하기 때문에, 균일한 입경의 구겨진 그래핀 입자를 얻기 위해서는 투입되는 산화그래핀 용액의 액적과 초기 운동속도를 매우 세밀하게 최적화하는 단계를 추가로 거쳐야 하는 문제가 발생할 수 있어, 바람직하지 않다.When all of the above conditions (1) to (6) are satisfied, it is possible to obtain crumpled graphene grains of a uniform particle size without being influenced by the droplet of the oxidized graphene solution and the initial kinetic velocity, When any one of (1) to (6) is not satisfied, since the crushed graphene particle size is highly sensitive to the droplet and the initial kinetic velocity of the graphene oxide solution to be charged, In order to obtain the particles, there is a problem that a step of highly finely optimizing the droplet and the initial kinetic velocity of the injected graphene solution may be additionally required, which is undesirable.
이하에서는 본 발명의 내용을 추가로 설명하는바, 다만 이하의 추가 설명은 본 발명의 여러 구현예에 대한 이해를 돕기 위한 것일 뿐, 이에 의해서 본 발명의 내용이나 범위가 축소되어 해석될 수는 없다.Hereinafter, the present invention will be described in further detail with reference to the accompanying drawings, but the present invention is not limited thereto. .
본 발명의 일 측면은 템플릿을 포함하지 않는 2차원의 산화그래핀 용액이 할로겐 원소를 포함하는 환원제 수용액에 직접 스프레이 형태로 분사됨에 따라 3차원의 구겨진 그래핀 입자가 대량 제조됨에 관한 것이다.One aspect of the present invention relates to the mass production of three-dimensional wrinkled graphene particles as a two-dimensional graphene oxide solution containing no template is directly sprayed into a reducing agent aqueous solution containing a halogen element.
종래의 2차원 그래핀은 그래핀과 그래핀간의 강한 반데르발스 상호작용으로 인하여 비가역성 응집 및 적층 현상이 발생하고, 이러한 성질로 인하여 그래핀의 우수한 성질인 전기적, 기계적 물성이 저하되는 점을 확인하였다.In the conventional two-dimensional graphene, irreversible agglomeration and laminating phenomenon occur due to strong van der Waals interaction between graphene and graphene, and electrical and mechanical properties such as excellent properties of graphene are deteriorated due to such properties Respectively.
본 발명에서는 3차원 형태의 그래핀 입자를 대량 제조함으로써 응집 및 적층 현상을 해결하여 고비표면적 및 고전기전도도를 발현할 수 있다는 뿐만 아니라, 환원제 수용액에 직접 비산하는 단일 공정으로 이루어져 있어 고농도에서도 작업이 가능하며 scale-up을 진행하는데 용이하여 대량 생산 공정에 적합한 점 또한 확인하였다.In the present invention, a large amount of three-dimensional graphene particles can be solved to solve the aggregation and lamination phenomenon, so that a high specific surface area and high electric conductivity can be exhibited. In addition, since the single step is directly dispersed in the aqueous solution of the reducing agent, It is also easy to carry out scale-up process and it is confirmed that it is suitable for mass production process.
본 발명에서 쓰이는 2차원 그래핀은 흑연(graphite)를 화학적 박리법을 이용하여 용액 형태로 분산시킨 것을 의미한다. 또한, 할로겐 원소를 포함하는 환원제는 물에 분산된 아이오딘화수소(HI, Hydriodic acid)라고 할 수 있다.The two-dimensional graphene used in the present invention means that graphite is dispersed in a solution form using a chemical peeling method. Further, the reducing agent containing a halogen element may be referred to as hydriodic acid (HI) dispersed in water.
본 발명의 다른 측면은 (a) 할로겐 원소를 포함하는 환원제를 농도를 제어하여 물에 분산시킨 제1 분산 용액 제조 단계; (b) 2차원 산화그래핀 용액을 농도를 제어하여 물에 분산시킨 제 2 분산 용액 제조단계; 및 (c) 제2 분산 용액을 스프레이 또는 액적 방법을 이용하여 제1 분산 용액에 비산, 주입하는 단계; (d) 3차원의 구겨진 그래핀을 이용한 전극의 제조단계;를 포함하는 3차원 구겨진 그래핀 입자의 제조방법 및 이를 포함하는 슈퍼커패시터 전극의 제작에 관한 것이다.According to another aspect of the present invention, there is provided a method for preparing a dispersion, comprising the steps of: (a) preparing a first dispersion solution in which a reducing agent containing a halogen element is dispersed in water by controlling its concentration; (b) a second dispersion solution preparation step in which a two-dimensional oxidized graphene solution is dispersed in water by controlling its concentration; And (c) scattering and injecting the second dispersion solution into the first dispersion solution using a spray or droplet method; (d) a step of producing an electrode using a three-dimensional wrinkled graphene, and a method of manufacturing a supercapacitor electrode including the wrinkled graphene particle.
먼저, 상기 (a) 단계의 구체적인 예로, 할로겐 원소를 포함하는 환원제를 묽게 희석시켜 3구 플라스크의 1/3을 채운다. 또한, 온도는 60 내지 100℃가 되도록 핫플레이트 또는 히팅멘틀을 이용하여 가열한다. 이 때, 교반하는 속도는 600 내지 1000rpm의 속도를 유지하며 할로겐 원소를 포함하는 환원제가 잘 분산되도록 한다. 이 단계를 통해 제1 분산 용액을 얻을 수 있다.First, as a specific example of the step (a), a reducing agent containing a halogen element is diluted to 1/3 of a three-necked flask. Further, the temperature is heated using a hot plate or a heating mantle so as to be 60 to 100 占 폚. At this time, the stirring speed is maintained at a speed of 600 to 1000 rpm, and the reducing agent containing the halogen element is dispersed well. The first dispersion solution can be obtained through this step.
다음으로, 상기 (b) 단계의 구체적인 예로, 2차원 산화그래핀 용액을 1g/L에서 10g/L 까지 다양한 농도로 제조한다. 2차원 산화그래핀 용액이 잘 분산되도록 1시간 내지 2시간 동안 초음파 처리하여, 제2 분산용액을 얻을 수 있다.Next, as a specific example of the step (b), a two-dimensional graphene graphene solution is prepared at various concentrations ranging from 1 g / L to 10 g / L. The second dispersion solution can be obtained by ultrasonication for 1 hour to 2 hours so that the two-dimensional graphene graphene solution is well dispersed.
상기 (c) 단계의 구체적인 예로, 상기 제 1 분산용액이 담긴 3구 플라스크에 제 2분산용액을 스프레이하여 분사시켜준다. 스프레이 된 제2 분산용액이 제1 분산용액에 들어갔을 때 3차원 구조를 이룰 수 있도록 일정속도를 유지하며 분사시켜준다. 그리고, 반응시키는 2차원 그래핀의 양에 따라 4시간 내지 16시간정도 반응시켜준다. 이는 2차원 그래핀이 일정 온도이상에서 3차원의 구겨진 그래핀 입자가 형성되도록 유지시켜주는 시간이다. 반응이 끝난 3차원의 구겨진 그래핀입자 용액은 용매를 이용하여 정제해준다. 이 때, 용매는 물, 에탄올, 아세톤 중에서 선택되는 1종 이상일 수 있으며, 슈퍼커패시터 전극의 제조방법에 따라 3차원 구겨진 그래핀 입자는 물 또는 에탄올에 최종 분산될 수 있다.As a concrete example of the step (c), a second dispersion solution is sprayed to a three-necked flask containing the first dispersion solution. When the sprayed second dispersion solution enters the first dispersion solution, it is sprayed while maintaining a constant velocity so as to achieve a three-dimensional structure. Depending on the amount of the two-dimensional graphene to be reacted, the reaction is carried out for about 4 to 16 hours. This is the time to keep the two-dimensional graphene from forming a three-dimensional wrinkled graphene particle above a certain temperature. The three-dimensional wrinkled graphene particle solution after the reaction is purified using a solvent. At this time, the solvent may be at least one kind selected from water, ethanol and acetone. According to the method of manufacturing the supercapacitor electrode, the three-dimensional crumpled graphene particles may be finally dispersed in water or ethanol.
본 발명의 일 구현예에 따르면, 제1 용매는 에탄올이고, 상기 제2 용매는 에탄올 또는 증류수일 수 있다.According to one embodiment of the present invention, the first solvent may be ethanol, and the second solvent may be ethanol or distilled water.
본 발명의 다른 측면은 본 발명에 따른 3차원의 구겨진 그래핀 입자를 포함하는 전기화학소자의 전극재료에 관한 것이다.Another aspect of the present invention relates to an electrode material of an electrochemical device including three-dimensional wrinkled graphene particles according to the present invention.
본 발명의 일 구현예에 따르면, 상기 전기화학소자는 연료전지, 이차전지 및 슈퍼커패시터 중에서 선택되는 1종일 수 있으며, 이에 한정되지 않는다. 바람직하게는 슈퍼커패시터일 수 있다.According to an embodiment of the present invention, the electrochemical device may be one selected from the group consisting of a fuel cell, a secondary battery, and a supercapacitor, but is not limited thereto. Preferably a supercapacitor.
본 발명에 따른 3차원의 구겨진 그래핀 입자를 포함하는 전극은 하기와 같은 방법으로 제조될 수 있으며, 이에 제한되는 것은 아니다.The electrode including the three-dimensional wrinkled graphene particles according to the present invention can be manufactured by the following method, but is not limited thereto.
마지막으로, 상기 (d) 단계에서는 제조된 3차원의 구겨진 그래핀 입자를 상온 조건에서 카본 코팅된 전극용 알루미늄 호일 위에 5 내지 10mm의 두께로 코팅하며, 펀칭기로 시료를 펀칭(punching)하여 동전 모양의 전극을 제조할 수 있다. 전극의 제조방법은 이에 제한되는 것은 아니며, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능하다.Finally, the three-dimensional wrinkled graphene particles prepared in the step (d) are coated on the carbon foil coated with aluminum to a thickness of 5 to 10 mm at room temperature, and the sample is punched by a punching machine, Can be produced. The method of manufacturing the electrode is not limited thereto, and various changes and modifications can be made within the scope and spirit of the present invention.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the scope and content of the present invention can not be construed to be limited or limited by the following Examples. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the present invention as set forth in the following claims. It is natural that it belongs to the claims.
또한 이하에서 제시되는 실험 결과는 상기 실시예 및 비교예의 대표적인 실험 결과만을 기재한 것이며, 아래에서 명시적으로 제시하지 않은 본 발명의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다.In addition, the experimental results presented below only show representative experimental results of the embodiments and the comparative examples, and the respective effects of various embodiments of the present invention which are not explicitly described below will be specifically described in the corresponding part.
실시예Example
실시예 1 내지 3: 3차원의 구겨진 그래핀 입자의 제조Examples 1 to 3: Preparation of three-dimensional crumpled graphene particles
물에 분산된 산화그래핀 용액을 1g/L , 5g/L, 10g/L의 농도로 각각 희석시킨 후, Bath Sonication을 1 내지 2시간 처리하였다. 이는 산화그래핀을 더욱 우수하게 분산시키기 위함이며, 균일한 3차원의 구겨진 그래핀 입자를 얻는데 필요하다.The graphene oxide solution dispersed in water was diluted with a concentration of 1 g / L, 5 g / L and 10 g / L, respectively, and then treated with Bath Sonication for 1 to 2 hours. This is to disperse the oxidized graphene more finely and is necessary to obtain uniform three-dimensional wrinkled graphene grains.
할로겐 원소를 포함하는 환원제는 실시예 1 내지 3에서 3중량%로 맞추어 제조하였다. 다양한 농도에서 3차원의 구겨진 그래핀 입자를 제조할 수 있으나, 실시예 1 내지 3에서는 3중량% 조건에서만 비교하였다. 히팅멘틀(Heating Mantle) 또는 Oil Bath에서 3중량%의 아이오딘화수소(Hydriodic acid, HI)가 담긴 3구 플라스크를 가열하였다. 가열은 60 내지 100℃에서 실시하였다.A reducing agent containing a halogen element was prepared in an amount of 3% by weight in Examples 1 to 3. Three-dimensional wrinkled graphene grains can be prepared at various concentrations, but in Examples 1 to 3, the graphene grains were compared only under the condition of 3 wt%. A three-necked flask containing 3% by weight of hydriodic acid (HI) was heated in a heating mantle or an oil bath. The heating was carried out at 60 to 100 ° C.
아이오딘화수소(Hydriodic acid, HI) 분산 용액의 온도가 안정화되면, 산화그래핀 용액을 50 내지 200 mL 주사기에 담고, 스프레이 노즐(Spray Nozzle)을 통해 60 내지 100℃로 온도가 안정화된 아이오딘화수소(Hydriodic acid, HI) 분산 용액을 향해 분사시켰다. 600 내지 800mL/h의 속도로 분사시켰으며, 이때 교반속도는 600 내지 1000rpm으로 3구 플라스크에 들어간 산화그래핀 용액의 양에 따라 교반속도를 증가시키며 적절하게 조절하였다.When the temperature of the hydriodic acid (HI) dispersion solution is stabilized, the oxidized graphene solution is placed in a 50 to 200 mL syringe and the temperature is stabilized at 60 to 100 ° C through a spray nozzle (Hydriodic acid, HI) dispersion solution. The stirring speed was 600 to 1000 rpm, and the agitation speed was increased and adjusted appropriately according to the amount of the graphene oxide grafted into the three-necked flask.
산화그래핀 용액이 다 분산되고 나면, 산화그래핀의 양에 따라 적게는 4시간 길게는 24시간 반응을 유지해주었다. 산화그래핀이 아이오딘화수소(Hydriodic acid, HI)에 의해 환원되면서 3차원의 구겨진 그래핀 입자가 만들어졌다.When the oxidized graphene solution was polydispersed, the reaction was maintained for at least 4 hours for 24 hours depending on the amount of graphene oxide. Oxidized graphene was reduced by hydriodic acid (HI), resulting in three - dimensional wrinkled graphene grains.
반응이 완료된 3차원 구겨진 그래핀 입자 용액은 에탄올, 증류수 등을 이용하여 정제과정을 거쳤다. 이때, 불순물이나 높은 산도를 중화시키기 위해 5 내지 10번 정도 에탄올로 Vacuum Filtration을 실시하였다. 그후, 증류수를 이용하여 3번 이상 헹구어주었다. 이렇게 얻은 3차원의 구겨진 그래핀 입자용액은 적정 용기에 담아 액체질소를 이용해 얼려주었다. 동결이 끝난 3차원의 구겨진 그래핀 입자 용액은 동결건조기에서 3 내지 7일 동안 내부의 증류수들이 기화되어 최종적으로 3차원의 구겨진 그래핀 입자 파우더(Powder) 형태로 얻을 수 있었다.The three - dimensional crushed graphene particle solution was purified by using ethanol and distilled water. Vacuum filtration was performed with ethanol for 5 to 10 times to neutralize impurities and high acidity. Thereafter, it was rinsed three times or more with distilled water. The resulting three-dimensional wrinkled graphene particle solution was placed in a suitable container and frozen with liquid nitrogen. The freeze-dried three-dimensional wrinkled graphene particle solution was evaporated in the freeze dryer for 3 to 7 days to finally obtain a three-dimensional wrinkled graphene powder.
비교예 1: 2차원 그래핀 입자의 제조Comparative Example 1: Production of two-dimensional graphene particles
상기 실시예 1과 동일하게 실시하되, 산화그래핀 용액에 환원제가 분산된 수용액을 주입하여 2차원 환원그래핀 입자를 제조하였다.The two-dimensional reduced graphene particles were prepared in the same manner as in Example 1 except that an aqueous solution having a reducing agent dispersed therein was injected into the oxidized graphene solution.
실시예 4 내지 5: 슈퍼커패시터 전극의 제조Examples 4 to 5: Preparation of supercapacitor electrode
상기 실시예 1 및 비교예 1로부터 제조된 3차원 구겨진 그래핀 입자를 미세하게 만들기 위해 볼밀(Ball mill)로 분쇄해주었다. 볼밀(Ball mill)이란 고체물질을 세립화하는 데 사용하는 장비로서, 강철제의 구 또는 세라믹 구를 시료와 함께 원통 속에 넣어 돌리면 시료는 회전에 따른 충격으로 부서져서 분말화되는 원리이다.The three-dimensional wrinkled graphene particles prepared in Example 1 and Comparative Example 1 were pulverized with a ball mill to make fine grains. A ball mill is a device used to refine solid materials. When a spherical or ceramic sphere made of steel is put into a cylinder together with a sample, the sample is crushed by the impact of rotation and pulverized.
또한, 3차원 구겨진 그래핀 입자 분말과 고분자 바인더를 9 : 1의 비율로 섞은 다음, 한번 더 볼밀 과정을 거친다. 이 과정에서 고분자 바인더를 쓰는 이유는 3차원 구겨진 그래핀 입자 분말들을 붙잡아서 3차원 구겨진 그래핀 입자 분말간의 전자이동을 돕기 위해서이다.Further, the three-dimensional wrinkled graphene particle powder and the polymer binder are mixed at a ratio of 9: 1, and then subjected to another ball milling process. The reason for using the polymer binder in this process is to help the electrons move between the three-dimensionally crushed graphene particle powders by grabbing the three-dimensional wrinkled graphene grains.
볼밀(Ball mill)을 통해 얻어진 슬러리(Slurry) 형태의 3차원 구겨진 그래핀 입자와 고분자 바인더 시료는 카본 코팅된 전극용 알루미늄 호일 상에서 5 내지 1μm로 바코팅(Bar Coating)하였다. 바코팅(Bar Coating)된 시료는 진공 오븐에서 100℃로 건조시켜 주었다. 마지막으로, 상기 건조된 시료를 펀칭(punching)하여 동전 모양의 샘플을 수득하였다. 이렇게 제조된 샘플을 슈퍼커패시터 전극으로 사용하였다.The slurry-type three-dimensional wrinkled graphene particles obtained through a ball mill and the polymer binder samples were bar-coated at 5 to 1 μm on an aluminum foil for a carbon-coated electrode. The bar coated samples were dried in a vacuum oven at 100 ° C. Finally, the dried sample was punched to obtain a coin-shaped sample. The thus prepared sample was used as a supercapacitor electrode.
도 1은 본 발명의 실시예 1 내지 3으로부터 제조된 3차원 구겨진 그래핀 입자의 사진이고, 도 2는 도 1의 제조과정을 나타낸 모식도이다. 좀더 구체적으로 설명하면, 도 1은 실린지 펌프(Syringe Pump)에 설치된 주사기(Syringe)에 산화그래핀 용액이 담겨있고, 물관을 통해서 3구 플라스크안의 아이오딘화수소(Hydriodic acid, HI)로 스프레이 노즐(Spray nozzle)을 통해 산화그래핀 용액이 분사되는 모습을 담은 사진이고, 도 2는 도 1의 제조과정을 모식도로 나타낸 것이다. 도 1에서 제1 분산용액인 아이오딘화수소(Hydriodic acid, HI)에 제2 분산용액인 산화그래핀 용액을 스프레이 노즐(Spray nozzle)을 통해 분사시키고, 분사가 완료되면 교반하면서 4 내지 24시간 동안 반응을 유지함을 알 수 있다.FIG. 1 is a photograph of three-dimensional wrinkled graphene particles produced from Examples 1 to 3 of the present invention, and FIG. 2 is a schematic view showing a manufacturing process of FIG. More specifically, FIG. 1 shows a case where a graphene solution is contained in a syringe provided in a syringe pump, and a spray nozzle is connected to a hydriodic acid (HI) FIG. 2 is a schematic view of the manufacturing process of FIG. 1; FIG. 2 is a photograph showing a state in which a graphene oxide solution is sprayed through a spray nozzle; FIG. In FIG. 1, a graphene oxide solution, which is a second dispersion solution, is sprayed to a first dispersion solution of hydriodic acid (HI) through a spray nozzle. When spraying is completed, the solution is agitated for 4 to 24 hours It can be seen that the reaction is maintained.
도 3은 실시예 1 을 통해서 수득되는 구겨진 3차원 그래핀의 비표면적을 나타내는 질소 흡착 실험 결과이며, 이 때 884m2/g 수준의 높은 비표면적을 가지는 것을 알 수 있다. 기존의 주형 입자를 통해 얻어지는 3차원 구겨진 그래핀의 비표면적 (~550m2/g)보다도 더 큰 비표면적을 가짐으로 더 높은 에너지 저장 성능을 낼 수 있는 소재임을 확인할 수 있다.FIG. 3 shows the results of nitrogen adsorption experiments showing the specific surface area of crumpled three-dimensional graphene obtained through Example 1, which shows a high specific surface area of 884 m 2 / g. It can be confirmed that the material has a higher specific surface area than the specific surface area (~ 550 m 2 / g) of the three-dimensional wrinkled graphene obtained through the conventional mold particles, thereby achieving higher energy storage performance.
도 4는 본 발명의 실시예 4 내지 5로부터 슈퍼커패시터 전극을 제조하는 과정을 나타낸 흐름도이다. 도 4를 참조하면, (1) 3차원 구겨진 그래핀 입자에 고분자 바인더를 적용하여 미세하게 분쇄시키고, (2) 바코팅(Bar Coating)을 한 다음 (3) 진공오븐에서 건조 및 펀칭기를 이용해 펀칭을 해준다. 마지막으로, (4) 펀칭한 시료와 세퍼레이터(Separator)을 셀에 조립 및 측정해주면 도 7 내지 도 14와 같은 그래프와 표를 얻을 수 있다.4 is a flowchart illustrating a process of manufacturing a supercapacitor electrode according to embodiments 4 to 5 of the present invention. Referring to FIG. 4, (1) fine grinding of a three-dimensional wrinkled graphene particle by applying a polymer binder, (2) bar coating, (3) punching in a vacuum oven using a drying and punching machine, To do. Finally, (4) a punched sample and a separator are assembled and measured in a cell to obtain graphs and tables as shown in FIGS. 7 to 14.
도 5 및 도 6은 본 발명의 비교예 1 및 실시예 1로부터 제조된, 그래핀 입자의 주사전자현미경(SEM) 이미지이다. 도 5는 스프레이 노즐(Spray nozzle)을 이용한 실시예 1이고, 도 6은 산화그래핀 용액 위에 환원제 용액을 단시간에 주입한 비교예 1 이다. 도 5 및 도 6을 참조하면, 도 6에서 산화그래핀 용액에 환원제 용액을 단시간에 주입한 그래핀 구조체보다 도 5에서 스프레이 노즐(Spray nozzle)을 이용하여 산화그래핀 용액을 분사시킨 3차원 구겨진 그래핀 입자의 구겨짐 정도가 더 명확하고 입체적임을 확인할 수 있다. 도 6의 경우는 비교적 평평한 시트(Sheets) 형태인 부분이 상당 수 존재하므로 구조적인 면에서도 도 5의 3차원 구겨진 그래핀 입자가 도 6의 그래핀 구조체보다 더 에너지 저장 전극으로 적합함을 도 5 및 도 6의 이미지를 통해 확인할 수 있다.5 and 6 are scanning electron microscope (SEM) images of graphene particles prepared from Comparative Example 1 and Example 1 of the present invention. FIG. 5 shows a first embodiment using a spray nozzle, and FIG. 6 shows a first comparative example in which a reducing agent solution is injected onto a graphene oxide solution in a short time. Referring to FIGS. 5 and 6, in FIG. 6, the graphene structure in which the reducing agent solution is injected into the oxidized graphene solution is injected in a shorter period of time than that of the graphene structure shown in FIG. 5 by using a spray nozzle, It can be confirmed that the degree of wrinkling of graphene particles is more clear and three-dimensional. 6 shows that three-dimensionally crushed graphene grains of FIG. 5 are more suitable as energy storage electrodes than the graphene structure of FIG. 6 because of the existence of a relatively flat portion in the form of a sheet. And the image of Fig.
도 7 및 도 11은 본 발명의 실시예 1 및 비교예 1로부터 제조된 슈퍼커패시터 전극을 순환전압 주사법(Cyclic Voltammetry, CV)으로 측정한 값을 그래프로 나타내었다. 도 8 및 도 12는 본 발명의 실시예 1 및 비교예 1로부터 제조된 슈퍼커패시터 전극을 정전류 충방전법(Galvanostatic charge-discharge)으로 측정한 값을 그래프로 나타내었다. FIGS. 7 and 11 are graphs showing values measured by cyclic voltammetry (CV) of the supercapacitor electrodes prepared in Example 1 and Comparative Example 1 of the present invention. FIGS. 8 and 12 are graphs showing the values measured by the constant current charge-discharge method of the supercapacitor electrodes manufactured in Example 1 and Comparative Example 1 of the present invention.
또한, 도 9 및 도 13은 본 발명의 실시예 1 및 비교예 1로부터 제조된 슈퍼커패시터 전극의 전류 밀도(Current density)에 따른 비용량(specific capacitance)값을 나타낸 그래프를 나타내었다. 도 10 및 도 14는 도 9와 도 13의 결과를 나타낸 표이다.9 and 13 are graphs showing specific capacitance values according to the current density of the supercapacitor electrodes manufactured in Example 1 and Comparative Example 1 of the present invention. Figs. 10 and 14 are tables showing the results of Figs. 9 and 13. Fig.
여기서, 도 7 내지 도 10은 실시예 1(스프레이노즐(Spray nozzle) 분사)에 대한 측정값을 나타내고, 도 11 내지 도 14는 비교예 1(주사기(Syringe)로 떨어뜨림)에 대한 측정값을 나타낸다.7 to 10 show measured values for Example 1 (Spray nozzle injection), and Figs. 11 to 14 show measured values for Comparative Example 1 (dropped by a syringe) .
본 발명의 실시예 4 내지 5로부터 제조된 슈퍼커패시터 전극을 양극 및 음극으로 사용하여 직경 20mm, 높이 3.2mm를 갖는 코인셀 형태의 슈퍼커패시터를 제조하였다. 이 때 코인셀을 제작함에 있어 전해액은 프로필렌카보네이트(propylene carbonate; PC) 용매에 1M의 TEABF4로 이루어진 것을 사용하였으며, 분리막은 TF4035 (일본 NKK사 제품)을 사용하였다.The supercapacitor type supercapacitor having a diameter of 20 mm and a height of 3.2 mm was manufactured using the supercapacitor electrode prepared in Examples 4 to 5 of the present invention as an anode and a cathode. In preparing the coin cell, a 1 M TEABF4 electrolyte was used as the electrolytic solution in the propylene carbonate (PC) solvent, and TF4035 (manufactured by NKK Japan) was used as the separator.
도 7 내지 도 10에서 스프레이노즐(Spray Nozzle)을 사용하여 산화그래핀 용액을 분사시켜 얻은 3차원 구겨진 그래핀 입자를 함유한 전극의 비용량(specific capacitance)은 전류밀도 1A/g에서 164.9F/g 이고, 도 11 내지 도 14에서 산화그래핀 용액에 환원제 수용액을 단시간에 주입하여 얻은 그래핀 입자를 함유한 전극의 비용량(specific capacitance)은 전류밀도 1A/g에서 118.7F/g이다.The specific capacitance of an electrode containing three-dimensional wrinkled graphene particles obtained by spraying a graphene oxide solution using a spray nozzle in FIGS. 7 to 10 was 164.9 F / cm < 2 > at a current density of 1 A / g, g and the specific capacitance of the electrode containing graphene particles obtained by injecting the reducing agent aqueous solution into the oxidized graphene solution in a short period of time in FIGS. 11 to 14 is 118.7 F / g at a current density of 1 A / g.
이 결과를 통하여, 본 발명에 따른 3차원 구겨진 그래핀 입자의 스프레이노즐(Spray nozzle) 방법에 따라 전극의 비용량(Specific Capacitance)의 증가를 확인하였다.From these results, it was confirmed that the specific capacity of the electrode was increased according to the spray nozzle method of the three-dimensional wrinkled graphene particles according to the present invention.
그러므로 본 발명의 제조 방법을 이용하여 3차원의 구겨진 그래핀 제조 및 슈퍼커패시터 전극에 적용하면, 기존의 2차원 그래핀의 제조공정에서 발생했던 응집 및 적층으로 인한 전기적, 기계적 물성의 감소 문제가 해결되며 대량 생산이 가능하므로 슈퍼커패시터 전극소재로서 그래핀을 상용소재로 응용할 수 있다.Therefore, when the present invention is applied to three-dimensional crumpled graphene and supercapacitor electrodes, it is possible to solve the problem of reduction in electrical and mechanical properties due to coagulation and stacking which have occurred in the process of manufacturing two- Since it can be mass-produced, graphene can be applied as a commercial material as a supercapacitor electrode material.
Claims (11)
- 하기 단계를 포함하는 것을 특징으로 하는 3차원의 구겨진 그래핀 대량 제조방법:A method for mass production of a three-dimensional wrinkled graphene comprising the steps of:(A) 환원제 용액에 산화그래핀 용액을 투입하는 단계,(A) introducing a graphene oxide solution into a reducing agent solution,(B) 상기 산화그래핀 용액이 투입된 환원제 용액에 대해 반응을 수행하는 단계.(B) performing a reaction on the reducing agent solution into which the oxidized graphene solution is introduced.
- 제1항에 있어서, 상기 환원제는 할로겐 포함 환원제인 것을 특징으로 하는 3차원의 구겨진 그래핀 대량 제조방법.The method according to claim 1, wherein the reducing agent is a halogen-containing reducing agent.
- 제1항에 있어서, 상기 투입은 스프레이 노즐을 통한 분사에 의해 수행되는 것을 특징으로 하는 3차원의 구겨진 그래핀 대량 제조방법.2. The method of claim 1, wherein the injection is performed by spraying through a spray nozzle.
- 제3항에 있어서, 상기 투입은 100 내지 800mL/h의 공급속도로 수행되는 것을 특징으로 하는 3차원의 구겨진 그래핀 대량 제조방법.4. The method of claim 3, wherein the loading is performed at a feed rate of 100 to 800 mL / h.
- 제4항에 있어서, 상기 분사에 의해서 투입되는 액적의 평균 입경은 1㎛ 내지 100㎛인 것을 특징으로 하는 3차원의 구겨진 그래핀 대량 제조방법.5. The method according to claim 4, wherein an average diameter of droplets injected by the jet is in a range of 1 탆 to 100 탆.
- 제1항에 있어서, 상기 환원제 용액은 40 내지 100℃로 승온되어 있는 것을 특징으로 하는 3차원의 구겨진 그래핀 대량 제조방법.The method according to claim 1, wherein the reducing agent solution is heated to 40 to 100 占 폚.
- 제5항에 있어서, 상기 환원제 용액은 600 내지 1,000rpm으로 교반되고 있는 것을 특징으로 하는 3차원의 구겨진 그래핀 대량 제조방법.6. The method according to claim 5, wherein the reducing agent solution is stirred at 600 to 1,000 rpm.
- 제7항에 있어서, 상기 산화그래핀 용액의 농도가 0.1 내지 15g/L인 것을 특징으로 하는 3차원의 구겨진 그래핀 대량 제조방법.The method according to claim 7, wherein the concentration of the oxidized graphene solution is 0.1 to 15 g / L.
- 제1항에 있어서, 상기 반응은 상기 산화그래핀 용액이 투입된 환원제 용액을 40 내지 100℃ 온도에서 4 내지 16시간 동안 교반함으로써 수행되는 것을 특징으로 하는 3차원의 구겨진 그래핀 대량 제조방법.The method according to claim 1, wherein the reaction is performed by stirring the reducing agent solution into which the graphene oxide solution has been added at a temperature of 40 to 100 ° C for 4 to 16 hours.
- 제1항에 따른 방법으로 제조된 3차원의 구겨진 그래핀.A three-dimensional wrinkled graphene made by the method of claim 1.
- 제1항에 따른 방법으로 제조된 3차원의 구겨진 그래핀을 포함하는 슈퍼커패시터 전극.A supercapacitor electrode comprising a three-dimensional wrinkled graphene produced by the method of claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0174813 | 2017-12-19 | ||
KR1020170174813A KR20190073709A (en) | 2017-12-19 | 2017-12-19 | A process of preparing three dimensional crumpled graphene, three dimensional crumpled graphene prepared thereby, and supercapacitor electrode comprising the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019124906A1 true WO2019124906A1 (en) | 2019-06-27 |
Family
ID=66993565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/016016 WO2019124906A1 (en) | 2017-12-19 | 2018-12-17 | Method for mass production of three-dimensional crumpled graphene, three-dimensional crumpled graphene produced thereby, and supercapacitor electrode comprising same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20190073709A (en) |
WO (1) | WO2019124906A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113788477A (en) * | 2021-09-26 | 2021-12-14 | 深圳华算科技有限公司 | Folded graphene coating and preparation method thereof |
CN115172066A (en) * | 2022-06-16 | 2022-10-11 | 宁德师范学院 | Fe 3+ Induced folded graphene-based capacitive composite material and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130088077A (en) * | 2012-01-30 | 2013-08-07 | 연세대학교 산학협력단 | Three dimensional graphene structure and preparation method of the same |
KR101490693B1 (en) * | 2014-05-20 | 2015-02-11 | 연세대학교 산학협력단 | Three-dimensional graphene complex, manufacture mathod thereof, and super capacity using the same |
KR101494977B1 (en) * | 2013-11-26 | 2015-02-23 | 지에스에너지 주식회사 | Graphene microparticle and the preparation method thereof |
KR20160100268A (en) * | 2015-02-13 | 2016-08-23 | 대주전자재료 주식회사 | Graphene having pores made by irregular and random, and Manufacturing method of the same |
KR101803637B1 (en) * | 2016-04-05 | 2017-12-01 | 성균관대학교산학협력단 | Manufacturing method of carbon materials microball and manufacturing method of electrode by using the microball |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101716256B1 (en) | 2015-01-30 | 2017-03-14 | 한국과학기술연구원 | A process of preparing 3D graphene by using template etching, 3D graphene particles prepared thereby, and hybrid particles comprising the same |
-
2017
- 2017-12-19 KR KR1020170174813A patent/KR20190073709A/en active Search and Examination
-
2018
- 2018-12-17 WO PCT/KR2018/016016 patent/WO2019124906A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130088077A (en) * | 2012-01-30 | 2013-08-07 | 연세대학교 산학협력단 | Three dimensional graphene structure and preparation method of the same |
KR101494977B1 (en) * | 2013-11-26 | 2015-02-23 | 지에스에너지 주식회사 | Graphene microparticle and the preparation method thereof |
KR101490693B1 (en) * | 2014-05-20 | 2015-02-11 | 연세대학교 산학협력단 | Three-dimensional graphene complex, manufacture mathod thereof, and super capacity using the same |
KR20160100268A (en) * | 2015-02-13 | 2016-08-23 | 대주전자재료 주식회사 | Graphene having pores made by irregular and random, and Manufacturing method of the same |
KR101803637B1 (en) * | 2016-04-05 | 2017-12-01 | 성균관대학교산학협력단 | Manufacturing method of carbon materials microball and manufacturing method of electrode by using the microball |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113788477A (en) * | 2021-09-26 | 2021-12-14 | 深圳华算科技有限公司 | Folded graphene coating and preparation method thereof |
CN113788477B (en) * | 2021-09-26 | 2023-08-04 | 深圳华算科技有限公司 | Wrinkled graphene coating and preparation method thereof |
CN115172066A (en) * | 2022-06-16 | 2022-10-11 | 宁德师范学院 | Fe 3+ Induced folded graphene-based capacitive composite material and preparation method thereof |
CN115172066B (en) * | 2022-06-16 | 2023-04-25 | 宁德师范学院 | Fe (Fe) 3+ Induced fold graphene-based capacitance composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20190073709A (en) | 2019-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109309200B (en) | Metal lithium-framework carbon composite material with hydrophobic coating layer, and preparation method and application thereof | |
Shetti et al. | Nanostructured organic and inorganic materials for Li-ion batteries: A review | |
WO2010147254A1 (en) | Electrode of high-density super capacitor and method for manufacturing same | |
CN109980162B (en) | Polyphosphazene coated ceramic particles and application thereof in lithium ion battery diaphragm | |
CN110635137B (en) | Conductive polymer binder and preparation method thereof, silicon-based negative plate and application thereof | |
CN109671942A (en) | A kind of lithium-ion battery silicon-carbon anode material and preparation method thereof | |
EP3133047A1 (en) | Porous carbon nanotube microsphere and preparation method therefor and application thereof, lithium metal-skeleton carbon composite material and preparation method therefor, negative electrode, and battery | |
US20110171371A1 (en) | Enhanced Electrode Composition for Li ion Battery | |
CN105633343A (en) | Flexible lithium ion battery electrode plate with self supporting capability and preparation method thereof | |
WO2016161920A1 (en) | Composite separator and preparation method therefor, and lithium-ion battery | |
CN113629249B (en) | Preparation method of MXene-based supported platinum catalyst applied to lithium-sulfur battery anode | |
CN116190586A (en) | Negative electrode active material, preparation method and application thereof | |
WO2009131332A1 (en) | Carbon negative electrode material for lithium secondary battery, production method thereof and lithium secondary battery using the same | |
Zhou et al. | Enhanced performance of alpha‐Fe2O3 nanoparticles with optimized graphene coated layer as anodes for lithium‐ion batteries | |
WO2019124906A1 (en) | Method for mass production of three-dimensional crumpled graphene, three-dimensional crumpled graphene produced thereby, and supercapacitor electrode comprising same | |
Yang et al. | Ionic Liquid Assisted Electrospinning of Porous LiFe0. 4Mn0. 6PO4/CNFs as Free‐Standing Cathodes with a Pseudocapacitive Contribution for High‐Performance Lithium‐Ion Batteries | |
WO2015102201A1 (en) | Production method for negative electrode active material for lithium secondary battery, and lithium secondary battery | |
Zhang et al. | The three-dimensional porous mesh structure of Cu-based metal-organic-framework-aramid cellulose separator enhances the electrochemical performance of lithium metal anode batteries | |
CN110085823B (en) | Nano composite negative electrode material and preparation method and application thereof | |
KR20200068839A (en) | A method of manufacturing an electrode for a super capacitor including crumpled graphene and an electrode for a supercapacitor prepared thereby | |
CN112531160B (en) | Amorphous carbon negative electrode material and preparation method and application thereof | |
CN109841826B (en) | Preparation method and application of mesocarbon microbead/nano-silicon composite sphere | |
Liu et al. | Fabrication of MnO2-graphene nanocomposite by ripening of amorphous MnO2 in graphene oxide matrix | |
CN108963229B (en) | High-performance silicon negative electrode active material and preparation method thereof | |
CN108598343B (en) | Red phosphorus modified composite diaphragm and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18891401 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18891401 Country of ref document: EP Kind code of ref document: A1 |